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Preface

The level of complexity of the bond market is higher than for the equity
markets: one simple reason is contained in the fact that the underlying in-
struments on which the derivatives are written are more sophisticated than
mere shares of stock. As a consequence, the mathematical models needed to
describe their time evolution will have to be more involved. Indeed on each
given day t, instead of being given by a single number St as the price of
one share of a common stock, the term structure of interest rates is given by
a curve determined by a finite discrete set of values. This curve is interpreted
as the sampling of the graph of a function T →֒P (t, T ) of the date of maturity
of the instrument. In particular, whenever we have to deal with stock models
involving ordinary or stochastic differential equations or finite dimensional
dynamical systems, we will have to deal with stochastic partial differential
equations or infinite dimensional systems!

The main goal of the book is to present, in a self-contained manner, the
empirical facts needed to understand the sophisticated mathematical models
developed by the financial mathematics community over the last decade. So
after a very elementary introduction to the mechanics of the bond market,
and a thorough statistical analysis of the data available to any curious spec-
tator without any special inside track information, we gradually introduce
the mathematical tools needed to analyze the stochastic models most widely
used in the industry. Our point of view has been strongly influenced by re-
cent works of Cont and his collaborators and the Ph.D. of Filipović. They
merge the original proposal of Musiela inviting us to rewrite the HJM model
as a stochastic partial differential equation, together with Björk’s proposal to
recast the HJM model in the framework of stochastic differential equations
in a Banach space. The main thrust of the book is to present this approach
from scratch, in a rigorous and self-contained manner.

Quick Summary. The first part comprises two chapters. The first one is
very practical. Starting from scratch, it offers a lowbrow presentation of the
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bond markets. This chapter is of a descriptive nature, and it can be skipped
by readers familiar with the mechanics of these markets or those who are
more interested in mathematical models. The presentation is self-contained
and no statistical prerequisites are needed despite the detailed discussion of
Principal Component Analysis (PCA for short) and curve estimation. On the
other hand, the discussion of the factor models found in the following chapter
assumes some familiarity with Itô’s stochastic calculus and the rudiments
of the Black–Scholes pricing theory. This first part of the book constitutes
a good introduction to the fixed income markets at the level of a Master in
Quantitative Finance.

The second part is a course on infinite dimensional analysis. If it weren’t
for the fact that the choice of topics was motivated by the presentation of
the stochastic partial differential and random field approaches to fixed income
models, this part could be viewed as stand-alone text. Prompted by issues
raised at the end of Part I, we introduce the theory of infinite dimensional
Itô processes, and we develop the tools of infinite dimensional stochastic
analysis (including Malliavin calculus) for the purpose of the general fixed
income models we study in Part III of the book.

The last part of the book resumes the analysis of fixed income market
models where it was left off at the end of Part I. The dynamics of the term
structure are recast as a stochastic system in a function space, and the results
of Part II are brought to bear to analyze these infinite dimensional dynamical
systems both from the geometric and probabilistic point of views. Old models
are revisited and new financial results are derived and explained in the light
of infinitely many sources of randomness.

Acknowledgments. The first version of the manuscript was prepared as
a set of lecture notes for a graduate seminar given by the first-named author
during the summer of 2000 at Princeton University. Subsequently, the crash
course on the mechanics of the bond market was prepared in December of
2000 for the tutorial presented in Los Angeles at the IPAM on the 3rd,
4th and 5th of January 2001. Rough drafts of the following chapters were
added in preparation for short courses given in Paris in January 2001 and
Warwick in March of the same year. RC would like to thank Jaksa Cvitanic,
Nizar Touzi, and David Elworthy respectively, for invitations to offer these
short courses. MT acknowledges support during writing of this book from the
National Science Foundation in the form of a VIGRE postdoctoral fellowship.
He would also like to thank Thaleia Zariphopoulou for inviting him to give
a course on this material at the University of Texas at Austin during the fall
of 2003.

Finally, we would like to dedicate this book to Leonard Gross. The foot-
prints of his seminal work on infinite dimensional stochastic analysis can
be found all over the text: the depth of his contribution to this corner of
mathematics cannot be emphasized enough. And to make matter even more
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personal, RC would like to acknowledge an unrepayable personal debt to
L. Gross for being an enlightening teacher, an enjoyable advisor, a role model
for his humorous perspective on academia and life in general, and for being
a trustworthy friend.

Princeton, NJ, October 2005 René A. Carmona
Cambridge, UK, October 2005 Michael R. Tehranchi



Contents

Part I The Term Structure of Interest Rates

1 Data and Instruments of the Term Structure
of Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Time Value of Money and Zero Coupon Bonds . . . . . . . . . . . . . 3

1.1.1 Treasury Bills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Discount Factors and Interest Rates . . . . . . . . . . . . . . . . 5

1.2 Coupon Bearing Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Treasury Notes and Treasury Bonds . . . . . . . . . . . . . . . . 7
1.2.2 The STRIPS Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Clean Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Term Structure as Given by Curves . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 The Spot (Zero Coupon) Yield Curve . . . . . . . . . . . . . . . 11
1.3.2 The Forward Rate Curve and Duration . . . . . . . . . . . . . 13
1.3.3 Swap Rate Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Continuous Compounding and Market Conventions . . . . . . . . . 17
1.4.1 Day Count Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Compounding Conventions . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Related Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 Municipal Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.2 Index Linked Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.3 Corporate Bonds and Credit Markets . . . . . . . . . . . . . . . 23
1.5.4 Tax Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.5 Asset Backed Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Statistical Estimation of the Term Structure . . . . . . . . . . . . . . . 25
1.6.1 Yield Curve Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.2 Parametric Estimation Procedures . . . . . . . . . . . . . . . . . . 27
1.6.3 Nonparametric Estimation Procedures . . . . . . . . . . . . . . 30



XII Contents

1.7 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7.1 Principal Components of a Random Vector . . . . . . . . . . 33
1.7.2 Multivariate Data PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.7.3 PCA of the Yield Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.7.4 PCA of the Swap Rate Curve . . . . . . . . . . . . . . . . . . . . . . 39

Notes & Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Term Structure Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Factor Models for the Term Structure . . . . . . . . . . . . . . . . . . . . . 43
2.2 Affine Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Short Rate Models as One-Factor Models . . . . . . . . . . . . . . . . . . 49

2.3.1 Incompleteness and Pricing . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.2 Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.3 A PDE for Numerical Purposes . . . . . . . . . . . . . . . . . . . . 55
2.3.4 Explicit Pricing Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5 Rigid Term Structures for Calibration . . . . . . . . . . . . . . . 59

2.4 Term Structure Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.1 The Heath–Jarrow–Morton Framework . . . . . . . . . . . . . . 60
2.4.2 Hedging Contingent Claims . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.3 A Shortcoming of the Finite-Rank Models . . . . . . . . . . . 63
2.4.4 The Musiela Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.5 Random Field Formulation . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Notes & Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part II Infinite Dimensional Stochastic Analysis

3 Infinite Dimensional Integration Theory . . . . . . . . . . . . . . . . . . 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1.2 Distributions of Gaussian Processes . . . . . . . . . . . . . . . . . 78

3.2 Gaussian Measures in Banach Spaces and Examples . . . . . . . . 80
3.2.1 Integrability Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.2 Isonormal Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Reproducing Kernel Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 RKHS of Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 The RKHS of the Classical Wiener Measure . . . . . . . . . 87

3.4 Topological Supports, Carriers, Equivalence and Singularity . . 88
3.4.1 Topological Supports of Gaussian Measures . . . . . . . . . . 88
3.4.2 Equivalence and Singularity of Gaussian Measures . . . . 89

3.5 Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents XIII

3.6 Cylindrical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.1 The Canonical (Gaussian) Cylindrical Measure

of a Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6.2 Integration with Respect to a Cylindrical Measure . . . . 94
3.6.3 Characteristic Functions and Bochner’s Theorem . . . . . 94
3.6.4 Radonification of Cylindrical Measures . . . . . . . . . . . . . . 95

3.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Notes & Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Stochastic Analysis in Infinite Dimensions . . . . . . . . . . . . . . . . 101
4.1 Infinite Dimensional Wiener Processes . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Revisiting some Known Two-Parameter Processes . . . . 101
4.1.2 Banach Space Valued Wiener Process . . . . . . . . . . . . . . . 103
4.1.3 Sample Path Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.4 Absolute Continuity Issues . . . . . . . . . . . . . . . . . . . . . . . . 104
4.1.5 Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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1

Data and Instruments of the Term Structure

of Interest Rates

The size and the level of sophistication of the market of fixed income se-
curities increased dramatically over the last twenty years and it became
a prime test bed for financial institutions and academic research. The fun-
damental object to model is the term structure of interest rates, and we
shall approach it via the prices of Treasury bond issues. Models for these
prices are crucial for several reasons including the pricing of derivatives
such as swaps, quantifying and managing financial risk, and setting mone-
tary policy. We mostly restrict ourselves to Treasury issues to avoid credit
issues and the likelihood of default.

We consider some of the fundamental statistical challenges of the bond
markets after presenting a crash course on the mechanics of interest rates
and the fixed income securities through which we gradually introduce con-
cepts of increasing level of sophistication. This also gives us a chance to
introduce the notation and the terminology used throughout the book.

1.1 Time Value of Money and Zero Coupon Bonds

We introduce the time value of money by valuing the simplest possible fixed
income instrument. Like for all the other financial instruments considered in
this book, we define it by specifying its cash flow. In the present situation,
the instrument provides a single payment of a fixed amount (the principal
or nominal value X) at a given date in the future. This date is called the
maturity date. If the time to maturity is exactly n years, the present value
of this instrument is:

P (X, n) =
1

(1 + r)n
X. (1.1)

This formula gives the present value of a nominal amount X due in n years
time. Such an instrument is called a discount bond or a zero coupon bond
because the only cash exchange takes place at the end of the life of the
instrument, i.e. at the date of maturity. The positive number r is referred to
as the (yearly) discount rate or spot interest rate for time to maturity n since
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it is the interest rate which is applicable today (hence the terminology spot)
on an n-year loan. Formula (1.1) is the simplest way to quantify the adage:
one dollar is worth more today than later!

1.1.1 Treasury Bills

Zero coupon bonds subject to pricing formula (1.1) do exist. Examples in-
clude Treasury bills (T-bills for short) which are securities issued by the US
government with a time to maturity of one year or less. A noticeable dif-
ference with the other securities discussed later is the fact that they do not
carry coupon payments.

Let us consider for example the case of an investor who buys a
$ 100000 13-week T-bill at a 6% yield (rate). The investor pays (ap-
proximately) $ 98500 at the inception of the contract, and receives the
nominal value $ 100000 at maturity 13 weeks later. Since 13 = 52/4
weeks represent one quarter, and since 6% is understood as an annual
rate, the discount is computed as 100000× .06/4 = 1500.

So in order to price a 5.1% rate T-bill which matures in 122 days,
we first compute the discount rate:

δ = 5.1× (122/360) = 1.728

which says that the investor receives a discount of $ 1.728 per $ 100 of
nominal value. Consequently, the price of a T-bill with this (annual)
rate and time to maturity should be:

$ 100− δ = 100− 1.728 = 98.272

per $ 100 of nominal value.

Rates, yields, spreads, etc. are usually quoted in basis points. There are
100 basis points in one percentage point. The Treasury issues bills with times
to maturity of 13 weeks, 26 weeks and 52 weeks. These bills are called three-
month bills, six-month bills and one-year bills, although these names are
accurate only at their inception. Thirteen-week bills and twenty-six week bills
are auctioned off every Monday while the fifty-two week bills are auctioned
off once a month.

The T-bill market is high volume, and liquidity is not an issue. We re-
produce below the market quotes for the US government Treasury bills for
Friday September 2nd, 2005 (source: eSpeed/Cantor Fitzgerald).

Treasury Bills

Maturity Days Bid Ask Chg Asked

to Mat. Yield

Sep 08 05 2 3.25 3.24 +0.06 3.29

Sep 15 05 9 3.46 3.45 -0.01 3.50
Sep 22 05 16 3.32 3.31 -0.01 3.36

Sep 29 05 23 3.32 3.31 +0.02 3.36
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Oct 06 05 30 3.27 3.26 +0.01 3.31

Oct 13 05 37 3.27 3.26 +0.02 3.32
Oct 20 05 44 3.27 3.26 +0.01 3.32

Oct 27 05 51 3.26 3.25 -0.01 3.31
Nov 03 05 58 3.31 3.30 +0.02 3.36

Nov 10 05 65 3.32 3.31 .... 3.38
Nov 17 05 72 3.34 3.33 +0.01 3.40
Nov 25 05 80 3.36 3.35 +0.01 3.42

Dec 01 05 86 3.38 3.37 +0.01 3.44
Dec 08 05 93 3.41 3.40 +0.02 3.48

Dec 15 05 100 3.41 3.40 +0.02 3.48
Dec 22 05 107 3.39 3.38 -0.02 3.46

Dec 29 05 114 3.42 3.41 -0.01 3.50
Jan 05 06 121 3.44 3.43 +0.02 3.52
Jan 12 06 128 3.45 3.44 +0.01 3.53

Jan 19 06 135 3.46 3.45 +0.01 3.54
Jan 26 06 142 3.47 3.46 +0.01 3.56

Feb 02 06 149 3.48 3.47 .... 3.57
Feb 09 06 156 3.48 3.47 -0.01 3.57
Feb 16 06 163 3.50 3.49 +0.01 3.60

Feb 23 06 170 3.49 3.48 -0.01 3.59
Mar 02 06 177 3.51 3.50 .... 3.61

The first column gives the date of maturity of the bill, while the second
column gives the number of days to maturity. See our discussion of day count
conventions later in this chapter. The third and fourth columns give the bid
and ask prices in decimal form. Compare with the bid and ask columns of
the quotes we give below for Treasury notes and bonds on the same day, and
the ensuing discussion.

1.1.2 Discount Factors and Interest Rates

Since the nominal value X appears merely as a plain multiplicative factor
in formula (1.1), it is convenient to assume that its value is equal to 1, and
effectively drop it from the notation. This leads to the notion of discount
factor. Discount factors can be viewed as quantities used at a given point in
time to obtain the present value of future cash flows. At a given time t, the
discount factor Pt,m with time to maturity m, or maturity date T = t + m,
is given by the formula:

Pt,m =
1

(1 + rt,m)m
(1.2)

where rt,m is the yield or yearly spot interest rate in force at time t for this
time to maturity. We assumed implicitly that the time to maturity T − t is
a whole number m of years. Definition (1.2) can be rewritten in the form:

log(1 + rt,m) = − 1

m
log Pt,m

and considering the fact that log(1 + x) ∼ x when x is small, the same
definition gives the approximate identity:

rt,m ∼ −
1

m
log Pt,m

which becomes an exact equality if we use continuous compounding. This
formula justifies the terminology discount rate for r. Considering payments
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occurring in m years time, the spot rate rt,m is the single rate of return used to
discount all the cash flows for the discrete periods from time t to time t + m.
As such, it appears as some sort of composite of interest rates applicable
over shorter periods. Moreover, this formula offers a natural generalization
to continuous time models with continuous compounding of the interest. As
we shall see later, this extension reads:

P (t, T ) = e−(T−t)r(t,T ). (1.3)

where P (t, t + m) = Pt,m and r(t, t + m) = rt,m.
The discount factor is a very useful quantity. Indeed, according to the

above discussion, the present value of any future cash flow can be computed
by multiplying its nominal value by the appropriate value of the discount
factor. We use the notation P (t, T ) to indicate that is the price at time t of
a zero coupon bond with maturity T .

The information contained in the graph of the discount factor as a function
of the maturity T (i.e the so-called discount function) is often repackaged
in quantities which better quantify the returns associated with purchasing
future cash flows at their present value. These quantities go under the names
of spot-interest-rate curve, par-yield curve, and implied forward rate curve.
This chapter is devoted to the introduction of these quantities in the discrete
time setting, and to the definition of their analogs in the continuous time
limit. The latter is a mathematical convenience which makes it possible to
use the rules of the differential and integral calculus. It is somehow unrealistic
because money is lent for discrete periods of time, but when these periods are
short, the continuous time limit models become reasonable. We shall discuss
later in the next chapter how to go from discrete data to continuous time
models and vice versa.

1.2 Coupon Bearing Bonds

Now that we know what a zero coupon bond is, it is time to introduce the
notion of coupon bearing bond. If a zero coupon bond was involving only
one payment, what is called a bond (or a coupon bearing bond), is a regular
stream of future cash flows of the same type. To be more specific, a coupon
bond is a series of payments amounting to C1, C2, . . . , Cm, at times T1, T2,
. . . , Tm, and a terminal payment X at the maturity date Tm. The coupon
payments are in arrears in the sense that at date Tj , the coupon payment is
the reward for the interests accrued up until Tj . As before, X is called the
nominal value, or the face value, or the principal value of the bond. According
to the above discussion of the discount factors, the bond price at time t should
be given by the formula:

B(t) =
∑

t≤Tj

CjP (t, Tj) + XP (t, Tm). (1.4)
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This all-purpose formula can be specialized advantageously for in most cases,
the payments Cj are made at regular time intervals. Also, these coupon pay-
ments Cj are most often quoted as a percentage c of the face value X of the
bond. This percentage is given as an annual rate, even though payments are
sometimes made every six months, or at some other interval. It is convenient
to introduce a special notation, say ny, for the number of coupon payments
in one year. For example, ny = 2 for coupons paid semi-annually. In this
notation, the coupon payment is expressed as Cj = cX/ny. If we denote by
r1, r2, . . . , rm the interest rates for the m periods ending with the coupon
payments T1, T2, . . . , Tm, then the present value of the bond cash flow is
given by the formula:

B(t) =
C1

1 + r1/ny
+

C2

(1 + r2/ny)2
+ · · ·+ Cm

(1 + rm/ny)m
+

X

(1 + rm/ny)m

=
cX

ny(1 + r1/ny)
+

cX

ny(1 + r2/ny)2
+ · · ·+ (1 + c/ny)X

(1 + rm/ny)m
. (1.5)

Note that we divided the rates rn by the frequency ny because the rates are
usually quoted as yearly rates. Formulae (1.4) and (1.5) are often referred to
as the bond price equations. An important consequence of these formulae is
the fact that on any given day, the value of a bond is entirely determined by
the sequence of yields rn, or equivalently by the discount factors P (t, t + n)
which form a sampling of the discount curve.

Remarks.

1. Reference to the present date t will often be dropped from the notation
when no confusion is possible. Moreover, instead of working with the
absolute dates T1, T2, . . . , Tm, which can represent coupon payment
dates as well as maturity dates of various bonds, it will be often more
convenient to work with the times to maturities which we denote by
x1 = T1 − t, x2 = T2 − t, . . . , xm = Tm − t. We will use whatever
notation is more convenient for the discussion at hand.

2. Unfortunately, bond prices are not quoted as a single number. Instead,
they are given by a bid–ask interval. We shall ignore the existence of this
bid–ask spread for most of what follows, collapsing this interval to a single
value, by considering its midpoint for example. We shall reinstate the bid–
ask spread when we discuss the actual statistical estimation procedures.

1.2.1 Treasury Notes and Treasury Bonds

Treasury notes are Treasury securities with time to maturity ranging from
1 to 10 years at the time of sale. Unlike bills, they have coupons: they pay
interest every six months. Notes are auctioned on a regular cycle. The Fed
acts as the agent for the Treasury, awarding competitive bids in decreasing
order of price, highest prices first. The smallest nominal amount is $ 5000 for
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notes with two to three years to maturity at the time of issue, and it is $ 1000
for notes with four or more years to maturity at the time of issue. Both types
are available in multiples of $ 1000 above the minimum nominal amount.

Treasury bonds, or T-bonds, are Treasury securities with more than
10 years to maturity at the time of sale. Like Treasury notes, they are sold
at auctions, they are traded on a dollar price basis, they bear coupons and
they accrue interest. Apart from their different life spans, the differences be-
tween Treasury notes and bonds are few. For example, bonds have a minimal
amount of $ 1000 with multiples of $ 1000 over that amount. Also, some bonds
can have a call feature (see Sect. 1.5 below). For the purpose of this book,
these differences are irrelevant: we shall give the same treatment to notes and
bonds, and we shall only talk about T-bills and T-bonds, implicitly assuming
that prices have already being adjusted for these extra features. The follow-
ing quote from The Wall Street Journal of July 29, 2005 gives an indication
of the unofficial early notices given to potential investors by the press:

The Treasury plans to raise about $ 1.98 billion in fresh cash Monday
with the sale of about $ 34 billion in short-term bills to redeem $ 32.02
billion in maturing bills. The amount is down from $ 36 billion sold
the previous week.

The offering will include $ 18 billion of 13-week bills, and $ 16
billion of 26-week bills, which will mature Nov. 3, 2005, and Feb. 2,
2006, respectively. The CUSIP number for the three-month bills
is 912795VY4, and for the six-month bills is 912795WM9. Non-
competitive tenders for the bills, available in minimum denominations
of $ 1,000, must be received by noon EDT on Monday, and competitive
tenders by 1 p.m.

On any given day, there is a great variety of notes and bonds outstanding,
with maturity ranging from a few days to 30 years, and coupon rates as low
as 1.5 and as high as 7.5%. We reproduce the beginning and the end of the
quotation list of Over-the-Counter (OTC) quotation based on transactions of
$ 1 million or more. Treasury bond and note quotes are from mid-afternoon,
September 2nd, 2005 (source: eSpeed/Cantor Fitzgerald).

US Government Bonds and Notes

Rate Maturity Bid Ask Chg Asked
Mo Yr Yield

1 5/8 Sep 05 n 99:28 99:29 +1 3.04

1 5/8 Oct 05 n 99:23 99:24 +1 3.29
5 3/4 Nov 05 n 100:13 100:14 .... 3.38

5 7/8 Nov 05 n 100:13 100:14 -1 3.42
1 7/8 Nov 05 n 99:19 99:20 .... 3.42
1 7/8 Dec 05 n 99:14 99:15 +1 3.57

1 7/8 Jan 06 n 99:09 99:10 .... 3.57
..............................................

..............................................
5 1/4 Nov 28 113:03 113:04 -2 4.34

5 1/4 Feb 29 113:07 113:08 -3 4.34
3 7/8 Apr 29 i 139:13 139:14 -10 1.81
6 1/8 Aug 29 126:14 126:15 -2 4.34

6 1/4 May 30 128:29 128:30 -3 4.33
5 3/8 Feb 31 116:18 116:19 -4 4.30

3 3/8 Apr 32 i 135:00 135:01 -11 1.73
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The first column gives the rate while the second column gives the month and
year of maturity, with a lower case letter “n” where the instrument is a note
and a lower case “i” if the issue is inflation indexed. See the discussion of
indexed securities later in the chapter. The third and fourth columns give
the bid and asked prices. Notice that none of the decimal parts happens to
be greater than 31. Compare with the T-bill quotes given earlier. The reason
is that the prices of Treasury notes and bonds are quoted in percentage
points and 32nds of a percentage point. These are percentages of the nominal
amount. But even though the figures contain a decimal point, the numbers to
the right of the decimal point give the number of 32nds. So the first bid price,
which reads 99.28, is actually 99+28/32 = 99.875, which represents $ 998750
per million of dollars of nominal amount. The fifth column gives the change
in asked price with the asked price of the last trading day while the last
column gives the yield computed on the asked price. More needs to be said
on the way this yield is computed for some of the bonds (for callable bonds
for example) but this level of detail is beyond the scope of this introductory
presentation.

Because of their large volume, Treasury notes and bonds can easily be
bought and sold at low transaction cost. They pay interest semi-annually,
most often on the anniversary of the date of issue. This income is exempt
from state income taxes.

After retiring the 30-year bond in October 2001, the Treasury resumed
the sale of its 30-year bond, the “long bond,” as it is often referred to by
traders, starting in February 2006.

1.2.2 The STRIPS Program

Formula (1.4) shows that a coupon bearing bond can be viewed as a composite
instrument comprising a zero coupon bond with the same maturity Tm and
face value (1+ c/ny)X , and a set of zero coupon bonds whose maturity dates
are the coupon payment dates Tj for 1 ≤ j < m and face value cX/ny.
This remark is much more than a mere mathematical curiosity. Indeed, the
principal and the interest components of US Treasury bonds have been traded
as separate zero coupon securities under the Treasury STRIPS (Separate
Trading of Registered Interest and Principal Securities) program since 1985.
The program was created to meet the demand for zero coupon obligations.
They are not special issues: the Treasury merely declares that specific notes
and bonds (and no others) are eligible for the STRIPS program, and the
stripping of these issues is done by government securities brokers and dealers
who give a special security identification number (CUSIP in the jargon of
financial data) to these issues. Figure 1.1 shows how STRIPS are quoted
daily (at least following each day the bond market is open for trading) in
The Wall Street Journal.

STRIPS are popular for many reasons. They have predictable cash flows:
they pay their face value at maturity as they are not callable. As backed
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Fig. 1.1. Wall Street Journal STRIPS quotes on October 15, 2005.

by US Treasury securities, they are very high quality debt instruments: they
carry essentially no default risk. Also, they require very little up-front capital
investment. Indeed, while Treasury bonds require a minimum investment of
$ 10000, some STRIPS may only require a few hundred dollars. Finally, as
they mostly come from interest payments, they offer an extensive range of
maturity dates.

1.2.3 Clean Prices

Formulae (1.4) and (1.5) implicitly assume that t is the time of a coupon
payment, and consequently, that the time to maturity is an integer multiple
of the time separating two successive coupon payments. Because of the very
nature of the coupon payments occurring at specific dates, the bond prices
given by the bond pricing formula (1.4) are discontinuous: they jump at
the times the coupons are paid. This is regarded as an undesirable feature,
and systematic price corrections are routinely implemented to remedy the
jumps. The technicalities behind these price corrections increase the level of
complexity of the formulae, but since most bond quotes (whether they are
from the US Treasury, or from international or corporate markets) are given
in terms of these corrected prices, we thought that it would be worth our
time looking into a standard way to adjust the bond prices for these jumps.

The most natural way to smooth the discontinuities is to adjust the bond
price for the accrued interest earned by the bond holder since the time of
the last coupon payment. This notion of accrued interest is quantified in
the following way. Since the bond price jumps by the amount cX/ny at the
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times Tj of the coupon payments, if the last coupon payment (before the
present time t) was made on date Tn, then the interests accrued since the
last payment should be given by the quantity:

AI(Tn, t) =
t− Tn

Tn+1 − Tn

cX

ny
, (1.6)

and the clean price of the bond is defined by the requirement that the trans-
action price be equal to the clean price plus the accrued interest. In other
words, if Tn ≤ t < Tn+1, the clean price CP (t, Tm) is defined as:

CP (t, Tm) = B(t)−AI(t, Tn) (1.7)

where B(t) is the transaction price given by (1.4) with the summation starting
with j = n + 1.

1.3 Term Structure as Given by Curves

1.3.1 The Spot (Zero Coupon) Yield Curve

The spot rate rt,m at time t for time to maturity m (also denoted r(t, T )
if the time of maturity is T = t + m) defined from the discount factor via
formulae (1.2) or (1.3) is called the zero coupon yield because it represents
the yield to maturity on a zero coupon bond (also called a discount bond).
Given observed values Pj of the discount factor, these zero coupon yields
can be computed by inverting formula (1.2). Dropping the date t from the
notation, we get:

Pm =
1

(1 + rm)m
⇐⇒ rm =

(

1

P
1/m
m

− 1

)

(1.8)

for the zero coupon yield. The sequence of spot rates {rj}j=1,...,m where m is
time to maturity is what is called the term structure of (spot) interest rate or
the zero coupon yield curve. It is usually plotted against the time to maturity
Tj − t in years. Figure 1.2 shows how the Treasury yield curves are pictured
daily in The Wall Street Journal. Notice the non-uniform time scale on the
horizontal axis.

Instead of plotting the yield on a given day t as a function of the time
to maturity Tj − t, we may want to consider the historical changes in t of
the yield for a fixed time to maturity Tj − t. This is done in Fig. 1.3 for a
10-year time to maturity, using again The Wall Street Journal as source. This
plots shows a totally different behavior. The graph looks more like a sample
path of a (stochastic) diffusion process than a piecewise linear interpolation
of a smooth curve. This simple remark is one of the stylized facts which we
shall try to capture when we tackle the difficult problem of modeling the
stochastic dynamics of the term structure of interest rates.
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Fig. 1.2. Treasury yield curves published in The Wall Street Journal on Septem-
ber 1, 2005.

Fig. 1.3. Historical values of the Treasury 10 year yield as published in The Wall
Street Journal on September 1, 2005.
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The Par Yield Curve

The par yield curve has been introduced to give an account of the term
structure of interest rates when information about coupon paying bonds is
the only data available. Indeed, yields computed from coupon paying bonds
can be quite different from the zero coupon yields computed as above.

A coupon paying bond is said to be priced at par if its current market
price equals its face (or par) value. The yield of a coupon paid at par is equal
to its coupon rate. This intuitive fact can be derived by simple manipulations
after setting y = c in the bond price equation. If the market price of a bond
is less than its face value, we say the bond trades at a discount. In this case,
its yield is higher than the coupon rate. If its market price is higher than its
face value, it is said to trade at a premium. In this case the yield is lower
than the coupon rate. These price/yield qualitative features are quite general:
everything else being fixed, higher yields correspond to lower prices, and vice
versa. Also note that, if the prices of two bonds are equal, then the one with
the larger coupon has the highest yield.

The par yield is defined as the yield (or coupon) of a bond priced at par.
In other words, if the bond is m time periods away from maturity, using the
notation of formula (1.5), the par yield is the value of c for which we have
the following equality:

1 =

m
∑

j=1

c

ny(1 + rj/ny)j
+

1

(1 + rm/ny)m
.

1.3.2 The Forward Rate Curve and Duration

We restate the properties of the spot rate rt,m in terms of a new function
for which we introduce the notation ft,m. It is intended to represent the rate
applicable from the end of the (m − 1)-th period to the end of the m-th
period. With this notation at hand we have:

1/Pt,1 = 1 + rt,1 = 1 + ft,1

1/Pt,2 = (1 + rt,2)
2 = (1 + ft,1)(1 + ft,2)

· · · = · · ·
1/Pt,j−1 = (1 + rt,j−1)

j−1 = (1 + ft,1)(1 + ft,2) · · · (1 + ft,j−1)

1/Pt,j = (1 + rt,j)
j = (1 + ft,1)(1 + ft,2) · · · (1 + ft,j−1)(1 + ft,j).

Computing the ratio of the last two equations gives:

Pt,j−1

Pt,j
= 1 + ft,j

or equivalently:

ft,j =
Pt,j−1 − Pt,j

Pt,j
= −ΔPt,j

Pt,j
(1.9)
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if we use the standard notation ΔPt,j = Pt,j−Pt,j−1 for the first difference of
a sequence (i.e. the discrete time analog of the first derivative of a function).
The rates ft,1, ft,2, . . . , ft,j implied by the discount factors Pt,1, Pt,2, . . ., Pt,j

are called the implied forward interest rates. The essential difference between
the spot rate rt,j and the forward rate ft,j can be best restated by saying that
rt,j gives the average rate of return of the next j periods while the forward
rate ft,j gives the marginal rate of return over the j-th period, for example
the one-year rate of return in 10-years time instead of today’s 10 year rate.

We now define the notion of duration for a bond. If for a coupon bond
with yield y, we denote by C1, C2, . . ., Cm the coupons which take place at
times T1, T2, . . ., Tm, the price B of the bond can be written as

B =
m
∑

i=1

Ci

(1 + y/ny)i
. (1.10)

For the sake of notation, the present time (think of t = 0) is dropped from
the notation, and we assume that the last coupon Cm includes the nominal
payment X . With this notation, the Macaulay duration is defined as

DM =
1

B

m
∑

i=1

Ti
Ci

(1 + y/ny)i
. (1.11)

According to its definition, the duration is some form of expected time to
payments. Indeed, it is a weighted average (with probability weights summing
up to 1) of the coupon dates T1, . . ., Tm, and for this reason it provides
a mean time to coupon payment. It plays an important role in interest rate
risk management. It is easy to see that the first derivative of the bond price B
given by (1.10) with respect to the yield to maturity y is exactly the Macaulay
duration DM . So the duration measures (at least to first order) the sensitivity
of the bond price to changes in the yield to maturity. As such, it is a crucial
tool in the immunization of bond portfolios.

1.3.3 Swap Rate Curves

Swap contracts have been traded publicly since 1981. They are currently the
most popular fixed income derivatives. Because of this popularity, the swap
markets are extremely liquid, and as a consequence, they can be used to
hedge interest rate risk of fixed income portfolios at a low cost.

Swap Contracts

As implied by its name, a swap contract obligates two parties to exchange
(or swap) some specified cash flows at agreed-upon times. The most com-
mon swap contracts are interest rate swaps. In such a contract, one party,
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say counterparty A, agrees to make interest payments determined by an in-
strument PA (say, a 30-year US Treasury bond rate), while the other party,
say counterparty B, agrees to make interest payments determined by another
instrument PB (say, the London Interbank Offer Rate – LIBOR for short).
Even though there are many variants of swap contracts, in a typical contract,
the principal on which counterparty A makes interest payments is equal to
the principal on which counterparty B makes interest payments. Also, the
payment schedules are identical and periodic, the payment frequency being
quarterly, semi-annually, etc.

It should be clear from the above discussion that a swap contract is equiv-
alent to a portfolio of forward contracts, but we shall not use this feature here.
In this section, we shall restrict ourselves to the so-called plain vanilla con-
tracts involving a fixed interest rate and the 3- or 6-month LIBOR rate. See
next section for the definition of these rates, and Chap. 7 for a first analysis
of some of its derivatives.

A Price Formula for a Plain Vanilla Swap

Let us denote by X the common principal, by R the fixed interest rate on
which the swap is written, by T1, T2, . . . , Tm the dates after the current
date t, at which the interest rate payments are scheduled, and by L(t, Tj−1)
the LIBOR rate over the period [Tj−1, Tj). On each payment date Tj , the
variable interest rate used to compute the payment at this time is taken from
the period [Tj−1, Tj), so that the floating-interest payment for this period
will be X(Tj−Tj−1)L(t, Tj−1), while the fixed-interest payment for the same
period will by X(Tj−Tj−1)R. Such a contract is called a forward swap settled
in arrears. Using the discount factors to compute the present value of the cash
flows, we get:

Pswap = X

m
∑

j=1

(Tj − Tj−1)(L(t, Tj−1)− R)P (t, Tj)

where we use the convention T0 = t. Notice that, if we were to add a pay-
ment of the principal X at time Tm, then the cash flows of the swap would be
identical to the cash flows generated by a portfolio long a (fixed rate) coupon
bearing bond and short a floating rate bond with the same face value. In
the financial jargon, being long an instrument means having bought the in-
strument, while being short means having borrowed the instrument with the
commitment to return it (with interest which we shall ignore here) and sold it.

The valuation problem for a swap is solved by computing the difference
of the floating-rate bond and the fixed-coupon bond. Expressing the LIBOR
in terms of discount factors (see next section), after simple algebraic manip-
ulations we get:

Pswap(t, T ) = X

⎛

⎝1− [P (t, Tm) + R
m
∑

j=1

(Tj − Tj−1)P (t, Tj)]

⎞

⎠ (1.12)
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where we use the standard notation P (t, T ) for the price at time t of a riskless
zero coupon bond with maturity date T and nominal value 1.

The Swap Rate Curve

On any given day t, the swap rate Rswap(t, T ) with maturity T = Tm is
the unique value of the fixed rate R, which, once injected in formula (1.12)
makes the swap price equal to 0. In other words, the swap rate is the value
of the fixed interest rate for which the counterparties will agree to enter
the swap contract without paying or receiving a premium. This swap rate is
obtained by solving for R in the equation obtained by setting Pswap(t, T ) = 0
in formula (1.12). This gives:

Rswap(t, Tm) =
1− P (t, Tm)

∑m
j=1(Tj − Tj−1)P (t, Tj)

. (1.13)

Notice that in practice, the interest payments are regularly distributed over
time (in other words the lengths of all the time intervals Tj − Tj−1 are
equal), and for this reason, one often uses a parameter giving the frequency
of the payments. Figure 1.4 shows that the curve of the swap rates is given
in The Wall Street Journal with the same exposure as the yield curve. We
shall come back to swap rates in Sect. 1.7 when we discuss principal compo-
nent analysis.

Fig. 1.4. Swap curve as published in The Wall Street Journal on 10/15/2005.
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1.4 Continuous Compounding and Market Conventions

We now introduce the framework of continuous time finance which will be
used throughout the book. The overarching assumption of the mathematical
theory presented in this book is that at each time t, we have a continuum of
liquidly traded zero coupon bonds, one for each possible date of maturity T
after t. We shall eventually assume that dates are non-negative real numbers,
and we shall assume the existence of a money-market account whose value
Bt at time t is the result of investing a unit amount at time t = 0 in an
account where money grows at the instantaneous rate rt. In other words, Bt

is the solution of the ordinary differential equation dBt = rtBt dt with initial
condition B0 = 1. The solution is given by

Bt = e
∫

t

0
rsds.

The discount factor D(t, T ) between two dates t and T is defined at the
amount at time t equivalent to unity at time T . Hence

D(t, T ) =
Bt

BT
= e−

∫

T
t

rsds.

In this set-up a zero coupon bond with maturity T is a contract that guaran-
tees its holder a unit payment at time T without any intermediate payment.
We denote by P (t, T ) its value at time t. Notice that D(t, T ) = P (t, T ) when
{rs}s is deterministic. However, they are different when {rs}s is random. In-
deed, D(t, T ) randomness depends upon the evolution of rs for t ≤ s ≤ T
while P (t, T ) is known at time t. A form of the expectation hypothesis states
that P (t, T ) is the expectation of D(t, T ).

1.4.1 Day Count Conventions

The reader must already have felt some discomfort with our loose treatment
of time spans and dates, and it is about time to come clean and address some
of the issues which we conveniently brushed under the rug. We consistently
tried to use the letter t to denote the present date and the upper case T for
the date of maturity of whatever instrument we are considering. In practice,
these dates or times are given in a specific format, say:

t ↔ D1 = (d1/m1/y1)

T ↔ D2 = (d2/m2/y2)

where the dates Di are given by their respective components, di for the
day of the month, mi for the month of the year, and yi for the year. Day
traders use high-frequency data, and in this case the date/time t is usually
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in the format
t↔ D = (d/m/y H : M : S)

where H gives the hour of the day, m the number of minutes since the begin-
ning of the hour and S the number of seconds. For the sake of simplicity we
shall only discuss the case of times and dates given in the day/month/year
format. Once a specific format is chosen for the dates and time, the main
challenge is the computation of time intervals. Indeed, the time separating
two given dates is what really matters the most for us, and the question to
address is:

How should we compute a time to maturity x = x(t, T ) when t and T
are dates given as above?

Despite the obvious urge to use the notation x = T − t for the length
x(t, T ) of the time between t and T , we resist this temptation until the end
of this section. The problem is solved by choosing a day count convention.
We mention three of the most commonly used conventions. In all cases, the
time span x = T − t is measured in years.

• Actual/365: under this convention, x = x(t, T ) is given the value of the
number of days between t and T divided by 365.

• Actual/360: under this convention, x is given the value of the number of
days between t and T divided by 360.

• 30/360: under this convention, x = x(t, T ) is given the value of the number
of days between t and T divided by 360 if we compute the number of days
assuming that each month has exactly 30 days. To be specific, assuming
that T = (d2/m2/y2) is a date coming after t = (d1/m1/y1), we set:

x = x(t, T ) = y2 − y1 +
(m2 −m1 − 1)+

12
+

d2 ∧ 30 + (30− d1)
+

360
.

The prescriptions given in the bullet points above resolve most of the issues,
except that there are still nagging problems to deal with, such as weekends,
holidays, etc. which we shall not address here.

Financial markets quote interest rates, not zero coupon bonds. However,
all quoted interest rates can be computed from zero coupon bond prices. Zero
coupon bonds are more of a convenient mathematical construct rather than
a quantity quoted in interbank transactions. In order to go from zero coupon
prices to interest rates and back, we need two things:

• choosing a day count convention;
• choosing a compounding convention.

We already addressed the first bullet point. Building on our introductory
discussion of discrete time examples, we now review the various continuous
compounding conventions which we follow in this book.
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1.4.2 Compounding Conventions

The continuously compounded spot interest rate prevailing at time t for ma-
turity T is the constant rate r = r(t, T ) for which an investment of P (t, T )
at time t will produce a cash flow of 1 at maturity. In other words, r(t, T ) is
the number r such that erx(t,T )P (t, T ) = 1 or equivalently:

r(t, T ) = − 1

x(t, T )
log P (t, T ). (1.14)

We recast the discrete time interest rate manipulations done so far in the
present mathematical framework of continuous time finance in the following
way. The simply compounded spot interest rate prevailing at time t for ma-
turity T is the constant rate r = L(t, T ) for which an investment of P (t, T )
at time t will produce a cash flow of 1 at maturity as above, when interests
accrue proportionally to the length of time of the investment. In other words,
L(t, T ) is the number r such that (1 + rx(t, T ))P (t, T ) = 1 or equivalently:

L(t, T ) =
1− P (t, T )

x(t, T )P (t, T )
. (1.15)

We purposedly used the notation L(t, T ) of the LIBOR rates mentioned ear-
lier and modeled in the last chapter of the book, which are in fact simply com-
pounded rates with the Actual/360 convention. The annually compounded
spot interest rate prevailing at time t for maturity T is the constant rate
r = Y (t, T ) for which an investment of P (t, T ) at time t will produce a cash
flow of 1 at maturity as above, when re-investing the proceeds once a year.
In other words, Y (t, T ) is the number r such that (1 + r)x(t,T )P (t, T ) = 1 or
equivalently:

Y (t, T ) =
1

P (t, T )1/x(t,T )
− 1. (1.16)

We can now justify more rigorously the loose statement of the continuous
time limit alluded to at the beginning of this section. Indeed, if for each
integer k ≥ 1 we denote by Y (k)(t, T ) the spot interest rate compounded k
times a year, then Y (k)(t, T ) is the number r satisfying

(

1 +
r

k

)kx(t,T )

P (t, T ) = 1

or equivalently:

Y (k)(t, T ) =
k

P (t, T )1/kx(t,T )
− k,

from which it easily follows that

lim
k→∞

Y (k)(t, T ) = − 1

x(t, T )
log P (t, T ) = r(t, T ).
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Finally, notice that we can recover (or equivalently define) the instantaneous
spot rate rt for each fixed t by

rt = lim
Tցt

r(t, T )

= lim
Tցt

L(t, T )

= lim
Tցt

Y (t, T )

= lim
Tցt

Y (k)(t, T )

for each fixed k. We now close this subsection with a discussion of the forward
rates in the context of continuous time finance. If t, T and S are dates in this
order, the continuously compounded forward interest rate prevailing at time
t for the time interval between T and S is the constant rate r = f(t, T, S) for
which an investment of P (t, T ) at time T will produce a cash flow of P (t, S) at
time S. In other words, f(t, T, S) is the number r such that erx(T,S)P (t, S) =
P (t, T ) or equivalently:

f(t, T, S) = − log P (t, S)− log P (t, T )

x(t, T )
. (1.17)

It is then natural to define the instantaneous forward interest rate prevailing
at time t for maturity T as the number f(t, T ) defined as the limit:

f(t, T ) = lim
x(T,S)ց0

f(t, T, S)

from which one easily sees that

f(t, T ) = −∂ log P (t, T )

∂T
or equivalently P (t, T ) = e−

∫

T
t

f(t,u)du,

as well as

r(t, T ) =
1

x(t, T )

∫ T

t

f(t, u) du.

1.4.3 Summary

From this point on, we shall use the notation x = x(t, T ) = T − t, assuming
that a day count convention has already been chosen, and we recap the above
derivations in a set of formulae which we use throughout the book.

For each given t, we denote by x→֒Pt(x) the price of a zero coupon bond
with unit nominal as a function of the time to maturity x = T−t, whether the
latter is an integer (giving the number of years to maturity) or more generally
a fraction or even a non-negative real number. With this generalization in
mind, formula (1.9) gives:

ft(x) = −
∂
∂xPt(x)

P (x)
= − ∂

∂x
log Pt(x).
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Integrating both sides and taking exponentials of both sides we get the fol-
lowing expression for the unit zero coupon bond:

Pt(x) = e−
∫

x
0

ft(s)ds. (1.18)

If we rewrite formulae (1.18) using the notation x = T − t, we get:

Pt(x) = e−xrt(x)

for the relationship between the discount unit bond and the spot rate. In
terms of the forward rates it reads:

rt(x) =
1

x

∫ x

0

ft(s)ds. (1.19)

This relation can be inverted to express the forward rates as function of the
spot rate:

ft(x) = rt(x) + x
∂

∂x
rt(x).

1.5 Related Markets

Issuing a bond is the simplest economic form of borrowing, and central banks
do not have exclusive rights: individuals, corporations, municipalities, coun-
ties, states, sovereigns, etc. use all forms of notes and bond issues to borrow
money. For the sake of illustration, we plot in Fig. 1.5 the historical evolution
of the US National Debt from 01/04/1993 through 09/01/2005.

Fig. 1.5. US National Debt from 01/04/1993 through 09/01/2005. Source: Trea-
sury Direct, http://www.treasurydirect.gov/.
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Unfortunately, most of the important issues associated with these loans
will not be addressed in this book. This does not mean that we regard them
as unimportant. It is only a matter of time and space, and maybe taste as
well. For the sake of completeness, we briefly review some of those who have
been modeled for practical analysis and pricing. References are given in the
Notes & Complements at the end of the chapter.

1.5.1 Municipal Bonds

Municipal bond is a generic terminology introduced to cover debt securities
issued by states, cities, townships, counties, US Territories and their agencies.
The interest income of these securities was exempt of federal taxes up until
the Tax Reform Act of 1986. This tax advantage was one of the attractive fea-
tures which made the municipal bonds (munis for short) very popular. If the
interest income of all the securities issued before 1986 remains tax exempt,
the situation is more complex for the securities issued after that date. The
primary offerings of municipal issues are usually underwritten by specialized
brokerage firms. Even though instances of default have not been plentiful,
several high-profile events have given publicity to the credit risk associated
with the municipal securities: we shall only mention the City of New York
defaulting in 1975 on a note issue, and the highly publicized bankruptcy of
Orange County in 1994. As part of the information given to the potential
security buyers, municipal bond issuers hire a rating agency, sometimes even
two (the most popular are S&P, Moody’s and Fitch) to rate each bond issue.
On the top of that, some issuers enter in a contract with an insurance com-
pany which will pay interest and principal in case of default of the issuer. So
even though they are regarded as generally safe, municipal bonds carry a sig-
nificant risk. As a consequence, the buyers of these securities are rewarded
by a yield which is higher than the yield of a Treasury security with the same
features. This difference in yield is called the yield spread over Treasury. It
is expressed in basis points, and prices of municipal bonds are most often
quoted by their spread over Treasury.

1.5.2 Index Linked Bonds

Index linked bonds were created in an attempt to guarantee real returns and
protect cash flows from inflation. Their coupon payments and/or principal
amounts are tied to a particular price index. There are four types of index
linked bonds:

• indexed-principal bonds for which both coupons and principal are adjusted
for inflation

• indexed-coupon bonds for which only the coupons are adjusted for inflation
• zero coupon bonds which pay no coupon but for which the principal is

adjusted for inflation
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• indexed-annuity bonds which pay inflation-adjusted coupons and no prin-
cipal on redemption.

In the US, the most common index used is the Consumer Price Index (CPI
for short) as it is the most widely used measure of inflation. It provides infor-
mation about price changes in the nation’s economy, and it is used as a guide
to making economic decisions and formulating monetary policy. The CPI is
also used as a deflator to translate prices into inflation-free dollars. The prin-
cipal and the interest payments (twice a year) of Treasury Inflation-Protected
Securities (TIPS for short) rise with inflation and fall with deflation. They
are issued with maturities of 5, 10 and 20 years in minimal amount of $ 1000.

Index linked bonds seem to be more popular in Europe than in the US.
Figure 1.6 shows how inflation-indexed Treasury securities are quoted daily
in The Wall Street Journal.

Fig. 1.6. Wall Street Journal inflation-indexed Treasury securities as quoted on
October 15, 2005.

The first column gives the rate while the second column gives the month
and year of maturity. The third column gives the bid and asked prices, while
the fourth column gives the change since the quote of the last trading day.
The fifth column gives the yield to maturity on the accrued principal as given
in the last column.

1.5.3 Corporate Bonds and Credit Markets

Corporations raise funds in a number of ways. Short-term debts (typically less
than five years) are handled via bank loans. For longer periods, commercial
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banks are reluctant to be the source of funds and corporations usually use
bond offerings to gain access to capital. As for municipal bonds, each issue
is rated by S&P and Moody’s Investor Services and sometimes Fitch, and
the initial rating is a determining factor in the success of the offering. These
ratings are updated periodically, usually every six months after inception.
They used to be the main source of information for buyers and potential
buyers to quantify the credit risk associated with these bonds. For this reason,
they are determining factors in the values of the bonds, and a change in rating
is usually accompanied by a change in the spread over Treasury (even though
it could also work the other way around). Bond with poor ratings are called
non-investment grade bonds or junk bonds. Their spread over Treasury is
usually relatively high, and for this reason they are also called high-yield
bonds. Bond issues with the best ratings are safer; they are called investment
grade bonds and their spread over Treasury is smaller.

The following gives a comparison of the yields of Treasury issues with
municipal issues of comparable maturities as provided by Delphis Hanover on
September 2nd, 2005, the correction for for the tax advantages was computed
for a tax equivalent based on a 33% bracket.

Bond Yields

*Treasury Issues*

Maturity Coupon Price* Yield

08/31/07 *4.000* 100.14 3.769

08/15/10 *4.125* 101.07 3.855

08/15/15 *4.250* 101.23 4.040

02/15/31 *5.375* 116.20 4.295

*As of 4 p.m. ET. Data following decimal represent 32nds.

*Municipal Issues* (Comparable Maturities)

AAA Tax Equiv. Muni/Treas 52-Week Ratio

Yield Yield Ratio High Low

2.84 *4.24* 75.4 77.3 66.4

3.13 *4.66* 81.1 82.8 74.1

3.59 *5.35* 88.8 91.1 82.8

4.39 *6.56* 102.3 106.0 93.5

The indenture of a corporate bond can be extremely involved. Indeed, some
corporate bonds are callable (as already mentioned, some Treasury issues
do have this feature too), others are convertible. Callable bonds give the
issuer the option to recall the bond under some conditions. Convertible bonds
give the buyer the option to convert the debt under some conditions, into
a specific number of shares of the company stock. All these features make
the fair pricing of the issues the more difficult. Even though they present real
mathematical challenges, they will not be considered in this book.
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1.5.4 Tax Issues

Tax considerations may very much change the attractiveness of some issues.
In fact, tax incentives is one of the reasons corporations issue debt: not only do
they need cash to refinance maturing debts or engage in capital investment,
but they often want to take advantage of the tax incentives. For any given
firm, finding the right balance between asset value and the level of debt is
a difficult challenge, and optimal management of the capital structure of
a firm in a dynamic setting is still one of the main challenges of financial
economics.

Here is a more mundane example. As we already mentioned, income from
coupon interest payments on Treasury notes and bonds is exempt from state
income taxes. Also, interest income and growth in principal of TIPS are
exempt from state and local income taxes.

Continuous compounding is a reasonable model for zero coupon bonds
because they automatically reinvest the interest earnings at the rate the bond
was originally bought. This feature is very attractive to some investors, except
for the fact that the IRS (our friendly Internal Revenue Service) requires some
bond owners to report these earned interests (though not paid). This explains
in part why zero coupon bonds and STRIPS are often held by institutional
investors and accounts exempt from federal income tax. They include pension
funds and individual retirement accounts such as IRA and Koegh plans.

These anecdotal remarks barely touch the tip of the iceberg. Tax issues
are much too intricate and technical to be discussed at the level of this book.

1.5.5 Asset Backed Securities

Once mortgage loans are made, individual mortgages are pooled together into
large bundles which are securitized in the form of bond issues backed by the
interest income of the mortgages. Prepayments and default risks are the main
factors entering into the pricing of these securities. But the success of this
market has encouraged the securitization of many other risky future incomes,
ranging from catastrophic risk due to natural disasters such as earthquakes
and hurricanes, weather, including temperature and rainfall, to intellectual
property such as the famous example of the Bowie bond issued by the rock
star, borrowing on the future cash flow expected from its rights on sales
of his music. As before, the complexity of the indenture of these bonds is
a challenge for the modelers trying to price these issues, and most often
Monte-Carlo computations are the only tools available for pricing and risk
management.

1.6 Statistical Estimation of the Term Structure

In the first part of the chapter we gave a general overview of the bond markets.
We hinted at the fact that empirical data comprise real numbers correspond-
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ing to finitely many time periods and discrete times of and to maturity. Using
continuous time mathematics to describe them is a modeling decision which
we make for two reasons. First, we treat the time t at which the markets are
observed and trades are taking place as a continuous variable. In particular,
we shall use continuous discounting in all the present value computations.
Also, we shall consider practical data as discrete (and possibly indirect)
observations even though theoretical models assume continuously evolving
quantities. Second, we assume that there exists a continuum of maturities
T with traded bonds. In other words, we assume that the term structure of
interest rates is given at least theoretically, by a function of the continuous
variable T , considering the maturities for which we actually have quotes as
discrete samples of (possibly noisy) observations. In this way, the mathemat-
ics of functional analysis can be used to define and study the models, while
in order to fit the models and validate (or invalidate) them, the tools of para-
metric and nonparametric statistics can be brought to bear. This section is
a first step in this direction. It reviews some of the statistical techniques used
to infer continuous time discount, yield and forward curves from the discrete
data available to the market participants. Most of the details of this section
can be skipped in a first reading of the manuscript. Their raison d’être is
the justification of the function spaces chosen as hosts of the term structure
models introduced later in the book and of the types of theoretical questions
addressed subsequently.

1.6.1 Yield Curve Estimation

This section reviews some of the methods of yield curve estimation used
by the fixed income desks of most investment banks as well as the central
banks which report to the Bank for International Settlements (BIS for short).
Except for the US and Japan which use nonparametric smoothing techniques
based on splines, most central banks use parametric estimation methods to
infer smooth curves from the finitely many discrete values of the bond prices
available each day. Parametric estimation is appropriate if the set of yield
curves can be parameterized by a (small) finite number of parameters.

In Chap. 6 we will model the interest rate term structure by choosing a
(possibly infinite dimensional) function space F as host of all possible for-
ward curves. The parametric estimation procedure that we describe below is
useful if the curves that occur in real life are confined to a finite dimensional
(possibly nonlinear) manifold in this infinite dimensional function space. We
will revisit this point in the next chapter devoted to factor models and in
Chap. 6 in the context of dynamic forward rate models and the study of
consistency.

The use of parametric estimation methods is partially justified by the
principal components analysis discussed in Sect. 1.7 below. Indeed, we will
show that the effective dimension of the space of yield curves is low, and
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consequently, a small number of parameters should be enough to describe
the elements of this space.

Moreover, another advantage of the parametric approach is the fact that
one can estimate the term structure of interest rates by choosing to estimate
first the par yield curves, or the spot-rate curves, or the forward rate curves,
or even the discount factor curves as functions of the maturity. Indeed, which
one of these quantities is estimated first is irrelevant: once the choices of a set
of curves and their parameterization are made, the parameters estimated
from the observations, together with the functional form of the curves, can
be used to derive estimates of the other sets of curves. We shall most often
parameterize the set of forward rate curves, and derive formulae for the other
curves (yields, spot rates, discount factors, etc.) by means of the relationships
made explicit earlier.

On each given day, say t, one uses the available market quotes to produce
a curve x→֒ft(x) for the instantaneous forward rates as functions of the
time to maturity x. For the sake of notation convenience, we shall drop the
reference to the present t in most of our discussions below. The estimation
of the discount factor curve would be an easy problem, if we had quotes for
zero coupon bond prices of all maturities. Unfortunately, as we saw explained
earlier, these instruments have maturities of less than one year: fixed income
securities of longer maturities have coupons. Because we need forward curves
with long maturities, the estimation procedures will be based on observations
of coupon bearing bond prices and swap rates.

1.6.2 Parametric Estimation Procedures

We introduce the parametric families in use first, and we postpone the dis-
cussion of the implementation issues to later. These parametric families were
introduced to capture qualitative features observed in the data.

The Nelson–Siegel Family

This family is parameterized by a four-dimensional parameter z = (z1, z2,
z3, z4). It is defined by:

fNS(x, z) = z1 + (z2 + z3x)e−xz4 (1.20)

where z4 is assumed to be strictly positive, and as a consequence, the param-
eter z1, which is also assumed to be strictly positive, gives the asymptotic
value of the forward rate which we will refer to as the long rate. The value
z1 + z2 gives the forward rate today, i.e. the starting value of the forward
curve. Since this value f(t, 0) has the interpretation of the short interest rate
rt, it is also required to be positive. The remaining parameters z3 and z4

are responsible for the so-called hump. This hump does exists when z3 > 0
but it is in fact a dip when z3 < 0. The magnitude of this hump/dip is
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a function of the size of the absolute value of z3, while z3 and z4 conspire to
force the location along the maturity axis of this hump/dip. Once the four
parameters have been estimated, formulae for the discount factor and the
zero coupon yield (or spot interest rate) can be obtained by plain integration
from formulae (1.18) and (1.19) respectively. We get:

PNS(x, z) = exp

(

−z2z4 + z3

z2
4

− z1x +

(

z2z4 + z3

z2
4

+
z3

z2
4

x

)

e−z4x

)

(1.21)

and

rNS(x, z) =
z2z4 + z3

z2
4

1

x
+ z1 −

(

z2z4 + z3

z2
4

1

x
+

z3

z2
4

)

e−z4x (1.22)

This family used in countries such as Finland and Italy to produce yield
curves.

The Svensson Family

To improve the flexibility of the curves and the fit, Svensson proposed a nat-
ural extension to the Nelson–Siegel’s family by adding an extra exponential
term which can produce a second hump/dip. This extra flexibility comes at
the cost of two extra parameters which have to be estimated. The Svens-
son family is generated by mixtures of exponential functions of the Nelson–
Siegel type. To be specific, the Svensson family is parameterized by a six-
dimensional parameter z, and defined by:

fS(x, z) = z1 + (z2 + z3x)e−z4x + z5xe−z6x. (1.23)

As before, once the parameters are estimated, the zero coupon yield curve
can be estimated by plain integration of (1.23). We get:

rNS(x, z) =
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z2
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z2
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1

x
+
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z2
6

)

e−z6x. (1.24)

The Svensson family is used in many countries, including Canada, Germany,
France and the UK.

Practical Implementation

Parametric estimation procedures are mostly used by central banks, so we
rely on information published by BIS to describe the methods used by the
major central banks to produce yield curves.
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Description of the Available Data

On any given day t, financial data services provide quotes (most often in the
form of a bid–ask interval) for a certain number of instruments with times of
maturity Tj, and times to maturity xj = Tj − t. These instruments are typi-
cally futures contracts on bonds and bills, swaptions, etc., and obviously, bond
prices. Bid–ask spreads may be very large, a sign of illiquidity. Statistical es-
timation procedures should be based on the most liquid of these instruments.
Moreover, small economies may not have liquid derivative markets. For these
reasons, we shall concentrate on the case where only bond prices are avail-
able. For each bond, we assume that the quote includes a price, a coupon
rate, a coupon frequency, interest accrued since the last coupon payments,
etc., and a few other pre-computed quantities. Often the mid-point of the
bid–ask interval is used as a proxy for the price.

Including information about derivative instruments in the procedure de-
scribed below can be done without affecting the rationale of the estimation
strategy. It merely increases the complexity of the notation and the compu-
tations, and we shall refrain from including it.

The Actual Fitting Procedure

Let us denote by Bj the bond prices available on a given day, say t. For each
value of the parameter z, we denote by Bj(z) the theoretical price of the bond
with exactly the same indenture (i.e. with the same nominal, same maturity,
same coupon rate and frequency, etc. ) as Bj . Typically, this theoretical
price will be obtained using formula (1.4) – corrected for accrued interest
as prescribed in formula (1.7) in the case of coupon bonds – with discount
factors (or equivalently zero coupon yields) given by formula (1.21) or (1.24)
above; the term structure estimation procedure boils down to finding the
vector z of parameters which minimizes the quadratic loss function:

L(z) =
∑

j

wj |Bj −Bj(z)|2 (1.25)

where the weights wj are chosen as a function of the duration (1.11) and the
yields to maturity of the j-th bond. The dependence of the loss function upon
the parameters z appears to be complex and extremely nonlinear. Were we
to include other instruments in the fitting procedure, the objective function
L(z) would include terms of the form |Ij − Ij(z)|2 where Ij denotes the mar-
ket quote of the instrument, and Ij(z) denotes the theoretical price (present
value of the discounted cash flows of the instrument) obtained from the mar-
ket model with term structure determined by the value z of the parameters.
In any case, fitting the parameters, i.e. finding the z’s minimizing L(z), de-
pends upon delicate optimization procedures which can be very unstable and
computer intensive. We comment on how different central banks handle this
issue in the remarks below.
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Remarks.

⋄ Many central banks do not use the full spectrum of available times to matu-
rity. Indeed, the prices of many short term bonds are very often influenced
by liquidity problems. For this reason, they are often excluded from the
computation of the parameters. For example the Bank of Canada, the Bank
of England and the German Bundesbank consider only bonds with a re-
maining time to maturity greater than three months. The French central
bank also filter out the short term instruments.
⋄ Even though it appears less general, the Nelson–Siegel family is often pre-

ferred to its Svensson relative. One reason for that is the fact that many
professionals do not believe in the presence of a second bump. Moreover,
being of a smaller dimension, the model is more robust and less unstable.
This is especially true for countries with a relatively small number of is-
sues. Finland is one of them. Spain and Italy are other countries using the
original Nelson–Siegel family for stability reasons.
⋄ The bid–ask spread is another form of illiquidity. Most central banks choose

the mid-point of the bid–ask interval for the value of Bj . The Banque de
France does just that for most of the bonds, but it also uses the last quote
for some of them. Suspicious that the influence of the bid–ask spread could
overwhelm the estimation procedure, the Finnish central bank uses a loss
function which is equal to the sum of squares of errors where the individual
errors are defined as the distance from Bj(z) to the bid–ask interval (this
error being obviously 0 when Bj(z) is inside this interval).
⋄ It is fair to assume that most central banks use accrued interests and clean

prices to fit a curve to the bond prices. This practice is advocated in official
documents of the Bank of England and the US Treasury.
⋄ Some of the countries relying on the Svensson family fit first a Nelson–Siegel

family to their data. Once this four-dimensional optimization problem is
solved, they use the argument they found, together with two other values
for z5 and z6 (often 0 and 1), as initial values for the minimization of the
loss function for the Svensson family. And even then, these banks opt for
the Svensson family only when the final z5 is significantly different from
0 and z6 is not too large! These extra steps are implemented in Belgium,
Canada and France.

1.6.3 Nonparametric Estimation Procedures

We now discuss some of the nonparametric procedures used to produce for-
ward and yield curves.

A First Estimation of the Instantaneous Forward Rate Curve

The first procedure we present was called iterative extraction by its inventors,
but it is known on the street as the bootstrapping method. We warn the reader
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that this use of the word bootstrapping is more in line with the everyday use
of the word bootstrapping than with the statistical terminology.

If the parametric methods described above and the nonparametric smooth-
ing spline methods reviewed below are used by central banks, the bootstrap
method which we present now is the darling of the investment bank fixed
income desks.

As before, we present its simplest form based on the availability of bond
prices only. Obvious modifications can be made to accommodate prices of
other instruments whenever available.

We assume that the data at hand comprise coupon bearing bonds with
maturity dates T1 < T2 < · · · < Tm, and we search for a forward curve which
is constant on the intervals [Tj , Tj+1). For the sake of simplicity we shall
assume that t = 0. In other words, we postulate that:

f(0, T ) = fj for Tj < T ≤ Tj+1

for a sequence {fj}j to be determined recursively by calibration to the ob-
served prices. Let us assume momentarily that f1, . . . , fj have already been
determined and let us describe the procedure to identify fj+1. If we denote
by Xj+1 the principal of the (j + 1)-th bond, by {tj+1,i}i the sequence of
coupon payment times, and by Cj+1,i = cj+1/ny the corresponding payment
amounts (recall that we use the notation cj for the annual coupon rate, and
ny for the number of coupon payments per year), then its price at time t = 0
can be obtained by discounting all the future cash flows associated with this
bond:

Bj+1 =
∑

tj+1,i≤Tj

P (0, ti)
cj+1Xj+1

ny
(1.26)

+ P (0, Tj)

⎛

⎝

∑

Tj<tj+1,i≤Tj+1

e−(tj+1,i−Tj)fj+1
cj+1Xj+1

ny
+ e−(tj+1,i−Tj)fj+1

⎞

⎠ .

Notice that all the discount factors appearing in this formula are known since,
for Tk ≤ t < Tk+1 we have:

P (0, t) = exp

[

k
∑

h=1

(Th − Th−1)fh + (t− Tk)fk+1

]

and all the forward rates are known if k < j. Consequently, rewriting (1.26)
as:

Bj+1 −
∑

tj+1,i≤Tj
P (0, ti)

cj+1Xj+1

ny

P (0, Tj)
(1.27)

=
cj+1Xj+1

ny

∑

Tj<tj+1,i≤Tj+1

e−(tj+1,i−Tj)fj+1 + e−(tj+1,i−Tj)fj+1
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and since the left-hand side can be computed and the unknown forward
rate fj+1 appears only in the right-hand side, this equation can be used to
determine fj+1 from the previously evaluated values fk for k ≤ j.

Remark 1.1. Obviously, the forward curve produced by the bootstrapping
method is discontinuous, since by construction, it jumps at all the input ma-
turities. These jumps are the source of an artificial volatility which is only
due to the method of estimation of the forward curve. This is the main short-
coming of this method of estimation. Several remedies have been proposed to
alleviate this problem. The simplest one is to increase artificially the number
of maturity dates Tj to interpolate between the observed bond (or swap)
prices. Another proposal is to add a smoothness penalty which will force
the estimated curve to avoid jumps. This last method is in the spirit of the
smoothing spline estimation method which we present now.

Smoothing Splines and the US and Japan Forward Curves

As already stated in Sect. 1.6.1, the yield and forward curves published by
the US Federal Reserve and the Bank of Japan are computed using smooth-
ing splines. These curves, which relate the yield on a security to its time to
maturity are based on the closing market bid yields on actively traded Trea-
sury securities in the over-the-counter market. The general strategy used to
produce them goes as follows. On any given day, the instantaneous forward
rate curve is the function x→֒ϕ(x) which minimizes the objective function:

LJUS(ϕ) =

n
∑

j=1

wj |Bj −Bj(ϕ)|2 + λ

∫

|ϕ′′(x)|2 dx (1.28)

where λ > 0 is a parameter called the smoothing parameter, where ϕ′′(x)
stands for the second derivative of ϕ(x), where the Bj ’s are the prices for on-
the-run Treasury bonds and notes available on day t, or proxies, and Bj(ϕ)
denotes the price one would get pricing these bonds and notes from the
forward curve given by ϕ. A security is said to be on-the-run if it is the most
recently issued US Treasury bond or note of a particular maturity. Recall
also that the wj ’s represent weights chosen as functions of the durations of
the bonds, and the theoretical prices are computed according to the theory
presented in Sect. 1.2.

Choosing a forward curve x→֒ϕ(x) which minimizes the objective function
LJUS guarantees that the forward curve is smooth because of the presence
of the second term in the definition of LJUS , and at the same time it ensures
a fit to the price data because of the presence of the first term. The balance
between these two contributions to the objective function is controlled by
the smoothing parameter λ. Obviously, large values of λ will produce very
smooth curves while smaller values of λ will lead to rough curves trying to
reproduce perfectly the prices observed on the market.
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Standard results from nonparametric statistics show that the argument
ϕJUS of the minimization of the objective function (1.28) is in fact a cu-
bic spline. This fact justifies the terminology of smoothing spline for this
nonparametric method of construction of forward curves.

1.7 Principal Component Analysis

This book is devoted to the analysis of mathematical models describing
changes in the term structure of interest rates from one day to the next.
The statistical procedures presented in the previous sections give tools to
construct the term structure, say the forward curve, on a given day like to-
day. Mathematical models for the dynamics of this curve depend on the way
the curve is coded. Using parametric statistics for the estimation of the cur-
rent forward curve suggests that a finite dimensional manifold can accurately
describe the set of forward curves, and hence that a finite dimensional pa-
rameter z can capture the entire curve. If this manifold does not change from
day to day, the dynamics of the term structure of interest rates are given
by the dynamics of the characteristic parameter z, the latter being most of-
ten modeled by a finite dimensional diffusion process. On the other hand,
using nonparametric statistics for the estimation of the forward curve sug-
gests that the manifold of relevant forward curves is infinite dimensional, and
that the dynamics of the term structure of interest rates need to be given by
a stochastic process of an infinite dimensional nature. Both points of view
are developed in the book.

In this section we look at the principal components analysis (PCA for
short) of real interest rate data. In doing so, we hope to find the effective
dimension of the space of yield curves. In some rather limited way, the raison
d’être for this section is the justification of the finite-factor models used for the
term structure of interest rates which we introduce in the following chapter,
and to which we come back over and over throughout the book.

1.7.1 Principal Components of a Random Vector

Let X be an m-dimensional random vector with mean E{X} = μ and covari-
ance matrix E{(X−μ)⊗(X−μ)} = Q, where u⊗v means that m×m matrix
whose entries are given by (u ⊗ v)ij = uivj . So if u is viewed as an m × 1
column vector, and the transpose tv as a 1×m row vector, then the m×m
matrix Q can be viewed as Q = u tv. In operator form, the tensor product
u ⊗ v can be characterized by the fact that it is the only matrix satisfying
(u⊗v)w = u〈v, w〉 for all vectors w ∈ Rm. Since Q is symmetric and positive,
its spectral decomposition reads

Q =

m
∑

i=1

λ2
i vi ⊗ vi
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where λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
m ≥ 0 are the eigenvalues of Q arranged in

decreasing order (possibly repeated according to their multiplicities), and
{vi}i=1,...,m is an orthonormal basis of corresponding eigenvectors. Note that
∑m

i=1 λ2
i = E{‖X − μ‖2}.

The random vector X can be decomposed as

X = μ +

m
∑

i=1

λiviξi

where the scalar random variables ξ1, . . . , ξm have mean zero, unit variance,
and are uncorrelated in the sense that E{ξjξj} = 0 whenever i �= j. Further-
more, if the random vector X is Gaussian, then the scalar random variables
ξ1, . . . , ξm are independent and Gaussian N(0, 1) random variables. That is,
every realization of the random vector X can be decomposed into a linear
combination of uncorrelated and orthogonal random vectors pointing in fixed
directions, and in the Gaussian case, these vectors are independent. This de-
composition of a random vector in the form of a series expansion will be
generalized in Chap. 3 to the case of infinite dimensional Gaussian random
vectors, Gaussian processes and random fields.

It is often the case that the random vector X we are studying is a model
for a m-dimensional quantity that occurs in an application. If the dimension
m is very high, it is difficult to have good intuition about the behavior of this
quantity. However, if the eigenvalues λj of the covariance matrix are very
close to zero for j = d + 1, . . . , m for some number d which is much smaller
than m, we say that the effective dimension of X is d. Indeed, the vector X
can be accurately approximated by

X ≈ μ +

d
∑

i=1

λiviξi.

That is, although X takes values in an m-dimensional space, it effectively
lives in the shift by μ of the d-dimensional linear subspace spanned by the
first d eigenvectors v1, v2, . . . , vd.

We will see that this is precisely the situation we face when we study the
forward rate curve. In that case, the dimension m corresponds to the number
of times-to-maturity dates for which we have data. In the models studied in
Chap. 6 the forward rate curve is a random element of an infinite dimensional
space F . However, the eigenvalues of the covariance matrix computed with
real forward rates decay very quickly. We will see that the effective dimension
of the space of forward rate curves is about three or four.

1.7.2 Multivariate Data PCA

The theoretical discussion of the previous subsection underpins the best-
known dimension reduction technique in multivariate data analysis. It goes
under the name of principal component analysis (PCA).
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In practice, data come in the form of a large matrix x = [xij ] and we
assume that each row x(i) = [xi1, . . . , xim] is a sample realization of an
m-dimensional random vector X(i) and the data manipulations encompassed
by PCA are based on the following theoretical results.

If X(1), X(2) . . . form a sequence of random vectors, each with the same
law in Rm, then the strong law of large numbers tells us that the estimators

μN =
1

N

N
∑

i=1

X(i)

and

QN =
1

N − 1

N
∑

i=1

(X(i) − μN )⊗ (X(i) − μN )

converge as N → ∞ almost surely to the mean vector μ and covariance
matrix Q of any random vector with the same law as all the X(i). This
theoretical result holds provided that the random vectors X(1), X(2) . . . are
independent and identically distributed and satisfy a moment condition.

In practice, we use the data samples contained in the data matrix x to
compute empirical estimates μ̂N and Q̂N for the estimators μN and QN .
These empirical estimates are usually chosen to be:

μ̂N =
1

N

N
∑

i=1

x(i)

and

Q̂N =
1

N − 1

N
∑

i=1

(x(i) − μ̂N )⊗ (x(i) − μ̂N )

as the law of large numbers guarantees that, should the sample size N be
large enough, these empirical values μ̂N and Q̂N would be close to the desired
values μ and Q of the common mean vector and variance/covariance matrix.

For our applications, however, the row indices i label the dates t for which
we have historical data for the vector of quotes used to perform the analysis,
and it is unlikely that the interest rates are independent from day to day. In
order to overcome this problem, there are several ways to proceed. One way
is to assume that the interest rate time series is stationary. Indeed, under
the assumption that the sequence X(1), X(2) . . . is stationary, the estimators
μN and QN still converge to the true mean vector and covariance matrix
respectively, even though the rate of convergence may not be the same. So
in what follows, we will implicitly assume that the data row vectors obtained
from interest rate quotes are samples from a stationary sequence of random
vectors. So in order to use the interpretation of the results of a PCA, we
must remember to check that the models we develop have this stationarity
property. In Chap. 7 we carry out the analysis of the stationarity for the
linear Gaussian HJM model.
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When the stationarity of the time series of row vectors of the data ma-
trix x is in doubt, the standard practice is to differentiate the series and to
compute the principal components of the daily increments of the interest rate
instrument quotes. In this way, we subtract out most of the dependence of
day n’s interest rate term structure on that of day n− 1’s. We do not need
to take this extra step here in the examples presented in the next subsec-
tions, but this form of the principal component analysis of the increments
of interest rate data can be found, for instance, in the paper of Bouchaud,
Cont, El Karoui, Potters, and Sagna [23]. The results of this PCA are broadly
similar to the results for the full time series. In particular, they found that
a few eigenvectors explain most of the variance of the daily increments, and
their shapes are of the level, slope, and curvature variety described below.

1.7.3 PCA of the Yield Curve

For the purpose of this first example, we use data on the US yield curve as
provided by the US Treasury. As we are about to explain, these data have
been the object of manipulations, typically interpolation and extrapolation
to guarantee that on any given day one has yield quotes for the same times
to maturity every day. These rates are commonly referred to as “Constant
Maturity Treasury” rates, or CMT. Yields are extracted by the Treasury
from the daily yield curve computed in the way described in Sect. 1.6.3. The
CMT yield values are read from the yield curve at fixed maturities, currently
1, 3 and 6 months, and 1, 2, 3, 5, 7, 10, 20 and 30 years.

The extreme maturities create some mathematical challenges. Indeed,
short term maturities are not always available, and the retirement of the
long bond in 2001 made it difficult to have reliable extrapolated values for
the constant maturity 30 years. So, we divided the data into two disjoint
subsets, and report the numerical results for each of them separately.

We first consider the period ranging from 10/1/1993 to 7/31/2001 and for
this period we considered all the maturities except the first one of 1 month.
Our data matrix has 1961 rows, one for each of the trading days in the time
span we consider, and 10 columns, one for each of the constant maturities. In
other words, the columns contain the yields on the US Treasuries for times
to maturity

x = 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30 years.

Figure 1.7 gives the proportions of the variation explained by the various
components. The first three eigenvectors of the covariance matrix (the so-
called loadings) explain 99.7% of the total variation in the data. This suggests
strongly that, if we are not misled by a smoothing artifact produced by the
pre-processing of the raw data, the effective dimension of the space of yield
curves could be three. In other words, any of the yield curves from this period
can be approximated by a linear combination of the first three loadings, the
relative error being very small. Figure 1.8 gives the plots of the first four
loadings.
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Fig. 1.7. Proportions of the variance explained by the components of the PCA of
the daily US Treasury yields.

Fig. 1.8. From left to right and top to bottom, sequential plots of the first four
US Treasury yield loadings for the period 10/1/1993 to 7/31/2001. We changed the
scale of the horizontal axis to reflect the actual times to maturity.
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The first loading is essentially flat, so a component on this loading will
essentially represent the average yield over the maturities. Because of the
monotone and increasing nature of the second loading, the second component
measures the upward trend (if the component is positive and the downward
trend otherwise) in the yield. The shape of the third loading suggests that
the third component captures the curvature of the yield curve. Finally, the
shape of the fourth loading does not seem to have an obvious interpretation.
It is mostly noise (remember that most of the variations in the yield curve
are explained by the first three components). These features are very typical,
and they should be expected in most PCA of the term structure of interest
rates.

The fact that the first three components capture so much of the features
of the yield curve may seem strange when compared to the fact that some
estimation methods which we discussed use parametric families with more
than three parameters! There is no contradiction there.

Fig. 1.9. Proportions of the variance explained by the components of the PCA of
the daily changes in US Treasury yields over the period 8/1/2001 to 8/12/2005.

We now consider the data provided by the Treasury for the period ranging
from 8/1/2001 to 8/12/2005. This period spans 1008 trading days, and we
still use 10 maturities as we need to drop the long bond yield while we gain
the one-month yield. The results are almost identical to the results reported
above. So instead of presenting them, we use this new data set to illustrate
the discussion of the stationarity of Sect. 1.7.2. We first compute the daily
changes in yield for the 10 maturities in question. The number of rows of our
matrix is now 1007, while we still have the same constant times to maturity:

x = 1/12, 1/4, 1/2, , 1, 2, 3, 5, 7, 10, 20 years.
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Fig. 1.10. From left to right and top to bottom, sequential plots of the first four
US Treasury yield loadings of the PCA of the daily changes in US Treasury yields
over the period 8/1/2001 to 8/12/2005.

Figure 1.9 gives the proportions of the variation explained by the various
components. The proportion of the fluctuation explained by the first three
eigenvectors is slightly less as it is now 95.8% of the total variation in the
data. Figure 1.10 gives the plots of the first four loadings. Obviously the
interpretation remains the same: the change in yield curve from one day to
the next is composed of a linear superposition of a horizontal shift, a tilt and
a curvature components.

1.7.4 PCA of the Swap Rate Curve

Figure 1.11 gives the proportions of the variation explained by the various
components while Fig. 1.12 gives the plots of the first four eigenvectors.

Our second application of principal component analysis concerns the swap
rate curves described earlier in Sect. 1.3.3. As before, we denote by m the di-
mension of the vectors. We use data downloaded from Data Stream. Again, it
is quite likely that the raw data have been processed, but we are not quite sure
what kind of manipulation is performed by Data Stream so for the purpose of
this illustration, we shall ignore the possible effects of the pre-processing of the
data. In this example, the day t labels the rows of the data matrix. The latter
has M = 14 columns, containing constant maturity swap rates with times to
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Fig. 1.11. Proportions of the variance explained by the components of the PCA
of the daily changes in the swap rates for the period from August 1998 to October
2005.

Fig. 1.12. From left to right and top to bottom, sequential plots of the eigenvectors
(loadings) corresponding to the four largest eigenvalues. As before, we changed the
scale of the horizontal axis to reflect the actual times to maturity.
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maturity x = T − t which have the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25
and 30 years. We collected these data for each day t of the period from Au-
gust 7, 1998 to October 7, 2005, and we computed the covariance matrix
of the daily changes after we drop the last column because of the possible
artifacts created by the retirement of the 30 year bond. We rearranged these
numerical values in a matrix R = [ri,j ]i=1,··· ,N, j=1,··· ,M . Here, the index j
stands for the time to maturity while the index i codes the day the curve is
observed.

The interpretation of these four loadings is clear from Fig. 1.12. The first
component of the daily change in swap rate is a horizontal shift of the overall
level of the swap rate, while the second component measures a trend or tilt
in the rate, and the third component tries to capture a curvature effect.

Since such an overwhelming proportion of the variation is explained by
one single component, it is often recommended to remove the effect of this
component from the data (here, that would amount to subtracting the overall
mean rate level) and to perform the PCA on the transformed data (here, the
fluctuations around the mean rate level).

Notes & Complements

For more information on the mechanics of the fixed income markets, and for de-
tails on mortgage-backed securities, the reader is referred to Fabozzi’s encyclopedic
handbooks [56] and [57]. Rebonato’s books [115] and [114] present the practitioner
point of view on the complete zoology of the fixed income derivatives which are not
discussed in this book, together with market data issues and the LIBOR markets
barely touched upon in the last chapter of the book. The reader interested in a more
mathematical treatment is referred to the textbook of Brigo and Mercurio [25].

The highly publicized defaults of counties (such as the bankruptcy of Orange
County in 1994), of sovereigns (like Russia defaulting on its bonds in 1998) and
the ensuing ripple effects on worldwide markets have brought the issue of credit
risk to the forefront. For the last ten years, credit risk has been a steadily grow-
ing component of the fixed income desk of most investment banks. The market of
credit derivatives is growing at an exponential pace, and the rate of increase in ap-
petite for these products seems to be limitless. Hedge funds and proprietary trading
desks of major banks have become heavy users and theoretical research is enjoying
a piggyback ride. Unfortunately, because of time and space limitations, we cannot
address these issues in this book. The reader interested in learning about credit
risk is referred to the many textbooks which recently appeared on this subject. We
shall give references to the four books which we consider as the most mathematical
of the lot: Bielecki and Rutkowski [7], Schönbucher [122], Duffie and Singleton [51]
and Lando [99].

The Nelson–Siegel and Svensson families of parameterized yield curves have
enjoyed much popularity among central bankers. It should be noted, though, that
these families were introduced to solve a specific static problem: to find a curve
described by a few parameters that fit a single day’s bond prices reasonably well.
One may ask, then, how do these parameters vary from day to day? As we will
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discuss in the next chapter, a reasonable dynamic model of the term structure
should reflect the economic principle that the bond market is free of arbitrage
opportunities. Now, consider a hypothetical dynamic model of the term structure
that has the property that each day the forward rate curve is in the Nelson–Siegel
family. Essentially, it turns out that such a model necessarily admits arbitrage! This
surprising fact was proven by Filipović, see [62]. We will return to these issues of
arbitrage and consistency in Chap. 6.

Principal component analysis is a classical tool of data analysis which originated

in the statistical theory of linear models, and which has been used in many other

fields in which practitioners have to handle data sets of high dimensions. The use of

this technique for the analysis of the term structure of interest rates seems to have

originated in the work of Litterman and Scheinkman [101]. Other sources include

Rebonato’s book [115] or the paper by Bouchaud, Sagna, El Karoui and Cont [23].

The numerical results reported in this chapter are updated versions of those given

in Chap. 2 of Carmona’s textbook on statistical analysis of financial data [32] where

more explanations about the mathematical underpinnings of the PCA algorithm

can be found.
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Term Structure Factor Models

This chapter gives a first introduction to stochastic models for the term
structure of interest rates. We try to give some perspective on the historical
development of these models. Despite the fact that the main thrust of
the book is the analysis of genuinely infinite dimensional models, we first
review the more classical approach, modeling the term structure of interest
rates by means of a finite number of stochastic factors. The latter offer
intuitive ways to impose a mathematical structure on the short interest
rate. This approach has been (and still is) very popular because of its
tractability and the wealth of results leading to easy implementations. The
Markov property present in most of these models leads to partial differential
equation formulations and to reasonable expressions for derivative prices.
Also, the class of affine models leads to closed-form formulae for many
instruments and derivatives. We frame the presentation in a way that will
ease the transition to the models discussed in the last part of the book.

The chapter closes with a discussion of the HJM framework. This frame-
work is central to later chapters of the book as we begin to see the infinite
dimensional character of the term structure.

2.1 Factor Models for the Term Structure

The goal of this chapter is to discuss a time-honored method for pricing inter-
est rate securities in a continuous time economy. This is not the most general
framework for pricing interest rate securities, but it will suffice in showing
the role of the stochastic building blocks, especially in the no-arbitrage argu-
ments.

We assume that at each time t, the price P (t, T ) of a zero coupon bond
with maturity T and nominal value $1 is a random variable defined on a prob-
ability space (Ω,F , P). The maturity date T satisfies 0 < t ≤ T < +∞.
We shall sometimes use the notation I for the set of couples (t, T ) with
0 < t ≤ T < +∞, where we allow t and T to wander all the way to ∞ for
mathematical convenience. Being a random variable will not be sufficient to
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do analysis. We usually add the more restrictive assumption that T →֒P (t, T )
is almost surely smooth. In this case, the instantaneous forward rate f(t, T )
at time t for maturity T is well-defined and given by the formula

f(t, T ) = − ∂

∂T
log P (t, T ).

Recall the short interest rate rt is given by the formula rt = f(t, t). We assume
that the probability space (Ω,F , P) is equipped with a filtration {Ft}t≥0

which defines history in the sense that the elements of Ft are the events prior
to time t, and we assume that for each fixed T > 0, the prices {P (t, T );
0 ≤ t ≤ T } of the zero coupon bonds with maturity T form a stochastic
process adapted to this filtration.

We say that the term structure of interest rates is given by a factor model
if there exists an Itô process {Zt}t≥0 taking values in an open subset D ⊂ Rk

and if the prices of the zero coupon bonds are given by an equation of the
form

P (t, T ) = P (Z)(t, T, Zt) (2.1)

for some real-valued (deterministic) function (t, T, z) →֒ P (Z)(t, T, z) on
I ×D. The components of the vector Zt are called the factors of the model. In
most of the applications considered here, D will be the whole Euclidean space
Rk or a halfspace. Taking logarithmic derivatives of both sides of Eq. (2.1)
shows that a factor model can be defined by assuming that the forward rates
are of the form:

f(t, T ) = f (Z)(t, T, Zt) (2.2)

for some real-valued (deterministic) function (t, T, z) →֒ f (Z)(t, T, z) on
I ×D. Factor models are often defined from Eq. (2.2) rather than from (2.1).
Obviously we have:

P (Z)(t, T, z) = e−
∫

T
t

f(Z)(t,u,z)du

and the short interest rate rt is given by rt = f (Z)(t, t, Zt), and the model is
arbitrage free (i.e. P is a local martingale measure) if and only if

{

e−
∫

T
t

f(Z)(u,u,Zu)duP (Z)(t, T, Zt)
}

0≤t≤T
(2.3)

is a local martingale for all T > 0. See the Appendices at the end of the
chapter for more information on this issue.

The assumption that {Zt}t≥0 is an Itô process is usually strengthened
by assuming that it is in fact an Itô diffusion in the sense that it satisfies
a stochastic differential equation of the form

dZt = μ(Z)(t, Zt)dt + σ(Z)(t, Zt)dWt (2.4)
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where the drift is given by a smooth (deterministic) Rk-valued function
(t, z) →֒ μ(Z)(t, z) on [0,∞) × D, the diffusion part is given by a smooth
(deterministic) function (t, z) →֒ σ(Z)(t, z) on [0,∞)×D with values in the
space of k × k matrices, and {Wt}t≥0 is a standard k-dimensional Wiener
process. The factors Zt are intended to encapsulate the part of the state of
the economy at time t which is relevant to the term structure of interest
rates, and the functional form (2.2) quantifies this dependence mathemati-
cally. In order to emphasize the fact that the components of Zt are the only
factors affecting the interest rates dynamics, we assume that the history is

given by the filtration {F (Z)
t }t≥0 generated by the factors. In fact, in order

to avoid pathologies which could be created by degeneracies of the diffusion
equation (2.4), we usually assume that the matrices are non-singular, and as
a consequence, this history is as well given by the filtration generated by the
Wiener process and

Ft = F (Z)
t = F (W )

t , t ≥ 0.

Applying Itô’s formula to (2.2) given (2.4) implies that {P (t, T )}0≤t≤T is
an Itô process for each fixed T > 0, and its stochastic differential is of the
form

dP (t, T ) = μ(P )(t, Zt)dt + σ(P )(t, Zt)dWt (2.5)

for some deterministic functions (t, z) →֒ μ(P )(t, z) and (t, z) →֒ σ(P )(t, z).
Notice that since:

rt = lim
Tցt
− 1

T − t
log P (t, T ) = lim

Tցt
− 1

T − t
log P (Z)(t, T, Zt) (2.6)

it is conceivable that the short interest rate process {rt}t≥0 is also an Itô
process on the same filtration generated by the k-dimensional Wiener process
{Wt}t≥0.

As it stands now, there is a lot of flexibility built into the possible factor
models. We will concentrate our attention on two simple cases which are very
popular in practice: the affine models and the short rate models. The affine
models are those for which one makes the simplifying assumption that the
function z →֒f (Z)(t, T, z) is affine in the sense that that

f (Z)(t, T, z) = A(t, T ) + B(t, T )z.

We will see that such models are very tractable. The short rate models, on
the other hand, are those factor models for which the economic factor Zt is
taken to be one-dimensional, and in fact, equal to the short interest rate rt.
Notice that these classes are not disjoint. Indeed, the affine short rate models
are particularly nice since many explicit calculations are possible.
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2.2 Affine Models

We say that a factor model as above is exponential-affine if the function P (Z)

is of the form

P (Z)(t, T, z) = eA(t,T )+B(t,T )z (2.7)

for some smooth functions A and B on I. Here for each couple (t, T ) ∈ I,
A(t, T ) is a scalar while B(t, T ) is a k-dimensional vector. Notice that we
necessarily have:

A(t, t) = 0 and B(t, t) = 0

because P (Z)(t, t, z) = 1 for all z ∈ D. The affine property can equivalently
be defined in terms of the instantaneous forward rates. It reads:

f (Z)(t, T, z) = Ã(t, T ) + B̃(t, T )z (2.8)

where the functions Ã(t, T ) and B̃(t, T ) are merely the negative partial deriva-
tives of A(t, T ) and B(t, T ) of (2.7) with respect to the time of maturity T .
The terminology affine has its origin in formula (2.8). Expanding the latter
we see that the instantaneous forward rates are given by:

f(t, T ) = Ã(t, T ) + B̃1(t, T )Z
(1)
t + · · ·+ Bk(t, T )Z

(k)
t

which show that the scalar functions B̃1(t, T ), . . . , B̃k(t, T ) can be interpreted
as the sensitivities of the forward rate to the factor loadings.

Moreover if, in line with our earlier discussion, we assume the existence
of a deterministic function (t, z) →֒ r(Z)(t, z) satisfying

r(Z)(t, z) = lim
Tցt
− 1

T − t
log P (Z)(t, T, z), (t, z) ∈ [0,∞)×D, (2.9)

then it follows that r(Z) is affine in the sense that

r(Z)(t, z) = a(t) + b(t)z, (t, z) ∈ [0,∞)×D, (2.10)

with a(t) = ∂
∂T A(t, T )|T=t = −Ã(t, t) and b(t) = ∂

∂T B(t, T )|T=t = −B̃(t, t).
If we restrict ourselves to the homogeneous case for the sake of simplicity,

μ(Z)(t, z) = μ(Z)(z) and σ(Z)(t, z) = σ(Z)(z),

and the functions P (Z), and hence f (Z), depend only on the time to maturity
x = T − t, i.e. P (Z)(t, T, z) = P (Z)(x, z) and f (Z)(t, T, z) = f (Z)(x, z). In this
case, the no-arbitrage condition reads:

∂xÃ(x) + ∂xB̃(x) · z = μ(Z)(z) · B̃(z)− 1

2
∂xB(x)∗a(x)B(x).
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See the Appendices at the end of the chapter for a discussion of the general
case. Recall that with the notation of the homogeneous case, we have Ã(x) =
−A′(x) and B̃(x) = −B′(x). From this it easily follows that if the functions

B1, . . . , Bk, B2
1 , B1B2, . . . , B

2
k

are linearly independent, then the drift and the diffusion coefficients μ(Z)(z)
and a(Z)(z) are affine functions of z in the sense that

{

μ(Z)(z) = μ(Z) + μ(Z)z

a(Z)(z) = α(Z) +
∑k

i=1 α
(Z)
k z

(2.11)

for some constant k-vector μ(Z) and k × k-matrices μ(Z), α(Z) and α
(Z)
k .

Plugging formulae (2.11) into the no-arbitrage condition gives the following
system of ordinary differential equations:

{

∂xA(x) = −Ã(0) + μ(Z) · B(x)− 1
2B(x)∗α(Z)(x)B(x)

∂xB(x) = −B̃(0) + μ(Z)B(x) − 1
2B(x)∗α

(Z)
· (x)B(x)

(2.12)

with the initial conditions A(0) = 0 and Bi(0) = 0, for i = 1, . . . , k. Note
that the second equation is a k-dimensional Riccati equation in B(x). Once
solved, one can plug the resulting B(x) in the first equation and get A(x) by
a ordinary integration.

Part of the above discussion can be recast in the following result which
we state without making fully explicit the mild technical conditions under
which it holds.

Proposition 2.1. The term structure factor model is exponential affine if
and only if the drift μ(Z) and diffusion a(Z) = σ(Z)σ(Z)∗ coefficients are
affine functions of z ∈ D.

So the general form of the dynamics of the factors of an exponential affine
model is necessarily

dZt = (aZt + b)dt + Σ

⎡

⎢

⎢

⎢

⎣

√
a1 + b1 · Zt 0 · · · 0

0
√

a2 + b2 · Zt · · · 0
...

...
...

...
0 · · · 0

√
ak + bk · Zt

⎤

⎥

⎥

⎥

⎦

dWt,

with initial condition Z0 ∈ D. Here, a and Σ are k×k deterministic matrices,
b, b1, . . ., bk are k-dimensional deterministic vectors, and a1, . . ., ak are
scalars. The analysis of such a stochastic differential equation is very simple
when all the bi’s are zero. In this case, there is existence and uniqueness of
a solution, and the latter is a Gauss–Markov process. We shall see several
examples later in this chapter. However, the situation is much more delicate
when some of the bi’s are nonzero. Existence and uniqueness of solutions of
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such stochastic differential equations is not guaranteed, and analyzing the
properties of this non-Gaussian diffusion is not easy because of the random
volatility created by the nonzero bi’s. Again, we shall give the details for
a couple of examples in what follows.

We were very casual in the way we ignored important technical assump-
tions, and in the informal way we stated the results on exponential affine
models. The reader interested in proofs and complete statements of these
important results is referred to the Notes & Complements at the end of the
chapter.

Example 2.1. We specialize our discussion of the exponential affine models to

a special case used most frequently. Let Z
(1)
t , . . . , Z

(k)
t be economic factors

such that

rt =
k

∑

j=1

Z
(j)
t .

We suppose that these factors are independent so that

P (t, T ) = E

{

exp

(

−
∫ T

t

rsds

)

∣

∣

∣Ft

}

=

k
∏

j=1

E

{

exp

(

−
∫ T

t

Z(j)
s ds

)

∣

∣

∣Ft

}

.

Notice that in what follows, we shall mostly concentrate on one-factor models

for which k = 1 and Z
(1)
t = rt is the short rate. For the time being, we suppose

that the factors are solutions of SDE

dZ
(j)
t = μj(Z

(j)
t )dt + σj(Z

(j)
t )dw

(j)
t .

for independent Wiener processes w(1), . . . , wk. Now let us choose function
coefficients μj and σj in such a way that they generate an affine term struc-
ture, say by letting

μj(z) = μj + μjz

and
σj(z) =

√

σj + σjz.

Then we have

E

{

exp

(

−
∫ T

t

Z(j)
s ds

)

∣

∣

∣Ft

}

= exp
(

A(j)(T − t) + B(j)(T − t)Z
(j)
t

)

for specific functions A(j) and B(j), which can be computed explicitly by solv-
ing the appropriate Riccati equation. Multiplying these equations together
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and taking the logarithmic derivative gives the formula for the forward rates:

f(t, T ) = a(T − t) + b(T − t)Zt

where

a(x) = −
k

∑

j=1

d

dx
A(j)(x), and b(x) = −

(

d

dx
B(1)(x), . . . ,

d

dx
B(k)(x)

)

.

We can now solve for the factors by choosing k benchmark times to maturity
x1, . . . , xk such that the matrix Γ = [b(i)(xj)]i,j=1,...,k is invertible:

Zt = Γ−1(f(t, t + xi)− a(xi))i=1,...,d.

Hence, the economic factors in this model can be interpreted as a affine
function of k benchmark forward rates. Furthermore, given the value of these
k rates, all of the other rates f(t, T ) can be computed by the interpolation
formula

f(t, T ) = a(T − t) + b(T − t) · Γ−1(f(t, t + x·)− a(x·)).

2.3 Short Rate Models as One-Factor Models

This section is devoted to the particular case of the one-factor models, when
the single factor is chosen to be the short interest rate. After all, if we have
to limit ourselves to one factor, the short rate looks like a good choice. In
this way, we recast the early models of the term structure based solely on
the dynamics of the short rate, in the framework of factor models introduced
earlier.

To conform with the standard notation, we write rt for the single factor
Zt, and without any loss of generality we assume that the Wiener process
W is scalar. In other words, we assume that the short interest rate rt is the
solution of a stochastic differential equation (SDE for short) of the form:

drt = μ(r)(t, rt) dt + σ(r)(t, rt) dWt (2.13)

where the drift and volatility terms are given by real-valued (deterministic)
functions

(t, r)→֒μ(r)(t, r) and (t, r)→֒σ(r)(t, r)

such that existence and uniqueness of a strong solution hold. In most cases
this will be guaranteed by assuming that these functions are uniformly Lip-
schitz. But as we shall see later, this sufficient condition is not satisfied by
some of the most popular models. Recall the discussion of the affine models
and their diffusion terms involving the square-root function (which is obvi-
ously not uniformly Lipschitz). We shall nevertheless review the main prop-
erties of the short interest models, both because of the important historical
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role they played, and because of the role they still play in many implementa-
tions of Monte Carlo pricing algorithms for risky, callable and/or convertible
bonds. In any case, the existence and the uniqueness of a solution of the
SDE (2.13) implies the Markov property of the short interest rate. As we
shall see below, the Markov property of the factor vector (i.e. the state of the
economy) is crucial for the derivation of the PDE used to compute derivative
prices. Unfortunately, as the recent work of Ait-Sahalia [2] shows, the Markov
property is not an assumption clearly supported by empirical studies. Notice
that this Markov property assumption will not be part of our general models
introduced later in Chap. 6. But in order to review the classical stochastic
models of the short rate, we shall nevertheless work with it in this section.

2.3.1 Incompleteness and Pricing

Given such (Markovian) dynamics for the short interest rate, the money-
market account {Bt; t ≥ 0} is defined as usual as the pay-off resulting for
continuously compounding interest on a unit deposit:

{

dBt = rtBt dt,
B0 = 1.

(2.14)

Equation (2.14) is a random ordinary differential equation (ODE for short)
because the coefficient rt is random. But it should not be viewed as an SDE
because there is no Wiener process driving its randomness. For this reason,
the solution:

Bt = exp

(∫ t

0

rs ds

)

(2.15)

is still called the risk-free asset by analogy with the situations in which rt is
deterministic.

The next step is to price (zero coupon riskless) bonds or more general
contingent claims by treating them as derivatives as in the Black–Scholes
theory, the interest rate rt playing the role of the underlying risky asset. But
the analogy stops here. Indeed, the only tradable asset in such a market model
is the money-market account (i.e. the risk free asset Bt) and it is not possible
to form portfolios which can replicate interesting contingent claims, not even
the zero coupon bonds. This means that such a market is not complete.
The incompleteness of the model can be equivalently established by the non-
uniqueness of the equivalent martingale measure. This fact is quite clear
because, since Bt is the only tradable in our model, and since its discounted
value B̃t = B−1

t Bt ≡ 1 is constant, it is always a martingale, hence

any equivalent measure Q ∼ P is an equivalent martingale measure !!

Because we assume that the filtration is generated by the Wiener process
{Wt}t≥0, any equivalent probability measure Q is determined by an Itô in-
tegrand {Kt; t ≥ 0}, namely the adapted process whose Doleans exponential
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gives the Radon–Nykodym density of Q with respect to P. In order to use
Girsanov’s theorem, we set:

W̃t = Wt +

∫ t

0

Ks ds, μ̃t = μ(t, rt)−σ(t, rt)Kt, and σ̃t = σ(t, rt)

(2.16)
because the process {W̃t}t is a Wiener process for the probability structure
given by Q. On this new probability space the short rate rt appears as the
solution of the stochastic differential:

drt = μ̃t dt + σ̃t dW̃t. (2.17)

Since the dynamics of rt under P are not enough to price the bonds
P (t, T ), even if we impose the no-arbitrage condition, pricing models based
on the short interest rate rt will have:

• either to specify the risk-premium process {Kt}t together with the
(stochastic) dynamics of rt under P as given by the drift and volatility
processes μt and σt

• or to specify the (stochastic) dynamics of rt under the risk-neutral proba-
bility measure Q by giving the risk adjusted drift and volatility processes
μ̃t and σ̃t

Of these two equivalent prescriptions, most pricing models follow the lat-
ter. Because of that, the following remark is in order.

Remark 2.1. Statistical Estimation versus Calibration
If the model is given under the historical (also called objective ) probability
structure given by P, historical data can or should be used to estimate the
coefficients μt and σt. But historical data should not be used to estimate
the coefficients μ̃t and σ̃t when the model is specified under an equivalent
martingale measure Q. When pricing, the risk adjusted coefficients μ̃t and
σ̃t can only be inferred from existing prices. Indeed, in order to guess which
equivalent martingale measure the market chose to get the prices for which
we have quotes, we try to reverse engineer the process and get estimates of μ̃t

and σ̃t from these quotes. This is typically an ill-posed inverse problem whose
solution requires the choice of a regularization procedure and an optimization
algorithm. To distinguish it from the statistical estimation from historical
data mentioned earlier, the term calibration is commonly used in practice.

2.3.2 Specific Models

All the models discussed below can be recast in one single equation for the
risk-neutral dynamics (2.17). It reads:

drt = (αt − βtrt) dt + σtr
γ
t dWt (2.18)
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where t→֒αt, t→֒βt, and t→֒σt are deterministic non-negative functions of
t and γ is a positive constant. These models have been studied in various
degrees of generality and without any respect for the order in which they
appeared historically, we list the special cases of interest. Note that these
models are affine in the sense of the previous section whenever γ = 0 or
γ = 1/2. Also for us, a case is of interest if explicit formulae and/or efficient
computational procedures can be derived. The main features of these models
include:

• When γ �= 0, the volatility gets smaller as rt approaches 0, allowing
the drift term to be dominated by αt and possibly preventing rt from
becoming negative.

• When βt > 0, the drift term is a restoring force (similar to the Hooke’s
term appearing in mechanics) which always points toward the current
mean value of αt/βt.

• The standard Lipschitz assumption of the strong (i.e. pathwise) existence
and uniqueness result is not satisfied when 0 < γ < 1. Nevertheless,
existence and uniqueness still holds as long as γ ≥ 1/2.

Bibliographic references are given in the Notes & Complements at the end of
the chapter.

Vasicek Model

This model corresponds to the choices αt ≡ α, βt ≡ β and σt ≡ σ constant
while γ = 0. So in this model, the risk adjusted dynamics of the short term
rate are given by the SDE:

drt = (α− βrt) dt + σ dWt. (2.19)

The solution of this diffusion equation is a particular case of the processes of
Ornstein–Uhlenbeck type discussed later in Sect. 4.5 of Chap. 4. Indeed, we
can solve for the short rate explicitly

rt = e−βtr0 + (1− e−βt)
α

β
+

∫ t

0

e−β(t−s)σdws.

It is clear from the above formula that such a process is Gaussian, and at
each time t > 0 there is a positive probability that rt is negative. This has
been regarded by many as a reason not to use the Vasicek model. Despite this
criticism, the model remained popular because of its tractability and because
a judicious choice of the parameters can make this probability of negative
interest rate quite small. Some even go as far as arguing that after all, real
interest rates (i.e. rates adjusted for inflation) can be negative, and for this
reason, the Vasicek model (2.19) is often used to model real interest rates.
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The Cox–Ingersoll–Ross model

This model is often called the CIR model for short. It was introduced as an
equilibrium model, but its claim of faith is attached to the desirable correc-
tion it brings to the Vasicek model: while keeping with the important mean
reversion feature, by introducing a rate-level-dependent volatility, the result-
ing short rate will never become negative. This model corresponds to the
choices αt ≡ α, βt ≡ β and σt ≡ σ constant as before in the Vasicek model,
while now γ = 1/2. So, the risk adjusted dynamics of the short term rate are
given by the SDE:

drt = (α− βrt) dt + σ
√

rt dWt. (2.20)

The solution of this diffusion equation is sometimes called the square-root
diffusion process. It was first studied by W. Feller who identified its transition
probability as a non-central χ2 distribution. It is not a Gaussian process, and
for this reason, explicit formulae are usually more difficult to come by. See
our discussion below. However, many positive features are preserved. It is still
possible to use exact simulation like in the Gaussian case, and since the model
is part of the family of affine models, explicit derivative pricing formulae are
available.

The main shortcoming of the two short rate models presented above is
with calibration to market data. We discuss this problem in Sect. 2.3.5 below.

Other Frequently Used Models

For the sake of completeness we quote some of the models introduced to
overcome the shortcomings of the two most popular models introduced above.

• The Dothan model corresponds to the case αt ≡ 0, βt ≡ −β and σt ≡ σ
constant while γ = 1. In other words, the dynamics of the short term rate
are given by the SDE:

drt = βrt dt + σrt dWt. (2.21)

The solution of this diffusion equation is the classical geometric Brownian
motion. It is given by the formula:

rt = r0e
(β−σ2/2)t+σWt

which shows that the short rate is always positive if it starts from r0 >
0. The random variable rt has a log-normal density, and many explicit
formula can be derived from that fact.
Unfortunately, the calibration problem suffers from the same shortcom-
ings as the Vasicek and the CIR models.
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• The Black–Derman–Toy model (BDT model for short) corresponds
to the case αt ≡ 0 and γ = 1. The dynamics of the short term rate are
given by the SDE:

drt = −βtrt dt + σtrt dWt. (2.22)

An explicit formula for the solution of the above equation can be written
as

rt = r0e
−

∫

t
0
(βs+σ2

s/2)ds+
∫

t
0

σsdWs .

In this model, the distribution of rt is log-normal, so it is still almost
surely non-negative. When compared to the Dothan model above, the loss
due to the increased complexity of the distribution is barely compensated
by the changes in the calibration issue. Indeed, the calibration problem
remains over-determined when the time dependent volatility is chosen in
a parametric family, but it becomes under-determined if it is estimated
by nonparametric methods.

• The Ho–Lee model corresponds to the case βt ≡ 0 and σt ≡ σ constant
while γ = 0. In other words, the dynamics of the short term rate are given
by the SDE:

drt = αt dt + σ dWt. (2.23)

Again an explicit formula is available:

rt =

∫ t

0

αsds + σWt.

The comments made on the Black–Derman–Toy model apply as well to
the current Ho–Lee model. Furthermore, the distribution of the random
variable rt is Gaussian, so there is a positive probability of that the interest
rate becomes negative.

The last two models which we review can be seen as the culmination
in the introduction of time dependent parameters in the Vasicek and CIR
models. The need for time dependent models will be stressed once more in
our discussion of the stiffness of the yield curves produced by these models,
and of calibration issues.

• The Vasicek–Hull–White model corresponds to the case γ = 0. The
dynamics of the short term rate are given by the SDE:

drt = (αt − βtrt) dt + σt dWt. (2.24)

As in the standard Vasicek model, the interest rate equation has an ex-
plicit solution:

rt = e−
∫

t
0

βsdsr0 +

∫ t

0

e−
∫

t
s

βsdsαsds +

∫ t

0

e−
∫

t
s

βsdsσsdWs.

Note that random variable rt is Gaussian in the VHW model.
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• Finally, the CIR–Hull–White model corresponds to the case γ = 1/2
in which case the dynamics of the short term rate are given by the SDE:

drt = (αt − βtrt) dt + σt
√

rt dWt. (2.25)

Just as with the standard CIR model, an explicit solution for rt is not
available; nevertheless, explicit bond pricing formulae can be found in
some cases.

2.3.3 A PDE for Numerical Purposes

The analysis of the classical Black–Scholes–Merton derivative pricing theory
has taught us that, since prices are given by expectations with respect to
an equivalent martingale measure, they are solutions of a partial differen-
tial equation (PDE for short) whenever the underlying dynamics are given
by a Markov process under the risk-neutral martingale measure. When the
dimension of the factors underlying the derivatives is small, it makes sense
to compute the prices by solving a PDE instead of computing expectations.
This approach is still very popular and the purpose of this section is to review
the derivation of these pricing PDE.

As before, we work with a fixed equivalent martingale measure Q, and
we assume that in the probability structure determined by this measure, the
short rate is the unique solution to a stochastic differential (SDE for short)
of the form:

drt = μ(t, rt) dt + σ(t, rt) dWt. (2.26)

Notice that this assumption is slightly more restrictive than our original
assumption (2.13) for the dynamics of the short rate under the objective
probability measure P. Indeed, on top of the difference in notation due to our
dropping the tildes over the coefficients, the general stochastic differential
under an equivalent measure given in (2.17) is not necessarily Markovian
when the historical dynamics given under P are Markovian. This is so because
the random process {μ̃t; t ≥ 0} may be a function of the whole past up to
time t instead of being a deterministic function of rt as in the form given by
Eq. (2.26). Indeed, the risk adjustment process {Kt}t can be a function of
the whole past.

Now, according to the no-arbitrage pricing paradigm, in such a model the
price at time t of any contingent claim ξ with maturity T is given by the
conditional expectation:

Vt = EQ{ξe−
∫

T
t

rsds|Ft}. (2.27)

In particular, the price at time t of a zero coupon bond with maturity T is
given by the formula:

P (t, T ) = EQ{e−
∫

T
t

rsds|Ft} (2.28)
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since in this case ξ ≡ 1. What we are about to say applies as well to any
T -contingent claim whose pay-off is of the form ξ = f(rT ). As a conditional
expectation with respect to the past information available at time t, the
price Vt, should be a function of the whole past of the Wiener process, or
equivalently (under some mild assumption on the function σ(t, r) which we
shall not spell out) of the past information contained in the values of rs for
0 ≤ s ≤ t. But because of the choice of the model (2.26), the stochastic
process rt is Markovian, and the expectation of a random variable in the
future at time t conditioned by the past given by rs for 0 ≤ s ≤ t is as well
the conditional expectation with respect to the present value rt. In other
words, formula (2.27) can be rewritten as:

Vt = EQ{f(rT )e−
∫

T
t

rsds|rs, 0 ≤ s ≤ t}
= EQ{f(rT )e−

∫

T
t

rsds|rt} (2.29)

which shows that Vt is in fact a deterministic function of t and rt. Indeed, if
we set:

F (t, r) = EQ{f(rT )e−
∫

T
t

rsds|rt = r} (2.30)

then we have Vt = F (t, rt). We now explain why this function is the solution
of a specific PDE. As in the Black–Scholes–Merton theory, we can use Itô’s
calculus and an arbitrage argument to derive this PDE. But since the arbi-
trage argument is captured by the use of the risk-neutral measure in pricing
by expectation, this PDE can also be derived with the classical argument
due to Feynman and Kac. Indeed, if we apply the Feynman–Kac formula to
the Markov process {rt; t ≥ 0} whose dynamics under Q are given by the
stochastic differential equation (2.26), we get the following:

Proposition 2.2. The no-arbitrage price at time t of any contingent claim
ξ of the form ξ = f(rT ) with maturity T > t is of the form F (t, rt) where F
is a solution of the parabolic equation:

∂F

∂t
(t, r) + μ(t, r)

∂F

∂r
(t, r) +

1

2
σ(t, r)2

∂2F

∂r
(t, r) − rF (t, r) = 0 (2.31)

with the terminal condition F (T, r) ≡ f(r).

Under mild regularity assumptions on the coefficients μ and σ (for example
a global Lipschitz condition would do) this function F (t, r) is the unique
solution of the PDE (2.31) which satisfies the terminal condition F (T, r) ≡
f(r). In particular, the price at time t when the spot rate is equal to r of
a zero coupon bond with maturity T is given by the solution of the PDE (2.31)
with the terminal condition F (T, r) ≡ 1 since the pay-off is ξ ≡ 1. Pricing
bonds and interest rate derivatives by solving numerically such a PDE is not
uncommon.

The PDE (2.31) can easily be solved numerically, either by an explicit
finite-difference scheme, or by by a standard implicit scheme if one worries
about stability issues.
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2.3.4 Explicit Pricing Formulae

We now reap the benefits from the special features of the affine models in-
troduced at the start of the chapter. We give explicit formulae for the prices
of the zero coupon bonds computed in the Vasicek and CIR models.

Vasicek Model

The pricing PDE reads:

∂P

∂t
+

1

2
σ2 ∂2P

∂r2
+ (α− βr)

∂P

∂r
− rP = 0 (2.32)

with the constant function 1 as terminal condition. So for a zero coupon bond
the solution is of the form:

PV (t, T, r) = eA(T−t)+B(T−t)r

with

B(x) = − 1

β

(

1− e−βx
)

and

A(x) =
4αβ − 3σ2

4β3
+

σ2 − 2αβ

2β2
x +

σ2 − αβ

β3
e−βx − σ2

4β3
e−2βx.

These facts can be proven by plugging the expressions for A(x) and B(x)
in PV (t, T, r), and checking that the latter satisfies the partial differential
equation (2.32) with the right terminal condition. However, these formulae
can be derived directly by computing the conditional expectation (2.29) using
the expression of the Laplace transform of a Gaussian random variable.

It is sometimes easier to deal with the forward rates f(t, T ) =
− ∂

∂T log P (t, T ), rather than the bond prices directly. Define the function fV

by the formula

fV (t, T, r) = re−β(T−t) +
α

β

(

1− e−β(T−t)
)

− σ2

2β2

(

1− e−β(T−t)
)2

. (2.33)

Then the forward rates for the Vasicek model are given by f(t, T ) =
fV (r, T, rt).

CIR Model

The pricing PDE reads:

∂P

∂t
+

1

2
σ2r

∂2P

∂r2
+ (α− βr)

∂P

∂r
− rP = 0 (2.34)
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with the constant function 1 as terminal condition. So for a zero coupon bond
the price is also of the form:

PCIR(t, T, r) = eA(T−t)+B(T−t)r

with

B(x) = − 2(eγx − 1)

(γ + β)eγx + (γ − β)

and

A(x) =
αβ(γ + β)

σ2
x− αβ

2σ2
log

(

(γ + β)eγx + (γ − β)

2γ

)

with
γ =

√

β2 + 2σ2.

As before, these facts can be proven by plugging the expressions for A(x)
and B(x) in PCIR(r, t, T ), and checking that the latter satisfies the partial
differential equation (2.34) with the right terminal condition. They can also
be derived by solving the Riccati equation.

The forward rates for the CIR model are given by

fCIR(t, T, r) =
4γ2eγ(T−t)

[(γ + β)eγ(T−t) + (γ − β)]2
r +

2α(eγ(T−t) − 1)

(γ + β)eγ(T−t) + (γ − β)
.

(2.35)

VHW Model

The bond prices and forward rates can be computed explicitly for the VHW
model.

fV HW (t, T, r) = re−
∫

T
t

βsds +

∫ T

t

αse
−

∫

T
s

βududs

−
∫ T

t

∫ y

t

σ2
se−

∫

T

s
βudu−

∫

y

s
βududs dy

The above formula can be derived from the fact that the interest rate in the
VHW model is a Gaussian process. The special case when the mean-reverting
parameter βt ≡ β and the volatility σt ≡ σ are constant is particularly
interesting:

fV HW (t, T, r) = re−β(T−t) +

∫ T

t

αse
−β(T−s)ds− σ2

2β2

(

1− e−β(T−t)
)2

.

(2.36)
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CIRHW Model

The bond prices and forward rates can be computed explicitly for the CIRHW
model, at least in the special case when the mean-reverting parameter βt ≡ β
and the volatility σt ≡ σ are contant. The formula is

fCIRHW (t, T, r) =
4γ2eγ(T−t)

[(γ + β)eγ(T−t) + (γ − β)]2
r

+

∫ T

t

4γ2eγ(T−s)αs

[(γ + β)eγ(T−s) + (γ − β)]2
ds.

2.3.5 Rigid Term Structures for Calibration

The Vasicek and the CIR models depend upon the three parameters α, β,
and σ. Three quoted prices are often enough to determine these parameters.
But many more prices are available and it is not clear how to choose three
prices out of the bunch, especially because most likely, any given set of three
prices will give a different set of values to the parameters α, β and σ.

The calibration problem is very often over-determined for parametric
models with a small number of parameters. An approximate solution needs to
be chosen: least squares is usually considered as a reasonable way out. Notice
that we are in the same situation as in Chap. 1 when trying to estimate the
term structure with a parametric family of curves such as the Nelson–Siegel
or the Svennson families.

The above formulae for the zero coupon bonds in the Vasicek and CIR
models can be used to compute and plot the term structure of interest rate.
Tweaking the parameters can produce yield curves with one hump or one
dip, but it is very difficult (if not impossible) to calibrate the parameters so
that the hump/dip sits where desired. There are not enough parameters to
calibrate the models to account for observed features contained in the prices
quoted on the markets. Recall Fig. 1.2 of Chap. 1 for example.

This undesirable rigidity of the yield curves attached to the short rate
models leads to the introduction of the time dependent models (also called
evolutionary models) reviewed in Sect. 2.3.2 above. For instance, by choosing
the drift t→֒αt appropriately, the VHW and CIRHW models can be made to
match any initial forward curve T →֒f(0, T ). In this way, the model is made
compatible with the current observed forward curve. However, the next time
we check the forward curve given by the market, it will presumably not agree
with the forward curve implied by the model, hence the need to recalibrate
each time. This constant need for recalibration is a good reason to lose faith
(if not trust) in the model as the latter appears as a one-period model. This
is at odds with the original belief that we had a dynamical model capable of
being used over time!

Another explanation for the difficulties of enabling the short rate models
to be consistent with the daily changes of the forward curve goes as follows.
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From the point of view of the forward curves, specifying a short rate model
amounts to specifying the (stochastic) dynamics of the whole forward curve
by specifying the (stochastic) dynamics of the left-hand point of the curve
(remember that rt = f(t, t)). The motion of a curve should have a continuum
of degrees of freedom, and being able to specify only one of them to determine
this motion should lead to another kind of rigidity.

Indeed, pick two maturities T1 and T2 and consider the two-dimensional
random vector (f(t, T1), f(t, T2)). In a short rate model for the term structure,
the support of this random vector is contained in the closure of the set

S = {(f (r)(t, T1, r), f
(r)(t, T2, r)) : r ∈ D}

where D is typically R or the halfline R+. In most cases, the set S̄ is
a Lebesgue measure zero subset of R2, in which case the law of (f(t, T1),
f(t, T2)) does not have a density.

Furthermore, in a short rate model, the forward rates f(t, T1) and f(t, T2)
move in lock step. This fact can be illustrated by computing the statistical
correlation between the increments of the forward rates. It is easy to see
that the correlation coefficient between the “random variables” df(t, T1) and
df(t, T2) is necessarily equal to 1!

2.4 Term Structure Dynamics

Starting from a factor model, we noticed that the bond prices were neces-
sarily Itô processes with stochastic dynamics of the form (2.5). There is no
arbitrage in the model if there is an equivalent martingale measure Q, such
that all discounted bond prices {P̃ (t, T )}t∈[0,T ] are local martingales, where
the discounted bond price at time t for maturity T is given by

P̃ (t, T ) = e−
∫

t

0
rsdsP (t, T ).

Since we are working with a filtration generated by a d-dimensional Wiener
process, any local martingale can be written as a stochastic integral with
respect to this multivariate Wiener process and we have

dP̃ (t, T ) =

d
∑

i=1

τ (i)(t, T )dw
(i)
t (2.37)

for some predictable processes {τ (i)(t, T )}t∈[0,T ].

2.4.1 The Heath–Jarrow–Morton Framework

We now introduce a framework which will play a central role in our analysis
of term structure models. This framework will be studied in much detail in
Chap. 6.
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Generalizing the finite factor models as hinted above, we consider a model
such that the discounted bond prices {P̃ (t, T )}t∈[0,T ] are continuous local
martingales simultaneously for all T . Of course, such a market model is free of
arbitrage opportunities. That is, we essentially take Eq. (2.37) as our starting
point.

In fact, in the framework proposed by Heath, Jarrow, and Morton [80]
the forward rates {f(t, T )}t∈[0,T ] are assumed to be Itô processes for each T
with dynamics given by

df(t, T ) = α(t, T )dt +

d
∑

j=1

σ(j)(t, T )dw
(j)
t , (2.38)

where for each j and T the process {σ(j)(t, T )}t∈[0,T ] is assumed to be pre-
dictable with respect to the filtration generated by the Wiener process and
where the drift is given by the formula

α(t, T ) =

d
∑

j=1

σ(j)(t, T )

∫ T

t

σ(j)(t, s)ds.

The above formula for the drift in terms of the volatilities was discovered
by Heath, Jarrow, and Morton [80] and is commonly called the HJM drift
condition.

We shall refer to any term structure model which has the property that
the forward rates simultaneously satisfy stochastic differential equations of
the form of Eq. (2.38) as a finite rank HJM model. The adjective “finite rank”
indicates that the Wiener process {Wt}t≥0 is finite dimensional; in Chap. 6
we will consider abstract HJM models driven by a Wiener process taking
values in an infinite dimensional space.

As we noted in the previous section, if the bond prices are modeled as
a deterministic function of a finite dimensional diffusion {Zt}t≥0, then the
stochastic dynamics of the discounted bond prices are necessarily of the form
of Eq. (2.37). Therefore all of the finite factor models studied in this chapter
are finite rank models. The converse is false in general.

To contract the HJM approach to the factor approach considered before,
notice that the state variable is taken to be the entire forward rate curve
T →֒f(t, T ) rather than the finite dimensional vector Zt of economic factors.
In particular, whereas the factor models are determined by the following data:
the functions μ(Z) and σ(Z) and the initial condition Z0, an HJM model is
determined by the stochastic processes {σ(t, T )}t∈[0,T ] and the initial forward
curve f(0, ·). At this level of generality, we have a lot of freedom in choosing
the volatility processes {σ(t, T )}t∈[0,T ]. One way to choose the volatility is

to assume that it is of the form σ(t, T ) = σ(f)(t, T, f(t, ·)). This approach is
described for the class of abstract HJM models studied in Chap. 6. In what
follows, we do not make such an assumption.
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2.4.2 Hedging Contingent Claims

We now consider the problem of hedging an interest rate contingent claim in
the context of a finite rank HJM model. We assume that the measure Q is
the unique measure for which the discounted bond prices {P̃ (t, T )}t∈[0,T ] are
local martingales simultaneously for all T . In particular, we consider models
where the discounted bond prices have stochastic dynamics given by

dP̃ (t, T ) =

d
∑

i=1

τ (i)(t, T )dw
(i)
t .

Note that the discounted bond prices are given by an infinite number of
stochastic differential equations, one for each value of T , but they are all
driven by the same finite dimensional Wiener process {Wt}t≥0.

Besides the fact that the mathematics of finite dimensional Wiener pro-
cesses is easier to handle than that of infinite dimensional ones, the assump-
tion that {Wt}t≥0 is finite dimensional can be justified by appealing to the
statistics of the yield and forward rate curves observed on the market. In-
deed, the principal component analysis cited in Chap. 1 lends credence to
term structure models driven by a Wiener process of dimension three or
four.

Consider the problem of replicating the real FT -measurable random vari-
able ξ corresponding to the payout of an interest rate contingent claim that
matures at a fixed time T > 0. We choose as our hedging instruments the set
of zero coupon bonds and the risk free bank account process {Bt}t≥0, where

as always Bt = e
∫

t
0

rs ds.
Pick d dates T1 < T2 < · · · < Td with T1 > T and note that the

d-dimensional vector of discounted bond prices (P̃ (t, T1), . . . , P̃ (t, Td)) has
risk neutral dynamics given by the stochastic differential equation

dP̃ (t, Ti) =

d
∑

j=1

τ (j)(t, Ti) dw
(j)
t . (2.39)

If the d× d matrix-valued random variable σt given by

σt =
[

τ (j)(t, Ti)ds
]

i,j=1,...,d
(2.40)

is invertible for almost all (t, ω) ∈ [0, T ]×Ω, the model given by Eq. (2.39) is
of a complete market consisting of d risky assets. For this finite rank model,
the theory of contingent claim replication is well-known; we will see that
we need only apply the martingale representation theorem to the discounted
payout B−1

T ξ = ξ̃ to compute the hedging strategy.
Consider a strategy such that at time t the portfolio consists of φi

t units of
the bond with maturity Ti for i = 1, . . . , d and of ψt units of the bank account.
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As usual, we insist that our wealth process {Xt = 〈φt, Pt〉+ψtBt}t≥0 satisfies
the self-financing condition

dXt = 〈φt, dPt〉+ ψtdBt

where φt = (φ1
t , . . ., φd

t ) is the vector of portfolio weights and Pt = (Pt(T1),
. . ., Pt(Tk)) is the vector of bond prices. We now show that there exist pro-
cesses {φt}t∈[0,T ] and {ψt}t∈[0,T ] such that XT = ξ almost surely.

By Eqs. (2.39) and (2.40), the dynamics of the vector of discounted bond
prices are given by dP̃t = σtdWt, and consequently, the dynamics of the
discounted wealth process are given by

dX̃t = 〈φt, dP̃t〉 = 〈σ∗
t φt, dWt〉.

On the other hand, if E{ξ̃2} < +∞, we can apply Itô’s martingale rep-
resentation theorem to conclude that there exists a d-dimensional adapted

process {αt}t∈[0,T ] such that E

{

∫ T

0 ‖αt‖2dt
}

< +∞ and

ξ̃ = E{ξ̃}+

∫ T

0

〈αt, dWt〉.

Setting the initial wealth X0 = E{ξ̃} and portfolio weights φt = σ∗−1
t αt and

ψt = X̃t − 〈φt, P̃t〉 we find our desired replicating strategy.
We see then that for every claim ξ satisfying an appropriate integrabil-

ity condition, there exists a self-financing portfolio consisting of bonds with
maturities T1, T2, . . . , Td and the bank account replicating the payoff of the
contingent claim ξ. This is quite in line with the intuition developed from
the Black–Scholes theory which taught us that in order to hedge all reason-
able claims, we need only as many tradable assets as there are independent
Wiener processes.

Notice that the above argument does not depend on a Markov assumption.
For instance, the discounted bond prices {P̃t = (P̃ (t, T1), . . . , P̃ (t, Td)}t∈[0,T ]

need not be a Markov process. Loosely speaking, all that we have assumed is
that the increment dWt of the Wiener process can be recovered from knowl-
edge of the increment dP̃t of the discounted bond prices.

2.4.3 A Shortcoming of the Finite-Rank Models

The assumption that the driving noise is finite-dimensional has an annoying
implication: There typically exist hedging strategies which are rather unreal-
istic from the point of view of a fixed income trader.

The dates T1, . . . , Td in the above discussion were chosen arbitrarily; that
is to say, the finite-rank assumption leads to the unrealistic situation that the
hedging instruments can be chosen independently of the claim to be hedged.
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For instance, consider the problem of hedging a call option on a bond of
maturity five years in the context of an HJM model driven by three indepen-
dent Wiener processes. According to the theory presented above, a portfolio
of bonds of maturities 20, 25, and 30 years and the bank account could per-
fectly hedge the option. We are left with a puzzle: Why does our intuition
suggest that a trader would prefer a hedging portfolio consisting of bonds with
maturities closer to five years rather than with the above portfolio when the
theory predicts that both strategies are just as good?

The shortcoming of finite-rank models is that, although there are bonds of
very many maturities available to trade, most of these bonds are redundant.
Indeed, the increment of the discounted bond price for a given maturity
can be expressed as a linear combination of the increments of the discounted
bond prices of d arbitrarily chosen maturities. It seems that a more intuitively
satisfying model of the interest term structure would somehow incorporate
a notion of maturity-specific risk. Such a model would have the following
two desirable features:

• If a claim ξ can be hedged by a portfolio of zero coupon bonds, then the
hedging strategy is unique.

• The maturities of the bonds used as hedging instruments for ξ depend on
the maturities of the bonds underlying ξ.

In particular, a model which exhibits maturity-specific risk has the prop-
erty that the increments of discounted bond prices of any finite set maturities
are linearly independent. In Chap. 6 we will see that such models do in fact
exist.

A natural first step to building a better model would be to recognize
the infinite dimensional character of the term structure. This would entail
rewriting the dynamics as an evolution equation in an infinite dimensional
space, for instance a separable Hilbert space. In this new framework we would
like to let the dimension of the driving Wiener process be infinite to provide
the source of maturity-specific risk and to resolve the issue of non-uniqueness
of hedging strategies discussed here. We would also like the resulting model
to be consistent with the principal component analysis of the term structure.
We address these issues in the last chapter devoted to the generalized models
involving possibly infinitely many independent Wiener processes. But before
we can take d = ∞ in our model equations, we need to develop analysis
tools capable of handling infinitely many driving Wiener processes. This is
the purpose of the following chapters.

2.4.4 The Musiela Notation

We now rewrite the equation for the dynamics of the instantaneous forward
rates, viewing terms in the original equation as functions of the maturity
date T , as restating the equality for all T ’s as an equality between functions.
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We get:

f(t, · ) = f(0, · ) +

∫ t

0

α(s, · )ds +

d
∑

j=1

∫ t

0

σ(j)(s, · )dw(j)
s (2.41)

or in differential form:

df(t, · ) = α(t, · )dt +
d

∑

j=1

σ(j)(t, · )dw
(j)
t . (2.42)

This form is screaming for an interpretation as an equation for the dynamics
of a function of the variable T . Unfortunately, for different t’s, the functions
f(t, · ) are objects of different nature since they have different domains of
definition.

As we already pointed out, the way out is to reparameterize the forward
curve by the time to maturity x = T − t. In this way,

ft(x) = f(t, t + x), t ≥ 0, x ≥ 0, (2.43)

the forward curve at time t becomes a function ft : x→֒ft(x) with a domain
independent of t, say the interval [0, xmax] with possibly xmax =∞. We shall
propose in Chap. 6 several function spaces F to accommodate these functions
of x, but in the mean time we may think of the space F as a subspace of
space C[0, xmax] of continuous functions. Rewriting the integral form (2.41)
of the model using the notation (2.43) we get:

ft = f(0, t + · ) +

∫ t

0

α(s, t + · )ds +

d
∑

j=1

∫ t

0

σ(j)(s, t + · )dw(j)
s

= Stf0 +

∫ t

0

St−sαs ds +
d

∑

j=1

∫ t

0

St−sσ
(j)
s dwi(j)s (2.44)

provided we set:

αt : x→֒αt(x) = α(t, t + x) and σ
(j)
t : x→֒σ

(j)
t (x) = σ(j)(t, t + x).

and provided the notation St is used for the left shift operator defined by

[Stf ](x) = f(x + t).

So the HJM prescription (2.41) for the dynamics of the forward curve appears
as an integral evolution equation in infinite dimensions, given by a stochastic
differential equation in a function space. Differentiating both sides of (2.41)
with respect to t we get (at least formally):

dft =

(

d

dx
ft + αt

)

dt +

d
∑

j=1

σ
(j)
t dw

(j)
t .
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The differential operator A = d/dx complicates things somehow. Indeed, it
may not be defined everywhere in F since F could contain non-differentiable
functions. In other words, it is possibly unbounded as an operator on F . The
reason for the seemingly sudden appearance of the differential operator A in
the stochastic differential Eq. (2.42) should be clear: replacing T by T = t+x
forces us to take a derivative of f with respect to its second variable when we
compute the differential with respect to t. For most of the natural choices of
the space F , such an operator cannot be defined everywhere on F . In other
words, A will presumably be an unbounded operator defined on a domain
D(A) which will be at best a dense subspace of F .

Since the differential form (2.42) is always more singular than its integral
analog, we will try to base the analysis of the model on the latter.

2.4.5 Random Field Formulation

Let us define the random field {Zt(x); t ≥ 0, x ∈ [0, xmax]} by:

Zt(x) =

∫ t

0

d
∑

j=1

σ
(j)
s (x)

σ(x)
dw(j)

s

with:

σt(x) =

√

√

√

√

d
∑

j=1

σ
(j)
s (x)2.

The random field Zt(x) is a very interesting object. Indeed, for each fixed
time to maturity x ∈ [0, xmax], it is a Wiener process (it is a martingale
and everything was done to make sure that its quadratic variation was t). In
essence, for any given (fixed) time to maturity x, the values of the random
field Zt(x) give the random kicks driving the (stochastic) dynamics of the in-
stantaneous forward rate ft(x) with time to maturity x. Indeed, the dynamic
equation can be rewritten in the form:

dft(x) =

(

d

dx
ft(x) + αt(x)

)

dt + σt(x)dZt(x), (2.45)

and, except for the possible coupling due to the differential operator, the
Eqs. (2.45) appear as a system of stochastic equations of Itô’s type, one
equation per time to maturity x, each equation being driven by the Wiener
process {Zt(x)}t≥0. However, this statement is deceivingly simple, for the
structure of {Zt(x)}t≥0 can be very complex: it captures most of the de-
pendence between the forwards with different maturities, and in general, the
random variables Zt(x1) and Zt(x2) are not jointly Gaussian if x1 and x2 are
different. Nevertheless, several authors have taken Eq. (2.45) as the starting
point for modeling the forward rates as a random field. One of the goals of the
remainder of this book is to understand rigorously such random field models.
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Notice that, in the case of a one-factor model, assuming that σ(1)(x) ≥ 0,

then with σt(x) = σ(1)(x) and wt = w
(1)
t , Eq. (2.45) reads:

dft(x) =

(

d

dx
ft(x) + αt(x)

)

dt + σt(x)dwt,

which shows clearly that the simultaneous motions of all the instantaneous
forward rates are driven by the very same Wiener process {wt}t≥0. This is
the source of stiffness already mentioned.

2.5 Appendices

Martingale Measures and Arbitrage

This first appendix is intended to provide a very brief introduction to the
dynamic theory of asset prices. We assume that the financial market is given

by a d+1-dimensional stochastic process {(Bt, P
(1)
t , . . . , P

(d)
t )}t≥0. The com-

ponents of the market process represent the time evolution of the prices of
financial instruments. We distinguish the positive process {Bt}t≥0 which rep-
resents the value of a bank account accumulating interest at the spot interest
rate.

A trading strategy is a d+1-dimensional stochastic process {(ψt, φ
(1)
t , . . .,

φ
(d)
t )}t≥0. The wealth at time t ≥ 0 of an investor employing such a strategy

is given by the formula:

Xt = ψtBt +

d
∑

j=1

φ
(j)
t P

(j)
t (2.46)

where the random variable φ
(j)
t represents the number of shares of the j-th

asset held by the investor, and the product ψtBt represents the portion of
wealth held in the bank account.

In order to allow for trading in this market, we need to introduce a notion
of available information. Indeed, market participants are not clairvoyant and
can only make trading decisions based on information available today. The
notion of information is formalized by the probabilistic concept of a filtration.
Let (Ω,F , P) be the probability space on which the market process is defined,
and let {Ft}t≥0 be a filtration satisfying the usual assumptions and such that
the market process is adapted.

In this book, we consider exclusively trading strategies which are self-
financing. That is, the investor has no external income or expenses, and the
changes in the wealth are due only to the fluctuations in the asset prices.

First consider a simple predictable trading strategy {(ψt, φ
(1)
t , . . . , φ

(d)
t )}t≥0



68 2 Term Structure Factor Models

where each component has the representation

φ
(j)
t =

n
∑

i=1

φ
(j)
ti

1(tj ,tj+1](t)

for a deterministic set of times 0 ≤ t1 < . . . < tn and where each φ
(j)
ti

is
Fti

-measurable. The self-financing condition then becomes

Xti+1 −Xti
= ψti

(Bti+1 −Bti
) + 〈φt, Pti+1 − Pti

〉 (2.47)

where 〈·, ·〉 denotes the standard Euclidean scalar product on Rd. Solving for
ψti

in Eq. (2.46) and inserting the result in Eq. (2.47) yields

X̃ti+1 − X̃ti
= 〈φt, P̃ti+1 − P̃ti

〉 (2.48)

where X̃t = B−1
t Xt denotes the discounted wealth and P̃t = B−1

t Pt denotes
the discounted asset prices. The effect of the above algebraic manipulation
is to change the numeraire from units of currency into units of the bank
account.

Equation (2.48) shows that in the limit of continuous trading, the dis-
counted wealth satisfies the Itô stochastic differential equation

dX̃t = 〈φt, dP̃t〉

or more precisely, the wealth is given by the Itô stochastic integral

X̃t = X̃0 +

∫ t

0

〈φs, dP̃s〉.

In order for the above stochastic integral to be well-defined, we assume that
the discounted asset price process is a semi-martingale and that the trad-
ing strategy is a predictable process satisfying an appropriate integrability
condition.

We need to impose another condition on the trading strategy in order
to develop an economic meaningful theory. Indeed, since we are working in
continuous time, there are pathological doubling strategies which promise
arbitrarily large gains almost surely in finite time. The problem with such
strategies is that the investor must have an infinite credit line, since he may
go very deep into debt while employing the doubling strategy. To remedy
the situation, we introduce the concept of an admissible strategy. There is
more than one way to do this, but for the sake of this appendix, we offer this
definition:

Definition 2.1. A trading strategy {φt}t≥0 is admissible if the stochastic

integral
∫ t

0 〈φs, dP̃s〉 is bounded from below uniformly in t ≥ 0 and ω ∈ Ω.

We will in fact use a different definition of admissible strategy in our dis-
cussion of bond portfolios in Chap. 6. But in any case, now that the ground-
work is laid, we can define a central concept to the theory.
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Definition 2.2. An arbitrage is admissible trading strategy {φt}t≥0 such that

P

{

∫ T

0

〈φs, dP̃s〉 ≥ 0

}

= 1

and

P

{

∫ T

0

〈φs, dP̃s〉 > 0

}

> 0

for some time T > 0.

What follows is a simple version of the so-called Fundamental Theorem of
Asset Pricing.

Theorem 2.1. There are no arbitrage strategies if there exists a probability
measure Q, equivalent to P, such that the discounted asset prices process
(P̃t)t≥0 is a local martingale for Q.

Recall that measures P and Q on the measurable space (Ω,F) are equiv-
alent if they share the same null events. That is, if P and Q are equivalent
then P(E) = 0 if and only if Q(E) = 0.

Proof. Suppose there exists an equivalent measure Q such that (P̃t)t≥0 is
a local martingale. Let {φt}t≥0 be an admissible strategy such that

∫ T

0

〈φs, dP̃s〉 ≥ 0

P-a.s. for some T > 0. Since Q is equivalent to P, the above inequality holds
Q-a.s. also. Since (P̃t)t≥0 is a local martingale for Q and {φt}t≥0 is admis-

sible, the process {
∫ t

0 φs, dP̃s}t≥0 is a supermartingale for Q. The following
inequality holds:

EQ

{

∫ T

0

〈φs, dP̃s〉
}

≤ 0

The stochastic integral is therefore zero Q-a.s. and thus P-a.s. In particular,
the strategy {φt}t≥0 is not an arbitrage. �

The converse of this theorem is generally not true, strictly speaking, since
the notion of arbitrage used here is too strong. There has been much work
in identifying the “right” notion of arbitrage so that the lack of arbitrage is
equivalent to the existence of a martingale measure. See the Notes & Com-
plements for details.

Nevertheless, since the existence of an equivalent martingale measure is so
closely related to the lack of arbitrage in the market, we shall often blur the
distinction between these concepts. In particular, when we say that a mar-
ket has no arbitrage, we mean the stronger statement that there exists an
equivalent measure under which the discounted asset prices are all local mar-
tingales.
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No Arbitrage in Factor Models

The absence of arbitrage in factor models can be made explicit in the form
of a drift condition by applying Itô’s formula to the function P (Z)(t, T, Zt)
giving the bond prices P (t, T ) in (2.1), and identifying the resulting drift
to the short interest rate. For example, in the homogeneous case where
μ(Z)(t, z) = μ(Z)(z) and σ(Z)(t, z) = σ(Z)(z), and the functions P (Z) and
hence f (Z) depend only on the time to maturity x = T − t, i.e. when
P (Z)(t, T, z) = P (Z)(x, z) and f (Z)(t, T, z) = f (Z)(x, z), then the no-arbitrage
condition reads:

∂xf (Z)(x, z) =
k

∑

i=1

μ
(Z)
i (z)∂zi

f (Z)(x, z)

+
1

2

k
∑

i,j=1

a
(Z)
ij (z)

[

∂2
zizj

f (Z)(x, z)

− ∂x

(∫ x

0

∂zi
f (Z)(u, z)du

∫ x

0

∂zj
f (Z)(u, z)du

)]

if we use the notation a(Z)(z) = σ(Z)(z)σ(Z)(z)∗. Equivalently,

∂xf (Z)(x, z) = μ(Z)(z) · ∇zf
(Z)(x, z)

+
1

2
trace(a(Z)(z)∇2

zf
(Z)(x, z))

− ∂x

(∫ x

0

∇zf
(Z)(u, z)du

)

a(Z)(z)

(∫ x

0

∇zf
(Z)(u, z)du

)

if we use vector notation. This form of the drift condition implies that if the
functions

∂zi
f (Z)( · , z),

1

2
∂2

zizj
f (Z)(x, z)− ∂zi

f (Z)( · , z)

∫ ·

0

∂zj
f (Z)(u,z)du

1 ≤ i ≤ j ≤ k

are linearly independent, then the drift μ(Z)(z) and the diffusion a(Z)(z) are
determined by the function h. So if the family

H = {f (Z)( · , z)}z∈D

is used to calibrate the forward curves on a daily basis, then the diffusion
process giving the dynamics of the factors Zt are entirely determined by the
parameterization f (Z) of the family of curves!
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Notes & Complements

Proposition 2.1 is due to Duffie and Kan, and detailed statements and complete
proofs can be found in the original work [50]. Duffie and Kan’s paper is one of the
seed papers which initiated a wave of publications on affine interest rate models.
This culminated with the publication of the paper [49] by Duffie, Filipović and
Schachermayer which gives a complete description of the theory of affine Markov
processes.

Affine models have been generalized to a wider class of models known as poly-
nomial models of the term structure. The most popular are the quadratic models
introduced by El Karoui, Mynemi and Viswanathan in [87], and Jamshidian in [83].
More recently, they were extended by Collin-Dufresne and Goldstein to apply to
some HJM and random field models. See [40]. For the record, we mention gener-
alizations to stochastic volatility models as well as hidden Markov models allowing
the mean reversion level to jump around in a stochastic fashion. See for example
[79]. Finally, Chris Rogers proposed [117] a set of potential models based on a cute
idea from the potential theory of Markov processes. Despite their lack of economic
foundations, these models lead to easy formulas and numerical implementations.

The stochastic analysis of the stochastic differential equations used in Sect. 2.3.2
can be found in the classical text of Feller [59] or Karatzas and Shreve [86]. More
generally, the material covered in the first part of this chapter, including the con-
nection between the lack of arbitrage and the existence of an equivalent martingale
measure, is by now classical. It can be found for example in the excellent small
book of Lamberton and Lapeyre [97] or in the very well written review article
of Björk [8], to which the interested reader is referred to for details and comple-
ments. Extra information on mathematical models for the derivative instruments
of the fixed income markets can be found in the encyclopedic work of Musiela and
Rutkowski [107].

Many authors have tried to reconciliate the finite dimensional nature of the
factor models with the potentially infinite dimensional nature of random fields or
stochastic dynamics in function spaces as suggested by HJM models. All of these
authors rely on one form or another of the PCA tools presented in Chap. 1 to
bridge the gap. Galluccio, Guiotto and Roncoronin tried to do just that in a series
of two papers [119] and [120] which should be consulted by the reader interested
in understanding the dichotomy finite/infinite dimensionality of the mathematical
models used in the theory of fixed income markets.

In Sect. 2.4.3 we introduced the notion of maturity-specific risk. This idea
is one of the key reasons for the introduction of random field models and HJM
models driven by infinite dimensional Wiener processes. However, another notion
of maturity-specific risk has been proposed in the literature: for every d date
T1, . . . , Td, the random vector (f(t, T1), . . . , f(t, Td)) has density with respect to
the d-dimensional Lebesgue measure. This notion is another way to quantify the
idea that the forward curve is a genuinely infinite dimensional object. For instance,
an affine model clearly does not have this property, but there are finite rank HJM
models which do; see the paper of Baudoin and Teichmann [5]. These notions of
maturity-specific risk are different and they should not be confused. In this book we
are concerned with the increments of the rates, rather than the rates themselves.

The idea of modeling the instantaneous forward rates f(t, T ) directly as a ran-

dom field parameterized by two parameters t and T , was first suggested by Kennedy
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who analyzed in detail the special case of Gaussian fields in [88] and [89]. He con-

siders forward models of the form f(t, T ) = μ(t, T ) + Z(t, T ) for a given mean zero

Gaussian field {Z(t, T )}(t,T )∈I and derives necessary and sufficient conditions on

the drift function μ to ensure that the discounted zero coupon bonds are martin-

gales. The random field approach suggested in Sect. 2.4.5 was proposed by Goldstein

in [70] where the author generalizes Kennedy’s drift condition to this more general

setting. It was further generalized by Collin-Dufresne and Goldstein in [40] and

Kimmel in [90]. Kimmel’s model was chosen by Bester in [6] for a basic simulation

model in a numerical comparative study of affine and random field models.



3

Infinite Dimensional Integration Theory

We interrupt the flow of the book by breaking away from the interest rate
models to start a long excursion in infinite dimensional stochastic analysis.
This first chapter of the second part of the book gives a thorough review of
the notion of infinite dimensional Gaussian measure, as the latter appears
as the most reasonable candidate to support an integration theory in infi-
nite dimensions in view of the absence of analogs of Lebesgue’s measure.
While preparing for the introduction of Wiener processes and Itô stochas-
tic calculus, we present the various points of view of the cylindrical versus
sigma-additive measure controversy, in as agnostic a way as possible.

3.1 Introduction

The factor models introduced earlier to describe the (stochastic) dynamics
of the forward curve were driven by a standard finite dimensional Wiener

process Wt = (w
(1)
t , . . . , w

(d)
t ). It was suggested that investigating the limit

as the number d of independent scalar Wiener processes goes to ∞ could
bring a solution to some of the shortcomings of the models. In order to
implement this idea, we could consider driving the new models by an infinite

sequence Wt = {w(j)
t }1≤j<∞ of independent Wiener processes. Treating Wt

as an infinite sequence at each time t is the point of view of the theory of
cylindrical Wiener process. Instead, we would rather see Wt as a random
element of a state space in which the whole stochastic process {Wt}t≥0 could
be realized. Obviously, the natural candidate for state space is the space R∞

of infinite sequences of real numbers. There are many reasons not to like such
a realization of an infinite dimensional Wiener process. Here is a short sample
of some of these reasons:

• The space R∞ is much too large to be a reasonable state space of an
infinite dimensional Wiener process. Most of the space is a wasteland in
the sense that it will never be visited by the process. To see why this
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is indeed the case, recall that, since for each t > 0, {w(j)
t }j is an i.i.d.

sequence of scalar N(0, t) random variables, one has:

lim sup
j→∞

w
(j)
t√

2 log j
=
√

t and lim inf
j→∞

w
(j)
t√

2 log j
= −
√

t.

This shows that, at time t, the random element Wt should live in a very
small subset of the space of all the sequences, for example the subset of
sequences whose large j behavior is given by the two limits above.

• Not only is the size of the space R∞ a problem, but its (natural) topology
and the corresponding Borel sigma-field are too weak to be amenable to
a fine analysis of the process.

• The definition of the d-dimensional Wiener process which we used so far
relies on the choice of a coordinate system in Rd. What would happen
to the process should we decide to change coordinates? How should we
define the limiting process (obtained in the limit d → ∞) in the space
R∞? We should look for a covariant definition in order to avoid having
to rely on coordinate systems.

Different schools of analysts and probabilists have approached the problem
differently. We will eventually reconcile the different points of view, but for
the time being we make the decision to define infinite dimensional Wiener
processes in as intrinsic a manner as possible, and in as tight a state space
as possible.

With this in mind, we revisit the definition of a finite dimensional Wiener
process which we gave above, and we restate it in a more intrinsic way.
A stochastic process W = {Wt; t ≥ 0} is a Wiener process in E = R or
E = Rd if:

• W0 = 0 almost surely (a.s. for short)
• For each 0 = t0 < t1 < · · · < tn the random variables in E

Wtn
−Wtn−1 , . . . , Wt2 −Wt1 , Wt1 −Wt0

are independent
• For each 0 ≤ s < t <∞ the distribution of:

1√
t− s

(Wt −Ws)

is a mean zero Gaussian measure on E which is independent of s and t

Obviously, the notion of Gaussian measure on a finite dimensional Euclidean
space is not an issue. In the coordinate version of the definition used above,
the measure μ is merely the distribution in Rd of the d-dimensional Gaussian

random vector (w
(1)
1 , . . . , w

(d)
1 ). It is now clear that, in order to generalize

the definition of a Wiener process to a larger class of spaces E (including for
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example infinite dimensional spaces), we need to define and understand the
notion of Gaussian measure on such a space E.

We now explain what we mean by infinite dimensional setting. The dis-
cussion above introduced the space E = R∞ of infinite sequences of real
numbers, and even if we were to settle on such a space as our canonical
infinite dimensional setting, we emphasize the need for a clear definition of
a topology and a structure of measurable space before a useful notion of
E-valued Wiener process can be defined.

3.1.1 The Setting

Even though there are other topological vector spaces of a general type which
we will need to use from time to time, we shall try to limit our typical setting
to the class of real Banach spaces. We shall try to use the notation E for
such a space and E∗ for its dual, i.e the space of real-valued continuous
linear functions on E. Obviously, the space E = R∞ is not a Banach space
when equipped with its natural product topology.

The first measure-theoretic concept we shall need is the concept of sigma-
field. Because of the topology given by the norm of the Banach space struc-
ture, it is natural to consider that E is equipped with its Borel sigma-field E ,
i.e. the smallest sigma-field containing the open sets. This choice of a sigma-
field does guarantee that the continuous functions are measurable. Unfortu-
nately, this sigma-field can be significantly larger than the sigma-field gen-
erated by the balls. Since the latter is much easier to deal with when it
comes to prove measure theoretic statements, it would be desirable to have
both sigma-fields to be identical. This is the case when the Banach space is
separable.

So, for the sake of convenience we shall assume that E is separable. This
assumption is not restrictive if we limit ourselves to inner regular measures.
But most importantly, we shall not lose any generality because most of the
classical function spaces are separable. Finally, let us also notice that sep-
arability is extremely convenient a feature when present. Indeed, the Borel
sigma-field E is also the sigma-field generated by the balls, or the continuous
linear functions on E (i.e. the elements of E∗) or even by any countable set of
continuous linear functions dense in a ball of E∗. Dealing with measurability
issues will be much easier because of the separability assumption.

The following are typical examples of real separable Banach spaces which
we will encounter in the sequel:

• E = C[0, 1], the space of continuous real-valued functions on [0, 1]
equipped with the sup norm ‖f‖∞ = supx∈[0,1] |f(x)|.

• E = C0[0, 1], the subspace of C[0, 1] of the functions f vanishing at 0, i.e.
satisfying f(0) = 0 (still equipped with the same sup norm).

• E = H , a separable real Hilbert space, for example the space H =
L2(R, dx) of (equivalence classes of) real-valued measurable square-inte-
grable functions on the real line.
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We shall also consider Sobolev type spaces that are more regular (i.e. more
differentiable functions) as well as weighted spaces for which the norm is com-
puted as a classical norm (such as the sup norm or an L2-norm) of a multiple
of the function, the multiple being given by a weight function having for goal
to weight differently the various parts of the domain where the functions are
defined. In particular, we shall study a particular weighted Sobolev space Hw

in Chap. 6 as a concrete example of a state space for an HJM model.
To illustrate the difficulties which can arise in defining measures on Ba-

nach spaces, we note that the unit ball is compact only if the dimension of
the space is finite. A consequence of this lack of compactness of the bounded
neighborhoods generating the topology of the space is the following annoying
fact:

Fact. If E is infinite dimensional, there is no sigma-finite translation in-
variant measure on E.

In other words, there exists no nontrivial measure μ such that μ(A) =
μ(A + x) for all x ∈ E and every A in the Borel sigma-field E . So there
is no Haar measure for the additive structure in E, (i.e. no equivalent of
the Lebesgue measure) and the theory of integration in E will presumably
be more delicate than in the finite dimensional case. In particular, there is
no way to define a Gaussian measure via its density. We shall see later in
Sect. 3.6 that using densities to define Gaussian measures leads to the notion
of cylindrical measure.

3.1.2 Distributions of Gaussian Processes

The classical theory of stochastic processes is a very good source of exam-
ples of Gaussian measures in infinite dimensions, namely the distributions of
Gaussian processes when viewed as measures on function spaces. We review
some of these examples to identify the right abstract definition.

Let us consider for example a real-valued (mean zero) Gaussian process
ξ = {ξt; t ∈ [0, 1]} defined on a probability space (Ω,F , P). Let Ẽ = R[0,1]

be the space of all real-valued functions from [0, 1] into R, and let us denote
by Ẽ the product sigma-field, generated by cylinder sets of the form

{x ∈ Ẽ; (xt1 , . . . , xtn
) ∈ A}

where t1, . . ., tn are in [0, 1] and A ∈ BRn the Borel sigma-field of Rn. We can
view Ẽ = R[0,1] as a product space of all the real-valued functions on [0, 1] and
Ẽ is the product sigma-field generated by the cylinders with finite dimensional
bases. The coordinate process {X̃t}t∈[0,1] is defined by X̃t(x) = x(t). The
coordinate map:

X : Ω ∋ ω→֒X(ω) = ξ·(ω) ∈ Ẽ

is (F , Ẽ) measurable by definition of the product sigma-field Ẽ . This map
can be used to transport the probability structure given by P on (Ω,F) onto
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a probability structure on (Ẽ, Ẽ) given by the probability measure μ̃ defined
by:

μ̃(A) = P{ω ∈ Ω; X(ω) ∈ A}, A ∈ Ẽ .
This probability measure μ̃ is what is usually called the distribution of the
process. But the space Ẽ is much too big and its sigma-field Ẽ is too small
(the situation is similar but even worse than the one described earlier in the
case of the space R∞ of countable sequences, i.e. functions on the countable
set of integers instead of the continuum [0, 1]).

In many cases, the auto-covariance function

γξ(s, t) = E{ξsξt}
of the process is regular enough for the process ξ to have almost surely con-
tinuous sample paths. There exist necessary and sufficient conditions in terms
of γξ for this continuity to hold, but we shall not need them here. The in-
terested reader is referred to the Notes & Complements for references. As
the sample paths are almost surely continuous, we suspect that the space
Ẽ of all the real-valued functions on [0, 1] could be replaced by the smaller
space E = C[0, 1] of continuous functions, and that the measure μ̃ could be
replaced by its trace μ on the subset E = C[0, 1] of Ẽ. Indeed, assuming that
the sample paths are almost surely continuous should mean that “μ̃(E) = 1”.
Unfortunately, E is not a measurable subset of Ẽ, in the sense that E is not
an element of Ẽ . Technical measure theoretic manipulations make it possible
to get over this obstacle and, because X(ω) ∈ E for almost all ω ∈ Ω, we can
manage to define a measure μ on {A ∩ E; A ∈ Ẽ} such that μ(E) = 1. This
is our desired measure.

Recall that E = C[0, 1] is a real separable Banach space when equipped
with the sup norm ‖f‖ = supt∈[0,1] |f(t)|. It is easy to see that the Borel
sigma-field E of E is generated by the coordinate maps. We have now a prob-
ability measure μ on a real separable Banach space E. But in which sense is
this measure Gaussian?

The definition of a Gaussian process states that, for any finite set
{t1, t2, . . . , tn} of times in [0, 1], the random variables ξt1 , ξt2 , . . . and ξtn

are jointly Gaussian (i.e. the distribution μt1,t2,...,tn
of the random vector

(ξt1 , ξt2 , . . . , ξtn
) is a Gaussian measure on Rn). Since random variables are

jointly Gaussian if and only if any linear combination of these random vari-
ables is a scalar Gaussian random variable, we see that for any finite set
{t1, t2, · · · , tn} of times in [0, 1], and for any finite set {a1, a2, · · · , an} of real
numbers, the random variable

f →֒
n

∑

j=1

ajf(tj)

defined on the probability space (E, E , μ) is a real-valued Gaussian random
variable since its distribution is by definition the distribution of the random
variable

∑n
j=1 ajξtj

on the original probability space (Ω,F , P).
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In the present situation, we know everything which needs to be known
about the dual space E∗ of E, i.e. the space of continuous linear functions
on E. Indeed, the Riesz representation theorem states that E∗ is the space
of signed measures on [0, 1] and the duality is given by:

〈ν, f〉 = ν(f) =

∫ 1

0

f(t)ν(dt)

whenever ν ∈ E∗ and f ∈ E. Now since any measure on [0, 1] appears as the
limit of finite linear combination of Dirac delta unit masses at points of [0, 1]

ν =

n
∑

j=1

ajδtj
,

where δt(f) = f(t), and since any limit of Gaussian random variables is also
a Gaussian random variable, we can conclude that each element ν of the
dual E∗, when viewed as a random variable on E via the duality definition:

E ∋ f →֒〈ν, f〉 ∈ R

is in fact a Gaussian random variable. This property of the distributions of
Gaussian processes is what we choose for the definition of a general Gaussian
measure in a Banach space.

3.2 Gaussian Measures in Banach Spaces & Examples

As explained above, we assume that E is a real separable Banach space, and
we denote by E its Borel sigma-field, by E∗ its dual, and by 〈x∗, x〉 = x∗(x)
the duality between E∗ and E given by the evaluation of a continuous linear
function on an element of the space.

Definition 3.1. A probability measure μ on (E, E) is said to be a (mean-zero)
Gaussian measure if every x∗ ∈ E∗ is a mean-zero real Gaussian random
variable x→֒x∗(x) on the probability space (E, E , μ).

Example 3.1 (Wiener measure). Because a (scalar) standard Wiener pro-
cess w is a mean-zero real-valued Gaussian process w = {wt; t ∈ [0, 1]} with
covariance function γw(s, t) = s ∧ t, and because this covariance function
satisfies the conditions for almost sure continuity of the sample paths (see
later for details), the derivation given above leads to a Gaussian probability
measure μ on the Banach space C[0, 1]. But since w0 = 0 a.s. the measure μ
is in fact concentrated on the subspace C0[0, 1] of functions vanishing for
t = 0. Since this subspace is closed in C[0, 1], and hence is a Borel sub-
set, the measure μ can be viewed as a measure on E = C0[0, 1] equipped
with its Borel sigma-field. This measure μ is called the standard Wiener
measure.
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Example 3.2 (The Ornstein–Uhlenbeck process). Let w = {wt; t ∈ [0, T ]} be
a standard scalar Wiener process, and let us set:

ξt =

∫ t

0

e−β(t−s)dws

for a deterministic constant β > 0 and all t > 0. The process ξ = {ξt; t ∈
[0, T ]} is a scalar mean zero Gaussian process known as the Ornstein–
Uhlenbeck process. It satisfies the linear stochastic differential equation:

dξt = −βξtdt + dwt

with initial condition ξ0 = 0. We have already come upon this process in
our discussion of the Vasicek short-rate model in Chap. 2. Indeed, Vasicek
proposed modeling the short rate {rt}t∈[0,T ] as the solution of the equation

drt = (α− βrt)dt + σdwt.

The SDE can be solved explicitly as

rt = e−βtr0 + (1− e−βt)
α

β
+ σξt

where r0 is the initial short rate. Note that the covariance function

γξ(s, t) = (2β)−1(e−β|t−s| − e−β(t+s))

is again regular enough that the Ornstein–Uhlenbeck process has almost sure
continuous sample paths, and that the law of the process ξ can be viewed as
a mean-zero Gaussian measure on the Banach space C[0, T ]. Note that it is in
fact supported on the closed subspace C0[0, T ]. The law of Vasicek’s interest
rate process {rt}t∈[0,T ] can also be viewed as a Gaussian measure on C[0, T ],
but this time the mean is not zero but is the given by the deterministic
element t→֒e−βtr0 + (1− e−βt)α/β of C[0, T ].

We saw that the distributions of (mean-zero) Gaussian processes with con-
tinuous sample paths were a good source of examples of (mean-zero) Gaussian
measures on Banach spaces. In fact this is the only one. Indeed:

Proposition 3.1. Any (mean-zero) Gaussian measure μ on a real separable
Banach space, say E, is the distribution of a (mean-zero) Gaussian process
with continuous sample paths indexed by a compact metric space.

Proof. Let UE∗ = {x∗ ∈ E∗; ‖x∗‖ ≤ 1} be the closed unit ball of the dual
space E∗. Equipped with the structure induced by the weak topology of E∗,
UE∗ is a compact metrizable space, and if for each x∗ ∈ UE∗ we define the
random variable ξx∗ on the probability space (E, E , μ) by ξx∗ : x→֒〈x∗, x〉 =
x∗(x), then μ can be identified with the distribution of the process {ξx∗ ; x∗ ∈
UE∗} which has continuous (linear) sample paths. �
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The procedure described in the proof of the above proposition can be
reversed to construct a (mean-zero) Gaussian measure μ on a real separable
Banach space E, by constructing a (mean-zero) Gaussian process indexed
by the unit ball UE∗ and proving that the sample paths of this process are
almost surely linear and continuous. Finally, note that since in any Banach
space we have

‖x‖ = sup
x∗∈UE∗

x∗(x),

the norm appears as the supremum of a Gaussian process.

3.2.1 Integrability Properties

We now assume that we are given a (mean-zero) Gaussian measure μ on
a (real separable) Banach space E. Our goal is to analyze the existence of
moments for random variables defined on the probability space (E, E , μ). If
we denote by ψ such a random variable, we are considering the existence of
expectations and integrals of the form:

E{ψ} =

∫

E

ψ(x) dμ(x).

As in the classical case, sufficient conditions for existence will be derived
by comparing ψ to functions of the norm of E, and then by checking the
integrability of such functions of the norm. As an example, we may wonder
if the integral

∫

E

‖x‖2μ(dx)

is finite. We shall see below that the finiteness of this integral will play a cru-
cial role in the definition of the reproducing kernel Hilbert space of μ. But
let us first get some feel for the meaning of the integrability of the norm for
the important example of the distribution of a Gaussian process.

Example 3.3. If we assume that μ is the distribution on E = C[0, 1] of a mean-
zero Gaussian process {ξt; t ∈ [0, 1]} with almost surely continuous sample
paths, integrability properties of the norm of E for μ are equivalent to the
existence of moments of the supremum of the process ξ, i.e. the random
variable sup0≤t≤1 |Xt|. In this case:

∫

E

‖x‖2μ(dx) =

∫

E

sup
t∈[0,1]

|x(t)|2μ(dx) = E

{

sup
t∈[0,1]

|Xt|2
}

and the problem is to find out when quantities of this type are finite.

These integrability questions have a simple answer in the finite dimen-
sional case. For example, in the case of the real line E = R, not only is the
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second moment finite, but all moments are finite. In fact much more is known
since:

E{eǫX2} =

∫ +∞

−∞

1√
2πσ

e−( 1
2σ2 −ǫ)x2

dx =
1√

1− 2ǫσ2

is finite for ǫ < ǫ0 = (2σ2)−1. It is natural to ask if a similar result remains
true in infinite dimensions. A positive answer was given in 1974 indepen-
dently by Fernique in a very short note [60] and by Landau and Shepp in
a much longer and more technical paper [98]. We state the result below and
we reproduce Fernique’s elegant proof in one of the Appendices at the end of
the chapter.

Theorem 3.1. If μ is a Gaussian measure on a real separable Banach space
E, the integral

∫

E eǫ‖x‖2

μ(dx) is finite whenever ǫ < ǫ0 where

ǫ0 =

(

2 sup
x∗∈UE∗

∫

E

x∗(x)2μ(dx)

)−1

.

Furthermore, the above ǫ0 is the best possible.

3.2.2 Isonormal Processes

Every Gaussian process we have examined so far has given rise to a Gaussian
measure on a Banach space of continuous functions. Indeed, Proposition 3.1
tells us that any continuous Gaussian process on a compact metric space
arises in this manner. In this section we examine a very important class of
Gaussian processes, the isonormal processes, that are not necessarily contin-
uous. They will show up again and again in our study, and play a large role
in our presentation of the Malliavin calculus in Chap. 5.

Definition 3.2. A stochastic process {W (h)}h∈H indexed by a Hilbert space
H is isonormal (or a white noise) if:

1. the random variables W (h1), . . . , W (hn) are jointly mean zero Gaussian
for all h1, . . ., hn in H and

2. the covariance is given by E{W (g)W (h)} = 〈g, h〉, where 〈·, ·〉 : H×H →
R is the scalar product for H.

Notice that the definition of an isonormal process prescribes both the mean
and the covariance of the process. Since we also assume that it is a Gaus-
sian process, its distribution is completely determined. This uniqueness in
distribution makes it possible for us to talk about the isonormal process of
a Hilbert space, even if we do not always specify the specific probability space
on which the process is defined.

The prototypical example of an isonormal process is given by the Wiener

integrals W (h) =
∫ T

0
h(t)dwt indexed by h ∈ L2([0, T ]), where {wt}t∈[0,T ] is

a standard scalar Wiener process on a probability space (Ω,F , P).



84 3 Infinite Dimensional Integration Theory

Given a real separable Hilbert space, the isonormal process can easily
be constructed by Kolmogorov’s extension theorem. However, because of the
special structure of Gaussian random variables, a direct construction of the
isonormal processes on a separable Hilbert space H can be done as follows:
Let ξ1, ξ2, . . . be a sequence of independent standard normal random variables
on a probability space (Ω,F , P), and let {ei}i be an orthonormal basis of H .
Then it is easy to see that the process {W (h)}h∈H given by:

W (h) =

∞
∑

i=1

ξi〈ei, h〉

is isonormal. The above infinite sum of independent scalar random variables
converges almost surely and in any Lp sense because of the three series cri-
terion or a simple martingale argument. Notice also that h→֒W (h) is linear
and continuous as a map from H into L2(Ω) as:

E{|W (g)−W (h)|2} = E{W (g − h)2} = ‖g − h‖2.
One might hope that the isonormal process gives rise to a Gaussian measure
on the dual space H∗; unfortunately, this is not the case if H is infinite
dimensional. Indeed, since

sup
‖h‖≤1

W (h)2 =
∞
∑

i=1

ξ2
i = +∞

almost surely, it is not possible to define simultaneously all the random vari-
ables W (h) outside the same null set, in such a way that the linear map
h→֒W (h) is continuous on such a common full set. In other words, the infi-
nite series

W =

∞
∑

i=1

ξihi

does not converge in H . See Sect. 3.6.3 below for a modification of this
argument leading to the convergence of a similar sum.

We will encounter isonormal processes again in the setting of a Gaussian
measure μ on a separable Banach space E, where the role of the indexing
Hilbert space H is played by the reproducing kernel Hilbert space Hμ which
we now introduce.

3.3 Reproducing Kernel Hilbert Space

It is a well-known fact that the distribution of a (mean-zero) Gaussian process
is entirely determined by its covariance function. We exploit this idea in the
current abstract framework. The map R defined on E∗ by

x∗ →֒R(x∗) =

∫

E

〈x∗, x〉xμ(dx)
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will play a crucial role. Note that the integrand 〈x∗, x〉x is given by the value
of an E-valued random variable defined on the probability space (E, E , μ).
Indeed, it is the product of the scalar 〈x∗, x〉 by the element x of E. So this
integral needs to be interpreted as the integral of a vector valued function. As
the estimate given below shows, this integral is interpreted as a Bochner inte-
gral. Some of the standard facts of the integration of vector valued functions
are recalled in an appendix at the end of the chapter. The vector R(x∗) given
by the above integral is a well-defined element of E because of the following
estimate:

‖Rx∗‖E ≤
∫

E

‖x∗(x)x‖E μ(dx)

=

∫

E

|x∗(x)|‖x‖E μ(dx)

≤
∫

E

‖x∗‖E∗‖x‖2E μ(dx)

and this last integral is finite because of the integrability Theorem 3.1.
The map R : E∗ → E defined in this way is a bounded linear operator

and

‖R‖ ≤
∫

E

‖x‖2μ(dx) = Cμ.

Let us consider for a moment the image R(E∗) as a subset of E, and let us
define H = Hμ to be the completion of R(E∗) for the inner product

〈Rx∗, Ry∗〉 =
∫

E

x∗(x)y∗(x)μ(dx).

The following question arises: Is H also a subset of E? The answer, fortu-
nately, is yes. Indeed, since the completion can be realized as the set of limits
of (equivalent classes of) Cauchy sequences, it is enough to show that se-
quences in R(E∗) which are Cauchy for the above inner product, do converge
to a limit in E. This is indeed the case because, if {Rx∗

n} is a Cauchy sequence
in R(E∗) for the norm given by the inner product, then:

‖Rx∗
n −Rx∗

m‖E = ‖R(x∗
n − x∗

m)‖E =

∥

∥

∥

∥

∫

E

(x∗
n − x∗

m)(x)xμ(dx)

∥

∥

∥

∥

E

≤
∫

E

|(x∗
n − x∗

m)(x)| ‖x‖Eμ(dx)

≤
(∫

E

|(x∗
n − x∗

m)(x)|2μ(dx)

)1/2 (∫

E

‖x‖2μ(dx)

)1/2

= C1/2
μ ‖x∗

n − x∗
m‖H∗

which goes to zero when m and n tend to ∞. In this derivation we used
Jensen’s and Schwarz’s inequalities. Hence, the sequence {Rx∗

n}n is also
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a Cauchy sequence for the norm of E because the natural injection i : H →֒ E
is continuous. Since E is complete (it is a Banach space after all), this Cauchy
sequence converges in E, and in this way, we can identify the completion H
with a subset of E. The Hilbert space Hμ so defined is called the reproducing
kernel Hilbert space (RKHS for short) of the measure μ.

Since the RKHS plays a such a prominent role in this chapter, we highlight
these facts in a definition:

Definition 3.3. The reproducing kernel Hilbert space (RKHS) Hμ of a Gaus-
sian measure μ on a separable Banach space E is the completion of the image
of the map R : E∗ → E defined by

Rx∗ =

∫

E

x∗(x)xμ(dx)

for the norm
‖Rx∗‖Hµ

= (x∗(Rx∗))1/2.

3.3.1 RKHS of Gaussian Processes

As before we let ξ = {ξt; t ∈ [0, 1]} be a mean-zero real-valued Gaussian
process with continuous sample paths, and we let γ(s, t) = E{ξsξt} be its
covariance function. We now construct the RKHS of its distribution. Recall
that the latter is a Gaussian measure μ on the Banach space E = C[0, 1],
and since the dual E∗ is the space of signed measures on [0, 1], for each fixed
t ∈ [0, 1] we have:

Rx∗(t) = δt(Rx∗) = δt

(∫

E

x∗(x)xμ(dx)

)

=

∫

E

x∗(x)x(t)μ(dx).

if we use the standard notation δt for the unit mass at t ∈ [0, 1]. Using the
fact that each element x∗ of the dual space can be identified with a measure
on [0, 1] with duality between measures and functions given by the integral,
i.e. x∗(x) =

∫

[0,1]
x(s)x∗(ds), and using Fubini’s theorem we find:

Rx∗(t) =

∫

E

(

∫

[0,1]

x(s)x∗(ds)

)

x(t)μ(dx)

=

∫

[0,1]

(∫

E

x(s)x(t)μ(dx)

)

x∗(ds) =

∫

[0,1]

γ(s, t)x∗(ds).

Choosing for x∗ a finite linear combination of Dirac measures, the above
equality gives that for all α1, . . ., αn in R and for all t1, . . ., tn in [0, 1] we
have:

R(α1δt1 + · · ·+αnδtn
) = α1Rδt1 + · · ·+αnRδtn

= α1γ(t1, ·)+ · · ·+αnγ(tn, ·)
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and the inner product between two of these elements is given by:
〈

R

n
∑

i=1

αiδti
, R

m
∑

j=1

βjδtj

〉

=

n
∑

i=1

m
∑

j=1

αiβj〈Rδti
, Rδtj

〉

=

n
∑

i=1

m
∑

j=1

αiβjE{ξti
ξtj
}

=

n
∑

i=1

m
∑

j=1

αiβjγ(ti, tj).

Since the set of finite linear combinations of Dirac point masses is dense in
the space E∗ of signed measures, we can conclude that the notion of RKHS
coming out of the abstract construction given in the previous subsection
coincides with its classical definition.

3.3.2 The RKHS of the Classical Wiener Measure

Recall that, in the particular case of the standard Wiener process, the co-
variance is γ(s, t) = s ∧ t. Let x∗ be a measure on [0, 1] and

(Rx∗)(t) =

∫

[0,1]

(s ∧ t)x∗(ds) =

∫ t

0

sx∗(ds) + t

∫ 1

t

x∗(ds)

=

∫ t

0

x∗([s, 1])ds.

So, for the classical Wiener measure, the map R maps the measure x∗ into the
antiderivative of the complement of the distribution function of the measure
x∗. In particular, the function Rx∗ is differentiable with explicit derivative
(Rx∗)′(t) = x∗([t, 1]). Computing the inner product reveals:

〈Rx∗, Ry∗〉 =

∫

[0,1]

∫

[0,1]

γ(s, t)x∗(ds)y∗(dt)

=

∫

[0,1]

∫

[0,1]

(s ∧ t)x∗(ds)y∗(dt)

=

∫

[0,1]

x∗([t, 1])y∗([t, 1])dt

=

∫

[0,1]

(Rx∗)′(t)(Ry∗)′(t)dt.

The RKHS of the classical Wiener measure, i.e. the completion of RE∗ under
this inner product, is the Hilbert space often denoted by H1

0 [0, 1] of continuous
functions on [0, 1] which vanish at zero and which are almost everywhere
differentiable, this weak derivative being square-integrable. This space was
identified and analyzed in detail by Cameron and Martin in [26] and for this
reason, it is usually called the Cameron–Martin space.
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3.4 Topological Supports, Carriers, Equivalence

and Singularity

Let μ be any probability measure on (E, E). We say that μ is “carried” by
A ∈ E , or that A ∈ E is a carrier of μ whenever μ(A) = 1. Carriers are defined
up to sets of measure 0. For a given measure, there are many carriers, and
there is no canonical way to identify a minimal carrier. We shall not use
a special notation for a measure carrier. On the other hand, the topological
support (or support for short) will be denoted by supp(μ). It is defined as
the smallest closed set F such that μ(F ) = 1, in other words, the smallest
carrier among the closed subsets of E.

3.4.1 Topological Supports of Gaussian Measures

It is possible to prove that the topological support of a Gaussian measures is
a vector space. In fact, we can be more precise and describe completely the
support. Indeed, the latter is nothing but the closure in E of the RKHS Hμ.
This is an easy consequence of the Hahn–Banach separation theorem.

Crucial Diagram

Let us assume for a moment that the topological support of μ is the whole
space E. In this case, the range Hμ = i(Hμ) of the natural inclusion map
i : Hμ →֒E is dense, and consequently, its adjoint i∗ is also one-to-one with
dense range. Thus i∗ can be used to identify the dual E∗ to the dense subspace
i∗(E∗) of the dual H∗

μ of the RKHS Hμ. Hence we have the following diagram:

E∗ →֒ H∗
μ

� ( Riesz identification)

Hμ →֒ E

where the one-to-one maps i and i∗ can be used to identify Hμ and E∗ to
dense subspaces of E and H∗

μ respectively, and where R appears once its
domain is extended from E∗ to H∗

μ, as the Riesz identification of the dual
Hilbert space H∗

μ to Hμ. We shall use this diagram frequently in the sequel.
The Hilbert–space structure of the RKHS Hμ determines completely the

measure μ, since it contains all the information on the covariance structure
of μ. But from the measure theoretical point of view, the set Hμ is negligible.
Indeed, μ(Hμ) = 0 even though:

Proposition 3.2. If μ is a Gaussian measure on E,

Hμ =
⋂

Fvector space,μ(F )=1

F.
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We already argued that C0[0, 1] was a carrier for the classical Wiener
measure. It is in fact the topological support because the classical Cameron–
Martin space is dense in C0[0, 1].

The structure captured by the above diagram is known as an abstract
Wiener space. It was introduced by L. Gross in 1964. See the Notes & Com-
plements at the end of the chapter for references.

3.4.2 Equivalence and Singularity of Gaussian Measures

Given two measures μ and ν on a measurable space, it is always possible to
decompose μ as the sum μ = μac + μs of a measure μac which is absolutely
continuous with respect to ν (i.e. a measure given by a density with respect
to ν) and a measure μs which is singular with respect to ν (i.e. which is
carried by a set of ν measure 0). This general decomposition is known under
the name of Lebesgue decomposition. We shall see that this decomposition
takes a very special form in the case of Gaussian measures. More precisely, if
μ and ν are Gaussian, they are either equivalent (absolutely continuous with
respect to each other) or singular, in other words, either μ = μac or μ = μs.

In finite dimension two Gaussian measures are equivalent as long as
their topological supports are the same. Indeed, they are equivalent to the
Lebesgue’s measure of the Euclidean space supporting the two measures. As
we are about to see the situation is very different in infinite dimensions.

Two given Gaussian measures are either equivalent or singular, no in-
between. This is some surprising form of a 0-1 law: if we consider the
Lebesgue’s decomposition of one measure with respect to the other one, then
the singular part is either zero, or it is equal to the measure itself! Below we
give necessary and sufficient conditions for equivalence (and singularity). But
the moral of the story should be of the following type:

Given two generic (mean-zero) Gaussian measures in finite dimension,
one can reasonably expect that they will be equivalent. But in infinite
dimensional spaces, we should expect them to be singular to each
other!

We give the following example as a clear warning that whatever seems nat-
ural, should not be taken for granted in infinite dimensions.

Let μ be a mean zero Gaussian measure with topological support the
infinite dimensional real separable Banach space E, and for each t > 0, let us
denote by μt the scaled measure defined by μt(A) = μ(t−1/2A) for all A ∈ E .
Then, all the measures μt are singular to each other!

A simple proof can be given using the expansion (3.3) of the next section
and the standard law of the iterated logarithm for i.i.d. random sequences.
Instead of giving the details, we illustrate this result in the case of the classical
Wiener measure. This measure μ is the distribution of the standard (one-
dimensional) Wiener process w = {w(τ); τ ∈ [0, 1]}. Now, for each s > 0 the



90 3 Infinite Dimensional Integration Theory

measure μs is the distribution of the process
√

sw. Let us define the set Cs

by:

Cs =

{

x ∈ C[0, 1]; lim sup
hց0

x(h)
√

2h log | log h|
=
√

s

}

for s ≥ 0. The announced singularity follows from the classical law of the
iterated logarithm for the standard Wiener process: for every s ∈ [0, 1] we
have μs(Cs) = μ(C1) = 1 yet μs(Ct) = μ(Ct/s) = 0 for s �= t.

A precise statement of the dichotomy of Gaussian measures is the follow-
ing:

Theorem 3.2. Let E be a real separable Banach space, and let μ and ν be
two mean-zero Gaussian measures supporting E with respective RKHS Hμ

and Hν . Then the measures μ and ν are equivalent if and only if:

• the subsets Hμ and Hν of E contain the same elements, and
• there exists a self-adjoint Hilbert–Schmidt operator K ∈ LHS(Hν) such

that
〈x, y〉Hµ

= 〈x, (I + K)y〉Hν

for all x, y ∈ Hμ = Hν .

Throughout the book, we use the notation LHS(H, K) for the space of
Hilbert–Schmidt operators from a Hilbert space H into another Hilbert
space K. Naturally, we use the notation LHS(H) when H = K. Recall that
A ∈ LHS(H, K) if and only if for any CONS {em}m and {fn}n of H and K
respectively, we have

∑

m≥1

‖Aem‖2K =
∑

n≥1

‖A∗fn‖2H =
∑

m,n≥1

〈em, fn〉2K =
∑

m,n≥1

〈em, A∗fn〉2H <∞.

(3.1)

The space LHS(H, K) is always assumed to be equipped with the inner
product

〈A, B〉LHS(H,K) = trace[AB].

Hölder’s inequality and the definition (3.1) guarantee the finiteness of this
trace. The space LHS(H, K) is a (separable whenever H and K are) Hilbert
space for this inner product. Notice also that (3.1) implies that A ∈
LHS(H, K) ⇔ A∗ ∈ LHS(K, H) in which case we have the equality of the
Hilbert–Schmidt norms ‖A‖LHS(H,K) = ‖A∗‖LHS(K,H). For any e ∈ H and
f ∈ K, we use the notation e ⊗ f for the rank-one operator from H into
K defined by e ⊗ f(h) = 〈e, h〉Hf for h ∈ H . Condition (3.1) implies that
the space of finite linear combinations of these rank-one operators is dense
in LHS(H, K), and this gives the identification of LHS(H, K) and the tensor
product H⊗K of the Hilbert spaces H and K. It is easy to check that, when
H is an L2-space, say H = L2(E, E , μ) for some measure space (E, E , μ), then
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we have the natural identification

L2(E, E , μ)⊗K = LHS(L2(E, E , μ), K) = L2(E, E , μ : K). (3.2)

Here and throughout the book, we use the notation L2(E, E , μ; K) or in short
L2(E; K) to denote the space of (μ-equivalent classes) of E-measurable and
square integrable functions from E into K, square integrable meaning:

∫

E

‖ϕ(x)‖2K dμ(x) <∞.

3.5 Series Expansions

The goal of this section is twofold. First we want to bridge our treatment
of Gaussian measures in Banach spaces with our original introduction of
measures on sequence spaces of the form R∞. We show that, given the choice
of an appropriate basis, the two points of view lead to the same measures.
Second, we want to give a computational tool to derive estimates and prove
results on the measure theoretic objects constructed from Gaussian measures:
series expansions will be our tool of choice to prove these results.

As always in this chapter, Hμ is the RKHS of a Gaussian measure μ on E.
Replacing E by a closed subspace if needed, we can always assume that E is
the topological support of the measure μ. So without any loss of generality
we shall assume that the diagram introduced earlier holds.

Since i∗(E∗) is dense in H∗
μ, it is possible to find a complete orthonormal

system (CONS for short) of H∗
μ contained in i∗(E∗) (just apply the Gram–

Schmidt orthonormalization procedure to a countable dense set contained in
i∗(E∗)). So let {e∗n}n≥0 be a sequence in E∗ such that {i∗(e∗n)}n≥0 is a CONS
in H∗

μ. Notice that the sequence {en}n≥0 defined by en = Re∗n is the dual
CONS system in Hμ, i.e. 〈e∗m, en〉 = δm,n where we use the notation δm,n for
the Kronecker symbol which is equal to 1 when m = n and 0 otherwise. For
the sake of simplifying the notation, we shall identify e∗n and i∗(e∗n) on one
hand, and en and i(en) on the other.

On the probability space (E, E , μ) we define for each integer n ≥ 1 the
map Xn : E →֒H by:

Xn(x) =

n
∑

m=0

〈e∗m, x〉em.

Notice that Xn is defined everywhere on E. From a probabilistic point of
view, Xn is a E-valued random variable, while from a functional analysis
point of view, Xn is a bounded linear operator from E into E which extends
the orthonormal projection of Hμ onto the n-dimensional subspace generated
by the first n basis vectors em. The following theorem (together with the
accompanying remark) is the main result of this section:



92 3 Infinite Dimensional Integration Theory

Theorem 3.3. For μ-a.e. x ∈ E,

lim
n→∞

Xn(x) = x (3.3)

the convergence being in the sense of the norm ‖ · ‖E of E.

Proof. Because of the integrability of Gaussian measures, this result is an
immediate consequence of the martingale convergence theorem recalled in
the appendix at the end of the chapter. Indeed, if we define the E-valued
random variable X on the probability space (E, E , μ) by X(x) = x, then one
can easily check that:

Xn = E{X |Fn}
if Fn denotes the sub sigma-field of F = E generated by the (real-valued)
random variables {e∗m}0≤m≤n. The fact that F = E is generated by {e∗m}m≥0

makes it possible to conclude. �

Remark 3.1. The above result remains true if we start from any CONS
{e∗n}n≥0 in H∗

μ, provided that {en}n≥0 is still the dual CONS in Hμ. The
only difference is that the E-valued random variables Xn are only defined
μ-a.s. instead of being defined everywhere, but the argument of the proof
remains the same.

3.6 Cylindrical Measures

Let us assume that μ is a mean-zero Gaussian measure on (E, E) and let us
denote by H the reproducing kernel Hilbert space of μ. Without any loss of
generality we shall assume that the topological support of μ is equal to the
space E.

Given a finite set {x∗
1, . . . , x

∗
n} of continuous linear functions in E∗ and

a Borel subset A ∈ BRn in the n-dimensional Euclidean space Rn the set:

C(x∗
1, . . . , x

∗
n, A) = {x ∈ E; (〈x∗

1, x〉, . . . , 〈x∗
n, x〉) ∈ A}

is called the cylinder with base A and generator {x∗
1, . . . , x

∗
n}. Cylinders

are obviously Borel sets in E. Note the lack of uniqueness: the same cylin-
der may be obtained from different generators and bases. Their usefulness
stands from their simple structure: they are essentially finite dimensional
in a (possibly) infinite dimensional space. The set E{x∗

1,...,x∗

n} of cylinders
with generator {x∗

1, . . . , x
∗
n} is a sigma-field. This sigma-field E{x∗

1,...,x∗

n} can
be identified to BRn whenever the elements x∗

1, . . . , x
∗
n of the generator are

linearly independent. We shall denote by μ{x∗

1,...,x∗

n} the restriction of μ to
the sigma-field E{x∗

1 ,...,x∗

n}. Abusing slightly the notation, we shall sometimes
use the same notation for the measure on Rn given by the identification of
E{x∗

1 ,...,x∗

n} and BRn mentioned above. The net result is that, starting from
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a (sigma-additive) probability measure μ on (E, E) we end up with a system
{μ{x∗

1,...,x∗

n}}{x∗

1,...,x∗

n} of finite dimensional measures. Note that these mea-
sures satisfy a compatibility condition: if the same cylinder is written using
two different generators, the values of the corresponding measures should be
the same.

The concept identified in the above discussion is worth a definition.

Definition 3.4. A cylindrical measure μ on a general topological vector
space E is a set {μ{x∗

1,...,x∗

n}}{x∗

1,...,x∗

n} of sigma-additive probability measures
μ{x∗

1 ,...,x∗

n} on the sigma-fields E{x∗

1,...,x∗

n} satisfying the consistency relation.

Notice that we depart slightly from our habit of considering only real sep-
arable Banach spaces. The reason will be made clear below when we discuss
Bochner’s theorem and the spaces of Schwartz distributions. Because of the
consistency hypothesis, a cylindrical (probability) measure μ defines a set
function on the set:

C =
⋃

{x∗

1 ,...,x∗

n}
E{x∗

1,...,x∗

n}

of all the cylinders by setting:

μ(C) = μ{x∗

1,...,x∗

n}(C) whenever C ∈ E{x∗

1,...,x∗

n}.

3.6.1 The Canonical (Gaussian) Cylindrical Measure
of a Hilbert Space

We now consider the very particular case of a (real separable) Hilbert space
H . First we notice that, because of the Gram–Schmidt orthonormalization
procedure, the field C of cylinders can be defined as the union of the sigma-
fields E{x∗

1,...,x∗

n} where {x∗
1, . . . , x

∗
n} is an orthonormal set of vectors in H∗.

Then, for each orthonormal set {x∗
1, . . . , x

∗
n} of vectors in H∗, we define the

sigma-additive measure μ{x∗

1,...,x∗

n} on the sigma-field E{x∗

1,...,x∗

n} by:

μ{x∗

1,··· ,x∗

n}(A) =
1

√

(2π)n

∫

A0

e−(x2
1+···+x2

n)/2dx1 · · · dxn

whenever A = {x ∈ H ; (〈x∗
1, x〉, . . . , 〈x∗

n, x〉) ∈ A0} for some Borel subset A0

of Rn. The cylindrical measure μ defined by this collection {μ{x∗

1,...,x∗

n}} of
probability measures is called the canonical (Gaussian) cylindrical measure
of the Hilbert space H . It is the natural infinite dimensional extension of the
standard Gaussian measure in finite dimensions.

Unfortunately, the set function μ defined from the prescription of a cylin-
drical measure in this way is not a bona fide probability measure in general.
First C is not a sigma-field, but worse, μ is most of the time not sigma-
additive. See the Sect. 3.6.3 below for further discussion of this point.
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3.6.2 Integration with Respect to a Cylindrical Measure

Cylindrical measures can be used to integrate cylindrical functions, namely
functions of the form f(x) = φ(x∗

1(x), · · · , x∗
n(x)) for a given function φ on

Rn and a set x∗
1, · · · , x∗

n of continuous linear functions on E. The class of
integrable functions can be naturally extended by limiting arguments, and
a reasonable integration theory can be developed this way.

One of the main shortcomings of this approach is that it is too often
difficult to determine if a given function belongs to the class of integrable
functions defined by such a limiting procedure. But most importantly, each
time a tool from classical real analysis is needed, a special proof has to be
given to make sure that its use is possible in the setting of cylindrical mea-
sures.

3.6.3 Characteristic Functions and Bochner’s Theorem

The characteristic function of a measure μ on E is the (complex-valued)
function on the dual E∗ defined by:

Cμ(x∗) =

∫

E

eix∗(x) dμ(x), x∗ ∈ E∗. (3.4)

Since functions of a linear form are cylindrical functions, they can be inte-
grated with respect to cylindrical measures. For this reason, the definition
given above in formula (3.4) applies as well to cylindrical measures.

Notice that, given x∗ ∈ E∗, the map λ→֒Cμ(λx∗) is the characteristic
function (Fourier transform) of the distribution of x∗, i.e. of the marginal of
μ determined by x∗. Consequently, the values of the characteristic function
determine completely the one-dimensional marginals, and by linear combi-
nations, all the finite dimensional marginals. In fact, because of the classical
Bochner’s theorem in finite dimensions, for all practical purposes, the infor-
mation contained in a characteristic function is the same as the information
contained in a cylindrical measure.

From the definition (3.4), it is plain to see that the function Cμ is a non-
negative definite function C on E∗ which satisfies C(0) = 1, and which is
weakly continuous at the origin. The converse is true in the sense that all the
functions C with these properties are the characteristic functions of cylindri-
cal measures, i.e. are of the form C = Cμ for some cylindrical measure μ.
However, the issue of the sigma-additivity of the measure μ is not settled in
general. By definition of a cylindrical measure, the measure μ is (trivially)
sigma-additive in finite dimensions. This classical result from harmonic an-
alysis is known as Bochner’s theorem. It is the content of Minlos’ theorem
that this converse is also true for nuclear spaces. In a very informal way, the
latter can be characterized as the spaces trying to look like finite dimensional
spaces by forcing the bounded neighborhoods of the origin to be compact.
The spaces of Schwartz distributions are typical examples of nuclear spaces.
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But the converse is not true in general for Hilbert spaces. We already en-
countered the most famous counterexample to this converse in the case of
the canonical cylindrical measure of a Hilbert space. Indeed, if H is a Hilbert
space, the function:

H∗ ∋ x∗ →֒C(x∗) = e−‖x∗‖2

is non-negative definite, weakly continuous at the origin, and satisfies
C(0) = 1. However, it is not the characteristic function of measure, since
the canonical cylindrical measure is not sigma-additive.

3.6.4 Radonification of Cylindrical Measures

Being able to decide whether or not a given cylindrical measure is sigma-
additive (and hence can be extended to the sigma-field generated by the
cylinder algebra into a bona fide measure) is a difficult problem. This natural
question can be generalized in the following form: Given a cylindrical measure
μ on a (topological) vector space E and given a (continuous) linear operator
A into another (topological) vector space F , which properties of A guarantee
that the image cylindrical measure Aμ is sigma-additive on F? This question
has a clear answer when E and F are Hilbert spaces.

Theorem 3.4. If E and F are separable Hilbert spaces, μ is the canonical
Gaussian cylindrical measure of E, and A is a bounded linear operator from
E into F , then Aμ is sigma-additive if and only if A is a Hilbert–Schmidt
operator.

Proof. Let us fix complete orthonormal systems {ei}i and {fj}j in E and F
respectively, and in the spirit of our construction of the isonormal process of
E given in Sect. 3.2.2, and our discussion of series expansions in Sect. 3.5,
we fix a sequence {ξi}i of independent standard normal random variables
defined on a probability space (Ω,F , P). If m and n are integers such that
m < n,

E

{

‖
n

∑

i=m+1

ξi Aei‖2F

}

= E

⎧

⎨

⎩

∞
∑

j=1

(

n
∑

i=m+1

ξi 〈fj , Aei〉
)2

⎫

⎬

⎭

=
∞
∑

j=1

n
∑

i=m+1

〈fj , Aei〉2

=
n

∑

i=m+1

‖Aei‖2

which shows that

∞
∑

i=1

ξi Aei converges in L2(Ω; F ) ⇐⇒
∞
∑

i=1

‖Aei‖2 converges in R. (3.5)
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Here we use the notation L2(Ω; F ) to denote the Hilbert space of F -valued
square integrable random variables equipped with the norm

‖X‖L2(Ω;F ) = E{‖X‖2F}1/2.

In order to prove Theorem 3.4, let us first assume that Aμ is sigma-additive
and let us denote by μA its sigma-additive extension.

∫

F

‖x‖2F dμA(x) =

∫

F

∞
∑

j=1

〈fj , x〉2 dμA(x)

=
∞
∑

j=1

∫

E

〈fj , Ax〉2 dμ(x)

=

∞
∑

j=1

‖A∗fj‖2

where the integral over E makes sense as the integral of a linear func-
tion with respect to a cylindrical measure. So, if the measure μA is sigma-
additive, Fernique’s integrability result implies that that the above quanti-
ties are finite, and this proves that the operator A is Hilbert–Schmidt. Con-
versely, if we assume that A is Hilbert–Schmidt, the equivalence (3.5) shows
that the series

∑

i ξAei converges in L2(Ω; F ), and it is plain to check that
the distribution of this sum is a sigma-additive extension of the cylindrical
measure Aμ. �

3.7 Appendices

Fernique’s Proof of the Integrability of Gaussian Measures

Fernique’s proof of the existence of exponential moments is based on the fol-
lowing property of (mean zero) Gaussian measures on (measurable) vector
spaces. If X and Y are independent random variables with values in a sep-
arable Banach space E having the same distribution μ, and if this common
law μ is Gaussian, then the E-valued random variables (X + Y )/

√
2 and

(X − Y )/
√

2 are independent and also have distribution μ.
In fact, since this property is characteristic of the finite dimensional Gaus-

sian distributions, Fernique uses this property to define Gaussian measures
in general (measurable) vector spaces.

The proof is accomplished by finding some positive constants C and ǫ0
and t0 such that

P{‖X‖ > t} ≤ Ce−ǫ0t2

for all t > t0.
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Now, let us notice that, for any positive s and t we have:

P{‖X‖ ≤ s}P{‖Y ‖ > t} = P

{‖X − Y ‖√
2

≤ s

}

P

{‖X + Y ‖√
2

> t

}

= P

{‖X − Y ‖√
2

≤ s and
‖X + Y ‖√

2
> t

}

≤ P

{∣

∣

∣

∣

‖X‖ − ‖Y ‖√
2

∣

∣

∣

∣

≤ s and
‖X‖+ ‖Y ‖√

2
> t

}

≤ P

{

‖X‖ >
t− s√

2
and ‖Y ‖ >

t− s√
2

}

= P

{

‖X‖ >
t− s√

2

}2

where we also used the triangle inequality and the fact that X and Y are
independent and identically distributed. Letting t = s+

√
2t0 we can conclude

after some rearranging:

P{‖X‖ > s +
√

2t0}
P{‖X‖ ≤ s} ≤

(

P{‖X‖ > t0}
P{‖X‖ ≤ s}

)2

.

Define a sequence {tn} by tn+1 = s +
√

2tn; we see by iteration that

P{‖X‖ > tn}
P{‖X‖ ≤ s} ≤

(

P{‖X‖ ≤ s}
P{‖X‖ > t0}

)−2n

.

Since by induction tn ≤ 2n/2(t0 + 3s) then

P{‖X‖ > tn}
P{‖X‖ ≤ s} <

(

P{‖X‖ ≤ s}
P{‖X‖ > t0}

)− t2n
(t0+3s)2

.

Fix s and t0 large enough that P{‖X‖ ≤ s} > P{‖X‖ > t0} and choose

ǫ0 =
1

2(t0 + 3s)2
log

(

P{‖X‖ ≤ s}
P{‖X‖ > t0}

)

to arrive at the sufficient bound. �

Bochner Integrals

Let (Ω,F , μ) be a measure space, E a separable Banach space, and φ : Ω →֒E
a (F , E)-measurable map. How would one define the integral

∫

Ω
φ(ω)μ(dω)

as an element of E ?
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• Let φ = lim(E)
n→∞ φn, where φn is simple, that is

φn =

n
∑

j=1

xj1Aj
, with xj ∈ E and Aj ∈ F .

Notice we have φ to be (F , E)-measurable by the separability of E. Define
∫

Ω φ(ω)μ(dω) = lim(E)
n→∞

∫

φn dμ = lim(E)
n→∞

∑

xjμ(Aj). This integral, if
it exists, is called the “Bochner integral” of φ.
A sufficient condition for existence of Bochner integral is

∫

Ω

‖φ(ω)‖Eμ(dω) < +∞.

In fact, the triangular inequality

∥

∥

∥

∥

∫

Ω

φ(ω)μ(dω)

∥

∥

∥

∥

E

≤
∫

Ω

‖φ(ω)‖Eμ(dω)

is inherited from the construction.
• On the other hand, we could define a vector valued integral in the following

way as the unique element μ̄φ ∈ E such that for all x∗ ∈ E∗

x∗(μ̄φ) =

∫

Ω

x∗(φ(ω))μ(dω).

We need the measurability condition on φ: ∀x∗ ∈ E∗, ω→֒x∗(φ(ω)) is
measurable. The integral defined this way called the “weak integral.” It is
this weak integral that will play a central role in constructing generalized
bond portfolios in Chap. 6.

Note that if μ̄φ is the Bochner integral of φ, then μ̄φ is also the weak
integral of φ. This follows from the property of the Bochner integral

x∗
(∫

Ω

φ(ω)μ(dω)

)

=

∫

Ω

x∗(φ(ω))μ(dω)

for all x∗ ∈ E∗, which is easily checked by the construction of the integral as
a limit of a sum and by the continuity and linearity of each x∗.

Banach Space Valued Martingales

We will make use of the following remarks in the next chapter. Given a prob-
ability space (Ω,F , P), a filtration (Fn)n≥0, and a real separable Banach
space E with Borel sigma-field E , a sequence {Xn; n ≥ 0} of E-valued ran-
dom variables Xn : Ω → E is said to be a (strong or Bochner) martingale if:
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1. Xn is Fn-measurable,
2. Xn is integrable,
3. E{Xn+1|Fn} = Xn for all n ≥ 0.

That is, for each n we have E{‖Xn‖} < +∞ so that expectations can be
computed as Bochner integrals. An easy way to understand the notion of
conditional expectation used in bullet point 3 is to define E{Y |F ′} as the
unique E-valued F ′ measurable random variable such that for all x∗ ∈ E∗,

x∗(E{Y |F ′}) = E{x∗(Y )|F ′}.

Note that in the real-valued case, if Xn → X∞ a.s and X∞ is integrable then
Xn = E{X∞|Fn} and X∞ is said to close the martingale.

Theorem 3.5. Let F∞ = ∨n≥0Fn = σ{Fn; n ≥ 0}. If X is an E-valued ran-
dom variable with E{‖X‖} <∞ then Xn = E{X |Fn} is a strong martingale
and Xn → X∞ = E{X |F∞} in ‖ ·‖E almost surely. In particular, if F∞ = F
then X = X∞.

Notes & Complements

The interested reader is referred to Bogachev’s monograph [18] for an exhaustive
presentation of the properties of Gaussian measures in infinite dimensional vector
spaces. For all the properties of Gaussian processes, and especially for sufficient con-
ditions for regularity, the reader is referred to the carefully written monograph [1]
by Adler where the major contributions of Fernique and Talagrand are reported.
More material can also be found in the book [100] by Ledoux and Talagrand.

Integration theory with respect to cylindrical measures was developed in the
USSR around Fomin [126], Daletskii [44], and Minlos [105], in France around
L. Schwartz and A. Badrikian, [123], and in the US by L. Gross who considered
exclusively the case of the canonical cylindrical measure of a Hilbert space, [73] [74].
Gross introduced the notions of measurable norms [73] [74] and abstract Wiener
spaces, [74] and proved that this concept was the right framework to Radonify the
canonical cylindrical measure into a sigma-additive measure on a Banach space.
See [74] and the converse due to Satô [121] and Carmona [28]. Theorem 3.4 giving
the equivalence between the Radonification of the canonical cylindrical measure
in an Hilbert space and the Hilbert–Schmidt property of the Radonifying opera-
tor is part of the folklore. Credit for its discovery is shared by different authors
in different locations. Using tensor products of Hilbert spaces to represent spaces
of Hilbert–Schmidt operators and L2-spaces of functions with values in a Hilbert
space is very convenient. Unfortunately, the definition and the analysis of tensor
products of Banach spaces and of more general topological vector spaces are not
so simple. We shall discuss briefly the tensor product of covariances in the next
chapter without considering these difficulties. Our discussion of the reproducing
kernel Hilbert space of a Gaussian measure was inspired by J. Kuelbs’ lectures [93].
A stronger form of Proposition 3.2 can be found in [30]. The elementary martingale
convergence result given in the appendices above was first proven by Chatterjee.
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Stronger results of this type can be found in the book [100] of Ledoux and Tala-
grand.

In finite dimensions, a sequence of Gaussian measures converges if and only if
the sequence of means and the sequence of covariances converges, the respective
limits giving the mean and the covariance of the limiting measure. The example
of the canonical cylindrical measure of a Hilbert space shows that this result can-
not hold in infinite dimensions with the same generality. Nevertheless, a similar
result holds when the sequence of covariance operators is bounded from above by
a covariance operator of a bona fide sigma-additive Gaussian measure. We shall
use this result freely in the last chapter of the book. We did not include it in the
text because of its technical nature. It was used extensively by Carmona in [28],
[29], [3], [34]. The proof of tightness needed for these results can be obtained from
an old finite dimensional comparison argument of T.W. Anderson or more modern
estimates due to Fernique.

The standard equivalence and singularity dichotomy of Gaussian measures was

first proved by Feldman in [58] and Hájek in [78]. See also [75] and [30] for some

refinements and consequences relevant to the infinite dimensional Wiener processes

discussed in the next chapter.



4

Stochastic Analysis in Infinite Dimensions

The purpose of the previous chapter was more to provide the background
for the present chapter than to develop a theory of integration in infinite
dimension for its own sake. We now use this preparatory work to present
the tools of stochastic analysis which we will need when we come back to
interest rate models in the third part of the book. We introduce Wiener
processes in infinite dimensions, and we develop a stochastic calculus based
on these processes. We illustrate the versatility of this calculus with the so-
lution of stochastic differential equations and the analysis of infinite dimen-
sional Ornstein–Uhlenbeck processes. We then concentrate on Girsanov’s
theory of change of measure, and on martingale representation theorems,
which are two of the most important building blocks of modern continuous
time finance.

4.1 Infinite Dimensional Wiener Processes

Given the notion of Gaussian measure in a Banach space introduced in the
previous chapter, the analysis of infinite dimensional Wiener processes will
be a simple matter of following the strategy outlined at the beginning of the
previous chapter.

But before we go parading that we have introduced a new concept, it is
important to realize that classical stochastic analysis was already truffled with
examples of infinite dimensional Wiener processes. But as Mister Jourdain
did not know that he was using prose, we may not have been aware of our
manipulations of such processes.

4.1.1 Revisiting some Known Two-Parameter Processes

• We first consider the example of the Brownian sheet as introduced by
J. Kiefer in the asymptotic analysis of statistical tests of significance. It is
the mean-zero Gaussian two-parameter random field {ξ(t, τ); t, τ ∈ [0, 1]}
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whose covariance function is given by:

γξ((t, τ), (t′, τ ′)) = E{ξ(t, τ)ξ(t′, τ ′)} = (t ∧ t′)(τ ∧ τ ′).

The two parameters of a Brownian sheet play symmetric roles. If one
holds the first parameter fixed, say by setting t = t0 constant, then the
process ξ(t0, ·) = {ξ(t0, τ); τ ∈ [0, 1]} is a Wiener process with variance t0.
Similarly, holding τ = τ0 constant yields a scaled Wiener process ξ(·, τ0)
in the parameter t.

• One could also consider the mean-zero Gaussian random field ξ whose
covariance is given by:

γξ((t, τ), (t′, τ ′)) = (t ∧ t′)e−λ|τ−τ ′|.

In this case, the field is Brownian in t when the parameter τ is held fixed,
but it is an Ornstein–Uhlenbeck process in τ when the parameter t is
held fixed. This process was instrumental in the first developments of the
Malliavin calculus.

• More generally, one can consider mean-zero Gaussian processes of the
tensor product family for which the covariance γ is obtained from the
tensor product of two covariance functions. If γ1(t, t

′) and γ2(τ, τ
′) are

covariance functions for two Gaussian one-parameter processes, then the
tensor product

γ((t, τ), (t′, τ ′)) = γ1(t, t
′)γ2(τ, τ

′)

is also a covariance function. In particular, there exists a mean-zero Gaus-
sian two parameter field ξ such that γξ = γ. Moreover many of the regu-
larity properties of the Gaussian processes with covariances γ1 and γ2 are
inherited by the field ξ.

• Gaussian random fields which are not of a tensor product type have also
been analyzed in detail. For instance, as we have seen from Chap. 2, it
is fruitful to view the forward rates {f(t, T )}0≤t≤T as a continuous two-
parameter random field. Kennedy proposed modeling the forward rates
by a Gaussian random field with mean μf (t, T ) = E{f(t, T )} and covari-
ance cov(f(t, T ), f(t′, T ′)) = γf (t, T, t′, T ′). The covariance of the field is
assumed to have the special structure

γf (t, T, t′, T ′) = c(t ∧ t′, T, T ′)

where the function c is symmetric in T and T ′, and positive in (t, T ) and
(t′, T ′). The structure of the covariance is such that the increments of the
field are independent, at least when we hold the second parameter (the
maturity date) fixed and vary the first parameter (the calendar time):

cov(f(t1, T )− f(t0, T ), f(t2, T )− f(t1, T ))

= γf (t1, T, t2, T )− γf (t0, T, t2, T )− γf (t1, T, t1, T ) + γf (t0, T, t1, T )

= 0.
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The HJM drift condition can then be imposed on the mean via

μf (t, T ) = μf (0, T ) +

∫ T

0

(c(t ∧ s, s, T )− c(0, s, T ))ds.

Furthermore, Kennedy proved that if the random field {f(t, T )}0≤t≤T is
Markovian and stationary, then the form of the covariance is necessarily of
the tensor form:

c(t, T, T ′) = e−λ(t−T∧T ′)h(|T − T ′|)
for a real parameter λ. See the Notes & Complements at the end of the
chapter for more references.

In both of the first two examples presented above, for each fixed t, the
process ξ(t, · ) has almost surely continuous sample paths, so after redefining
the process on a set of full probability if necessary, it is possible to view
Xt = ξ(t, · ) as an element of the (real separable) Banach space E = C[0, 1].
Moreover, because of the properties of the covariance kernel γ(t, t′) = t∧t′, it
is reasonable to envisage the E-valued process {Xt; t ∈ [0, 1]} as a candidate
for the title of Wiener process in E. We shall see below that this guess is well
founded.

4.1.2 Banach Space Valued Wiener Process

With the motivation of the discussion of the beginning of the previous chap-
ter, we introduce the following definition for a vector valued Wiener process.

Definition 4.1. An E-valued process W = {Wt, t ≥ 0} is called a Wiener
process in E if:

1. W0 = 0
2. For any finite sequence of times 0 = t0 < t1 < · · · < tn, the increments

Wt1 −Wt0 , . . ., Wtj
−Wtj−1 , . . ., Wtn

−Wtn−1 are independent E-valued
random variables

3. There exists a (mean-zero) Gaussian measure μ on E which is the distri-
bution of all the scaled increments (Wt−Ws)/

√
t− s for 0 ≤ s < t <∞.

Obviously, μ is the law of W1, i.e. μ(dx) = P{W1 ∈ dx}, and the distri-
bution of the entire Wiener process W is completely determined by μ. For
this reason, such a process is often called a μ-Wiener process to emphasize
the dependence upon the distribution μ of W1.

4.1.3 Sample Path Regularity

Notice that for s �= t (we shall assume s < t for the sake of definiteness) we
have:

E{‖Wt −Ws‖pE} = E{‖
√

t− sW1‖pE} = (t− s)p/2

∫

E

‖x‖pEμ(dx) (4.1)
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where the integral in the right-hand side is finite because of the integrability
properties of Gaussian measures. Using Kolmogorov’s classical criterion, we
see that any Wiener process has a version whose sample paths [0,∞) ∋
t → Wt(ω) are continuous for almost all ω ∈ Ω. Kolmogorov’s criterion was
originally proven for real valued stochastic processes, but its proof works as
well in the vector valued case, even if the state space is an infinite dimensional
Banach space.

As in the real valued case, the proof of Kolmogorov’s criterion shows that
estimate (4.1) guarantees the almost sure α-Hölder continuity of the sample
paths for any α < 1/2. But a more precise result holds, and as in the finite
dimensional case, the local modulus of continuity is given by the law of the
iterated logarithm, and Lévy’s uniform modulus of continuity also takes the
same form. See the Notes & Complements at the end of the chapter for
references.

But one should not think that all the properties of a finite dimensional
Wiener process extend to the infinite dimensional setting. The next subsec-
tion is intended to help the novice reader avoid sobering experiences with the
measure theoretical surprises in infinite dimensions.

4.1.4 Absolute Continuity Issues

Throughout this section we assume that W = {Wt, t ≥ 0} is a Wiener process
in E, and we denote by μt = L{Wt} the distribution of Wt. According to the
convention made earlier, we have μ = μ1.

The first curiosity which we point out is based on the scaling property
μt(A) = μ(t−1/2A). We saw in the previous chapter that this scaling property
implies that all the measures μt are singular to each other. More precisely,
if E is genuinely of infinite dimension, there exists a family {Ct; t > 0} of
disjoint elements of E satisfying for every t > 0:

μt(Ct) = 1 and μs(Ct) = 0 whenever s �= t.

In fact stronger, and more disturbing results hold in the infinite dimensional
case. We mention only two of them for the record. The reader interested
in the intricacies of these measure theoretic pathologies is referred to the
Notes & Complements at the end of this chapter for references.

• There is no sigma-finite measure ν with respect to which all the μt are
absolutely continuous.

• As a Borel set, the RKHS H is a polar set for the Wiener process: remove
this set, and the sample paths of the Wiener process will not be affected!
In other words, even though H completely determines μ, and hence all of
the μt, it is totally irrelevant of the sample paths of the Wiener process Wt.
This may sound like a contradiction, but this is a typical instance of the
anomalies of infinite dimensional stochastic analysis.
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4.1.5 Series Expansions

We now revisit the series expansions derived in the previous chapter. As
before we choose a CONS {e∗n, n ≥ 1} in H∗ made of elements of E∗, and we
set wn(t) = e∗n(Wt). We first claim that the scalar processes wn = {wn(t);
t ≥ 0} are i.i.d. scalar Wiener processes. Indeed, assuming 0 ≤ s < t < ∞
we have:

E{wm(s)wn(t)} = E{e∗m(Ws)e
∗
n(Wt)}

= E{e∗m(Ws)e
∗
n(Ws)}+ E{e∗m(Ws)e

∗
n(Wt −Ws)}

= sE{e∗m(W1)e
∗
n(W1)}

= s〈e∗m, e∗n〉H∗

= sδm,n

if we use the independence of the increments and the orthogonality of the
e∗n’s in H∗

μ. Notice that if we set en = Re∗n, then {en; n ≥ 1} is the dual
orthonormal basis of {e∗n; n ≥ 1}, and the expansion result of the previous
chapter implies that for each fixed time t, we have:

Wt =

∞
∑

n=1

wn(t)en (4.2)

where the convergence is almost sure and in the sense of the norm of the
Banach space E. In fact, a much stronger result holds. Indeed, for any fixed
T > 0, the convergence in (4.2) is uniform in t ∈ [0, T ]. To see this we
apply the same martingale convergence result as before, applying it to the
martingale formed by the random elements XN =

∑N
n=1 w(·)en. By the con-

tinuity of the sample paths of the scalar Wiener processes, XN is a random
variable in C([0, T ], E), the space of E-valued continuous functions on the
bounded interval [0, T ]. This space is a real separable Banach space when
equipped with the sup-norm defined by ‖f‖∞ = supf∈[0,T ] ‖f(t)‖E whenever
f ∈ C([0, T ], E). It is then plain to check that {XN ; N ≥ 1} is a C([0, T ], E)-
valued martingale which converges toward the restriction of W to the interval
[0, T ].

The series expansion (4.2) will be a very practical tool to manipulate
E-valued Wiener processes. It says that, in essence, an infinite dimensional
Wiener process can be characterized by a sequence of i.i.d. scalar Wiener
processes. This bridges the general theory developed in this chapter with the
intuitive discussion from which we started.

Remark 4.1. We revisit the discussion of the introduction of Chap. 3 in which
we were led to take the limit d → ∞ and consider an infinite dimensional
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Wiener process as an process in the space R∞ of sequences of real num-
bers. So let us suppose that we start with a sequence {wn}n of i.i.d. scalar
Wiener processes; let e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, · · · ) be the natural co-
ordinate elements of R∞, and let us formally set Wt =

∑∞
n=1 wn(t)en =

(w1(t), w2(t), . . . ). Since this Wt could be considered as a good candidate for
an infinite dimensional Wiener process, to recast it in the framework pre-
sented above we need to answer the following question: in which space E
does Wt live? Obvious candidates are:

1. c0 = {x ∈ R∞; limn→∞ xn = 0}, equipped with the norm ‖x‖c0 =
supn |xn|.

2. ℓ2 = {x ∈ R∞,
∑

x2
n = ‖x‖2ℓ2 <∞} equipped with the inner product

〈x, y〉 =
∑

n

xnyn.

However, with probability one, Wt /∈ c0 and Wt /∈ ℓ2. Recalling the necessary
and sufficient condition for the Radonification of the canonical cylindrical
measure in a Hilbert space, we may want to consider enlargements of ℓ2

obtained by means of weights. More precisely, one may choose a sequence
a = {an} ∈ ℓ2 of square summable weights and define the weighted Hilbert
space ℓ2

a by:

ℓ2
a = {x ∈ R∞;

∑

a2
nx2

n = ‖x‖2ℓ2a <∞}

Then:

Claim. With probability one,
∑

n a2
nwn(t)2 < ∞, and a possible choice of

a state space E for the Wiener process is ℓ2
a.

Notice that for any choice a ∈ ℓ2, we have necessarily |∑ anwn(t)| < ∞
almost surely for all t, although Wt /∈ ℓ2 almost surely! This is very different
than the deterministic case: If the deterministic sequence x = (x1, x2, . . .) of
real numbers is such that |∑ anxn| <∞ for every a ∈ ℓ2, then necessarily x
is an element of ℓ2.

4.2 Stochastic Integral and Itô Processes

As before, we assume that W = {Wt; t ≥ 0} is a Wiener process defined on
a probability space (Ω,F , P) and taking values in a real separable Banach
space E, and we denote by μ the probability distribution of W1. On the
top of that, we also assume that the probability space is equipped with a
filtration {Ft}t≥0 which satisfies the usual assumptions of right continuity
and of saturation of F0 for the P-null sets, and we assume that W is a
Ft-Wiener process in the sense that Wt is Ft measurable and that for all
0 ≤ s < t <∞ the increment Wt −Ws is independent of Fs. This is always
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the case if we work with the filtration Ft = F (W )
t generated by the Wiener

process, i.e. defined by F (W )
t = N ∪σ{Ws, 0 ≤ s ≤ t} if N denotes the set of

P-null sets. We shall also use the notation P for the predictable sigma-field,
i.e. the sigma-field generated by the left continuous processes.

The goal of this section is to make sense of integrals of the form:

∫ t

0

σsdWs (4.3)

for integrands {σt; t ≥ 0} adapted to the filtration. The time-honored ap-
proach to the definition of the stochastic integral (4.3) is to first define the
integral for simple predictable integrands, and then use a limiting argument
to define the integral for a larger class of integrands. A simple predictable
integrand is an integrand of the form:

σ(t, ω) =

N
∑

j=1

σj(ω)1(tj ,tj+1](t) (4.4)

where 0 = t1 < t2 < · · · < tN+1 < ∞ and each σj is Ftj
-measurable. For

a simple predictable integrand of this form, the stochastic integral (4.3) is
naturally defined by the formula:

∫ t

0

σsdWs =

N
∑

j=1

σj(ω)(Wtj+1 (ω)−Wtj
(ω)). (4.5)

Obviously, the nature of the integrand σ has to be such that the products

σj(ω)(Wtj+1 (ω)−Wtj
(ω))

make sense. Consequently, we distinguish between three types of integrands:

1. The integrand is real valued, in which case the products are multiplica-
tions of scalars by the increments of the Wiener process and the integral
is an element of the state space E of the Wiener process.

2. The integrand is E∗-valued, in which case the products are given by the
duality between a continuous linear functions on E, say σj(ω), and an
element of E, say the increment Wtj+1(ω) − Wtj

(ω). In this case, the
integral is a real number.

3. The integrand takes values in a space of operators from the space E into
another space F which is assumed to be a Hilbert space for the sake of
simplicity. In this case, the products are given by the evaluation of the
operator σj(ω), at an element Wtj+1 (ω)−Wtj

(ω) of E. In this case, the
integral is an element of the space F .
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Notice that the second case is merely a particular case of the third one when
F = R. But the third case can be derived from the second one because of
the following remark. Since an element f of F is entirely determined by the
values obtained by computing 〈f∗, f〉 for all the possible choices of f∗ ∈ F ∗,

one can apply this fact to f =
∫ t

0 σsdWs. We get:

〈

f∗,

∫ t

0

σsdWs

〉

=

〈

f∗,
N
∑

j=1

σj(Wtj+1 −Wtj
)

〉

=
N
∑

j=1

〈f∗, σj(Wtj+1 −Wtj
)〉

=

N
∑

j=1

〈σj(ω)∗f∗, Wtj+1 −Wtj
〉

=

∫ t

0

σ∗
sf∗dWs.

As before, we use the notation σ∗ for the adjoint of the operator σ. In other
words, computing f∗ of the stochastic integral of the operator valued inte-
grand σs is the same thing as integrating the integrand σ∗

sf∗ which takes
values in the dual E∗. We shall use this trick to define the stochastic integral
of operator valued integrands, reducing the construction work to the stochas-
tic integral of integrands with values in E∗. Moreover, in order to save time,
energy and space, we shall refrain from constructing the stochastic integral
from the integral of simple predictable processes. Instead, we rely on the se-
ries expansion of the Wiener process to reduce the construction to a classical
setting.

As in our discussion of the series expansions of the Wiener process, we
choose a CONS {e∗m}m≥1 of H∗ made of elements of the dense subset E∗, and
we denote by {em}m≥1 the dual basis of H given by the Riesz identification
operator em = Re∗m. Then, we can expand the Wiener process {Wt}t in
a series of the form:

Wt =
∑

m≥1

wm(t)em

where the {wm} are i.i.d. standard Wiener processes.

4.2.1 The Case of E
∗ and H

∗ Valued Integrands

Let us assume that λ = {λt; t ≥ 0} is a predictable process with values in the
dual E∗, and let us assume momentarily that it is of the simple predictable
type. Then the following derivation is fully justified:
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∫ t

0

λsdWs =

N
∑

j=1

〈λj , (Wtj+1 −Wtj
)〉

=

N
∑

j=1

∑

n≥1

〈λj , en〉〈e∗n, (Wtj+1 −Wtj
)〉

=
∑

n≥1

N
∑

j=1

〈λj , en〉(w(n)
tj+1
− w

(n)
tj

)

=
∑

n≥1

∫ t

0

〈λs, en〉dw(n)
s

and moreover:

E

{

(∫ t

0

λsdWs

)2
}

=
∑

n≥1

∑

m≥1

E

{(∫ t

0

〈λs, en〉dw(n)
s

)(∫ t

0

〈λs, em〉dw(m)
s

)}

=
∑

n≥1

E

{

(∫ t

0

〈λs, en〉dw(n)
s

)2
}

=
∑

n≥1

E

{∫ t

0

〈λs, en〉2ds

}

= E

{∫ t

0

‖λs‖2H∗ds

}

.

This last estimate shows that, not only should we be able to integrate adapted
processes with values in E∗, but in fact we should be able to integrate all the
H∗-valued predictable processes satisfying the energy condition

E

{∫ t

0

‖λs‖2H∗ ds

}

<∞, for all t > 0. (4.6)

These elements of H∗ are in principle defined only on H and not on E.
But because of the interpretation of H∗ as a space of (equivalent classes of)
random variables, its elements can be defined almost everywhere on E, and
the stochastic integral of simple predictable processes with values in H∗ still
makes sense.

So the final word on the construction of the stochastic integral of vector
valued integrands is the following:

If λ = {λt; t ≥ 0} is an adapted process with values in the dual H∗ of the
RKHS H which satisfies the integrability condition (4.6), then the stochas-

tic integral
∫ t

0
λsdWs exists for every t as a real valued random variable; it

satisfies the energy identity:

E

{

∣

∣

∣

∣

∫ t

0

λsdWs

∣

∣

∣

∣

2
}

= E

{∫ t

0

‖λs‖2H∗ ds

}

(4.7)
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and as a process parameterized by t > 0, it is a real valued martingale.
Finally, for any CONS {e∗n}n≥1 of H∗, we have:

∫ t

0

λsdWs =

∞
∑

n=1

∫ t

0

λ(n)
s dw(n)

s

where the integrands are the predictable processes defined by λ
(n)
t = 〈λt, e

∗
n〉

and the integrators are the i.i.d. Wiener processes defined by w
(n)
t = 〈e∗n, Wt〉.

4.2.2 The Case of Operator Valued Integrands

Let us now assume that F is a real separable Hilbert space and that σ =
{σt; t ≥ 0} is a predictable process with values in the space L(E, F ) of
bounded linear operators from E into F . A natural definition of the stochastic
integral for σ simple predictable suggests that the integral should be an F -
valued martingale. If the integral It =

∫ t

0 σsdWs exists as an element of F ,
for any CONS {fn}n≥1 of F , and if {f∗

n}n≥1 is its dual CONS, one should
have:

It =

∞
∑

n=1

〈f∗
n, It〉fn (4.8)

where the convergence is in the sense of the norm of F , and consequently it
is enough to be able to give a meaning to the terms 〈f∗

n, It〉, which according
to our previous discussion, should be given by:

〈f∗
n, It〉 =

∫ t

0

σ∗
sf∗

ndWs =

∫ t

0

σ(n)
s dWs

provided we set σ
(n)
s = σ∗

sf∗
n. Notice that since σs is a bounded operator

from E into F , its transpose σ∗
s is a bounded operator from F ∗ into E∗, and

consequently for each n ≥ 1, σ(n) = {σ(n)
t ; t ≥ 0} is a predictable process

with values in E∗. Identifying σt and σt◦i (recall that i is the notation we use
for the inclusion of H into E), σt can be viewed as an operator from H into F ,
and as such it is a Hilbert–Schmidt operator since it transforms the canonical
cylindrical measure of H into a sigma-additive measure. Since the transpose
of a Hilbert–Schmidt operator is also a Hilbert–Schmidt operator, we see that
when σ∗

t is viewed as an operator from F ∗ into H∗, it is a Hilbert–Schmidt
operator as well. For the record we give the value of its Hilbert–Schmidt norm
‖σ∗

t ‖LHS in terms of the CONS {f∗
n}n≥1:

‖σ∗
t ‖2LHS

=
∞
∑

n=1

‖σ∗
t f∗

n‖2H∗ . (4.9)
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Coming back to the definition (4.8) of the stochastic integral via the decom-
position into a CONS, we get:

E

{

∥

∥

∥

∥

∫ t

0

σsdWs

∥

∥

∥

∥

2

F

}

= E

⎧

⎨

⎩

∥

∥

∥

∥

∥

∞
∑

n=1

〈f∗
n,

∫ t

0

σsdWs〉fn

∥

∥

∥

∥

∥

2

F

⎫

⎬

⎭

= E

{ ∞
∑

n=1

〈f∗
n,

∫ t

0

σsdWs〉2
}

=
∞
∑

n=1

E

{

(∫ t

0

σ(n)
s dWs

)2
}

=

∞
∑

n=1

E

{∫ t

0

‖σ(n)
s ‖2H∗ds

}

= E

{

∫ t

0

∞
∑

n=1

‖σ∗
sfn‖2H∗ds

}

= E

{∫ t

0

‖σ∗
s‖2HSds

}

where we used the isometry identity for the stochastic integrals of vector
valued integrands, and the definition (4.9) of the Hilbert–Schmidt norm of
the transpose of the integrand σ. This computation shows that, not only
can we integrate operators from E into a Hilbert space, but in fact we can
integrate all the Hilbert–Schmidt operators defined on H , even if we cannot
evaluate them on the Wiener process and its increments. Remember, H is
polar for the Wiener process!

So the final word on the construction of the stochastic integral of operator
valued integrands is the following:

If σ = {σt; t ≥ 0} is a predictable process with values in the space
LHS(H, F ) of Hilbert–Schmidt operators from H into a Hilbert space F which
satisfies:

E

{∫ t

0

‖σs‖2LHS
ds

}

<∞, for all t > 0 (4.10)

then the stochastic integral
∫ t

0
σsdWs exists for every t as an element of F ,

it satisfies:

E

{

∥

∥

∥

∥

∫ t

0

σsdWs

∥

∥

∥

∥

2

F

}

= E

{∫ t

0

‖σs‖2LHS
ds

}

(4.11)

and as a process parameterized by t > 0, it is an F -valued martingale. Finally,
for all f∗ ∈ F ∗ we have:

〈

f∗,

∫ t

0

σsdWs

〉

=

∫ t

0

σ∗
sf∗dWs.
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Remarks.

• This last form of the definition of the stochastic integral of operator valued
processes corresponds exactly to the definition used for cylindrical Wiener
processes.

• We talked freely about operator valued measurability. The following infor-
mal definition will be sufficient for the purpose of this book: a map σ with
values in a space of operators from E into F is said to be measurable if
for all x ∈ E and f∗ ∈ F ∗ the real valued function 〈f∗, σx〉 is measurable.

• By standard localization arguments, the stochastic integral can be ex-
tended to (Hilbert–Schmidt) operator valued processes satisfying only:

∫ t

0

‖σs‖2LHS
ds <∞, for all t > 0 (4.12)

instead of the stronger (4.10).

4.2.3 Stochastic Convolutions

In many applications, and in particular the study of stochastic partial dif-
ferential equations, we encounter stochastic integrals of operator valued in-
tegrands of the form

∫ t

0

K(s, t)dWs,

where {K(s, t)}0≤s≤t is a Hilbert–Schmidt operator valued process and pre-
dictable in the index s. Although the integral is well-defined for each fixed
t ≥ 0, such integrals generally do not define Itô processes.

In this section we study the case of the stochastic convolutions, when the
integrand can be factored as

K(s, t) = St−sσs

where for each t > 0, St is a bounded operator and σt a Hilbert–Schmidt
operator. One of the reasons for singling out this class of integrands is that
the operator valued integrands that arise naturally in the study of HJM
models are generally of this form.

Recall that a collection {St}t≥0 of bounded linear operators on F is a semi-
group if S0 = I and Ss ◦ St = Ss+t for s, t ≥ 0. When F is a space of contin-
uous functions on R+, as in the case of the HJM models studied in Chaps. 6
and 7, the semigroup we deal with most frequently is the semigroup of left
shifts defined by

(Stf)(x) = f(t + x).

The vector valued process given by the stochastic convolution

∫ t

0

St−sσsdWs (4.13)
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is generally not an Itô process. Since the stochastic convolution does not
define a martingale in general, the standard martingale inequalities are un-
available. However, the following proposition yields an estimate which we will
find useful in proving the existence of mild solutions of SDE in Hilbert spaces.

Proposition 4.1. Let {St}t≥0 be a strongly continuous semigroup of opera-
tors on F , and let {σt}t≥0 be predictable, valued in the space LHS(H, F ) of
Hilbert–Schmidt operators, and satisfying the integrability condition

E

{

∫ T

0

‖σt‖pLHS(H,F )

}

< +∞

for some p > 2. Then there exists a constant C > 0 such that

E

{

sup
t∈[0,T ]

∥

∥

∥

∥

∥

∫ T

0

St−sσsdWs

∥

∥

∥

∥

∥

p

F

}

≤ CE

{

∫ T

0

‖σt‖pLHS(H,F )

}

.

Proof. The proof of the proposition is based on the factorization method
introduced by Da Prato, Kwapien, and Zabczyk. See [43] for details. First we
note that for every 0 < α < 1 and 0 < u < t we have the beta integral

∫ t

u

(t− s)α−1(s− u)−αds =
π

sin πα
.

Letting

Ys =

∫ s

0

(t− s)−2/(p+2)Ss−uσudWu

we have by the stochastic Fubini theorem and the above identity with α =
2/(p + 2) that the stochastic integral can be written as a Bochner integral

∫ t

0

St−uσudWu =
sin

(

2π
p+2

)

π

∫ t

0

(t− s)−p/(p+2)St−sYsds.

Hence by Hölder’s inequality we have

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

St−uσudWu

∥

∥

∥

∥

p

≤ π−p sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

(t− s)−p/(p+2)St−sYsds

∥

∥

∥

∥

p

≤ π−pMp

(

∫ T

0

s−p2/((p+2)(p−1))ds

)(p−1)/p
∫ T

0

‖Ys‖pds

≤ π−pMp

(

2p2

p− 2

)p−1

T (p−2)/(p+2)

∫ T

0

‖Ys‖pds
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where M = supt∈[0,T ] ‖St‖. Now the following bound

E{‖Ys‖pds} = E

{∥

∥

∥

∥

∫ s

0

(s− u)−2/(p+2)Ss−uσudWu

∥

∥

∥

∥

p}

≤ CpM
pE

{

(∫ s

0

(s− u)−4/(p+2)‖σu‖2LHS(G,F )du

)p/2
}

follows from a moment inequality for stochastic integrals, with Cp ≤ pp2p2/2−p.
Finally, Young’s inequality implies

∫ T

0

(∫ s

0

(s− u)−4/(p+2)‖σu‖2LHS(G,F )du

)p/2

ds

≤
∫ T

0

‖σu‖pLHS(G,F )du

(

∫ T

0

u−4/(p+2)du

)p/2

=

(

p + 2

p− 2

)p/2

T p(p+2)/(2(p−2))

{

∫ T

0

‖σu‖pLHS(G,F )du

}

.

Choosing a constant C satisfying

C > π−pM2pT p/2−12p2

p7p/2(p− 2)−(3p/2−1)

completes the proof. �

4.3 Martingale Representation Theorems

Throughout this section we assume that the filtration is generated by the

Wiener process, i.e. that Ft = F (W )
t = N ∪ σ{Ws; 0 ≤ s ≤ t} where as

usual N denotes the field of the sets of measure zero. That is, up to sets
of zero probability, for each t, the sigma-field Ft is the smallest sigma-field
containing the sets of the form {Ws ∈ A} for A ∈ E , and 0 ≤ s ≤ t. The fact
that E is separable implies that the Borel sigma-field E of E is generated by
the elements of the dual E∗, but also by any (countable) subset of E∗ as long
as this set is total for the weak topology. In particular, this implies that:

F (W )
t = N ∪ σ{x∗(Ws); x∗ ∈ E∗, 0 ≤ s ≤ t}

= N ∪ σ{x∗(Ws); x∗ ∈ H∗ , 0 ≤ s ≤ t}
= N ∪ σ{wn(s); n ≥ 1, 0 ≤ s ≤ t}

where as before, the i.i.d. (scalar) Wiener processes w(n) are obtained from
a CONS of H∗.
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The purpose of this section is to prove a representation theorem for mar-
tingales in the filtration of the Wiener process. This theorem is not much
different from the corresponding finite dimensional analog. We give a com-
plete proof for the sake of completeness.

Theorem 4.1 (Martingale Representation Theorem). For every
square-integrable martingale M = {Mt}t≥0 with values in a real separable
Hilbert space F , there exists a square-integrable σ = {σt}t≥0 predictable pro-
cess with values in LHS(H, F ) such that

Mt = M0 +

∫ t

0

σsdWs, t ≥ 0. (4.14)

Proof. Without any loss of generality we can assume that M0 = 0. More-
over, because of the right continuity of the filtration, we can reduce the
proof to proving that, for each T > 0 and each square-integrable F -valued
FT -measurable random variable MT , there exists a square-integrable σ =
{σt}0≤t≤T predictable process with values in LHS(H, F ) such that (4.14)
holds with t = T . Finally, the general case of a Hilbert space F can be re-
duced to the particular case of F = R by decomposing Mt on a CONS of
F , and reconstructing the operator σt from its one-dimensional projections
on the basis vector. We do not give the details of this last step because we
shall only need the martingale representation result in the case F = R. So
we consider that T > 0 is fixed, we define the set IT by:

IT =

{

∫ T

0

λsdWs; λ = {λt}0≤t≤T square-integrable, predictable in H∗
}

,

and we prove that L2
0(Ω,FT , P) = IT . where L2

0(Ω,FT , P) is the subspace of
mean-zero random variables in L2(Ω,FT , P). Since IT is closed in L2 because
of the energy identity (4.7), it is enough to show that:

ξ ∈ L2
0(Ω,FT , P) and ξ ⊥ IT imply ξ = 0.

Now let λ ∈ IT be deterministic and bounded, and let us set:

Nt =

∫ t

0

λsdWs =
∑

n≥1

∫ t

0

λ(n)
s dw(n)

s

where as usual, λ
(n)
s = 〈λs, en〉, and w

(n)
s = e∗n(Ws). {Nt; 0 ≤ t ≤ T } is

a square-integrable continuous martingale. Let {Mt; 0 ≤ t ≤ T } be the solu-
tion of the equation:

dMt = MtdNt
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with initial condition M0 = 1. We know that the solution of this equation is
given by:

Mt = exp

(

Nt −
1

2
≪ N, N ≫t

)

= exp

(∫ t

0

λsdWs −
1

2

∫ t

0

‖λs‖2H∗ds

)

,

where ≪ ·, · ≫ denotes the quadratic variation between semi-martingales.
Since λ is bounded, the random variable Mt is obviously square-integrable,
and moreover:

MT = C−1 exp

(

∫ T

0

λsdWs

)

for some deterministic constant C. Now

E

{

ξ exp

(

∫ T

0

λsdWs

)}

= CE{ξMT }

= CE

{

ξ

(

1 +

∫ T

0

MsλsdWs

)}

= 0

because the process {Mtλt}0≤t≤T is in IT . For each integer n ≥ 1, for each
subset {t1, . . . , tn} of [0, T ], for each subset {γ1, . . . , γn} of real numbers, and
for each subset {x∗

1, . . . , x
∗
n} of E∗ ⊂ H∗ we conclude that:

E

⎧

⎨

⎩

ξ exp

⎛

⎝

n
∑

j=1

γjx
∗
j (Wtj

)

⎞

⎠

⎫

⎬

⎭

= 0 (4.15)

by applying the previous result to:

λt =

n
∑

j=1

γj1[0,tj](t)x
∗
j .

Since the real valued random variables x∗
j (Wtj

) generate (together with the
null sets) the sigma-field FT , (4.15) implies that ξ = 0. �

Remark 4.2. If M = {Mt}t is only a local martingale then a standard localiza-
tion argument can be used to prove that there exists a predictable H∗-valued
process λ = {λt}t satisfying:

∫ t

0

‖λs‖2H∗ ds <∞ for all t > 0 (4.16)

and such that Eq. (4.14) holds. Remember the condition (4.12) under which
the stochastic integral can still make sense. In particular, any local martingale
in this filtration is continuous (since it is a stochastic integral).
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4.4 Girsanov’s Theorem and Changes of Measures

Let λ = {λt; t ≥ 0} be a predictable process with values in the dual H∗ of
the RKHS H , and let us assume as before that:

E

{∫ t

0

‖λs‖2H∗ ds

}

<∞, for all t > 0. (4.17)

Then we can consider the (real valued) square-integrable martingale M =

{Mt}t≥0 defined by the stochastic integral Mt =
∫ t

0 λsdWs. Its quadratic

variation process is ≪ M ≫t =
∫ t

0 ‖λs‖2H∗ds and consequently, the process
Z = {Zt}t≥0 defined by:

Zt = eMt− 1
2≪M,M≫t = exp

(
∫ t

0

λsdWs −
1

2

∫ t

0

‖λs‖2H∗ds

)

(4.18)

is a non-negative local martingale. The process {Zt}t≥0 is usually called the
Doleans exponential of the (local) martingale Mt. We shall assume that it is
in fact a martingale (i.e. that E{ZT } = 1), allowing us to define a probability
measure Q by its restrictions to all the sigma-fields Ft, these restrictions
being given by their densities with respect to the corresponding restrictions
of P. More precisely, we define Q so that:

dQ

dP

∣

∣

∣

∣

Ft

= exp

(∫ t

0

λsdWs −
1

2

∫ t

0

‖λs‖2H∗ds

)

. (4.19)

Sufficient conditions for Zt to be a martingale exist. The most well known of
them is presumably Novikov’s condition. Note that we implicitly assumed
that F was the smallest sigma-field containing all the Ft’s. Our version of
the famous Girsanov theorem is the following:

Theorem 4.2 (Girsanov’s Theorem). The E-valued process W̃ = {W̃t;
t ≥ 0} defined by:

W̃t = Wt −
∫ t

0

Rλs ds (4.20)

is a Wiener process for the measure Q, i.e. on the probability structure
(Ω,F , {F}t)t≥0, Q), where the linear map R is the Riesz identification of
H∗ onto H.

Proof. Since {W̃t}t is a bona fide E-valued process (i.e. not cylindrical), we
only need to prove that for each x∗ ∈ E∗, the process {x∗(W̃t)}t is a scalar
Ft-Wiener process the variance of which is the square of the norm of x∗ in
the dual of the RKHS of W̃ . In other words, it is enough to prove that for
each x∗ ∈ E∗,

exp
(

x∗(W̃t)− t‖x∗‖2H∗/2
)
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is an Ft-local martingale for Q. Because of the characterization of Q-mar-
tingales in terms of P-martingales given above, this is equivalent to proving
that

exp
(

x∗(W̃t)− t‖x∗‖2H∗/2
)

Zt

is an Ft-local martingale for P. But given the definition of the density process
Zt and the fact that:

x∗(W̃t) = x∗(Wt)−
∫ t

0

x∗(Rλs)ds = x∗(Wt)−
∫ t

0

〈x∗, λs〉H∗ds,

this is an easy consequence of the fact that {
∫ t

0 (x∗λs)dWs}t≥0 is a continuous
{Ft}t≥0-martingale for P with quadratic variation

t‖x∗‖2H∗ − 2

∫ t

0

〈x∗, λ∗
s〉H∗ds +

∫ t

0

‖λs‖2H∗ds.

The proof is now complete. �

Changes of Measures

The above result says that, if we start from an E-valued Wiener process W
on the probability structure (Ω,F , (Ft)t≥0, P), for each H∗-valued integrand

λ for which the Doleans exponential of the stochastic integral
∫ t

0
λsdWs is

a bona fide martingale, one can define a probability measure Q which is lo-
cally equivalent to P, and we can even recover an E-valued Wiener process
W̃ by correcting Wt (which is no longer a Wiener process on the proba-
bility structure induced by Q) with a bounded variation drift constructed
from λ.

In many financial applications, we start with a probability measure P

(called the historical measure) and in order to compute prices by expec-
tations, we replace P by an equivalent measure with turns the discounted
prices of all the tradable instruments into martingales (a so-called equivalent
martingale measure). In order to prepare for this passage to the risk neutral
world, we first investigate the class of all the equivalent probability measures.
When we say equivalent, we really mean locally equivalent in the sense that
for each t > 0, the restriction of Q to Ft, say Qt, is equivalent to the restric-
tion of P to Ft, say Pt, i.e. Qt ∼ Pt for all t. So what can we say about such
measures Q?

If Q is locally equivalent to P, let Zt be the density (i.e. the Radon–
Nykodym derivative) of Qt with respect to Pt. It is easy to see that
Z = {Zt; t ≥ 0} is a non-negative P-martingale with expectation 1. The
filtration {Ft}t being assumed to be right continuous, the sample paths of
the martingale {Zt}t can be assumed to be almost surely right continuous.



4.5 Infinite Dimensional Ornstein–Uhlenbeck Processes 119

An equivalent form of the definition of the martingale Z is that for every
0 ≤ s < t, and every Ft-measurable random variable X we have:

EQ{X |Fs} =
1

Zs
EP{XZt|Fs}

or even that an adapted and Q-integrable process {Xt}t is a Q-martingale if
and only if the process {XtZt}t is a P-martingale.

If we now assume that the filtration {F}t is the filtration {F (W )
t }t of an

E-valued Wiener process, then {Zt}t is a local martingale with continuous
sample paths, and applying Itô’s formula to compute log Zt, we see that:

Zt = exp

(

Mt −
1

2
≪M, M≫t

)

for some (continuous) local martingale {Mt}t. Applying the martingale rep-
resentation theorem to this local martingale, we get the existence of a pre-
dictable H∗-valued process {λt}t such that (4.16) and Mt =

∫ t

0
λsdWs. So

we have completed the journey, we are back where we started from, in the
situation described in the statement of the Girsanov’s theorem for which:

Zt = exp

(∫ t

0

λsdWs −
1

2

∫ t

0

‖λs‖2H∗ds

)

.

4.5 Infinite Dimensional Ornstein–Uhlenbeck

Processes

In this section, we review various facts about Ornstein–Uhlenbeck (OU) pro-
cesses, and especially their infinite dimensional versions. Some of the results
we review will be used in the study of the specific interest rate models we
consider in Chap. 7. Moreover, the intuition which we develop will help us
extend some of the theoretical results to situations of interest.

4.5.1 Finite Dimensional OU Processes

A one-dimensional OU process is usually defined as the solution of the
stochastic differential equation:

dξt = −aξtdt + bdwt (4.21)

where the a and b are real numbers and where {wt}t≥0 is a one-dimensional
Wiener process. The coefficient a appearing in the drift is often assumed to
be positive, for when this is the case, the drift is a restoring force reverting ξt

toward its mean. The initial condition, say ξ0, is usually (implicitly) assumed
to be independent of the driving Wiener process. The solution can be written
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explicitly in the form:

ξt = e−taξ0 + b

∫ t

0

e−(t−s)adws, 0 ≤ t < +∞. (4.22)

The mean and the covariance of the solution are given by the formulas:

E{ξt} = e−taE{ξ0} (4.23)

and

cov{ξs, ξt} =

[

var{ξ0}+
b2

2a
(e2(s∧t)a − 1)

]

e−(s+t)a. (4.24)

Notice that {ξt}t is a Gaussian process whenever ξ0 is Gaussian. The so-
lution process is a Markov process. It has a unique invariant measure, the
normal distribution N(0, b2/2a). Starting with this distribution, the Markov
process becomes a stationary ergodic Markov (mean-zero) Gaussian process.
Its covariance is then given by the formula:

E{ξsξt} =
b2

2a
e−a|t−s|. (4.25)

Let us now review the concept of an n-dimensional (n finite) OU process,
say {Xt; t ≥ 0}. As we can see by comparing formulas (4.21–4.25) to formulas
(4.26–4.30) below, in order to go from the definition of a one-dimensional OU
process to the definition of the n-dimensional analog we need the following
substitutions:

−a ∈ R −→ A n× n matrix

b ∈ R −→ B n× n matrix

{wt}t≥0 1− dim. Wiener Process −→ {Wt}t≥0 n− dim. Wiener Process

In this way, an n-dimensional OU process can be defined as the solution of
a system of stochastic equations written in a vector form as:

dXt = AXtdt + BdWt (4.26)

where {Wt}t≥0 is an n-dimensional Wiener process. Note that B really does
not need to be a square matrix. It could be an n × d matrix as long as the
Wiener process W is d-dimensional.

As before, the solution of the stochastic system can be written explicitly:

Xt = etAX0 +

∫ t

0

e(t−s)ABdWs, 0 ≤ t < +∞. (4.27)

If X0 is assumed to be independent of the driving Wiener process, the mean
and the covariance are given by the formulas:

E{Xt} = etAE{X0} (4.28)
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and

cov{Xs, Xt} = esAvar{X0}etA∗

+

∫ s∧t

0

e(s−u)ABB∗e(t−u)A∗

du. (4.29)

As before, {Xt}t is a Gaussian process as soon as the initial condition X0 is
Gaussian. We shall always restrict ourself to this case. The process is a strong
Markov process.

In the same way a is often assumed to be positive to guarantee the er-
godicity of the process and the convergence as t → ∞ toward an invariant
measure, the drift matrix A is often assumed to be strictly dissipative in the
sense that

〈Ax, x〉 < 0 for all x ∈ Rn, x �= 0.

This assumption ensures the same ergodicity and exponential convergence
for large times as in the scalar case. Moreover we get existence of a unique
invariant probability measure which is Gaussian with covariance Σ given by

Σ =

∫ ∞

0

esABB∗esA∗

ds.

Notice that the fact that Σ solves the equation

ΣA∗ + AΣ = BB∗

is the crucial property of the matrix Σ. Starting from the invariant measure μ,
the process {Xt}t≥0 becomes a stationary mean-zero (Markov) Gaussian pro-
cess. Its distribution is determined by its covariance function:

Γ (s, t) = Eμ{Xs ⊗Xt} =

{

Σe(t−s)A∗

whenever 0 ≤ s ≤ t

e(s−t)AΣ whenever 0 ≤ t ≤ s.
(4.30)

One sees that the formulae can become cumbersome because of the possibility
that A is not self-adjoint and the matrices A and Σ do not commute. However,
in many of the situations which have been considered, the matrix A is self-
adjoint and commutes with BB∗. In this case, we can rewrite the above
formulae in an easier form. For example, the formula for Σ becomes:

Σ = BB∗
∫ ∞

0

e2sA ds = BB∗(−2A)−1

and the equality (4.30) between matrices can be rewritten in terms of the
entries of the matrices. More precisely, if x, y ∈ Rn we have:

〈x, Γ (s, t)y〉 = Eμ{〈x, Xs〉〈y, Xt〉} = 〈
√

Σx,
√

Σe|t−s|Ay〉 = 〈x, e|t−s|Ay〉Σ
if we use the notation:

〈 · , · 〉D = 〈
√

D · ,
√

D · 〉 = 〈D · , · 〉
for the inner product in Rn naturally associated with a positive definite ma-
trix D. The Markov process {Xt}t≥0 is symmetric in the sense of the theory
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of symmetric Markov processes developed by Fukushima and his followers.
Indeed, a simple integration by parts shows that it is the process associated
with the Dirichlet form of the measure μ, i.e. to the quadratic form:

Q(f, g) =

∫

Rn

〈∇f(x),∇g(x)〉B∗B μΣ(dx)

defined on the subspace Q of L2(Rn, μΣ(dx)) comprising the absolutely con-
tinuous functions whose first derivatives (in the sense of distributions) are
still in the space L2(Rn, μΣ(dx)).

If we let {ei}i be the orthonormal basis of Rn composed of the common
set of eigenvectors of the commuting self-adjoint matrices A and BB∗, then

the coordinate processes X
(i)
t = 〈ei, Xt〉 are scalar OU processes satisfying

the SDE
dX

(i)
t = −aiX

(i)
t dt + bidw

(i)
t

where −ai and b2
i are the i-th eigenvalues of A and BB∗ respectively and the

{w(i)
t }t≥0 are independent scalar Wiener processes. In this case, the covari-

ance Σ of the invariant measure is diagonal with respect to the basis {ei}i
with i-th diagonal entry given by b2

i /2ai. An infinite dimensional analog of
the above situation arises in Chap. 7 in the analysis of a “random string”
term structure rate model.

Even if we drop the assumptions that A is self-adjoint and commutes with
BB∗, we have seen above that the existence and uniqueness of an invariant
measure is guaranteed as long as the drift matrix A is strictly dissipative.
However, if there exists an x ∈ Rn such that 〈Ax, x〉 ≥ 0 then an invariant
measure may fail to exist, and even if an invariant measure exists, it may not
be unique.

An important case is when A is singular, but satisfies 〈Ax, x〉 < 0 for all
vectors x not in the kernel of A. Notice that under this assumption, A is still
dissipative though not strictly dissipative any longer, and this implies that
ker(A) = ker(A∗). Now consider the SDE:

dXt = AXtdt + BdWt.

In this case, the dynamics decouple. Let Xt = X
(K)
t +X

(R)
t and B = B(K) +

B(R) where X(K) and X(R) and B(K) and B(K) are the projections of Xt

and B onto the kernel and range of A respectively. Then the SDE becomes
the system:

dX
(K)
t = B(K)dWt

dX
(R)
t = AX

(R)
t dt + B(R)dWt.

Clearly, there exists an invariant measure if and only if the range of B
is contained in the range of A. If there exists an invariant measure, then

X
(K)
t = X

(K)
0 for all t ≥ 0 and hence there are an infinite number of invariant
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measures. These measures are convolutions of the form μ∞ = ν∗N(0, Σ). The

measure ν is the distribution of X
(K)
0 and can be an arbitrary measure sup-

ported on the kernel of A. The measure N(0, Σ) is a Gaussian measure on Rn

supported on the range of A, where the covariance is Σ =
∫ ∞
0 eAtBB∗eA∗tdt

as before. Most of these measures will not be Gaussian since the distribu-
tion of X

(K)
0 can be arbitrary. We will come across the same phenomenon in

Chap. 7 in the analysis of the Gauss-Markov HJM models.

4.5.2 Infinite Dimensional OU Processes

We now consider the problem of the definition of OU processes in an infinite
dimensional setup. The three approaches discussed in the finite dimensional
case are possible. We consider them in the three bullet points below. But
first, we list some of the adjustments which are needed to get to a genuine
infinite dimensional setting.

1. The Euclidean space Rn is replaced by a (possibly infinite dimensional)
Hilbert space, say F .

2. The n × d dispersion matrix B is replaced by a (possibly unbounded)
operator which we will still denote by B.

3. The n×n drift coefficient matrix A is replaced by a (possibly unbounded)
operator on F which we will still denote by A.

4. The role played by the d-dimensional Wiener process W can be played
by an infinite dimensional Wiener process (possibly cylindrical) in the
domain of the dispersion operator B. In fact, because this situation can
be quite singular, the operator B and the Wiener process are sometimes
bundled together, and the role of BdWt can be played by an F -valued
white noise measure with covariance given by the operator B∗B. If that
is the case, the appropriate mathematical object is a linear function, say
WB , from the tensor product L2([0,∞), dt)⊗FB into a Gaussian subspace
of L2(Ω,F , P) where (Ω,F , P) is the complete probability space we work
with. If x ∈ FB and t ≥ 0, then WB(1[0,t)(·)x) should play the same role
as 〈x, Wt〉 in the finite dimensional case. We shall refrain from using this
approach in this book.

We now discuss the three approaches alluded to above.

Solution of a stochastic partial differential equation

In the same way the finite dimensional OU processes were defined as solutions
to some specific stochastic differential equations, the infinite dimensional OU
processes can be introduced as solutions of stochastic partial differential equa-
tions (SPDE for short). Formally we try to solve:

dXt

dt
= AXt +

dWB

dt
(4.31)
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which can be regarded as an SPDE when A is a partial differential oper-
ator. Notice that the dispersion operator B is now included in the infinite
dimensional analog of the driving Wiener process. This equation can be given
a rigorous meaning by considering the integral equation:

〈f∗, Xt〉 = 〈f∗, X0〉+
∫ t

0

〈A∗f∗, Xs〉ds + W (1[0,t)(·)f∗)

where W (1[0,t)(·)f∗) is a rigorous way to introduce the anti-derivative of the
white noise appearing in the right-hand side of Eq. (4.31). Such an equation
makes sense when f∗ belongs to the domain D(A∗) of the adjoint operator
A∗. This integral equation can be solved under some restrictive conditions on
the data (F, A, B, WB). See for example [45], [132] or [3] and the references
therein. All these works assume that the operator A is self-adjoint and neg-
ative. We shall consider in the next chapter situations in which the operator
A satisfies neither of these assumptions. In other words, the operator A will
be neither self-adjoint, nor bounded from above.

Symmetric Process Associated with a Dirichlet Form

We saw that when the finite dimensional matrix A is symmetric and negative
definite, the Markov process {Xt}t≥0 can be characterized as the symmet-
ric process associated with the Dirichlet form of the invariant measure μ.
Moreover, using the theory of Dirichlet forms and starting from the invariant
measure μ and a specific notion of gradient operator, this procedure can be
reversed and the process itself could be constructed from these data. This
approach can be generalized to the infinite dimensional setting as well. We
can assume that F is a real separable Hilbert space containing the RKHS HΣ

(recall that the self-adjoint operator Σ is defined as BB∗(−2A)−1) and such
that the canonical cylindrical measure of HΣ extends into a sigma-additive
probability measure on F . Notice that this countably additive extension is
the measure which we denoted by μΣ so far. The abstract theory of Dirichlet
forms gives a construction, starting from the Dirichlet form

Qμ(f, g) =

∫

F

〈∇f(x),∇g(x)〉BB∗ μΣ(dx)

associated with the measure μΣ , of a symmetric strong Markov process
{Xt}t≥0. This construction is carried out when the dispersion operator B
is the identity in the review article [31], but it can be adapted to apply to
more general cases.

Gaussian Process

Infinite dimensional OU processes can also be constructed directly as Gaus-
sian processes. See [3]. If we assume that A and B are self-adjoint and that
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they commute, the construction of the process starting from the origin, say

{X(0)
t }t≥0, can be performed by first choosing a Hilbert space F and then by

constructing a mean-zero F -valued Gaussian process with continuous sample
paths and with covariance function given by:

E{f∗(X(0)
s )g∗(X

(0)
t )} =

∫ s∧t

0

〈e(s−u)Af∗, e(t−u)Ag∗〉BB∗ du

for all the elements f∗ and g∗ of the dual F ∗ of F . The process {X(f)
t )}t≥0

starting from a generic point f of F is then constructed via the formula:

X
(f)
t = etAf + X

(0)
t .

It is plain to check that the measure μΣ introduced earlier is invariant for
this process and that the desired process is the process started from this
invariant measure. In other words, the stationary OU process we are looking
for is given as the mean-zero (continuous) stationary Gaussian process with
covariance:

E{f∗(X(0)
s )g∗(X(0)

t )} = 〈e|t−s|Af∗, g∗〉BB∗ .

The construction of infinite dimensional OU processes as Gaussian processes
is not artificial. Indeed, in applications related to Kolmogorov’s models of
turbulent flows, these processes are given as multiparameter stationary and
homogeneous Gaussian fields whose distributions are derived from their spec-
tral characteristics. Since we saw that multiparameter random fields lead
naturally to function space valued processes, it appears quite natural to con-
struct them following the directives outlined above. The interested reader is
referred to the Notes & Complements at the end of the chapter for specific
references.

4.5.3 The SDE Approach in Infinite Dimensions

Since solving SDE in (possibly) infinite dimensional spaces will be the tech-
nique of choice to guarantee the existence of the stochastic models for the
term structure of interest rate, we devote this last subsection to a quick review
of this approach.

We are attempting to construct a stochastic process X = {Xt; t ≥ 0}
on a stochastic basis (Ω,F , (Ft)t≥0, P) satisfying the usual assumptions, and
as explained earlier in this book, we assume that the state space of the pro-
cess is a real separable Hilbert space F . The drift operator A is usually an
unbounded operator on F . But since the result of the construction in the
finite dimensional case could be expressed in terms of the semigroup etA, we
assume that:

• A is the infinitesimal generator of a strongly continuous semigroup
{etA; t ≥ 0} of bounded operators on F . The domain of A,
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D(A) =

{

f ∈ F ; lim
t→0

etAf − f

t
exists

}

,

is generally a proper subset of F , which can be small, but which is always
dense in F . See Sect. 4.6 below for the definitions of strongly continuous
semigroups.

• The source(s) of noise are captured by a Wiener process W = {Wt; t ≥ 0}
in a real separable Banach space E, and we denote by H the RKHS of the
distribution of W1. We have the following abstract Wiener space diagram:

E∗ →֒ H∗

� (Riesz identification)

H →֒ E

• The dispersion operator B is assumed to be a (deterministic) bounded lin-
ear operator from E into F . Consequently, its restriction to H is Hilbert–
Schmidt.
Note that it is possible to take B defined only on H if we start with
a cylindrical Wiener process in H . But in this case, we would need to
assume that B is a Hilbert–Schmidt operator.

Formally the Ornstein–Uhlenbeck process satisfies the stochastic differential
equation

dXt = AXtdt + BdWt (4.32)

or in integral form

Xt = X0 +

∫ t

0

AXsds +

∫ t

0

BdWs. (4.33)

Everything has been done for the second integral to make sense, but the
first one is still a problem since Xs may not be (and presumably will not
be) in the domain of A when A is unbounded. In particular, if we want to
use the Picard iteration scheme directly to prove existence and uniqueness of

a solution of (4.32), we need to set X
(0)
t = X0 and

X
(n+1)
t = X

(n)
t +

∫ t

0

AX(n)
s ds +

∫ t

0

BdWs

but this would not work because X(n) will very likely be outside the domain
D(A). There are several ways to define a solution of (4.32) or (4.33). A first
possibility is to demand that a solution satisfy (4.32) in the sense of Schwartz
distributions. This leads to the notion of a weak solution. In order to define
the concept of a weak solution we remark that if {Xt}t satisfies (4.33), then
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for all f∗ ∈ D(A∗) we have:

〈f∗, Xt〉 = 〈f∗, X0〉+
〈

f∗,

∫ t

0

AXsds

〉

+ 〈f∗,

∫ t

0

BdWs〉

= 〈f∗, X0〉+
∫ t

0

〈f∗, AXs〉ds +

∫ t

0

〈f∗, BdWs〉

= 〈f∗, X0〉+
∫ t

0

〈A∗f∗, Xs〉ds +

∫ t

0

〈B∗f∗, dWs〉.

With this in mind we say that {Xt}t is a weak solution if for all f∗ ∈ D(A∗)
we have:

〈f∗, Xt〉 = 〈f∗, X0〉+
∫ t

0

〈A∗f∗, Xs〉ds +

∫ t

0

〈B∗f∗, dWs〉.

This notion of a weak solution should not to be confused with the probabilist’s
notion of weak solution of an SDE. Weak solutions are sometimes difficult
to come by. So we consider a notion of a solution for a more regular form of
the equation. The latter is obtained by applying the method of the variation
of the constant (considering BdWt as a forcing term) to the solution of the
deterministic (infinite dimensional) dynamical system obtained by setting
B = 0. This form of the equation is often called the evolution form of the
equation. It reads:

Xt = etAX0 +

∫ t

0

e(t−s)ABdWs.

Notice that, since Xt does not appear in the right-hand side (except for its
initial value X0) this form actually gives the solution (if any) of the equation.
What do we need for the evolution form to make sense? The first term etAX0

is okay if {etA}t is a strongly continuous semigroup on F and X0 ∈ F a.s.

The problem of the existence of the second integral
∫ t

0 e(t−s)ABdWs should
be easy because the integrand is deterministic:

E
B−→ F

e(t−s)A

−→ F.

Again, everything is okay if B is really defined on E and is a bounded operator
from E into F . Notice that we need an extra condition (for instance that B is
Hilbert–Schmidt) if W is only cylindrical and B is only defined on H ! Notice
that the process {Xt}t≥0 defined by the evolution equation is not necessarily
an F -valued Itô process.

As explained in the previous section, because of the form of the Eq. (4.32)
and because of the uniqueness of the solution, the solution {Xt}t has the
Markov property. The transition probability is given by:

Pt(f, U) = P{Xt ∈ U |X0 = f}

= P

{∫ t

0

e(t−s)ABdWs ∈ U − etAf

}

.
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This probability distribution results from the shift by etAf of the distribution
of the random vector

∫ t

0
e(t−s)ABdWs. Since the latter is a mean-zero Gaus-

sian measure on F , it is completely characterized by its covariance operator.
For f∗, g∗ ∈ F ∗ define:

Γt(f
∗, g∗) = E

{〈

f∗,

∫ t

0

e(t−s)ABdWs

〉〈

g∗,

∫ t

0

e(t−s)ABdWs

〉}

.

By polarization, this bilinear form is entirely determined by the quadratic
form:

Γt(f
∗, f∗) = E

{

〈f∗,

∫ t

0

e(t−s)ABdWs〉2
}

=

∫ t

0

‖B∗(e(t−s)A)∗f∗‖H∗

W
ds

=

∫ t

0

〈f∗, euABB∗(e(uA)∗f∗〉du

=

〈

f∗,

∫ t

0

euABB∗(e(uA)∗duf∗,

〉

where HW is the RKHS associated with the law of W1. This computation is
identical to its finite dimension analog. The ergodic properties of the process
can often be derived from the large time behavior of the process. So we address
the question of the existence of limt→∞ Xt in distribution. The process has an
invariant measure μ∞ if and only if the operator Σ defined by the improper
integral:

Σ =

∫ ∞

0

eAuBB∗eA∗u du

is the covariance operator of a Gaussian measure on F , that is, if Σ is of
trace class on F . Typically, an operator A is said to be of trace class if it
can be written in the form A = BB∗ for a Hilbert–Schmidt operator B. The
terminology comes from the fact that these operators are compact and if we
denote by λn the eigenvalues, then we have

∑

n |λn| < ∞. In other words,
the infinite series which should be giving the trace of A does converge, i.e. is
finite. As in the finite dimensional case, a sufficient condition for the existence
and uniqueness of an invariant measure is that A is bounded from above in
the sense that there exists an a > 0 such that

〈Af, f〉 ≤ −a|f |2

for all f ∈ D(A). However, if the kernel of A is nontrivial, then the exis-
tence and uniqueness of an invariant measure are no longer guaranteed. This
problem has been investigated in many specific models. See the Notes & Com-
plements for references. We shall revisit it in the case of the interest models
discussed in Chap. 7.
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4.6 Stochastic Differential Equations

In this section we discuss a natural extension of the classical existence and
uniqueness theory of solutions of stochastic differential equations (SDE for
short) to the case of Banach space valued Wiener processes. References to
the original results and their proofs are given in the Notes & Complements
at the end of the chapter.

Let {St}t≥0 be a strongly continuous semigroup of bounded operators on
a real separable Hilbert space F . This means that the collection {St}t≥0 of
operators satisfies:

1. S0 = I where I is the identity on F ,
2. Ss ◦ St = St+s for all s, t ≥ 0,
3. limt→0 ‖Stf − f‖ = 0 for all f ∈ F .

Given a strongly continuous semigroup {St}t≥0, the infinitesimal generator
A is defined by its domain D(A)

D(A) =

{

f ∈ F ; lim
t→0

Stf − f

t
exists

}

which appears as a dense subspace of F because of assumption 3 above, and
its action on D(A) given by

Af = lim
t→0

Stf − f

t
for f ∈ D(A).

For the sake of convenience we state the Hille–Yosida Theorem: An operator
A is the infinitesimal generator of a strongly continuous semigroup {St}t≥0 on
F with ‖St‖L(F ) ≤Mect if and only if the domainD(A) is dense, the resolvent

operator (λI −A)−1 is bounded for λ > c and the estimate ‖(λI −A)−k‖ ≤
M(λ− c)−k holds for all natural numbers k.

We are interested in the solutions, if any, of the stochastic differential
equation

dXt = (AXt + a(t, Xt))dt + b(t, Xt)dWt (4.34)

as processes {Xt}t≥0 taking values in F . The drift is separated into two
pieces: a linear but possibly unbounded operator A and a smooth but possibly
nonlinear function a : R+×F →֒ F . The noise is modeled by a Wiener process
{Wt}t≥0 which we will assume is defined cylindrically on a real separable
Hilbert space G. Since the Wiener process is only cylindrical, we assume that
the function b : R+ × F → LHS(G, F ) takes values in the space of Hilbert–
Schmidt operators from G into F .

If A is a bounded operator then D(A) = F and the natural notion of
solution to Eq. (4.34) is that of the strong solution:

Xt = X0 +

∫ t

0

(AXs + a(s, Xs))ds +

∫ t

0

b(s, Xs)dWs.
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However, as we have seen in our discussion of the infinite dimensional
Ornstein–Uhlenbeck process, if the operator A is unbounded, it may be im-
possible to give meaning to the above integral equation.

As before, we recast the differential equation (4.34) as an integral equation
by formally using the variations of the constant formula:

Xt = StXt +

∫ t

0

St−sa(s, Xs)ds +

∫ t

0

St−sb(s, Xs)dWs (4.35)

where St = eAt. A solution of the integral equation (4.35) is a called a mild
solution of the evolution equation (4.34). Notice that if {Xt}t≥0 is a mild
solution, implicitly the following inequality must hold

∫ t

0

‖St−sb(s, Xs)‖2LHS(G,F )ds < +∞

almost surely in order that the stochastic integral on the right-hand side of
Eq. (4.35) is meaningful. Similarly, we demand that a mild solution {Xt}t≥0

satisfy
∫ t

0

‖St−sa(s, Xs)‖F ds < +∞

almost surely to ensure that the Bochner integral the right-hand side of
Eq. (4.35) is well defined.

One advantage to working with mild solutions rather than strong solutions
is that there are cases when a mild solution exists when a strong solution does
not exist. This is generally the case with the interest rate models described
in Chap. 6. However, a word of caution is in order:

A mild solution is in general not an Itô process! Therefore, care must
be taken when using the Itô calculus in infinite dimensions. In par-
ticular, Itô’s formula generally does not hold for functions of mild
solutions of infinite dimensional SDE.

We now present a basic existence and uniqueness result:

Theorem 4.3. Consider the stochastic evolution equation

dXt = (AXt + α(t, Xt))dt + β(t, Xt)dWt.

If the operator A generates a strongly continuous semigroup {St}t≥0 and if
the functions α : R+ × F → F and β : R+ × F → LHS(G, F ) satisfy the
Lipschitz bound

‖α(t, x) − α(t, y)‖F + ‖β(t, x)− β(t, y)‖LHS(G,F ) ≤ K‖x− y‖F
then there exists a unique, up to indistinguishability, F -valued mild solution
{Xt}t≥0 to the equation such that for all T ≥ 0 and p > 2 we have

E{ sup
t∈[0,T ]

‖Xt‖p} < Cp(1 + ‖X0‖p).
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Proof. The existence is proven via the Picard iteration scheme. Fix T > 0
and let X0

t = StX0 for all t ∈ [0, T ] and

X
(n+1)
t = StX0 +

∫ t

0

St−sα(s, X(n)
s )ds +

∫ t

0

St−sβ(s, X(n)
s )dWs

for n ≥ 0. Fix an exponent p > 2. We have the inequality

E{ sup
t∈[0,T ]

‖X(n+1)
t −X

(n)
t ‖pH}

≤ pE

{∥

∥

∥

∥

∥

sup
t∈[0,T ]

∫ T

0

St−s

(

α(s, X(n)
s )− α(s, X(n−1)

s )
)

ds

∥

∥

∥

∥

∥

p}

+ pE

{∥

∥

∥

∥

∥

sup
t∈[0,T ]

∫ T

0

St−s

(

β(s, X(n)
s )− β(s, X(n−1)

s )
)

dWs

∥

∥

∥

∥

∥

p}

.

The first term of the right-hand side is easily dealt with:

E

{∥

∥

∥

∥

∥

sup
t∈[0,T ]

∫ T

0

St−s

(

α(s, X(n)
s )− α(s, X(n−1)

s )
)

ds

∥

∥

∥

∥

∥

p}

≤ CE{‖ sup
t∈[0,T ]

‖X(n)
t −X

(n−1)
t ‖p}

for a constant C. The second term is nearly as easy – just apply Proposi-
tion 4.1 to stochastic convolution:

E

{∥

∥

∥

∥

∥

sup
t∈[0,T ]

∫ T

0

St−s

(

β(s, X(n)
s )− β(s, X(n−1)

s )
)

dWs

∥

∥

∥

∥

∥

p}

≤ CE{ sup
t∈[0,T ]

‖X(n)
t −X

(n−1)
t ‖p}

for another constant C. Combining the estimates we have

E{ sup
t∈[0,T ]

‖X(n+1)
t −X

(n)
t ‖pH} ≤ CE{ sup

t∈[0,T ]

‖X(n)
t −X

(n−1)
t ‖pH}

for a constant C which depends on the horizon T > 0. In particular C(T )→ 0
as T → 0, so that we may find a horizon T1 such that C(T1) < 1. By induction
we have

E{ sup
t∈[0,T ]

‖X(n)
t −X

(n−1)
t ‖p} ≤ C(T1)

nK

so that ∞
∑

n=1

E{ sup
t∈[0,T ]

‖X(n)
t −X

(n−1)
t ‖pH}1/p <∞
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implying that the sequence of processes {Xn}n converges to a continuous
F -valued adapted process on [0, T1]. The restriction on the length of the
horizon can be removed by considering the equation on the intervals [T1, 2T1],
[2T1, 3T1], etc. �

We can easily extend this result to the case when the functions α and β
are random, assuming that a predictability condition is satisfied.

Notes & Complements

The Brownian sheet appeared in a work of Jack Kiefer [84] in a functional limit
theorem proven to derive asymptotic statistical test procedures. Its distribution was
independently studied in J. Yeh’s Ph.D. [135], and some do call the two parameter
Wiener measure the Yeh measure. The work of Kennedy cited in the first section
can be found in [88] and [89]. Stochastic integration in an abstract Wiener space was
developed in Kuo’s Ph.D. See [94] and references therein for details. His original
work included an unnecessary assumption on the existence of a series of finite
dimensional projections converging toward the identity. This assumption is not
needed for one can use the uniform convergence in the expansion (3.3) instead.
Similar (and essentially equivalent) results were obtained by Yor in [136] in the
Hilbert space setting. See also the work of Gaveau [68] in this respect.

Viewing multiparameter stochastic processes as processes with a single param-
eter and values in a functional space is a standard procedure used in statistics (see
for example the work of Kiefer [84]), mathematical physics (see for example the
work of Gross and Carmona such as [28] and the references therein) and in many
other domains for the pure sake of convenience (see for example [71], [3]).

The attentive reader presumably noticed the fact that most of the examples of
Gaussian random fields were given by specifying a covariance function of a tensor
product nature. The special properties of these processes/fields were analyzed by
Chevet and Carmona in a series of papers on the tensor products of abstract Wiener
spaces [38], [29], [34].

The anomalous measure theoretic properties of infinite dimensional Wiener pro-
cesses were first noticed by Gross in [75] and by Carmona in [30].

The reader interested in measurability issues related to random operators is
referred to the book [35] by Carmona and Lacroix or to Skorohod’s book [125] for
complements. The extension of the classical existence and uniqueness theory for
SDEs with Lipschitz coefficients to the setting of an abstract Wiener space was first
given in Kuo’s Ph.D. See his lecture notes [94] for details, or the book of Da Prato
and Zabczyk for a more recent account of the Hilbert space valued case.

To the best of our knowledge, an infinite-dimensional version of the Ornstein–
Uhlenbeck process was first introduced in Ann Piech’s Ph.D. in 1970. See [112]. This
infinite dimensional process did not attract much attention: it appeared at that time
as a mere curiosity. Things changed dramatically with the wave of interest created
by the coming of age of the Malliavin calculus. Indeed the infinite dimensional
Ornstein–Uhlenbeck process constructed on the classical Wiener measure was built
up to play a crucial role. A series of papers devoted to its rediscovery appear as
a consequence of this renewal of interest. See for example the articles of D. Stroock
[127] and P.A. Meyer [104], or references found in Nualart’s book [109].
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Infinite dimensional Ornstein–Uhlenbeck processes also appeared as solutions

of linear stochastic partial differential equations. In this respect, the first instance

of such a limit theorem is presumably due to Dawson and Salehi [45] and [46]

who showed that infinite dimensional Ornstein–Uhlenbeck processes appeared nat-

urally as a limit evolution equation. They also appeared as limits of infinite parti-

cle systems in the work of Holley and Stroock [81]. Parabolic equations driven by

multi-parameter white noise led to similar linear stochastic PDEs in mathematical

physics, constructive quantum field theory to be specific. See for example [77] or

[28]. Another incarnation of the same process also occurred in mathematical models

for neurobiology [132] by J. Walsh who used it as a model for neuronal activity. See

also [3]. Finally, we quote Kolmogorov’s kinematic approach to fully developed tur-

bulence as an another instance. Indeed, this theory suggests to model the velocity

field of a turbulent incompressible fluid as a homogeneous Gaussian random field,

and the spectra proposed on physical grounds to describe the statistics of these

fields (see for example the Avellaneda and Majda proposal [4]) impose indirectly

the structure of an infinite dimensional Ornstein–Uhlenbeck process. See [31] and

[33] for details. For a thorough treatment of the existence and uniqueness of in-

variant measures for the OU process see the book of Da Prato and Zabczyk [113].
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The Malliavin Calculus

In this chapter, we briefly describe the differential calculus on Wiener space
known as the Malliavin calculus. For the purpose of this book, the main
application of this calculus is the Clark–Ocone formula, which provides
a rather explicit expression for the martingale representation of certain
random variables. Of course, the martingale representation of a random
variable is intimately related to the notion of a replicating strategy for
a contingent claim. We will use this connection in Chap. 6 to obtain infor-
mation about hedging portfolios for interest rate contingent claims. Other
applications of Malliavin calculus in numerical finance are sketched at the
end of this chapter. The first is the computation by Monte-Carlo simula-
tion of the “Greeks,” the sensitivities of derivative prices to fluctuations in
market parameters. The second is the computation of certain expectations,
conditioned on events that occur with probability zero. The main tool in
these applications is the integration-by-parts formula of Theorem 5.2.

5.1 The Malliavin Derivative

Like measurability, differentiability can be a touchy business in infinite di-
mensions!

5.1.1 Various Notions of Differentiability

Let E and F be separable Banach spaces, and let f : E → F be a given,
possibly nonlinear, function. There are several ways to approach the notion
of derivative f ′(x). We will briefly review the commonly occurring definitions
before introducing the Malliavin derivative operator D. The first notion of
a derivative of a function on a vector space is that of the Fréchet derivative.
The function f is said to be Fréchet differentiable at x ∈ E if there exists
a bounded linear operator A ∈ L(E, F ) such that

lim
‖h‖Eց0

1

‖h‖E
‖f(x + h)− f(x)−A h‖F = 0.
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In this case, we write A = f ′(x) and call f ′(x) the Fréchet derivative at x.
Recall that we use the notation L(E, F ) to denote the space of continuous
linear maps from E into F . When E and F are Banach spaces, the space
L(E, F ) is implicitly assumed to be equipped with the Banach space structure
given by the uniform norm.

The second and weaker notion of derivative is the Gâteaux derivative.
The function f is said to be Gâteaux differentiable at x ∈ E in the direction
y ∈ E if there exists a vector g ∈ F such that

lim
ǫց0

1

ǫ
‖f(x + ǫy)− f(x)− ǫg‖F = 0.

In this case, we write g = Dyf(x) and call Dyf(x) the Gâteaux derivative
in the direction y. If f is Fréchet differentiable at x then f is necessarily
Gâteaux differentiable in all directions y ∈ F and f ′(x)y = Dyf(x). On the
other hand, Gâteaux differentiability in all directions does not imply Fréchet
differentiability, even when E is finite dimensional. Some form of uniformity
is needed. For instance, let f : R2 → R be defined by

f(x1, x2) =

{

x3
1x2

x4
1+x2

2
if x �= 0,

0 if x = 0.

Note that for every y ∈ R2 we have Dyf(0) = 0; however, the function f
is not Fréchet differentiable since if we let h approach (0, 0) along the path
h = (ǫ, ǫ2) we have

lim
ǫց0

1√
ǫ2 + ǫ4

(f(ǫ, ǫ2)− f(0)) =
1

2
.

Nevertheless, if f is Gâteaux differentiable in all directions, the map y→֒
Dyf(x) is linear and continuous, and the map x→֒D·f(x) is continuous as
a map E → L(E, F ), then f is Fréchet differentiable.

These two notions of differentiability are too strong for many purposes.
As we have come to expect, many pathologies arise when dealing with in-
finite dimensional spaces that are not present with finite dimensional ones.
For instance, it is easy to construct a function f on Rd that is infinitely dif-
ferentiable, takes the value f(x0) = 1 at a prescribed point x0 ∈ Rd, and
has compact support. On the other hand, the situation in infinite dimensions
is very different. Recall that the unit ball of an infinite dimensional Banach
space E is not compact for the norm topology, and thus a compact set in
E necessarily has an empty interior. Now, consider a real valued function
f : E → R on an infinite dimensional Banach space E. If f has compact sup-
port, then f cannot be continuous on E, unless f(x) = 0 identically! Indeed,
suppose f(x0) = 1 for some x0 ∈ E. If f were continuous, there would exist
an open ball B0 containing x0 such that f(x) > 0 for all x ∈ B0. But this
would be a contradiction, since B0 is not compact.
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The situation is in fact much worse than that. Indeed, for many Banach
spaces, the bounded continuously differentiable functions are not dense in the
space of bounded uniformly continuous functions. In fact for some spaces,
including the classical Wiener space C0[0, 1], the only differentiable function
with bounded support is the function identically equal to zero! See the Notes
& Complements section at the end of the chapter for references.

For another example that is relevant to our discussion of Chap. 3, suppose
the Banach space E supports a Gaussian measure μ, and let Hμ ⊂ E be the
associated reproducing kernel Hilbert space. The Malliavin calculus concerns
functions on E that are differentiable in the directions of Hμ. It turns out
that a function may be differentiable in this weak sense, and yet not even be
continuous on E!

For example, suppose that the separable Banach space E is infinite di-
mensional and let E be its Borel sigma-field. Recall that the subspace Hμ ∈ E
is a Borel subset of E of μ-measure zero. Now fix an element h ∈ H∗

μ, but
such that h is not an element of E∗. (Since E is infinite dimensional, such
a vector h exists). Now consider the linear functional defined by f(x) = 〈h, x〉.
Clearly, f is not continuous on E, and in fact f(x) is not defined for all x ∈ E.
On the other hand, recall that the random variable x→֒f(x) is a Gaussian
random variable defined on the probability space (E, E , μ) with finite variance
‖h‖2H∗

µ
. In particular, the quantity f(x) is defined and finite for μ-almost every

x ∈ E. Then for almost every x ∈ E and every y ∈ Hμ we can compute the
directional derivative Dyf(x) = 〈h, y〉Hµ

. The derivative of the discontinuous
map f is given by the constant vector Df(x) = h ∈ H∗

μ.
For a more concrete example of the above situation, let E = C0[0, 1] be

the space of continuous functions vanishing at zero, and let μ be the classi-
cal Wiener measure. That is, the evaluation functionals Wt(ω) = ω(t) define
a standard Wiener process {Wt}t∈[0,1] on the probability space (E, E , μ). Re-
call that the RKHS of the classical Wiener space is the Cameron–Martin
space H0[0, 1] of absolutely continuous functions on [0, 1] which vanish at
zero with square-integrable weak derivatives. Fix a square-integrable func-
tion h : [0, 1] → R, and consider the linear functional f defined by

f(ω) =
∫ 1

0 h(t)dω(t). The function f is not defined for all ω ∈ E since
most elements of E are not functions of bounded variation. (Of course, if
h happens to be smooth enough, one could define f by the integration by

parts f(ω) = h(1)ω(1)−
∫ 1

0
ω(t)dh(t)). Nevertheless, since f can be identified

with an element of the dual space H∗
0 , the function f is well-defined μ-almost

everywhere: it is just the Wiener integral f =
∫ 1

0
h(t)dWt. In the next section,

we will define the Malliavin derivative of f by the formula Dtf(ω) = h(t).
We give a precise definition of the Malliavin derivative in the next sec-

tion. Rather than defining the derivative in terms of Gâteaux derivatives of
functions on a Banach space E in the direction of the a Hilbert subspace H
as suggested above, we choose to present the theory in terms of derivatives
of functions of an isonormal process on a Hilbert space H . These approaches
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are equivalent in the presence of a Gaussian measure μ on E since μ is the
canonical cylindrical measure on the Hμ. Recall our discussion of isonormal
processes and cylindrical measures in Chap. 3.

For other notions of differentiablity in infinite dimensional spaces, see the
Notes & Complements.

5.1.2 The Definition of the Malliavin Derivative

The Malliavin derivative is a linear map from a space of random variables to
a space of processes indexed by a Hilbert space. Being a derivative, it is not
surprising that this operator is unbounded. We take the approach of defining
it first on a core, proving that the resulting operator is closable, and then
extending the definition to the closure of this set in the graph norm topology.
In this section, we will be working with Hilbert spaces, and therefore we freely
and without comment identify a Hilbert space H with its dual H∗.

Let H be a real separable Hilbert space, and let {W (h)}h∈H be the isonor-
mal process of H . Recall that for all h1, . . . , hn ∈ H , the real random variables
W (h1), . . . , W (hn) are jointly normal with mean zero and covariances given
by 〈g, h〉H . The key example of an isonormal process is the Wiener integrals

{
∫ T

0
h(s)dWs; h ∈ L2([0, T ]; G)} where {Wt}t∈[0,T ] is a Wiener process de-

fined cylindrically on a separable Hilbert space G. We will return to this
example shortly, but in the meantime we do not need the extra structure
(Hölder continuous sample paths, etc). associated with the Wiener process.
Throughout this section we assume that the sigma-field F on the underly-
ing probability space (Ω,F , P) is given by the completion of the sigma-field
σ(W (h); h ∈ H) generated by the isonormal process.

We consider random variables taking values in a real separable Hilbert
space F . The core we choose is the set of smooth random variables. A random
variable ξ ∈ L2(Ω; F ) is smooth if there exist vectors h1, . . . , hn ∈ H such
that

ξ = ψ(W (h1), . . . , W (hn)) (5.1)

where the function ψ : Rn → F is infinitely differentiable with all derivatives
polynomially bounded. We now define the Malliavin derivative operator D
on this set.

Definition 5.1. Let ξ be the smooth random variable defined by Eq. (5.1).
The Malliavin derivative of ξ is defined to be

Dξ =
n

∑

i=1

∂

∂xi
ψ(W (h1), . . . , W (hn))⊗ hi.

Note that for smooth ξ we may view Dξ as a random variable valued
in the tensor product Hilbert space F ⊗ H , or equivalently, the space of
Hilbert-Schmidt operators LHS(H, F ). Alternatively, the derivative Dξ is an
F -valued stochastic process {Dhξ}h∈H indexed by H , where
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Dhξ =

n
∑

i=1

∂

∂xi
ψ(W (h1), . . . , W (hn))〈hi, h〉.

Finally, if the isonormal process is given by Wiener integrals W (h) =
∫ T

0 h(t)dWt with respect to a cylindrical Wiener process {Wt}t∈[0,T ] on a sep-
arable Hilbert space G, then the isonormal process is indexed by the Hilbert
space H = L2([0, T ]; G), and we may think of the derivative Dξ as an
F ⊗ G ≃ LHS(G, F )-valued stochastic process {Dtξ}t∈[0,T ] indexed by the
interval [0, T ], where

Dtξ =

n
∑

i=1

∂

∂xi
ψ(W (h1), . . . , W (hn))⊗ hi(t).

In this case, the Malliavin derivative Dξ is an element of L2(Ω; F ⊗
L2([0, T ]; G)) ≃ L2([0, T ] × Ω; F ⊗ G); in other words, it is strictly speak-
ing an equivalence class of functions in (t, ω) taking values in F ⊗G which
agree Leb×P almost surely, where Leb is the Lebesgue measure. By Fubini’s
theorem we can find a representative of Dξ such that for every t ∈ [0, T ] we
have that Dtξ is measurable in ω and for every ω ∈ Ω we have that Dξ(ω)
is measurable in t. We choose this representative to define Dξ.

Now to extend the domain of D, we need to prove that the operator given
by Definition 5.1 can be closed. To this end we prove the first and simplest
version of the integration by parts formula.

Lemma 5.1. For deterministic h ∈ H and real-valued smooth random vari-
able ξ we have:

E {〈Dξ, h〉H} = E {ξW (h)} . (5.2)

Proof. Let ξ = ψ(W (h1), . . . , W (hn)) for a infinitely differentiable function
ψ : Rn → R. By the Gram–Schmidt orthonormalization procedure, there is
no generality lost assuming that h = h1 and that h1, . . . , hn are orthonormal.

Then by integrations by parts from ordinary calculus we have

E {〈Dξ, h〉H} = E

{

∂

∂x1
ψ(W (h1), . . . , W (hn))

}

=
1

(2π)n/2

∫

Rn

∂ψ

∂x1
(x1, . . . , xn)e−‖x‖2/2dx

=
1

(2π)n/2

∫

Rn

x1 ψ(x1, . . . , xn)e−‖x‖2/2dx

= E{ξW (h)}
which gives the desired formula (5.2). �

Corollary 5.1. For a vector h ∈ H and F -valued smooth random variables
ξ and η we have

E {〈η, (Dξ)h〉F } = E {〈ξ, η〉F W (h)− 〈ξ, (Dη)h〉F } .
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Notice that we are viewing the random variables Dξ and Dη as random
Hilbert–Schmidt linear operators from H into F .

Proof. By direct computation from the definition and from the product rule
for classical differential calculus, we have the product rule

D〈ξ, η〉F = (Dη)∗ξ + (Dξ)∗η

from which the result follows. �

Proposition 5.1. The Malliavin derivative D as defined for F -valued smooth
random variables is closable on L2(Ω; F ).

Proof. Since the operator is linear, it is enough to show that if a sequence
of smooth random variables {ξn}n converges to 0 in L2(Ω; F ) and if the
sequence {Dξn}n converges to a limit in L2(Ω; F ⊗ H), then this limit is
necessarily 0. To show this we choose an arbitrary h ∈ H and smooth η and
note that by the corollary we have

E {〈η, (Dξn)h〉F } = E {〈ξn, η〉F W (h)− 〈ξn, (Dη)h〉F }
≤ E {‖ξn‖F (‖η‖F |W (h)|+ ‖(Dη)h‖F )}
≤ K

(

E{‖ξn‖2F }
)1/2 → 0

where the constant

K = 2
(

E
{

‖η‖2F W (h)2 + ‖(Dη)h‖2F
})1/2

is finite because Gaussian random variables have moments of all orders.
Since linear combinations of rank-one operators of the form η⊗h are dense

in L2(Ω; F ⊗H) we have the weak convergence of the sequence {Dξn}n to 0.
But since the sequence is assumed to converge strongly, this strong limit must
be 0 also. �

By closability, we can extend the definition of the derivative operator to
a larger domain.

Definition 5.2. If ξ is the L2(Ω; F ) limit of a sequence {ξn}n≥1 of smooth
random variables such that {Dξn}n≥1 converges in L2(Ω; F ⊗H), we define
Dξ as

Dξ = lim
n→∞

Dξn.

We use the notation H(F ) for the subspace of L2(Ω; F ) where the deriva-
tive can be defined by Definition 5.2. This subspace is a separable Hilbert
space for the graph norm

‖ξ‖2H(F ) = E{‖ξ‖2F}+ E
{

‖Dξ‖2F⊗H

}

.

The following lemma will be used to prove a form of the chain rule for Lip-
schitz functions in the next section.
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Lemma 5.2. Let ξn → ξ converge in L2(Ω; F ) and suppose that there is
a constant C > 0 such that for all n we have

E
{

‖Dξn‖2F⊗H

}

< C. (5.3)

Then the random variable ξ is in the domain H(F ) of the derivative.

Proof. Assumption (5.3) implies that the sequence {ξn} is bounded in H(F ).
Hence, there exists a subsequence {ξnk

}k that converges weakly in H(F ). But
since ξnk

→ ξ converges in L2(Ω; F ) we see that the weak limit of {ξnk
}k

is ξ, implying that ξ ∈ H(F ). �

5.2 The Chain Rule

For the financial applications which we have in mind, we need a form of the
chain rule for Malliavin derivatives of Lipschitz, but possibly not differen-
tiable, functions from one vector space into another. Recall that the notion
of differentiability is quite touchy in infinite dimensions, whereas the Lipschitz
condition is usually straightforward to check. We will find it convenient to
know that the chain rule is still true for this much larger set of functions,
and in particular, we will use this lemma in the next section to prove that
the solution to a stochastic differential equation is Malliavin differentiable.

Proposition 5.2. Let F and G be separable Hilbert spaces. Given a random
variable ξ ∈ H(F ) and a function κ : F → G such that

‖κ(x)− κ(y)‖G ≤ C‖x− y‖F

for all x, y ∈ F , then the random variable κ(ξ) is in H(G) (i.e. it is Malliavin
differentiable) and there exists an L(F, G)-valued random variable Z satisfy-
ing the bound ‖Z‖L(F,G) ≤ C almost surely and such that

Dκ(ξ) = ZDξ.

Remark 5.1. The function κ is usually not Frechét differentiable, yet there
exists a random variable Z which plays the role of the derivative κ′(ξ) in the
sense of the chain rule. If κ is Frechét differentiable, then Z = κ′(ξ) almost
surely.

Proof. According to Lemma 5.2, in order to show that κ(ξ) ∈ H(G) we need
only to find a sequence of functions {κn}n such that κn(ξ) → κ(ξ) strongly
in L2(Ω; F ) and such that {Dκn(ξ)}n is bounded in L2(Ω; F ⊗H).

Our strategy is to find a sequence of approximating functions that are
cylindrical and twice differentiable. Let {ei}∞i=1 be a basis of F and let
{ri}ni=1 be a basis for Rn. Let the projection from Rn to F be denoted
ℓn =

∑n
i=1 ei ⊗ ri and denote its Hilbert space adjoint by ℓ∗n =

∑n
i=1 ri ⊗ ei.
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For every n let jn : Rn → R be a real valued twice-differentiable bounded
function supported on the unit ball in Rn and such that

∫

Rn jn(x)dx = 1, and
for every ǫ > 0 define the approximate identity jǫ

n by jǫ
n(x) = ǫ−njn(x/ǫ).

Set ǫ = 1/n and choose κn to be defined by the Bochner integral

κn(x) =

∫

Rn

jǫ
n(y − ℓ∗nx)κ(ℓny)dy =

∫

Rn

jǫ
n(y)κ(ℓnℓ∗nx− ℓny)dy.

Note that κn is differentiable and that

E{‖κ(ξ)− κn(ξ)‖2G} ≤ E

{

(∫

Rn

jǫ
n(y)‖κ(ℓnℓ∗nξ − ℓny)− κ(ξ)‖Gdy

)2
}

≤ E

{

(∫

Rn

jǫ
n(y)(‖(ℓnℓ∗nξ − ξ‖F + ‖y‖Rn)dy

)2
}

≤ 2C2E{‖(ℓnℓ∗n − I)ξ‖2F }+ 2C2/n2 → 0

by the dominated convergence theorem.
We have

Dκn(ξ) =

∫

Rn

κ(ℓny)⊗ (∇jǫ
n(y − ℓ∗nξ)Dℓ∗nξ)dy

where ∇ is the gradient in Rn, so that

E
{

‖Dκn(ξ)‖2G⊗H

}

≤ C2E
{

‖Dξ‖2G⊗H

}

and we can apply Lemma 5.2.
Finally, we note that ∇κn(ξ) is bounded in L∞(Ω;L(F, G)). Since L1(Ω;

L1(G, F )) is separable, we can extract subsequence {∇κnk
(ξ)}k and find

a random variable Z such that we have the weak-* convergence

E
{

〈η, κnk
(ξ)Dξ〉LHS(H,G)

}

→ E {〈η, ZDξ〉G⊗H}

for every η ∈ L2(Ω; G⊗H) and hence Dκ(ξ) = ZDξ as claimed. �

5.3 The Skorohod Integral

The differentiation operator D is a closed linear map from its domain H(F ) ⊂
L2(Ω; F ) into the Hilbert space L2(Ω; F⊗H). As such, there exists an adjoint
operator, denoted δ, which maps a subspace of L2(Ω; F ⊗H) into L2(Ω; F )
according to

E{〈Dξ, η〉F⊗H} = E{〈ξ, δη〉F }.
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The operator δ is not bounded, and its domain is given by the set of random
variables η ∈ L2(Ω; F ⊗H) such that there exists a C ≥ 0 with

|E{〈Dξ, η〉F⊗H}| ≤ C
(

E{‖ξ‖2F}
)1/2

for all ξ ∈ H(F ). Since the operator D is a form of gradient, the adjoint
operator δ should be interpreted as a divergence. This divergence operator δ
is often called the Skorohod integral . The relation to stochastic integration
will become apparent at the end of this section.

To get a feel for how the Skorohod integral acts on random variables, let
η = X ⊗ h where X ∈ H(F ) is an F -valued differentiable random vector and
h ∈ H is a deterministic vector. By the integration by parts formula (5.2)
given in Lemma 5.1 we have

E{〈Dξ, X ⊗ h〉F⊗H} = E{〈(Dξ)h, X〉F }
= E{〈ξ, XW (h)− (DX)h〉F }

for smooth ξ, and we conclude that δ(X ⊗ h) = XW (h)− (DX)h.
Now let us rework the last example η = X ⊗ h but with the addi-

tional assumption that X is independent of the random variable W (h).
Then X is the L2(Ω; F ) limit of smooth random variables of the form
Xn = ψ(W (h1), . . . , W (hn)) where h1, . . . , hn are orthogonal to h. By the
definition of the Malliavin derivative we have

(DXn)h =
n

∑

i=1

∂

∂xi
ψ(W (h1), . . . , W (hn))〈hi, h〉 = 0

and hence by taking limits δ(X ⊗ h) = XW (h)− (DX)h = XW (h). We will
make use of this little observation to relate the Skorohod integral to the Itô
integral.

For the rest of this section we focus on the case where the isonormal pro-

cess is given by the Wiener integrals {
∫ T

0
h(t)dWt; h ∈ L2([0, T ]; G)} where

{Wt}t∈[0,T ] is a cylindrical Wiener process on separable Hilbert space G, de-
fined on a probability space (Ω,F , P) for which the sigma-field F is generated
by the Wiener process. Introduce the filtration {Ft}t∈[0,T ] as the augmenta-
tion of the filtration generated by the Wiener process.

Theorem 5.1. Let α be an LHS(G, F )-valued predictable process with

E

{

∫ T

0

‖αs‖2LHS(G,F )ds

}

< +∞.

Then α is in the domain of the Skorohod integral δ and

δ(α) =

∫ T

0

αsdWs

where the integral on the right is an Itô integral as defined in Chap. 4.
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Proof. First assume that the process α is simple:

αt =

N−1
∑

i=0

1(ti,ti+1](t)αti

where the Fti
-measurable random operator αti

is of finite rank

αti
=

M
∑

j=1

α
(j)
ti
⊗ g(j)

for some deterministic orthonormal vectors {g(j)}j in G. Since the F -valued

random variable α
(j)
ti

is independent of
∫ ti+1

ti
g(j)dWs we have by linearity

that

δ(α) =

N−1
∑

i=0

M
∑

j=1

α
(j)
ti

∫ ti+1

ti

g(j)dWs

=

∫ T

0

αsdWs.

The conclusion now follows by the closedness of δ and the fact that such
processes α are dense in the space of predictable processes in L2([0, T ] ×
Ω;LHS(G, F )) �

This theorem explains the use of the terminology Skorohod integral: Sko-
rohod integrals of predictable processes are Itô integrals. For a general process
α in the domain of δ, it is customary to use the notation

δ(α) =

∫ T

0

αsδWs.

The Skorohod integral is the starting point for building an anticipative
stochastic integration theory. The definition of the Skorohod integral as the
adjoint of the Malliavin derivative gives us a way to extend our original and
rather limited integration by parts formula (5.2):

Theorem 5.2. Let {βt}t∈[0,T ] be a predictable process in L2([0, T ] × Ω; G)
and let ξ ∈ H(F ). We have

E

{

∫ T

0

〈Dtξ, βt〉F⊗Gdt

}

= E

{〈

ξ,

∫ T

0

βtdWt

〉

F

}

.

We will make use of this integration by parts formula in the derivation of the
Clark–Ocone formula, as well as in the financial applications considered at
the end of the chapter.

Since in practice it is hard to do numerics with Skorohod integrals, we end
this section with a little result: some Skorohod integrals can be computed as
Itô integrals after all.
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Proposition 5.3. Let {βt}t∈[0,T ] be a predictable, square-integrable, G-valued
process and let ξ ∈ H(R) be such that

E

⎧

⎨

⎩

ξ2

(

∫ T

0

βtdWt

)2

+

(

∫ T

0

Dtξβtdt

)2
⎫

⎬

⎭

< +∞.

Then we have
∫ T

0

ξβtδWt = ξ

∫ T

0

βtdWt −
∫ T

0

Dtξβtdt.

Proof. Let η ∈ H(R). By the integration by parts formula we have

E

{

η

∫ T

0

ξβtδWt

}

= E

{

∫ T

0

Dtηξβtdt

}

= E

{

∫ T

0

(Dt(ηξ)− ηDtξ)βtdt

}

= E

{

η

(

ξ

∫ T

0

βtdWt −
∫ T

0

Dtξβtdt

)}

from which the desired result follows. �

5.4 The Clark–Ocone Formula

In this section, we fix a probability space (Ω,F , P) supporting a cylin-
drical Wiener process {Wt}t∈[0,T ] on a separable Hilbert space G, where
the sigma-field F is generated by the Wiener process and the filtration
{Ft}t∈[0,T ] as the augmentation of the filtration generated by the Wiener
process. The isonormal process we will work with are the Wiener integrals

{
∫ T

0 h(t)dWt; h ∈ L2([0, T ]; G)}. Again, we identify the dual space G∗ with
G without comment.

In Chap. 4 we encountered the martingale representation theorem, guar-
anteeing the existence of an integrand such that any random variable ξ ∈
L2(Ω; F ) is represented as a stochastic integral with respect to the cylindri-
cal Wiener process. If the random variable ξ ∈ H(F ) is differentiable, the
following result allows us to explicitly compute the integrand in the martin-
gale representation in terms of the Malliavin derivative of ξ.

Theorem 5.3 (Clark–Ocone formula). For every FT -measurable random
variable ξ ∈ H(F ) we have the representation

ξ = E{ξ}+

∫ T

0

E{Dtξ|Ft}dWt.
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Proof. Since ξ ∈ L2(Ω; F ), by the martingale representation given in Theo-
rem 4.1 there exists a predictable process {αt}t∈[0,T ] ∈ L2(Ω× [0, T ]; F ⊗G)
such that

ξ = E{ξ}+

∫ T

0

αtdWt.

Without loss of generality we assume that E{ξ} = 0 and we let {βt}t∈[0,T ] be
a predictable process in L2([0, T ]× Ω, F ⊗G) so that by the integration by
parts formula Theorem 5.2 and Itô’s isometry we have

E

{

∫ T

0

〈Dtξ, βt〉F⊗Gdt

}

= E

{

〈ξ,
∫ T

0

βtdWt〉F
}

= E

{

〈
∫ T

0

αtdWt,

∫ T

0

βtdWt〉F
}

= E

{

∫ T

0

〈αt, βt〉F⊗Gdt

}

implying

E

{

∫ T

0

〈λt, βt〉F⊗Hdt

}

= 0

where λt = Dtξ − αt. Letting βt = E{λt|Ft} be the optional projection
process we have

E

{

∫ T

0

‖E{λt|Ft}‖2F⊗Gdt

}

= 0

implying that αt = E{Dtξ|Ft} for almost every (t, ω) as desired. �

Finally, we will find the following version of the Leibnitz rule useful:

Proposition 5.4. Suppose the predictable continuous square-integrable pro-
cess {αt}t∈[0,T ] is such that for all t ∈ [0, T ] the random variable αt ∈
H(F ⊗G) is differentiable. Then

Dt

∫ T

0

αsdWs = αt +

∫ T

t

DtαsdWs.

Note that this is just an instance of the commutation relation Dδα =
α + δDα.

5.4.1 Sobolev and Logarithmic Sobolev Inequalities

In this subsection we show how the Clark–Ocone formula can be used to give
short proofs of the Sobolev and logarithmic Sobolev inequalities.
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Let {W (h)}h∈H be an isonormal process on a real separable Hilbert space
H and let D denote the Malliavin derivative associated with this isonormal
process. As before we denote by H the Hilbert space of real random variables
in the domain of D such that

E{ξ2}+ E{‖Dξ‖2H} < +∞.

The proofs below make use of the following insight: the identity of the index
space H is often not relevant to the computation at hand. For instance,
consider the smooth random variable

ξ = ψ(W (h1), . . . , W (hn))

where h1, . . . , hn are orthonormal. Notice that the expected value

E{‖Dξ‖2H} =
1

(2π)n/2

∫

Rn

n
∑

i=1

(

∂

∂xi
ψ(x1, . . . , xn)

)2

e−‖x‖2/2 dx

is computed irrespective of the space H .
In fact, as long as H is a separable and infinite dimensional Hilbert space,

the above computation shows that the space H of differentiable random vari-
ables associated with the isonormal process {W (h); h ∈ H} is isometrically
isomorphic to the space of differentiable random variable associated with the

Wiener integrals {
∫ T

0
h(s)dws; h ∈ L2([0, T ])} where T > 0 and {wt}t∈[0,T ] is

a scalar Wiener process.
So without loss of generality, we suppose that the isonormal process is

given by the Wiener integrals {
∫ T

0 h(s)dws; h ∈ L2([0, T ])}. Let {Ft}t∈[0,T ]

be the augmentation of the filtration generated by the scalar Wiener process
{wt}t∈[0,T ]. The advantage of working with this choice of H is that the Clark–
Ocone formula becomes available. We now present a version of the classical
Sobolev inequality:

Theorem 5.4. For every ξ ∈ H we have

E{ξ2} ≤ E{ξ}2 + E{‖Dξ‖2H}.

Equality is achieved if ξ is Gaussian; i.e. ξ = C + W (h) for constants C ∈ R

and h ∈ H.

Proof. By assumption, the random variable ξ is FT -measurable. By the
Clark–Ocone formula, we have the following martingale representation:

ξ = E{ξ}+

∫ T

0

E{Dtξ|Ft}dwt.
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Hence by Itô’s isometry and Jensen’s inequality we have

E{ξ2} = E{ξ}2 + E

{

∫ T

0

E{Dtξ|Ft}2dt

}

≤ E{ξ}2 + E

{

∫ T

0

(Dtξ)
2dt

}

= E{ξ}2 + E{‖Dξ‖2H},

and the proof is finished. �

The following logarithmic Sobolev inequality is a significant improvement
of the above result. See the Notes & Complements section for references.

Theorem 5.5. For every ξ ∈ H the following inequality holds:

E{ξ2 log(ξ2)} ≤ E{ξ2} log
(

E{ξ2}
)

+ 2E{‖Dξ‖2H}.

Equality is achieved if ξ is lognormal; i.e. ξ = C exp(W (h)) for a constants
C ∈ R and a vector h ∈ H.

Proof. Suppose ξ2 is bounded and from above and let {Mt}t≥0 be the positive
continuous martingale given by MT = ξ2 and Mt = E{ξ2|Ft}. By the Clark–
Ocone formula we have

Mt = E{ξ2}+

∫ t

0

E{Dsξ
2|Fs}dws.

On the other hand, by Itô’s formula we have

Mt log(Mt) = M0 log(M0) +

∫ t

0

(1 + log(Ms))dMs +
1

2

∫ t

0

d≪M≫s

Ms
.

Combining the above formulas and the Cauchy–Schwarz inequality yields

E{ξ2 log(ξ2)} = E{ξ2} log
(

E{ξ2}
)

+
1

2
E

{

∫ T

0

E{Dsξ
2|Fs}2

Ms
ds

}

= E{ξ2} log
(

E{ξ2}
)

+ 2E

{

∫ T

0

E{ξDsξ|Fs}2
Ms

ds

}

≤ E{ξ2} log
(

E{ξ2}
)

+ 2E

{

∫ T

0

E{ξ2|Fs}E{(Dsξ)
2|Fs}

Ms
ds

}

= E{ξ2} log
(

E{ξ2}
)

+ 2E{‖Dξ‖2}.

To conclude the proof we get rid of the assumption of boundedness of ξ2 by
a standard localization argument based on monotone cut-offs of ξ. �
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5.5 Malliavin Derivatives and SDEs

We now consider the Malliavin derivative of F -valued random variables ξ =
XT , where {Xt}t≥0 is the solution of a stochastic differential equation of the
form:

dXt = (AXt + a(t, Xt))dt + b(t, Xt)dWt.

which we considered first in Sect. 4.6. Keeping with the spirit of this chapter,
we consider the case when {Wt}t≥0 is a cylindrical Wiener process defined
on a separable Hilbert space G. Let F be a separable Hilbert space, let us
assume that A generates a strongly continuous semigroup {St}t≥0 on F , and
let a : R+×F → F and b : R+×F → LHS(G, F ) be globally Lipschitz. From
Sect. 4.6 of Chap. 4, we know that there is a unique F -valued mild solution
satisfying

Xt = StX0 +

∫ t

0

St−sa(s, Xs))ds +

∫ t

0

St−sb(s, Xs)dWs.

Recall that the process {Xt}t≥0 is not necessarily an Itô process.
First, we show that the Malliavin derivative of the solution exists.

Lemma 5.3. For all T ≥ 0 we have that XT ∈ H(F ).

Proof. By Lemma 5.2 we need only to find a sequence of Malliavin differen-

tiable random elements, say X
(n)
T , which converge toward XT in L2(Ω; F ),

and such that DX
(n)
T is uniformly bounded in L2([0, T ] × Ω;LHS(G, F )).

A natural candidate is provided by the elements of the Picard iteration

scheme: X
(0)
t = StX0 and

X
(n+1)
t = StX0 +

∫ t

0

St−ua(u, X(n)
u )du +

∫ t

0

St−ub(u, X(n)
u )dWu.

Indeed, applying the Leibnitz rule of Proposition 5.4 to the n + 1-th step of
the scheme we obtain:

DsX
(n+1)
t = St−sb(s, X

(n)
s ) +

∫ t

s

St−uDsa(u, X(n)
u )du

+

∫ t

s

St−uDsb(u, X(n)
u )dWu

= St−sb(s, X
(n)
s ) +

∫ t

s

St−u∇a(u, X(n)
u )DsX

(n)
u du

+

∫ t

s

St−u∇b(u, X(n)
u )X(n)

u dWu.
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Letting M = supt∈[0,T ] ‖St‖ and K be the Lipschitz constants for a and b we
have

E{‖DsX
(n+1)
t ‖2LHS(G,F )}

≤ 3M2

(

E{‖b(s, X(n)
s )‖2LHS(G,F )}+ 2K2

∫ t

s

E
{

‖DsXu‖LHS(G,F )

}

du

)

≤ 3M2e6M2K2(t−s)E{‖b(s, X(n)
s )‖2LHS(G,F )}

where the last line follows from Gronwall’s lemma. Since the Picard iterates
satisfy the bound

sup
n

sup
t∈[0,T ]

E{‖X(n−1)
t ‖2F } < +∞

by the assumption of linear growth of b we have

sup
n

E

{

∫ T

0

‖DtX
(n)
T ‖2LHS(G,F )

}

< +∞,

completing the proof. �

5.5.1 Random Operators

We now appeal to Skorohod’s theory of random operators as developed
in [125]. We will apply this theory to the study of Malliavin derivatives of
solutions to stochastic differential equations.

Up to now, we have been dealing with random operators which take values
in a space of bounded linear operators from one Hilbert space into another.
However, we will soon have the need for more general types of random oper-
ators.

Definition 5.3. A strong random operator from H1 into H2 is an H2-valued
stochastic process {Y (h) : h ∈ H1} indexed by H1 that is linear in h:
Y (f + g) = Y (f) + Y (g) almost surely.

Obviously, a random variable taking values in L(H1, H2) is a random op-
erator in this sense. A typical example of a strong random operator which
does not take values in the space L(H1, H2) is constructed as follows: Let
H1 = H2 = ℓ2 and let ξ1, ξ2, . . . be a sequence of independent standard nor-
mal random variables. Consider the random matrix

Y =

⎛

⎜

⎝

ξ1 0 . . .
0 ξ2 0
... 0

. . .

⎞

⎟

⎠
.

The process {Y (h); h ∈ ℓ2} defines a strong random operator on ℓ2 since if
h = (h1, h2, . . .) ∈ ℓ2

Y (h) = (h1ξ1, h2ξ2, . . .)
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is well-defined for every h ∈ ℓ2 as an ℓ2-valued Gaussian random variable;
recall the Radonification of the canonical cylindrical Gaussian measure of
Chap. 3. In fact, the map h→֒Y (h) is continuous from ℓ2 into L2(Ω; ℓ2) since

E{‖Y (f)− Y (g)‖2} = ‖f − g‖2.

However, since Y is diagonal and supi |ξi| = +∞ almost surely, the strong
operator Y does not define an almost sure bounded operator on ℓ2. We will
have occasion to consider the adjoint of a strong random operator. It turns out
that for many strong random operators, the natural candidate for the adjoint
operator is not itself a strong random operator. To handle this situation, we
define the notion of weak random operator.

Definition 5.4. We say that Z is a weak random operator from H1 into H2

if Z is a real-valued stochastic process Z = {Z(f, g); f ∈ H1, g ∈ H2} that is
linear in both f and g.

The adjoint, then, of a strong operator Y is the weak operator Y ∗ defined by
the formula

Y ∗(f, g) = 〈f, Y (g)〉.
As mentioned earlier, there exists a strong operator Y such that Y ∗ is not
a strong operator. For instance, let H1 = H2 = ℓ2 and let ξ1, ξ2, . . . be as se-
quence of independent standard normal random variables as before. Consider
the random matrix

Y =

⎛

⎜

⎝

ξ1 ξ2 . . .
0 0 . . .
...

...
. . .

⎞

⎟

⎠
.

Now, for each h ∈ ℓ2 the random vector Y (h) = (h1ξ1 + h2ξ2 + ..., 0, 0, ...) is
well-defined, since the series

∑

i hiξi converges almost surely by Kolmogorov’s
test. However, the adjoint matrix

Y ∗ =

⎛

⎜

⎝

ξ1 0 . . .
ξ2 0 . . .
...

...
. . .

⎞

⎟

⎠

does not define a strong random operator. Indeed, the formal expression

Y ∗(a) = a1(ξ1, ξ2, . . .)

does not define a random vector in ℓ2. It does, however, define an isonormal
process on ℓ2, if |a1| = 1. To derive the useful formula of the next section,
we need to let strong random operators be integrands of stochastic integrals.
Let H1, H2 and G be real separable Hilbert spaces. Recall that the space
LHS(G, H2) of Hilbert–Schmidt operators from G into H2 has the structure
of a separable Hilbert space. Therefore, we can define a strong random oper-
ator {Y (h)}h∈H1 into LHS(G, H2) as before. Now consider a strong operator



152 5 The Malliavin Calculus

valued process {Yt}t≥0 where Yt is a strong random operator from H1 into
LHS(G, H2) for each t ≥ 0. If {Yt}t≥0 is predictable and satisfies the integra-

bility condition
∫ t

0 ‖Ys(h)‖2LHS(G,H2)
ds for each h ∈ H1 then by setting:

(∫ t

0

Ys · dWs

)

(h) =

∫ t

0

Ys(h) dWs

we define a strong random operator
∫ t

0
Ys · dWs from H1 into H2, where

{Wt}t≥0 is a Wiener process defined cylindrically on G.

5.5.2 A Useful Formula

Since we know that Xt ∈ H(F ) for all t ≥ 0 we can conclude by Proposition
5.2 that a(t, Xt) and b(t, Xt) are differentiable, and by Proposition 5.4 we see
that {DsXt}t∈[s,T ] satisfies the linear equation

DsXt = St−sb(s, Xs) +

∫ t

s

St−u∇a(u, Xu)DsXudu

+

∫ t

s

St−u∇b(u, Xu)DsXudWu.

Since the equation is linear, its solution should be obtained from the solution
Ys,t of the auxiliary equation

Ys,t = St−s +

∫ t

s

St−u∇a(u, Xu)Ys,udu+

∫ t

s

St−u∇b(u, Xu)Ys,u ·dWu (5.4)

Indeed, if the above equation has a solution in some sense, we have the useful
formula

DsXt = Ys,tb(s, Xs)1{s≤t}.

Fortunately, Eq. (5.4) does have a solution in the sense of strong random
operators. The proof of this fact can be realized by the Picard iteration
scheme detailed in Chap. 4 in the proof of the existence of mild solutions of
SPDEs on F .

The random operator Ys,t should be thought of as the derivative dXt/dXs

of the value of a solution to an SDE with respect to an intermediate value.
As such, it is a random analog of the notion of propagator or Jacobian flow.

We now present an example that illustrates the need to introduce the
concept of strong random operators into the present discussion. Let F =
G = ℓ2 and consider the differential equation

dX
(i)
t = X

(i)
t dw

(i)
t

with X0 ∈ ℓ2. That is, we are considering the time-homogeneous SDE with
zero drift and diffusion term b : ℓ2 → LHS(ℓ2) given by b(x) = diag(x). The
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solution to the above equation is given in component form as

X
(i)
t = e−t/2+w

(i)
t X

(i)
0

or in vector form as

Xt = diag({e−t/2+w
(i)
t }i)X0.

For fixed t > 0, the derivative Y0,t = dXt/dX0 should exist in some sense

and equal Y0,t = diag({e−t/2+w
(i)
t }i). This Y0,t does not define a random con-

tinuous operator on ℓ2 since supi{e−t/2+w
(i)
t } = +∞ almost surely. However,

the process {Y0,t(h); h ∈ ℓ2} does define a strong random operator as defined
in the previous section.

In the next section we use the abbreviation Y0,t = Yt. If Yt is invertible
then Ys,t = YtY

−1
s . The invertibility of the strong random operator Yt is

intimately related to the invertibility of the deterministic operator St. Indeed,
consider the deterministic linear differential equation

dXt = A Xtdt

with solution Xt = StX0. The derivative is given by Yt = dXt/dX0 = St,
and in this case, Yt is invertible only if St is.

In the next section we deal with a finite dimensional Hilbert space F , so
the operator A is bounded and the operators St = eAt are invertible for all
t ∈ R; i.e. the semigroup {St}t≥0 can be extended to a group {St}t∈R. Hence
Yt is invertible and Ys,t = YtY

−1
s .

5.6 Applications in Numerical Finance

We discuss two applications of the Malliavin calculus in numerical finance.
Both applications use the integration by parts formula to smooth out a sin-
gular term that appears in a formal computation.

5.6.1 Computation of the Delta

We now turn to one of the first applications of Malliavin calculus to mathe-
matical finance to appear in the literature: the computation of the “Greeks”
by Monte-Carlo simulation. We discuss only the simplest case here to high-
light the main ideas. Fix a probability space (Ω,F , P) supporting a scalar
Wiener process {wt}t≥0, and let {Ft}t≥0 be the augmentation of the filtra-
tion generated by w. Let Xx

t be the solution to the stochastic differential
equation

dXt = a(Xt)dt + b(Xt)dwt

with initial condition Xx
0 = x, where the functions a : R→ R and b : R→ R

are assumed to have continuous and bounded first derivatives, and b is
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bounded from below by a positive constant. We are concerned here with
computing the derivative

Δ =
∂

∂x
E{g(Xx

T )}.

When the process {Xt}t≥0 is a stock price, the above quantity is the sensi-
tivity of the price of an option with payout g(XT ) to the current price of the
stock. According to the Black–Scholes–Merton theory, this quantity, called
the “delta,” is the amount of stock that an investor should own in order to
replicate the payout of the option.

One complication in computing the delta is that the option price E{g(Xx
T )}

is rarely available as an explicit function of x. In practice, one often approx-
imates the option price by Monte-Carlo simulation: that is, the practitioner

(somehow) generates N independent copies X
x,(i)
T of Xx

T and computes the
empirical average

E{g(Xx
T )} ≈ 1

N

N
∑

i=1

g(X
x,(i)
T )

which converges to the true option price as N → ∞. Unfortunately, the
approximation error decays as N−1/2, far too slowly to implement the naive
approximation

Δ ≈ 1

ǫN

N
∑

i=1

[g(X
x+ǫ,(i)
T )− g(X

x,(i)
T )],

for a small parameter ǫ. The problem is that the difference 1
N

∑N
i=1[g(X

x+ǫ,(i)
T )

−g(X
x,(i)
T )] may not be small, even if ǫ is, because the Monte-Carlo error may

not cancel out. This difficulty is especially pronounced if g is discontinuous,
as in the case of a digital option.

Fortunately, the integration by parts formula given by Theorem 5.2 pro-
vides an explicit random variable Π , which depends on the dynamics of X ,
but not the payout function g, such that

Δ = E{g(Xx
T )Π}. (5.5)

This expression leads to the far superior Monte-Carlo approximation

Δ ≈ 1

N

N
∑

i=1

g(X
x,(i)
T )Π(i).

To derive Eq. (5.5), suppose that g is differentiable, and the derivative is
bounded. Then we have

Δ = E {g′(Xx
T )YT } (5.6)

where Yt = ∂Xx
t /∂x is the first variation process, given by Y0 = 1 and

dYt = Yt(a
′(Xx

t )dt + b′(Xx
t )dwt).
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The process {Yt}t∈[0,T ] is intimately related to the Malliavin derivative DtXT .
Indeed, we have the formula

DtXT = YT Y −1
t b(Xt).

In particular, for all t ∈ [0, T ] we have

YT = DtXT b(Xt)
−1Yt

so that by taking the average, we have

YT =

∫ T

0

DtXT b(Xt)
−1Ytα(t)dt

where α is any deterministic function such that
∫ T

0
α(t)dt = 1 and

∫ T

0
α(t)2dt

< +∞. For instance, one can use the constant function α(t) = 1/T . Substi-
tuting this expression into Eq. (5.6) yields

Δ = E

{

∫ T

0

g′(Xx
T )DtXT b(Xt)

−1Ytα(t)dt

}

= E

{

∫ T

0

Dtg(Xx
T )b(Xt)

−1Ytα(t)dt

}

= E

{

g(Xx
T )

∫ T

0

b(Xt)
−1Ytα(t)dwt

}

where the integration by parts formula is used in the last step.

Fixing an averaging function α ∈ L2([0, T ]) with
∫ T

0
α(t)dt = 1, we have

found the desired Malliavin weight

Π =

∫ T

0

b(Xt)
−1Ytα(t)dwt.

The above formula is called the Bismut–Elworthy–Li formula. A similar
formula also holds for vector valued diffusions {Xt}t≥0 under an ellipticity
condition on the diffusion term b. However, the formula breaks down in in-
finite dimensions. In particular, the random variable b(Xt) generally takes
values in the space of Hilbert–Schmidt operators from G into F . If F is infi-
nite dimensional, then b(Xt) is not invertible. See nevertheless the Notes &
Complements at the end of the chapter for reference to an article where this
difficulty was overcome.

5.6.2 Computation of Conditional Expectations

The second application of the Malliavin calculus is the computation of condi-
tional expectations. To motivate what follows, consider the problem of com-
puting E{g(XT )|Xt = x} by Monte-Carlo simulation, where x is a real num-
ber and {Xt}t≥0 is a real valued process such that the law of the random
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variable Xt is continuous. One may first think to simulate many realizations
of the process, and discard all but those paths that are such that Xt = x.
But since the law of Xt is continuous, there is probability one that one will
be forced to discard all of the realizations of the process! What to do then?
And can we find a way to compute a conditional expectation using Monte
Carlo scenarios which do not satisfy the condition?

Let ξ and η be random variables defined on a probability space (Ω,F , P),
and suppose that the law of η is continuous. The intuitive idea is to interpret
the conditional expectation E{ξ|η = 0} as

E{ξ|η = 0} =
E{ξδ(η)}
E{δ(η)}

where δ(x) denotes the usual Dirac delta function. The above expression is
formal, but can be justified by a standard limiting argument based on the
fact that:

E{ξ|η = 0} = lim
ǫց0

E{ξ1(−ǫ,ǫ)(η)}
E{1(−ǫ,ǫ)(η)} .

In order to use Malliavin calculus, let us assume that the sigma-field F is the
completion of the sigma-field and {Ft}t≥0 the filtration generated by a scalar
Wiener process {wt}t∈[0,T ] defined on (Ω,F , P). Let D denote the Malliavin
derivative with respect to the Wiener process, and suppose that ξ and η are
in H(R).

Now, since the delta function δ(x) = d
dx1{x>0} is formally the derivative

of the Heaviside function, we may substitute the expression:

δ(η) = Ds1{η>0}(Dsη)−1

for all s ∈ [0, T ] such that Dsη �= 0.
In our typical application, there is a t ∈ (0, T ] such that η is Ft-

measurable; that is, we have Dsη = 0 for all s ∈ (t, T ]. Let assume then
that Dsη �= 0 for almost all (ω, s) ∈ Ω× [0, t]. As before, let α be any process

such that
∫ t

0 α(s)ds = 1 so that

δ(η) =

∫ t

0

Ds1{η>0}(Dsη)−1α(s) ds.

Again, it is sufficient to let α(s) = 1/t for all s ∈ [0, t]. By the integration by
parts formula we have then

E{ξδ(η)} = E

{∫ t

0

ξ(Dsη)−1α(s)Ds1{η>0}ds

}

= E

{

1{η>0}

∫ t

0

ξ(Dsη)−1α(s) δws

}

where the stochastic integral must be understood in the sense of Skorohod
since the integrand is usually anticipative. Combining the above formulas
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we have

E{ξ|η = 0} =
E

{

1{η>0}
∫ t

0
ξ(Dsη)−1α(s) δws

}

E

{

1{η>0}
∫ t

0 (Dsη)−1α(s) δws

} .

Now let’s apply this formula to the solution to a stochastic differential equa-
tion. Let {Xt}t≥0 solve the SDE

dXt = a(Xt)dt + b(Xt)dwt

with initial condition X0. We have DsXt = YtY
−1
s b(Xs) for s ∈ [0, t]. Letting

ξ = g(XT ) and η = Xt − x in the above formulas we have

E{g(XT )|Xt = x} =
E

{

1{Xt>x}
∫ t

0
g(XT )b(Xs)

−1YsY
−1
t α(s) δws

}

E

{

1{Xt>x}
∫ t

0
b(Xs)−1YsY

−1
t α(s) δws

} .

The above formula still is not satisfactory for the sake of numerical com-
putations since the Skorohod integral is difficult to compute. But thanks to
Proposition 5.3, the Skorohod integrals in the formula can be re-expressed in
terms of much better Itô integrals:

∫ t

0

g(XT )b(Xs)
−1YsY

−1
t α(s) δws = g(XT )Y −1

t

∫ t

0

Ysb(Xs)
−1dws

−
∫ t

0

Ds(g(XT )Y −1
t )Ysb(Xs)

−1ds.

Since Ds(g(XT )Y −1
t ) = g′(XT )YT Y −1

s b(Xs)Y
−1
t − g(XT )DsY

−1
t the final

ingredient is given by the formula

DsY
−1
t = b(Xs)Y

−2
s Y −2

t (ZsYt − ZtYs)− Y −1
t b′(Xs)

where {Zt}t≥0 is the second variation process given by the equation

dZt = (b′(Xt)Zt + b′′(Xt)Y
2
t )dWt + (a′(Xt)Zt + a′′(Xt)Y

2
t )dt

and Z0 = 0. Just as we think of the first variation Yt = dXt/dX0 as the
derivative of the solution of the SDE with respect to its initial condition, we
think of the second variation of Zt = d2Xt/dX2

0 as the second derivative.

Notes & Complements

Most of the important results on differentiability of functions on Banach spaces were
derived in the early second half of the previous century. Some of these results are
not well known and the interested reader may have to go back to the original articles
to find them. We strongly believe that the fundamental result was given as early
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as 1954 by Kurzweil in [95]. The ensuing papers by Bonic and Frampton [19] and
Whittfield [134] can be consulted for complements. In keeping with the spirit of this
monograph, we have considered here only differential calculus on Banach spaces.
As shown in the original articles quoted above, infinite dimensions can prevent the
straightforward extension of classical results of differential calculus. See for example
[72] for Goodman’s discussion of the existence of partitions of unity in a reasonable
form. In many cases, it is necessary to use a more general calculus. For example,
a locally convex vector space E can be a convenient set-up if the function c : R → E
is smooth whenever e∗ ◦ c : R → R is smooth for every e∗ ∈ E∗. If E and F are
convenient vector spaces, then a function f : E → F is called smooth if f◦c : R → F
is smooth for every smooth c : R → E. That is, f is smooth if it maps smooth curves
into smooth curves. This theory of convenient calculus can be found the book of
Kriegl and Michor [92]. Filipović and Teichmann [64], [63], and [65] exploited the
generality of this calculus to study in depth the finite dimensional realizations of
HJM interest rate models. We shall review some results from this theory in Chap. 6.

Much of the material on Malliavin calculus in this chapter can be found in the
book [109] of Nualart. A more probabilist, and less formal, introduction can also
be found in the second volume of Rogers and Williams’ text [118].

The notion of the derivative of functions on an abstract Wiener space in the
direction of the reproducing kernel Hilbert space seems to have been introduced by
Gross. It should be mentioned here that the original application of the Malliavin
calculus is Malliavin’s probabilistic proof of Hörmander’s theorem on the regularity
of the solutions of hypoelliptic PDE.

The Clark–Ocone formula seems to have first appeared in the paper [39] of
Clark. In this paper, the formula is proven for random variables ξ, which are Fréchet
differentiable functionals on the Banach space E = C0([0, T ]). Ocone [110] proved
the formula under the much weaker assumption of Malliavin differentiability. An
early financial application of the Clark–Ocone formula appeared in the paper of
Karatzas and Ocone [111]. The version of the Clark–Ocone formula appearing
in this chapter requires square-integrability. The integrabilty assumption can be
significantly weakened. The reader interested in this generalization should consult
the paper of Karatzas, Li, and Ocone [85].

The logarithmic Sobolev inequality in the form presented in this chapter was
first derived by L. Gross in [76]. This inequality is equivalent to the following
hypercontractive estimate of Nelson [108]:

‖e−tN‖p,q ≤ 1

if e−t ≤ ((q + 1)/(p − 1))1/2, where ‖A‖p,q denotes the operator norm of A as an
operator from Lq(Ω) into Lp(Ω), and the so-called number operator N = δ ◦ D is
the self-adjoint operator on L2(Ω) whose quadratic form is given by 〈Nξ, ξ〉L2(Ω) =

E{‖Dξ‖2}. We learned the simple proof of the logarithmic Sobolev inequality using
the Clark–Ocone formula from Capitaine, Hsu, and Ledoux [27].

The stochastic flow {Ys,t}0≤s≤t provides a useful connection between the solu-
tions of SDEs and Malliavin calculus. It has also been exploited by Elliott and van
der Hoek [55] to provide an alternative approach to the affine short rate models
based on the forward measure rather than the PDE techniques discussed in Chap. 2.

The section on the application of the integration by parts formula to the com-
putation of the Greeks was inspired by the original article [67] of Fournié, Lasry,
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Lebuchoux, Lions, and Touzi. In our presentation, we have glossed over many is-
sues related to the actual implementation of a Monte-Carlo scheme to compute the
delta.

Most importantly, while the error of a Monte-Carlo simulation of E{ξ} always
decays as N−1/2, where N is the number of independent realizations of ξ, the error
grows as the standard deviation var(ξ)1/2. In our case, there is a lot of flexibility
in constructing the Malliavin weight Π : recall that we may choose any averaging
function α ∈ L2([0, T ]) with

∫ T

0
α(t)dt = 1. A clever implementation of a Monte-

Carlo scheme should use the α which minimizes the variance.
Furthermore, it can be the case that var(g′(XT )YT ) < var(g(XT )Π), even for

the optimal weight Π ! In other words, there are cases where the integration-by-
parts trick only increases the variance, and makes our Monte-Carlo simulation less
efficient. For instance, this is clearly the case when g is a constant function. Indeed,
the integration by parts trick only pays off if g is very singular. For a general
function g, therefore, one should find a decomposition g = gsmooth + gsingular and
apply the integration by parts trick only to the singular part.

Further discussion of the hedging error produced by this method of computing
the Greeks, as well as numerical comparisons with other methods can be found in
the work of Cvitanic, Ma, and Zhang [42] and the recent survey [91] by Kohatsu-
Higa and Montero. This Monte Carlo computation of the sensitivities of the solu-
tion of a stochastic differential equation was extended to the infinite dimensional
setting of the sensitivity computations for solutions of stochastic partial differential
equations in a paper by Carmona and Wang [37], where the lack of invertibility of
the diffusion matrix is resolved by the linearity of the equation.

In a sequel article [66], Fournié, Lasry, Lebuchoux, and Lions extended the orig-

inal idea of [67] to the computation of conditional expectations. This remarkable

proposal initiated a spate of publications. First the idea was formalized in a more

general setting by Bouchard, Ekeland and Touzi in [20], applications to the nu-

merical solution of backward stochastic differential equations were given in [21] by

Bouchard and Touzi, and applications to the computation of American and other

exotic derivatives followed. Indeed the refinement by Longstaff and Schwartz [102]

to the original proposal [130] of Tsitsiklis and Van Roy which became the industry

standard to compute American options on large baskets is based on the computa-

tion by Monte-Carlo techniques of a large number of conditional expectations, and

the use of a Malliavin-like approach as described above is a natural candidate for

this type of algorithm. The interested reader will find related applications in a pa-

per by Gobet and Kohatsu-Higa [69] and in the recent preprints of Elie, Fermanian

and Touzi [54], and of Mrad, Touzi and Zeghal [103].





6

General Models

The previous three chapters took us away from the main thrust of this
book, namely the term structure of interest rates. We now come back to the
stochastic models of a bond market of riskless zero coupon bonds, and we
take advantage of our short excursion in the world of infinite dimensional
stochastic analysis to generalize the classical models, and especially the
HJM model, to include infinitely many factors.

6.1 Existence of a Bond Market

Throughout this chapter we assume the existence of a frictionless market
(in particular we ignore transaction costs) for riskless zero coupon bonds of
all maturities. As before, we follow the convention in use in the financial
mathematics literature and we denote by P (t, T ) the price at time t of a zero
coupon bond with maturity date T and nominal value $ 1. So we assume
the existence of a filtered probability space (Ω,F , {Ft}t≥0, P) and for each
T > 0, of a non-negative adapted process {P (t, T ); 0 ≤ t ≤ T } which satisfies
P (T, T ) = 1. We shall specify the dynamics of the bond prices in an indirect
way, namely through prescriptions for the instantaneous forward rates, but
as explained earlier, this is quite all right.

We assume that our bond prices P (t, T ) are differentiable functions of the
maturity date T , and following our discussion of the first chapter, we define
the instantaneous forward rates as:

f(t, T ) = −∂ log P (t, T )

∂T
in such a way that:

P (t, T ) = exp

(

−
∫ T

t

f(t, s)ds

)

.

As already explained in Chap. 2 we shall often use Musiela’s notation:

Pt(x) = P (t, t + x) and ft(x) = f(t, t + x), t, x ≥ 0.
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6.2 The HJM Evolution Equation

One of the goals of this chapter is to analyze the HJM equation:

dft(x) =

(

∂

∂x
ft(x) + αt(x)

)

dt +

∞
∑

i=1

σi
t(x)dw

(i)
t (6.1)

where {w(i)}i are independent scalar Wiener processes, and where the drift
is given by the famous HJM no-arbitrage condition

αt(x) =

∞
∑

i=1

σi
t(x)

(∫ x

0

σi
t(u)du + λi

t

)

. (6.2)

We would like to think of the forward rate curve x→֒ft(x) as an Ft-
measurable random vector taking values in a function space F . Once we
choose an appropriate space F , we will interpret Eq. (6.1) by rewriting it as
a stochastic evolution equation in F .

We would also like to think of our Wiener process as a cylindrical Wiener
process defined on a real separable Hilbert space G. As in the previous chap-
ter, we shy away from realizing Wt as a bona fide Banach space valued Wiener
process in the sense of Chap. 4 because the actual nature of the state space
is irrelevant, only the reproducing kernel Hilbert space plays a role in this
chapter. We do not even need any special features of the space G except
that it is infinite dimensional. Because the eigenvalues of a Hilbert–Schmidt
operator must decay fast enough for the sum of their squares to be finite,
assuming that G is infinite dimensional does not disagree with the principal
component analysis of Chap. 1 used to justify the introduction of models with
finitely many factors or HJM models with finite rank volatility. No generality
would be lost letting G = ℓ2 and the reader is free to substitute ℓ2 every-
where G appears in what follows. Of course, choosing G = ℓ2 is equivalent
to fixing a basis for G and working with the coordinates of vectors expressed
in this basis. We prefer, though, to keep our presentation free of coordinates
whenever possible. Also, keeping G unspecified allows for the possibility that
the Wiener process takes values in a function space. Equivalently, the infi-
nite dimensional Wiener process may be viewed as a two parameter random
field with a tensor covariant structure. In any event, we pick our favorite G
once and for all, and fix it for the remainder of the chapter. To simplify the
presentation, we will always identify G with its dual G∗.

6.2.1 Function Spaces for Forward Curves

Our first job as a term structure modeler is to choose the state space F
for the forward rate dynamics in such a way that the mathematical analy-
sis of Eq. (6.1) is clean. However this space should be general enough to
accommodate as large a family of models as possible. Building on our early
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discussions of principal component analysis of Chap. 1, and the HJM prescrip-
tion in Chap. 2, we now list the assumptions that we use to carry out this
analysis.

Assumption 6.1. 1. The space F is a separable Hilbert space and the ele-
ments of F are continuous, real-valued functions. The domain χ of these
functions is either a bounded interval [0, xmax] or the half-line R+. We
also assume that for every x ∈ χ, the evaluation functional:

δx(f) = f(x)

is well-defined, and is in fact a continuous linear function on F , i.e. an
element of the dual space F ∗.

2. The semigroup {St}t≥0 is strongly continuous in F , where the left shift
operator St is defined by:

(Stf)(x) = f(t + x). (6.3)

The generator of {St}t≥0 is the (possibly unbounded) operator A.
3. The map FHJM is measurable from some non-empty subset D ⊂ LHS(G, F )

into F where the HJM map FHJM is defined by

FHJM(σ)(x) = 〈σ∗δx, σ∗Ix〉G

for each σ ∈ LHS(G, F ), where G is a given real separable Hilbert space.

Let us remark on these assumptions. The most important property that the
space F should have is that elements of F should be locally integrable func-
tions – indeed, the formula for the bond price:

P (t, T ) = exp

(

−
∫ T−t

0

ft(s) ds

)

,

should make sense! For instance, the classical Lebesgue spaces Lp(R+) have
this property. Recall, however, that space Lp(R+) is in fact a space of equiva-
lent classes of functions. As such, its elements are only defined almost every-
where, and they cannot be evaluated on a set of measure zero.

In our analysis, we will find it necessary to be able to evaluate a forward
curve (i.e. an element of the space F ) at a given time to maturity. For instance,
our discussion of Chap. 1 suggests that we define the short interest rate at
time t as the value ft(0). This definition may not always be meaningful unless
we assume the elements of F are genuine functions, not just equivalence
classes.

Fortunately, almost everyone working with the term structure of interest
rates would agree that the forward curves should be smooth functions of the
time to maturity. Hence our Assumption 6.1.1 is reasonable. Of course, the
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elements of F are locally integrable, but more is true. The definite integration
functional Ix defined by

Ix(f) =

∫ x

0

f(s)ds

is continuous on F for each x ∈ χ since
∣

∣

∣

∣

∫ x

0

f(s)ds

∣

∣

∣

∣

≤ x sup
s∈[0,x]

|f(s)|

≤ x sup
s∈[0,x]

‖δs‖F∗‖f‖F

and sups∈[0,x] ‖δs‖F∗ is finite by the Banach–Steinhaus theorem.
The financial implication of Assumption 6.1.1 is that the short interest

rate rt is well-defined as:
rt = ft(0)

Once the short rate is defined, the money-market account is defined by:

Bt = exp

(∫ t

0

rsds

)

It is the solution of the ordinary differential equation dBt = rtBt dt which
satisfies the initial condition B0 = 1. It is a traded asset that pays the floating
interest rate rt continuously compounded. We shall use it as a numeraire, i.e.
the unit in which the prices of all the other assets are expressed. Prices
expressed in units of the numeraire are denoted with a tilde and are called
discounted prices:.

P̃t(x) = B−1
t Pt(x) = exp

(

−
∫ t

0

rsds−
∫ x

0

ft(y)dy

)

. (6.4)

We should mention that the assumption that F has the structure of a sep-
arable Hilbert space is motivated less by financial considerations than by
mathematical convenience. In particular, the stochastic integration theory
developed in Chap. 4 is available for use.

The semigroup {St}t≥0 defined in Assumption 6.1.2 allows us to pass from
the time of maturity notation f(t, T ) to Musiela’s time to maturity notation
ft(x) where ft(x) = f(t, t + x). Note that all of the evaluation functionals
δx = S∗

xδ0 can be recovered by a left shift of the functional δ0. The connection
between the shift operators and the presence of enough smooth functions
relies on the fact that the shift operators form a semigroup of operators
whose infinitesimal generator A should be the operator of differentiation, in
the sense that one should have Af = f ′ whenever f is differentiable.

Assumption 6.1.3 is intimately related to the no-arbitrage principle. In
particular, we will need the function FHJM in order to define the drift term
of an abstract HJM model.

Note that since the elements of F are continuous, the function x→֒
FHJM(σ)(x) is continuous for all σ ∈ LHS(G, F ). However, it is not neces-
sarily true that FHJM(σ) is an element of F . In fact, for the spaces we shall
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consider, it is generally false that FHJM(σ) is an element of F unless the
operator σ is an element of a proper subset D ⊂ LHS(G, F ).

Assumption 6.1.3 is usually hard to check in practice. We give a sufficient
condition which will prove useful when we analyze a concrete example in
Sect. 6.3.3.

Assumption 6.2. The space F satisfies Assumption 6.1.1 and 6.1.2. Further-
more, there exists a subspace F 0 ⊂ F such that the binary operator ⋆ defined
by the formula

(f ⋆ g)(x) = f(x)

∫ x

0

g(s)ds

maps F 0 × F 0 into F , and is such that for all f, g ∈ F 0 the following bound
holds:

‖f ⋆ g‖F ≤ C‖f‖F‖g‖F
for some constant C > 0.

Proposition 6.1. Let the space F satisfy Assumption 6.2. Then the map
FHJM satisfies the local Lipschitz bound

‖FHJM(σ1)− FHJM(σ2)‖F ≤ C‖σ1 + σ2‖LHS(G,F )‖σ1 − σ2‖LHS(G,F )

for all Hilbert–Schmidt operators σ1, σ2 ∈ LHS(G, F 0) with ranges contained
in F 0. In particular, the map FHJM is measurable from D = LHS(G, F 0)
into F .

Proof. We have the simple estimate:

‖f ⋆ f − g ⋆ g‖ =
1

2
‖(f − g) ⋆ (f + g) + (f + g) ⋆ (f − g)‖

≤ C‖f − g‖‖f + g‖.

Notice that the HJM function FHJM is then recovered by the norm convergent
series

FHJM(σ) =
∞
∑

i=1

(σgi) ⋆ (σgi)

for σ ∈ LHS(G, F 0), where {gi}i∈N is a complete orthonormal system for G.
The proof is now complete since we have

‖FHJM(σ1)− FHJM(σ2)‖F ≤
∞
∑

i=1

‖(σ1gi) ⋆ (σ2gi)− (σ2gi) ⋆ (σ2gi)‖F

= C

∞
∑

i=1

‖(σ1 − σ2)gi‖F ‖(σ1 + σ2)gi‖F

≤ C‖σ1 − σ2‖LHS(G,F )‖σ1 + σ2‖LHS(G,F )

by the triangle and Cauchy–Schwarz inequalities. �
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In the same way that the short rate is defined as the value of the forward
rate curve at the left-hand point of the time to maturity interval [0, xmax],
the long interest rate ℓt is defined as the value of the forward rate curve at
the right end point of the domain χ. This is possible when χ = [0, xmax] is
bounded, in which case:

ℓt = ft(xmax),

but it requires a special property of the space F when the domain χ = R+ is
the halfline. Indeed, in order to define:

ℓt = ft(∞)

we need to make sure that, for all f ∈ F , the limit;

f(∞) = lim
x→∞

f(x)

exists. We shall not add this to the list of properties required of F because
the long rate ℓt will not be used in the present study. Nevertheless, the im-
plications of the existence of the above limit will be discussed in Sect. 6.3.2.
The long rate will also figure prominently in the discussion in Chap. 7 of
invariant measures for the HJM model.

6.3 The Abstract HJM Model

In this section, we formulate a precise definition of an HJM model in a func-
tion space F . We assume that F satisfies Assumption 6.1.

We fix a complete probability space (Ω,F , P) with filtration {Ft}t≥0 sat-
isfying the usual conditions and such that there exists a Wiener process W de-
fined cylindrically on the separable Hilbert space G. Let P be the predictable
sigma-field on R+ ×Ω. We now state a definition, which we essentially take
from [62], of an HJM model for the forward rate:

Definition 6.1. An HJM model on F is a pair of functions (λ, σ) where:

1. λ is a measurable function from (R+ ×Ω × F,P ⊗ BF ) into (G,BG),
2. σ is a measurable function from (R+×Ω×F,P⊗BF ) into (D,BLHS(G,F )),

such that there exists a non-empty set of initial conditions f0 ∈ F for which
there exists a unique, continuous mild F -valued solution {ft}t≥0 of the HJM
equation:

dft = (A ft + α(t, ·, ft)) dt + σ(t, ·, ft)dWt (6.5)

where
α(t, ω, f) = FHJM ◦ σ(t, ω, f) + σ(t, ω, f)λ(t, ω, f).
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If (σ, λ) is an abstract HJM model on the space F with initial condition
f0 ∈ F , then the forward rate process {ft}t≥0 satisfies the integral equation

ft = Stf0 +

∫ t

0

St−sα(s, ·, fs)ds +

∫ t

0

St−sσ(s, ·, fs)dWs. (6.6)

We now use Proposition 6.1 to give a sufficient condition for the existence of
an HJM model.

Proposition 6.2. Suppose that the state space F satisfies Assumption 6.2,
and let the closed subspace F 0 ⊂ F be such that ‖f ⋆ g‖F ≤ C‖f‖F ‖g‖F for
f, g ∈ F 0. Assume that for every (t, ω, f) ∈ R+ × Ω × F the range of the
operator σ(t, ω, f) is contained in the subspace F 0. If σ is bounded and if the
Lipschitz bounds

‖σ(t, ω, f)− σ(t, ω, g)‖LHS(G,F ) ≤ C‖f − g‖F

‖σ(t, ω, f)λ(t, ω, f)− σ(t, ω, g)λ(t, ω, g)‖F ≤ C‖f − g‖F
are satisfied for some constant C > 0 and all t ≥ 0, ω ∈ Ω and f, g ∈ F , then
the pair (λ, σ) is an HJM model on F . Furthermore, for any initial forward
curve f0 ∈ F there exists a unique, continuous solution to the Eq. (6.5) such
that E{supt∈[0,T ] ‖ft‖pF} < +∞ for all finite T ≥ 0 and p ≥ 0.

This result is just a consequence of Theorem 4.3 of Chap. 4.

6.3.1 Drift Condition and Absence of Arbitrage

We now fix an HJM model (σ, λ) with initial condition f0 ∈ F , and we
denote by {ft}t≥0 the unique solution to Eq. (6.5). To simplify the notation,
let λt = λ(t, ω, ft) and σt = σ(t, ω, ft).

Theorem 6.1. If we have

E

{

exp

(

−1

2

∫ t

0

‖λs‖2G +

∫ t

0

λsdWs

)}

= 1

and if
∫ t

0

E

{∫ t

0

‖σ∗
sδs−u‖2Gdu

}1/2

ds < +∞

for all t ≥ 0 then the market given by the HJM model (σ, λ) admits no
arbitrage.

Proof. We compute the dynamics of the discounted bond price P̃ (t, T ) =
B−1

t P (t, T ). We will make use of the relation S∗
αIu = Iu+α − Iα, which is

revealed in the following calculation:
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(S∗
αIu)g =

∫ u

0

(Sαg)(s)ds =

∫ u

0

g(s + α)ds

=

∫ u+α

α

g(s)ds = (Iu+α − Iα)g.

Let us compute the dynamics of the bond price:

− log P (t, T ) = IT−tft

= IT−tStf0 +

∫ t

0

IT−tSt−sαsds +

∫ t

0

σ∗
sSt−sIT−tdWs

= IT f0 − Itr0 +

∫ t

0

IT−sαsds−
∫ t

0

It−sαsds

+

∫ t

0

IT−sσsdWs −
∫ t

0

σ∗
sIt−sdWs

Now by the stochastic Fubini theorem and the assumption of the theorem we
have

=

∫ t

0

(∫ t

0

σ(s)∗δt−udWs

)

du =

∫ t

0

σ∗
sIt−sdWs.

Using log P (0, t) = −Itf0 and
∫ t

0

rs(0)ds = Itf0 +

∫ t

0

It−sαsds +

∫ t

0

σ∗
sIt−sdWs.

we conclude that

log P (t, T ) = log P (0, t) +

∫ t

0

(fs(0)− IT−sαs) ds−
∫ t

0

σ∗
sIT−sdWs.

Now in {P (t, T )}t∈[0,T ] is in the form of an Itô process . Applying Itô’s formula
yields

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T )

(

fs(0)− IT−sαs +
1

2
‖σ∗

sIT−s‖2G
)

ds

−
∫ t

0

P (s, T )σ∗
sIT−sdWs

Finally, substituting αs = FHJM(σs) + σsλs, the discounted bond prices are
given by

P̃ (t, T ) = P (0, T )−
∫ t

0

P (s, T )IT−sσsdW̃s

where W̃t = Wt +
∫ t

0 λsds. But the Cameron–Martin–Girsanov theorem says
that there exists a measure Q, locally equivalent to P such that the process
W̃t = Wt +

∫ t

0 λsds defines a cylindrical Wiener process on G for the measure
Q. We will find that for each T > 0 the discounted bond prices are local
martingales under the measure Q. Hence, by the fundamental theorem, there
is no arbitrage. �
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The current framework may be too general for practical needs. At this
level of generality, we only know that the discounted bond prices are local
martingales. They are bona-fide martingales if

EQ

{

exp

(

−1

2

∫ T

0

‖σ∗
sIT−s‖2G +

∫ t

0

σ∗
sIT−sdW̃s

)}

= 1.

We can ensure that the discounted bond prices are martingales if we can
check the well-known Novikov condition

EQ

{

exp

(

1

2

∫ T

0

‖σ∗
sIT−s‖2G

)}

< +∞.

Alternatively, we can ensure the discounted bond prices are martingales
if the forward rates are positive almost surely, since if the rates are positive,

the discounted bond prices P̃ (t, T ) = exp(−
∫ t

0 fs(0)ds −
∫ T−t

0 ft(s)ds) are
clearly bounded by one.

6.3.2 Long Rates Never Fall

There are some differences in modeling the forward rate as a function on
a bounded interval [0, xmax] versus the half line R+. In particular, when we
work on the half-line and define the long rate by the limit ℓt = limx→∞ ft(x),
an unexpected phenomenon is found: The long rate never falls. We give an
account of this result in the context of the abstract HJM models studied in
this chapter.

Let F be the state space. Throughout this subsection, we grant Assump-
tion 6.1, as well as one additional assumption:

Assumption 6.3. Every f ∈ F is a function f : R+ → R such that the limit
f(∞) = limx→∞ f(x) exists, and the functional δ∞ : f →֒f(∞) is an element
of F ∗.

Fix a probability space (Ω,F , P), and let {ft}t≥0 be an F -valued forward
rate process given by an abstract HJM model, and let ℓt = ft(∞) be the long
rate. We prove that the long rate is almost surely increasing.

Theorem 6.2. For 0 ≤ s ≤ t, the inequality ℓs ≤ ℓt holds almost surely.

Proof. We use the following observation: For fixed (t, ω) we have
limT→∞ P̃ (t, T )1/T = e−ℓt , where

P̃ (t, T ) = exp

(

−
∫ t

0

fs(0)ds−
∫ T−t

0

ft(x)dx

)

are the discounted bond prices. Since we are interested in an almost sure
property of the forward rate process, we may work with any measure which
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is equivalent to the given measure P. In particular, from the discussion of
the previous section, there exists a measure Q equivalent to P such that
the discounted bond price processes {P̃ (t, T )}t∈[0,T ] are local martingales
simultaneously for all T > 0. All expected values will be calculated under
this measure Q.

Let ξ be a positive and bounded random variable. By the conditional
versions of Fatou’s lemma and Hölder’s inequality we have

E{e−ℓtξ} = E{ lim
T→∞

P̃ (t, T )1/T ξ}

= E{E{ lim
T→∞

P̃ (t, T )1/T ξ|Fs}}

≤ E{lim inf
T→∞

E{P̃ (t, T )1/T ξ|Fs}}

≤ E{lim inf
T→∞

E{P̃ (t, T )|Fs}1/T E{ξT/(T−1)|Fs}(T−1)/T}

≤ E{lim inf
T→∞

P̃ (s, T )1/T E{ξT/(T−1)|Fs}(T−1)/T }

≤ E{e−ℓsξ}.

We have used the fact that {P̃ (t, T )}t∈[0,T ] is a super-martingale for Q. Since
ξ is positive but arbitrary, the result follows. �

Notice that the above proof needs very little of the structure of the ab-
stract HJM models introduced earlier. In fact, it is easy to see that the result
holds in discrete time and with models with jumps. All that is assumed is
that the long rate exists.

We note that the popular short rate models, such as the Vasicek and Cox–
Ingersoll–Ross models discussed in Chap. 2, produce constant long rates. For
instance, for the Vasicek model the short interest rate satisfies the SDE

drt = (α − βrt)dt + σdwt

for a scalar Wiener process {wt}t≥0. By the theory presented in Chap. 2 the
forward rates are given by

ft(x) = e−βxrt + (1− e−βx)
α

β
− σ2

2β2
(1− e−βx)2

where ft(0) = rt. Note that not only the long rate is well-defined, but it is
explicitly given by the constant

ℓt =
α

β
− σ2

2β2

independent of (t, ω).
There do exist models for which the long rate is strictly increasing. Con-

sider an HJM model driven by a scalar Wiener process {wt}t≥0 with a con-
stant volatility function given by σ(x) = σ0(x + 1)−1/2. Since FHJM ◦ σ(x) =
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2σ2
0(1−(x+1)−1/2) and

∫ t

0
(x+ t−s)−1/2dws converges to zero a.s., it follows

that the long rate for this model is the increasing process

ℓt = ℓ0 + 2σ2
0t.

6.3.3 A Concrete Example

Filipović [62] proposed a family of spaces {Hw}w as appropriate state spaces
to analyze the HJM dynamics. These spaces are defined as follows:

Definition 6.2. For a positive increasing function w : R+ → R+ such that
∫ ∞

0

w(x)−1dx < +∞, (6.7)

let Hw denote the space of absolutely continuous functions f : R+ → R

satisfying
∫ ∞

0

f ′(x)2w(x)dx < +∞

where f ′ is the weak derivative of f , which we endow with the inner product

〈f, g〉Hw
= f(0)g(0) +

∫ ∞

0

f ′(x)g′(x)w(x)dx.

The spaces {Hw}w have many nice properties as shown by the following
proposition:

Proposition 6.3. If the weight function w satisfies condition (6.7), then the
inner product space Hw is a separable Hilbert space, the evaluation functional
δx and the definite integration functional Ix defined by

δx(f) = f(x) and Ix(f) =

∫ x

0

f(s)ds

are continuous on Hw for all x ≥ 0, and furthermore, the semigroup of
operators on Hw defined by

(Stf)(x) = f(t + x)

is strongly continuous.

Proof. The evaluation functionals are uniformly bounded on Hw since

|〈δx, f〉| = |f(x)| = |f(0) +

∫ x

0

f ′(u)du|

≤ |f(0)|+
(
∫ x

0

du

w(u)

)1/2 (∫ ∞

s

f ′(u)2 w(u) du

)1/2

≤ C‖f‖Hw
.

Their continuity follow, and the other properties of the proposition are
plain. �



174 6 General Models

Assumption 6.3 is satisfied if we choose such an Hw as state space. In par-
ticular, for every f ∈ Hw, the limit f(∞) = limx→∞ f(x) is well-defined as
f(∞) = f(0) +

∫ ∞
0 f ′(x)dx since the improper integral converges absolutely:

∫ ∞

0

|f ′(x)|dx ≤
(∫ ∞

0

f ′(x)2w(x)dx

)1/2 (∫ ∞

0

dx

w(x)

)1/2

.

Furthermore, the functional δ∞ : f →֒f(∞) is continuous on Hw.
The most important motivation for the choice of Hw as state space is

that Hw is compatible with the HJM no-arbitrage condition, at least if w
increases fast enough. We will show that Assumption 6.2 is satisfied.

Proposition 6.4. Let the subspace H0
w ⊂ Hw be defined as

H0
w = {f ∈ Hw; f(∞) = 0}.

If the weight w satisfies the growth condition
∫∞
0 x2w(x)−1dx < +∞, then

the binary operator ⋆ defined by

(f ⋆ g)(x) = f(x)

∫ x

0

g(s)ds

maps H0
w ×H0

w into H0
w, and satisfies

‖f ⋆ g‖Hw
≤ C‖f‖Hw

‖g‖Hw

for C = 4
∫∞
0

x2w(x)−1dx. In particular, the function FHJM is locally Lip-
schitz from LHS(G, H0

w) into H0
w.

Proof. We have for f, g ∈ H0
w the following bounds:

‖f ⋆ g‖2Hw
=

∫ ∞

0

(

f ′(x)

∫ x

0

g(s) ds + f(x)g(x)

)2

w(x)dx

≤ 2

∫ ∞

0

(

f ′(x)2‖Ix‖2H0∗
w
‖g‖2 + ‖δx‖4H0∗

w
‖f‖2‖g‖2

)

w(x)dx

≤ 2‖f‖2‖g‖2
(

sup
x≥0
‖Ix‖2H0∗

w
+

∫ ∞

0

w(x)‖δx‖4H0∗
w

dx

)

.

Now for f ∈ H0
w we have the estimate

|〈Ix, f〉| ≤
∫ x

s=0

∫ ∞

t=s

|f ′(t)|dsdt

=

∫ ∞

t=0

(t ∧ x)|f ′(t)|dt

≤
(∫ ∞

0

t2w(t)−1dt

)1/2

‖f‖
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for all x ≥ 0, so that supx≥0 ‖Ix‖H0∗
w

is finite. Similarly, for f ∈ H0
w we have

|f(x)| ≤
∫ ∞

x

|f ′(s)|ds

≤
(
∫ ∞

x

w(s)−1ds

)1/2

‖f‖

so that
∫ ∞

0

w(x)‖δx‖4dx ≤
∫ ∞

0

w(x)

(∫ ∞

x

w(s)−1ds

)2

dx

= 2

∫ ∞

s=0

∫ s

t=0

∫ t

x=0

w(x)w(s)−1w(t)−1ds dt dx

≤
∫ ∞

0

s2w(s)−1ds,

where we have used the monotonicity of w in the last step. The proof is
completed by noting that for f, g ∈ H0

w we have
∣

∣

∣

∣

f(x)

∫ x

0

g(s)ds

∣

∣

∣

∣

≤ |f(x)|‖g‖|‖Ix‖ → 0

as x→∞. �

Returning to our discussion of the long rate from Sect. 6.3.2, we note that
for f, g ∈ H0

w, the function FHJM maps LHS(G, H0
w) into the subspace H0

w;
i.e, for every σ ∈ LHS(G, H0

w) we have FHJM(σ)(∞) = 0. Hence, for HJM
models on the space Hw, the long rate is constant.

6.4 Geometry of the Term Structure Dynamics

In this section we study some geometrical aspects to the evolution of the
forward rate curve. As the properties studied in this chapter are almost sure
properties of the models, we restrict ourselves to risk neutral probability
structures. Consequently, the HJM models will be completely determined by
the volatility σ since we can assume λ = 0. Moreover, for the sake of further
convenience, we will drop the time dependence and work with a Markovian
HJM model in a space F satisfying Assumption 6.1.

In this section, we study several problems relating the dynamics given by
the HJM stochastic differential equations and their initial conditions.

• The first problem is of a stability nature. Given a set of initial forward
curves satisfying a specific set of properties, we ask if the dynamics im-
posed by a volatility matrix σ are preserving these properties.

• The second problem is directly related to the factor models introduced in
Sect. 2.1 of Chap. 2. Given a volatility structure σ, under which conditions
will a k-factor representation in the sense of Chap. 2 exist?
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6.4.1 The Consistency Problem

In this section we try to reconcile the point of view of Chap. 1 with the
HJM framework presented in this chapter. Throughout this subsection, we
shall also assume that the Wiener process is finite dimensional, and as usual,
we denote by d its dimension. Under these conditions, the d-dimensional
vector of volatilities is given by a deterministic function f →֒ σ(f) of the
forward rate curve f . Recall that the forward rate curve at a given time
is not directly observable on the market. Rather, the forward rate curve is
estimated from the market data, typically price quotes of coupon bonds and
swap contracts. As we saw in Chap. 1, there are two main approaches: either
the data are fit to a parametric family of curves such as the Nelson–Siegel
family, or the forward rate curve is estimated by a nonparametric method,
such as smoothing splines.

On the other hand, and independently of the choice of the initial forward
curve, we model the dynamics of the forward rates by an HJM model for
the purpose of pricing and hedging. In this section, we investigate whether
these two modeling perspectives, the static parametric modeling of the initial
forward rate curve and the choice of no arbitrage dynamics for its evolution,
are compatible.

Let f : R+×Rk → R be a smooth function which we think of as a family
of parameterized forward rate curves. That is, for a fixed z ∈ Rk, we view
x→֒f(x, z) as a forward rate curve which corresponds to the parameter z.
The classical example of the Nelson–Siegel family was introduced in Chap. 1.
For the sake of completeness we recall that this family is given by

fNS(x, z) = z1 + (z2 + z3x)e−xz4

with the four-dimensional parameter z = (z1, z2, z3, z4).
Let us now fix (x, t) ∈ R+ × R+ and let us assume that at each time

t ≥ 0, the forward rate ft(x) is given by ft(x) = f(x, Zt) where Zt is an
Ft-measurable random variable taking values in Rk. In the spirit of Chap. 2,
we consider the simplest model for the process {Zt}t≥0, and we assume that
it is the solution to an SDE of the form

dZt = μ(Z)(Zt)dt + σ(Z)(Zt)dWt

under a martingale measure Q. We may ask, then, for what functions μ(Z)

and σ(Z) are the dynamics of the forward rates ft(x) consistent with the
HJM drift condition? The definite answer is given in the following theorem
of Filipović:

Theorem 6.3. For the dynamics of the system of forward curves ft(x) =
f(x, Zt) to satisfy the HJM drift condition α = FHJM(σ) (or in other words
(6.2) with λ = 0), the following must hold identically in x and z:
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∂

∂x
f(x, z) +

k
∑

i,j=1

σ
(Z)
i (z)σ

(Z)
j (z)∗

∂

∂zi
f(x, z)

∫ x

0

∂

∂zj
f(s, z)ds

=

k
∑

i=1

∂

∂zi
f(x, z)μ

(Z)
i (z) +

1

2

k
∑

i,j=1

∂2

∂zi∂zj
f(x, z)σ

(Z)
i (z)σ

(Z)
j (z)∗.

An interesting consequence is that the Nelson–Siegel family is, in fact, in-
consistent with every nontrivial HJM model. That is, if we knew that the
forward rate at every time t ≥ 0 was given by

ft(x) = Z
(1)
t + (Z

(2)
t + Z

(3)
t x) exp(−xZ

(4)
t )

for some diffusion {Z(1)
t , . . . , Z

(4)
t }t≥0, then the forward rates would neces-

sarily be a deterministic function of the time 0 value of the process. To be
specific we would have:

ft(x) = Z
(1)
0 + (Z

(2)
0 + Z

(3)
0 (x + t)) exp(−(x + t)Z

(4)
0 ),

in other words, the dynamics of the forward rates are given by the left-shift
semigroup ft = Stf0.

To be fair, central bankers do not believe that for every moment of time
the forward curve is given by an element of the Nelson–Siegel family. Recall
from the discussion of Chap. 1 that they solve an optimization problem to find
the member of the family that best fits observed prices. Therefore, Nelson–
Siegel and Svensson curves are regarded as approximations that capture some
economically meaningful features of the observed forward rates, such as the
location of dips and humps. However, it is important to realize that they fail
to be consistent with the no-arbitrage principle.

6.4.2 Finite Dimensional Realizations

We now study the question of existence of finite-dimensional realizations
of an infinite-dimensional HJM model. Using the terminology introduced in
Chap. 2, this problem can be viewed as the search for a factor model giving
the HJM model we start from. In other words, given a risk neutral HJM
model determined by a volatility structure σ on F , we seek conditions under
which there exists a smooth function f (Z) : R+×Rk → R and a k-dimensional
diffusion {Zt}t given by an SDE of the form

dZt = μ(Z)(Zt)dt + σ(Z)(Zt)dWt

such that ft(x) = f (Z)(x, Zt) for all t almost surely. As explained earlier,

the random variables Z
(1)
t , . . . , Z

(k)
t can be thought of as economic factors,

but they can also include benchmark forward rates. As we can see, the finite
dimensional realization problem asks whether a given HJM model can be
realized from a finite factor model, such as those introduced in Chap. 2.
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Before tackling the problem in its full generality, we first consider the
particular case of a Gauss-Markov HJM model for which we can give an
explicit solution. So we fix a deterministic volatility structure σ ∈ LHS(G, F )
and we assume that

ft = Stf0 +

∫ t

0

St−sFHJM(σ)ds +

∫ t

0

St−sσdWs.

The model admits a finite-dimensional realization if and only if there exist
a smooth F -valued function f such that

f (Z)(Zt) = ft

for some k-dimensional diffusion {Zt}t≥0. If we let the first factor Z
(1)
t = t

be the running time, we can rewrite the above equation as

f̄ (Z)(Zt) =

∫ t

0

St−sσdWs (6.8)

where

f̄ (Z)(z) = f (Z)(z)− Sz(1)f0 +

∫ z(1)

0

Sz(1)−sαds.

Since the right-hand side of Eq. (6.8) is mean zero and Gaussian, we study the

case where f̄ (Z) is linear in z(2), . . . , z(k) and the diffusion {(Z(2)
t ,. . . , Z

(k)
t )}t≥0

is mean zero and Gaussian.
A direct calculation reveals that Eq. (6.8) implies that the range of the

operator σ must be contained in a finite dimensional invariant subspace for
the semigroup {St}t≥0. Since elements of F are continuous by assumption,
the only such subspaces are those spanned by quasi-exponential functions,
where an element g ∈ F is called quasi-exponential if g can be written as
a finite linear combination of functions of the form

x→֒xne−βx cos(ωx) and x→֒xne−βx sin(ωx)

for a natural number n and real numbers β and ω. We record this result as
a proposition:

Proposition 6.5. A Gauss-Markov HJM model admits a realization as an
affine function of a finite-dimensional Gaussian diffusion if and only if there
is a finite number of quasi-exponential functions g1, . . . , gd ∈ F such that

range(σ) ⊂ span{gi; i = 1, . . . , d}.

As an example, consider a scalar volatility σ(x) = σ0e
−βx. Then the

forward rates are given by

ft(x) = f0(t+x)+
σ2

0

β2
e−βx(1−e−βt)(1−e−βx(1+eβt)/2)+

∫ t

0

σ0e
−β(t−s+x)dws.
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Letting x = 0 in the above equation, we see that the short rate rt = ft(0) is
given by

rt = f0(t) +
σ2

0

2β2
(1− e−βt)2 +

∫ t

0

σ0e
−β(t−s)dws.

which can be expressed in differential form:

drt = (αt − βrt)dt + σ0dwt

where

αt = f ′
0(t) + βf0(t) +

σ2
0

β
(1 − e−βt).

For this example, the a priori infinite dimensional HJM model can be realized

as a two-factor homogeneous Markov model with Z
(1)
t = t and Z

(2)
t = rt. In

fact, this is just the Vasicek–Hull–White short rate model.
We should note in the Gauss-Markov case that the existence of a finite

dimensional realization imposes a strong regularity condition on the possible
forward rate curves the model can produce. Indeed, the function x→֒ft(x)
for t ≥ 0 is as smooth as the initial forward curve x→֒f0(x). This is be-
cause the quasi-exponential functions are real analytic. In fact, in the general
Markovian case, it turns out that finite dimensional realizations are smooth.

Indeed, the existence of a finite dimensional realization of an HJM model
at point f0 ∈ F is essentially equivalent to the existence of a finite dimensional
manifold M ⊂ F containing f0 which is invariant for the HJM evolution. It
is proven by Filipović and Teichmann in [64] that such invariant manifolds
are contained in the set D(A∞) = ∩∞i=1D(Ai). So finite realizations are given
by C∞ vectors of the operator A in F . But since A is a differential operator,
these C∞ vectors are necessarily infinitely differentiable functions.

We now consider the finite dimensional realization problem for more gen-
eral Markovian (time-homogeneous) HJM models. We fix a deterministic
function f →֒σ(f) which we assume to be infinitely Fréchet differentiable.
Again, we define f →֒α(f) by

α(f) = FHJM ◦ σ(f).

We will further assume that the ranges of σ and α are contained in the set
D(A∞). As indicated by the title of this section, both the results and the
tools used to prove them are of a geometric nature, and we need to introduce
concepts and definitions which were not needed so far. The first of them is the
concept of Lie bracket of vector fields. For the purpose of this book, a Cn-
vector field on an open subset of F , say U , is an n-times Fréchet differentiable
function from U into F . Most of the vector fields used in this book are C∞,
and the reader should assume a C∞ vector field when no mention is made
of the order of differentiability. Moreover, it will be intended that the vector
field is defined on the full space whenever the open set U is not mentioned
explicitly.
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Definition 6.3. The Lie bracket of two smooth vector fields G and F on U
is defined as the function [G, H ] : U → F given by

[G, H ](f) = G′(f)H(f)−H ′(f)G(f).

The Lie algebra generated by a family of vector fields G1, . . . , Gn on U is
the smallest linear space of vector fields on U containing G1, . . . , Gn which
is closed under the Lie bracket. We denote this Lie algebra by

{G1, . . . , Gn}LA.

Recall that we use the notation ′ to denote the Fréchet derivative of a func-
tion. A finite dimensional realization depends on the volatility σ : F →
LHS(Rd, F ) and the initial forward curve f0 ∈ F . We are interested here in
those realizations which are stable under perturbation of the initial curve
in a sense to be made precise later. We will say that a volatility σ has a
generic finite dimensional realization at f0 if there exists a finite dimensional
realization at each point of a neighborhood of f0.

Notice that in general A is not a smooth vector field on F , so that D(A∞)
is usually a small subset of F . Therefore, for convenience in stating the fol-
lowing Frobenius type theorem, we impose one additional, and quite strong,
assumption: The derivative operator A = d/dx is bounded on F . We com-
ment on the meaning of this restrictive assumption later in this subsection.

Theorem 6.4. The HJM equation generically admits a finite dimensional
realization if and only if the Lie algebra

{μ, σ1, . . . , σd}LA

is finite dimensional in a neighborhood of f0 ∈ F , where

μ(f) =
∂

∂x
f + α(f)− 1

2

d
∑

i=1

σ′
i(f)σi(f)

is the drift term of the HJM equation written in Stratonvich form and σi(f) =
σ(f)gi for some CONS {gi}i of G.

Recall that the Stratonvich integral
∫ t

0 Xs ◦ dYs is defined for semi-
martingales X and Y by the formula

∫ t

0

Xs ◦ dYs =

∫ t

0

XsdYs +
1

2
≪X, Y ≫t

where the first integral on the right is an Itô integral and where ≪X, Y ≫t

denotes the quadratic co-variation of the processes X and Y . The reason for
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the sudden appearance of the Stratonvich integral is that Itô’s formula can
be rewritten in the form

dg(Xt) = g′(Xt) ◦ dXt

for smooth g. In particular, the chain rule for Stratonvich calculus is exactly
the same as the ordinary chain rule.

The assumption that A is bounded is too strong. Note that since

|f (n)(0)| = |〈δ0, A
nf〉| ≤ ‖δ0‖‖f‖‖A‖n

every function f ∈ F has a Taylor series

f(x) =

∞
∑

n=0

f (n)(0)

n!
xn

which converges for all x ≥ 0. That is to say, for A to be a bounded operator
on F , the space F has to consist of real analytic functions. However, the
forward curves produced by the CIR model cannot be extended to entire
functions due to the presence of complex poles.

Fortunately, the above theorem has been extended by Filipović and Te-
ichmann to the more general case of unbounded operators A on F . The key
idea is to restrict attention to the Fréchet space D(A∞) of C∞ vectors of
A. Because of the lack of a norm topology, the differential calculus is car-
ried out in the framework of so-called convenient analysis. See the Notes &
Complements for references.

The surprising consequence of this theory is that all generic finite dimen-
sional realizations come from affine factor models:

Theorem 6.5. Suppose that there are p linearly independent functionals
ℓ1, . . . , ℓp ∈ F ∗ such that σ(f) = σ(ℓ1(f), . . . , ℓp(f)). Let U be an open sub-
set of the Fréchet space D(A∞). If there exists a generic finite dimensional
realization at f0 ∈ U then the forward curve is of the affine form:

ft = A +
k

∑

i=1

Z
(i)
t Bi

for a k-dimensional diffusion {Zt}t≥0.

We now see why the Hull–White extensions of the Vasicek and Cox–
Ingersoll–Ross models behave so nicely: They are essentially the only generic
short rate models! All other short rate models are “accidental” in the follow-
ing sense: Suppose that we start with a short rate model that is not affine. By
solving the appropriate PDE, we find the function f (r) which determines the
forward rates given the short rate. By applying Itô’s formula to f (r)(x, rt) we
obtain an HJM equation for the forward rate evolution. By construction, this
HJM model admits a finite dimensional realization at f0 = f (r)(r0). How-
ever, the HJM model does not admit a finite dimensional realization at some
initial point f in every neighborhood of f0!
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6.5 Generalized Bond Portfolios

In this section we consider a generalized notion of bond portfolios. In partic-
ular, we allow our investor to own bonds of infinite number of maturities.

Let us recall one of the original motivations for introducing HJM mod-
els driven by an infinite dimensional Wiener process: In a finite rank HJM
model driven by a d-dimensional Wiener process, every square-integrable
claim can be replicated by a strategy of holding bonds maturing at the d
dates T1, . . . , Td fixed a-priori and independently of the claim. For instance,
with a three-factor HJM model, it is possible to perfectly hedge a call option
on a bond of maturity five years with a portfolio of bonds of maturity twenty,
twenty-five, and thirty years. This result is counter-intuitive and contrary to
market practice. Indeed, there seems to be a notion of “maturity specific risk”
not captured by finite rank HJM models.

There is a tremendous amount of redundancy in a finite factor model if
the investor is allowed to trade in bonds of any maturity. In particular, there
is no uniqueness of hedging strategies. In Sect. 6.5.3 below we show that if
the dynamics of the bond prices are driven by an infinite dimensional Wiener
process we can find conditions on the model ensuring that a given hedging
strategy is unique. Unfortunately, the usual notions of hedging become more
complicated in infinite dimensions.

As usual, let Pt(x) denote the price at time t ≥ 0 of a zero-coupon bond
with time to maturity x ≥ 0. If at time t ≥ 0, the investor owns c1, . . . , cN

units of the bonds with time to maturities x1, . . . xN respectively, then his
wealth is simply given by

Xt =

N
∑

i=1

ciPt(xi).

We can rewrite the wealth in the more suggestive form

Xt =

(

N
∑

i=1

ciδxi

)

(Pt)

where as before δx denotes the evaluation functional δx(f) = f(x). We may
say a portfolio is simple if it can be realized as a linear combination of a finite
number of evaluation functionals. Alternatively, since the evaluation func-
tional δx can be identified with the point mass δx(A) = 1A(x), a simple
portfolio is just an atomic measure on R+ with a finite number of atoms.

The generalized portfolios considered in this section, then, are limits of
simple portfolios. We present a framework in which an investor may choose
a portfolio, for instance, which may be realized as continuous finite measures
on R+.

To facilitate the exposition we break from the HJM tradition and choose
for the state variable the discounted bond price curve P̃t(·) instead of the
forward rate curve ft(·).
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This change of variables eases the analysis, although it is quite superficial
in the sense that there is a one-to-one correspondence between discounted
bond prices and instantaneous forward rates. Indeed, we can use the formulas

P̃t(x) = exp

(

−
∫ t

0

fs(0)ds−
∫ x

0

ft(s)ds

)

and

ft(x) = − ∂

∂x
log(P̃t(x)).

to go from discounted bond prices to forward rates and back.

6.5.1 Models of the Discounted Bond Price Curve

We now formulate a model of the discounted price dynamics. Paralleling the
treatment of the abstract HJM forward rate models, we first choose our state
space F of bond price curves.

Assumption 6.4. 1. The space F is a separable Hilbert space and the ele-
ments of F are continuous, real-valued functions on R+. We also assume
that, for every x ∈ R+, the evaluation functional δx(f) = f(x) is a con-
tinuous linear function on F .

2. The semigroup {St}t≥0 of left shift operators

(Stf)(x) = f(t + x)

is strongly continuous.

As before, the infinitesimal generator of {St}t≥0 will be denoted by A. We do
not assume that A is bounded. Notice also that in order to make the typical
element of F resemble a real bond price curve, we also can assume that

lim
x→∞

f(x) = 0

for all f ∈ F . However, this assumption is never needed in what follows.
Although F is a Hilbert space, and we can identify the elements of F and

the dual space F ∗, it is more natural to think of F as a space of functions
and F ∗ a space of functionals. For this reason we insist in this section more
than usual on the distinction between a space and its dual, and in particular
the bracket 〈·, ·〉F is reserved for the duality form F ∗ × F → R.

Here and throughout this section, the stochastic processes are assumed
to be defined on a complete probability space (Ω,F , Q) supporting a Wiener
process {Wt}t≥0. Since the state space of the Wiener process is irrelevant, we
can assume that {Wt}t is cylindrically defined on a separable Hilbert space
G. Let {Ft}t≥0 be the augmentation of the filtration generated by the Wiener
process, and we assume that sigma-field F is also generated by the Wiener
process. Let P be the predictable sigma-field on R+ ×Ω.

We now state the definition of what we mean by abstract risk-neutral
discounted bond price model.
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Definition 6.4. A risk-neutral discounted bond price model on F is a mea-
surable function σ from (R+ ×Ω × F,P ⊗ BF ) into (LHS(G, F ),BLHS(G,F )),
such that for all (t, ω, f) ∈ R+ ×Ω × F we have

σ(t, ω, f)∗δ0 = 0 (6.9)

and such that there exists a non-empty set of initial conditions P̃0 ∈ F for
which there exists a unique, continuous mild F -valued solution {P̃t}t≥0 of the
evolution equation:

dP̃t = AP̃tdt + σ(t, ω, P̃t)dWt (6.10)

with the property that
P̃t(x) > 0 (6.11)

almost surely for all (t, x). Once the initial conditions P̃0 ∈ F is fixed, we use
the abbreviation σt = σ(t, ω, P̃t).

Fixing an initial condition P̃0 ∈ F , the discounted bond prices satisfy the
integral equation

P̃t = StP̃0 +

∫ t

0

St−sσ(s, ω, P̃s)dWs

Given a model for the discounted bond prices, we have for every fixed T > 0
that the process {P̃t(T − t)}t∈[0,T ] is a continuous local martingale. Indeed,
we have the calculation:

P̃t(T − t) = 〈S∗
T−tδ0, P̃0〉F

= P̃0(T ) +

∫ t

0

σ∗
sS∗

T−sδ0dWs.

The condition σ∗(t, ω, f)δ0 = 0 stated as (6.9) implies that the volatility of the
discounted bond vanishes at maturity. We have started with the discounted
bond prices as our modeling primitive. Assuming that the discounted bond
prices are positive, we can recover the bank account process by the formula

Bt = P̃t(0)−1

and the actual bond prices by:

Pt(x) = P̃t(0)−1P̃t(x).

It is easy to see that a sufficient condition on the function σ which guarantees
that the discounted bond prices are positive is

‖σ(t, ω, f)∗δx‖G ≤ C|f(x)|

for some constant C > 0.
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6.5.2 Trading Strategies

In this section we consider the notion of trading strategy in the bond market
model introduced in Definition 6.4. Let φt be an investor’s vector of portfolio
weights at time t ≥ 0. Recall that for each (t, ω) ∈ R+ × Ω, the discounted
bond price vector P̃t is an element of the Hilbert space F ; therefore, the
undiscounted bond price vector Pt = P̃t(0)−1P̃t is also in F . Since we would
like to compute the investor’s wealth by the formula

Xt = 〈φt, Pt〉F ,

we assume that the vector φt is valued in the dual space F ∗.
By assumption, the dual space F ∗ is a space of distributions which con-

tains the finite measures on R+. In particular, we can approximate φt in F ∗

by a linear combination

φt ≈
N
∑

i=1

ciδxi

corresponding to the simple portfolio of holding ci units of the bond with
time to maturity xi for i = 1, . . . , N .

If an investor is holding the portfolio φt at time t ≥ 0, then the discounted
wealth is given by

X̃t = 〈φt, P̃t〉F .

Since the process {P̃t}t≥0 is generally not a semi-martingale, a modicum of
care is needed in formulating the self-financing condition.

In order to keep track of notation, and in particular to pass back from
Musiela’s relative maturity notation to the absolute maturity notation, we
temporarily introduce the semigroup {S−t}t≥0 of right shifts. The crucial
property we need is that for every t ≥ 0 the operator S−t is the right inverse
of St; that is, we have St ◦ S−t = I where I is the identity on F . This is
accomplished by letting (S−tf)(x) = f(x − t) for all x ≥ t. As we will see
below, we will not have to evaluate the expression (S−tf)(x) for t > x. If
for instance the elements of F are real analytic functions, then each f ∈ F
can be extended in a unique way to a function on all of R, in which case the
expression (S−tf)(x) = f(x− t) is unambiguous. However, it is unnecessary
to assume so much smoothness. In order to be specific, we might as well let
(S−tf)(x) = f(0) for t > x. However, we should keep in mind the fact that
the collection {St}t∈R of operators defined in this way is generally not a group
since S−t ◦ St �= I.

Suppose for the moment that S−t is bounded on F for t ≥ 0. Then the
investor wealth is given by

X̃t = 〈S∗
t φt, S−tP̃t〉F .
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To make sense of the above expression, suppose {S−t}t≥0 is strongly contin-

uous on F , and note that the process {S−tP̃t}t≥0 satisfies the equation

S−tP̃t = S−t

(

StP̃0 +

∫ t

0

St−sσsdWs

)

= P̃0 +

∫ t

0

S−sσsdWs.

Formally, the self-financing condition should read

dX̃t = 〈S∗
t φt, dS−tP̃t〉F .

and hence, the discounted wealth process should have self-financing dynamics
given by

dX̃t = σ∗
t φtdWt.

Now that we have our desired formula, we can dispense with any assump-
tions about the semigroup {S−t}t≥0. To formalize this discussion, we give the
following definition:

Definition 6.5. A strategy is an adapted F ∗-valued process {φt}t≥0 such that

E

{∫ t

0

‖σ(s, ω, P̃s)
∗φs‖2Gds

}

< +∞

almost surely for all t ≥ 0. A strategy {φt}t≥0 is self-financing if there exists
a constant X0 ∈ R such that

〈φt, P̃t〉F −
∫ t

0

σ∗
sφsdWt = X0

for all t ≥ 0 almost surely. If {φt}t≥0 is self-financing we let

X̃φ
t = 〈φt, P̃t〉F = X0 +

∫ t

0

σ∗
sφsdWt

denote the corresponding discounted wealth at time t ≥ 0.

Here are a few examples of self-financing strategies.

• We have already encountered one example of a self-financing strategy
given by φt = δT−t for some fixed T > 0. This strategy corresponds to
buying and holding the bond with maturity T . In this case, the constant
X0 is given by the initial bond price P̃0(T ) = P0(T ).

• Another example of a self-financing strategy is given by φt = Btδ0 =
P̃t(0)−1δ0. This strategy corresponds to an investor always holding the
just-maturing bond and reinvesting the instantaneous return. The dis-
counted wealth is constant X̃t = 1 for all t ≥ 0, and hence the undis-
counted wealth is given by the bank account Xt = Bt.
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• We can use the last example of the bank account to construct from
any strategy {φt}t≥0 a self-financing strategy {ϕt}t≥0 by fixing an ini-
tial wealth X0 and letting

ϕt = φt + ψtBtδ0

where the scalar random variable

ψt = X0 +

∫ t

0

σ∗
sφsdWs − 〈φt, P̃t〉F

corresponds to the portion of the investor’s wealth held in the bank ac-
count.

6.5.3 Uniqueness of Hedging Strategies

In this section, we reap the benefits of working with an infinite dimensional
Wiener process {Wt}t≥0. Recall from Chap. 2 that if an HJM model is of
finite rank d then all contingent claims can be hedged with the bank account
and a strategy consisting of bonds of d arbitrarily chosen maturities. We
claimed that passing to infinite ranked models may introduce some notion of
maturity specific risk. We now quantify this assertion by finding a condition
such that hedging strategies are unique.

Note that by Definition 6.4 of the discounted bond price model we neces-
sarily have for all (t, ω, f) ∈ R+ ×Ω × F that

range(σ(t, ω, f)) ⊂ {g ∈ F ; g(0) = 0}

or equivalently
ker(σ(t, ω, f)∗) ⊃ span{δ0}.

If we insist that these inclusions be equalities, we have the following unique-
ness result:

Proposition 6.6. Suppose that for all (t, ω, f) ∈ R+ ×Ω × F ) we have:

ker(σ(t, ω, f)∗) = span{δ0}. (6.12)

If there is a deterministic time T ≥ 0 such that the self-financing strategies
{φ1

t}t∈[0,T ] and {φ2
t}t∈[0,T ] are such that the discounted wealths coincide in the

end, i.e. satisfy X̃φ1

T = X̃φ2

T , then φ1
t = φ2

t for almost all (t, ω) ∈ [0, T ]×Ω.

Proof. Let ψt = φ1
t − φ2

t define the self-financing strategy such that X̃ψ
T = 0.

We have E{X̃ψ
T } = Xψ

0 = 0 and
∫ T

0 σtψtdWt = 0 almost surely and hence

E

{

∫ T

0

‖σ∗
t ψt‖2Gdt

}

= 0.
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We conclude that for almost all (t, ω) the functional ψt is a scalar multiple
of δ0. Since {ψt}t∈[0,T ] is self-financing we have 〈ψt, P̃t〉F = 0 for almost
all (t, ω). Letting ψt = ctδ0 for a scalar random variable ct, we must have
ctP̃t(0) = 0. But by assumption P̃t(0) > 0 so we conclude that ct = 0 and
the result is proven. �

Only with infinite dimensional G can we hope to satisfy the conditions of
the above proposition.

6.5.4 Approximate Completeness of the Bond Market

In this section, we explore an annoying complication of HJM models driven
by infinite-dimensional Wiener processes. Unlike the finite dimensional case,
the bond market model is incomplete – even if there exists a unique mar-
tingale measure! This might come as a surprise since the Black–Scholes–
Merton model taught that a model is complete if, roughly speaking, there
exists as many traded assets as independent Wiener processes. We therefore
might expect that the bond market model is complete since we have allowed
distribution-valued trading portfolios which might consist of a continuum of
bonds.

However, there are square-integrable contingent claims which cannot be
replicated by F ∗-valued trading strategies. Parroting the calculation from
Chap. 2, let ξ̃ be a square discounted integrable claim and suppose that we
could find a self-financing strategy {φt}t≥0 such that:

ξ̃ = X̃φ
T

= X̃φ
0 +

∫ T

0

σ∗
sφsdWs.

But recall that the martingale representation theorem states that there exists

a predictable G-valued process {αt}t∈[0,T ] such that
∫ T

0 ‖αs‖2Gds < +∞ and

ξ̃ = E{ξ̃}+

∫ T

0

αsdWs. (6.13)

Note that we identify G and its dual G∗ even though we insisted that we
should not identify the state space F and its dual F ∗. Thus, in order to
calculate a hedging portfolio at time t ∈ [0, T ] we need only compute φt =
σ∗−1

t αt. But by assumption the operator σt is Hilbert–Schmidt almost surely.
Since G is infinite dimensional, the inverse σ∗−1

t is unbounded, and at this
level of generality there is no guarantee that αt is in its domain for any
t ∈ [0, T ]. Thus restricting the portfolio to be in the space F ∗ for all t ∈ [0, T ]
is insufficient to replicate every square-integrable contingent claim.

Despite the above bad news, if for all (t, ω, f) the range of the operator
σ(t, ω, f)∗ is dense in G, or equivalently the kernel of the operator σ(t, ω, f)
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is {0}, then the market is approximately complete. That is, for every reason-

able claim ξ and ǫ > 0, there exists a strategy {φ(ǫ)
t }t∈[0,T ] which approxi-

mately hedges ξ in the mean square sense:

E

⎧

⎨

⎩

(

E{ξ̃}+

∫ T

0

σ∗
t φ

(ǫ)
t dWt − ξ̃

)2
⎫

⎬

⎭

< ǫ.

6.5.5 Hedging Strategies for Lipschitz Claims

In this section we find explicit hedging strategies for an important class of
contingent claims, and we characterize their properties. We are interested in
European bond options: options which mature at fixed future date T > 0,
and are written on bonds with fixed maturities T < T1 < · · · < Tn. The
payout of such an option is given by

ξ = g(P (T, T1), . . . , P (T, Tn))

= g(PT (T1 − T ), . . . , PT (Tn − T ))

at maturity, for some function g : Rn → R.
We have in mind the example of a call option with expiration T and

strike K, on a bond with maturity T1 > T . The payout function in this case
is g(x) = (x−K)+.

Consider the discounted contingent claim ξ̃ = B−1
T ξ. It can be written in

the form

ξ̃ = P̃T (0)g

(

P̃T (T1 − T )

P̃T (0)
, . . . ,

P̃T (Tn − T )

P̃T (0)

)

= g̃(P̃T )

where the function g̃ : F → R is defined by

g̃(f) = f(0)g

(

f(T1 − T )

f(0)
, . . . ,

f(Tn − T )

f(0)

)

.

It is this function g̃ that we will call the discounted payout function.
For the remainder of this section we make the following standing assump-

tion:

Assumption 6.5. The contingent claim is European with expiration T and
discounted payout given by ξ̃ = g̃(P̃T ). The payout function g̃ : F → R

satisfies the Lipschitz bound

|g̃(f1)− g̃(f2)| ≤ C‖f1 − f2‖F (6.14)

for all f1, f2 ∈ F and some constant C > 0.
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We note that the Lipschitz assumption is reasonable. For example, the
call option on a bond with maturity T1 > T has a discounted payout of the
form

g̃(f) = f(0)

(

f(T1 − T )

f(0)
−K

)+

= (f(T1 − T )− f(0))+

for f(0) > 0, which is Lipschitz since the evaluation functionals δ0 and δT1−T

are bounded.
For the remainder of this section we work in a Markovian setting. The dy-

namics of the discounted bond prices will be given by an abstract discounted
bond price model which satisfies

σ(t, ω, f) = σ̄(t, f)

for some function σ̄ : R+×F → LHS(G, F ). To lighten the notation, we drop
the bar and let σ = σ̄. We list here the relevant assumptions on σ(·, ·).

Assumption 6.6. Let σ(·, ·) : R+ × F → LHS(H, F ) be such that σ(·, f) is
continuous for all f ∈ F , and satisfies the Lipschitz bound

‖σ(t, f1)− σ(t, f2)‖LHS(G,F ) ≤ C‖f1 − f2‖F (6.15)

for all t ≥ 0, f1, f2 ∈ F and some C > 0.

In Chap. 5 we proved that mild solutions to Markovian evolution equa-
tions with Lipschitz coefficients are Malliavin differentiable. In particular, we
have P̃T ∈ H(F ). Furthermore, there is a strong random operator valued pro-
cess {Yt,T }t∈[0,T ] such that the Malliavin derivative of the discounted bond
price can be written in the form

DtP̃T = Yt,T σt.

We assumed that g̃ is Lipschitz, so we have the chain rule

Dtg̃(P̃T ) = ∇g̃(P̃T )DtP̃T .

We can identify our candidate strategy from the Clark–Ocone formula:

g̃(P̃T ) = E{g̃(P̃T )} +

∫ T

0

E{Dtg̃(P̃T )|Ft}dWt

= E{g̃(P̃T )} +

∫ T

0

σ∗
t E{Y ∗

t,T∇g̃(P̃T )|Ft}dWt.

This preamble leads to the following desirable result.
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Proposition 6.7. For each t ∈ [0, T ], let ϕt = φt + Btψtδ0 where

φt = E{Y ∗
t,T∇g̃(P̃T )|Ft} (6.16)

and

ψt = E{g̃(P̃T )|Ft} − 〈φt, P̃t〉F

and where {Ys,t}0≤s≤t is a strong operator (from F into F ) solution to the
equation

dYs,t = AYs,tdt +∇σtYs,t · dWt

with Ys,s = I for all s ≥ 0. Then the process {ϕt}t∈[0,T ] is a self-financing
strategy which replicates the claim ξ.

Note that the portfolio φt is defined by a conditional expectation of a vec-
tor valued random variable. This expectation must be interpreted in the weak
sense, not in the Bochner sense.

Proof. By the formal calculation above, we only need to show that φt is
valued in F ∗ for almost all t ∈ [0, T ]. In fact, we have that φt is bounded in
F ∗ uniformly in t ∈ [0, T ] almost surely. Indeed, we have

‖φt‖F∗ = sup
‖f‖F ≤1

E{〈∇g̃(P̃T ), Yt,T f〉F |Ft}

≤ sup
‖x‖F ≤1

CE{‖Yt,T f‖2F |Ft}1/2

by the Lipschitz bound (6.14) and the bound for the moments of mild solu-
tions of SDEs derived in the previous chapter. �

Revisiting the motivating example of Chap. 2, for any contingent claim
maturing at time T , we denote by Tmax > T the longest maturity of the
bonds underlying the claim. The following theorem shows that under the
appropriate assumptions in the case of infinite factor HJM models, the bonds
in the hedging strategy for this claim have maturities less than or equal to
Tmax. This intuitively appealing result is inspired by the local HJM models
of the type

dft = (Aft + FHJM ◦ τ(ft))dt + τ(ft)dWt

where for all x ≥ 0 the volatility function is such that

τ(f)∗δx = κ(x, f(x))

for a deterministic function κ : R+ × R → G. Translating the forward rate
model into a discounted bond price model we have

dP̃t = AP̃tdt + σ(P̃t)dWt
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where

σ(f)∗δx = f(x)

∫ x

0

κ

(

s,−f ′(s)

f(s)

)

ds.

Note that for these models, the volatility of the discounted bond price with
time to maturity x is a function only of the discounted prices of bonds with
times to maturity less than or equal to x.

Theorem 6.6. Let us assume that:

• there exists a constant xmax ≥ 0 such that the discounted payout function
g̃(·) : F → R satisfies

g̃(f1) = g̃(f2) (6.17)

whenever f1(x) = f2(x) for all x ∈ [0, xmax],
• the volatility function σ(·, ·) : R+ × F → LHS(G, F ) is such that for all

t ≥ 0 and x ≥ 0,
σ(t, f1)

∗δx = σ(t, f2)
∗δx (6.18)

whenever f1(y) = f2(y) for all y ∈ [0, x],
• and for all f ∈ F and t ≥ 0 we have

ker(σ(t, f)∗) = span{δ0}.

Then, the unique strategy {ϕt}t∈[0,T ] given by Eq. (6.16) satisfies

supp{ϕt} ⊂ [0, xmax + T − t]

almost surely for all t ≥ 0.

Proof. For each x ≥ 0 let

Tx = {μ ∈ F ∗; supp{μ} ⊂ [0, x]} ⊂ F ∗.

The orthogonal complement of Tx is the closed subspace given by

T ⊥
x = {f ∈ F ; f(s) = 0 for all s ∈ [0, x]} ⊂ F,

and since Tx is closed, we have T ⊥⊥
x = Tx. Now we show that the strong

random operator Yt,T takes T ⊥
x+T−t into T ⊥

x for each x ≥ 0. Recall that the
process {Yt,s}s≥t satisfies the integral equation

Yt,s = St−s +

∫ s

t

Ss−u∇σuYt,u · dWu

for s ≥ t, and note that the random operator ∇σ(t, P̃t) takes T ⊥
x into

LHS(G, T ⊥
x ) for each x ≥ 0. Fix t ∈ [0, T ] and consider the Picard itera-

tion scheme Y
(0)
t,s = St−s and

Y
(n+1)
t,s = St−s +

∫ s

t

Ss−u∇σuY
(n)
t,u · dWu.

Clearly for all s ≥ t the operator Y
(0)
t,s takes T ⊥

x+s−t into T ⊥
x for each x ≥ 0.
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Now assuming that Y
(n)
t,s takes T ⊥

x+s−t into T ⊥
x , we have that the product

Ss−u∇σuYt,u takes T ⊥
x+s−t into LHS(G, T ⊥

x ) for all u ∈ [t, s]. And hence
the claim is proven by induction and the convergence of the Picard scheme.
We note that random vector ∇g̃(P̃t) is valued in Txmax . Hence for every
f ∈ T ⊥

xmax+T−t we have

E{〈∇g̃(P̃T ), Yt,T f〉F |Ft} = 0

which completes the proof. �

This theorem implies that hedging strategies for this class of contingent
claims have the property that the support of the portfolio at almost all times
is confined to an interval. Moreover, the right end point of this interval is
given by the longest maturity of the bonds underlying the claim, confirming
our intuition about maturity specific risk.

Notes & Complements

The fact that the long rate, if it exists, can never fall was first observed by Dybvig,
Ingersoll, and Ross [52] in the setting of discretely compounded interest rates. The
proof presented in this chapter is modeled after the very succint proof found in the
short paper of Hubalek, Klein, and Teichmann [82].

Our discussion of the martingale measures for the HJM model driven by an
infinite dimensional Wiener process is patterned after Filipović’s PhD. In particular,
as far as we know, the example of a concrete state space F = Hw studied in
this chapter was introduced by this author. Filipović starts from the evolution
form of the HJM dynamical equation, unlike Kusuoka [96] who works directly from
the hyperbolic stochastic partial differential equation and the drift condition to
show that any solution will force the discounted prices of the zero coupons to
be martingales. These works focus on pricing, and as such, they worry about the
absence of arbitrage and consequently, about the drift condition.

We have considered exclusively models driven by Wiener processes, and have
completely ignored the possibility of jumps in the interest rate dynamics. This
choice might not be entirely realistic but allowed us to focus on HJM models driven
by infinite dimensional Wiener processes. Of course, interest rate models with jumps
have been proposed in the literature; see for instance the paper of Shirakawa [124].
For the simplest case where

dft = (Aft + αt)dt + σtdWt + ηt(dNt − λtdt),

the forward rates are driven by a Wiener process and a d-dimensional Poisson
process {Nt}t≥0 with time-varying intensity {λt}t≥0, the drift condition becomes

αt(x) = FHJM(σt)(x) +
d

∑

i=1

λ
(i)
t η

(i)
t (x)

(

1 − e−
∫

x
0 η

(i)
t (s)ds

)

.

The drift condition for HJM-type models with marked point processes has been
studied by Björk, Kabanov, and Runggaldier [13]. Eberlein, Jacod, and Raible
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considered term structure models driven by a Lévy process, and find that such term
structure models are complete if and essentially only if the driving Lévy process is
one-dimensional.

The existence of finite-dimensional realizations of HJM interest rate models
and related geometrical questions have been extensively studied by Björk, and his
coauthors Christensen, Gombani, Landén, and Svensson [15], [14], [17], [12], and
[11]. Björk has written very accessible surveys of this literature [9] and [10], with
many examples worked out in detail. The state space in the above cited works is
typically a Hilbert subspace of the space of real-analytic functions. Such spaces are
extremely small, and in fact too small to include the important example of the
CIR model. Filipović and Teichmann in [64], [63], and [65] have generalized these
results to much larger spaces of C∞ functions. Filipović [61] and Zabczyk [137] have
studied the related issue of existence of invariant manifolds for the mild solutions
of SPDE.

Our presentation of generalized bond portfolios is modeled after the work of
Björk, Di Masi, Kabanov, and Runggaldier [16], and De Donno and Pratelli [48].
Carmona and Tehranchi consider in [36] the hedging problem for a interest rate
contingent claim with portfolios valued in the dual of a Hilbert space and quantified
the notion of maturity specific risk. Musiela and Goldys [106] studied a similar
problem by finding conditions under which the solution to the associated infinite
dimensional Kolmogorov equation is differentiable.

Ekeland and Taflin [53] considered the related problem of utility maximization

in an approximately complete bond market and found conditions under which an

optimal strategy exists. Ringer and Tehranchi [116] provide a construction for the

optimal strategy in the case of a certain Gaussian random field model. De Donno [47]

and Taflin [128] discussed in detail the set of claims which can be replicated with

generalized bond portfolios.
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Specific Models

In this chapter we study, in the context of infinite-dimensional stochastic
analysis, the features of some interest rate models proposed in the litera-
ture. We study the following issues in this order: the mean-reverting behav-
ior of Gauss–Markov HJM models, the implications of a certain parabolic
stochastic partial differential equation borrowed from random string theory
and used as a model for the term structure, and finally, the market model
of Brace–Garatek–Musiela for the LIBOR rates.

7.1 Markovian HJM Models

We say that a model is Markovian if the randomness in the drift and volatility
coefficients comes only through the randomness of the forward curve itself.
More precisely, the model is Markovian if there exist deterministic functions
ᾱ and σ̄ on R+ × F such that:

α(t, ω, f) = ᾱ(t, f), and σ(t, ω, f) = σ̄(t, f). (7.1)

We already encountered Markovian models many times in the previous chap-
ters. In what follows, we shall not use the bar notation to avoid overloading
the notation. The stochastic differential equation becomes:

dft = (Aft + α(t, ft))dt + σ(t, ft)dWt,

its evolution form reads:

ft = Stf0 +

∫ t

0

St−sα(s, fs) ds +

∫ t

0

St−sσ(s, fs)dWs,

and the usual Lipschitz conditions guarantee existence and uniqueness of the
solution of this evolution form.

Obviously, the terminology is justified by the fact that, when the drift and
volatility coefficients are of this form, then the solution process {ft; t ≥ 0} is
a Markov process in the state space F .
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7.1.1 Gaussian Markov Models

A further restriction often put on the drift and volatility coefficients is to
assume that they are both deterministic. One can think of such a model as
a Markovian model where the coefficients do not depend upon the forward
rate or the calendar time. In this case, the stochastic differential equation
looks like:

dft = (Aft + α)dt + σdWt (7.2)

and its evolution form reads:

ft = Stf0 +

∫ t

0

St−sα ds +

∫ t

0

St−sσdWs (7.3)

but, even though these equations look quite like the equations (6.5) and (6.6)
of the generalized HJM models in the Musiela’s notation, they are quite
different because the coefficients are now deterministic. Because of this non-
randomness, and because the initial condition is as usual assumed to be inde-
pendent of the Wiener process W , (7.3) is not an equation since its right-hand
side determines completely the forward rate process. Notice that this process
is Gaussian whenever the initial condition f0 is Gaussian or deterministic.
This justifies the terminology used in the title of this subsection. In fact the
evolution form (7.3) shows that {ft; t ≥ 0} is an Ornstein–Uhlenbeck process
in the space F .

One of the niceties of the Markov processes is to provide convenient tools
for the analysis of the long-time behavior of the sample paths of the process.
We shall consider this problem only in the case of deterministic coefficients,
for in this case, the evolution Eq. (7.3) gives:

μt = (Stμ0) ∗ (α̃t + γt) (7.4)

where μt denotes the distribution of ft while

α̃t =

∫ t

0

St−sα ds

denotes a nonrandom element of F , and γt denotes the distribution of the
stochastic integral

∫ t

0

St−sσdWs

appearing in the right-hand side of (7.3). The convolution of probability dis-
tribution is here because of the independence of the initial condition f0 and
the Wiener process. We shall try to understand the ergodic behavior of the
solutions of the evolution form of the generalized HJM equation by controlling
the limit for large times of the distribution μt. We shall do this by addressing
separately the following three problems:
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• Does the limit α̃ = limt→∞ α̃t exist as an element of F?
• Does the limit γ = limt→∞ γt exist as a probability measure on F?
• Does the limit ν = limt→∞ Stμ0 exist as a probability measure on F?

If we can answer these three questions in the affirmative, we have:

μ∞ = ν ∗ (α̃ + γ)

which gives an invariant measure obtained as a mixture of shifts by elements
of the support of ν, of the Gaussian measure γ shifted to have mean α̃.

7.1.2 Assumptions on the State Space

We now list our assumptions on the state space F .

Assumption 7.1. 1. The space F is a separable Hilbert space and the ele-
ments of F are continuous, real-valued functions on R+. The evaluation
functional δx ∈ F ∗ are continuous linear functionals on F .

2. For every f ∈ F the limit f(∞) = limx→∞ f(x) exists, and the functional
δ∞ : f →֒f(∞) is an element of F ∗. Let

F 0 = {f ∈ F ; f(∞) = 0}

be the closed subspace of F orthogonal to the functional δ∞.
3. The semigroup {St}t≥0 is strongly continuous on F and each operator

St is a contraction on F 0. Moreover, there exists constants β > 0 and
M ≥ 1 such that

‖Stf‖ ≤Me−βt‖f‖
for every f ∈ F 0.

4. The binary operator ⋆ defined by

(f ⋆ g)(x) = f(x)

∫ x

0

g(s)ds

is such that for all f, g ∈ F 0 the following bound holds:

‖f ⋆ g‖F ≤ C‖f‖F ‖g‖F

for some constant C > 0.

Assumption 7.1.2 ensures that our HJM models on F will generate forward
rate curves such that the long rate exists. Notice that since the drift α is
assumed to be an element of F , in particular α(∞) = limx→∞〈δ∗xσ, I∗xσ + λ〉
exists. Thus we must restrict the range of the operator σ to be contained in
F 0. Assumption 7.1.4 says that this is the only restriction we need on the
choice of volatility. Indeed, by Proposition 6.1, the map FHJM is Lipschitz
continuous from LHS(G, F 0) into F . But since for f, g ∈ F 0 we have
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∣

∣

∣

∣

f(x)

∫ x

0

g(s)ds

∣

∣

∣

∣

≤ |f(x)|‖g‖
∫ x

0

‖Ss‖‖δ0‖ds

≤ |f(x)|‖g‖‖δ0‖
M

β

which converges toward 0 as x → ∞, we have that the vector α is actually
in the subspace F 0; that is FHJM(σ)(∞) = 0 for all σ ∈ LHS(G, F 0).

Remark 7.1. The space Hw studied in depth in Sect. 6.3.3 satisfies Assump-
tion 7.1 if the weight function grows fast enough. In particular, if the weight
w satisfies the bound

1

2
inf
x≥0

w′(x)

w(x)
= β > 0

then Hw satisfies Assumption 7.1.3. Indeed, for f ∈ H0
w we have

‖Stf‖2 = f(t)2 +

∫ ∞

0

w(x)f ′(x + t)2dx

≤ ‖f‖2
(∫ ∞

t

w(x)−1dx + sup
x≥0

w(x)

w(x + t)

)

≤ ‖f‖2e−2βt
(

(2βw(0))−1 + 1
)

as desired.

7.1.3 Invariant Measures for Gauss–Markov HJM Models

We now come to the main result of this section:

Theorem 7.1. Let λ ∈ G and σ ∈ LHS(G, F 0) be deterministic constants.
The HJM model given by the equation

ft = Stf0 +

∫ t

0

St−s(FHJM(σ) + σλ)ds +

∫ t

0

St−sσdWs (7.5)

has a family of invariant measures {μν}ν on the space F . For each fixed ν, the
random variables f(x) = δx(f) on (F,BF , μν) have the following properties:

1. The distribution of the long rate f(∞) is ν.
2. The conditional distribution of the forward rate f(x) given the long rate

is Gaussian, for every x ≥ 0.
3. If

∫∞
−∞ |c| ν(dc) < +∞ and if λ = 0 then the expected value of the short

rate f(0) is greater than or equal to the expected value of any other for-
ward rate.

4. If
∫∞
−∞ c2 ν(dc) < +∞ then the variance of the short rate is greater than

or equal to the variance of any other forward rate.
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Proof. The space F decomposes into the direct sum F = F 0⊕R1. Notice that
for every realization of the initial term structure, Stf0 = 1f0(∞)+StProjF 0f0

converges strongly to the element 1f0(∞) ∈ F . Hence, the measure Stμ0

converges weakly to the measure ν supported on the subspace of F spanned
by the constant functions. Abusing notation slightly, we can identify ν as the
measure on R given by the marginal distribution of the initial long rate. Now
since

∥

∥

∥

∥

∫ t

0

St−sαds

∥

∥

∥

∥

≤ M‖α‖
β

,

the Bochner integral

α̃t =

∫ t

0

St−sαds

converges strongly to an element α ∈ F 0. Similarly, since

∫ t

0

‖St−sσ‖2ds ≤ M‖σ‖2
2β

the law γt of the stochastic integral
∫ t

0
St−sσdWs converges weakly to the

mean-zero Gaussian measure γ supported on the subspace F 0 with covariance
∫ ∞
0 Ssσσ∗S∗

sds.
By the continuity of the evaluation functionals δx we have

E{ft(x)} − E{f0(t + x)} = δx

∫ t

0

St−s(FHJM(σ) + σλ)ds

=

∫ t

0

δt−s+x(FHJMσ) + σλ)ds

=

∫ t+x

x

〈σ∗δs, σ
∗Is + λ〉Gds

=
1

2

(

‖σ∗Ix+t + λ‖2G − ‖σ∗Ix + λ‖2G
)

.

Noting that the functional δt+x converges weakly in F ∗ to δ∞ and the func-
tional It+x converges weakly in F 0∗ to a functional I∞ ∈ F 0∗ we have

Eμν{f(x)} = lim
t→∞

E{ft(x)}

= Eμν{f(∞)}+
1

2

(

‖σ∗I∞ + λ‖2G − ‖σ∗Ix + λ‖2G
)

.

In the case that λ = 0, it follows that

Eμν{f(x)} = Eμν{f(∞)}+
1

2

(

‖σ∗I∞‖2G − ‖σ∗Ix‖2G
)

≤ Eμν{f(∞)}+
1

2
‖σ∗I∞‖2G = Eμν{f(0)}.

Finally, the variance of f(x) is given by
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Varμν{f(x)} = Varμν{f(∞)}+

∫ ∞

x

‖σ∗δt‖2Gdt

which is decreasing in x ≥ 0. �

Remark 7.2. We used freely the results on weak convergence of Gaussian mea-
sures which were reviewed in the Notes & Complements section of Chap. 3.

Remark 7.3. We note that setting λ = 0 in the above theorem is equivalent
to considering the risk-neutral HJM dynamics given by

ft = Stf0 +

∫ t

0

St−sFHJM(σ) ds +

∫ t

0

St−sσ dW̃s (7.6)

where the process W̃t = Wt+
∫ t

0
λsds is a cylindrical G-valued Wiener process

under the risk-neutral measure Q with Radon–Nykodym derivative

dQ

dP

∣

∣

Ft
= exp

(

−1

2

∫ t

0

‖λs‖2G ds +

∫ t

0

λsdW̃s

)

.

7.1.4 Non-Uniqueness of the Invariant Measure

Mathematically, there is no surprise that there are an infinite number of
invariant measures for the HJM equation. Indeed, by the discussion of the
finite dimensional Ornstein–Uhlenbeck process in Chap. 4, we should expect
many invariant measures if the drift operator A has a nontrivial kernel. In
our case the restriction of A to the differentiable elements of F is just the
derivative d/dx. And since the derivative of a constant function is the zero
function, the kernel of A is nontrivial.

On an economic level, it might seem strange that the HJM dynamics are
not ergodic and that the effects of the initial data are not forgotten over
time. In a practical sense, however, the HJM model does admit a unique
invariant measure. Indeed, it is meaningless to consider initial forward curves
with differing long rates since, within the context of a given HJM model, the
long rate is constant. In other words, the value c = f0(∞) can be considered
a model parameter, elevated to the status of the functions λ and σ. Given the
three parameters λ, σ, and c, the unique invariant measure for the HJM model
is the measure μν from the theorem, where ν is the point mass concentrated
at c.

For the sake of comparison, recall that the popular Vasicek and CIR short
rate models are ergodic. One may wonder why the long term behavior is so
different for HJM models. The answer is that in both cases the density of the
invariant measure (Gaussian for the Vasicek model and non-central χ2 for
the CIR model) depends on the model parameters. Since the parameters are
chosen in part to fit the initial term structure, the effects of the initial data
are really never forgotten after all.
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7.1.5 Asymptotic Behavior

For large times t (ergodic theorem) we expect ft to look like an element f of
F drawn at random according to the distribution μ. Such a random sample
f is obtained as follows:

• Choose a level for c = f(∞) at random according to ν.
• Shift α̃ to give it this value c at the limit as x→∞.
• Perturb this candidate for f by a random element of F generated accord-

ing to the Gaussian distribution γ.

If we choose a generalized HJM model for the historical dynamics of the
forward curve, then the diagonalization of the covariance operator of γ should
fit the empirical results of the PCA:

• The eigenvalues of this covariance operator should decay at the same rate
as the (empirical) proportions of the variance explained by the principal
components.

• The eigenfunctions corresponding to the largest eigenvalues should look
like the main loadings of the PCA.

7.1.6 The Short Rate is a Maximum on Average

Consider a forward rate process {ft}t≥0 arising from a generalized HJM
model. In this section we study the invariant measure for the risk-neutral dy-
namics when the forward rates are an F -valued time-homogeneous Markov
process. In the previous section, we observed a curious property of invari-
ant measures in the context of Gauss–Markov HJM models: the short rate
is a maximum on average for the forward rate curve. This property is very
general, and the proof requires very little structure on the forward rate dy-
namics.

We assume that the discounted bond prices are martingales for the risk
neutral measure Q. In particular, the following relationship holds:

exp

(

−
∫ x

0

ft(s)ds

)

= E

{

exp

(

−
∫ x+t

t

rsds

)

|Ft

}

where rt = ft(0). The precise claim is:

Proposition 7.1. Let μ be an invariant measure for the Markov process
{ft}t≥0. Let

f̄(x) =

∫

F

f(x)μ(df)

be the average forward rate with time to maturity x for this measure, and let
us assume that f̄ is continuous. Then the average short rate is a maximum
as:

f̄(0) ≥ f̄(x)

for all x ≥ 0.
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Proof. Fix ǫ > 0. Then,

exp

(

−
∫ x+ǫ

0

f0(s)ds

)

= E

{

exp

(

−
∫ x+ǫ

0

rsds

)

|F0

}

= E

{

exp

(

−
∫ ǫ

0

rsds

)

E

{

exp

(

−
∫ x+ǫ

ǫ

rsds

)

|Fǫ

}

|F0

}

= E

{

exp

(

−
∫ ǫ

0

rsds−
∫ x

0

fǫ(s)ds

)

|F0

}

≥ exp

(

−E

{∫ ǫ

0

rsds|F0

}

− E

{∫ x

0

fǫ(s)ds|F0

})

by Jensen’s inequality. Rearranging the above inequality, we have

E

{∫ ǫ

0

rsds|F0

}

≥
∫ x+ǫ

0

f0(s)ds− E

{∫ x

0

fǫ(s)ds|F0

}

.

Now, integrating both sides with respect to the invariant measure μ and using
Fubini’s theorem:

ǫf̄(0) ≥
∫ x+ǫ

x

f̄(s)ds.

Dividing by ǫ and then letting ǫց 0 proves the claim. �

The average forward curve f̄ considered in this subsection can be inter-
preted as a steady-state forward curve obtained when the system is given
enough time to relax to equilibrium. From the above proposition, one might
suspect that the average forward curve f̄ is a decreasing function, but this is
not always the case. Nevertheless, if we limit ourselves to HJM models with
the economically reasonable property that the infinitesimal increments of the
forward rates are positively correlated, then as we are about to prove, the
average forward curve f̄ is indeed decreasing.

Let the forward rate process {ft}t≥0 be an F -valued time-homogeneous
Markov process formally solving the following HJM equation:

dft = (A ft + FHJM ◦ σ(ft))dt + σ(ft)dWt

where {Wt}t≥0 is a Wiener process defined cylindrically on a separable
Hilbert space G, the operator A is the generator of the semigroup {St}t≥0

of left shifts and is such that Ag = g′ whenever g is differentiable, and the
volatility function σ : F → LHS(G, F ) is such that measure μ on F is invari-
ant for the dynamics of {ft}t≥0. Furthermore, we assume that σ is bounded
for the sake of simplicity.

Proposition 7.2. Under the above assumptions, if we denote as usual by
δx ∈ F ∗ the evaluation functional δx(g) = g(x) and if we assume that

〈σ(f)∗δx, σ(f)∗δy〉 ≥ 0

for all f ∈ F and x, y ∈ R+, then the average forward curve f̄ is decreasing.
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Proof. The HJM equation can be rewritten as

ft(x) = f0(t+x)+

∫ t

0

〈σ(fu)∗δt−u+x, σ(fu)∗It−u+x〉du+

∫ t

0

σ(fu)∗δt−u+xdWu

where Is ∈ F is the definite integral functional defined by Ix(g) =
∫ x

0 g(u)du.
Supposing the law of f0 is the invariant measure μ and taking expectations
of both sides, we have

f̄(x) = f̄(x + t) + E

{∫ t

0

〈σ(f0)
∗δu+x, σ(f0)

∗Iu+x〉du

}

.

Since 〈σ(f)∗δs, σ(f)∗Is〉 =
∫ s

0
〈σ(f)∗δs, σ(f)∗δt〉dt ≥ 0 by assumption, the

result follows. �

The above proposition might seem surprising. Yield curves, after all, are
much more likely to be upward sloping than downward sloping. In fact,
economists say that the yield curve is inverted when it is downward slop-
ing, a term which suggests that such events are considered deviations from
the norm. However, we have considered the dynamics of the forward rates
under the risk-neutral measure Q, not the historical measure P. It follows
then that the risk-neutral measure assigns much larger weight to the events
when the yield curves are downward sloping than the historical measure.

7.2 SPDE’s and Term Structure Models

Rewriting a generalized HJM model as a stochastic partial differential equa-
tion has been done in two very different ways.

The first approach is to accept the drift condition as given, and work
directly with the hyperbolic SPDE. In a clever tour de force, Kusuoka showed
in [96] (essentially with his bare hands) that, for any solution in the sense of
Schwartz distributions of this SPDE, the discounted prices of the zero-coupon
bonds are necessarily martingales, that essentially never vanish, and that if
they do, they remain zero from the time they vanish on.

The second approach is motivated by risk control. In order to run Monte-
Carlo simulations to evaluate the risk of fixed income portfolios, a good un-
derstanding of the dynamics of the term structure under the historical prob-
ability measure P is necessary. So instead of trying to enforce the HJM drift
condition, the modeling emphasis is on replicating the statics, such as the
PCA, of the forward rate curves found in the market.

We work under the assumption that the domain of the forward rate func-
tion x→֒ft(x), in the Musiela notation, is the bounded interval [0, xmax], as
opposed to the half line R+. One motivation for working on a bounded in-
terval is practical: there just are not very many Treasuries with maturities
greater than thirty years! We may and do choose the units of time such
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that xmax = 1 without loss of generality. As usual, the left-hand endpoint
ft(0) = rt is the short rate and the right-hand endpoint ft(1) = ℓt is the
long rate. Let st = ℓt − rt be the spread. This use of the term spread should
not be confused with the difference of the bid and ask price of an asset. The
forward rate is then decomposed into

ft(x) = rt + st[y(x) + gt(x)]

where x→֒y(x) is a deterministic function with y(0) = 0 and y(1) = 1 which
is used to capture the “average” shape of the forward rate curve. An example
of such a function y which seems to agree with market data is y(x) =

√
x. The

random function x→֒gt(x) is thought of as the deformations of this average
profile. Notice that by construction, the boundary conditions gt(0) = gt(1) =
0 are satisfied for all (t, ω) ∈ R+ × Ω. As time progresses, the graphs of the
functions x→֒gt(x) resemble a random vibrating string with fixed endpoints.

7.2.1 The Deformation Process

We work in the context of an HJM model with the forward rate dynamics
given formally by the equation

dft =

(

∂

∂x
ft + αt

)

dt + σtdWt

where {Wt}t≥0 is a Wiener process defined cylindrically on a separable
Hilbert space G, the drift process {αt} takes values in some Hilbert space F ,
and the volatility process {σt}t≥0 takes values in LHS(G, F ). The drift and
volatility are related by the condition αt = FHJM(σt)+σtλt for some G-valued
process {λt}t≥0. The short rate rt then formally satisfies the equation

drt =

(

∂

∂x
ft(0) + αt(0)

)

dt + σt(0)dWt

where σt(0) = σ∗
t δ0. Similarly, the long rate ℓt satisfies

dℓt =

(

∂

∂x
ft(1) + αt(1)

)

dt + σt(1)dWt.

Now applying Itô’s formula to the deformation

gt(x) =
ft(x)− rt

st
+ y(x),

where st = ℓt − rt is the spread, we see that gt formally satisfies an equation
of the form

dgt =

(

∂

∂x
gt + mt

)

dt + ntdWt

where the volatility is given by

nt = s−1
t (σt − 1⊗ σt(0))− s−2

t (ft − rt)⊗ (σt(1)− σt(0))

and the drift mt is given by an even more complicated formula.
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7.2.2 A Model of the Deformation Process

Breaking from the no-arbitrage framework, Cont proposes in [41] to model
the deformation process {gt(x)}t≥0,x∈[0,1] independently of the short and
long rates. As usual, the two-parameter random field is interpreted as a one-
parameter stochastic process {gt}t≥0 where gt = gt(·) takes values in a func-
tion space H . It turns out that a convenient state space is given by the Hilbert
space H = L2([0, 1], e2x/kdx). The process is assumed to be the mild solution
of the following SPDE:

dgt = A(κ)gtdt + σ0dWt (7.7)

where κ > 0 and σ0 > 0 are scalar constants and the partial differential
operator A(κ) is given by

A(κ) =
∂

∂x
+

κ

2

∂2

∂x2
. (7.8)

The Wiener process {Wt}t≥0 is defined cylindrically on H , and assumed to
be independent of the diffusion {(rt, st)}t≥0.

By using Eq. (7.7) as the model for the deformation process, we have
modified the no-arbitrage dynamics in three significant ways:

• We have replaced the Hilbert–Schmidt operator nt with the constant mul-
tiple of the identity σ0I.

• We have replaced the operator A = ∂/∂x by the operator A(κ).
• We have also completely ignored the term m which arises from the HJM

no-arbitrage drift condition.

Even though we are convinced that our abuse of notation will not create
confusion, it is important to notice that we are working in a state space H
that does not satisfy the Assumption 6.1. In particular, pointwise evaluation
is not continuous on H .

To lighten notation, fix κ > 0 and let A = A(κ) be the self-adjoint ex-
tension of the partial differential operator A(κ) defined in formula (7.8) with
Dirichlet boundary conditions. Notice that imposing these boundary condi-
tions will guarantee that g(1) = g(0) = 0 whenever g ∈ D(A). Now to get
a handle on the effects of these modifications, we rewrite Eq. (7.7) in the
evolutionary form as

gt = Stg0 + σ0

∫ t

0

St−sdWs (7.9)

where {St}t≥0 is the semigroup generated by A. Although the semigroup
{St}t≥0 is strongly continuous on H , Eq. (7.9) is fundamentally different than
the stochastic evolution equations we have faced before since the volatility
operator σ0I is not Hilbert–Schmidt. Indeed, it is not clear a-priori that the
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stochastic integral on the right-hand side of the equation is well-defined. For-
tunately, the integral is well-defined as we will see, thanks to the regularizing
effects of the operator A. Indeed, replacing the operator ∂/∂x with the oper-
ator A by adding the viscosity term given by the Laplacian does wonders. In
particular, it turns a hyperbolic SPDE into a regularizing parabolic SPDE.
This new SPDE is of the Ornstein–Uhlenbeck type.

Finally, it is important to point out that by ignoring the drift term m
this model is not an HJM model: there does not exist an equivalent measure
such that all of the discounted bond prices are simultaneously martingales.
The model is therefore not appropriate for asset pricing. The justification
for such a radical departure from the HJM framework is that this model
exhibits many of the stylized empirical features of the forward rates, and
hence is appropriate for risk management. Furthermore, the model is quite
parsimonious. There are only two parameters, σ0 and κ, to be estimated from
market data.

7.2.3 Analysis of the SPDE

Before we analyze the SDE of Eq. (7.7) or its evolutionary form (7.9), we
identify the domain of the unbounded operator A with boundary conditions.
It is the subspace of H consisting of functions on [0, 1] vanishing at 0 and 1,
which are absolutely continuous together with their first derivatives and such
that the second derivatives belong to H . Because of the presence of the ex-
ponential weight in the measure defining H as an L2-space, plain integration
by parts shows that the operator A is self-adjoint on its domain. Its spectrum
is discrete and strictly negative. The n-th eigenvalue −λn is given by

λn =
1

2κ
(1 + n2π2κ2)

with corresponding normalized eigenvector

en(x) =
√

2 sin(nπx)e−x/κ.

The eigenvectors form an orthonormal basis {en}n of H . Notice that the
graphs of the first few eigenfunctions share an uncanny resemblance to the
first few factors found in the principal component analysis of US interest rate
data, as reported in Chap. 1. Of course, this is no coincidence: The operator
A and the Hilbert space H were chosen with these stylized empirical facts in
mind.

The semigroup {St}t≥0 generated by A is analytic. Furthermore, for t > 0,
the operator St can be decomposed into the norm-converging sum

St =

∞
∑

n=1

e−λnten ⊗ en

and hence we have the equality
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‖St‖LHS(H) =

( ∞
∑

n=1

e−2λnt

)1/2

.

And because we have the bound

∫ t

0

‖Ss‖2LHS(H)ds =

∫ t

0

∞
∑

n=1

e−2tλndt

≤
∞
∑

n=1

κ

1 + n2π2κ2
< +∞

the stochastic integral
∫ t

0 St−sdWs makes sense as promised. The stochastic
integral defines a continuous process in fact, but we shall see that this process
is not a semi-martingale.

Let g
(n)
t =

∫ 1

0
gt(x)en(x)e2x/κdx be the projection of the deformation

gt onto the n-th eigenvector. The projections {g(n)}n are scalar Ornstein–
Uhlenbeck processes given by the SDEs

dg
(n)
t = −λng

(n)
t + σ0dw

(n)
t

where w
(n)
t = 〈en, Wt〉 defines a standard scalar Wiener process. And since

the eigenvectors {en}n are orthogonal, the Wiener processes {w(n)}n are
independent. Hence, the deformation can be decomposed into the L2(Ω; H)
converging sum

gt =
∞
∑

n=1

eng
(n)
t

of independent and H-valued random variables given explicitly by

g
(n)
t = e−tλng

(n)
0 + σ0

∫ t

0

e−(t−s)λndw
(n)
t .

The first term in the right-hand side of the above equation can be interpreted
as follows: the forward rate curve forgets the contribution of the initial term
structure to the n-th eigenmode at an exponential rate with a characteristic
time given by λ−1

n . In particular, very singular perturbations to the initial
term structure decay away much more quickly than smooth ones.

Note as t→∞, each of the g
(n)
t converges in law to a mean-zero Gaussian

with variance
σ2

0

2λn
=

σ2
0κ

1 + n2π2κ2
.

These variances, which correspond to the loadings of the principal compo-
nents, decay quickly to zero. Again, this fact agrees nicely with the PCA of
Chap. 1.
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7.2.4 Regularity of the Solutions

We now turn to the issue of smoothness of the solutions. Recall that the state
space H = L2([0, 1], e2x/kdx) is a space of equivalence classes of measurable
functions, and a-priori is does not make sense to talk about gt(x) for fixed
x ∈ [0, 1]. Indeed, the evaluation functional δx is not continuous on H . This
possible lack of smoothness has another annoying practical implication: we
know that the boundary conditions g(0) = g(1) = 0 are satisfied when g ∈
D(A) but not for general g ∈ H .

Fortunately, because of the smoothing properties of the Laplacian, there
is a version of the random field {gt(x)}t≥0,x∈[0,1] which is continuous in the
two parameters. In fact more is true, as we see from the following theorem:

Theorem 7.2. There exists a version of the random field {gt(x)}t≥0,x∈[0,1]

such that almost surely:

• for t > 0, the map x→֒gt(x) is Hölder 1
2 − ǫ continuous for any ǫ > 0

• for x ∈ [0, 1], the map t→֒gt(x) is Hölder 1
4 − ǫ continuous for any ǫ > 0.

For the proof, we need the following estimate:

Lemma 7.1. For real numbers p ≥ 0 and q > 1, there is a constant C > 0
such that we have the bound

∞
∑

n=1

n−q ∧ (xnp) ≤ Cx
q−1
p+q

for all x ≥ 0.

Proof. The inequality clearly holds for x ≥ 1 with C =
∑∞

n=1 n−q < q
q−1 . So

suppose that x < 1. Then we have

∞
∑

n=1

n−q ∧ (xnp) =
∑

n<x
−1

p+q

xnp +
∑

n≥x
−1

p+q

n−q

≤
∫

⌊

x
−1

p+q

⌋

+1

0

xtpdt +

∫ ∞
⌊

x
−1

p+q

⌋ t−qdt

≤
(

2p+1

p + 1
+

2q−1

q − 1

)

x
q−1
p+q

where ⌊y⌋ denotes the greatest integer smaller than y and we have used the
inequality 1

2 (⌊y⌋+ 1) ≤ y ≤ 2⌊y⌋ for y > 1. �

Proof of Theorem 7.2. We have the decomposition

gt = Stg0 + σ0

∫ t

0

St−sdWs.
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For every t > 0, there is a representative of the equivalence class Stg0 ∈ H
given by

(Stg0)(x) =
√

2
∞
∑

n=1

exp

(

− (1 + n2π2κ2)t + 2x

2κ

)

sin(nπx)g
(n)
0 .

It is easy to see that the function (t, x)→֒Stg0(x) is infinitely differentiable
for t > 0. Therefore the smoothness of the field (t, x)→֒gt(x) is governed by
the stochastic integral, and so from now on we assume g0 = 0.

The eigenfunctions en are bounded and Lipschitz, and so satisfy the
bounds

|en(x)− en(y)| ≤ 2
√

2 ∧
(

1

κ
|x− y|

√

2(1 + n2π2κ2)

)

.

Therefore we have

E{(gt(x)− gt(y))2} = σ2
0

∞
∑

n=1

(en(x)− en(y))2
(1− e−2λnt)

2λn

≤ C|x− y|

because of the result of Lemma 7.1 with p = 0 and q = 2. Since the random
field is Gaussian there are constants Cn such that we have the bound

E{(gt(x) − gt(y))2n} ≤ Cn|x− y|n

for all n ≥ 1. The Hölder continuity x→֒gt(x) follows from Kolmogorov’s
theorem. Similarly, we have

E{(g(n)
s − g

(n)
t )2} =

1

2λn
(2− 2e−λn|t−s| − e−λns − e−λnt + 2e−λn(t+s))

=
1

2λn
(2(1− e−λn|t−s|)− (e−λns/2 − e−λnt/2)2)

≤ λ−1
n ∧ |t− s|

and so

E{(gs(x) − gt(x))2} ≤ σ2
0

∞
∑

n=1

2e−2x/κ sin(nx)2(λ−1
n ∧ |t− s|)

≤ C|t− s|1/2

using again Lemma 7.1 with p = 0 and q = 2. Again, the result follows from
Kolmogorov’s theorem. �

The above Hölder regularity is essentially the best possible. In particular,
for fixed t > 0 and ω ∈ Ω, the graph of the function x→֒gt(x) more-or-less
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resembles the sample path of a Brownian bridge . Recall that a Brownian
bridge {Bx}x∈[0,1] is a mean-zero Gaussian process satisfying the two end-
point constraints B0 = B1 = 0 and with covariance E{BxBy} = x ∧ y − xy.
A Brownian bridge can be realized as Bx = wx − xw1 where {wx}x∈[0,1] is
a standard scalar Wiener process. The name Brownian bridge derives from
the simple observation that the Wiener process wx = (1 − x)w0 + xw1 + Bx

is a linear combination of its endpoint values plus a “bridge” term. Remem-
ber that the standard Wiener process has left-hand endpoint w0 = 0. The
Brownian bridge has the series expansion (recall the discussion of Sect. 3.5
of Chap. 3)

Bx =
∞
∑

n=1

sin(nπx)

n
ξn

known as Karhunen–Loeve decomposition, where {ξn}n are independent
standard normal random variables. Comparing this expression with the de-
composition

gt(x) = (Tg0)(x) + σ0

√
2κe−x/κ

∞
∑

n=1

(1 − e−2tλn)1/2 sin(nπx)

(1 + κ2π2n2)1/2
ξn

where

ξn =
g
(n)
t − E{g(n)

t }
var(g

(n)
t )1/2

we see that for fixed t > 0, we can write the deformation as

gt(x) = σ0

√

2/κπ−1e−x/κBx + h(x)

where {Bx}x∈[0,1] is a standard Brownian bridge and the random function
x→֒h(x) is twice-differentiable almost surely.

We have seen that for fixed t > 0, the random function x→֒gt(x) has
the same regularity as a Wiener sample path. On the other hand, for fixed
x ∈ (0, 1), the regularity of the random function t→֒gt(x) is far worse. Indeed,
it can be shown that the quartic variation is nonzero, and thus the process
{gt(x)}t≥0 cannot be a semi-martingale!

7.3 Market Models

7.3.1 The Forward Measure

Fix a filtered probability space (Ω,F , P; {Ft}t≥0), and let ξ be an FT -meas-
urable random variable. If ξ corresponds to the payout of a contingent claim
with maturity T > 0, the no-arbitrage theory tells us that the price at time
t ∈ [0, T ] of this claim is by the risk-neutral conditional expectation

Vt = EQ{e−
∫

T
t

rsdsξ|Ft}
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where rt is the spot interest rate and Q ∼ P is an equivalent measure under
which the discounted asset prices are local martingales.

If the payout ξ is conditionally independent of the interest rate, we have
that the price factors as

Vt = EQ{e−
∫

T
t

rsdsξ|Ft} = EQ{e−
∫

T
t

rsds|Ft}EQ{ξ|Ft}
= P (t, T )EQ{ξ|Ft}

where P (t, T ) is the price of a bond with maturity T . Such a factored rep-
resentation is convenient since the price P (t, T ) is quoted in the market,
and so the practitioner can devote all his or her attention to computing the
conditional expectation EQ{ξ|Ft}.

On the other hand, if the payout ξ is contingent on the interest rates

at time T , the discounting factor exp(−
∫ T

t
rsds) can be a nuisance since it

depends on the whole history of the short rate process. In particular, the

payout ξ and the discounting factor exp(−
∫ T

t
rsds) cannot be modeled inde-

pendently.
One way to understand this issue is to change from the risk-neutral mea-

sure Q to the equivalent T -forward measure defined as follows:

Definition 7.1. The T -forward measure QT is the measure equivalent to Q

with Radon–Nykodym density

dQT

dQ
=

exp
(

−
∫ T

0
rsds

)

P (0, T )
.

By Bayes’ formula, the price of the claim ξ is given by

Vt = EQ{e−
∫

T
t

rsdsξ|Ft} = EQT{e
∫

t
0

rsdsP (0, T )ξ|Ft}EQ{e−
∫

T
t

rsdsP (0, T )−1|Ft}
= P (t, T )EQT {ξ|Ft}.

In particular, we have the product representation of the price which we could
only derive under P-conditional independence. The forward measure QT com-
bines the discount factor with the risk-neutral pricing measure; consequently,
the measures QS and QT are generally different if T �= S, unless rt is deter-
ministic.

The forward rate {f(t, T )}t∈[0,T ] is a martingale under the T -forward
measure QT since we have the formal calculation

f(t, T ) = − 1

P (t, T )

∂

∂T
P (t, T )

= − 1

P (t, T )

∂

∂T
EQ

{

e−
∫

T
t

rsds|Ft

}

=
1

P (t, T )
EQ

{

rT e−
∫

T

t
rsds|Ft

}

= EQT {rT |Ft}.
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The above interchange of differentiation and expectation is justified if the
short rate is positive or sufficiently well-behaved.

Now let us put ourselves in the framework of an abstract HJM model as
studied in Chap. 6. In particular, assume that the probability space (Ω,F , Q)
supports a Wiener process {Wt}t≥0 defined cylindrically on a Hilbert space
G, and that the risk-neutral dynamics of the forward rate process {ft}t≥0 are
given by

dft = (Aft + FHJM(σt))dt + σtdWt

where A is the generator of the shift semigroup {St}t≥0 on the state space F ,
and {σt}t≥0 is an adapted process valued in the space LHS(G, F ) of Hilbert–
Schmidt operators taking G into F . The forward rates solve the integral
equation

ft = Stf0 +

∫ t

0

St−sFHJM(σs)ds +

∫ t

0

St−sσsdWs

and in particular, the forward rate f(t, T ) = ft(T − t) is given by

f(t, T ) = f(0, T ) +

∫ t

0

〈σ∗
sδT−s, σ

∗
sIT−s〉ds +

∫ t

0

St−sσ
∗
sδT−sdWs

= f(0, T ) +

∫ t

0

σ∗
sIT−s (dWs + σ∗

sδT−sds)

where δx is the evaluation functional δx(f) = f(x) and Ix is the definite
integral functional Ix(f) =

∫ x

0
f(s)ds. We now see how to change from the

risk-neutral measure Q to the forward measure QT : since the forward rate
{f(t, T )}t∈[0,T ] is a QT -martingale, we must have that

WT
t = Wt +

∫ t

0

σ∗
sδT−sds

defines a cylindrical QT Wiener process. Formalizing the proceeding discus-
sion leads to the following theorem:

Theorem 7.3. Let (σ, λ) be an abstract HJM model on a Hilbert space F ,
and let Q be the measure on (Ω,F) such that the discounted prices of all the
bonds are martingales. Then the measure QT with density

dQT

dQ
= exp

(

−1

2

∫ T

0

‖σ∗
sIT−s‖2G +

∫ T

0

σ∗
sIT−sdWs

)

is the T -forward measure. The process {WT
t }t∈[0,T ] defined cylindrically on

G by the formula

WT
t = Wt +

∫ t

0

σ∗
sIT−sds

is a Wiener process for the forward measure QT .
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7.3.2 LIBOR Rates Revisited

Shifting away from the HJM framework with its emphasis on continuously
compounded forward rates, we now come back to the discretely compounded
interest rates already discussed in the first chapter. The LIBOR rate is defined
by the formula

L(t, T ) =
1

δ

(

P (t, T )

P (t, T + δ)
− 1

)

.

It is the value at time t ≥ 0 for the simple interest accumulated from T to
T + δ where δ > 0 is a fixed period of time, typically 3 months. Note that as
δ ց 0 the LIBOR rate approaches the forward rate f(t, T ).

Notice that the LIBOR rate process {L(t, T )}t∈[0,T ] is a martingale for
the T + δ- forward measure. Indeed, just observe that

1 + δL(t, T ) =
P (t, T )

P (t, T + δ)

=
EQ{e−

∫

T
t

rsds|Ft}
P (t, T + δ)

= EQ
T+δ{e

∫

T+δ
T

rsds|Ft}.

In the modeling framework proposed by Brace, Gratarek, and Musiela in [24]
the LIBOR rate is taken as the primitive state process. In particular, for
each maturity date T ≥ 0 the dynamics of the LIBOR rate {L(t, T )}t∈[0,T ]

are assumed to be log-normal under the corresponding T +δ forward measure.
That is, assume that there is a function γ : R2

+ → G such that for each
T ≥ 0, we have

dL(t, T ) = L(t, T )γ(t, T )dW T+δ
t .

The advantage of such a modeling assumption is that the prices of LIBOR
contingent claims with payouts of the form ξ = g(L(T, T )) which settle in
arrears (i.e. the money changes hands at the date T + δ) are very easy to
compute:

Vt = EQ{e−
∫

T+δ
t

rsdsg(L(T, T ))|Ft}
= P (t, T + δ)EQT +δ{g(L(T, T )|Ft}

= P (t, T + δ)

∫ ∞

−∞
g(L(t, T )eσ0

√
T−tz−σ2

0(T−t)/2)
e−z2/2

√
2π

dz

where

σ0 =

(

1

T − t

∫ T

t

‖γ(s, T )‖2ds

)1/2

is the effective volatility. In particular, if the claim is a caplet then the corre-
sponding payout function is g(x) = (x−K)+ where K is the strike price, and
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hence the price of a caplet in the BGM framework is given by the familiar
Black–Scholes formula:

L(t, T )Φ(d1)− κΦ(d2)

where Φ is the standard normal distribution function and

d1 =
log(L(t, T )/K) + σ2

0(T − t)/2

σ0

√
T − t

and d2 =
log(L(t, T )/K)− σ2

0(T − t)/2

σ0

√
T − t

.

Of course, the benefit of such a pricing formula is that practitioners are very
comfortable with the Black–Scholes formula, and indeed pricing caplets in
this manner seems to be the market practice.

The question arises: Can a BGM model for the LIBOR rates be specified
for all of the maturities T simultaneously? Furthermore, can it be recast as
an abstract HJM model studied in Chap. 6? Fortunately, Brace, Gatarek,
and Musiela proved that the log-normal modeling assumptions are mutually
compatible for different maturity dates T .

We now explore the dynamics of the forward rates under the risk-neutral
measure Q. The bond prices are given by

P (t, T ) = P (0, T ) exp

(∫ t

0

rsds− 1

2

∫ t

0

‖σ∗
sIT−s‖2duds −

∫ t

0

σ∗
sIT−sdWs

)

and hence by the BGM assumption we have

σ∗
t (Ix+δ − Ix) =

δL(t, t + x)

1 + δL(t, t + x)
γ(t, t + x).

If we set σ∗
t δx = 0 for 0 ≤ x ≤ δ, then summing the above equation shows

that the integrated volatility is given by

σ∗
t Ix =

[x/δ]
∑

k=1

δL(t, t + x− δk)

1 + δL(t, t + x− kδ)
γ(t, t + x− kδ).

If γ is sufficiently smooth in its second argument, the HJM volatility can
be recovered by differentiating both sides of the above equation with respect
to x.

Notes & Complements

Vargiolu [131] studied the risk-neutral dynamics of the linear Gaussian HJM model
when the state space is one of the family of Sobolev spaces {H1

γ}γ≥0 defined by

H1
γ =

{

f : R+ → R+;

∫ ∞

0

(f(x)2 + f ′(x)2)e−γxdx

}

.
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In this case there exists a mild solution to equation the HJM equation in the space
H1

γ if
∞
∑

i=1

‖σi‖2
H1

γ
+ ‖σi‖4

H1
0

+ ‖σi‖4
L4

γ
< +∞.

If in addition
∑∞

i=1 ‖σ
i‖2

H1
0

< +∞ then there exists a family of Gaussian invari-

ant measures on H1
γ . Tehranchi [129] studied the existence of invariant measures

for general Markovian HJM models in the space Hw. A major difference between
Vargiolu’s space H1

γ and the space Hw used in the analysis of this chapter is that
on H1

γ the semigroup {St}t≥0 has many non-trivial invariant measures.
We learned from Rogers the simple proof presented in this chapter that the

average short rate is a maximum, where the average is taken in an invariant measure
of the risk-neutral HJM dynamics.

Motivated by specific problems in fixed income security portfolio risk manage-
ment, Bouchaud, Cont, El Karoui, Potters, and Sagna propose a model for the
dynamics of the forward curve under the historical probability measure P. See [23],
[22] and [41]. They first model the short and the long rates as a bivariate diffusion,
and then, they consider a random string model for the deviation of the forward
curve from the straight line joining the short to the long rate. Since they do not
have to worry about the drift condition, they propose to add a regularizing term in
the drift, in the form of a perturbation of the shift operator A by a Laplacian term.

The parabolic SPDE model of the deformation process, as discussed in Sect. 7.2
is closely related to the stochastic cable equation studied by Walsh [132, 133] as
a model neural response. The solutions of this parabolic SPDE driven by space–
time white noise is very different in dimensions greater than one. In particular, the
solutions are not functions, and have to be interpreted as random distributions.
Independently of the financial motivation which seems to have something to do
with arbitrage opportunities created by transaction costs, the main effect of this
perturbation is to replace a hyperbolic SPDE by a parabolic one. Once the operator
A includes a Laplacian component, it is easy to choose the Hilbert space F to
make sure that this operator is self-adjoint, and because of the properties of the
Laplacian, this operator A becomes strictly negative, and the solution of the SPDE
is an infinite dimensional Ornstein–Uhlenbeck process of the best kind since it has
a unique invariant measure whose covariance structure can be identified with the
computations given in this book. In this way, the PCA can be performed both in
the model and on the data and the quality of the fit can be assessed in an empirical
manner. Our understanding is that work is in process to quantify this fit.

The BGM model of the LIBOR rates was introduced by Brace, Gatarek, and

Musiela [24]. These authors proved that such a model exists, and that the model

dynamics exhibit an invariant measure on the space of continuous functions.
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Birkhäuser Boston, Boston, MA, 2004.

92. A. Kriegl and P.W. Michor. The Convenient Setting of Global Analysis, vol-
ume 53 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 1997.

93. J. Kuelbs. The law of the iterated logarithm and related strong convergence
theorems for banach space valued random variables. In Ecole d’Eté de Proba-
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