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Foreword

Since its inception about a decade ago, the theory of Mean Field Games has rapidly
developed into one of the most significant and exciting sources of progress in the
study of the dynamical and equilibrium behavior of large systems. The introduction
of ideas from statistical physics to identify approximate equilibria for sizeable
dynamic games created a new wave of interest in the study of large populations
of competitive individuals with “mean field” interactions. This two-volume book
grew out of series of lectures and short courses given by the authors over the last
few years on the mathematical theory of Mean Field Games and their applications
in social sciences, economics, engineering, and finance. While this is indeed the
object of the book, by taste, background, and expertise, we chose to focus on the
probabilistic approach to these game models.

In a trailblazing contribution, Lasry and Lions proposed in 2006 a methodology
to produce approximate Nash equilibria for stochastic differential games with
symmetric interactions and a large number of players. In their models, a given
player feels the presence and the behavior of the other players through the empirical
distribution of their private states. This type of interaction was studied in the
statistical physics literature under the name of mean field interaction, hence the
terminology Mean Field Game coined by Lasry and Lions. The theory of these
new game models was developed in lectures given by Pierre-Louis Lions at the
Collège de France which were video-taped and made available on the internet.
Simultaneously, Caines, Huang, and Malhamé proposed a similar approach to large
games under the name of Nash Certainty Equivalence principle. This terminology
fell from grace and the standard reference to these game models is now Mean Field
Games.

While slow to pick up momentum, the subject has seen a renewed wave of
interest over the last seven years. The mean field game paradigm has evolved
from its seminal principles into a full-fledged field attracting theoretically inclined
investigators as well as applied mathematicians, engineers, and social scientists.
The number of lectures, workshops, conferences, and publications devoted to the
subject has grown exponentially, and we thought it was time to provide the applied
mathematics community interested in the subject with a textbook presenting the
state of the art, as we see it. Because of our personal taste, we chose to focus on what
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vi Foreword

we like to call the probabilistic approach to mean field games. While a significant
portion of the text is based on original research by the authors, great care was taken
to include models and results contributed by others, whether or not they were aware
of the fact they were working with mean field games. So the book should feel and
read like a textbook, not a research monograph.

Most of the material and examples found in the text appear for the first time in
book form. In fact, a good part of the presentation is original, and the lion’s share
of the arguments used in the text have been designed especially for the purpose of
the book. Our concern for pedagogy justifies (or at least explains) why we chose to
divide the material in two volumes and present mean field games without a common
noise first. We ease the introduction of the technicalities needed to treat models with
a common noise in a crescendo of sophistication in the complexity of the models.
Also, we included at the end of each volume four extensive indexes (author index,
notation index, subject index, and assumption index) to make navigation throughout
the book seamless.
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Preface of Volume II

While the first volume of the book only addressed mean field games where the
sources of random shocks were idiosyncratic to the individual players, this second
volume tackles the analysis of mean field games in which the players are subject to
a common source of random shocks. We call these models games with a common
noise. General solvability results, as well as uniqueness conditions, are established
in Part I. Part II is devoted to the study of the so-called master equation. In the
final chapter of this part, we connect the various asymptotic models investigated in
the book, starting from games with finitely many players. Even for models without a
common noise, this type of analysis heavily relies on the tools developed throughout
this second volume. Like in the case of Volume I, Volume II ends with an epilogue.
There, we discuss several extensions which fit naturally the framework of models
with a common noise. They include games with major and minor players, and games
of timing.

The reader will find on page xiii below a diagram summarizing the interconnec-
tions between the different chapters and parts of the book.

Chapter 1 is the cornerstone of the second volume. It must be seen as a
preparation for the analysis of mean field games with a common noise. As equilibria
become random in the presence of a common noise, we need to revisit the tools
introduced and developed in the first volume for the solution of optimal stochastic
control problems and establish a similar technology for stochastic dynamics and
cost depending on an additional source of randomness. To that effect, we provide
a general introduction to forward-backward systems in random environment and
possibly non-Brownian filtrations. A key point in our analysis is to allow the random
environment not to be adapted to the Brownian motions driving the controlled
dynamics. This forces us to impose compatibility conditions constraining the
correlation between the noise carrying the random environment and the general
filtration to which the solution of the forward-backward system is required to be
adapted. Although these compatibility conditions are rather difficult to handle, they
turn out to be absolutely crucial as they play a fundamental role throughout the text,
in particular for the notion of weak equilibria defined in the subsequent Chapter 2.
As far as we know, this material does not exist in book form.

ix



x Preface of Volume II

The notion of solution for mean field games with a common noise ends up being
more subtle than one could expect. In contrast with the case addressed in Volume
I, the fixed point problem underpinning the definition of an equilibrium cannot
be tackled by means of Schauder’s fixed point theorem. In order to account for
the dependence of the equilibria upon the realization of the common noise, it is
indeed necessary to enlarge the space in which the fixed point has to be sought.
Unfortunately, proceeding in this way increases dramatically the complexity of
the problem, as the new space of solutions becomes so big that it becomes very
difficult to identify tractable compactness criteria to use with Schauder’s theorem.
The purposes of Chapters 2 and 3 is precisely to overcome this issue. The first step
of our strategy is to discretize the realization of the common noise entering the
definition of an equilibrium in such a way that the equilibrium can take at most
a finite number of outcomes as the realization of the common noise varies. This
makes the size of the space of solutions much more reasonable. The second step is
to pass to the limit along discretized solutions. The success of this approach comes
at the price of weakening the notion of equilibrium in the sense that the equilibrium
is only adapted to a filtration which is larger than the filtration generated by the
common noise. This notion of weak solutions is the rationale for the Compatibility
Condition introduced in Chapter 1. The concepts of weak and strong solutions are
explained in Chapter 2. In analogy with strong solutions of stochastic differential
equations, strong equilibria are required to be adapted to the filtration generated by
the common noise. Naturally, we establish a form of Yamada-Watanabe theory for
Nash equilibria. Quite expectedly, it says that weak solutions are strong provided
that uniqueness holds in the strong sense. In analogy with the theory developed
in the first volume, we prove that strong and weak equilibria may be represented
by means of forward-backward systems of the conditional McKean-Vlasov type.
Due to the presence of the common noise, conditioning appears in the formulation.
To wit, we first develop, in the first section of the chapter, a theory of conditional
propagation of chaos for particle systems with mean field interaction driven by a
common noise.

The construction of weak solutions is addressed in Chapter 3. There, we
implement the aforementioned discretization approach. It consists in forcing the
total number of realizations of an equilibrium to be finite. The passage to the
limit along discretized solutions is achieved in the weak sense: we consider the
asymptotic behavior of the joint law of the equilibria and the forward and backward
processes characterizing the best response of the representative agent under the
discretized environment. While tightness of the forward component is investigated
for the standard uniform topology on the space of continuous paths, tightness of
the backward component is established for the Meyer-Zheng topology on the space
of right-continuous paths with left limits. The results of the Meyer-Zheng topology
needed for this purpose are recalled in the first section of Chapter 3. In the last
sections, we address the question of uniqueness. Like for mean field games without
a common noise, mean field games with a common noise are shown to have at most
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one solution under the Lasry-Lions monotonicity condition. Furthermore, we prove
that the common noise may restore uniqueness in some cases for which the game
without a common noise has several solutions.

The next two chapters are dedicated to another major aspect of mean field
games: the master equation. The master equation was introduced by Lions in his
lectures at the Collège de France. It is a special partial differential equation over
the enlarged state space made of the physical Euclidean space times the space
of probability measures on the physical space. In order to define it properly, we
appeal to the differential calculus on the Wasserstein space introduced in Chapter 5
of the first volume. For mean field games without a common noise, the master
equation is a first-order equation in the measure argument. It becomes of the second
order with respect to the measure argument when the mean field game includes
a common noise. We call master field the solution of the master equation. This
terminology is inspired by the notion of decoupling field introduced in the first
volume to connect the forward and backward components of a forward-backward
system. In full analogy, the master field is a function that makes the connection
between the forward and backward components of a forward-backward system of
the McKean-Vlasov type. The fact that it is defined over the enlarged state space
is fully consistent with the fact that the solution of a (conditional) McKean-Vlasov
stochastic differential equation can only be a Markov process on the enlarged state
space. In the first two sections of Chapter 4, we show that the master field is
well defined provided that there exists a unique equilibrium for any initial state
of the population. In such a case, we prove that it satisfies a dynamic programming
principle. By adapting the chain rule for functions of probability measures proven
in Chapter 5 of the first volume, we show that the master field is a viscosity solution
of the master equation. We then derive explicitly the master equation for some of
the examples introduced in Chapter 1 of the first volume.

The purpose of Chapter 5 is to prove that the master equation has a classical
solution provided that the coefficients are smooth enough in all the directions of
the enlarged state space and satisfy the Lasry-Lions monotonicity condition. The
proof comprises two main steps. The first one is to prove that the result holds when
the time horizon is small enough. In the second step, we show that the small time
construction can be iterated when the monotonicity condition is in force. The key
point in both steps is to prove that the master field is smooth enough. To do so, we
view the forward-backward system of the conditional McKean-Vlasov type which
characterizes the equilibrium as a system of random characteristics for the master
equation. We then make intensive use of Lions’s approach to the differential calculus
on the Wasserstein space, which we called L-differential calculus in Volume I. We
establish the regularity of the master field by proving that the forward-backward
system responds smoothly to perturbations of the initial condition in the L2 space.

The last chapter of Part II is devoted to approximation and convergence problems.
We first prove that solutions of a mean field game may be used to construct
approximate Nash equilibria for the corresponding games with finitely many
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players. The proof is given for games with and without common noise. To do so,
we appeal to some of the results obtained in Chapters 3 and 4 of the first volume.
We also prove an analog result for mean field control problems studied in Chapter 6
of the first volume but for a different notion of equilibrium: we show that solutions
of the limiting problem induce an almost optimal strategy for a central planner
optimizing the common reward of a collectivity of N players over exchangeable
control profiles. In the last two sections of Chapter 6, we address the converse
question, which is known as the convergence problem for mean field games. We
prove, under suitable conditions, that the Nash equilibria of the N-player games
converge to solutions of the corresponding mean field game. We give two proofs,
depending on the nature of the equilibria, whether they are computed over strategies
in open or closed loop forms. The convergence problem for equilibria over open loop
strategies is tackled by a compactness argument which is very similar to that used to
construct weak solutions in Chapter 3. In particular, it does not require the limiting
mean field game to be uniquely solvable. This is in contrast with the approach we
use to tackle the same problem for equilibria over closed loop strategies for which
we require the master equation to have a classical solution and, as a by-product,
the mean field game to have a unique solution. The proof appears as a variation
over the so-called four-step-scheme for forward-backward systems as it consists
in expanding the master equation along the N-equilibrium and in comparing the
resulting process with the N-equilibrium value process.

As for the first volume, the final chapter leverages the technology developed in
the second volume to revisit some of the examples introduced in the introductory
Chapter 1 of the first volume, and complete their mathematical analysis. We use
some of the tools introduced for the analysis of mean field games with a common
noise to study important game models which are not amenable to the theory covered
by the first volume. These models include extensions to games with major and minor
players, and games of timing. We believe that these mean field game models have a
great potential for the quantitative analysis of very important practical applications,
and we show how the technology developed in the second volume of the book can
be brought to bear on their solutions.

Princeton, NJ, USA René Carmona
Nice, France François Delarue
December 29, 2016
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Organization of the Book: Volume II Organigram

Part I
Games & Mean

Field Games

Part II
Analysis on Wasserstein

Space & Mean
Field Control

Epilogue I

Chapter 1
Optimization in

Random Environment

Chapters 2 & 3
Weak and Strong

Solvability

Chapters 4 & 5
Master Equation

Chapter 6
Approximation

and Convergence

Epilogue II:
Extensions

Volume I

Volume II
Part I

Part II

Thick lines indicate the logical order of the chapters. The dotted lines between Part I,
Epilogue I, Chapters 2 and 3, and Epilogue II connect the various types of mean field
games studied in the book. Finally, the dashed lines starting from Part II point toward
the games and the optimization problems for which we can solve approximately the
finite-player versions or for which the finite-player equilibria are shown to converge.



xiv Preface of Volume II

References to the first volume appear in the text in the following forms:
Chapter (Vol I)-X, Section (Vol I)-X:x, Theorem (Vol I)-X:x, Proposition (Vol I)-
X:x, Equation (Vol I)-.X:x/, . . . , where X denotes the corresponding chapter in the
first volume and x the corresponding label.
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Part I

MFGs with a Common Noise



1Optimization in a Random Environment

Abstract

This chapter is a preparation for the analysis of mean field games with a
common noise, to which we dedicate the entire first half of this second volume.
By necessity, we revisit the basic tools introduced in Chapters (Vol I)-3 and
(Vol I)-4 for mean field games without common noise, and in particular, the
theory of forward-backward stochastic differential equations and its connection
with optimal stochastic control. Our goal is to investigate optimal stochastic
control problems based on stochastic dynamics and cost functionals depending
on an additional random environment. To that effect, we provide a general
discussion of forward-backward systems in a random environment. In the
framework of mean field games, this random environment will account for the
random state of the population in equilibrium given the (random) realization of
the systemic noise source common to all the players.

1.1 FBSDEs in a Random Environment

While the first models of mean field games which we studied in Chapters (Vol I)-3
and (Vol I)-4 led to optimal control problems which can be solved by means
of standard BSDEs and FBSDEs, more sophisticated game models, including
models with a common noise and games with major and minor players, require
the manipulation of FBSDEs with coefficients depending upon an extra source of
randomness. The purpose of this section is to revisit our discussion of FBSDEs to
accommodate coefficients depending upon a random environment, say a process
� D .�t/0�t�T taking values in an auxiliary Polish space. To be more specific, we
shall consider systems of the form:

© Springer International Publishing AG 2018
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8
ˆ̂
<

ˆ̂
:

dXt D B.t;Xt; �t;Yt;Zt;Z0t /dt

C˙.t;Xt; �t/dWt C˙0.t;Xt; �t/dW0
t ;

dYt D �F.t;Xt; �t;Yt;Zt;Z0t /dt C ZtdWt C Z0t dW0
t ;

(1.1)

with a terminal condition YT D G.XT ; �T/ for some finite time horizon T >

0. Notice the similarity with (3.17) in Chapter (Vol I)-3. However, the forward
dynamics are now subject to an additional Brownian motion W0 D .W0

t /0�t�T

which will account for the common noise when dealing with mean field games.
In the next paragraph, we make clear the correlation between the three sources of
noise W D .Wt/0�t�T , W0 D .W0

t /0�t�T and � D .�t/0�t�T . Essentially, we shall
assume that W is independent of .W0;�/.

Part of the material presented in this section is needed in Chapters 2 and 3 for the
analysis of mean field games with a common noise. Since this material is rather
technical, and since the measure theoretic and probabilistic issues it resolves may
be viewed as esoteric, some of the detailed arguments can be skipped in a first
reading.

Readers familiar with the classical theory of stochastic differential equations will
recognize standard arguments aimed at defining and comparing strong and weak
solutions of these equations. A good part of this chapter is devoted to extend these
arguments to FBSDEs in random environment. Theorem 1.33, which essentially
says that strong uniqueness implies uniqueness in law, is a case in point. Its proof,
like several others in this chapter, relies heavily on the notion of regular conditional
probability whose definition and existence we recall in the form of a theorem for the
convenience of the reader.

Theorem 1.1 Let Q be a probability measure on a Polish space S equipped with
its Borel � -field B.S/ and let G � B.S/ be any sub-� -field. There exists a family
.Q.!;D//!2S;D2B.S/, called the regular conditional probability of Q given G, such
that:

1. For any ! 2 S, the mapping B.S/ 3 D 7! Q.!;D/ is a probability measure on
.S;B.S//;

2. For any D 2 B.S/, the mapping S 3 ! 7! Q.!;D/ is measurable from the
space .S;G/ into the space .Œ0; 1�;B.Œ0; 1�//;

3. For any D 2 B.S/, for Q-almost every ! 2 S ,

Q.!;D/ D EQ�1DjG�.!/:

If G is generated by a countable �-system, the family .Q.!;D//!2˝;D2B.S/ is said
to be proper as it satisfies:

4. For Q-almost every ! 2 ˝, for all D 2 G, Q.!;D/ D 1D.!/.
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When .�;H/ is another measurable space and P is a probability measure
on the product space .� � S;H ˝ B.S//, there exists a family of kernels
.q.x;D//x2�;D2B.S/, called regular conditional probability of the second marginal
of P given the first one, such that:

1. For any x 2 � , the mapping B.S/ 3 D 7! q.x;D/ is a probability measure on
.S;B.S//,

2. For any D 2 B.S/, the mapping � 3 x 7! q.x;D/ is measurable from .�;H/
into .Œ0; 1�;B.Œ0; 1�//.

3. For any .C;D/ 2 H � B.S/,

P
�
C � D

� D
Z

C
q.x;D/d�.x/;

where � is the marginal distribution of P on .�;H/.

Since B.S/ is generated by a countable �-system, note that, in both cases,
the conditional probability is almost surely unique: In the first case, any other
family .Q0.!;D//!2˝;D2B.S/ fulfilling the same conditions as .Q.!;D//!2S;D2B.S/
satisfies, for Q almost every ! 2 S and for all D 2 B.S/, Q.!;D/ D Q0.!;D/;
Similarly, in the second case, any other family .q0.x;D//x2�;D2B.S/ fulfilling the
same conditions as .q.x;D//x2�;D2B.S/ satisfies, for � almost every x 2 � and for
all D 2 B.S/, q.x;D/ D q0.x;D/.

1.1.1 Immersion and Compatibility

For the remainder of the book, we shall have to deal with several filtrations on
the same probability space. This should not be a surprise since we shall have to
disentangle the effects of the idiosyncratic sources of noise from the common noise
affecting the whole system. This subsection gathers the most important theoretical
definitions and properties we shall need in the sequel.

Throughout the subsection, T is a fixed finite time horizon.

Definition 1.2 If F and G are two filtrations on the probability space .˝;F ;P/
such that G � F by which we mean Gt � Ft for all t 2 Œ0;T�, we say that G is
immersed in F if every square integrable G-martingale is an F-martingale.

Of course, we stress the fact that the immersion property depends on the
underlying probability P, so that G should be said to be immersed in F under P.
Most of the time, we shall omit to specify P, since the probability measure should
be clear from the context.

The immersion property is important and is often called the (H)-hypothesis,
see the citations in the Notes & Complements at the end of the chapter. It can be
characterized in a few convenient ways.
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Proposition 1.3 If F and G are two filtrations on .˝;F ;P/ such that G � F, G is
immersed in F if and only if any of the three following properties holds:

(H1) For every t 2 Œ0;T�, GT and Ft are conditionally independent given Gt.
(H2) For every t 2 Œ0;T� and any 	 2 L1.Ft/, EŒ	jGT � D EŒ	jGt�.
(H3) For every t 2 Œ0;T� and any 
 2 L1.GT/, EŒ
jFt� D EŒ
jGt�.

Proof. Clearly (H3) ) (H), so we only prove (H) ) (H1), (H1) ) (H2), and (H2) ) (H3).

(H) ) (H1). Let 
 2 L2.GT/ and let us assume that (H) holds. This implies that the process M
defined by Mt D EŒ
jGt� is an F-martingale and MT D 
, and consequently, Mt D EŒ
jFt�.
It follows that for any 	 2 L2.Ft/, we have:

EŒ
	jGt� D EŒ	EŒ
jFt�jGt� D EŒ	EŒ
jGt�jGt� D EŒ	jGt�EŒ
jGt�;

which is exactly (H1).
(H1) ) (H2). Let 
 2 L2.GT/ and 	 2 L2.Ft/. Assuming (H1), we have:

EŒ
EŒ	jGt�� D E
�
EŒ
jGt�EŒ	jGt�

� D E
�
EŒ
	jGt�

� D EŒ
	�;

which is exactly (H2) modulo the integrability conditions which can be checked by simple
density arguments.

(H2) ) (H3). Let 
 2 L2.GT/ and 	 2 L2.Ft/ and let us assume that (H2) holds. Then:

EŒ	EŒ
jGt�� D EŒ
EŒ	jGt�� D EŒ
	�;

which is exactly (H3) modulo the integrability conditions, and as before, the general case is
easily obtained by approximation. ut

Example. A trivial example is given by F D G _ H where G and H are two
filtrations such that GT and HT are independent.

Remark 1.4 If a process W D .Wt/0�t�T is a G-Wiener process and if G is
immersed in F (i.e., hypothesis (H) holds), then W is also an F-martingale, and
since its increasing process (square bracket) does not depend upon the filtration, it
is still an F-Wiener process.

Remark 1.5 If G is immersed in F, then for any t 2 Œ0;T�, Gt D Ft \ GT up
to negligible events, which means that Gt � Ft \ GT and that, for every event in
Ft \ GT , we can find another event in Gt such that both have a symmetric difference
of zero probability. Moreover, if � is an F-stopping time which is GT-measurable,
then � is also a G-stopping time if G is complete and immersion holds. Indeed,
if A 2 Ft \ GT , then 1A D EŒ1AjGT � D EŒ1AjGt�; the claim follows by choosing
A D f� � tg.
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We now specialize the immersion property (H) to the particular case when the
smaller filtration G is generated by an F-adapted process on a probability space
.˝;F ;P/.

Definition 1.6 An F-adapted càd-làg process � D .�t/0�t�T , on .˝;F ;P/ with
values in a Polish space, is said to be compatible with F (under P) if its filtration F

�

is immersed in F.

Here and throughout the book, càd-làg stands for right continuous with left limits
(continue à droite with limites à gauche in French). The filtration F

� D .F�
t /0�t�T

denotes the smallest right-continuous filtration on .˝;F ;P/ which contains P-null
events and which renders � adapted, namely F�

t is the completion of \s2.t;T�Fnat;�
s ,

where F
nat;� D .Fnat;�

s /0�s�T is the natural filtration generated by �:

F�
t D �fN g _

� \

s2.t;T�
Fnat;�

s

�
D

\

s2.t;T�

�
�fN g _ Fnat;�

s

�
;

where N D fB � ˝ W 9C 2 F ; B � C; P.C/ D 0g.
Notice that because of (H1) of Proposition 1.3 above, � is compatible with F if

and only if for any t 2 Œ0;T�, F�
T and Ft are conditionally independent under P

given the � -field F�
t .

Lemma 1.7 Let � be an F-adapted càd-làg process with values in a Polish space.
Then, � is compatible with F if for any t 2 Œ0;T�, the � -fields Ft and Fnat;�

T are
conditionally independent given Fnat;�

t .

Proof. For any D 2 Ft and any E 2 Fnat;�
T , for " > 0 such that t C " � T , we have:

P
�
D \ EjFnat;�

tC"

� D P
�
DjFnat;�

tC"

�
P
�
EjFnat;�

tC"

�
:

Letting " tend to 0, we get:

P
�
D \ EjFnat;�

tC

� D P
�
DjFnat;�

tC

�
P
�
EjFnat;�

tC

�
;

where Fnat;�
tC D \"2.0;T�t�Fnat;�

tC"
.

Recalling that, for any F 2 F�
t , there exists G 2 Fnat;�

tC such that the symmetric set
difference FG between F and G is of zero measure under P, we deduce that the left-hand
side is P almost-surely equal to P.D \ EjF�

t /. Proceeding similarly with the two terms in the
right-hand side, we complete the argument. ut

Remark 1.8 What Lemma 1.7 says is that compatibility is not sensitive to com-
pleteness of filtrations. More generally, G is immersed in F if and only if either G

or its completion is immersed in the completion of F.
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The following immediate consequence of the definition of compatibility and
Proposition 1.3 will be crucial for the analysis of FBSDEs of the same type as (1.1).
We state it as a lemma for the sake of later reference.

Lemma 1.9 Let � be an F-adapted càd-làg process on the space .˝;F ;P/ with
values in a Polish space, and let us assume that � is F compatible. Then if ` � 1,
any R

`-valued martingale M D .Mt/0�t�T with respect to the filtration F
� is also a

martingale with respect to the filtration F.

This chapter is not the only place where the notion of compatibility will be
needed. Indeed, we shall use it in Chapter 7 for the study of weak equilibria for mean
field games of timing. There we shall see that compatibility properties will provide
tools to approximate compatible (randomized) stopping times with nonrandomized
stopping times.

In anticipation of the set-ups in which we shall use compatibility, we move to
a somewhat special setting for the following discussion. We consider a probability
space with a product structure ˝ D ˝1 �˝2. Suppose F

1 is a filtration on ˝1 and
F
2 a filtration on ˝2. Without mentioning it explicitly, we canonically extend the

filtration F
1 (resp. F2) from ˝1 (resp. ˝2) to ˝ D ˝1 �˝2 by replacing F1

t (resp.
F2

t ) by F1
t ˝ f;; ˝2g (resp. f;; ˝1g ˝ F2

t ) for each t 2 Œ0;T�.
Given a probability measure P on .˝;F/ where we set F D F1

T ˝ F2
T , we

consider the problem of the immersion of the extension F
1 into F where F is the

product filtration defined by Ft D F1
t ˝ F2

t for t 2 Œ0;T�. Even though we shall
not need them, similar results could be stated and proved for the immersion of the
extension of F2 into F. In terms of the definition of compatibility given above, this
means that we are interested in finding out when the first projection from˝ onto˝1

is compatible with F. The following proposition provides a clean characterization
of the immersion property, or equivalently of this compatibility condition, in terms
of a measurability property of the regular version of the conditional probability of P
with respect to its first marginal projection.

Proposition 1.10 If P is a probability measure on .˝1 �˝2;F1
T ˝F2

T/ of the form

P.d!1; d!2/ D P
1.d!1/P2.!1; d!2/; (1.2)

for some probability P
1 on .˝1;F1

T/ and a kernel P2 from .˝1;F1
T/ to .˝2;F2

T/,
then the following are equivalent:

(i) For each t 2 Œ0;T/ and A 2 F2
t , the map !1 7! P2.!1;A/ is measurable with

respect to the completion of F1
t .

(ii) Every martingale M on .˝1;F1;P1/, extended to ˝1 � ˝2 by Mt.!
1; !2/ D

Mt.!
1/, remains a martingale on .˝1 �˝2;F1 ˝ F

2;P/.

We refer to Theorem 1.1 for the notion of kernel.
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Proof. .i/) .ii/. Let us assume that for every t 2 Œ0; T�, P2.�;A/ is F1
t -measurable for every

A 2 F2
t , and let M D .Mt/0�t�T be a martingale on .˝1;F1;P1/. Then, if 0 � t � s � T ,

C 2 F1
t and A 2 F2

t , we get:

E
�
Ms1C�A

� D E
1
�
Ms1CP2.�;A/� D E

1
�
Mt1CP2.�;A/� D E

�
Mt1C�A

�
:

Thus, Mt D EŒMsjF1
t ˝ F2

t �, which proves .ii/.
.ii/ ) .i/. Conversely, if t 2 Œ0; T/ and A 2 F2

t , for any C 2 F1
T we have P

1ŒCjF1
t � D

PŒC �˝2jFt� by hypothesis. So:

E
1Œ1CP2.�;A/� D EŒ1C1A� D E

�
1AP

1ŒCjF1
t �
� D E

�
P
1ŒCjF1

t �P
2.�;A/�;

which implies that P2.�;A/ is measurable with respect to the completion of F1
t , proving (i).

ut

In the following, our choices of ˝1 and ˝2 are always Polish spaces, and the
filtrations are always such that F1

T and F2
T are the respective Borel � -fields. In these

cases, Theorem 1.1 says that every probability measure P on ˝ D ˝1 �˝2 admits
a disintegration of the form (1.2). Notice that Theorem 1.1 only requires that ˝2 is
a Polish space.

1.1.2 Compatible Probabilistic Set-Up

Thanks to our preliminary discussion on compatibility, we are now in position
to provide a careful description of the probabilistic structure used to investigate
forward-backward systems of the type (1.1).

We shall work on a general probabilistic set-up, based on a complete probability
space

�
˝;F ;P

�
equipped with a complete and right-continuous filtration F, and

with a 2d-dimensional F-Wiener process .W0;W/ D .W0
t ;Wt/t�0, W0 D .W0

t /t�0
and W D .Wt/t�0 being both of dimension d. As suggested by the form of
the FBSDE (1.1), we require only two d-dimensional Wiener processes. This is
consistent with the fact that we shall apply the results of this section to the analysis
of mean field games in which a generic player is interacting (and competing) with
a continuum of players subject to a common systemic noise of dimension d. By
convention, the index 0 always refers to the common noise and we reserve the index
1, or no index at all, to the idiosyncratic noise. Indeed, in order to alleviate notation,
we shall often drop the index 1, and use the notation W rather than W1.

Throughout the section, the common random environment manifests in the form
of an input � D .�t/t�0 which is an F-progressively measurable, right continuous
with left limits process (or càd-làg process for short) with values in an auxiliary
metric space .X ; d/ which we will assume to be a Polish space (meaning that it
is complete and separable). Importantly, the pair process .W0;�/ is required to be
independent of W. As demonstrated by the analysis of mean field games without
common noise performed in Chapters (Vol I)-3 and (Vol I)-4, see for instance
Remark (Vol I)-3.7, the typical example we should keep in mind for X is P2.Rd/, the



10 1 Optimization in a Random Environment

space of probability measures on R
d with finite second moments, endowed with the

2-Wasserstein distance (see Chapter (Vol I)-5). The measure �t should be thought
of as the statistical distribution at time t of the state of a population subject to
some random forcing under the action of W0. In this respect, independence between
.W0;�/ and W accounts for the fact that the stochastic flow of random measures

� D
�
�t W ˝ 3 ! 7! �t.!/ 2 P2.Rd/

�

t�0

is not subject to W.
In the context of mean field games without a common noise, the common

noise W0 is not present, and as explained in Chapter (Vol I)-3, � D .�t/0�t�T is
deterministic. It is understood as a candidate for the flow of marginal distributions
of the state of a generic player in equilibrium. For mean field games with a common
noise, �.!0/ D .�t.!

0//0�t�T must be understood as a candidate for, still in
equilibrium, the flow of conditional marginal distributions of the state of a generic
player, given the realization W0.!0/ of the common noise. For the time being,
� D .�t/t�0 is used as a random input only. See Remark 1.11 below for the case
of deterministic input �. With d denoting the distance of X as well, we assume that
for a fixed element 0X 2 X :

EŒ sup
0�t�T

d.0X ; �t/
2� < 1; (1.3)

condition which is independent of the particular choice of the point 0X 2 X . In our
probabilistic set-up, we also include an initial condition X0 2 L2.˝;F0;PIRd/,
which will be used to model the initial condition of one typical player in the
population when we deal with mean field games. The triplet .X0;W0;�/ is assumed
to be independent of W.

In the FBSDE (1.1), X D .Xt/0�t�T , Y D .Yt/0�t�T , Z D .Zt/0�t�T and Z0 D
.Z0t /0�t�T are F-progressively measurable processes defined on .˝;F ;P/ with
values in R

d, Rm, Rm�d and R
m�d respectively. The coefficients B and F, (resp. ˙

and˙0, resp. G) are measurable mappings from Œ0;T��R
d �X �R

m �R
m�d �R

m�d

(resp. Œ0;T� � R
d � X , resp. Rd � X ) with values in R

d (resp. Rd�d, resp. Rm). To
alleviate the notation, we often identify R

m�d � R
m�d with R

2.m�d/.
Throughout the section, we assume:

Assumption (FBSDE in Random Environment). There exists a constant
C � 0 such that, for all .t; x; �; y; z; z0/ 2 Œ0;T� � R

d � X � R
m � .Rm�d/2,

ˇ
ˇ.˙;˙0/.t; x; �/

ˇ
ˇ � C

�
1C jxj C d.0X ; �/

�
;

ˇ
ˇ.F;B;G/.t; x; �; y; z; z0/

ˇ
ˇ � C

�
1C jxj2 C �

d.0X ; �/
�2 C jyj2 C jzj2 C jz0j2�:
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Once again, notice that 0X could be replaced by any other point of X . We restrict
ourselves to quite a mild type of FBSDEs for simplicity only. In particular, the
diffusion coefficients of (1.1) do not contain backward terms. Some of the results
we provide below could be generalized to a more general framework, but we refrain
from doing so because there is no real need for a higher level of generality given the
nature of the applications we have in mind.

Inspired by the preliminary discussion on compatibility, we shall require the
following assumption throughout the analysis:

Assumption (Compatibility Condition). The process .X0;W0;�;W/ is
compatible with F.

From a practical point of view, compatibility of .X0;W0;�;W/ with F means
that, given the observations of the initial condition X0, of the realizations of the
noises W0 and W and of the environment � up until time t, the observation of
other events in the � -field Ft does not supply any additional information on the
joint behavior of the three processes W0, � and W in the future after t. See
Definition 1.6.

Remark 1.11 When � is deterministic, (1.3) is irrelevant since � D .�t/0�t�T

is taken as a right-continuous with left limits function from Œ0;T� into X . The
compatibility condition is automatically satisfied since .W0;W/ is an F-Brownian
motion under P

0: All the increments of the form .W0
s � W0

t ;Ws � Wt/t�s�T are
independent of Ft.

If in addition the coefficients B and F are independent of z0 and W0 � 0 (which
fits with the above prescriptions if we accept 0 as a degenerate Brownian motion),
then the two stochastic integrals driven by W0 in (1.1) disappear. We then recover
the system (Vol I)-(3.17) and our framework is consistent with Chapters (Vol I)-3
and (Vol I)-4.

To wit, Remark 1.11 says that the compatibility condition is useless when � is
deterministic.

Remark 1.12 For the same reasons as in Remark 1.11, the compatibility condition
is always satisfied whenever � is adapted to the filtration generated by X0 and W0.

The following definition is prompted by the above discussion.

Definition 1.13 A complete probability space .˝;F ;P/ equipped with a complete
and right-continuous filtration F D .Ft/0�t�T and with a tuple .X0;W0;�;W/ is
admissible if
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1. X0 2 L2.˝;F0;PIRd/,
2. .W0;W/ is a 2d-Brownian motion with respect to F under P,
3. .X0;W0;�/ is independent of W under P,
4. .X0;W0;�;W/ and F are compatible under P.

More on the Compatibility Condition
We now collect several useful properties in the form of two lemmas.

Lemma 1.14 The process .X0;W0;�;W/ and the filtration F are compatible if X0
is an F0-measurable initial condition and the process .W0;�;W/ is compatible
with the filtration F.

Proof. The proof relies on the following observation. For any t 2 Œ0; T� and any three events

B0 2 �fX0g, Ct 2 F .W0;�;W/
t and CT 2 F .W0;�;W/

T , compatibility of .W0;�;W/ with F says
that:

P
�
B0 \ Ct \ CT

� D E

h
1CtP

�
B0jF .W0;�;W/

t

�
P
�
CT jF .W0;�;W/

t

�i

D E

h
1B0\CtP

�
CT jF .W0;�;W/

t

�i
;

from which we deduce (since F .X0;W0;�;W/
t is generated by �fX0g and F .W0;�;W/

t ) that, P
almost surely,

P

�
CT jF .X0;W0;�;W/

t

�
D P

�
CT jF .W0;�;W/

t

�
: (1.4)

Therefore, for an additional Dt 2 Ft,

P

��
B0 \ Ct

� \ CT \ DT

�

D P

�
Ct \ �

B0 \ DT
� \ CT

�

D E

h
1CtP

�
B0 \ DT jF .W0;�;W/

t

�
P
�
CT jF .W0;�;W/

t

�i

D E

h
1Ct 1B0\DTP

�
CT jF .W0;�;W/

t

�i

D E

h
1Ct 1B0\DTP

�
CT jF .X0;W0;�;W/

t

�i

D E

h
1B0\CtP

�
DT jF .X0;W0;�;W/

t

�
P
�
CT jF .X0;W0;�;W/

t

�i
;

where we used, once again, the compatibility condition in order to pass from the first to the
second line, and (1.4) to get the fourth equality. This completes the proof. ut
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Lemma 1.15 Under the conditions of Definition 1.13, the filtration F is compatible
with .X0;W0;�/ under P.

Proof. For a given t 2 Œ0; T�, we consider C0
t 2 F .X0;W0;�/

t , Dt 2 Ft and C0
T 2 F .X0;W0;�/

T .
Then, by the compatibility property in Definition 1.13,

P

�
C0

t \ Dt \ C0
T

�
D E

h
1C0t

P
�
C0

T jF .X0;W0;�;W/
t

�
P
�
Dt jF .X0;W0;�;W/

t

�i

D E

h
1C0t \Dt

P
�
C0

T jF .X0;W0;�;W/
t

�i
:

Since .X0;W0;�/ and W are independent, we have:

P
�
C0

T jF .X0;W0;�;W/
t

� D P
�
C0

T jF .X0;W0;�/
t

�
:

Therefore,

P

�
C0

t \ Dt \ C0
T

�
D E

h
1C0t

P
�
Dt jF .X0;W0;�/

t

�
P
�
C0

T jF .X0;W0;�/
t

�i
;

which completes the proof. ut

1.1.3 Kunita-Watanabe Decomposition and Definition
of a Solution

When compared with the forward-backward stochastic differential equations
encountered in Volume I, the system (1.1) exhibits two new additional features.
First, the system is driven by two noise terms instead of one. This does not make
much difference except for the fact that another stochastic integral is needed in
order to keep track of the randomness generated by the common noise W0. Second,
although it is independent of W, the random environment � may not be adapted
to the filtration F

W0
generated by W0, and in this case, the martingale term given

by a stochastic integral with respect to W0 may not suffice to account for the
randomness of the environment �. This remark is very important since as we shall
see in Chapter 2, solutions to mean field games with a common noise may not be
adapted to the filtration of the common noise, and as a consequence, may contain
additional randomness.

In order to overcome the fact that the random environment may not be adapted to
F

W0
, an extra term needs to be added to the martingale terms already appearing

in (1.1). The important thing to keep in mind is that this extra term can only
be a martingale, and we cannot assume that it can be represented as a stochastic
integral with respect to the Wiener processes providing the sources of noise. In
any case, such a decomposition is known as the Kunita-Watanabe decomposition.
It has already been used in the theory of backward SDEs. See the section Notes &
Complements at the end of the chapter for references.
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New Formulation of the Forward-Backward System
According to this decomposition, the backward component in (1.1) needs to be
rewritten, and the appropriate form of the FBSDE becomes:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D B.t;Xt; �t;Yt;Zt;Z0t /dt C˙.t;Xt; �t/dWt

C˙0.t;Xt; �t/dW0
t ;

dYt D �F.t;Xt; �t;Yt;Zt;Z0t /dt

CZtdWt C Z0t dW0
t C dMt;

(1.5)

with the same terminal condition YT D G.XT ; �T/, where M D .Mt/0�t�T is a càd-
làg F-martingale with values in R

m starting from 0, and orthogonal to W and W0 in
the sense that, for any coordinate j 2 f1; � � � ;mg,

E

�
�
MT
�

j

Z T

0

�s � dWs

	

D 0; and E

�
�
MT
�

j

Z T

0

�s � dW0
s

	

D 0; (1.6)

for any square-integrable F-progressively measurable processes � D .�t/0�t�T

with values in R
d. By stochastic integration by parts, it can be checked that the

orthogonality condition is equivalent to ŒM;W�� � 0 and ŒM;W0�� � 0, where
Œ�; �� denotes the quadratic covariation (or bracket) of two martingales. In the present
situation, this means that ŒM;W� is the unique Rm�d-valued continuous process with
bounded variation such that .Mt ˝Wt � ŒM;W�t/0�t�T is a local F-martingale where
.Mt ˝ Wt/i;j D .Mt/i.Wt/j. As any square-integrable function of W may be written
as a stochastic integral with respect to W, the orthogonality condition implies that
MT , and thus any Mt with t 2 Œ0;T�, are orthogonal to any random variable in
L2.˝; �fWsI 0 � s � Tg;P/. Obviously, the same holds with W replaced by W0.

The intuitive reason for such a decomposition is as follows. Given a general
random variable 
 2 L2.˝;F ;PIR/, we claim that 
 may be written as:


 D EŒ
jF0�C
Z T

0

�
Zt � dWt C Z0t � dW0

t

�C MT ; (1.7)

where both .Zt/0�t�T and .Z0t /0�t�T are square integrable d-dimensional F-
progressively measurable processes and MT is a one-dimensional random variable
which has the property (1.6). To prove (1.7), it suffices to notice from the Kunita-
Watanabe inequality that the brackets of .EŒ
jFt�/0�t�T with W and W0 are
absolutely continuous with respect to the Lebesgue measure dt and consequently,
may be represented as integrals with respect to the Lebesgue measure dt, the
integrands providing the processes .Zt/0�t�T and .Z0t /0�t�T . Then, defining:

MT D 
 � EŒ
jF0� �
Z T

0

�
Zt � dWt C Z0t � dW0

t

�
;

it is easy to check (1.6).



1.1 FBSDEs in a Random Environment 15

Remark 1.16 We emphasize that the martingale M D .Mt/0�t�T may not be
continuous. For that reason, Y D .Yt/0�t�T may be discontinuous as well.

If � is deterministic, B and F are independent of z0, and W0 � 0,
which is the framework investigated in Chapters (Vol I)-3 and (Vol I)-4,
then M � 0. In this case, Y D .Yt/0�t�T has continuous paths. More
generally, when � is adapted to the filtration generated by W0, M is
also equal to 0 and Y D .Yt/0�t�T has continuous sample paths as
well.

Definition of a Solution
We now have all the necessary ingredients to define the appropriate notion of
solution.

Definition 1.17 Given a probabilistic set-up .˝;F ;F;P/ and an admissible four-
tuple .X0;W0;�;W/, an F-progressively measurable process

�
Xt;Yt;Zt;Z

0
t ;Mt

�

0�t�T

with values in R
d � R

m � .Rm�d/2 � R
m is said to be a solution of the forward-

backward system (1.5) with coefficients satisfying assumption FBSDE in Random
Environment, if .Xt/0�t�T has continuous paths, .Yt;Mt/0�t�T has càd-làg paths,
.Mt/0�t�T is an F-martingale with M0 D 0 and zero bracket with .W0;W/,
.X;Y;M;Z;Z0/ satisfies:

E

h
sup
0�t�T

�jXtj2 C jYtj2 C jMtj2
�C

Z T

0

�jZtj2 C jZ0t j2�dt
i
< 1;

and (1.5) is true with P-probability 1.
We call X0 the initial condition of the equation, and we say that the forward-

backward system (1.5) is strongly solvable if a solution exists on any probabilistic
set-up as above.

We stress the fact that a priori, the notion of solution heavily depends upon the
choice of the filtration F. Indeed the martingale property of M in the definition
of a solution is somehow predicated on the structure of F. In this respect, the
compatibility condition between F and .X0;W0;�;W/ is a way to select solutions
which are somehow physically meaningful. Without the compatibility property,
solutions could anticipate the future of �. For instance, this is the case when F0
contains the � -field generated by �.

Another important remark is that, under the assumptions and notation of
Definition 1.17, we can choose a somewhat canonical version of .Zt;Z0t /0�t�T by
observing that:

.Zt;Z
0
t / D lim

n!1 n
Z t

.t�1=n/C

.Zs;Z
0
s /ds; Leb1 ˝ P a:e: ;



16 1 Optimization in a Random Environment

where Leb1 denotes the one-dimensional Lebesgue measure. In particular, the 5-
tuple .Xt;Yt; QZt; QZ0t ;Mt/0�t�T with

. QZt; QZ0t / D
(

limn!1 n
R t
.t�1=n/C

.Zs;Z0s /ds if the limit exists;

0 otherwise;
t 2 Œ0;T�;

is a progressively measurable solution with respect to the right-continuous
and complete augmentation G D .Gt/0�t�T of the filtration generated by
.W0;�;W;X;Y;

R �
0

Zsds;
R �
0

Z0s ds;M/. Indeed, it is easily checked that .W0;W/
remains a G-Brownian motion, and that M remains a G-martingale of zero
covariation with .W0;W/. Moreover, since the filtration G is included in F, it
is compatible with .X0;W0;�;W/ in the sense that, for any t 2 Œ0;T�, Gt and

F .X0;W0;�;W/
T are conditionally independent under P given F .X0;W0;�;W/

t .

1.2 Strong Versus Weak Solution of an FBSDE

1.2.1 Notions of Uniqueness

We shall not discuss general solvability results for forward-backward stochastic
differential equations of type (1.5) at this stage. When � is random, specific the-
orems of existence and uniqueness will be given later in the text when we make the
connection with optimization in a random environment, see Subsection 1.4. When
� is deterministic, we already accounted for solvability results in Chapters (Vol I)-3
and (Vol I)-4.

For the time being, we stress an important feature of the concept of uniqueness
in law for solutions of an FBSDE, whether or not it is in random environment. We
already appealed to this uniqueness result in our study of mean field games without
common noise (see for instance Remark (Vol I)-4.6) and we shall use it again in the
sequel. The main underpinning is the realization that the Yamada-Watanabe theorem
still holds for forward-backward SDEs. This fact has already been pointed out by
several authors, but as it is at the core of some of the arguments we use below, we
feel confident that a self-contained version of this result will enlighten the lengthy
derivations which follow. But first, we specify what we mean by strong uniqueness
and uniqueness in law.

1. Strong uniqueness is the standard notion of pathwise uniqueness.

Definition 1.18 Under assumption FBSDE in Random Environment, we say that
uniqueness holds for the forward-backward system (1.5) on an admissible set-up
.˝;F ;F;P/ for .X0;W0;�;W/ if, for any two F-progressively measurable five-
tuples

.X;Y;Z;Z0;M/ D .Xt;Yt;Zt;Z
0
t ;Mt/0�t�T
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and

.X0;Y0;Z0;Z00;M0/ D .X0
t ;Y

0
t ;Z

0
t ;Z

00
t ;M

0
t/0�t�T

satisfying the FBSDE (1.5) with the same initial condition X0 (up to an exceptional
event), it holds that:

E

h
sup
0�t�T

�jXt � X0
t j2 C jYt � Y 0

t j2 C jMt � Mt0 j2
�

C
Z T

0

�jZt � Z0
t j2 C jZ0t � Z00t j2�dt

i
D 0:

We say that strong uniqueness holds if uniqueness of the forward-backward
system (1.5) holds on any admissible set-up. Sometimes, we shall specialize the
definition by saying that strong uniqueness holds but only for a prescribed value of
L.X0;W0;�;W/.

Recalling from Remark 1.16 that M � M0 � 0 when � is deterministic and
W0 � 0, we see that the above definition is consistent with the notion of uniqueness
discussed in Remark (Vol I)-4.3 for standard FBSDEs when B and F do not depend
on the variable z0.

Definition 1.19 Whenever the forward-backward system (1.5) is strongly solvable
and satisfies the strong uniqueness property, we say that the system is strongly
uniquely solvable.

Example 1.20. As an important example, although for a somewhat different class
of equations, notice that, on a filtered complete probability space .˝;F ;F;P/
equipped with two independent Brownian motions W0 and W, any BSDE of the
form:

Yt D 
 C
Z T

t
F.s;Ys;Zs;Z

0
s /ds

�
Z T

t

�
ZsdWs C Z0s dW0

s

� � �
MT � Mt

�
; t 2 Œ0;T�;

where 
 2 L2.˝;FT ;PIRm/, and F W Œ0;T� �˝ � R
m � .Rm�d/2 ! R

m satisfies:

1. For any t 2 Œ0;T� and ! 2 ˝, the mapping R
m � .Rm�d/2 3 .y; z; z0/ 7!

F.t; !; y; z; z0/ is L-Lipschitz continuous, for some L � 0;
2. For any .y; z; z0/ 2 R

m � .Rm�d/2, the process Œ0;T� � ˝ 3 .t; !/ 7!
F.t; !; y; z; z0/ is F-progressively measurable and is square-integrable under
Leb1 ˝ P;
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must have a unique solution .Y;Z;Z0;M/ D .Yt;Zt;Z0t ;Mt/0�t�T which is F-
progressively measurable, .Y;M/ having càd-làg paths, M D .Mt/0�t�T being an
F-martingale with M0 D 0 and of zero cross variation with .W0;W/, and such
that:

E

h
sup
0�t�T

�jYtj2 C jMtj2
�C

Z T

0

�jZtj2 C jZ0t j2�dt
i
< 1:

Proof. Existence and uniqueness follow from a standard application of Picard’s fixed point
argument. We provide the proof for completeness.

First Step. Recalling that H2;n denotes the space of F-progressively measurable processes
with values in R

n that are square-integrable under Leb1 ˝P, we construct a mapping ˚ from
� D H

2;m �H
2;m�d �H

2;m�d into itself by mapping .Y;Z;Z0/ onto .Y0;Z0;Z00/ as given by
implementing (1.7) with 
 replaced by


 C
Z T

0

F.s; Ys; Zs; Z
0
s /ds;

which is square integrable under the standing assumption. Namely, we write:


 C
Z T

0

F.s; Ys; Zs; Z
0
s /ds D E

�


 C
Z T

0

F.s; Ys; Zs; Z
0
s /ds

ˇ
ˇF0

	

C
Z T

0

� NZtdWt C NZ00t dW0
t

�C NMT ;

where NZ and NZ0 belong to H
2;.m�d/ and . NMt/0�t�T is a square-integrable martingale with

respect to F with values in R
m, starting from 0 and of zero cross variation with .W0;W/.

Letting

NYt D E

�


 C
Z T

t
F.s; Ys; Zs; Z

0
s /ds

ˇ
ˇFt

	

;

we deduce that . NY; NZ; NZ0/ solves:

NYt C
Z t

0

F.s; Ys; Zs; Z
0
s /ds D NY0 C

Z t

0

� NZsdWs C NZ00s dWs
�C NMt;

from which we get, by writing the difference NYT � NYt:

NYt D 
 C
Z T

t
F.s; Ys; Zs; Z

0
s /ds

�
Z T

t

� NZsdWs C NZ0s dW0
s

� � � NMT � NMt
�
; t 2 Œ0; T�:

By construction, we have:

E

Z T

0

�j NZtj2 C j NZ0t j2�dt C E
�

sup
0�t�T

j NMtj2
�
< 1:
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And then, by Doob’s maximal inequality,

E
�

sup
0�t�T

j NYtj2
�
< 1:

Second Step. For two tuples .Y;Z;Z0/ and .Y0;Z0;Z00/ in H
2;m � H

2;.m�d/ � H
2;.m�d/, we

call . NY; NZ; NZ0/ and . NY0
; NZ0
; NZ00/ the respective images by ˚ , and NM and NM0

the corresponding
martingale parts following from the Kunita-Watanabe decomposition.

We then compute .j NYt � NY 0
t j2/0�t�T by integration by parts. In comparison with the

standard case when the filtration is Brownian, we must pay special attention to the fact that
the processes NY and NY0

may be discontinuous. We get:

j NYt � NY 0
t j2 D 2

Z T

t

� NYs � NY 0
s

� �
�

F.s; Ys; Zs; Z
0
s / � F.s; Y 0

s ; Z
0
s; Z

00
s /
�

ds

� 2
Z

.t;T�

� NYs� � NY 0
s�

� �
h� NZs � NZ0

s

�
dWs C � NZ0s � NZ00s

�
dW0

s C d
� NMs � NM0

s

�i

� trace


�Z �

0

� NZs � NZ0
s

�
dWs C

Z �

0

� NZ0s � NZ00s

�
dW0

s C M�

	

T

�
� Z �

0

� NZs � NZ0
s

�
dWs C

Z �

0

� NZ0s � NZ00s

�
dW0

s C M�

	

t

�

;

(1.8)
where as before, for an m-dimensional F-martingale N D .Nt/0�t�T , .ŒN��t/0�t�T denotes
the quadratic variation of N, regarded as a process with values in R

m�m.
Notice by orthogonality that the bracket terms in the last two lines satisfy:

� Z �

0

� NZs � NZ0
s

�
dWs C

Z �

0

� NZ0s � NZ00s

�
dW0

s C M�

	

t

D
Z t

0

j NZs � NZ0
sj2ds C

Z t

0

j NZ0s � NZ00s j2ds C � NM � NM0
�

t;

and similarly at time T .
Observing also that:

E

�
Z T

0

j NYs� � NY 0
s�j2d

�
trace

� NM� � NM0
�

�

s

��1=2	

� E
�

sup
0�s�T

j NYs � NY 0
s j2
�1=2

E
�
trace

�
Œ NM � NM0�T

��1=2
;

we deduce that the martingale in the second line appearing in the right-hand side of (1.8) is
the increment of a true martingale. Therefore, by taking the expectation in (1.8), we get:

E
�j NYt � NY 0

t j2
�C E

Z T

t

�j NZs � NZ0
sj2 C j NZ0s � NZ00s j2�ds

� 2LE
Z T

t
j NYs � NY 0

s j
�jYs � Y 0

s j C jZs � Z0
sj C jZ0s � Z00s j�ds:
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Then, it is completely standard to deduce that there exists a constant C such that, for t 2
Œ0; T�:

E
�j NYt � NY 0

t j2
�C E

Z T

t

�j NZs � NZ0
sj2 C j NZ0s � NZ00s j2�ds (1.9)

� CE

� Z T

t
j NYs � NY 0

s j2ds

	

C 1

2
E

Z T

t

�jYs � Y 0
s j2 C jZs � Z0

sj2 C jZ0s � Z00s j2�ds:

By multiplying by e˛t and integrating with respect to t, we obtain:

Z T

0

e˛t
E
�j NYt � NY 0

t j2
�
dt C E

Z T

0

e˛s
�j NZs � NZ0

sj2 C j NZ0s � NZ00s j2�

 Z s

0

e˛.t�s/dt

�

ds:

� C

˛

Z T

0

e˛s
E
�j NYs � NY 0

s j2
�
ds

C 1

2
E

Z T

0

e˛s
�jYs � Y 0

s j2 C jZs � Z0
sj2 C jZ0s � Z00s j2�


 Z s

0

e˛.t�s/dt

�

ds:

Now, multiplying (1.9) by " > 0 and summing with the inequality right above, we deduce
that:

Z T

0

e˛t
E
�j NYt � NY 0

t j2
�
dt C E

Z T

0

�".s/
�j NZs � NZ0

sj2 C j NZ0s � NZ00s j2�ds

� C
� 1

˛
C "

�
Z T

0

e˛s
E
�j NYs � NY 0

s j2
�
ds

C 1

2
E

Z T

0

�".s/
�jYs � Y 0

s j2 C jZs � Z0
sj2 C jZ0s � Z00s j2�ds;

with:

�".s/ D "C e˛s
Z s

0

e˛.t�s/dt D "C 1

˛

�
e˛s � 1�:

Choose ˛ � 1 large enough and " < 1=˛ < 1 small enough so that C.1=˛ C "/ < 1=4 and
deduce that:

Z T

0

e˛t
E
�j NYt � NY 0

t j2
�
dt C E

Z T

0

�".s/
�j NZs � NZ0

sj2 C j NZ0s � NZ00s j2�ds

� 2

3
E

Z T

0

�".s/
�jYs � Y 0

s j2 C jZs � Z0
sj2 C jZ0s � Z00s j2�ds

� 2

3
E

Z T

0

e˛sjYs � Y 0
s j2ds C 2

3
E

Z T

0

�".s/
�jZs � Z0

sj2 C jZ0s � Z00s j2�ds;

where we have used the fact that �".s/ � e˛s for the prescribed values of ˛ and ".
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Third Step. Equipping H
2;m � H

2;m�d � H
2;m�d with the norm

jk.Y;Z;Z0/jk D E

Z T

0

e˛sjYsj2ds C E

Z T

0

�".s/
�jZsj2 C jZ0s j2�ds;

under which it is complete, we conclude by Picard’s fixed point theorem. ut

2. Uniqueness in law concerns uniqueness of the distribution of the solution.
A nice feature of this concept of uniqueness is that it deals with solutions defined
on possibly different probability spaces. As one can easily guess, uniqueness in
law says that, whatever the probabilistic set-up, the distribution of the solution is
the same provided that the distribution of the inputs is fixed. In our framework, a
challenging question is to determine the spaces on which the distributions of the
inputs and the solutions should be considered.

The inputs consist of the initial condition X0 constructed as an R
d-valued square-

integrable F0-measurable random variable, the random shock processes W and W0,
and the environment �. Since .X0;W0;�/ is independent of W, and the law of W is
fixed (recall that it is the standard Wiener measure), specifying the law of the input
may be restricted to the distribution of .X0;W0;�/ on the space Rd �C.Œ0;T�IRd/�
D.Œ0;T�IX /. Recall that C.Œ0;T�IRd/ is the space of continuous functions from
Œ0;T� to R

d and that D.Œ0;T�IX / is the space of càd-làg functions from Œ0;T� to
X which are left-continuous at T . Here, we endow C.Œ0;T�IRd/v and D.Œ0;T�IX /
with the topology of the uniform convergence and the Skorohod topology (as given
by the so-called J1 metric) respectively, and with the corresponding Borel � -fields.
See the Notes & Complements at the end of the chapter for references. The product
space R

d � C.Œ0;T�IRd/ � D.Œ0;T�IX / is equipped with the product topology and
the product � -field.

In this context, a solution consists of a four-tuple .Xt;Yt; .Zt;Z0t /;Mt/0�t�T

defined on some probabilistic set-up as in Subsection 1.1.1. In order to make
things slightly more regular, we shall focus on .Xt;Yt;

R t
0
.Zs;Z0s /ds;Mt/0�t�T , which

can be seen as a process with trajectories in C.Œ0;T�IRd/ � D.Œ0;T�IRm/ �
C.Œ0;T�IR2.m�d// � D.Œ0;T�IRm/. The reason is the same as above. By Lebesgue
differentiation theorem, we may recover a version of .Z;Z0/ D .Zt;Z0t /0�t�T from
the equality:

.Zt;Z
0
t / D lim

n!1 n
Z t

.t�1=n/C

.Zs;Z
0
s /ds; Leb1 ˝ P a:e: :

Accordingly, the joint distribution of the input and the output is given by the
distribution of the process:

�
W0

t ; �t;Wt;Xt;Yt;

Z t

0

.Zs;Z
0
s /ds;Mt

�

0�t�T
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on

˝total D C.Œ0;T�IRd/ � D.Œ0;T�IX / � C.Œ0;T�IRd/ � C.Œ0;T�IRd/

� D.Œ0;T�IRm/ � C.Œ0;T�IR2.m�d// � D.Œ0;T�IRm/:

Observe that the initial condition is encoded in the process X.

Definition 1.21 Under assumption FBSDE in Random Environment, we say that
weak uniqueness holds for (1.5) if for any two admissible set-ups .˝;F ;F;P/ and
.˝ 0;F 0;F0;P0/ with inputs .X0;W0;�;W/ and .X0

0;W
00;�0;W0/, .X0;W0;�/ and

.X0
0;W

00;�0/ having the same law on R
d � C.Œ0;T�IRd/ � D.Œ0;T�IX /, any two

solutions on ˝ and ˝ 0 respectively:

�
W0

t ; �t;Wt;Xt;Yt;

Z t

0

.Zs;Z
0
s /ds;Mt

�

0�t�T
and

�
W00

t ; �
0
t;W

0
t ;X

0
t ;Y

0
t ;

Z t

0

.Z0
s;Z

00
s /ds;M0

t

�

0�t�T
;

have the same distribution on ˝total.

Remark 1.22 Instead of handling the processes Z and Z0 through the integralsR �
0

Zsds and
R �
0

Zsds and regarding the latter as elements of the space C.Œ0;T�IRm�d/

equipped with the uniform topology, we could directly see Z and Z0 as random
variables with values in the space of Borel functions on Œ0;T� equipped with a
suitable topology. This is exactly what we shall do in Chapter 3 when solving mean
field games with a common noise. However, at this stage of our presentation, it
suffices to work with the integrals of Z and Z0; this is much easier as the space
C.Œ0;T�IR2.m�d// is of a familiar use in the theory of stochastic processes.

1.2.2 Canonical Spaces

As it is usually done for weak solutions of SDEs, it makes sense to distinguish one
specific canonical probability space among others, and to transfer solutions from
generic set-ups to this particular canonical space. Here, what we mean by canonical
set-up is the canonical space carrying the various data, namely the inputs and the
outputs. It reads ˝canon D R

d �˝total D ˝input �˝output, with

˝input D R
d � C.Œ0;T�IRd/ � D.Œ0;T�IX / � C.Œ0;T�IRd/;

˝output D C.Œ0;T�IRd/ � D.Œ0;T�IRm/ � C.Œ0;T�IR2.m�d// � D.Œ0;T�IRm/:

On ˝input, the first coordinate carries the initial condition of the forward-backward
equation, the second one the common source of noise (that is W0), the third one
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the environment (that is �) and the last one the idiosyncratic noise (that is W).
On ˝output, the first coordinate carries the forward component of the solution, the
second one the backward component of the solution, the third one the integral of the
martingale representation term, and the last one the martingale part deriving from
the Kunita-Watanabe decomposition.

The canonical process on ˝input will be denoted by .
;w0; �;w/ while it will be
denoted by .x; y; .�; �0/;m/ on ˝output. Note that we change the notation for the
canonical process from the Greek letter � to � because we do not have fonts to
switch from upper case to lower case �. For this reason, we shall use the nearby
Greek letter � to represent the input � on the canonical space, hoping that this will
not be the source of confusion.

With a slight abuse of notation, we shall extend the two processes .
;w0; �;w/
and .x; y; .�; �0/;m/ to the entire˝canon so that the canonical process on˝canon will
be also denoted by .
;w0; �;w; x; y; .�; �0/;m/.

Following the prescription in Definition 1.13, we shall equip ˝canon with the
completion Fcanon of the Borel � -field under a probability measure Q that is required
to satisfy:

Definition 1.23 A pair .Fcanon;Q/ is a said to be admissible if there exists a
probability measure Q

B on ˝canon equipped with its Borel � -field B.˝canon/ such
that .˝canon;Fcanon;Q/ is the completion of .˝canon;B.˝canon/;Q

B/ and satisfies:

1. under Q, .
;w0; �/ and w are independent;
2. under Q, the process .w0;w/ is a 2d-dimensional Brownian motion with respect

to the filtration G D .Gt/0�t�T , defined as the complete and right-continuous
augmentation under Q of the canonical filtration G

nat D .Gnat
t /0�t�T on ˝canon;

3. the process .
;w0; �;w/ and the filtration G are compatible under Q.

Remark 1.24 When the input � is deterministic, the coefficients are independent
of z0 and W0 is not present, ˝input may be taken to be Rd � C.Œ0;T�IRd/ and˝output

as C.Œ0;T�IRd/ � C.Œ0;T�IRm/ � C.Œ0;T�IRm�d/. In particular, Definition 1.23 of
an admissible probability becomes somewhat irrelevant.

Remark 1.25 Sometimes, we merely say that Q is admissible instead of .Fcanon;Q/.
The � -field Fcanon is then automatically understood as the completion of the
Borel � -field B.˝canon/ under Q

B. Observe in particular that Q is in one-to-one
correspondence with Q

B.

We shall use the fact that conditions 1, 2, and 3 in Definition 1.23 can be
formulated under QB.

Proposition 1.26 .Fcanon;Q/ is admissible if and only if there exists a probability
measure Q

B on .˝canon;B.˝canon// such that .˝canon;Fcanon;Q/ is the completion
of .˝canon;B.˝canon/;Q

B/ and
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1. under QB, .
;w0; �/ and w are independent;
2. under QB, the process .w0;w/ is a 2d-Brownian motion with respect to the right-

continuous augmentation G
nat�C D .Gnat

tC D \s2.t;T�Gnat
s /0�t�T of Gnat;

3. for each t 2 Œ0;T�, the � -fields Gnat
tC and Fnat;.
;w0;�;w/

T are conditionally

independent for QB given the � -field Fnat;.
;w0;�;w/
tC .

Proof. The equivalence regarding the first two conditions is easily established. As for
the compatibility conditions, the result follows from the following two facts. a) for any

D 2 F .
;w0;�;w/
t (respectively F .
;w0;�;w/

T ), there exists E 2 Fnat;.
;w0;�;w/
tC (respectively E 2

Fnat;.
;w0;�;w/
T ) such that the symmetric difference DE has zero measure under Q. b) for any

D 2 B.˝canon/, Q.DjF .
;w0;�;w/
t / and Q

B.DjFnat;.
;w0;�;w/
tC / are Q almost surely equal. ut

Transfer of Solutions to the Canonical Space
Fortunately, any solution of (1.5) may be transferred to the canonical space.

Lemma 1.27 If .Xt;Yt;Zt;Z0t ;Mt/0�t�T is a solution of the FBSDE (1.5) on some
probabilistic set-up .˝;F ;F;P/ equipped with .X0;W0

t ; �t;Wt/0�t�T and if we
define .˝canon;Fcanon;Q) as the completion induced by the distribution of

�
X0;W

0
t ; �t;Wt;Xt;Yt;

Z t

0

.Zs;Z
0
s /ds;Mt

�

0�t�T

on ˝canon equipped with its Borel � -field, and if we define .zt; z0t /.!/ by:

.zt; z
0
t /.!/ D

(
lim

n!1 n
�
.	; 	0/t.!/ � .	; 	0/.t�1=n/C.!/

�
if the limit exists;

0 otherwise;

for any t 2 Œ0;T� and ! 2 ˝canon, then the pair .Fcanon;Q/ is admissible and the
process .xt; yt; zt; z0t ;mt/0�t�T is, under Q, a solution of the FBSDE (1.5) on ˝canon

for the complete and right-continuous augmentation G of the canonical filtration.

Proof.

First Step. We first check that .Fcanon;Q/ is admissible. Recall that G D .Gt/0�t�T denotes
the complete and right-continuous augmentation under Q of the canonical filtration on
˝canon. Using the fact that .Mt/0�t�T is an F-martingale on .˝;F ;F;P/, it is plain to check
that .mt/0�t�T is a G-square-integrable martingale under Q. Indeed, for any integer n � 1

and any bounded and measurable function  from .Rd �R
d �X �R

d �R
d �R

m �R
2.m�d/�

R
m/n into R and for all 0 � t < s � T and 0 � t0 < t1 < � � � < tn � t, it holds:

E
�
 .�t1 ; � � � ; �tn/Ms

� D E
Q
�
 .�t1 ; � � � ; �tn/ms

�
;

E
�
 .�t1 ; � � � ; �tn/Mt

� D E
Q
�
 .�t1 ; � � � ; �tn/mt

�
;

(1.10)
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where we have let:

�t D
�

X0;W
0
t ; �t;Wt;Xt; Yt;

Z t

0

.Zs; Z
0
s /ds;Mt

�
;

�t D
�

;w0t ; �t;wt; xt; yt;

Z t

0

.zs; z
0
s /ds;mt

�
;

for t 2 Œ0; T�. Since the two left-hand sides in (1.10) are equal, we deduce that the right-hand
sides are also equal, from which we deduce that m D .mt/0�t�T is a martingale with respect
to the canonical filtration. By right-continuity, we deduce that m is also a martingale with
respect to G.

It is also clear that, under Q, .w0t /0�t�T and .wt/0�t�T are independent d-dimensional
Wiener processes with respect to G. Moreover, .
;w0t ; �t/0�t�T is independent of .wt/0�t�T

so that the four-tuple .
;w0t ; �t;wt/0�t�T together with the filtration G satisfy the first two
prescriptions in Definition 1.23.

In order to prove the compatibility condition, we shall check (H2) in Proposition 1.3.
In order to do so, we use an argument inspired by the proof of Lemma 1.7. We denote by
G

nat D .Gnat
t /0�t�T (respectively G

nat;input D .Gnat;input
t /0�t�T ) the canonical filtration on

˝canon (respectively ˝input). We do not require that it is augmented nor right continuous. For
any t 2 Œ0; T/, any " > 0 such that t C " � T , and any Gnat

t measurable function  t from
˝canon into R, we can find two bounded functions �tC" and �T from ˝input into R, that are
respectively Gnat

tC"
and Gnat

T measurable, such that, Q almost surely:

E
Q
�
 t
�

;w0; �;w; x; y; .�; �0/;m

�jGnat;input
tC"

� D �tC"

�

;w0; �;w

�
;

E
Q
�
 t
�

;w0; �;w; x; y; .�; �0/;m

�jGnat;input
T

� D �T
�

;w0; �;w

�
:

Observe that the left-hand side in the first line converges almost surely as " tends to 0 towards
the conditional expectation with respect to Gnat;input

tC D \">0Gnat;input
tC"

. Therefore, the right-
hand side converges almost surely as well. Going back to the original space˝, we also have:

E

�

 t

�
X0;W0;�;W;X;Y;

Z �

0

.Zs; Z
0
s /ds;M

�ˇ
ˇF .X0;W0;�;W/

t

	

D lim
"!0

�tC"

�
X0;W0;�;W

�
;

E

�

 t

�
X0;W0;�;W;X;Y;

Z �

0

.Zs; Z
0
s /ds;M

�ˇ
ˇF .X0;W0;�;W/

T

	

D �T
�
X0;W0;�;W

�
:

By compatibility of the original probabilistic set-up, we have:

P

h
lim
"!0

�tC"

�
X0;W0;�;W

� D �T
�
X0;W0;�;W

�i D 1;

which gives on the canonical space:

Q

h
lim
"!0

�tC"

�

;w0; �;w

� D �T
�

;w0; �;w

�i D 1:

Therefore, with probability 1 under Q:

E
Q
�
 t
�

;w0; �;w; x; y; .�; �0/;m

�jGnat;input
tC"

�

D E
Q
�
 t
�

;w0; �;w; x; y; .�; �0/;m

�jGnat;input
T

�
:
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Let us now consider an event D 2 Gt. We know that 1D is almost surely equal to a random
variable of the form  tCı.
;w0; �;w; x; y; .�; �0/;m/, with ı as small as we want. Therefore,
the above identity, with t replaced by t C ı, says that:

Q
�
DjGnat;input

.tCı/C

� D Q
�
DjGnat;input

T

�
:

Letting ı tend to 0, we complete the first step of the proof by noticing that Q.DjGnat;input
tC / is

almost surely equal to Q.DjG input
t /, and similarly for Q.DjGnat;input

T /.

Second Step. We now prove that the FBSDE (1.5) is satisfied on ˝canon. By Cauchy-
Schwarz’s inequality, P almost surely we have:

Z

O

�jZtj C jZ0t j�dt � jOj1=2

Z T

0

�jZtj2 C jZ0t j2�dt

�1=2

;

for every Borel subset O � Œ0; T�. Using the fact that:

lim
"&0

P

� Z T

0

�jZtj2 C jZ0t j2�dt � "�2

	

D 1;

the following limit:

lim
"&0

P

�

8n � 1; 80 D t0 < � � � < tn D T;

nX

iD1

ˇ
ˇ
ˇ

Z ti

ti�1

.Zs; Z
0
s /ds

ˇ
ˇ
ˇ � "�1

� nX

iD1

.ti � ti�1/
�1=2

	

is equal to 1, and by definition of the distribution Q, the limit:

lim
"&0

Q

�

8n � 1; 80 D t0 < � � � < tn D T;

nX

iD1

ˇ
ˇ.	; 	0/ti � .	; 	0/ti�1

ˇ
ˇ � "�1

� nX

iD1

.ti � ti�1/
�1=2

	

is also equal to 1. We deduce that Q-almost surely, the path of ..	t; 	
0
t / D .	; 	0/t/0�t�T

is absolutely continuous with respect to the Lebesgue measure, proving that the set of pairs
.t; !/ such that the limit limn!1 n..	; 	0/t � .	; 	0/.t�1=n/C/ does not exist has zero Leb1 ˝
Q-measure. Moreover, for almost every realization under Q, we have:

.	; 	0/t D .	t; 	
0
t / D

Z t

0

.zs; z
0
s /ds; t 2 Œ0; T�;

with .zt; z0t /0�t�T as in the statement.
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Notice also that .zt; z0t /0�t�T is G-progressively measurable. It satisfies:

E
Q

Z T

0

�jztj2 C jz0t j2�dt � lim inf
n!1

E
Q

Z T

0

ˇ
ˇn
�
.	; 	0/t � .	; 	0/.t�1=n/C

�ˇ
ˇ2dt

D lim inf
n!1

n2E
Z T

0

ˇ
ˇ
ˇ
ˇ

Z t

.t�1=n/C
.Zs; Z

0
s /ds

ˇ
ˇ
ˇ
ˇ

2

dt

� lim inf
n!1

nE
Z T

0

Z t

.t�1=n/C

�jZsj2 C jZ0s j2�dsdt

� E

Z T

0

�jZsj2 C jZ0s j2�ds < 1;

the last claim following from Fubini’s theorem.

Third Step. We now approximate the drift coefficient B. We construct a sequence .B`/`�1

of bounded measurable functions on � D Œ0; T� � R
d � X � R

m � .Rm�d/2, each B` being
continuous in .x; y; z; z0/ 2 R

d � R
m � .Rm�d/2 when .s; �/ 2 Œ0; T� � X is kept fixed, and

such that:

lim
`!1

E

Z T

0

ˇ
ˇ.B � B`/

�
s;Xs; �s; Ys; Zs; Z

0
s

�ˇ
ˇds D 0: (1.11)

In order to do so, we let� be the image on� (equipped with its Borel � -field) of the product
measure Leb1 ˝ P by the mapping

Œ0; T� �˝ 3 .s; !/ 7! �
s;Xs.!/; �s.!/; Ys.!/; Zs.!/; Z

0
s .!/

� 2 �;

and we approximate B in L1.�;�IR/ by a sequence of finite linear combinations of indicator
functions of the form .s; x; �; y; z; z0/ 7! 1D.s; �/1E.x; y; z; z0/, with D 2 B.Œ0; T� � X / and
E 2 B.Rd � R

m � .Rm�d/2/, see [57, Theorems 11.4 and 19.2]. In this way:

lim
`!1

Z

�

ˇ
ˇ
ˇB.s; x; �; y; z; z0/ �

X̀

iD1

˛`i 1D`i
.s; �/1E`i

.x; y; z; z0/
ˇ
ˇ
ˇd�.s; x; �; y; z; z0/ D 0;

where, for any ` � 1 and any i 2 f1; � � � ; `g, ˛`i 2 R, D`
i 2 B.Œ0; T� � X / and E`i 2

B.Rd � R
m � .Rm�d/2/. Then, denoting by � the image on R

d � R
m � .Rm�d/2 of � by the

mapping � 3 .s; x; �; y; z; z0/ 7! .x; y; z; z0/, we replace for each ` � 1 and i 2 f1; � � � ; `g,
the indicator function 1E`i

by a bounded continuous function f `i such that:

Z

Rd�Rm�.Rm�d/2

ˇ
ˇ1E`i

.x; y; z; z0/ � f `i .x; y; z; z
0/
ˇ
ˇd�.x; y; z; z0/

is as small as desired. This gives the desired approximation B`.

Fourth Step. Now, for a bounded nondecreasing smooth function # W RC ! R satisfying
#.x/ D x whenever x 2 Œ0; 1�, it is plain to check that, for any integers ` � 1 and p > n,



28 1 Optimization in a Random Environment

E

�

#




sup
0�t�T

ˇ
ˇ
ˇ
ˇXt �

Z t

0

B`




s;Xs; �s; Ys; n
Z s

.s�1=n/C

.Zr; Z
0
r /dr

�

ds

�
Z t

0




n
Z bpsc=p

.bpsc=p�1=n/C

˙
�
r;Xr; �r

�
dr

�

dWs

�
Z t

0




n
Z bpsc=p

.bpsc=p�1=n/C

˙0
�
r;Xr; �r

�
dr

�

dW0
s

ˇ
ˇ
ˇ
ˇ

�	

D E
Q

�

#




sup
0�t�T

ˇ
ˇ
ˇ
ˇxt �

Z t

0

B`
�

s; xs; �s; ys; n
�
.	; 	0/s � .	; 	0/.s�1=n/C

��
ds

�
Z t

0




n
Z bpsc=p

.bpsc=p�1=n/C

˙
�
r; xr; �r

�
dr

�

dws

�
Z t

0




n
Z bpsc=p

.bpsc=p�1=n/C

˙0
�
r; xr; �r

�
dr

�

dw0s

ˇ
ˇ
ˇ
ˇ

�	

;

(1.12)

where we used the fact that, in that case, the stochastic integrals reduce to finite Riemann
sums.

Our goal is now to let p tend first to 1, then n ! 1 and finally ` ! 1. Recall that,
for a square-integrable F-progressively measurable real-valued process � D .�t/0�t�T on
.˝;F ;P/,

lim
n!1

E

Z T

0

ˇ
ˇ
ˇ
ˇ�s � n

Z s

.s�1=n/C

�rdr

ˇ
ˇ
ˇ
ˇ

2

ds D 0;

which follows from the fact that:

E

Z T

0

ˇ
ˇ
ˇ
ˇ�s � n

Z s

.s�1=n/C

�rdr

ˇ
ˇ
ˇ
ˇ

2

ds

D E

Z T

0

j�sj2ds C E

Z T

0

ˇ
ˇ
ˇ
ˇn
Z s

.s�1=n/C

�rdr

ˇ
ˇ
ˇ
ˇ

2

ds � 2E
Z T

0

�s




n
Z s

.s�1=n/C

�rdr

�

ds

� 2E

Z T

0

j�sj2ds � 2E
Z T

0

�s




n
Z s

.s�1=n/C

�rdr

�

ds;

and a standard uniform integrability argument. We deduce that:

lim
n!1

lim
p!1

E

� Z T

0

ˇ
ˇ
ˇ
ˇ˙
�
s;Xs; �s

� �



n
Z bpsc=p

.bpsc=p�1=n/C

˙
�
r;Xr; �r

�
dr

�ˇ
ˇ
ˇ
ˇ

2

ds

	

D 0;

lim
n!1

lim
p!1

E

� Z T

0

ˇ
ˇ
ˇ
ˇ˙

0
�
s;Xs; �s

� �



n
Z bpsc=p

.bpsc=p�1=n/C

˙0
�
r;Xr; �r

�
dr

�ˇ
ˇ
ˇ
ˇ

2

ds

	

D 0:
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Similarly,

lim
n!1

lim
p!1

E
Q

� Z T

0

ˇ
ˇ
ˇ
ˇ˙
�
s; xs; �s

� �



n
Z bpsc=p

.bpsc=p�1=n/C

˙
�
r; xr; �r

�
dr

�ˇ
ˇ
ˇ
ˇ

2

ds

	

D 0;

lim
n!1

lim
p!1

E
Q

� Z T

0

ˇ
ˇ
ˇ
ˇ˙

0
�
s; xs; �s

� �



n
Z bpsc=p

.bpsc=p�1=n/C

˙0
�
r; xr; �r

�
dr

�ˇ
ˇ
ˇ
ˇ

2

ds

	

D 0:

Therefore, when we let p tend first to 1, then n to 1 and finally ` to 1, the left-
hand side of (1.12) tends to 0. Here we use (1.11) together with the fact that each B` is
bounded and continuous in .x; y; z; z0/; also we use the fact that X satisfies the forward
SDE in (1.5). This shows that the right-hand side must also tend to 0. Therefore, provided
that the process .xs; �s; ys; zs; z0s /0�s�T satisfies the analogue of (1.11), .xt; yt; zt; z0t /0�t�T

satisfies the forward equation in (1.5). In order to prove that .xs; �s; ys; zs; z0s /0�s�T satisfies
the analogue of (1.11), it suffices to prove that, for almost every s 2 Œ0; T�, .xs; �s; ys; zs; z0s /
and .Xs; �s; Ys; Zs; Z0s / have the same distribution, which is easily checked by noticing that,
for any bounded function  from R

d � X � R
m � R

2.m�d/ into R which is continuous in the
last argument and for any n � 1, it holds:

8t 2 Œ0; T�; E

Z t

0

 
�

Xs; �s; Ys; n
Z s

.s�1=n/C

.Zr; Z
0
r /dr

�
ds

D E
Q

Z t

0

 
�

xs; �s; ys; n
�
.	; 	0/s � .	; 	0/.s�1=n/C

��
ds;

and then by letting n tend to 1.

Last Step. We use the same argument for the backward equation. For a sequence .F`/`�1 of
bounded measurable functions on � , each F` being continuous in .x; y; z; z0/ when .s; �/ is
kept fixed, such that:

lim
`!1

E

Z T

0

ˇ
ˇ.F � F`/

�
s;Xs; �s; Ys; Zs; Z

0
s

�ˇ
ˇds D 0;

we have for any ` � 1 and p > n:

E

�

#




sup
0�t�T

ˇ
ˇ
ˇ
ˇYt � G.XT ; �T/

�
Z T

t
F`




s;Xs; �s; Ys; n
Z s

.s�1=n/C

.Zr; Z
0
r /dr

�

ds

�
Z T

t


�
n
Z bpsc=p

.bpsc=p�1=n/C

Zrdr
�

dWs C
�

n
Z bpsc=p

.bpsc=p�1=n/C

Z0r dr
�

dW0
s

� .MT � Mt/

ˇ
ˇ
ˇ
ˇ

� 	
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D E
Q

�

#




sup
0�t�T

ˇ
ˇ
ˇ
ˇyt � G.xT ; �T/

�
Z T

t
F`




s; xs; �s; ys; n
�
.	; 	0/s � .	; 	0/.s�1=n/C

�
�

ds

�
Z T

t

�
n
�
	bpsc=p � 	.bpsc=p�1=n/C

�
dws C n

�
	0

bpsc=p � 	0.bpsc=p�1=n/C

�
dw0s

�

� .mT � mt/

ˇ
ˇ
ˇ
ˇ

� 	

:

Again, when we let p tend first to 1, then n to 1 and finally ` to 1, the left-hand side tends
to 0 since .Xt; Yt; Zt; Z0t ;Mt/0�t�T solves the backward equation in (1.5). This proves that
the right-hand side also tends to 0. Proceeding as for the forward equation, we deduce that
.xt; yt; zt; z0t ;mt/0�t�T satisfies the backward equation in (1.5). ut

1.2.3 Yamada-Watanabe Theorem for FBSDEs

We now address the question of weak uniqueness, the main objective being to
introduce and prove an appropriate version for FBSDEs of the classical Yamada-
Watanabe theorem.

Measurability of the Law of the Output with Respect to the Law of the
Input
We first prove a technical result which asserts that the distribution of the solution
is a measurable function of the distribution of the input whenever weak uniqueness
holds. As a preliminary, we introduce a version of Definition 1.23 with main focus
on the distribution of the input.

Definition 1.28 A pair .Finput;Qinput/ is a said to be an admissible input if there
exists a probability measure QB

input on˝input equipped with its Borel � -field B.˝input/

such that .˝input;Finput;Qinput/ is the completion of .˝input;B.˝input/;Q
B
input/ and

1. under Qinput, .
;w0; �/ and w are independent,
2. the process .w0;w/ is a 2d-dimensional Brownian motion with respect to G

input D
.G input

t /0�t�T , where G
input D .G input

t /0�t�T is the complete and right-continuous
augmentation under Qinput of the canonical filtration G

nat;input on ˝input.

Notice that, in contrast with Definition 1.23, there is no need to require compatibility
since the process .
;w0; �;w/ and the filtration G

input are necessarily compatible.

Remark 1.29 Following Remark 1.25, we shall sometimes say that Qinput (instead
of .Finput;Qinput/) is an admissible input. The � -field Finput is then automatically
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understood as the completion of the Borel � -field under Qinput. Also, note that Qinput

is in one-to-one correspondence with Q
B
input.

The proof of the following result is identical to the proof of Proposition 1.26.

Proposition 1.30 A pair .Finput;Qinput/ is an admissible input if and only
if there exists a probability measure Q

B
input on .˝input;B.˝input// such that

.˝input;Finput;Qinput/ is the completion of .˝input;B.˝input/;Q
B
input/ and

1. under QB, .
;w0; �/ and w are independent,
2. under QB, the process .w0;w/ is a 2d-dimensional Brownian motion with respect

to the right-continuous augmentation G
nat;input
�C of Gnat;input.

We will use the following result:

Proposition 1.31 Denote by P � P2.˝input/ the subset of P2.˝input/ of the proba-
bility measures on .˝input;B.˝input// whose completions are admissible inputs, and
assume that for any admissible input .Finput;Qinput/, there exists a unique admissible
pair .Fcanon;Q/ such that:

1. The image of QB by the canonical projection mapping˝canon ! ˝input coincides
with Q

B
input on the Borel � -field of B.˝input/;

2. Under Q, the process .xt; yt; zt;mt/0�t�T is a solution of the FBSDE (1.5) on
˝canon for the complete and right-continuous augmentation G of the canonical
filtration.

Then, the mapping:

P 3 Q
B
input 7! Q

B 2 P2
�
˝canon

�

is measurable when the spaces are equipped with their respective Borel � -fields.

Recall that QB
input and Q

B are probability measures on the Borel � -fields of ˝input

and˝canon respectively, whose completions are Qinput and Q. The proof uses the so-
called Souslin-Kuratowski theorem whose statement we give below for the sake
of completeness. See the Notes & Complements at the end of the chapter for
references.

Proposition 1.32 Let X and Y be two Polish spaces, S a Borel subset of X , and `
a one-to-one Borel mapping from S to Y . Then `�1 is Borel.

Proof of Proposition 1.31. As before, we denote by G
nat D .Gnat

t /0�t�T the canonical
filtration on ˝canon and by G

nat
�C

its right-continuous augmentation. We consider the subset
S0 � P2.˝canon/ formed by the probability measures QB on .˝canon;B.˝canon// satisfying
the three items in the statement of Proposition 1.26 and under which the process m is a
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square-integrable martingale with respect to G
nat
�C

, of zero-cross covariation with .w0;w/, and
starting from m0 D 0 at time 0. Denoting by Q the completion of QB, we observe that m has
these properties if and only if under Q, m is a square-integrable martingale with respect to G

(the completion of Gnat
�C

), of zero-cross covariation with .w0;w/, and starting from m0 D 0 at
time 0.

First Step. First, we claim that S0 is a Borel subset of P2.˝canon/ equipped with the Borel
� -field associated with the Wasserstein distance.

The set S0 is characterized by four conditions. The first three correspond to the three items
in the statement of Proposition 1.26. The last one follows from the constraint that m has to be
a martingale with respect to G

nat
�C

, starting from 0 and of zero-cross covariation with respect
to .w;w0/. We shall check that each of them defines a measurable subset of P2.˝canon/.

We start with the first two items in Proposition 1.26. We claim that the set of probability
measures Q

B on .˝canon;B.˝canon// under which .
;w0; �/ and w are independent and
.w0;w/ is a G

nat
�C

-Brownian motion of dimension 2d is a closed subset of P2.˝canon/. The
reason is that according to Theorem (Vol I)-5.5, convergence in the Wasserstein space is
equivalent to convergence in law plus uniform square integrability. Clearly, the first two items
in Proposition 1.26 are stable under convergence in law, and thus under convergence in the
Wasserstein space as well. This shows the required closure property.

We proceed in a similar way with the fourth condition, namely the martingale property of
m. To do so, we invoke two well-known properties of the J1 Skorohod topology:

1. From [57, Chapter 3, Section 12, Theorem 12.5], the functional which maps a path from
D.Œ0; T�IX / onto its initial condition at time 0, or its terminal condition at time T , is
continuous for the J1 topology. This shows that the condition m0 D 0 is stable under
convergence in the Wasserstein space.

2. From [15, Chapter 1, Proposition 5.1], the martingale property is stable under conver-
gence in law with respect to J1 provided uniform integrability holds, which proves that the
martingale property of m is stable under convergence in the Wasserstein space. Similarly,
the orthogonality property between m and .w0;w/ is preserved.

It is somehow more difficult to prove that the compatibility condition in the third item of
Proposition 1.26 defines a Borel subset of P2.˝canon/. The crucial fact which we use is the
following:

3. For any t 2 Œ0; T�, the � -field Gnat
t is generated by a countable field Ccanon

t that may be
chosen independently of Q in such a way that rational linear combinations of indicator
functions of events in Ccanon

t are dense in L2.˝canon;Gnat
t ;QB/. We denote by Ecanon

t
the countable collection of such linear combinations. See for example [57, Theorem
19.2]. Similarly with a slight abuse of notation, we can regard Gnat;input

t as a sub-� -
field of the Borel � -field on ˝canon (and not ˝input), and check that it is generated

by a countable field Cinput
t that may be chosen independently of Q in such a way

that rational linear combinations of indicator functions of events in Cinput
t are dense in

L2.˝canon;Gnat;input
t ;QB/. We denote by E input

t the countable collection of such linear
combinations.

We claim that compatibility reads as follows: QB satisfies item 3 in Proposition 1.26
if and only if, for any t in a countable dense subset of Œ0; T/, any rational " 2 .0; 1�, any
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D 2 Ccanon
t , there exist a rational ı > 0 with t C ı � T , together with a Œ0; 1�-valued function

 ";ı in E input
tCı

, such that, for all Œ0; 1�-valued functions  in E input
T , we have:

Z

˝canon

ˇ
ˇ1D �  ";ı

ˇ
ˇ2dQB �

Z

˝canon

ˇ
ˇ1D �  ˇˇ2dQB C ": (1.13)

If this is the case, for prescribed values of t, ", ı, D,  ";ı ,  , the condition above defines
a Borel subset of P2.˝canon/. This follows from Proposition (Vol I)-5.7. By intersection and
union over countable sets of indices, we deduce that the compatibility condition defines a
Borel subset of P2.˝canon/, provided that the way we characterized compatibility is indeed
correct.

In order to check that the characterization is correct, we first fix t 2 Œ0; T/ and D 2 Ccanon
t .

We claim that the following two assertions are equivalent:

(i.) for any rational " 2 .0; 1�, there exist a rational ı > 0, with t C ı � T , together with a
Œ0; 1�-valued function  ";ı in E input

tCı
such that, for all Œ0; 1�-valued functions  in E input

T ,
(1.13) holds;

(ii.) Q
B almost surely, we have:

Q
B�DjGnat;input

tC

� D Q
B�DjGnat;input

T

�
: (1.14)

The proof of the equivalence is as follows. If (1.14) holds, then,

lim
ı!0

E
QBhˇˇQB�DjGnat;input

tCı

� � Q
B�DjGnat;input

T

�ˇ
ˇ2
i

D 0:

Therefore, for ı small enough, the left-hand side is less than ". Now, we can approximate
Q

B.DjGnat;input
tCı

/ by an element  ";ı in E input
tCı

up to " in L2-norm. Up to a multiplicative
constant in front of ", we get (1.13) by using the characterization of the conditional
expectation as an orthogonal projection in L2. Conversely, if (i.) holds, then for any ", we
can find ı small enough such that:

E
QBhˇˇQB�DjGnat;input

T

� �  ";ı
ˇ
ˇ2
i

� ";

E
QBhˇˇQB�DjGnat;input

tCı

� �  ";ı
ˇ
ˇ2
i

� ";

from which we get (1.14).
Now that (i.) and (ii.) are known to be equivalent, the necessary part of our characteriza-

tion of compatibility through (1.13) follows from (H2) in Proposition 1.3. In order to prove
that the sufficient part is also true, we use the fact that in our construction of Ccanon

t , we can
assume that, using again [57, Theorems 11.4 and 19.2], for any " > 0, D 2 Gnat

t , there exist
D" 2 Ccanon

t such that:

E
QB �j1D � 1D" j2

� � ":

Now, by a standard approximation argument and our characterization, (1.14) holds for any
D 2 Gnat

t . This is true for any t in a dense countable subset of Œ0; T/. Actually, it is obviously
true for t D T as well. By right-continuity of the filtration G, this is true for any t 2 Œ0; T�. In
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order to complete the proof, we have to replace the condition D 2 Gnat
t by D 2 Gnat

tC. This can
be done by following the argument of the first step of the proof of Lemma 1.7.

Second Step. Consider now the set S � S0 of the probability measures QB 2 S0 such that,
under the completion Q of QB, the canonical process .
;w0; �;w; x; y; .�; �0/;m/ satisfies
the FBSDE (1.5) on the canonical space ˝canon equipped with the complete and right-
continuous filtration G.

We use the approximating sequence .B`/`�1 and the bounded and nondecreasing smooth
function # W R ! R satisfying #.x/ D x for any x 2 Œ0; 1� which we introduced in the proof
of Lemma 1.27. For any integers `; n; p � 1, with p > n, and any Q

B 2 P2.˝canon/, we
write:

�`
n;p

�
Q

B� D E
QB
�

#




sup
0�t�T

ˇ
ˇ
ˇ
ˇxt �

Z t

0

B`
�

s; xs; �s; ys; n
�
.	; 	0/s � .	; 	0/.s�1=n/C

��
ds

�
Z t

0




n
Z bpsc=p

.bpscp�1=n/C

˙
�
r; xr; �r

�
dr

�

dws

�
Z t

0




n
Z bpsc=p

.bpsc=p�1=n/C

˙0
�
r; xr; �r

�
dr

�

dw0s

ˇ
ˇ
ˇ
ˇ

�	

;

which makes sense even if QB 62 S0, since the above stochastic integrals can be interpreted as
finite Riemann sums. It is clear that, for any `; n; p � 1, with p > n, there exists a measurable
and bounded mapping �`

n;p W ˝canon ! R, such that:

�`
n;p.Q

B/ D
Z

˝canon

�`
n;pdQB:

Thanks to Proposition (Vol I)-5.7, this proves that �`
n;p is a measurable mapping from

P2.˝canon/ into R.
Proceeding in the same way with the backward equation, we may assume without any

loss of generality that QB 2 S if and only if QB 2 S0 and:

lim sup
`!1

lim sup
n!1

lim sup
p!1

�`
n;p.Q

B/ D 0;

from which we deduce that S is a Borel subset of P2.˝canon/.
We finally notice that the mapping S 3 Q

B 7! Q
B ı .
;w0; �;w/�1 2 P2.˝input/ is

measurable as it is the restriction of a continuous function defined on the whole P2.˝canon/.
By weak uniqueness, it is obviously one-to-one. We complete the proof using the Souslin-
Kuratowski theorem recalled as Proposition 1.32. ut

Main Statement
We now state and prove the main result of this section.

Theorem 1.33 Assume that, on an admissible probabilistic set-up .˝;F ;F;P/
with input .X0;W0

t ; �t;Wt/0�t�T , the FBSDE (1.5) has a solution which we denote
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by .Xt;Yt;
R t
0
.Zs;Z0s /ds;Mt/0�t�T , and that strong uniqueness holds for a given

choice of the joint distribution L.X0;W0;�/ of .X0;W0;�/ on R
d � C.Œ0;T�IRd/�

D.Œ0;T�IX /.
Then, the law of .X0;W0

t ; �t;Wt;Xt;Yt;
R t
0
.Zs;Z0s /ds;Mt/0�t�T on the space

˝canon only depends upon L.X0;W0;�/. Moreover, there exists a measurable
function ˚ from ˝input into ˝output, only depending on the joint distribution of
.X0;W0;�/, such that, P almost surely,




Xt;Yt;

Z t

0

.Zs;Z
0
s /ds;Mt

�

0�t�T

D ˚
�
X0;W0;�;W

�
:

Furthermore, if .˝ 0;F 0;F0;P0/ is another (possibly different) admissible set-up with
input .X0

0;W
00
t ; �

0
t;W

0
t /0�t�T such that L.X0

0;W
00;�0/ D L.X0;W0;�/, the process

.X0
t ;Y

0
t ;Z

0
t ;Z

00
t ;M

0
t/0�t�T defined by:

�
X0

t ;Y
0
t ; .Z 0;Z00/t;M0

t

�

0�t�T
D ˚

�
X0
0;W

00;�0;W0�;

and

�
Z0

t ;Z
00
t

�
.!0/

D
(

lim
n!1 n

�
.Z 0;Z00/t.!0/ � .Z 0;Z00/.t�1=n/C.!

0/
�

if the limit exists;

0 otherwise;

for .t; !0/ 2 Œ0;T� �˝ 0, is also a solution of (1.5).

Remark 1.34 Importantly, in the proof below, the functional ˚ is shown to be
progressively measurable. Namely, writing ˚ in the form ˚ D .˚t D et ı ˚/0�t�T ,
where et is the evaluation mapping .x; y; �; �0;m/ 7! .xt; yt; 	t; 	

0
t ;mt/, the process

.˚t/0�t�T is progressively measurable with respect to the complete and right-
continuous augmentation of the canonical filtration.

In particular, Theorem 1.33 says that whenever the forward-backward system
(1.5) satisfies the strong uniqueness property, any solution constructed on some
admissible set-up .˝;F ;F;P/ with input .X0;W0;�;W/ and with X0 as initial
condition is F.X0;W

0;�;W/-progressively measurable.

Remark 1.35 When the coefficients do not depend on the variable z0, W0 � 0

and � is deterministic, .Mt/0�t�T may be ignored and the law of the process
.X0;Wt;Xt;Yt;

R t
0

Zsds/0�t�T on R
d � C.Œ0;T�IRd/� C.Œ0;T�IRd/� C.Œ0;T�IRm/�

C.Œ0;T�IRm�d/ only depends upon the law of X0. In particular, the function ˚ may
be constructed on R

d � C.Œ0;T�IRd/ and the solution .X0;Wt;Xt;Yt;
R t
0

Zsds/0�t�T

is, P-almost surely, equal to˚.X0;W/. The reconstruction of a solution on any other
set-up is obtained accordingly.
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Proof of Theorem 1.33.

First Step. Let .Xt; Yt; Zt; Z0t ;Mt/0�t�T and .X0
t ; Y

0
t ; Z

0
t ; Z

00
t ;M

0
t /0�t�T be two solutions of

the FBSDE (1.1) associated with two set-ups .˝;F ;F;P/ and .˝0;F 0;F0;P0/ equipped with
two identically distributed processes .X0;W0

t ; �t;Wt/0�t�T and .X0
0;W

00
t ; �

0
t ;W

0
t /0�t�T . We

denote by Q
B and Q

B;0 the distributions of the processes:

�
X0;W

0
t ; �t;Wt;Xt; Yt;

Z t

0

.Zs; Z
0
s /ds;Mt

�

0�t�T

and

�
X0
0;W

00
t ; �

0
t ;W

0
t ;X

0
t ; Y

0
t ;

Z t

0

.Z0
s; Z

00
s /ds;M0

t

�

0�t�T

on ˝canon D ˝input � ˝output equipped with its Borel � -field, and by Q
B
input the (common)

distribution of the processes:

�
X0;W

0
t ; �t;Wt

�

0�t�T
and

�
X0
0;W

00
t ; �

0
t ;W

0
t

�

0�t�T

on ˝input equipped with its Borel � -field.
On the canonical space ˝canon, we denote by q (respectively q0) the regular conditional

probability of the second marginal of QB (respectively Q
B;0) on˝output given the first one on

˝input. On the extended space N̋ D ˝input �˝output �˝output equipped with the product Borel
� -field, we define the probability measure NQB by setting:

NQB�C � D � D0
� D

Z

C
q
�
!input;D

�
q0
�
!input;D

0
�
dQB

input.!input/;

where C is a Borel subset of ˝input and D and D0 are Borel subsets of ˝output. Notice that:

NQB�C � D �˝output
� D

Z

C
q
�
!input;D

�
dQB

input.!input/ D Q
B.C � D/;

and similarly, NQB.C � ˝output � D0/ D Q
B;0.C � D0/. In particular, if we denote by

.
;w0; �;w; x; y; �;m; x0; y0; �0;m0/ the canonical process on N̋ , then, under NQB, the process

.
;w0; �;w; x; y; �;m/ has distribution Q
B and .
;w0; �;w; x0; y0; �0;m0/ has distribution

Q
B;0.

We now use the proof and the result of Lemma 1.27. For any t 2 Œ0; T� and ! 2 N̋ we
set:

.zt; z
0
t /.!/ D

(
lim

n!1
n
�
.	; 	0/t.!/ � .	; 	0/t�1=n.!/

�
if the limit exists

0 otherwise
;

.z0
t ; z

00
t /.!/ D

(
lim

n!1
n
�
.	0; 	00/t.!/ � .	0; 	00/t�1=n.!/

�
if the limit exists

0 otherwise
:
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On ˝canon equipped with the completion Q of Q
B and endowed with the complete and

right-continuous augmentation G of the canonical filtration (respectively equipped with the
completion Q

0 of QB;0 and endowed with the complete and right-continuous augmentation
G

0 of the canonical filtration), the canonical process

.
;w0; �;w; x; y; z; z0;m/

satisfies the FBSDE (1.5). Proceeding in the same way as in the proof of Lemma 1.27, we
prove that, if N̋ is equipped with the completion NQ of NQB and endowed with the complete
and right-continuous augmentation under NQ of the filtration generated by

.
;w0; �;w; x; y; .�; �0/;m/ .respectively .
;w0; �;w; x0; y0; .�0; �00/;m0//;

the process

.
;w0; �;w; x; y; z; z0;m/ .respectively .
;w0; �;w; x0; y0; z0; z00;m0//

satisfies the FBSDE (1.5). The difficulty is that this does not suffice to compare the two
solutions since they are not defined on the same probabilistic set-up since the underlying
filtrations differ.

Second Step. Denoting by NG D . NGt/0�t�T the complete and right-continuous augmentation
under NQ of the canonical filtration on N̋ , we must prove that . N̋ ; NG; NQ/, equipped
with .
;w0; �;w/ forms an admissible probabilistic set-up as defined in Subsection 1.1.1.
Then, we must show that on this set-up, both processes .
;w0; �;w; x; y; z; z0;m/ and
.
;w0; �;w; x0; y0; z0; z00;m0/ solve the FBSDE (1.5).

In order to show that . N̋ ; NG; NQ/, equipped with .
;w0; �;w/ indeed forms an admissible
probabilistic set-up, we must check that, under NQ, .w0;w/ is a 2d-dimensional NG-Brownian
motion and that .
;w0; �;w) is compatible with the filtration NG. The argument is deferred to
the third step below.

For now, we claim that, in order to show that .
;w0; �;w; x; y; z; z0;m/ (the argument
being similar for .
;w0; �;w; x0; y0; z0; z00;m0/) solves (1.5) on . N̋ ; NG; NQ/, it suffices to prove
that .
;w0; �;w; x; y; .�; �0/;m/ (respectively .
;w0; �;w; x0; y0; .�0; �00/;m0/) is compatible
with the filtration NG. Indeed, we know from Lemma 1.9 that, whenever compatibility
holds, any martingale with respect to the augmentation of the filtration generated by
.
;w0; �;w; x; y; .�; �0/;m/ is also a martingale with respect to G. Since m is already
known to be a martingale with respect to the augmentation of the filtration generated by
.
;w0; �;w; x; y; .�; �0/;m/, it is also a martingale with respect to NG whenever compatibility
holds. Similarly, since m ˝ .w0;w/ is a martingale with respect to the augmentation of
the filtration generated by .
;w0; �;w; x; y; .�; �0/;m/, it is also a martingale with respect
to NG whenever compatibility holds, namely the bracket of m and .w0;w/ is zero on the
probabilistic set-up . N̋ ; NG; NQ/. Finally, it is indeed true that .
;w0; �;w; x; y; z; z0;m/ is a
solution of (1.5) whenever compatibility holds. Again, the proof of the compatibility is
deferred to the third step of the proof below.

Assuming momentarily that

.
;w0; �;w; x; y; z; z0;m/ and .
;w0; �;w; x0; y0; z0; z00;m0/
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both solve (1.5) on the admissible set-up . N̋ ; NG; NQ/, it makes sense to compare them
pathwise. If strong uniqueness holds, they must match NP almost surely, proving that they
have the same law.

It then remains to construct the mapping ˚ . By strong uniqueness, we know that, for
Q

B
input-almost every !input 2 ˝input, we have:

�
q.!input; �/˝ q0.!input; �/

��8t 2 Œ0; T�; �xt; yt; .	; 	
0/t;mt

� D �
x0

t ; y
0
t ; .	

0; 	00/t;m
0
t

�� D 1:

Since .x; y; .�; �0/;m/ and .x0; y0; .�0; �00/;m0/ are independent under the probability mea-
sure q.!input; �/˝ q0.!input; �/, the only way they can be equal with probability 1 is if they are
constant, in other words if q.!input; �/ almost surely, for all t 2 Œ0; T�,

.xt; yt; 	t; 	
0
t ;mt/ D E

q.!input;�/
�
.xt; yt; 	t; 	

0
t ;mt/

�
:

Letting

˚.!input/ D
�
E

q.!input;�/
�
.xt; yt; .	; 	

0/t;mt/
�
1

fE
q.!input ;�/Œsup0�s�T j.xs;ys;.	;	0/s;ms/j�<1g

�

0�t�T
;

(1.15)

we complete the proof of the representation formula. By dominated convergence, ˚ takes
values in the set ˝output.

Third Step. We now check all the compatibility conditions. We use the same notations as in
Definitions 1.23 and 1.28. We denote by G

nat;input D .Gnat;input
t /0�t�T the natural filtration

generated by the input process .
;w0; �;w/. With a slight abuse of notation, we regard
G

nat;input as a filtration on ˝input and on N̋ as well. Similarly, we denote by G
nat;output D

.Gnat;output
t /0�t�T (resp. Gnat;canon D .Gnat;canon

t /0�t�T ) the natural filtration generated by
the output process .x; y; .�; �0/;m/ (respectively the process .
;w0; �;w; x; y; .�; �0/;m/) on
˝output (respectively ˝canon) and again, we regard them as filtrations on ˝output (respectively
˝canon) and N̋ . Finally, we denote by G

nat D .Gnat
t /0�t�T the canonical filtration on N̋ . In

all cases, we denote the corresponding complete and right-continuous augmentation on N̋
under NQ by dropping the label ‘nat’ in the notation G

nat;���.
Generally speaking, the aforementioned compatibility properties follow from the follow-

ing measurability result whose proof is deferred to the last step below: For any t 2 Œ0; T�
and any D 2 Gnat;output

t seen as a Borel subset of ˝output, the random variables ˝input 3
!input 7! q.!input;D/ and ˝input 3 !input 7! q0.!input;D/ are measurable with respect to

the completion under Qinput of the � -field Gnat;input
tC on ˝input, which is the completion of

Q
B
input. In particular, the random variables N̋ 3 .!input; !output; !

0
output/ 7! q.!input;D/ and

N̋ 3 .!input; !output; !
0
output/ 7! q0.!input;D/ are measurable with respect to G input

t , which is a

� -field on N̋ .
We first check that .w0;w/ is a 2d-dimensional NG-Brownian motion. To start with, notice

that .w0;w/ is a 2d-dimensional Ginput-Brownian motion on ˝input for Qinput. Consider now

C 2 Gnat;input
t , C0 2 �f.w0s � w0t ;ws � wt/; t � s � Tg, D 2 Gnat;output

t and D0 2 Gnat;output
t .

Then, identifying C and C0 with Borel subsets of ˝input and D and D0 with Borel subsets of
˝output, we have:
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NQ�.C \ C0/ � D � D0
� D

Z

C\C0

q
�
!input;D

�
q0
�
!input;D

0
�
dQinput.!input/

D Qinput.C
0/

Z

C
q
�
!input;D

�
q0
�
!input;D

0
�
dQinput.!input/;

from which we easily deduce that .w0s � w0t ;ws � wt/t�s�T is independent of Gt. Above,
the passage from the first to the second line follows from the aforementioned measurability
properties of the kernels q and q0, and from the fact that .w0;w/ is a 2d-dimensional Ginput-
Brownian motion for Qinput.

We now prove that .
;w0; �;w; x; y; .�; �0/;m/ is compatible with the filtration G, the
argument being the same for .
;w0; �;w; x0; y0; .�0; �00/;m0/. Given C 2 Gnat;input

T , and
D;D0 2 Gnat;output

T (and again identifying C with a Borel subset of ˝input and D and D0 with
Borel subsets of ˝output), it holds:

NQ�C � D � D0
� D

Z

C
q.!input;D/q

0.!input;D
0/dQinput.!input/

D
Z

C�D
q0.!input;D

0/dQ.!input; !output/:

We now recall that q0.�;D0/ is G input
t -measurable when D0 2 Gnat;output

t for some t 2 Œ0; T�.
We thus recover the statement of Proposition 1.10 with F

1 D G
canon and F

2 D G
nat;output.

We deduce that for any t 2 Œ0; T�, Gnat
t and Gcanon

T are conditionally independent given
Gcanon

t , when the three � -fields are regarded as � -fields on N̋ . Proceeding as in the proof
of Lemma 1.7, we deduce that for any t 2 Œ0; T�, Gt and Gcanon

T are conditionally independent
given Gcanon

t .
We check that Gt and G input

T are conditionally independent given G input
t in the same way.

With the same notations as above, it suffices to use the first of the two lines above:

NQ�C � D � D0
� D

Z

C
q.!input;D/q

0.!input;D
0/dQinput.!input/;

and then to invoke Proposition 1.10 with F
1 D G

input and F
2 D G

nat;output ˝ G
nat;output.

Fourth Step. It remains to prove that, for any t 2 Œ0; T� and any D 2 Gnat;output
t seen as a

Borel subset of˝output, the random variable˝input 3 !input 7! q.!input;D/ is measurable with

respect to the completion QG input
t for Qinput of the � -field Gnat;input

tC on ˝input. The proof relies
on the crucial fact that the original solutions are built on admissible (and thus compatible)
set-ups.

Given C 2 Gnat;input
T , seen as a Borel subset of ˝input, we know from the proof of

Lemma 1.27 that C � ˝output and ˝input � D are conditionally independent for Q
B given

the � -field Gnat;input
tC when the � -field Gnat;input

tC is understood as a � -field on ˝canon, namely

Q
B�C � D

� D E
QB �

Q
B�C �˝outputjGnat;input

tC

�
Q

B�˝input � DjGnat;input
tC

��

D E
QB �

1C�˝outputQ
B�˝input � DjGnat;input

tC

��
:
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Observe that we may regard Q
B.˝input � DjGnat;input

tC / as a random variable � W ˝input ! R,

which is Gnat;input
tC -measurable (the � -field being now regarded as a � -field on˝input). We then

have Q
B.C � D/ D E

QB
input Œ1C��.

Now, we can also write:

Q
B.C � D/ D

Z

C
q.!input;D/dQ

B
input.!input/ D E

QB
input
�
1Cq.�;D/�;

where q.�;D/ is understood as a Gnat;input
T -measurable random variable from ˝input to R. We

deduce that, QB
input almost surely, q.�;D/ D � , which completes the proof of the measurability

property of the kernel q.

Last Step. It only remains to prove that we can construct a solution on any admissible
probability set-up .˝0;F 0;F0;P0/ with input .X0

0;W
00;�;W/ by setting:

�
X0

t ; Y
0
t ; .Z 0;Z00/t;M

0
t

�

0�t�T D ˚
�
X0
0;W

00;�;W
�
;

and defining Zt and Z0t accordingly. The important thing is that, as we just showed, for any
t 2 Œ0; T� and any D 2 Gnat;output

t seen as a Borel subset of ˝output, the random variable

˝input 3 !input 7! q.!input;D/ is measurable with respect to the completion QG input
t of the

� -field Gnat;input
tC on ˝input under Qinput which is the completion of QB

input. In particular, if we
write ˚.!input/ in (1.15) in the form ˚.!input/ D .˚t.!input//0�t�T , with

˚t.!input/ D E
q.!input;�/

�
.xt; yt; .	; 	

0/t;mt/
�

� 1
fE

q.!input ;�/Œsup0�s�T j.xs;ys;.	;	0/s;ms/j�<1g
;

then ˚t W ˝input ! R
d �R

m �R
d�m �R

m is QG input
t -measurable. Notice indeed that the event:

f!input 2 ˝input W E
q.!input;�/Œ sup

0�s�T
j.xs; ys; 	s;ms/j� < 1g

is of full measure under Qinput and thus belongs to QG input
t since the latter is complete.

Therefore, the process .X0
t ; Y

0
t ; .Z 0;Z00/t;M0

t /0�t�T is F-adapted and thus F-
progressively measurable since it has right-continuous paths. Moreover, by construction,
the process .X0

0;W
00
t ; �

0
t ;W

0
t ;X

0
t ; Y

0
t ; .Z 0;Z00/t;M0

t /0�t�T has exactly the same distribution
as the process .X0;W0

t ; �t;Wt;Xt; Yt;
R t
0
.Zs; Z0s /ds;Mt/0�t�T on ˝canon. In particular, the

process .M0
t /0�t�T is a martingale with respect to the canonical filtration of

.X0
0;W

00
t ; �

0
t ;W

0
t ;X

0
t ; Y

0
t ; .Z 0;Z00/t;M

0
t /0�t�T

and thus with respect to the canonical filtration generated by .X0
0;W

00
t ; �

0
t ;W

0
t /0�t�T and

also with respect to its complete and right-continuous augmentation under Q
0. Since

.X0
0;W

00
t ; �

0
t ;W

0
t /0�t�T is assumed to be compatible with F, .M0

t /0�t�T is also a martingale
with respect to F. See Lemma 1.9. By the same argument, ..W00

t ;W
0
t / ˝ M0

t /0�t�T is
a martingale with respect to F, and thus the bracket of M0 and .W00;W0/ is 0. The
proof will be complete if we can prove that .X0

0;W
00
t ; �

0
t ;W

0
t ;X

0
t ; Y

0
t ; Z

0
t ; Z

00
t ;M

0
t /0�t�T
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satisfies the two equations forming the FBSDE (1.5), where .Z0
t ; Z

00
t /.!

0/ is given as
limn!1 n

�
.Z 0;Z00/t.!

0/� .Z 0;Z00/.t�1=n/C.!
0// (whenever the limit exists). This follows

from the same argument as in the proof of Lemma 1.27. ut

Compatible Product Probabilistic Set-Up
We learned from Theorem 1.33 that, provided that the FBSDE is strongly uniquely
solvable, the choice of the probabilistic set-up for the search of a solution does not
really matter if one is only interested in the law of the solution.

In order to disentangle the different sources of noise (we shall come back to this
question in Chapter 2), it may be convenient to use a probabilistic set-up .˝;F ;P/
based on the product of two complete probability spaces:

�
˝0;F0;P0/ and

�
˝1;F1;P1

�
;

endowed with two complete and right-continuous filtrations F
0 D .F0

t /0�t�T and
F
1 D .F1

t /0�t�T and two d-dimensional Wiener processes W0 D .W0
t /0�t�T and

W D .Wt/0�t�T for the filtrations F
0 and F

1 respectively, and to work with the
product structure:

˝ D ˝0 �˝1; F ; F D �
Ft
�

0�t�T ; P D P
0 ˝ P

1; (1.16)

where .F ;P/ is the completion of .F0 ˝ F1;P0 ˝ P
1/, and F is the complete and

right continuous augmentation of .F0
t ˝ F1

t /0�t�T . Generic elements of ˝ will be
denoted by ! D .!0; !1/, with !0 2 ˝0 and !1 2 ˝1.

In this set-up, we require the input � D .�t/0�t�T to be defined on˝0, and to be
an F

0-progressively measurable, right continuous with left limits (càdlàg) process
with values in a Polish space .X ; d/. The stochastic flow � then reads:

� D
�
�t W ˝0 3 !0 7! �t.!

0/ 2 X
�

0�t�T
:

In what follows, we often write �t.!/ instead of �t.!
0/, �t being identified with

its natural extension to ˝. Similarly, the initial condition is required to be a random
variable X0 2 L2.˝0;F0

0 ;P
0IRd/.

In this framework, compatibility of .X0;W0;�;W/ with F holds if the filtration
F
0 on .˝0;F0;P0/, is compatible with the process .X0;W0;�/.

This follows from the fact that under P, the � -fields .F0
t ˝ f;; ˝1g/0�t�T and

.f;; ˝0g ˝F1
t /0�t�T are independent. A proof can easily be given by following the

same steps as in the proof of Lemma 1.7.
Obviously, a simple way to guarantee this product structure is to choose

canonical spaces for ˝0 and ˝1. Below, we use the specific notation N̋ 0 D R
d �

C.Œ0;T�IRd/� D.Œ0;T�IX / and N̋ 1 D C.Œ0;T�IRd/ for these canonical spaces. We
equip them with their respective Borel � -fields, and with the probability measures
NP0 and NP1, where NP0 is the law of the input .
;W0;�/, and NP1 is the d-dimensional
Wiener probability measure. We then call NF0 (respectively NF1) the completion of
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the Borel � -field of N̋ 0 (respectively N̋ 1), and NF0 (respectively NF1) the complete
and right-continuous augmentation of the canonical filtration. We still denote by NP0
and NP1 the extensions of the two probability measures to the � -fields NF0 and NF1

respectively. On the product space˝input D N̋ 0 � N̋ 1, we let NP be the completion of
NP0 ˝ NP1 to the � -field NF , obtained as the completion of the Borel � -field (which is
also the completion of NF0˝ NF1). We then let F be the complete and right-continuous
augmentation of the canonical filtration on N̋ 0 � N̋ 1, the canonical filtration being
also given by the product of the canonical filtrations on N̋ 0 and N̋ 1. As above, the
canonical processes are denoted by .
; �;w0/ D .
; .w0s /0�s�T ; .�s/0�s�T/ on N̋ 0
and w D .ws/0�s�T on N̋ 1.

Whenever the FBSDE (1.5) is strongly uniquely solvable, we shall denote
by L.FBSDE.P0// the law of the solution of the FBSDE (1.5) when the input
.X0;�;W0/ has P0 as distribution, irrespective of the probabilistic set-up.

1.3 Initial Information, Small Time Solvability,
and Decoupling Field

1.3.1 Disintegration of FBSDEs

Initial Information
A common practice in the study of SDEs, FBSDEs, and even stochastic games, is
the analysis of the problem on a sub time interval Œt;T� for all times t 2 Œ0;T�.
Although quite natural, the procedure requires a modicum of care, since one must
decide how to treat the information contained in the observations up until t. Two
rigorous points of view are conceivable:
Admissible set-up with initial information. The first one consists in handling the
equation at time t as a new equation, like the one set at time 0, but with an additional
initial information set, larger than that enclosed in the simple observation of X0 and
�0. This requires a slight modification of the notion of compatible probabilistic
set-up used so far in solving the equation. Indeed, when the initial information set
is larger than the � -field �fX0; �0g, the basic compatibility condition described in
Subsection 1.1.1 is no longer sufficient. Compatibility should now require that, for
any t 2 Œ0;T�, the � -fields

FG;W0;�;W
T and Ft;

are conditionally independent given FG;W0;�;W
t , where G is a � -field describing

the initial information (in addition to that enclosed in �0) and F
G;W0;�;W D

.FG;W0;�;W
t /0�t�T is the complete and right-continuous augmentation under P of the

filtration generated by G and .W0;�;W/. We then say that the process .W0;�;W/
together with the initial � -field G are compatible with the filtration F. So in analogy
with Definition 1.13, we define the new concept of compatibility as follows.
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Definition 1.36 A complete probability space .˝;F ;P/ equipped with a complete
and right-continuous filtration F D .Ft/0�t�T and a tuple .G;W0;�;W/ for a sub-
� -algebra G is said to be admissible if:

1. G � F0;
2. .W0;W/ is a 2d-dimensional Brownian motion with respect to F (under P);
3. .G;W0;�/ is independent of W (under P);
4. .G;W0;�;W/ and F are compatible (under P).

The � -field G is then referred to as the initial information. Whenever G is trivial, we
say that there is no initial information.

The following lemma provides some consistency in the use of the initial
information.

Lemma 1.37 If .G;W0;�;W/ is admissible and G0 is another � -field with G �
G0 � F0, then .G0;W0;�;W/ is also admissible.

Proof.

First Step. The first step is to check 3 in Definition 1.36. The proof is a variation of

Blumenthal’s zero-one law, and is based on the fact that W is independent of FG;W0;�;W
0 .

For B0 2 F0, C0 2 �fW0;�g and C 2 �fWg, it holds:

P
�
B0 \ C0 \ C

� D E
�
P.B0jFG;W0;�;W

0 /1C0\C

�
; (1.17)

which follows from the compatibility property.
Assume that, for some t > 0, C 2 �fWs � WtI s 2 Œt; T�g. Then, for any C0

t 2 G _
�fW0

s ; �sI s � tg and Ct 2 �fWsI s � tg, P.C0
t \Ct \C0\C/ D P.C0

t \C0/P.Ct/P.C/ since
.G;W0;�/ is independent of W. Also,

P
�
C0

t \ Ct \ C0 \ C
� D P

�
C0

t \ C0 \ Ct
�
P.C/;

from which we deduce that F .G;W0;�;W/
0 _�fW0;�g is independent of �fWs � WtI s 2 Œt; T�g.

And then, F .G;W0;�;W/
0 _ �fW0;�g is independent of �fWg. Therefore, (1.17) yields:

P
�
B0 \ C0 \ C

� D E
�
P.B0jFG;W0;�;W

0 /1C0
�
P.C/

D P
�
B0 \ C0

�
P.C/;

which shows that W is independent of .F0;W0;�/. In particular, W is independent of
.G0;W0;�/.

Second Step. We now check the compatibility property. Given t 2 Œ0; T�, we consider B0 2
G0, C0

t 2 Fnat;.W0;�;W/
t and C0

T 2 F .W0;�;W/
T . Then, by compatibility of .G;W0;�;W/ with F,
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we get:

P
�
B0 \ C0

t \ C0
T

� D E
�
P
�
B0jF .G;W0;�;W/

0

�
1C0t \C0T

�

D E
�
P
�
B0jF .G;W0;�;W/

0

�
1C0t

P
�
C0

T jF .G;W0;�;W/
t

��

D E
�
1B01C0t

P
�
C0

T jF .G;W0;�;W/
t

��
;

which shows that:

P
�
C0

T jFnat;.G0;W0;�;W/
t

� D E

h
P
�
C0

T jF .G;W0;�;W/
t

�jFnat;.G0;W0;�;W/
t

i
:

Replace t by t C ı for ı > 0 and write:

P
�
C0

T jFnat;.G0;W0;�;W/
tCı

�

D E

h
P
�
C0

T jF .G;W0;�;W/
tCı

� � P
�
C0

T jF .G;W0;�;W/
t

�jFnat;.G0;W0;�;W/
tCı

i

C E

h
P
�
C0

T jF .G;W0;�;W/
t

�jFnat;.G0;W0;�;W/
tCı

i
:

The first term in the right-hand side tends to 0 in L1-norm as ı tends to 0. The second term is

(almost surely) equal to P.C0
T jF .G;W0;�;W/

t /. Therefore, letting ı tend to 0, we obtain:

P
�
C0

T jF .G0;W0;�;W/
t

� D P
�
C0

T jF .G;W0;�;W/
t

�
:

Also,

P
�
B0 \ C0

T jF .G0;W0;�;W/
t

� D 1B0P
�
C0

T jF .G;W0;�;W/
t

�
:

Now, by compatibility of .G;W0;�;W/ and by (H3) in Proposition 1.3, we know that:

P
�
B0 \ C0

T jFt
� D 1B0P

�
C0

T jFt
� D 1B0P

�
C0

T jF .G;W0;�;W/
t

�
;

so that:

P
�
B0 \ C0

T jF .G0;W0;�;W/
t

� D P
�
B0 \ C0

T jFt
�
;

from which compatibility follows since events of the form B0 \ C0
T generate the � -field

F .G0;W0;�;W/
T . ut

Despite the fact that it offers a natural generalization of Definition 1.13, using this
notion of admissibility may not be the best way to proceed. Indeed, it would require
to revisit all the results of the previous subsections. For instance, we could redefine
the notion of strong uniqueness in Definition 1.18 by requiring that uniqueness holds
for any arbitrary admissible set-up equipped with any initial information G. In this
regard, the following observation could make our life easier. Whenever, notice that



1.3 Initial Information, Small Time Solvability, and Decoupling Field 45

this is what happens in practice, the initial � -field G is generated by a random
variable �0 with values in a Polish space S , we may easily adapt all the results
above by letting �0 play the role of the initial condition X0. Namely, if strong
uniqueness holds, then the laws of the solutions constructed on possibly different
spaces have to be the same provided that the initial triples .�0;W0;�/ have the
same distributions, and furthermore, they have to be functions of .�0;W0;�;W/. In
other words, it would suffice to use S (equipped with its Borel � -field) instead of
R

d as the canonical space carrying the initial condition.

Remark 1.38 Observe from Lemma 1.37 that any solution .X;Y;Z;Z0;M/ to the
FBSDE (1.5) constructed on some admissible set-up equipped with some tuple
.G;W0;�;W/ is also a solution on any admissible set-up equipped with some tuple
.G0;W0;�;W/ for a larger initial information in the sense that G0 is another � -field
with G � G0 � F0. In particular, if uniqueness holds on the set-up equipped with
.G0;W0;�;W/, then it also holds on the set-up equipped with .G;W0;�;W/.

Conditioning on the Initial Information. A different strategy is based on a con-
ditioning argument. Instead of allowing for solutions initialized with additional
information, it suffices to change the probability in such a way that this additional
information becomes deterministic. In other words, the strategy is to work with
the conditional probability given the additional information G. In such a way, there
is no need to revisit the previous results. However, there is still a heavy price to
pay, essentially due to the technicalities inherent to the construction and the use of
conditional probabilities.

We shall use both points of view, switching from one to the other depending
upon the context. This being said, the reader should understand that a modicum
of care has to be taken regarding the structure of the probabilistic set-up when
additional initial information is available and used. As mentioned earlier, the issue is
not present when � is deterministic, which is the standard framework for FBSDEs
with deterministic coefficients discussed in Chapters (Vol I)-3 and (Vol I)-4. Indeed,
in that case, the Markov structure of the Brownian motion can easily accommodate
any initial information as long as it is independent of the future increments of the
Brownian motion.

If the reader is still unsure of the need to revisit the notion of solution under
an enlarged initial � -field, a convincing argument is to come back to the original
motivation. Indeed, let us consider a solution .X;Y;Z;Z0;M/ to (1.5) constructed
on some set-up equipped with an input .X0;W0;�;W/ and a compatible filtration
F, and for t 2 .0;T/, let us address the following question: “In which sense
does .Xs;Ys;Zs;Z0s ;Ms/t�s�T solve the FBSDE (1.5) on Œt;T�?” The answer is
given by the following simple observation: the filtration used to define the solution
must remain the original filtration F. However, it is unlikely that the process
.Xt;W0

s � W0
t ; �s;Ws � Wt/t�s�T which drives the equation (1.5) is compatible with

F. Indeed, F incorporates the past of � before t, whereas the filtration generated by
.Xt;W0

s � W0
t ; �s;Ws � Wt/t�s�T does not. The fact that F is not compatible with
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.Xt;W0
s � W0

t ; �s;Ws � Wt/t�s�T says that, if we manage to solve (1.5) on Œt;T� with
respect to the complete and right-continuous augmentation of the filtration generated
by .Xt;W0

s � W0
t ; �s;Ws � Wt/t�s�T , then the solution may not have the same law

as .Xs;Ys;Zs;Z0s ;Ms/t�s�T , even if strong uniqueness holds! In order to guarantee
uniqueness in law whenever strong uniqueness holds, we must solve (1.5) on Œt;T�
with respect to the filtration generated by the � -field �fX0;W0

s ; �s;WsI s � tg and
by the process .W0

s � W0
t ; �s;Ws � Wt/t�s�T , which is obviously compatible with

F. Below, we shall say that we solve (1.5) with �fX0;W0
s ; �s;WsI s � tg as initial

information, which suggests the following version of Definition 1.36.

Definition 1.39 For any t 2 Œ0;T�, any complete probabilistic set-up .˝;F ;P/
with a complete and right-continuous filtration F D .Fs/t�s�T and a tuple
.G; .W0

s ; �s;Ws/t�s�T/ for a sub-� -algebra G, is said to be a t-initialized admissible
set-up if:

1. G � Ft,
2. .W0

s ;Ws/t�s�T is a 2d-dimensional Brownian motion starting from 0 at time t
with respect to F (under P);

3. .G; .W0
s ; �s/t�s�T/ is independent of .Ws/t�s�T (under P);

4. .G; .W0
s ; �s;Ws/t�s�T/ and F are compatible (under P).

The � -field G is then referred to as the initial information at time t.

Disintegration of FBSDEs
As we already alluded to, there is another point of view for letting a solution,
originally initialized at time 0, restart at a later time t > 0. The following lemma
shows that such a procedure may be understood in terms of conditioning arguments.
For these arguments to be more transparent, it is convenient to work on the canonical
set-up ˝canon D ˝input � ˝output defined in Subsection 1.2.2 so we can use regular
conditional probabilities as introduced in Theorem 1.1.

Given the canonical set-up ˝canon D ˝input �˝output endowed with some admis-
sible probability measure Q as in Definition 1.23, we denote by G

nat D .Gnat
t /0�t�T

the canonical filtration. Notice that this filtration has not been augmented. Then, for
any t 2 Œ0;T� we can find a family of probability measures .Qt

!/!2˝ such that,
for any Borel subset D � ˝canon, the mapping ˝ 3 ! 7! Q

t
!.D/ 2 Œ0; 1� is

measurable, both spaces being endowed with Borel � -fields, and Q
t
!.D/ is a version

of the conditional expectation of 1D given Gnat
t under Q.

Lemma 1.40 Consider the FBSDE (1.5), assume that it has a solution on some
admissible probabilistic set-up .˝;F ;F;P/ equipped with a tuple .X0;W0;�;W/,
transfer this solution onto the canonical set-up as we did in Lemma 1.27, and denote
by QB the resulting probability law on ˝canon equipped with its Borel � -field. Then,
for any t 2 Œ0;T� and Q

B-almost every ! 2 ˝canon, under the completion of the
regular conditional probability Q

t
! of QB given Gnat

t , .xs; ys; zs; z0s ;ms � mt/t�s�T is
a solution of (1.5) on ˝ t

canon D ˝ t
input � ˝ t

output equipped with the completion of
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the Borel � -field and the complete and right-continuous augmentation G
t
! of the

canonical filtration G
t;nat D .G t;nat

s /t�s�T , with:

G t;nat
s D �fw0r � w0t ; �r;wr � wt; xr; yr; .	; 	

0/r;mr � mtI r 2 Œt; s�g

˝ t
input D R

d � C.Œt;T�IRd/ � D.Œt;T�IX / � C.Œt;T�IRd/;

˝ t
output D C.Œt;T�IRd/ � D.Œt;T�IRm/ � C.Œt;T�IR2.m�d// � D.Œt;T�IRm/;

the input .xt;w0s � w0t ; �s;ws � wt/t�s�T having the distribution:

ıxt.!/ ˝
�
Q

t
! ı �.w0s � w0t ; �s/t�s�T

��1�˝ W t
d;

where W t
d is the d-dimensional Wiener measure on C.Œt;T�IRd/.

Remark 1.41 In the statement, it is implicitly understood that the probabilistic set-
up formed by the filtered probability space supporting the input .xt;w0s �w0t ; �s;ws �
wt/t�s�T is admissible. Here it is t-initialized and has no initial information.

Remark 1.42 As we just explained, the random variable X0 could be replaced by
a more general random variable �0 taking values in a Polish space S such that
�fX0g � �f�0g � F0 and .�0;W0;�;W/ is compatible with F.

The interpretation of Lemma 1.40 is quite clear. When conditioning on the past
before t, the solution of the FBSDE on the whole Œ0;T� generates a solution on Œt;T�
with the current position at time t as initial condition and with the conditional law of
.W0;�/ given the past as input. When � is deterministic, .W0;�/ may be ignored
and only the current position at time t matters for determining the input.

Proof. We make use of the same notations as in Lemma 1.27. In particular, the process
.xs; ys; .	; 	

0/s;ms/0�s�T denotes the canonical process on ˝output. Also, Q denotes the
completion of QB and G the complete and right-continuous augmentation of the canonical
filtration on ˝canon under Q. Throughout the proof, we always use Q instead of QB, even
when working with Borel subsets of ˝canon.

First Step. We first notice that, for Q-almost every ! 2 ˝canon, xt is almost surely equal to
xt.!/ under Qt

! . We then check that, for Q-almost every ! 2 ˝canon, under Qt
! , the process

.w0s � w0t ;ws � wt/t�s�T is a Wiener process with respect to the filtration G
t;nat. Obviously, if

so, the property is also true under Gt
! . The proof is quite standard. Given an event E in Gnat

t
and an event F in G t;nat

s for some s 2 Œt; T�, we know that for two Borel subsets C0 and C of
C.Œs; T�IRd/:

Q

�
E \ F \ ˚

.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C
��

D Q
�
E \ F

�
Q
�
.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C

�
;
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so that:

Z

E
Q

t
!

�
F \ ˚

.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C
��

dQ.!/

D

Z

E
Q

t
!

�
F
�
dQ.!/

�

Q
�
.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C

�
;

which implies, since E is arbitrary, that for Q-almost every !, we have:

Q
t
!

�
F \ ˚

.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C
��

D Q
t
!

�
F
�
Q
�
.w0r � w0s /s�r�T 2 C0; .wr � ws/s�r�T 2 C

�

which is enough to conclude by choosing s in a dense countable subset of Œt; T� and F, C and
C0 in countable generating �-systems. Recall that we are working on Polish spaces equipped
with their Borel � -fields.

In the same way, we now prove that for Q-almost every !, .w0s � w0t ; �s/t�s�T and .ws �
wt/t�s�T are independent under Q

t
! and that .ms � mt/t�s�T is a G

t;nat square-integrable
martingale of zero cross variation with .w0s � w0t ;ws � wt/t�s�T . As above, the property
will remain true under Gt

! . Taking as before E in Gnat
t and choosing now C and C0 as Borel

subsets of C.Œt; T�IRd/ and D as a Borel subset of D.Œt; T�IX /, we indeed have from the
compatibility condition (recall item 3 in Proposition 1.26):

Q

�
E \ ˚

.w0s � w0t /t�s�T 2 C0; .�s/t�s�T 2 D; .ws � wt/t�s�T 2 C
��

D E
Q
h
Q
�
EjGnat;input

tC

�
1˚
.w0s �w0t /t�s�T 2C0;.�s/t�s�T 2D;.ws�wt/t�s�T 2C

�
i
;

where Gnat;input
tC D \s2.t;T�Gnat;input

s , with G
nat;input D .Gnat;input

s /0�s�T being the canonical
filtration generated by .
;w0; �;w/, now regarded as a filtration on˝canon. Since .
;w0; �/ is
independent of w under Q, it is easily seen that under Q, Gnat;input

tC _�fw0s �w0t ; �sI t � s � Tg
is independent of �fws � wtI t � s � Tg. We deduce that:

Q

�
E \ ˚

.w0s � w0t /t�s�T 2 C0; .�s/t�s�T 2 D; .ws � wt/t�s�T 2 C
��

D Q

�
E \ ˚

.w0s � w0t /t�s�T 2 C0; .�s/t�s�T 2 D
��

Q
�
.ws � wt/s�r�T 2 C

�
;

so that, again because E is arbitrary, for Q-almost every !, we have:

Q
t
!

�˚
.w0s � w0t /t�s�T 2 C0; .�s/t�s�T 2 D; .ws � wt/t�s�T 2 C

��

D Q
t
!

�˚
.w0s � w0t /t�s�T 2 C0; .�s/t�s�T 2 D

��
Q
�
.ws � wt/s�r�T 2 C

�
;

which again is enough to conclude that, for Q-almost every !, .w0s � w0t ; �s/t�s�T and .ws �
wt/t�s�T are independent under Qt

! .
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The martingale property of .ms � mt/t�s�T under Qt
! is quite obvious. Indeed, for E and

F as above, namely E is in Gnat
t and, for some s 2 Œt; T�, F is in G t;nat

s , the martingale property
of .mr � mt/t�r�T under Q says that for two Borel subsets C0 and C of C.Œs; T�IRd/ and for
r 2 Œs; T�, we have:

E
Q
�
1EE

Qt
!
�
1FŒmr � mt�

�� D E
Q
�
1E1FŒmr � mt�

� D E
Q
�
1E1FŒms � mt�

�

D E
Q
�
1EE

Qt
!
�
1FŒms � mt�

��
;

from which we get that, for almost every ! under Q, we must have:

E
Qt
! Œ1F.mr � mt/� D E

Qt
! Œ1F.ms � mt/�:

By choosing r and s in a dense countable subset of Œt; T� and F in a countable generating
�-system, we deduce that .ms � mt/t�s�T is a G

t;nat- martingale under Q
t
! . The square-

integrability property of the martingale is also easily proved. Furthermore, one proves in the
same way that ..ms�mt/˝.w0s �w0t ;ws�wt//t�s�T is a Gt;nat-martingale under Qt

! , the tensor
product acting on elements of Rm � R

2d, implying that the bracket between .ms � mt/t�s�T

and .w0s � w0t ;ws � wt/t�s�T is zero.

Second Step. We now check compatibility. We call G
t;nat;input D .G t;nat;input

s /t�s�T the
filtration generated by .w0s � w0t ; �s;ws � wt/t�s�T . For a given s 2 Œt; T�, we consider
E 2 Gnat

t , C 2 G t;nat;input
s , D 2 G t;nat

sC , F 2 G t;nat;input
T . By compatibility of .
;w0;�;w/ and

G under Q, see Lemma 1.27, we have:

E
Q
�
1E1C1D1F

� D E
Q
�
1E\D1CQ.FjG input

s /
�
;

where G input
s denotes the completion of Gnat;input

sC under Q. In particular, we also have:

E
Q
�
1E1C1D1F

� D lim
"&0

E
Q
�
1E\D1CQ.FjGnat;input

sC"
/
�

D E
Q
�
1E\D1C lim inf

"&0
Q.FjGnat;input

sC"
/
�
:

Therefore, for almost every ! 2 ˝ under Q,

Q
t
!

�
C \ D \ F

� D E
Qt
!
�
1C1D lim inf

"&0
Q.FjGnat;input

sC"
/
�
: (1.18)

Notice that, up a to a null event under Q, the right-hand side is independent of the version
used for the random variable lim inf"&0Q.FjGnat;input

sC"
/. Now, for B 2 Gnat;input

s and C0 2
Gnat;input

t , and for Q-almost every ! 2 ˝, we have:

Q
t
!

�
C \ C0 \ B

� D 1C0Q
t
!

�
C \ B

� D 1C0E
Qt
!
�
1CQ

t
!.BjG t;nat;input

s

��

D E
Qt
!
�
1C\C0Q

t
!.BjG t;nat;input

s /
�
:
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Choosing C and C0 in countable generating �-systems, we deduce that, for Q-almost
every !, Qt

! almost surely, 1B D Q
t
!.BjG t;nat;input

s /. In particular B 2 G t;input
!;s . Therefore,

returning to (1.18), we deduce that lim inf"&0Q.FjGnat;input
sC"

/ is measurable with respect to

the completion G t;input
!;s of G t;nat;input

sC under Qt
! . Choosing D 2 G t;nat;input

sC in (1.18), we deduce

that lim inf"&0Q.FjGnat;input
sC"

/ matches the conditional probability of F given G t;input
!;s .

We obtain:

Q
t
!

�
C \ D \ F

� D E
Qt
!
�
1CQ

t
!.DjG t;input

!;s /Qt
!.FjG t;input

!;s /
�
:

The above is true for s 2 Œt; T�, for C, D, and F as above and for Q-almost every !. In order to
prove it Q-almost surely, for any s 2 Œt; T� and for all C, D, and F, we first restrict ourselves
to the case when D belongs to G t;nat

s . Then, the above is true Q-almost surely, for all s in a
dense countable subset of Œt; T� and for all C, D, and F in countable generating �-systems.
Therefore, it is true, Q-almost surely, for all s in a dense countable subset of Œt; T� and for all
C 2 G t;nat;input

s , D 2 G t;nat
s and F in G t;nat;input

T . The end of the proof is standard. For Q-almost
every ! and for any s 2 Œt; T�, we can find a decreasing sequence .sn/n�1, converging to s,
such that for C 2 G t;nat;input

sC , D 2 G t;nat
sC and F in G t;nat;input

T , we have:

Q
t
!

�
C \ D \ F

� D E
Qt
!
�
1CQ

t
!.DjG t;input

!;sn
/Qt

!.FjG t;input
!;sn

/
�
:

Letting n tend to 1, we deduce that the compatibility holds for Q-almost every ! 2 ˝.
Recalling that xt is almost surely constant under Qt

! , the above computations show that,
for Q-almost every ! 2 ˝canon, the variables:

�
xt; .w

0
s � w0t /t�s�T ; .�s/t�s�T ; .ws � wt/t�s�T

�

form an admissible probabilistic set-up on ˝input � ˝output equipped with Q
t
! and the

completed filtration G
t
! of Gt;nat.

Third Step. It then remains to prove that, on such a set-up, the process .xs; ys; zs; z0s ;ms �
mt/t�s�T solves the FBSDE (1.5). As in the proof of Lemma 1.27, we shall make use of the
process .	s; 	

0
s /t�s�T . Following the second step in the proof of Lemma 1.27, it is clear

that, for Q-almost every !, almost every trajectory of .	s/t�s�T under Q
t
! is absolutely

continuous. Moreover, since:

Q

�
Leb1

˚
s 2 Œt; T� W lim

n!1
n
�
.	; 	0/s � .	; 	0/.s�1=n/C

� D .zs; z
0
s /
�� D 1;

we deduce that for Q-almost every !, almost surely under Qt
! , for almost every s 2 Œt; T�,

we have:

lim
n!1

n
�
.	; 	0/s � .	; 	0/.s�1=n/C

� D .zs; z
0
s /:

Now, as in the proof of Lemma 1.27, we consider a sequence of bounded measurable
functions .B` W Œ0; T� � R

d � X � R
m � R

2.m�d/ 3 .s; x; �; y; z; z0/ 7! B`.s; x; �; y; z; z0/ 2
R

d/`�1, each B` being continuous in .x; y; z; z0/ when .s; �/ is fixed, such that:
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lim
`!1

E
Q

Z T

0

ˇ
ˇ.B � B`/

�
s; xs; �s; ys; zs; z

0
s

�ˇ
ˇds D 0:

Using the same argument as in the proof of Lemma 1.27, we find that, for a bounded and
nondecreasing smooth function # W R ! R equal to the identity on Œ0; 1�, we have:

lim
`!1

lim
n!1

lim
p!1

E
Q

�

#




sup
t�s�T

ˇ
ˇ
ˇ
ˇxt �

Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙
�
u; xu; �u

�
du

�

dwr

�
Z s

t
B`
�

r; xr; �r; yr; n
�
.	; 	0/r � .	; 	0/.r�1=n/C

��
dr

�
Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙0
�
u; xu; �u

�
du

�

dw0r

ˇ
ˇ
ˇ
ˇ

�	

D 0;

proving that, for " > 0,

lim
`!1

lim sup
n!1

lim sup
p!1

Q




E
Qt
!

�

#




sup
t�s�T

ˇ
ˇ
ˇ
ˇxs �

Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙
�
u; xu; �u

�
du

�

dwr

�
Z s

t
B`
�

r; xr; �r; yr; n
�
.	; 	0/r � .	; 	0/.r�1=n/C

��
dr

�
Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙0
�
u; xu; �u

�
du

�

dw0r

ˇ
ˇ
ˇ
ˇ

�	

> "

�

D 0:

Now, for Q-almost every !, we have:

lim
`!1

lim
n!1

lim
p!1

E
Qt
!

�

#




sup
t�s�T

ˇ
ˇ
ˇ
ˇxs �

Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙
�
u; xu; �u

�
du

�

dwr

�
Z s

t
B`
�

r; xr; �r; yr; n
�
.	; 	0/r � .	; 	0/.r�1=n/C

��
dr

�
Z s

t




n
Z bprc=p

.bprc=p�1=n/C

˙0
�
u; xu; �u

�
du

�

dw0r

ˇ
ˇ
ˇ
ˇ

�	

D E
Qt
!

�

#




sup
t�s�T

ˇ
ˇ
ˇ
ˇxs �

Z s

t
B
�
r; xr; �r; yr; zr; z

0
r

�
dr

�
Z s

t
˙
�
r; xr; �r

�
dwr �

Z s

t
˙0
�
r; xr; �r

�
dw0r

ˇ
ˇ
ˇ
ˇ

�	

:

which shows that under Qt
! , the forward equation in (1.5) holds on ˝ t

canon equipped with
the filtration G

t
! . We handle the backward equation in the same way as in the proof of

Lemma 1.27. This completes the proof. ut

Lemma 1.40 may be reformulated when strong uniqueness holds. In this case,
we know that solutions can be constructed directly on the canonical space ˝input
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carrying the initial condition, the two noise processes and the random environment
process, and the conditioning argument can be directly implemented on ˝input.

Lemma 1.43 Let us assume that the FBSDE (1.5) satisfies the strong uniqueness
property on set-ups initialized with an input .X0;W0;�;W/ of a given prescribed
law, that it has a solution on such a set-up, and let us transfer this solution onto
the set-up ˝input equipped with the law Q

B
input of the input .X0;W0;�;W/ on

˝input equipped with the Borel � -field. Then, for any t 2 Œ0;T�, we consider the

regular conditional probability of QB
input given Gnat;input

t , and for each realization

! 2 ˝input, we denote by Q
t
!;input its completion. Similarly, we denote by QGt;input

! D
. QG t;input
!;s /t�s�T the completion of the filtration G

t;nat;input
�C D .G t;nat;input

sC /t�s�T , where

G
t;nat;input D .G t;nat;input

s /t�s�T is the filtration generated by .w0s � w0t ; �s;ws �
wt/t�s�T . Now, if we set:

�
x; y; .�; �0/;m

� D ˚.
;w0;�;w/;

with ˚ as in the statement of Theorem 1.33 and:

.zt; z
0
t /.!/ D

(
lim

n!1 n
�
.	; 	0/t.!/ � .	; 	0/.t�1=n/C.!/

�
if the limit exists;

0 otherwise;

then, for Q
B
input-almost every ! 2 ˝input, the process .xs; ys; zs; z0s ;ms � mt/t�s�T

solves (1.5) on the space ˝ t
input equipped with the probability Q

t
!;input and with

the filtration QGt;input
! . The input reads .xt;w0s � w0t ; �s;ws � wt/t�s�T and has the

distribution:

ıxt.!/ ˝
�
Q

t
!;input ı �.w0s � w0t ; �s/t�s�T

��1�˝ W t
d;

where W t
d is the d-dimensional Wiener measure on C.Œt;T�IRd/.

Remark 1.44 Notice that in order to lighten the notation, we used the letter !
to denote a generic element of ˝input, instead of the symbol !input which we used
previously.

Moreover, in analogy with Remark 1.41, it is implicitly understood that the
probabilistic set-up formed by the filtered probability space and the input .xt;w0s �
w0t ; �s;ws � wt/t�s�T is admissible. Finally, notice also that a similar version of
Remark 1.42 holds.

Proof. Throughout the proof, we denote by Qinput the completion of QB
input.

First Step. Following the steps of the proof of Lemma 1.40, we check that, for Qinput-almost

every ! 2 ˝input, .w0s � w0t ;ws � wt/t�s�T is a 2d-dimensional QGt;input
! -Brownian motion for
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Q
t
!;input, that .w0s � w0t ; �s/t�s�T and .ws � wt/t�s�T are independent, and that QGt;input

! and
.w0s � w0t ; �s;ws � wt/t�s�T are compatible. We shall prove in the fourth step below that,
under Qt

!;input, xt is almost surely equal to xt.!/, which shows that the probabilistic set-up

formed by .˝ t
input;

QGt;input
! ;Qt

!;input/ and .xt;w0s � w0t ; �s;ws � wt/t�s�T is admissible and has
the right law.

Second Step. We now check that, for Qinput-almost every ! 2 ˝input, the process

.xs; ys; .	; 	
0/s;ms � mt/t�s�T

is adapted to QGt;input
! . By construction, we know that, for each s 2 Œt; T�, .xs; ys; .	; 	

0/s;ms/ is
G input

s -measurable. In particular, there exists a Gnat;input
sC -measurable random variable, denoted

by .Qxs; Qys; . Q	; Q	0/s; Qms/, which is Qinput-almost surely equal to .xs; ys; .	; 	
0/s;ms/.

In the third step below, we prove that given s 2 Œt; T�, for Qinput-almost every ! 2 ˝input,

Gnat;input
sC � QG t;input

!;s . Assuming momentarily this result, this shows that, for Qinput-almost every

! 2 ˝input, .Qxs; Qys; . Q	; Q	0/s; Qms � Qmt/ is QG t;input
!;s -measurable.

Now, we use the fact that for every Q-null subset N � ˝input, N belongs to QG t;input
!;s for

Qinput-almost every ! 2 ˝input. This follows from the fact that, for such an N, there exists
a Borel subset N0 containing N such that 0 D Qinput.N0/ D R

˝input
Q

t
!;input.N

0/dQinput.!/.

We use this fact in the following way. Notice that the difference .xs � Qxs; ys � Qys; .	; 	
0/s �

. Q	; Q	0/s;ms � Qms � .mt � Qmt// is Qinput-almost surely equal to 0. Therefore, for any Borel
subset B � R

d � R
m � R

2.m�d/ � R
m,

Qinput
��

xs � Qxs; ys � Qys; .	; 	
0/s � . Q	; Q	0/s;ms � Qms � .mt � Qmt/

� 2 B
� 2 f0; 1g:

We deduce that, for Qinput-almost every!, for any B in a countable generating class of B.Rd�
R

m � R
2.m�d/ � R

m/, we have:

�
xs � Qxs; ys � Qys; .	; 	

0/s � . Q	; Q	0/s;ms � Qms � .mt � Qmt/
��1

.B/ 2 QG t;input
!;s :

Therefore, .xs � Qxs; ys � Qys; .	; 	
0/s � . Q	; Q	0/s;ms � Qms � .mt � Qmt// is QG t;input

!;s -measurable,
and almost surely equal to 0 for Q

t
!;input. So for any s 2 Œt; T� and for Qinput-almost

every !, .xs; ys; .	; 	
0/s;ms � mt/ is QG t;input

!;s -measurable and is Q
t
!;input-almost surely equal

to .Qxs; Qys; . Q	; Q	0/s; Qms � Qmt/. Choosing s in a dense countable subset of Œt; T�, and using the
right-continuity of the process and the filtration, we deduce that for Qinput-almost every !,

for all s 2 Œt; T�, .xs; ys; .	; 	
0/s;ms � mt/ is QG t;input

!;s -measurable.

Third Step. We now check that, for all s 2 Œt; T� and for Qinput-almost every !, Gnat;input
sC �

QG t;input
!;s . In order to do so, we proceed as follows. Consider C 2 Gnat;input

t and D 2 G t;nat;input
s .

By definition, D 2 QG t;input
!;s . Moreover, for Qinput-almost every !, we have Qt

!;input.C/ 2 f0; 1g
(according to ! 2 C or not) and thus C 2 QG t;input

!;s . We deduce that, for Qinput-almost every

! 2 ˝input, for all C and D in countable generating classes of Gnat;input
t and G t;nat;input

s , C \ D

belongs to QG t;input
s . Therefore, for Qinput-almost every ! 2 ˝input, Gnat;input

s � QG t;input
!;s and then

Gnat;input
sC � QG t;input

!;s .
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Fourth Step. By right-continuity of the trajectories of .xs; ys; .	; 	
0/s;ms � mt/t�s�T , we

deduce from the second step that, for Qinput-almost every ! 2 ˝input, .xs; ys; .	; 	
0/s;ms �

mt/t�s�T is QGt;input
! -progressively measurable. We now prove that, for Qinput-almost every

! 2 ˝input, xt is Q
t
!;input-almost surely equal to xt.!/. To do so, we claim that the random

variable xt is Qinput-almost surely equal to a Gnat;input
t -measurable random variable Qxt. Indeed,

the process .xs/0�s�T has continuous paths and each xs is Qinput-almost surely equal to a

Gnat;input
t -measurable random variable. Since Qxt is Gnat;input

t -measurable, we deduce that for
Qinput almost every !, Qxt is almost surely equal to Qxt.!/ under Qt

!;input. Arguing as in the
second step of the proof, we deduce that, for Qinput almost every !, xt is almost surely equal
to Qxt under Qt

!;input and is thus almost surely equal to Qxt.!/ under Qt
!;input.

Now that we have the progressive-measurability property, the fact that for Qinput-almost

every ! 2 ˝input, .ms � mt/t�s�T is a QGt;input
! -martingale may be shown as in the proof of

Lemma 1.40. The fact that .xs; ys; .	; 	
0/s;ms � mt/t�s�T solves the FBSDE (1.5) may be

also shown as in the proof of Lemma 1.40. ut

1.3.2 Small Time Solvability and Decoupling Field

One of the main motivation underpinning the restarting procedure discussed above is
the fact that Cauchy-Lipschitz theory for FBSDEs holds in small time only, and that
we shall need sharp tools if we want to piece together solutions on small intervals in
order to construct solutions on large intervals with prescribed lengths. We shall use
the following assumption on the coefficients:

Assumption (Lipschitz FBSDE in Random Environment). There exist two
nonnegative constants L and � such that:

(A1) For any t 2 Œ0;T� and any � 2 X ,

jB.t; 0; �; 0; 0; 0/j C j˙.t; 0; �/j C j˙0.t; 0; �/j
C jF.t; 0; �; 0; 0; 0/j C jG.0; �/j � �

�
1C d.0X ; �/

�
;

for some 0X 2 X .

(A2) For each t 2 Œ0;T� and each � 2 X , the functions B.t; �; �; �; �; �/,
F.t; �; �; �; �; �/, ˙.t; �; �/, ˙0.t; �; �/ and G are L-Lipschitz continuous
on their own domain.

Then, on any admissible set-up .˝;F ;F;P/ equipped with some .G;W0;�;W/,
the FBSDE (1.5) with X0 2 L2.˝;G;PIRd/ as initial condition has a unique
solution when the time horizon T is less than some c > 0, c only depending on
the Lipschitz constant of the coefficients. We refer to Theorem 1.45 right below for
a precise statement.
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As we see repeatedly throughout the book, it is sometimes possible to iterate the
small time solvability result. As it might be easily guessed, the iteration argument
consists in restarting the forward process along a sequence of initial times with
a sufficiently small step. We already used this argument in Chapter (Vol I)-4 for
handling FBSDEs with a deterministic environment �. The argument in the case
when � is random is made clear at the end of the subsection.

Small Time Solvability
We start with a stability result.

Theorem 1.45 Consider a filtered probability space .˝;F ;F;P/ together with
two sub-� -algebras G and G0 and a tuple .W0;�;�0;W/ such that .˝;F ;F;P/
equipped with .G;W0;�;W/ and .˝;F ;F;P/ equipped with .G0;W0;�0;W/ form
admissible set-ups.

For a tuple of coefficients .B; ˙;˙0;F;G/ satisfying assumption Lipschitz
FBSDE in Random Environment, there exists a constant c > 0, only depending
on the Lipschitz constant of the coefficients, such that, for T � c and any
X0 2 L2.˝;G;PIRd/, the FBSDE (1.5) has a unique solution .X;Y;Z;Z0;M/ on
.˝;F ;F;P/ equipped with .G;W0;�;W/.

In addition to .B; ˙;˙0;F;G/, consider coefficients .B0; ˙ 0; ˙00;F0;G0/, also
satisfying assumption Lipschitz FBSDE in Random Environment with the same
constants. Then, there exist a constant � � 0, only depending on the Lipschitz con-
stant of the coefficients, such that, for T � c, for any X0 2 L2.˝;G;PIRd/ and X0

0 2
L2.˝;G0;PIRd/, the unique solutions .X;Y;Z;Z0;M/ and .X0;Y0;Z0;Z00;M0/ of
the corresponding FBSDEs (1.5), with X0 and X0

0 as respective initial conditions
and with .G;W0;�;W/ and .G0;W0;�0;W/ as respective inputs, satisfy:

E

�

sup
0�t�T

�jXt � X0
t j2 C jYt � Y 0

t j2 C jMt � M0
t j2
�

C
Z T

0

�jZt � Z0
t j2 C jZ0t � Z00t j2�dt

ˇ
ˇ
ˇF0

	

� � E

�

jX0 � X0
0j2 C ˇ

ˇG.XT ; �T
� � G0.XT ; �

0
T/
ˇ
ˇ2 (1.19)

C
Z T

0

ˇ
ˇ
�
B;F; ˙;˙0

��
t;Xt; �t;Yt;Zt;Z

0
t

�

� �
B0;F0; ˙ 0; ˙00��t;Xt; �

0
t;Yt;Zt;Z

0
t

�ˇ
ˇ2dt

ˇ
ˇ
ˇF0

	

:

Proof. The proof is pretty standard and is similar to the proof given in Section (Vol I)-4.2 for
the short time solvability of FBSDEs of the McKean-Vlasov type. We provide it for the sake
of completeness.
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First Step. We start with the existence and uniqueness, for a given initial condition
X0 2 L2.˝;G;PIRd/. Throughout the proof, we use the notation S

2;d for the space of
F-progressively measurable continuous processes whose supremum norm on Œ0; T� is square-
integrable.

For an element X D .Xt/0�t�T 2 S
2;d starting from X0, we call .Y;Z;Z0;M/ D

.Yt; Zt; Z0t ;Mt/0�t�T the solution of the BSDE:

dYt D �F
�
t;Xt; �t; Yt; Zt; Z

0
t

�
dt C ZtdWt C Z0t dW0

t C dMt; t 2 Œ0; T�; (1.20)

with the terminal condition YT D G.XT ; �T/. The tuple .Y;Z;Z0;M/ is progressively
measurable with respect to F. Its existence and uniqueness are guaranteed by the result of
Example 1.20.

With this .Y;Z/ 2 H
2;m � H

2;m�d, we associate the solution NX D . NXt/0�t�T of the SDE:

d NXt D B
�
t; NXt; �t; Yt; Zt; Z

0
t

�
dt

C˙
�
t; NXt; �t

�
dWt C˙0

�
t; NXt; �t

�
dW0

t ; t 2 Œ0; T�;

with X0 as initial condition. Obviously, NX is F-progressively measurable. In this way, we
created a map:

˚ W S2;d 3 X 7! NX 2 S
2;d:

Our goal is now to prove that ˚ is a contraction when T is small enough.
Given two inputs X1 and X2 in S

2;d, with X0 as common initial condition, we denote by
.Y1;Z1;Z0;1;M1/ and .Y2;Z2;Z0;2;M2/ the solutions of the BSDE (1.20) when X is replaced

by X1 and X2 respectively. Moreover, we let NX1 D ˚.X1/ and NX2 D ˚.X2/. Then, following
the proof of Example 1.20, we can find a constant C � 0, depending on L in MKV FBSDE
in Small Time such that, for T � 1:

E

� Z T

0

�
jY1t � Y2t j2 C jZ1t � Z2t j2 C jZ0;1t � Z0;2t j2

�
dt

	

� CE

h
sup
0�t�T

jX1t � X2t j2
i
:

Also, it is well checked that for a possibly new value of the constant C:

E

h
sup
0�t�T

j NX1t � NX2t j2
i

� CTE
Z T

0

�
jY1t � Y2t j2 C jZ1t � Z2t j2 C jZ0;1t � Z0;2t j2

�
dt;

so that, increasing the constant C if needed, we get:

E

h
sup
0�t�T

j NX1t � NX2t j2
i

� CTE
h

sup
0�t�T

jX1t � X2t j2
i
;

which proves that ˚ is a contraction when T is small enough.

Second Step. The proof of (1.19) is pretty similar. Repeating the analysis of Example 1.20,
but working with the conditional expectation with respect to F0 instead of the expectation
itself, we first check that:
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E

� Z T

0

�jYt � Y 0
t j2 C jZt � Z0

t j2 C jZ0t � Z00t j2�dt
ˇ
ˇ
ˇF0

	

� � E

�

sup
0�t�T

jXt � X0
t j2 C ˇ

ˇG.XT ; �T
� � G0.XT ; �

0
T/
ˇ
ˇ2 (1.21)

C
Z T

0

ˇ
ˇF
�
t;Xt; �t; Yt; Zt; Z

0
t

� � F0
�
t;Xt; �

0
t ; Yt; Zt; Z

0
t

�ˇ
ˇ2dt

ˇ
ˇ
ˇF0

	

;

for a constant � only depending on L.
As above, it is pretty standard to compare the forward processes X and X0. We get:

E

h
sup
0�t�T

jXt � X0
t j2 jF0

�

� � E

�

jX0 � X0
0j2 C T

Z T

0

�jYt � Y 0
t j2 C jZt � Z0

t j2 C jZ0t � Z00t j2�dt

C
Z T

0

ˇ
ˇ.B; ˙;˙0/

�
t;Xt; �t; Yt; Zt; Z

0
t

�

� .B0; ˙ 0; ˙00/
�
t;Xt; �

0
t ; Yt; Zt; Z

0
t

�ˇ
ˇ2dt

ˇ
ˇ
ˇF0

	

:

(1.22)

Collecting (1.21) and (1.22), we deduce that, for T small enough:

E

�

sup
0�t�T

jXt � X0
t j2 C

Z T

0

�jYt � Y 0
t j2 C jZt � Z0

t j2 C jZ0t � Z00t j2�dt
ˇ
ˇ
ˇF0

	

� � E

�

jX0 � X0
0j2 C ˇ

ˇG.XT ; �T
� � G0.XT ; �

0
T/
ˇ
ˇ2

C
Z T

0

ˇ
ˇ
�
B;F; ˙;˙0

��
t;Xt; �t; Yt; Zt; Z

0
t

�

� �
B0;F0; ˙ 0; ˙00

��
t;Xt; �

0
t ; Yt; Zt; Z

0
t

�ˇ
ˇ2dt

ˇ
ˇ
ˇF0

	

:

(1.23)

Returning to (1.8) in the proof of Example 1.20, we easily deduce that EŒtrace.ŒM�M0�T/jF0�
is also bounded by the right-hand side of the above inequality. By conditional Doob’s
inequality, we deduce that the same holds true for EŒsup0�t�T jMt � M0

t j2jF0�.
Now, by Burkholder-Davis-Gundy inequality for càd-làg martingales, the bound also

holds true for EŒsup0�t�T jYt � Y 0
t j2jF0�. ut

Decoupling Field
As already discussed in the frameworks of standard FBSDEs in Chapter (Vol I)-4
and of McKean-Vlasov FBSDEs in Chapter (Vol I)-6, a challenging question
concerns the possible extension of the short time solvability result to time intervals
with arbitrary lengths. The standard procedure presented in Chapter (Vol I)-4 relies
on an induction argument based on the properties of the so-called decoupling field.
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Basically, the decoupling field permits to reproduce, at any time t 2 Œ0;T�, the role
played by the terminal condition G at time T . The following result captures the
flavor of this fact.

Proposition 1.46 Under assumption FBSDE in Random Environment, assume
that for some t 2 Œ0;T�, the FBSDE (1.5) satisfies the strong uniqueness property
on any t-initialized admissible set-up with an input .�0; .W0

s ; �s;Ws/t�s�T/, the
random variable �0 taking values in a prescribed auxiliary Polish space S and
the law of .�0;W0;�/ being also prescribed. Assume also that, on any t-initialized
admissible set-up .˝;F ;F;P/ equipped with some .W0;�;W/ and no initial
information, for any initial condition x 2 R

d at time t, (1.5) has a (unique) solution
.Xt;x;Yt;x;Zt;x;Z0;t;x;Mt;x/, and there exists a constant � � 0 such that, for any
x; x0 2 R

d,

P
�jYt;x

t � Yt;x0

t j � � jx � x0j� D 1: (1.24)

Then, letting N̋ 0;t D C.Œt;T�IRd/ � D.Œt;T�IX / and denoting by .w0s ; �s/t�s�T the
canonical process on N̋ 0;t, there exists a mapping Ut W Rd �P2. N̋ 0;t/� N̋ 0;t ! R

m,
measurable with respect to B.Rd/˝ B.P2. N̋ 0;t//˝ \">0�fw0s ; �sI t � s � t C "g,
such that, for any solution .Xs;Ys;Zs;Z0s ;Ms/t�s�T of the FBSDE (1.5) constructed
on a t-initialized set-up .˝;F ;F;P/ with some .�0;W0

s ; �s;Ws/t�s�T , �0 taking
values in S and .�0;W0;�/ following the prescribed distribution, it holds that:

P

h
Yt D Ut

�
Xt;L

�
.W0

s � W0
t ; �s/t�s�T j�0; �t

�
; .W0

s � W0
t ; �s/t�s�T

�i
D 1;

where L..W0
s � W0

t ; �s/t�s�T j�0; �t/ denotes the conditional law of .W0
s �

W0
t ; �s/t�s�T given .�0; �t/. Moreover, Ut is � -Lipschitz continuous in the space

variable x 2 R
d.

Remark 1.47 The random variable Ut.x; NP0; �/ is constructed for x 2 R
d and NP0

a probability measure on N̋ 0;t. As shown by the proof, it suffices to construct it
for NP0 a probability measure under which .w0s /t�s�T is a d-dimensional Brownian
motion starting from 0 at time t with respect to the natural filtration generated by
.w0s ; �s/t�s�T . Otherwise, the random variable Ut.x; NP0; �/ is useless and may be
defined in an arbitrary way.

Proof. Given t 2 Œ0; T�, we consider a probability measure NP0 on N̋ 0;t D C.Œt; T�IRd/ �
D.Œt; T�IX / equipped with its Borel � -field and the canonical process .w0s ; �s/t�s�T , such
that .w0s /t�s�T is a d-dimensional Brownian motion starting from 0with respect to the natural
filtration generated by .w0s ; �s/t�s�T . With a slight abuse of notation, we still denote by NP0 the
extension of NP0 to the completion of the Borel � -field. The complete and right-continuous
augmentation of the canonical filtration is denoted by NF0;t, imitating the notations used in
(1.16). We then construct an admissible set-up of the product form by following the procedure
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described at the end of Subsection 1.2.3, see for instance page 41. We let N̋ 1;t D C.Œt; T�IRd/

and we equip it with the completion of the Wiener measure NP1 D W t
d and with the complete

and right-continuous filtration NF1;t D . NF1;t
s /t�s�T generated by the canonical process. On

the product space N̋ t D N̋ 0;t � N̋ 1;t, endowed with the completion NP of the product measure
NP0 ˝ NP1, we consider the filtration NFt D . NF t

s D .\">0
NF0;t

sC"
˝ NF1;t

sC"
/ _ N /t�s�T , where N

denotes the collection of NP null sets.

First Step. We first notice that, for any event C 2 NF t
t , there exists an event C0 2 NF0;t

t

such that the symmetric difference between C and C0 � N̋ 1;t has zero probability under NP.
Consider indeed such an event C and assume without any loss of generality that it belongs
to \">0

NF0;t
tC"

˝ NF1;t
tC"

. As in the proof of Blumenthal’s zero-one law, observe that C is

independent of any event of the form N̋ 0;t � D, with D 2 NF1;t
T . More generally, for any

C0 2 NF0;t
t , C \ .C0 � N̋ 1;t/ is independent of any event of the same form N̋ 0;t � D, so that:

NP
��

C0 � D
� \ C

�
D NP

��
C0 � N̋ 1;t� \ C

� NP� N̋ 0 � D
�
:

Then,

Z

N̋ 0;t

�
E

NP1
�
1C.!

0; �/1D
� � E

NP1
�
1C.!

0; �/�ENP1
�
1D
��

1C0 .!
0/d NP0.!0/ D 0:

By Fubini’s theorem, the integrand is NF0;t
t -measurable in !0. Therefore, for NP0-almost every

!0, we have that C!0 D f!1 2 N̋ 1;t W .!0; !1/ 2 Cg is independent of D. By choosing D in
a countable generating �-system of the Borel � -field on N̋ 1;t, we deduce that, for NP0-almost
every !0, C!0 is independent of NF1;t

T (and thus of itself), that is:

E
NP1
�
1C.!

0; �/� D NP1�C!0
� D 0 or 1:

Now, let us define C0 D f!0 W E
NP1 Œ1C.!

0; �/� D 1g. Clearly C0 2 NF0;t
t and

NP.C/ D
Z

N̋0;t
E

NP1
�
1C.!

0; �/�d NP0.!0/ D
Z

N̋0;t
1C0 .!

0/E
NP1
�
1C.!

0; �/�d NP0.!0/

D NP�C \ .C0 � N̋ 1;t/�;

which is also equal to NP0.C0/ D NP.C0 � N̋ 1;t/. Finally, we have:

NP.C/ D NP�C0 � N̋ 1;t� D NP�C \ .C0 � N̋ 1;t/�;

which is the desired result.

Second Step. As an application, consider an NFt-measurable random variable X (with values
in R) and call QX another random variable, measurable with respect to \">0

NF0;t
tC"

˝ NF1;t
tC"

, such

that NP.X D QX/ D 1. For such an QX, let:

Y.!0/ D
Z

N̋ t

QX.!0; !1/d NP1.!1/; !0 2 N̋ 0;t;
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which is an NF0;t
t -measurable random variable. Let us now choose C D f.!0; !1/ W Y.!0/ �

QX.!0; !1/g 2 NF t
t . Then, with the same notation as above, we have, for NP0-almost every !0,

NP1.C!0 / 2 f0; 1g. Since:

0 D E
NP1
�� QX.!0; �/ � Y.!0/

��

D E
NP1
�� QX.!0; �/ � Y.!0/

�
1C!0

�C E
NP1
�� QX.!0; �/ � Y.!0/

��
1 � 1C!0

��
;

we must have NP1.C!0 / D 1 as otherwise we would have 0 < 0. Regarding Y as a random
variable constructed on N̋ t, we deduce that NP.Y � QX/ D 1 and by symmetry, that NP.Y D
QX/ D 1. In the end, we have NP.Y D X/ D 1.

Here is a typical example for Y . On the set-up formed by . N̋ ; NF; NP/, the process
.w0s ; �s;ws/t�s�T is compatible with the filtration . NF t

s/t�s�T for the probability NP. The proof
is obvious since . NF t

s/t�s�T is precisely the complete and right-continuous augmentation of
the filtration generated by .w0s ; �s;ws/t�s�T . Therefore, we can use this set-up in order to
solve the FBSDE (1.5) with some x 2 R

d as initial condition and with no initial information.
We then call yt;x

t the initial value of the backward process. By construction, it is an NF t
t -

measurable random variable and, by what we just proved, it is almost surely equal to a
\">0

NF0;t
tC"

-measurable random variable.

Third Step. We now construct Ut. As a starter, we recall that we can find a measurable
mapping L from R

d � X into Œ0; 1� such that B.Rd � X / D fL�1.B/I B 2 B.Œ0; 1�/g. See
Theorem 6.5.5 in [64]. For any n � 0, we call .Ak;n/0�k<2n the dyadic partition of Œ0; 1�.
Then .L�1.Ak;n//0�k<2n is a partition of Rd � X and, if we call Hn the � -field generated by
.L�1.Ak;n//0�k<2n , then, Hn � HnC1 and

W
n�1Hn D B.Rd � X /.

Now, for a new integer p � 1 and for any tuple k D .k1; � � � ; kN/ 2 f0; � � � ;N � 1gN ,
with N D 2n, we let Cp

k;n D f.w0tC.T�t/`=.pN/; �tC.T�t/`=.pN// 2 L�1.Ak`;n/; ` D 0; � � � ;Ng �
N̋ 0;t. If we call Gp;n the � -field generated by .Cp

k;n/k2f0;��� ;N�1gN , then Gp;n � Gp;nC1 and
W

n�1 Gp;nC1 D �fw0s ; �sI t � s � t C .T � t/=pg. We then let:

Un;p
t

�
x; NP0; .w0s ; �s/t�s�T

�

D
X

k2f0;��� ;N�1gN

1

NP0.Cp
k;n/

NE�1C
p
k;n� N̋ 1;t y

t;x
t

�
1fNP0.C

p
k;n/>0g

1C
p
k;n

�
.w0s ; �s/t�s�T

�
:

We notice that the map Un;p
t is jointly measurable with respect to B.Rd/ � B.P2. N̋ 0;t// �

�f.w0s ; �s/I t � s � t C .T � t/=pg, which follows from the fact that the mapping which
takes .x; NP0/ to the law of the solution under the input ıx ˝ NP0 ˝ W t

d is measurable. See
Proposition 1.31. Moreover, NP0-almost surely,

Un;p
t

�
x; NP0; �� D NE�yt;x

t jGp;n
�
:

We then let:

Up
t

�
x; NP0; .w0s ; �s/t�s�T

�

D
(

limn!1 Un;p
t

�
x; NP0; .w0s ; �s/t�s�T

�
whenever the limit exists,

0 otherwise:
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Then, Up
t is also jointly measurable with respect to B.Rd/ � B.P2. N̋ 0;t// � �f.w0s ; �s/I t �

s � tC.T�t/=pg. Moreover, NP0-almost surely, Un;p
t .x; NP0; �/ converges to the random variable

NEŒyt;x
t j�fw0s ; �sI t � s � t C .T � t/=p/g�, which is almost surely equal to Qyt;x

t and thus yt;x
t ,

where Qyt;x
t is a version of yt;x

t which is measurable with respect to \">0�fw0s ; �sI t � s � tC"g.
Next we set:

Ut
�
x; NP0; .w0s ; �s/t�s�T

�

D
(

limp!1 Up
t

�
x; NP0; .w0s ; �s/t�s�T

�
whenever the limit exists,

0 otherwise:

Ut is jointly measurable with respect to B.Rd/ � B.P2. N̋ 0;t// � \p�1�f.w0s ; �s/I t � s �
t C .T � t/=pg and, NP0-almost surely, Ut.x; NP0; �/ is equal to yt;x

t .
By the stability property (1.19), we easily deduce that, for any two different x; x0 2 R

d ,
NP0-almost surely, jUt.x; NP0; �/ � Ut.x0; NP0; �/j � Cjx � x0j, for a universal constant C. In
particular, under NP0, we can choose a modification of each Ut.x; NP0; �/ for x 2 R

d, such that
the mapping Ut.�; NP0; �/ is C-Lipschitz continuous in x.

Fourth Step. It remains to check that the decoupling field has the required representation
property. This is a consequence of the disintegration Lemma 1.43 and the uniqueness in law
property. Indeed, consider a solution .Xs; Ys; Zs; Z0s ;Ms/t�s�T defined on an arbitrary set-up
equipped with some .W0

s ; �s;Ws/t�s�T and with some �f�0g as initial information, where �0
is a random variable taking values in an auxiliary Polish space S.

With the same notation as in the statement of Lemma 1.43, this solution can be also trans-
ferred into a solution .x; y; z; z0;m/ on the space ˝input D S � C.Œt; T�IRd/ � D.Œt; T�IX / �
C.Œt; T�IRd/ equipped with the law Qinput of .�0;W0

s ; �s;Ws/t�s�T . For Qinput-almost every
! 2 ˝input, we know from Lemma 1.43 that, under the regular conditional probability Q!;input

of Qinput given �f�0; �tg, the process .x; y; z; z0;m/ is a solution of (1.40) with xt.!/ as initial
(deterministic) condition and no initial information, the input having ıxt.!/ ˝ Q

0
!;input ˝ W t

d

as distribution, where Q
0
!;input denotes the law of .w0s ; �s/t�s�T under Q!;input. Here, with a

slight abuse of notation, �0 also denotes the canonical mapping ˝input ! S. By the third
step, we deduce that Q!;inputŒyt D U.xt;Q

0
!;input; .w

0
s � w0t ; �s/t�s�T/� D 1, where we used

the fact that Q!;inputŒw0t D 0� D 1. Using once again the fact that QinputŒw0t D 0� D 1,
we observe that ˝input 3 ! 7! Q

0
!;input coincides with the law of .w0s � w0t ; �s/t�s�T

under Q!;input. Therefore, we must have, with probability 1 on the original set-up, that
Yt D Ut.Xt;L..W0

s � W0
t ; �s/t�s�T j�0; �t/; .W0

s � W0
t ; �s/t�s�T/. ut

Remark 1.48 The reader must keep in mind the fact that Y0 is not necessarily
deterministic, even when X0 is deterministic. Of course, it is deterministic when
the � -field F0 is almost surely trivial, which is the case when F is generated by W0

and W. However, it is easy to construct examples for which � is not adapted to the
filtration generated by W0 and W, and for which Y0 is random.

For instance, if d D 1 and X has the dynamics:

dXt D sign
�
�t
�
dt; t 2 Œ0; 1� I X0 D 0;

where �t D t�1 and �1 is a symmetric Bernoulli random variable with values in
f�1; 1g, .�t/0�t�1 is a continuous process and X1 D �1.
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Now, constructing �1 on the canonical space ˝ D f�1; 1g equipped with P D
1
2
ı�1 C 1

2
ı1, the right continuous filtration generated by .�t/0�t�1 is equal to .Ft D

�f�1g/0�t�1. In particular, for a given Borel-measurable function g W R ! R, it
holds that EŒg.X1/jF0� D g.�1/, which is obviously random. Since EŒg.X1/jF0�
should be interpreted as Y0, this is an example for which Y0 is not deterministic.

Remark 1.49 Whenever .�s/t�s�T is adapted to the filtration generated by �0
and .W0

s /t�s�T , Ut.x;L..W0
s ; �s/t�s�T j�0; �t/; .W0

s ; �s/t�s�T/ in the representation
formula for Yt should merely write Ut.x;L..W0

s ; �s/t�s�T j�0/; �0/. The reason is
that the � -field \">0�fw0s ; �sI t � s � t C "g is included in \">0�fw0s ; �0I t � s �
t C "g, which is almost surely equal to �f�0g by Blumenthal’s zero-one law.

In practice, we shall use Proposition 1.46 in the following form.

Proposition 1.50 Assume that .Xs;Ys;Zs;Z0s ;Ms/0�s�T is a solution of (1.5)
on Œ0;T� constructed on some 0-initialized admissible set-up .˝;F ;F;P/ with
.X0;W0;�;W/ as input, X0 denoting the initial condition. Then, for any time
t satisfying the required conditions for any choice of S in the statement of
Proposition 1.46, it holds that:

P

�

Yt D Ut




Xt;L
��

W0
s � W0

t ; �s
�

t�s�T

ˇ
ˇFnat;.X0;W0;�/

t

�
;

.W0
s � W0

t ; �s/t�s�T

�	

D 1:

Proof. We may regard .Xs; Ys; Zs; Z0s ;Ms/0�s�T as a solution of (1.5) on the interval
Œt; T� for the t-initialized admissible set-up .˝;F ; .Fs/t�s�T ;P/ with .G D �fXtg _
Fnat;.X0;W;�;W/

t ; .W0
s � W0

t ; �s;Ws � Wt/t�s�T/ as input. Admissibility of the set-up follows

from Lemma 1.37 and from the fact that the set-up equipped with .Fnat;.X0;W;�;W/
t ; .W0

s �
W0

t ; �s;Ws � Wt/t�s�T/ is admissible.
Observe that, here, the initial information is generated by the random variable

�0 D .X0;Xt; .W
0
s ; �s;Ws/0�s�t/:

Now, Proposition 1.46 implies:

P

�

Yt D Ut




Xt;L
��

W0
s � W0

t ; �s
�

t�s�T

ˇ
ˇ �fXtg _ Fnat;.X0;W0;�;W/

t

�
;

.W0
s � W0

t ; �s/t�s�T

�	

D 1;

which is not exactly the required identity because the � -field in the conditional law is not the
right one. In order to complete the proof, we notice that by continuity of X, �fXtg � W

s<t Fs.
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Also, we observe by compatibility that for any s < t, Cs 2 Fs, Bt 2 Fnat;.X0;W0;�;W/
t and

BT 2 Fnat;.W0;�/
T :

P
�
Cs \ Bt \ BT

� D E

h
P
�
CsjF .X0;W0;�;W/

s

�
1Bt\BT

i

D E

h
P
�
CsjFnat;.X0;W0;�;W/

sC

�
1Bt\BT

i
;

so that:

P
�
Cs \ BT jFnat;.X0;W0;�;W/

t

� D P
�
CsjFnat;.X0;W0;�;W/

sC

�
P
�
BT jFnat;.X0;W0;�;W/

t

�
;

where we use the fact that, for s < t, Fnat;.X0;W0;�;W/
sC � Fnat;.X0;W0;�;W/

t . In particular,

P
�
CsjFnat;.X0;W0;�;W/

t

� D P
�
CsjFnat;.X0;W0;�;W/

sC

�
;

and then:

P
�
Cs \ BT jFnat;.X0;W0;�;W/

t

� D P
�
CsjFnat;.X0;W0;�;W/

t

�
P
�
BT jFnat;.X0;W0;�;W/

t

�
;

which shows that Fs and Fnat;.W0;�/
T are conditionally independent given Fnat;.X0;W0;�;W/

t . In

particular,
W

s<t Fs and Fnat;.W0;�/
T are conditionally independent on Fnat;.X0;W0;�;W/

t .

This shows that the conditional law of .W0;�/ given �fXtg _ Fnat;.X0;W0;�;W/
t is the same

as the conditional law of .W0;�/ given Fnat;.X0;W0;�;W/
t . By independence of .X0;W0;�/ and

W, this is also the conditional law of .W0;�/ given Fnat;.X0;W0;�/
t . ut

1.3.3 Induction Procedure

Throughout this subsection, we assume that assumption Lipschitz FBSDE in
Random Environment is in force.

General Mechanism
As we already alluded to, one generic way for solving an FBSDE of the type (1.5) is
to iterate the small time solvability Theorem 1.45. The iterative procedure consists
in constructing the decoupling field by means of a backward induction.

The main steps of the induction are as follows. Assuming that T is arbitrarily
fixed, we are given an admissible probabilistic set-up .˝;F ;F;P/ equipped with
an input process of the form .X0;W0;�;W/. From Theorem 1.45, we know that
we can find a constant ı > 0, only depending upon the Lipschitz constant of

the coefficients, such that, for any square-integrable and Fnat;.X0;W0;�;W/
T�ı -measurable

initial condition 
 , (1.5), regarded as an FBSDE defined on the .T � ı/-initialized
set-up .˝;F ; .Fs/T�ı�s�T ;P/ with

�
Fnat;.X0;W0;�;W/

T�ı ; .W0
s � W0

T�ı; �s;Ws � WT�ı/T�ı�s�T
�
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as input, has a unique solution

.XT�ı;
;.1/
s ;YT�ı;
;.1/

s ;ZT�ı;
;.1/
s ;Z0;T�ı;
;.1/

s ;MT�ı;
;.1/
s /T�ı�s�T

with 
 as initial condition. Indeed, the filtration .Fs/T�ı�s�T is compatible with the
filtration generated by the process .W0

s � W0
T�ı; �s;Ws � WT�ı/T�ı�s�T and the

� -field Fnat;.X0;W0;�;W/
T�ı .

By Propositions 1.46 and 1.50, there exists a mapping

UT�ı W Rd � P2. N̋ 0;T�ı/˝ N̋ 0;T�ı ! R
m; (1.25)

measurable with respect to the � -field B.Rd/ ˝ B.P2. N̋ 0;T�ı// ˝ \">0�fw0s ; �sI
T � ı � s � T � ı C "g, Lipschitz continuous in x 2 R

d, uniformly in the other
variables, such that, with probability one,

YT�ı;
;.1/
T�ı D UT�ı

�

;L

�
.W0

s � W0
T�ı; �s/T�ı�s�T jFnat;.X0;W0;�/

T�ı
�
;

.W0
s � W0

T�ı; �s/T�ı�s�T

�
:

In particular, if we define VT�ı W Rd �˝ ! R
m by:

VT�ı
�
x; �/ D UT�ı

�
x;L

�
.W0

s � W0
T�ı; �s/T�ı�s�T jFnat;.X0;W0;�/

T�ı
�
;

.W0
s � W0

T�ı; �s/T�ı�s�T

�
;

for x 2 R
d, then, by a standard composition argument, the mapping VT�ı is B.Rd/˝

Fnat;.X0;W0;�/

.T�ı/C -measurable.
Below, we denote by �T�ı the Lipschitz constant of UT�ı (and thus of VT�ı)

in x. Keep in mind that we shall not always specify the dependence upon ! in the
random field VT�ı . As a representation formula for YT�ı;
;.1/

T�ı , we shall just write

YT�ı;
;.1/
T�ı D VT�ı.
/.

Importantly, we claim that this representation formula remains true, with the
same random field VT�ı , when 
 is assumed to be

W
s<T�ı Fs-measurable, or more

generally when 
 is independent of �fW0
s �W0

T�ı; �sI T�ı � s � Tg conditional on

Fnat;.X0;W0;�;W/
T�ı . In that case, we must incorporate 
 as part of the initial information,

so we can apply Proposition 1.46, with �0 D .X0; 
; .W0
s ; �s;Ws/0�s�T�ı/ as

a random variable generating the initial information. As in the proof of Propo-
sition 1.50, the compatibility of the process .�0; .W0

s ; �s;Ws/T�ı�s�T/ with the
filtration .Fs/T�ı�s�T , and more generally the admissibility of the set-up, are
consequences of Lemma 1.37. What we have to prove is that this new definition of
�0 does not change the decoupling field. Arguing as in the proof of Proposition 1.50,
we can prove that the conditional law of .W0

s � W0
T�ı; �s/T�ı�s�T given �0 is the

same as the conditional law of .W0
s � W0

T�ı; �s/T�ı�s�T given .X0;W0
s ; �s/0�s�T�ı .
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The goal is now to iterate the argument and solve the FBSDE (1.5) with T � ı

as terminal time, YT�ı D VT�ı.XT�ı/ as terminal condition at time T � ı and
.Fs/0�s�T�ı as underlying filtration. This is possible in small time, that is on an
interval ŒT � .ı C ı0/;T � ı�, for some ı0 > 0 depending upon L (the Lipschitz
constant of the coefficients) and �T�ı . This follows again from Theorem 1.45
but with the slight difference that the terminal condition VT�ı now depends on
the whole trajectory .X0;W0;�/ up until time .T � ı/C, and not only on �T�ı .
Intuitively, what happens is that the environment at the final time T � ı is the whole
trajectory .X0;W0;�/. The reader may check that Theorem 1.45 still applies in this
more general setting. Notice that things would have been obvious had the terminal
condition depended on the whole path .X0;W0;�/ up until time .T � ı/ only. One
way is to see the whole path .X0;W0;�/ as the environment at the terminal time,
and to rewrite the equation on ŒT � .ı C ı0/;T� instead of ŒT � .ı C ı0/;T � ı�,
with B.s; �/ replaced by B.s; �/1ŒT�.ıCı0/;T�ı0/.s/ and the same for F,˙ and˙0. The
equation is then solved on ŒT � .ı C ı0/;T� and not on ŒT � .ı C ı0/;T � ı�. Since
the coefficients are null between T � ı and T , there is no difficulty for applying
Theorem 1.45 when ı0 is small enough.

Given a square-integrable and Fnat;.X0;W0;�;W/
T�.ıCı0/

-measurable random variable 
 ,

(1.5) has a unique solution, with 
 as initial condition, Fnat;.X0;W0;�;W/
T�.ıCı0/

as initial
information and

YT D VT�ı
�
XT�ı

�

as terminal condition at time T , on the .T � .ı C ı0//-initialized set-up

�
˝;F ; .Fs/T�.ıCı0/�s�T ;P

�

equipped with

�
Fnat;.X0;W0;�;W/

T�.ıCı0/
; .W0

s � W0
T�.ıCı0/; �s;Ws � WT�.ıCı0/

�

T�.ıCı0/�s�T/:

Taking the conditional expectation given FT�ı in the backward equation of (1.5),
we get, as required, YT�ı D VT�ı.XT�ı/, since the coefficients in the backward
equation are null between T � ı and T . The solution is denoted by:

�
XT�.ıCı0/;
;.2/

s ;YT�.ıCı0/;
;.2/
s ;ZT�.ıCı0/;
;.2/

s ;

Z0;T�.ıCı0/;
;.2/
s ;MT�.ıCı0/;
;.2/

s

�

T�.ıCı0/�s�T
:

Notice that the process .YT�.ıCı0/;
;.2/
s ;MT�.ıCı0/;
;.2/

s /T�.ıCı0/�s�T has trajectories
in D.ŒT � .ı C ı0/;T�IRm � R

m/, but the restriction of the trajectories to ŒT � .ı C
ı0/;T � ı� are not in D.ŒT � .ı C ı0/;T � ı�IRm � R

m/. Indeed we usually assume
that paths in D.Œa; b�IRm � R

m/ are left-continuous at terminal time b.
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We now glue the solution constructed on ŒT � .ı C ı0/;T � ı� with the solution
previously constructed on ŒT � ı;T�. At time T � ı, we consider XT�.ıCı0/;
;.2/

T�ı
as initial condition for the problem set over ŒT � ı;T� with �fXT�.ıCı0/;
;.2/

T�ı g _
Fnat;.X0;W0;�;W/

T�ı as initial information. The solution reads:

�
X

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s ;Y

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s ;Z

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s ;

Z
0;T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s ;M

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s

�

T�ı�s�T
:

By continuity of the paths of X, XT�.ıCı0/;
;.2/

T�ı is
W

s<T�ı Fs-measurable and by
definition of the decoupling field at time T � ı, we must have:

Y
T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/

T�ı D VT�ı
�

X
T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/

T�ı
�

D VT�ı
�

XT�.ıCı0/;
;.2/

T�ı
�

D YT�.ıCı0/;
;.2/

T�ı :

Therefore, letting

XT�.ıCı0/;

s D

(
XT�.ıCı0/;
;.2/

s if s 2 ŒT � .ı C ı0/;T � ı�;
X

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s if s 2 .T � ı;T�;

with similar definitions for Y, Z, and Z0 with X replaced by Y, Z and Z0 respectively,
if we set:

MT�.ıCı0/;

s D

(
MT�.ıCı0/;
;.2/

s if s 2 ŒT � .ı C ı0/;T � ı�;
M

T�ı;XT�.ıCı0/;
;.2/

T�ı ;.1/
s C MT�.ıCı0/;
;.2/

T�ı if s 2 .T � ı;T�;

then we get that

�
XT�.ıCı0/;


s ;YT�.ıCı0/;

s ;ZT�.ıCı0/;


s ;

Z0;T�.ıCı0/;

s ;MT�.ıCı0/;


s

�

T�.ıCı0/�s�T

is a solution of (1.5) on ŒT � .ı C ı0/;T�, with XT�.ıCı0/ D 
 as initial condition.
As already explained, the argument extends to the case when 
 is

W
s<T�.ıCı0/ Fs-

measurable choosing .X0; 
; .W0
s ; �s;Ws/0�s�T�.ıCı0// as initial information.

We emphasize that the solution we constructed with 
 as initial condition at time
T � .ıC ı0/ and with the corresponding initial information must be unique. Indeed,
any other solution .X0;Y0;Z0;Z00;M0/ must also satisfy Y 0

T�ı D VT�ı.X0
T�ı/.
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Uniqueness is then proved in two steps: first on ŒT � .ı C ı0/;T � ı� and then
on ŒT � ı;T�. We refer to Subsection (Vol I)-4.1.2 for a complete account in the
standard case without random environment.

So, we proved that, for any square-integrable and Fnat;.X0;W0;�;W/
T�.ıCı0/

-measurable
random variable 
 , the FBSDE (1.5) has a unique solution on ŒT � .ı C ı0/;T�
with 
 as initial condition at time T � .ıC ı0/, Fnat;.X0;W0;�;W/

T�.ıCı0/
as initial information

and

YT D G
�
XT ; �T

�

as terminal condition at time T , on the .T � .ı C ı0//-initialized set-up
.˝;F ; .Fs/T�.ıCı0/�s�T ;P/ equipped with

�
Fnat;.X0;W0;�;W/

T�.ıCı0/
; .W0

s � W0
T�.ıCı0/; �s;Ws � WT�.ıCı0//

�

T�.ıCı0/�s�T :

Also, the same argument shows that, for any x 2 R
d, the FBSDE (1.5) has a unique

solution on ŒT � .ı C ı0/;T�, with x as initial condition on any T � .ı C ı0/-
initialized admissible set-up with no initial information. By combining the two
stability estimates in Theorem 1.45 on the intervals ŒT � .ı C ı0/;T � ı� and
ŒT � .ı C ı0/;T�, we can even prove that there exists a constant � .2/ such that, for
any two initial conditions x; x0 2 R

d, the corresponding solutions .X;Y;Z;Z0;M/
and .X0;Y0;Z0;Z00;M0/ on the same T � .ı C ı0/-initialized set-up with no initial
information satisfy jYT�.ıCı0/ � Y 0

T�.ıCı0/
j � � .2/jx � x0j with probability 1. The

proof is deferred to the next paragraph, where we provide a more general stability
property, see the statement of Theorem 1.53. Hence, by Proposition 1.46, we can
construct the analogue UT�.ıCı0/ of UT�ı in 1.25 but at time T � .ı C ı0/ instead
of T � ı. This permits to repeat the argument on a third interval of the form
ŒT � .ı C ı0 C ı00/;T � .ı C ı0/�.

In order to iterate the argument, we need to control the Lipschitz constant of
the decoupling field in x, namely the Lipschitz constant of Ut in Proposition 1.46,
uniformly in the other variables, and in time. Indeed, if the Lipschitz constant blows
up in finite time, the intervals on which existence and uniqueness hold will become
smaller and smaller, and their concatenation may not cover the entire time interval
Œ0;T�. Again, we refer to Subsection (Vol I)-4.1.2 for a complete account in the
standard case without random environment.

Mimicking Proposition (Vol I)-4.8 and Lemma (Vol I)-4.9, we introduce the
following assumption:

Assumption (Iteration in Random Environment). There exists a constant
�0 � 0, such that, if t 2 Œ0;T�, .˝;F ; .Fs/t�s�T ;P/ is a t-initialized
admissible set-up equipped with some .W0

s ; �s;Ws/t�s�T and no initial infor-

(continued)
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mation, and x; x0 2 R
d, then for any two solutions .Xs;Ys;Zs;Z0s ;Ms/t�s�T

and .X0
s;Y

0
s;Z

0
s;Z

00
s ;M

0
s/t�s�T of the FBSDE (1.5) with x and x0 as respective

initial condition at time t, it holds that:

P
�jYt � Y 0

t j � �0jx � x0j� D 1:

Remark 1.51 Alternatively, assumption Iteration in Random Environment may
be written by replacing “for any two solutions” by “there exist two solutions.” The
reason is that existence and uniqueness of solutions are proved simultaneously along
the induction procedure introduced right above.

Proposition 1.52 If assumptions Lipschitz FBSDE in Random Environment
and Iteration in Random Environment hold true, then, for any t 2 Œ0;T�,
for any t-initialized admissible set-up .˝;F ; .Fs/t�s�T ;P/ equipped with some
.G D �f�0g; .W0

s ; �s;Ws/t�s�T/ for some random variable �0 with values in an
auxiliary Polish space S , and for any 
 2 L2.˝;G;PIRd/, the FBSDE set on Œt;T�
with 
 as initial condition has a unique solution. Moreover, the decoupling field
given by Proposition 1.46 is �0-Lipschitz.

In particular, on a standard (0-initialized) admissible set-up .˝;F ;F;P/
equipped with some .X0;W0;�;W/, the FBSDE set on Œ0;T� with X0 as
initial condition and initial information, is uniquely solvable. The solution is
progressively measurable with respect to the (augmentation) of the filtration
generated by the process .X0;W0;�;W/ and it satisfies the representation formula
in Proposition 1.50.

Proof. Since the proof is similar to the proof of Proposition (Vol I)-4.8, we only sketch its
main steps. The reader may also want to consult the proof of Theorem 1.53 below on the
stability of solution, which somehow covers Proposition 1.52.

The existence and uniqueness of a solution are proved by using the induction principle
explained above. At each step of the induction, we know from assumption Iteration in
Random Environment that Ut is �0-Lipschitz continuous in x. We use the fact that, for
each NP0 on N̋ 0;t D C.Œt; T�IRd/ � D.Œt; T�IX / under which the process .w0s /t�s�T is a d-
dimensional Brownian motion starting from 0 with respect to the natural filtration generated
by the canonical process .w0s ; �s/t�s�T , we can construct a t-initialized admissible set-up
with no initial information under which .W0;�/ has NP0 as distribution, see the proof of
Proposition 1.46. This suffices to construct the decoupling field at all the probability measures
NP0 that are useful, see Remark 1.47. The fact that G is generated by �0 permits to identify
the initial information at each step of the induction with a � -algebra generated by a random
variable taking values in a Polish space. ut

Stability Property
Quite remarkably, assumptions Lipschitz FBSDE and Iteration in Random
Environment guarantee not only the existence and uniqueness of solutions, but also
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stability of these solutions provided that they are defined on the same probabilistic
set-up with a common input. Here stability is understood as an estimate for the
difference of two solutions, defined on the same space .˝;F ;F;P/ but with respect
to two different initial conditions X0 and X0

0, two different environments � and �0
and two sets of coefficients .B; ˙;˙0;F;G/ and .B0; ˙ 0; ˙00;F0;G0/, exactly as
in the short time stability result of Theorem 1.45. Requiring both solutions to be
defined on the same probabilistic set-up with a common input is to ask the initial
conditions X0 and X0

0 to be measurable with respect to a common information and
the environments � and �0 to derive from a common super-environment. Together
with the noises W0 and W, the common initial information and common super-
environment form what we call a common input.

The common initial information will be given in the form of a � -field G D �f�0g
generated by a random variable �0 taking values in an auxiliary Polish space
S . As for the super-environment, we shall consider a process M D .Mt/0�t�T

with realizations in D.Œ0;T�IY/ for another Polish space Y such that .˝;F ;F;P/
equipped with .G D �f�0g;W0;M;W/ is admissible. Processes � and �0 will be
regarded as sub-environments. We shall consider two continuous mappings  and
 0 from Y to X such that � D .�t D  .Mt//0�t�T and �0 D .�0

t D  0.Mt//0�t�T .
We require  and  0 to be at most of linear growth in the following sense: denoting
by dY the distance on Y and dX the distance on X , we impose that, for some C � 0,
for all m 2 Y ,

dX
�
0X ;  .m/

� � CdY
�
0Y ;m

�
; dX

�
0X ;  

0.m/
� � CdY

�
0Y ;m

�
;

where 0X and 0Y are arbitrary points in X and Y . Since EŒsup0�t�T dY.0Y ;Mt/
2� is

finite, we also have that EŒsup0�t�T dX .0X ; �t/
2� and EŒsup0�t�T dX .0X ; �0

t/
2� are

finite.
With this description of the common input, we may regard the FBSDEs (1.5),

driven by the environments � and �0 and by the sets of coefficients .B; ˙;˙0;F;G/
and .B0; ˙ 0; ˙00;F0;G0/ respectively, as FBSDEs driven by the same environment
M and by the sets of coefficients defined by the formula:

D
��; �;  .�/; �; �; ��.t; x;m; y; z; z0/ D D.t; x; �; y; z; z0/

for D 2 fB; ˙;˙0;F;Gg, .t; x;m; y; .z; z0// 2 Œ0;T� � R
d � Y � R

m � R
2.m�d/

and with � D  .m/, and similarly for the other FBSDE driven by the coefficients
.B0; ˙ 0; ˙00;F0;G0/. Below, we shall use the notation .B; ˙;˙0;F;G/ ı  and
.B0; ˙ 0; ˙00;F0;G0/ ı  0 to denote these new sets of coefficients.

It is clear that if the original set of coefficients .B; ˙;˙0;F;G/ satisfies
assumption Lipschitz FBSDE in Random Environment, the same is true for the
new set of coefficients .B; ˙;˙0;F;G/ı , and similarly for the coefficients labeled
with a ‘prime’. Also, it makes perfect sense to require the new set of coefficients
.B; ˙;˙0;F;G/ ı  to satisfy assumption Iteration in Random Environment,
and similarly for the coefficients labeled with a “prime.”
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Theorem 1.53 Assume that coefficients .B; ˙;˙0;F;G/ and .B0; ˙ 0; ˙00;F0;G0/
satisfy assumption Lipschitz FBSDE in Random Environment with the same
constant L, and that the new ones .B; ˙;˙0;F;G/ı and .B0; ˙ 0; ˙00;F0;G0/ı 0
satisfy assumption Iteration in Random Environment with the same constant �0.
On a complete filtered probability space .˝;F ;F;P/, consider a random variable
�0 with values in the auxiliary Polish space S together with a super-environment
M D .Mt/0�t�T with realizations in D.Œ0;T�IY/ such that .˝;F ;F;P/ equipped
with .G D �f�0g;W0;M;W/ is admissible.

Then, there exists a constant � � 0, only depending on T, L and �0, such
that for any initial conditions X0;X0

0 2 L2.˝;G;PIRd/, the unique solutions to
the FBSDEs (1.5), when driven by the new coefficients and regarded with the input
M, satisfy the stability estimate (1.19).

Proof. Throughout the proof, we consider the admissible set-up .˝;F ; .Ft/0�t�T ;P/

equipped with some .G D �f�0g;W0;M;W/, as given in the statement.

First Step. With each of the two sets of coefficients and the common super-environment,
we associate a decoupling field along the lines of Proposition 1.52. The two decoupling
fields are denoted by .Ut/0�t�T and .U0

t /0�t�T respectively. For any t 2 Œ0; T�, Ut and
U0

t are mappings from R
d � P2.C.Œt; T�IRd/ � D.Œt; T�IY// � .C.Œt; T�IRd/ � D.Œt; T�IY//

into R
m. Both are constructed with respect to the super-environment M, in the sense that

M here plays the role played by � in the statement of Proposition 1.46. The decoupling
field .Ut/0�t�T is associated with the coefficients .B; ˙;˙0;F;G/ ı  , while .U0

t /0�t�T is
associated with the coefficients .B0; ˙ 0; ˙00;F0;G0/ ı  0. In order to fit the framework of
Propositions 1.46 and 1.52, we reformulate each problem in the following way: .Ut/0�t�T

is associated with the super-environment M and with coefficients .B; ˙;˙0;F;G/ ı , and
similarly for .U0

t /0�t�T .
Using the notation used in the introductory description of the induction procedure under

the heading general mechanism at the very beginning of this section, we let for any t 2 Œ0; T�,
Vt W Rd �˝ ! R

m be the random field defined by:

Vt.x; �/ D Ut

�
x;L

�
.W0

s � W0
t ;Ms/t�s�T jFnat;.�0;W0;M/

t

�
; .W0

s � W0
t ;Ms/t�s�T

�
;

for x 2 R
d, with a similar definition for V 0

t .

Second Step. We proceed by induction. Given the constant �0 in assumption Iteration in
Random Environment, we consider the same constants c and � as those provided by the
statement of Theorem 1.45 when applied with coefficients that satisfy assumption Lipschitz
FBSDE in Random Environment with max.L; �0/ as Lipschitz constant.

For t 2 Œ0; T� we denote by Ht the following property: for any two random
variables 
 and 
 0 in L2.˝;

W
s<t Fs;PIRd/, the solutions .Xs; Ys; Zs; Z0s ;Ms/t�s�T and

.X0
s; Y

0
s ; Z

0
s; Z

00
s ;M

0
s/t�s�T to (1.5) with 
 and 
 0 as respective initial conditions, with

.�s/t�s�T and .�0
s/t�s�T as respective sub-environments and with .B; ˙;˙0;F;G/ and

.B0; ˙ 0; ˙00;F0;G0/ as respective coefficients, satisfy:
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E

�

sup
t�s�T

�jXs � X0
sj2 C jYs � Y 0

s j2 C jMs � M0
sj2
�

C
Z T

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇ
ˇFt

	

� � .t/E

�

j
 � 
 0j2 C ˇ
ˇG.XT ; �T

� � G0.XT ; �
0
T/
ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xs; �s; Ys; Zs; Z

0
s

�

� �
B0;F0; ˙ 0; ˙00

��
s;Xs; �

0
s; Ys; Zs; Z

0
s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

;

(1.26)

for some constant � .t/ only depending upon �0, L, T and t, both FBSDEs being regarded

on the t-initialized set-up .˝;F ; .Fs/t�s�T ;P/ with input .Fnat;.�0;
;
0;W0;M;W/
t ; .W0

s �
W0

t ;Ms;Ws � Wt/t�s�T/. Recall from Lemma 1.37 that such a set-up is admissible and from
the proof of Proposition 1.50 that the additional presences of 
 and 
 0 does not affect the
form of the decoupling fields.

Below, we make use of (1.26) in order to compare the decoupling fields Ut and U0
t at

times t D ck for integers k.
As often in the book, we use the following notation: for a given t 2 Œ0; T�, on

the same t-initialized set-up .˝;F ; .Fs/t�s�T ;P/ with .�0; 
; .W0
s ;Ms;Ws/0�s�t/ as

initial information, we denote by .Xt;

s ; Y

t;

s ; Z

t;

s ; Z

0;t;

s ;Mt;


s /t�s�T and .Xt;
;0
s ; Yt;
;0

s ; Zt;
;0
s ;

Z0;t;
;0s ;Mt;
;0
s /t�s�T the two solutions corresponding to the two sets of coefficients and to the

same initial condition 
. The random variable Yt;

t �Yt;
;0

t being Ft-measurable, (1.26) implies:

jYt;

t � Yt;
;0

t j2 � � .t/E

�
ˇ
ˇG
�
Xt;


T ; �T
� � G0.Xt;


T ; �
0
T/
ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xt;


s ; �s; Y
t;

s ; Z

t;

s ; Z

0;t;

s

�

� �
B0;F0; ˙ 0; ˙00

��
s;Xt;


s ; �
0
s; Y

t;

s ; Z

t;

s ; Z

0;t;

s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

;

from which we get:

jVt.
/ � V 0
t .
/j2 � � .t/E

�
ˇ
ˇG
�
Xt;


T ; �T
� � G0.Xt;


T ; �
0
T/
ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xt;


s ; �s; Y
t;

s ; Z

t;

s ; Z

0;t;

s

�
(1.27)

� �
B0;F0; ˙ 0; ˙00

��
s;Xt;


s ; �
0
s; Y

t;

s ; Z

t;

s ; Z

0;t;

s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:

Third Step. We now prove the desired stability estimate by backward induction. Without
any loss of generality, we assume that there exists an integer N � 1 such that T D cN,
and we prove Hkc for k D N � 1; � � � ; 1; 0 by induction. When k D N � 1, the property
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H.N�1/c follows from Theorem 1.45, applied on the time interval ŒT � c; T� with the
input .�0; 
; 
 0; .W0

s ;Ms;Ws/0�s�T�c/. Next, we prove that for any k 2 f0; � � � ;N � 2g,
H.kC1/c implies Hkc. Given k 2 f0; � � � ;N � 2g for which H.kC1/c holds, we set t D kc,
S D .k C 1/c, and we denote by .Xs; Ys; Zs; Z0s ;Ms/t�s�T and .X0

s; Y
0
s ; Z

0
s; Z

00
s ;M

0
s/t�s�T the

solutions corresponding to two initial conditions 
 and 
 0 at time t. Our goal is to make use
of (1.27) in order to prove Hkc. By Proposition 1.50, we know that P-almost surely:

YS D VS
�
XS
�
; Y 0

S D V 0
S

�
X0

S

�
;

with

VS
�
x; �/ D US

�
x;L

�
.W0

s � W0
S ;Ms/S�s�T jFnat;.�0;W0;M/

S

�
; .W0

s � W0
S ; �s/S�s�T

�
;

where US is associated with the coefficients .B;F; ˙;˙0;G/ through Proposition 1.50, and
similarly for V 0

S.
Then, we regard .Xs^S; Ys^S; Zs1s<S; Z0s 1s<S;Ms^S/t�s�T as the solution of the

FBSDE (1.5) with coefficients:
�

1Œt;S�B.s; �; �; �; �; �/; 1Œt;S�˙.s; �; �/; 1Œt;S�˙0.s; �; �/; 1Œt;S�F.s; �; �; �; �; �/
�
;

instead of .B; ˙;˙0;F/ and with the random field VS.�/ instead of G.�; �T/ as terminal
condition, but with the same difference as above regarding the fact that the randomness
in the random field VS has a more intricate structure. Proceeding in the same way with
the process .X0

s^S; Y
0
s^S; Z

0
s1s<S; Z00s 1s<S;M0

s^S/t�s�T , Theorem 1.45, applied with the tuple
.�0; 
; 


0; .W0
s ;Ms;Ws/0�s�t/ as input at time t, shows that, for � only depending on L and

�0,

E

�

sup
t�s�S

�jXs � X0
sj2 C jYs � Y 0

s j2 C jMs � M0
sj2
�

C
Z S

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇ
ˇFt

	

� � E

�

j
 � 
 0j2 C ˇ
ˇVS.XS

� � V 0
S.XS/

ˇ
ˇ2

C
Z S

t

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xs; �s; Ys; Zs; Z

0
s

�

� �
B0;F0; ˙ 0; ˙00

��
s;Xs; �

0
s; Ys; Zs; Z

0
s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:

We now use (1.27) with 
 D XS as
W

s<S Fs-measurable initial condition and with
t D S. We also use the fact that .XS;XS

s ; YS;XS
s ; ZS;XS

s ; Z0;S;XS
s ;MS;XS

s /S�s�T matches
.Xs; Ys; Zs; Z0s ;Ms/S�s�T . We deduce that there exists a constant � .k/, only depending
on � and � ..k C 1/c/, such that:

E

�

sup
t�s�S

�jXs � X0
sj2 C jYs � Y 0

s j2 C jMs � M0
sj2
�

C
Z S

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇFt

	

� � .k/
E

�

j
 � 
 0j2 C ˇ
ˇG.XT ; �T/ � G0.XT ; �

0
T/
ˇ
ˇ2 (1.28)
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C
Z T

t

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xs; �s; Ys; Zs; Z

0
s

�

� �
B0;F0; ˙ 0; ˙00

��
s;Xs; �

0
s; Ys; Zs; Z

0
s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:

In order to complete the proof of Hkc, it suffices to use H.kC1/c with 
 D XS and 
 0 D X0
S as

initial conditions, recalling that S D .k C 1/c. Indeed, we get:

E

�

sup
S�s�T

�jXs � X0
sj2 C jYs � Y 0

s j2 C jMs � M0
sj2
�

C
Z T

S

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇ
ˇFS

	

� �
�
.k C 1/c

�
E

�

jXS � X0
Sj2 C ˇ

ˇG.XT ; �T
� � G0.XT ; �

0
T/
ˇ
ˇ2

C
Z T

S

ˇ
ˇ
�
B;F; ˙;˙0

��
s;Xs; �s; Ys; Zs; Z

0
s

�

� �
B0;F0; ˙ 0; ˙00

��
s;Xs; �

0
s; Ys; Zs; Z

0
s

�ˇ
ˇ2ds

ˇ
ˇ
ˇFS

	

:

(1.29)

Taking conditional expectations with respect to Ft, and then using (1.28) to estimate
jXS � X0

Sj2, we obtain the same inequality as above, but with � ..k C 1/c/ replaced by a new
value of � .k/ and jXS � X0

Sj2 replaced by j
 � 
 0j2. We complete the proof by adding the
resulting inequality to (1.28). ut

1.4 Optimization with Random Coefficients

Throughout this section, we focus on optimal stochastic control problems depending
upon a random environment. As we elucidate in Chapter 2, the rationale for doing
so is that, in mean field games with a common noise, the mean field interaction
manifests under the form of a theoretical flow of conditional marginal measures
given the realization of the systemic noise.

1.4.1 Optimization Problem

To address stochastic control problems in a random environment, we use the
framework introduced in the previous sections to discuss forward-backward SDEs in
a random environment. Namely, we consider a complete probability space .˝;F ;P/
equipped with a complete and right-continuous filtration F D .Ft/0�t�T , a 2d-
dimensional Brownian motion .W0;W/ with respect to the filtration F (both W0

and W being of dimension d), an initial condition X0 2 L2.˝;F0;PIRd/ and a



74 1 Optimization in a Random Environment

random process � D .�t/0�t�T , called environment, with values in a Polish metric
space .X ; d/ and with càd-làg paths satisfying EŒsup0�t�T d.0X ; �t/

2� < 1, where
0X is some arbitrary point in X . As we shall see next, a typical example for X is
X D P2.Rd/, equipped with the 2-Wasserstein distance.

We assume that .˝;F ;F;P/ equipped with .X0;W0;�;W/ is admissible.

Description of the Dynamics
Given this set-up, we consider controlled dynamics of the type:

dXt D b
�
t;Xt; �t; ˛t

�
dt C �

�
t;Xt; �t; ˛t

�
dWt C �0

�
t;Xt; �t; ˛t

�
dW0

t ; (1.30)

for t 2 Œ0;T�. Throughout the section, the control process ˛ D .˛t/0�t�T is taken in
the set A of Leb1 ˝ P-square-integrable F-progressively measurable processes with
values in a closed convex subset A of a Euclidean space R

k for some integer k �
1. We stress the fact that the compatibility condition enclosed in the admissibility
property of the set-up plays a key role: it ensures that, conditioned on the observation
of the input .X0;W0;�;W/ up until some time t 2 Œ0;T�, the randomness enclosed
in any control process ˛ up to time t is independent of the process .X0;W0;�;W/
up until time T . In particular, the control process ˛ does not anticipate the future
of the input. We recall that the compatibility constraint is automatically satisfied
when � is assumed to be adapted with respect to the complete and right-continuous
augmentation of the filtration generated by .X0;W0/.

The variable Xt stands for the state variable in R
d. The coefficients b, � , and �0

are deterministic continuous functions from Œ0;T� � R
d � X � A into R

d and R
d�d

respectively.
Regularity conditions will be imposed later on to guarantee the solvability of

the state equation (1.30). We shall use the parameterized family of generators
.Lt;�;˛/t�0;�2X ;˛2A defined by:

Lt;�;˛�.x/ D b.t; x; �; ˛/ � @x�.x/C 1

2
trace

h�
��� C �0.�0/�

�
.t; x; �; ˛/@2xx�.x/

i
;

where a� denotes the transpose of the matrix a. When � and �0 do not depend upon
˛, which is the typical case that we consider below, we denote by L 0

t;� the second-
order part of Lt;�;˛:

L 0
t;��.x/ D 1

2
trace

h�
��� C �0.�0/�

�
.t; x; �/@2xx�.x/

i
:

Notations. As in Volume I, gradients of scalar valued functions will be regarded,
when needed, as column vectors. Differently, derivatives of vector valued functions
will be regarded as matrices, the number of lines being given by the dimension of
the arrival vector space and the number of columns being given by the number of
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directions in the differentiation. Hence, if v W R
d ! R, @xv D .@xiv.x//1�i�d is

regarded as d-dimensional column vector, while, if v D .v1; � � � ; vn/ W Rd ! R
n,

n � 2, @xv D .@xjv
i.x//1�i�n;1�j�d is regarded as a matrix of dimension n � d.

Cost Functionals
Given input and control processes � and ˛ as above, we consider, for some maturity
time T , the cost functional:

J�.˛/ D E

� Z T

0

f .s;Xs; �s; ˛s/ds C g.XT ; �T/

	

; (1.31)

where the terminal cost g is a continuous function from R
d � X into R, and f is a

continuous function from Œ0;T��R
d �X �A into R. Recall that in most applications

of interest the input space X will be the space P2.Rd/ of probability measures
of order 2 on R

d. The initial value X0 of X being prescribed, the objective is to
minimize J�.˛/ over ˛ 2 A.

As in the previous chapters, we restrict our analysis to the case when � and �0 do
not depend upon the control. Following (Vol I)-(3.5), it allows us to use the reduced
Hamiltonian:

H.r/
�
t; x; �; y; ˛

� D b.t; x; �; ˛/ � y C f .t; x; �; ˛/; (1.32)

for t 2 Œ0;T�, x 2 R
d, � 2 X , y 2 R

d, and ˛ 2 A. A minimizer of this Hamiltonian,
if and when it exists, then reads:

Ǫ�t; x; �; y� 2 argmin˛2AH.r/
�
t; x; �; y; ˛

�
: (1.33)

Remark 1.54 The reduced Hamiltonian H.r/ defined above in (1.32) is sufficient as
long as we look for a minimizer Ǫ . However, the full Hamiltonian may be needed for
other computations, for example in writing forward-backward systems attempting to
solve the optimization problem or, even though we shall not make much use of this
fact, when � and �0 are controlled. To wit, the full Hamiltonian H should involve
an additional adjoint variable, to account for the dual of the volatility. But because
of the presence of two sources of noise, this additional adjoint variable must be
split into z and z0 in order to emphasize the origin of the noise. Precisely, the full
Hamiltonian should read:

H
�
t; x; �; y; z; z0; ˛

� D b.t; x; �; ˛/ � y C f .t; x; �; ˛/

C trace
�
�.t; x; �; ˛/z� C �0.t; x; �; ˛/.z0/�

�
;

(1.34)

for t 2 Œ0;T�, x 2 R
d, � 2 X , ˛ 2 A, y 2 R

d, and z; z0 2 R
d�d.
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Standing Assumptions
In complete analogy with our approach of Chapter (Vol I)-3, we assume:

Assumption (Optimization in Random Environment). The coefficients b W
Œ0;T��R

d �X �A ! R
d, � W Œ0;T��R

d �X ! R
d�d, �0 W Œ0;T��R

d �X !
R

d�d, f W Œ0;T��R
d �X �A ! R and g W Rd �X ! R are Borel-measurable

and satisfy:

(A1) b, � and �0 are Lipschitz continuous in x, uniformly in t 2 Œ0;T�,� 2 X
and ˛ 2 A.

(A2) b, � and �0 are at most of linear growth in .x; �; ˛/, uniformly in t 2
Œ0;T�, i.e. there exists a constant C � 0 such that, for all t 2 Œ0;T�,
x 2 R

d, � 2 X and ˛ 2 A,

jb.t; x; �; ˛/j � C
�
1C jxj C d.0X ; �/C j˛j�;

j.�; �0/.t; x; �/j � C
�
1C jxj C d.0X ; �/

�
;

where 0X is some arbitrary point in X .

Regarding the cost functions f and g, we require:

(A3) f and g are at most of quadratic growth in .x; �; ˛/, uniformly in t 2
Œ0;T�, i.e. there exists a constant C � 0 such that, for all t 2 Œ0;T�,
x 2 R

d, � 2 X and ˛ 2 A,

jf .t; x; �; ˛/j � C
�
1C jxj2 C d.0X ; �/

2 C j˛j2�;
jg.x; �/j � C

�
1C jxj2 C d.0X ; �/

2
�
:

It is then clear that, under assumption Optimization in a Random Environ-
ment, for any input � D .�t/0�t�T as above satisfying:

EŒ sup
0�t�T

d.0X ; �t/
2� < 1;

and any square-integrable F-progressively measurable process ˛ D .˛t/0�t�T with
values in A, the SDE (1.30) is uniquely solvable and the cost J�.˛/ is well defined.
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1.4.2 Value Function and Stochastic HJB Equation

We start with a preliminary discussion of the case when X0 is deterministic and �

is FW0 D .FW0

t /0�t�T -adapted. In that case, it is natural to introduce the following
random value function:

U�.t; x/ D essinf
.˛s/t�s�T

E

h Z T

t
f .s;Xs; �s; ˛s/ds C g.XT ; �T/

ˇ
ˇFW0

t

i
; (1.35)

the essential infimum being taken over square-integrable controls ˛ D .˛s/t�s�T

which are progressively measurable with respect to the completion of the filtration
.FW0

s _�fWu � WtI t � u � sg/t�s�T , and the state process .Xs/t�s�T satisfying the
SDE (1.30) with Xt D x as initial condition. The use of an essential infimum instead
of an infimum is dictated by the fact that the conditional expectations in the right-
hand side are random variables. It guarantees that the infimum over a continuum of
random variables is still a random variable. The conditional expectation with respect
to FW0

t accounts for the fact that the environment has been observed up until time t.
The value function U� being a random field, it cannot solve a standard HJB

equation. However, as the following verification result shows, it can still be
associated with a backward stochastic PDE.

Proposition 1.55 Under assumption Optimization in a Random Environment,
let us assume that the Hamiltonian H has a minimizer Ǫ as in (1.33), that there exist
an F

W0
-adapted input � D .�t/0�t�T , with EŒsup0�t�T d.0X ; �t/

2� < 1, and F
W0

-
progressively measurable processes U D .Ut/0�t�T and V D .Vt/0�t�T defined
on ˝ and with values in C2.RdIR/ and C1.RdIRd/ respectively, both spaces being
equipped with the topology of uniform convergence on compact subsets, such that
U has continuous sample paths and .U;V/ satisfies:

E

�

sup
0�t�T

sup
x2Rd

�
jU.t; x/j2 C j@xU.t; x/j2 C j@2xxU.t; x/j2

�	

< 1;

E

Z T

0

sup
x2Rd

�jV.t; x/j2 C j@xV.t; x/j2�dt < 1;

and, P-almost surely:

U.t; x/ D g.x; �T/C
Z T

t

n
L 0

s;�s
U.s; x/

C b
�

s; x; �s; Ǫ�s; x; �s; @xU.s; x/
�� � @xU.s; x/

C f
�

s; x; �s; Ǫ�s; x; �s; @xU.s; x/
��

C trace
�
�0.s; x; �s/@xV.s; x/

�o
ds �

Z T

t
V.s; x/ � dW0

s ;

(1.36)
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for .t; x/ 2 Œ0;T� � R
d, where we write U.t; x/ for Ut.x/ and V.t; x/ for Vt.x/ (and

similarly for the derivatives) in order to make more explicit the connection with the
theory of PDEs.

Finally, we also assume that the minimizer Ǫ of the reduced Hamiltonian is such
that, for any initial condition .t; x/ 2 Œ0;T� � R

d, the state dynamics SDE (1.30)
with Xt D x and .˛s D Ǫ .s;Xs; �s; @xU.s;Xs///t�s�T has a unique strong solution
which satisfies E

R T
t j˛sj2ds < 1. Then,

P

h
U.t; x/ D U�.t; x/

i
D 1; .t; x/ 2 Œ0;T� � R

d:

Proof. Let t 2 Œ0; T� be fixed, ˇ D .ˇs/t�s�T be an admissible control over the interval
Œt; T� as defined above, and let us denote by Xˇ the corresponding controlled state, namely
the solution of the state equation:

dXˇ
s D b.s;Xˇ

s ; �s; ˇs/ds C �.s;Xˇ
s ; �s/dWs C �0.s;Xˇ

s ; �s/dW0
s ; s 2 Œt; T�;

with Xt D x. Applying Itô-Wentzell’s formula (see the Notes & Complements for references)
to .U.s;Xˇ

s //t�s‘T over the interval Œt; T� and using (1.36), we get:

U.T;Xˇ
T /

D U.t; x/C
Z T

t
ds
�
U.s;Xˇ

s /
�

D U.t; x/C
Z T

t
dsU.s; x/

ˇ
ˇ
xDX

ˇ
s

C @xU.s;Xˇ
s / � dXˇ

s

C trace

�
1

2

�
��� C �0

�
�0
���
.s;Xˇ

s ; �s/@
2
xxU.s;Xˇ

s /C �0.s;Xˇ
s ; �s/@xV.s;Xˇ

s /

	

ds

D U.t; x/C
Z T

t

h
� b

�
s;Xˇ

s ; �s; Ǫ�s;Xˇ
s ; �s; @xU.s;Xˇ

s /
�� � @xU.s;Xˇ

s /

� f
�

s;Xˇ
s ; �s; Ǫ�s;Xˇ

s ; �s; @xU.s;Xˇ
s /
��i

ds

C
Z T

t
V.s;Xˇ

s / � dW0
s

C
Z T

t
@xU.s;Xˇ

s / � �b.s;Xˇ
s ; �s; ˇs/ds C �.s;Xˇ

s ; �s/dWs C �0.s;Xˇ
s ; �s/dW0

s

�

� U.t; x/ �
Z T

t
f .s;Xˇ

s ; �s; ˇs/ds

C
Z T

t
V.s;Xˇ

s / � dW0
s C @xU.s;Xˇ

s / � ��.s;Xˇ
s ; �s/dWs C �0.s;Xˇ

s ; �s/dW0
s

�
;
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with equality when ˇs D Ǫ .s;Xˇ
s ; �s; @xU.s;Xˇ

s //, where we used the fact that Ǫ minimizes
the Hamiltonian to pass from the equality to the inequality. So taking conditional expectations
of both sides, we get:

E
�
U.T;Xˇ

T / jFW0

t

� � U.t; x/ � E

� Z T

t
f .s;Xˇ

s ; �s; ˇs/ds
ˇ
ˇFW0

t

	

;

which gives:

U.t; x/ � E

� Z T

t
f .s;Xˇ

s ; �s; ˇs/ds C g.Xˇ
T ; �T/

ˇ
ˇFW0

t

	

;

and U.t; x/ � U�.t; x/ since the choice of ˇ was arbitrary. We conclude because the
inequality becomes an equality if we use the control Ǫ . ut

We can reformulate (1.36) as a stochastic HJB equation with terminal condition
U.T; x/ D g.x; �T/. Indeed, we can rewrite (1.36) using the fact that Ǫ .t; x; �; y/
is the minimizer of the reduced Hamiltonian H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C
f .t; x; �; ˛/, fact which we used in the proof. Doing so, (1.36) appears as a backward
stochastic HJB equation:

dtU.t; x/C
�

L 0
t;�t

U.t; x/C inf
˛

�
b.t; x; �t; ˛/ � @xU.t; x/C f .t; x; �t; ˛/

�

C trace
�
�0.t; x; �/@xV.t; x/

�
	

dt � V.t; x/ � dW0
t D 0:

The backward term is specifically designed in order to make possible the
progressive-measurability of the value function U.

Although it may be very difficult to check the strong solvability of (1.36) (see
however some references in the Notes & Complements below), its form gives some
insight into the nature of the optimal control. As in the classical case, it is of a
somewhat feedback form Ǫ .Xt; �t; @xU�.t;Xt//. However , what we would like to
call the optimal feedback function giving this optimal control, is now a random field,
namely Œ0;T� � R

d 3 .t; x/ 7! Ǫ .x; �t; @xU�.t; x//.

1.4.3 Revisiting the Connection Between the HJB Equations
and BSDEs

We now provide an interpretation of the optimization problem in a random environ-
ment by means of forward-backward SDEs. In full analogy with the discussion of
Chapters (Vol I)-3 and (Vol I)-4, two options are available:

1. Representing the value function of the optimization problem as the solution of a
backward stochastic differential equation;

2. Making use of a stochastic version of the Pontryagin maximum principle.
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Since the random environment contains an additional source of randomness, the
martingale component of the backward equation may not be a stochastic integral,
and it is mandatory to make use of the representation (1.5) based on the Kunita-
Watanabe decomposition.

In this paragraph, we discuss the representation of the value function of the
optimization problem (1.30)–(1.31) when, as already indicated in Subsection 1.4.1,
the volatilities � and �0 do not depend upon the control ˛ and in addition, the matrix
� is invertible. In such a case, we use the minimizer of the reduced Hamiltonian as
given in (1.33). Following the discussion of Subsection (Vol I)-4, we introduce the
FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
�
dt

C�.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ;

dYt D �f
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
�
dt

CZt � dWt C Z0t � dW0
t C dMt; t 2 Œ0;T�;

YT D g.XT ; �T/;

(1.37)

M D .Mt/0�t�T being a square-integrable càd-làg martingale with respect to the
filtration F, with M0 D 0 as initial condition, the bracket of M with .W0;W/ being
zero. The initial condition is given by X0 in the set-up.

The above formulation requires the existence of a minimizer Ǫ . One way to
guarantee existence of a minimizer is to assume that the reduced Hamiltonian
H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/ is strictly convex in ˛, which
requires, as already explained in Chapters (Vol I)-3 and (Vol I)-4, to assume
that b is linear in ˛. Although rather restrictive, this convexity assumption has
several advantages: the minimizer is uniquely defined and, as discussed in Chapter
(Vol I)-3, inherits the regularity properties of the coefficients. Here is a precise set
of assumptions under which we can repeat the proof of Lemma (Vol I)-3.3:

Assumption (Hamiltonian Minimization in Random Environment).
Assume that there exist two positive constants � and L such that the
coefficients b and f satisfy:

(A1) The drift b is an affine function of ˛ in the sense that it is of the form

b.t; x; �; ˛/ D b1.t; x; �/C b2.t/˛;

where the mapping Œ0;T� 3 t 7! b2.t/ 2 R
d�k is measurable and

bounded, and the mapping Œ0;T��R
d�X 3 .t; x; �/ 7! b1.t; x; �/ 2 R

d

is measurable and bounded on bounded subsets of Œ0;T� � R
d � X .

(continued)
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(A2) For any t 2 Œ0;T�, x 2 R
d and � 2 X , the function A 3 ˛ 7!

f .t; x; �; ˛/ 2 R is once continuously differentiable, the derivative @˛f
being L-Lipschitz-continuous in x. Moreover, it satisfies the �-convexity
assumption:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ � �j˛0 � ˛j2:

(A3) For all t 2 Œ0;T�, x 2 R
d, � 2 X and ˛ 2 A,

j@˛f .t; x; �; ˛/j � L
�
1C jxj C d.0X ; �/C j˛j�;

for some arbitrary point 0X 2 X .

Then, repeating mutatis mutandis the proof of Lemma (Vol I)-3.3, we prove the
following result:

Lemma 1.56 If we assume that assumption Hamiltonian Minimization in Ran-
dom Environment holds, then for all .t; x; �; y/ 2 Œ0;T��R

d �X �A, there exists a
unique minimizer Ǫ .t; x; �; y/ of A 3 ˛ 7! H.r/.t; x; �; y; ˛/. Moreover, the function
Œ0;T� � R

d � X � A 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/ is measurable, locally bounded,
and Lipschitz-continuous with respect to .x; y/, uniformly in .t; �/ 2 Œ0;T� � X ,
the Lipschitz constant depending only upon �, the supremum norm of b2 and the
Lipschitz constant of @˛f in x. Moreover, there exists a constant C > 0 such that:

8t 2 Œ0;T�; x; y 2 R
d; � 2 X ;

ˇ
ˇ Ǫ .t; x; �; y/ˇˇ � C

�
1C d.0X ; �/C jxj C jyj�:

(1.38)

Main Statement
Our goal is to prove that the forward-backward system (1.37) is the right one, and is
indeed solvable under the following assumption which is reminiscent of assumption
MFG Solvability HJB in Subsection (Vol I)-4.4, except for the fact that we ask less
regularity in the variable � since we do not address the MFG problem yet.

Assumption (HJB in Random Environment). On top of assumption Opti-
mization in Random Environment, assume that there exists a constant L � 0

such that the coefficients b, � , �0 and f satisfy:

(continued)
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(A1) For all .t; x; �; ˛/ 2 Œ0;T� � R
d � X � A,

jb.t; x; �; ˛/j � L
�
1C j˛j�; jf .t; x; �; ˛/ˇˇ � L

�
1C j˛j2�;

j.�; ��1; �0/.t; x; �/j � L; jg.x; �/j � L;

which implies in particular that � is invertible.
(A2) For all .t; x; x0; �; ˛0; ˛/ 2 Œ0;T� � R

d � R
d � X � A � A,

j.b; f /.t; x0; �; ˛/ � .b; f /.t; x; �; ˛/j
C j.�; �0/.t; x0; �/ � .�; �0/.t; x; �/j C jg.x0/ � g.x/j � Ljx0 � xj;

jb.t; x; �; ˛0/ � b.t; x; �; ˛/j � Lj˛0 � ˛j;
jf .t; x; �; ˛0/ � f .t; x; �; ˛/j � L

�
1C max.j˛j; j˛0j/�j˛0 � ˛j:

(A3) There exists a minimizer Ǫ .t; x; �; y/ 2 argmin˛H.r/.t; x; �; y; ˛/ which
satisfies:

j Ǫ .t; x; �; y/j � L
�
1C jyj�;

j Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/j � L
�jx0 � xj C jy0 � yj�;

for all .t; x; x0; �; y; y0/ 2 Œ0;T� � R
d � R

d � X � R
d � R

d.

Theorem 1.57 Under assumption HJB in Random Environment, consider an
admissible set-up .˝;F ;F;P/ for an input .X0;W0;�;W/. Then, on this set-up,
the FBSDE (1.37) with X0 as initial condition has a unique solution .X;Y;Z;Z0;M/
such that, for some R � 0, j�.t;Xt; �t/

�1�Ztj � R Leb1˝P-almost everywhere. The
process:

Ǫ D
�

Ǫ t D Ǫ�t;Xt; �t; �.t;Xt; �t/
�1�Zt

��

0�t�T
;

is a minimizer of J�, and if for any .t; x; �; y/ 2 Œ0;T��R
d �X �R

d, Ǫ .t; x; �; y/ is a
strict minimizer of the Hamiltonian H.r/.t; x; �; y; �/, then Ǫ is the unique minimizer
of J� in (1.31).

The solution .X;Y;Z;Z0;M/ is given as the solution of a strongly uniquely
solvable FBSDE with Lipschitz coefficients, whose construction is independent of
the underlying probabilistic set-up and in particular, of the initial condition. This
Lipschitz FBSDE satisfies the assumptions of Proposition 1.52 and thus admits
a decoupling field which is uniformly bounded in all the variables, and which is
Lipschitz-continuous (in x), uniformly in time t 2 Œ0;T� and the other variables,
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the bound and the Lipschitz constant depending only on the constants L and T
appearing in the assumption. As a by product, Y may be represented in terms of
X through this decoupling field.

The proof of Theorem 1.57 given below is reminiscent of the proof of Theo-
rem (Vol I)-4.45. The difficult point is that, under the standing assumptions on the
coefficients (quadratic growth of f in ˛, and linear growths of b in ˛ and of Ǫ in
z), the FBSDE (1.37) is quadratic in Z. As a result, its analysis requires a modicum
of care. This is all the more true that the equation is rendered nonstandard by the
presence of the discontinuous martingale M. Below, we provide a tailored-made
argument based upon a specific truncation procedure of the coefficients.

An Intermediate Result
The truncation argument is a variation on the proof of Proposition (Vol I)-4.51.
The rationale for the introduction of the cut-off functions is quite clear: we want to
recover the Lipschitz setting that we accounted for in Subsection 1.3.

Proposition 1.58 Under assumption HJB in Random Environment with L � 1

therein, consider a set-up .˝;F ;F;P/, admissible for an input .X0;W0;�;W/, and
assume that the FBSDE (1.37) has a solution .X;Y;Z;Z0;M/ such that, for some
R � 1, j�.t;Xt; �t/

�1�Ztj � R Leb1 ˝ P-almost everywhere.
Assume also that for any 1-Lipschitz-continuous cut-off functions � W A ! A and

 W Rd ! Œ0; 1�, � being bounded and satisfying �.˛/ D ˛ for j˛j � L.1C R/, and
 satisfying j .z/j � .4jz�z0j/=min.jzj; jz0j/,  .z/ D 1 for jzj � LR and  .z/ D 0

for jzj � 2LR, with L as in the assumption, the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dX0
t D  .Z0

t /b
�
t;X0

t ; �t; �
� Ǫ .t;X0

t ; �t; �.t;X0
t ; �t/

�1�Z0
t /
��

dt

C�.t;X0
t ; �t/dWt C �0.t;X0

t ; �t/dW0
t ;

dY 0
t D � .Z0

t /f
�
t;X0

t ; �t; �
� Ǫ .t;X0

t ; �t; �.t;X0
t ; �t/

�1�Z0
t /
��

dt

CZ0
t � dWt C Z00t � dW0

t C dM0
t ; t 2 Œ0;T�;

Y 0
T D g.X0

T ; �T/;

(1.39)

satisfies the strong uniqueness property and has .Xt;Yt;Zt;Z0t ;Mt/0�t�T as solu-
tion when initialized with X0 on the set-up .˝;F ;F;P/ with the same input
.X0;W0;�;W/.

Then Ǫ D . Ǫ t D Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt//0�t�T is a minimizer of J�. If, for

any .t; x; �; y/ 2 Œ0;T� � R
d � X � R

d, Ǫ .t; x; �; y/ is a strict minimizer of the
Hamiltonian H.r/.t; x; �; y; �/, then Ǫ is the unique minimizer of J�.

Proof.

First Step. We start with a preliminary remark. Since the FBSDE (1.39) is uniquely
solvable, we know from the Yamada-Watanabe Theorem 1.33 for FBSDEs that there exists
a measurable function ˚ from R

d � C.Œ0; T�IRd/ � D.Œ0; T�IRd/ � C.Œ0; T�IRd/ into
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C.Œ0; T�IRd/�D.Œ0; T�IR/�C.Œ0; T�IRd/�C.Œ0; T�IRd/�D.Œ0; T�IR/ such that, P-almost
surely:

�
X;Y;

Z �

0

Zsds;
Z �

0

Z0s ds;M
�

D ˚
�
X0;W0;�;W

�
:

Therefore, if we can find a new probability measure P
0 on .˝;F/, equivalent to P so

that .˝;F ;F;P0/ is a complete probability space equipped with a complete and right-
continuous filtration, and a new d-dimensional Wiener process W0 such that the tuple
.X0;W0;�;W0/ is admissible under P0, and in particular is compatible with .˝;F ;F;P0/,
then for any solution .X0;Y0;Z0;Z00;M0/ of (1.39), constructed on .˝;F ;F;P0/ for the input
process .X0;W0;�;W0/, and with X0 as initial condition, it must hold P

0 almost surely
that .X0;Y0;

R �

0
Z0

sds;
R �

0
Z00s ds;M0/ D ˚.X0;W0;�;W0/. Hence, j�.t;X0

t ; �t/
�1�Z0

t j � R
dt ˝ P

0-almost everywhere. Moreover .X0;�;
R �

0
Ǫ 0

sds/ and .X;�;
R �

0
Ǫ sds/ have the same

distributions, where:

Ǫ t D Ǫ�t;Xt; �t; �.t;Xt; �t/
�1�Zt

�
; Ǫ 0

t D Ǫ 0
�
t;X0

t ; �t; �.t;X
0
t ; �t/

�1�Z0
t

�
:

Second Step. We now return to the control problem. Given another controlled path
.Xˇ;ˇ/ on the original set-up .˝;F ;F;P/ with input .X0;W0;�;W/, the control ˇ being
bounded by some deterministic constant, we consider, still on .˝;F ;F;P/ equipped with
.X0;W0;�;W/, the BSDE (with the same � and  as in the statement):

dYˇ
t D  

�
Zˇ

t

�
f
�
t;Xˇ

t ; �t; �. Ǫ ˇ
t /
�
dt

C Zˇ
t �
h�
��1b

��
t;Xˇ

t ; �t; ˇt
� �  .Zˇ

t /
�
��1b

��
t;Xˇ

t ; �t; �. Ǫˇ
t /
�i

dt

C Zˇ
t � dWt C Z0;ˇt � dW0

t C dMˇ
t ;

(1.40)

with Ǫˇ
t D Ǫ .t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t / and Yˇ

T D g.Xˇ
T ; �T/. Here, .Mˇ

t /0�t�T denotes
an F-square integrable martingale such that ŒMˇ;W�� � 0 and ŒMˇ;W0�� � 0 and with 0 as
initial condition.

Thanks to the cut-off functions � and  , the system (1.40) has Lipschitz continuous
coefficients in z. Although the standard theory does not apply directly because of the presence
of the additional martingale .Mˇ

t /0�t�T , it may be easily extended to the present situation
and, as a result, (1.40) has a unique solution, see Example 1.20. We now let .Eˇ

t /0�t�T be
the Doléans exponential of the stochastic integral:




�
Z t

0

�
.��1b

��
s;Xs; �s; ˇs

� �  .Zˇ
s /.�

�1b
��

s;Xs; �s; �. Ǫˇ
s /
�� � dWs

�

0�t�T

:

Since the integrand is bounded, .Eˇ
t /0�t�T is a true martingale, and we can define the

probability measure P
ˇ D Eˇ

T � P. Under Pˇ , the process:




Wˇ
t D Wt C

Z t

0

��
��1b

�
.s;Xs; �s; ˇs/ �  .Zˇ

s /
�
��1b

��
s;Xs; �s; �. Ǫˇ

s /
��

ds

�

0�t�T

;
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is a d-dimensional Brownian motion. We show at the end of the proof that .X0;W0;�;Wˇ/ is
admissible and compatible with .˝;F ;F;Pˇ/, and that .Xˇ;Yˇ;Zˇ;Z0;ˇ;Mˇ/ is a solution
of the FBSDE (1.39) on .˝;F ;F;Pˇ/ equipped with .X0;W0;�;Wˇ/. Therefore, taking
these facts for granted momentarily, we infer that the law of .Xˇ;�; Ǫ ˇ/ under P

ˇ is the
same as the law of .X;�; Ǫ / under P, which proves in particular that:

J�. Ǫ / D E
Pˇ

� Z T

0

f .t;Xˇ
t ; �t; Ǫ ˇ

t /dt C g.Xˇ
T ; �T/

	

:

Also, .�.t;Xˇ
t ; �t/

�1�Zˇ
t /0�t�T is bounded by R Leb1 ˝ P

ˇ almost everywhere, and thus
Leb1 ˝ P-almost everywhere, which shows that, in (1.40),  .Zˇ

t / is equal to 1 and �. Ǫˇ
t / is

equal to Ǫˇ
t . In particular, EPˇ

ŒYˇ

0 � is equal to the right-hand side above and thus to J�. Ǫ /.
Since:

E
Pˇ

ŒYˇ

0 � D E
P
�
Eˇ

T Yˇ

0

� D E
P
�
Eˇ

0 Yˇ

0

� D E
P
�
Yˇ

0

�
;

we have:

J�. Ǫ / � J�.ˇ/ D E
P
�
Yˇ

0

� � J�.ˇ/

D E
P

� Z T

0

�
H.r/

�
t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t ; Ǫˇ

t

�

� H.r/
�
t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t ; ˇt

��
dt

	

;

(1.41)

so that J�. Ǫ / � J�.ˇ/.
For a generic ˇ satisfying E

R T
0

jˇtj2dt < 1, we can apply the previous inequality with
ˇ replaced by ˇn D .ˇt1jˇtj�n/0�t�T . Using the continuity and growth assumptions on the
coefficients, it is easy to prove that J�.ˇn/ converges to J�.ˇ/ as n tends to 1, from which
we deduce that Ǫ is a control minimizing the cost.

Third Step. If Ǫ .t; x; �; y/ is a strict minimizer of H.r/.t; x; �; y; �/, then for any bounded
control ˇ, J�.ˇ/ D J�. Ǫ / if and only if ˇ D Ǫ ˇ Leb1 ˝ P-almost everywhere. Using the
fact that j Ǫ ˇj � L.1C R/, we deduce that .Xˇ;Yˇ;Zˇ;Z0;ˇ;Mˇ/ satisfies the FBSDE (1.39)
under P, and by uniqueness, Xˇ D X and ˇ D Ǫ ˇ D Ǫ . If ˇ is not bounded, we can use
the same approximating sequence .ˇn/n�0 as above, and since Xˇn

converges to Xˇ for the
norm E

PŒsup0�t�T j � j2�1=2, we have from (1.41):

J�.ˇ/ � J�. Ǫ / D lim
n!1

J�.ˇn/ � J�. Ǫ /

� E
P

Z T

0

lim inf
n!1

h�
H.r/

�
t;Xˇn

t ; �t; �.t;X
ˇn

t ; �t/
�1�Zˇn

t ; ˇ
n
t

�

� H.r/
�
t;Xˇn

t ; �t; �.t;X
ˇn

t ; �t/
�1�Zˇn

t ; Ǫˇn

t

��i
dt:
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Again, if ˇ is not bounded, we can find R0 > L.RC1/C1 (for the same L as in the statement)
such that EP

R T
0

1L.RC1/C1�jˇtj�R0 dt 6D 0. Given .t; x; �/ 2 Œ0; T� � R
d � X , we then let:

�.t; x; �/ D ˚
.y; ˇ/ 2 R

d � A W jyj � R; jˇj � R0; jˇ � Ǫ .t; x; �; y/j � 1
�
:

Then,

J�.ˇ/ � J�. Ǫ / � E
P

Z T

0

lim inf
n!1

h
inf

.y;ˇ/2�.t;X
ˇn
t ;�t/

�
H.r/

�
t;Xˇn

t ; �t; y; ˇ
�

� H.r/
�
t;Xˇn

t ; �t; y; Ǫ .t;Xˇn

t ; �t; y/
��

1L.RC1/C1�jˇn
t j�R0

i
dt:

By continuity of H.r/.t; �; �t; �; �/ and Ǫ .t; �; �t; �/ and by compactness of �.t; x; �/ for each
.t; x; �/, it is plain to deduce that:

J�.ˇ/ � J�. Ǫ / � E
P

Z T

0

h
inf

.y;ˇ/2�.t;X
ˇ
t ;�t/

�
H.r/

�
t;Xˇ

t ; �t; y; ˇ
�

� H.r/
�
t;Xˇ

t ; �t; y; Ǫ .t;Xˇ
t ; �t; y/

��
1L.RC1/C1�jˇn

t j�R0

i
dt;

which cannot be zero by definition of �.t;Xˇ
t ; �t/. This proves that X is the unique

minimizing path.

Fourth Step. We prove that, if the control ˇ is bounded, the set-up formed by .˝;F ;F;Pˇ/

and .X0;W0;�;Wˇ/ is admissible. It is completely standard to check that .W0;Wˇ/ is a 2d-
dimensional Brownian motion process with respect to F. In order to prove the independence
of Wˇ and .X0;W0;�/, we proceed as follows. First, we claim that for any square-integrable
F-progressively measurable process .#t/0�t�T with values in R

d, for any t 2 Œ0; T�, we have:

E
P

� Z T

t
#s � dWs

ˇ
ˇFW

t _ F .X0;W0;�/
T

	

D 0: (1.42)

Indeed, by approximating # by a sequence of simple processes, it suffices to check that, for
any t � s � T , for any random variable #t 2 L2.˝;Ft;PIRd/,

E
P
h
#t � �Ws � Wt

� ˇ
ˇFW

t _ F .X0;W0;�/
T

i
D 0:

By the compatibility condition, observe that for any events C 2 F .X0;W0;�;W/
t and D 2

F .X0;W0;�/
T :

E
P
�
1C1D#t � �Ws � Wt

�� D E
P
�
1C1DE

PŒ#t jF .X0;W0;�;W/
t � � �Ws � Wt

��
:

Now, using the fact that W and .X0;W0;�/ are independent, we can check that Ws � Wt is

orthogonal to F .X0;W0;�;W/
t _F .X0;W0;�/

T , from which we deduce that the right-hand side above
is zero. This completes the proof of (1.42).
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We now make use of (1.42) to prove that Wˇ and .X0;W0;�/ are independent under Pˇ .
Indeed, given a bounded and measurable function � on R

d � C.Œ0; T�IRd/ � D.Œ0; T�IX /
and a function f 2 L2.Œ0; T�IRd/, we have:

E
Pˇ

�

�.X0;W0;�/ exp


Z T

0

ft � dWˇ
t � 1

2

Z T

0

jftj2dt

�	

D E
P

�

Eˇ
T �.X0;W

0;�/ exp


Z T

0

ft � dWt � 1

2

Z T

0

jftj2dt C
Z T

0

ut � ftdt

�	

;

where we set ut D .��1b/.t;Xˇ
t ; �t; ˇt/ �  .Zˇ

t /.�
�1b/.t;Xˇ

t ; �t; Ǫˇ
t /, which is bounded.

Therefore,

E
Pˇ

�

�.X0;W0;�/ exp


Z T

0

ft � dWˇ
t � 1

2

Z T

0

jftj2dt

�	

D E
P

�

�.X0;W0;�/

E
P

�

Eˇ
T exp


Z T

0

ft � dWt � 1

2

Z T

0

jftj2dt C
Z T

0

ut � ftdt

�
ˇ
ˇF .X0;W0;�/

T

		

D E
P

�

�.X0;W0;�/

E
P

�

exp


Z T

0

�
ft � ut

� � dWt � 1

2

Z T

0

jft � utj2dt

�
ˇ
ˇF .X0;W0;�/

T

		

D E
P
�
�.X0;W0;�/

�
;

the passage from the third to the fourth lines being proved by expanding the exponential as
a stochastic integral and then applying (1.42) with t D 0. Using the fact that the collection
of random variables of the form exp.

R T
0

fs � dWˇ
s � 1

2

R T
0

jfsj2ds/, with f 2 L2.Œ0; T�IRd/, is

a total subset of L2.˝; �fWˇ
s I s � Tg;PˇIR/, we complete the proof of the independence

property.
We check in a similar way that F and .X0;W0;�;Wˇ/ are compatible under Pˇ . To do

so, we make use of the following analogue of (1.42):

E
P

� Z T

t
#s � dWs

ˇ
ˇFt _ F .X0;W0;�/

T

	

D 0; (1.43)

for a square-integrable F-progressively measurable process .#s/0�s�T with values in R
d. In

order to prove (1.43), it suffices to show that, for any t � s � T ,

E
P
�
Ws � WtjFt _ F .X0;W0;�/

T

� D 0:

By the compatibility property, the above is true if

E
P
�
Ws � WtjF .X0;W0;�;W/

t _ F .X0;W0;�/
T

� D 0;

but the latter is indeed true as we already noticed in the proof of (1.42).
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Now that (1.43) has been proved, for t 2 Œ0; T�, C 2 F .X0;W0;�/
t , D 2 F .X0;W;�/

T , E 2 Ft

and f 2 L2.Œ0; T�IRd/, we have:

E
Pˇ

�

1C1D1E exp


Z T

0

fs � dWˇ
s � 1

2

Z T

0

jfsj2ds

�	

D E
P

�

1C1D1E exp


Z T

0

.fs � us/ � dWs � 1

2

Z T

0

jfs � usj2ds

�	

D E
P

�

1C1D1E exp


Z t

0

.fs � us/ � dWs � 1

2

Z t

0

jfs � usj2ds

�

� E
P

�

exp


Z T

t
.fs � us/ � dWs � 1

2

Z T

t
jfs � usj2ds

�
ˇ
ˇFt _ F .X0;W0;�/

T

		

:

Therefore, by (1.43), we obtain:

E
Pˇ

�

1C1D1E exp


Z T

0

fs � dWˇ
s � 1

2

Z T

0

jfsj2ds

�	

D E
P

�

1C1D1E exp


Z t

0

.fs � us/ � dWs � 1

2

Z t

0

jfs � usj2ds

�	

D E
P

�

1C1E exp


Z t

0

.fs � us/ � dWs � 1

2

Z t

0

jfs � usj2ds

�

P
�
DjF .X0;W0;�;W/

t

�
	

:

By independence of .X0;W0;�/ and W, we must have:

PŒDjF .X0;W0;�;W/
t � D PŒDjF .X0;W0;�/

t �;

which is also almost surely equal to P.DjFnat;.X0;W0;�/

tC /. We deduce that:

E
Pˇ

�

1C1D1E exp


Z T

0

fs � dWˇ
s � 1

2

Z T

0

jfsj2ds

�	

D E
Pˇ

�

1C1E exp


Z t

0

fs � dWˇ
s � 1

2

Z t

0

jfsj2ds

�

P
�
DjFnat;.X0;W0;�/

tC

�
	

D E
Pˇ

�

1C1E exp


Z T

0

fs � dWˇ
s � 1

2

Z T

0

jfsj2ds

�

P
�
DjFnat;.X0;W0;�/

tC

�
	

:

Once again, we use the fact that the collection of random variables of the form exp.
R T
0

fs �
dWˇ

s � 1
2

R T
0

jfsj2ds/, with f 2 L2.Œ0; T�IRd/, is total in L2.˝; �fWˇ
s I s � Tg;PˇIR/. By an

approximation argument, we deduce that, for any D0 2 �fWˇ
s I s � Tg,

P
ˇ
�
C \ D \ D0 \ E

� D E
Pˇ

�

1C1E1D0P
�
DjFnat;.X0;W0;�/

tC

�
	

;
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which clearly implies the required compatibility condition. This shows that, .˝;F ;F;Pˇ/

with input .X0;W0;�;Wˇ/ is an admissible set-up.

Fifth Step. It remains to check that, under Pˇ , .Xˇ;Yˇ;Zˇ;Z0;ˇ;Mˇ/ is the solution of the
FBSDE (1.39), when driven by .X0;W0;�;Wˇ/. We first notice that, by construction,

E
P

� Z T

0

�jZˇ
t j2 C jZ0;ˇt j2�dt C sup

0�t�T
jMˇ

t j2
	

< 1:

Therefore, for any p 2 Œ1; 2/,

E
Pˇ

�
Z T

0

�jZˇ
t j2 C jZ0;ˇt j2�dt

�p=2

C sup
0�t�T

jMˇ
t jp
	

< 1:

Also, by stochastic integration by parts and by orthogonality of W and Mˇ (under P), we
may check that .Eˇ

t Mˇ
t /0�t�T , is an F-martingale under P, so that Mˇ is a martingale under

P
ˇ . Returning to (1.40), taking the conditional expectation given Ft for any t 2 Œ0; T�, and

recalling that .W0;Wˇ/ is a 2d-dimensional Brownian motion under Pˇ , it is quite standard
to deduce that Yˇ is a bounded process under Pˇ (and thus under P as well). In particular, for
any p � 1,

E
Pˇ

�

sup
0�t�T


Z T

0

Zˇ
s � dWˇ

s C
Z T

0

Z0;ˇs � dW0
s C Mˇ

T

�2p	

< 1: (1.44)

Now, by orthogonality of W and Mˇ (under P), we may check that .Eˇ
t Mˇ

t Wˇ
t /0�t�T are

F-martingales under P, so that ŒMˇ;Wˇ�� � 0 under Pˇ . Similarly, ŒMˇ;W0�� � 0 under
P

ˇ . Therefore, by (1.44) and by Burkholder-Davis-Gundy inequalities (for possibly discon-
tinuous martingales), we deduce that, for any p � 1, EPˇ

Œ.
R T
0

jZˇ
t j2dt/p�, EPˇ

Œ.
R T
0

jZ0;ˇt j2dt/p�

and E
Pˇ
Œsup0�t�T jMˇ

t jp� are finite.
It now remains to check that the forward and backward equations in (1.39) are satisfied

pathwise by .Xˇ;Yˇ;Zˇ;Z0;ˇ;Mˇ/ under .X0;W0;�;Wˇ/, but this is a mere consequence
of the definition of Wˇ . ut

End of the Proof of Theorem 1.57
In order to complete the proof of Theorem 1.57, we prove that the assumptions of
Proposition 1.58 are satisfied.

Proof of Theorem 1.57. There are two important things that we need to prove: 1) first that
the FBSDE (1.39) with any choice of cut-off functions is strongly uniquely solvable; 2)
second, that the process Z D .Zt/0�t�T is bounded independently of the choice of the cut-off
functions. Given these two ingredients, it is clear that (1.37) has a solution with Z bounded.
In order to prove the strong unique solvability, we shall make use of Proposition 1.52, while
we shall follow the proof of Lemma (Vol I)-4.11 to establish that Z is bounded. As we shall
see, the key point for proving both claims is to show that we can bound the Lipschitz constant
of the decoupling field independently of the cut-off functions in (1.39).
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First Step. Obviously, the coefficients of (1.39) satisfy assumption Lipschitz FBSDE in
Random Environment. In order to apply Proposition 1.52, the main difficulty is thus to
check that assumption Iteration of Lipschitz FBSDE holds. Without any loss of generality,
we can check it for t D 0 only. As a by-product of our proof, we shall have that the decoupling
field is bounded, uniformly in all the variables and independently of the choice of the cut-off
functions.

We thus consider an admissible set-up .˝;F ;F;P/ with input .W0;�;W/ and no initial
information. On this set-up, we assume that there exists a solution .X;Y;Z;Z0;M/ to (1.39)
with some deterministic initial condition x 2 R

d at t D 0. Given this solution, we let
.Et/0�t�T be the exponential local martingale associated with the stochastic integral:




�
Z t

0

�
 .Zs/.�

�1b/
�
s;Xs; �s; �. Ǫs/

�� � dWs

�

0�t�T

;

i.e. the Doléans exponential of this stochastic integral, where Ǫs is understood as Ǫs D
Ǫ .s;Xs; �s; �.s;Xs; �s/

�1�Zs/. Since the integrand is bounded, .Et/0�t�T is a true martingale
and we can define the probability measure Q D ET � P. Under Q, the process




WQ
t D Wt C

Z t

0

 .Zs/
�
��1b

��
s;Xs; �s; �. Ǫs/

�
ds

�

0�t�T

is a d-dimensional Brownian motion which, like W under P, is orthogonal to M under Q.
Following the steps of the proof of Proposition 1.58, we learn that under Q, .˝;F ;F;Q/
equipped with .W0;�;WQ/ is an admissible set-up, and that the pair .W0;�/ has the same
law under Q and under P. Moreover, on the probabilistic set-up .˝;F ;F;Q/ equipped with
.W0;�;WQ/, .Xt; Yt; Zt; Z0t ;Mt/0�t�T is a solution of the forward-backward SDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D �.t;Xt; �t/dWQ
t C �0.t;Xt; �t/dW0

t ;

dYt D � .Zt/f
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��
dt

� .Zt/Zt � .��1b/
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��
dt

CZt � dWQ
t C Z0t � dW0

t C dMt;

(1.45)

over the interval Œ0; T�, with the same terminal condition as before. For any initial condition,
the forward-backward SDE (1.45) with no initial information is strongly uniquely solvable.
Notice that there is no need to assume that T is small enough since the forward equation is
decoupled, and the backward equation can be treated as a standard BSDE. In particular,
calling U0 the decoupling field of (1.45) at time 0, we deduce that, Q-almost surely,
Y0 D U0.x;Q ı .W0;�/�1; .W0;�//. Since Q and P are equivalent and Q ı .W0;�/�1 D
P ı .W0;�/�1, we deduce that, P-almost surely, Y0 D U0.x;P ı .W0;�/�1; .W0;�//.
Therefore, in order to check assumption Iteration of Lipschitz FBSDE, it suffices to control
the Lipschitz constant of U0 in space.

Second Step. We now use the fact that the decoupling field is independent of the probabilistic
set-up used to construct a solution to (1.45). We thus consider the same FBSDE as in (1.45),
but on the original set-up with WQ replaced by the original W:
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D �.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ;

dYt D � .Zt/f
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��
dt

� .Zt/Zt � .��1b/
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��
dt

CZt � dWt C Z0t � dW0
t C dMt;

(1.46)

for t 2 Œ0; T�, with x as deterministic initial condition. We then denote the solution by
.Xx;Yx;Zx;Z0;x;Mx/.

The goal is then to prove that there exists a constant � , only depending upon L and T
(and independent of the cut-off functions) such that, for all x; x0 2 R

d:

P
�jYx0

0 � Yx
0 j � � jx0 � xj� D 1;

which by Proposition 1.46 is enough to control the Lipschitz constant of the decoupling field.
Fixing the values of x and x0 and letting:

�
ıXt; ıYt; ıZt; ıZ

0
t ; ıMt

�

D �
Xx0

t � Xx
t ; Y

x0

t � Yx
t ; Z

x0

t � Zx
t ; Z

0;x0

t � Z0;xt ;Mx0

t � Mx
t

�
; t 2 Œ0; T�;

we can write:

dıXt D �
ı�tıXt

�
dWt C �

ı�0t ıXt
�
dW0

t ; t 2 Œ0; T�; (1.47)

where we used the same notation as in Theorem (Vol I)-4.45, namely ı�tıXt and ı�0t ıXt read
as square matrices of dimension d, with the following entries:

�
ı�tıXt

�

i;j D
dX

`D1

�
ı�t
�

i;j;`

�
ıXt
�

`
;

�
ı�0t ıXt

�

i;j D
dX

`D1

�
ı�0t

�

i;j;`

�
ıXt
�

`
; i; j 2 f1; � � � ; dg2;

where .ıXt/` is the `th coordinate of ıXt and

�
ı�t
�

i;j;` D �i;j
�
t;X`�1Ix!x0

t ; �t
� � �i;j

�
t;X`Ix!x0

t ; �t
�

.ıXt/`
1f.ıXt/` 6D0g;

�
ı�0t

�

i;j;` D �0i;j
�
t;X`�1Ix!x0

t ; �t
� � �0i;j

�
t;X`Ix!x0

t ; �t
�

.ıXt/`
1f.ıXt/` 6D0g;

with:

X`Ix!x0

t D �
Xx

t /1; � � � ; .Xx
t /`; .X

x0

t /`C1; � � � ; .Xx0

t /d
�
:
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From the Lipschitz property of � and �0 in the space variable, we deduce that the processes
.ı�t/0�t�T and .ı�0t /0�t�T are bounded by a constant � only depending upon L in the
assumption. As in the proof of Theorem (Vol I)-4.45, .ı�tıXt/i;j reads as the inner product
of ..ı�t/i;j;`/1�`�d and .ıXt/`/1�`�d, but, because of the additional indices .i; j/, we decided
not to indicate the inner product explicitly in the notation while we shall let it appear for the
terms coming below.

Indeed, in a similar fashion, the pair .ıYt; ıZt; ıZ0t /0�t�T satisfies a backward equation
of the form:

ıYt D ıgT � ıXT C
Z T

t

�
ıF.1/s � ıXs C ıF.2/s � ıZs

�
ds

�
Z T

t

�
ıZs � dWs C ıZ0s � dW0

s

�C �
ıMT � ıMt

�
;

(1.48)

where ıgT is an R
d-valued random variable bounded by � while ıF.1/ D .ıF.1/t /0�t�T

and ıF.2/ D .ıF.2/t /0�t�T are bounded and progressively measurable R
d-valued processes,

whose bounds depend upon the details of the cut-off functions � and  . As in the proof of
Theorem (Vol I)-4.45, “�” denotes the inner product acting on elements of Rd. Notice also
that, as a uniform bound on the growth of ıF.1/ and ıF.2/, we have:

jıF.1/t j � � .1C jZx
t j2 C jZx0

t j2/;
jıF.2/t j � � .1C jZx

t j C jZx0

t j/ t 2 Œ0; T�;

the constant � only depending on L in the assumption.
Using the fact ıF.2/ is bounded, we introduce a probability Q (we use again the letter Q

although this probability is different from the one introduced in the first step), equivalent to
P, under which .WQ

t D Wt � R t
0
ıF.2/s ds/0�t�T is a Brownian motion. Following the proof of

Proposition 1.58, we know that ıM and
R �

0
ıZ0s � dW0

s remain F-martingales under Q. More-
over, it is easily checked that .

R t
0
ıZs �dWQ

s /0�t�T is also an F-martingale under Q. Therefore,

E
�
ıY0jF0

� D E
Q
�
ıY0jF0

� D E
Q

�


ıgT � ıXT C
Z T

0

ıF.1/s � ıXs ds

�
ˇ
ˇF0

	

: (1.49)

In order to handle the right-hand side in (1.49), we need to investigate dQ=dP. This requires
to go back to (1.46). The usual trick is to take the exponential of the solution and to expand
.exp.�Yt//0�t�T for a well-chosen �. Taking advantage of the convexity of the exponential
and of the fact that g, f , and b are bounded in x, we get, for any x 2 R

d,

exp.�Yx
t /

C �2

2


Z T

t
exp.�Yx

s /
�jZx

s j2 C jZ0;xs j2�ds C
Z T

t
exp.�Yx

s�/d
��

Mx
�c�

s

�

� exp.�Yx
T/C C�

Z T

t
exp.�Yx

s /.1C jZx
s j2/ds

� �
Z T

t
exp.�Yx

s�/.Z
x
s � dWs C Z0;xs � dW0

s C dMx
s /;

(1.50)

where .Mx/c is the continuous part of Mx.
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Choosing j�j large enough and then taking the conditional expectation given Ft, we
deduce that .Yx

t /0�t�T is bounded by � , where we allow the constant � to increase from
line to line, while still remaining independent of x. In particular, any continuous version of
the decoupling field R

d 3 x 7! U0.x;P ı .W0;�/�1; �/ (such a continuous version exists by
Proposition 1.46 but the value of the Lipschitz constant therein depends on the details of �
and  ) must be bounded by � with probability 1 under P ı .W0;�/�1.

Third Step. Actually, the bound (1.50) says more. It says that the stochastic integral
.
R t
0

Zx
s � dWs/0�t�T is of bounded mean oscillation (or BMO for short). See Definition (Vol

I)-4.17. That is, for any F-stopping time � , EŒ
R T
�

jZx
s j2dsjF� � � C0, for some constant C0 that

only depends on the maturity time T and the constant C in the assumption. Luckily, the same
holds by replacing Zx

s by ıF.2/s from (1.48), as jıF.2/s j � � .1C jZx
s j C jZx0

s j/. By Proposition
(Vol I)-4.18, the BMO property implies that there exists an exponent r > 1, only depending
on L and T , such that the r-moment of the Doléans exponential martingale associated with
.
R t
0
ıF.2/s � dWs/0�t�T is bounded by � (for a new value of � only depending on L and T),

namely:

E

h�dQ

dP

�ri D E

�

exp




r
Z T

0

ıF.2/s � dWs � r

2

Z T

0

jıF.2/s j2ds

�	

� �:

We claim that the same result holds conditional on F0, that is, P-almost surely,

E

h�dQ

dP

�r ˇ
ˇF0

i
D E

�

exp




r
Z T

0

ıF.2/s � dWs � r

2

Z T

0

jıF.2/s j2ds

�
ˇ
ˇF0

	

� �:

Indeed, for any event E 2 F0 with P.E/ > 0, we may apply Proposition (Vol I)-4.18 with
the conditional probability PŒ�jE�. Under this probability, W is an F-Brownian motion and
the stochastic integral

R �

0
Zs � dWs coincides with that constructed under P.

Now by (1.47), we deduce that for any p � 1, there exists a constant Cp independent of
the choice of the cut-off functions � and  , such that EŒsup0�t�T jıXsjpjF0�1=p � Cpjx � x0j.
Therefore, applying Hölder’s inequality, (1.49) and the bound for the r-conditional moment
of dQ=dP given F0, we obtain:

jıY0j � � jx � x0j


1C E

�
Z T

0

�jZx
s j2 C jZx0

s j2�ds

�%

jF0
	1=%�

; (1.51)

for some % > 1. In order to estimate the right-hand side, we invoke Proposition (Vol I)-4.18
again, using the same trick as above in order to handle the conditioning. It guarantees
that the %-conditional moment of

R T
0
.jZx

s j2 C jZx0

s j2/ds given F0 is bounded by a constant
that only depends upon % and the BMO norms of the martingales .

R t
0

Zx
s � dWs/0�t�T and

.
R t
0

Zx0

s � dWs/0�t�T . We deduce that, with probability 1 under P,

jıY0j � � jx � x0j;

for a new value of the constant � , only depending upon L and T . This proves the required
estimate for the Lipschitz constant of the decoupling field associated with the system (1.46).
Using Proposition 1.46, we complete the proof of the strong unique solvability of (1.39).

Fourth Step. Consider now a solution .X;Y;Z;Z0;M/ of (1.39) on some admissible set-up
.˝;F ;P/ equipped with some .X0;W0;�;W/, X0 denoting the initial condition of (1.39).
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It then remains to prove that the martingale integrand Z is bounded, independently of the
choice of the cut-off functions. The proof is inspired by the proof of Lemma (Vol I)-4.11.

Arguing as in the first and second steps and in particular, making use of Girsanov’s
transform in the same way, it suffices to work with the solution of (1.45). By uniqueness
in law, it even suffices to provide a bound for the martingale integrand in the solution of
(1.46), the advantage being that (1.46) is constructed on the original set-up. Using the above
notations, we denote the driver of the backward equation by:

F
�
t;Xt; �t; Zt

� D  .Zt/f
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��

�  .Zt/Zt � .��1b/
�
t;Xt; �t; �

� Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt/

��
:

From the assumptions we have on f and b, we may reproduce the argument used in (1.48)
and write:

F
�
t;Xt; �t; Zt

� D F
�
t;Xt; �t; 0

�C ıFt � Zt;

where ıF D .ıFt/0�t�T is a bounded and progressively measurable R
d-valued process, the

bound depending on the cut-off functions � and  . As a uniform control on the growth of
ıF, we have:

jıFtj � � 0
�
1C jZtj

�
; t 2 Œ0; T�;

for a constant � 0 only depending on T and L in the assumption. Without any loss of
generality, we can also assume that:

jF�t;Xt; �t; 0j � � 0; t 2 Œ0; T�:

In particular, for a given t 2 Œ0; T�, we can introduce a new probability measure Q0
t , given by:

dQ0
t

dP
D exp


Z T

t
ıFs � dWs � 1

2

Z T

t
jıFsj2ds

�

:

Under Q0
t , the process .W

Q0
t

s D Ws � R s
t ıFudu/t�s�T is a Brownian motion. Then, by the

same argument as above, based on (1.50) and the theory of BMO martingales, we can find
an exponent r0 > 1 such that:

E

h�dQ0
t

dP

�r0

jFt

i
� � 0; (1.52)

for a possibly new value of � 0. Under the probability Q
0
t , the backward equation in (1.46)

takes the form:

dYs D �F.s;Xs; �s; 0/dt C Zs � dW
Q0

t
s C Z0s � dW0

s C dMs; t � s � T; (1.53)



1.4 Optimization with Random Coefficients 95

on the t-initialized set-up .˝; .Fs/t�s�T ;Q
0
t/ with .�fX0;W0

s ; �s;WsI s � tg; .W0
s �

W0
t ; �s;W

Q0
t

s � W
Q0

t
t /t�s�T/ as input. Admissibility of the set-up is proved in two steps.

We check first that the set-up .˝; .Fs/t�s�T ;P/ equipped with .�fX0;W0
s ; �s;WsI s �

tg; .W0
s � W0

t ; �s;Ws � Wt/t�s�T/ is admissible, which basically follows from the arguments
used to justify the induction principle preceding the statement of Proposition 1.52.
Then, proceeding as in the first two steps, we deduce that the set-up obtained by
application of Girsanov’s transform is also admissible. Notice that we use the � -field
�fX0;W0

s ; �s;WsI s � tg as initial information, while the initial condition Xt is only
measurable with respect to the completion of �fX0;W0

s ; �s;WsI s � tg. Of course, it suffices
to restart from a version of Xt which is �fX0;W0

s ; �s;WsI s � tg-measurable in order
to guarantee the measurability property of the initial condition with respect to the initial
information. Also, recall from the same arguments as in the first two steps that, under the
probability Q

0
t , Mx remains a martingale, orthogonal to WQ0

t and W0.

Then, for t Ct 2 Œt; T�, we can multiply both sides of (1.53) by
R tCt

t Zs � dW
Q0

t
s . Recall

indeed that
R T
0

jZsj2ds has finite moments of any order under P and then, thanks to (1.52),

under Q0
t . Since Mx and W0 are orthogonal to WQ0

t under Q0
t and since .F.s;Xs; �s; 0/t�s�T

is bounded by � 0, we deduce that:

E
Q0

t

� Z tCt

t
jZx

s j2ds
ˇ
ˇ Ft

	

� � 0t C E
Q0

t

�

Yx
tCt

Z tCt

t
Zx

s � dW
Q0

t
s

ˇ
ˇ Ft

	

:

Now comes another crucial fact that we proved in (1.43):
R tCt

t Zs � dW
Q0

t
s is orthogonal to

Ft _ �fW0
s ; �sI t � s � Tg under Q0

t . Introducing the decoupling field at time t C t of
(1.46), we get:

E
Q0

t

� Z tCt

t
jZsj2ds jFt

	

� � 0t C E
Q0

t

��
YtCt � VtCt

�
Xt; .X0;W0;�/

��
Z tCt

t
Zs � dW

Q0
t

s

ˇ
ˇFt

	

;

where we let:

VtCt
�
x; .X0;W0;�/

�

D UtCt

�
x;L

�
.W0

s � W0
t ; �s/tCt�s�T jFnat;.X0;W0;�/

tCt

�
; .W0

s � W0
t ; �s/tCt�s�T

�
:

By Cauchy-Schwarz inequality and by the standard convexity inequality ab � 2a2 C b2=2,
we deduce that:

E
Q0

t

� Z tCt

t
jZsj2ds jFt

	

� � 0t C � 0
E
Q0

t

hˇ
ˇYtCt � VtCt

�
Xt; .X0;W0;�/

�ˇ
ˇ2
ˇ
ˇFt

i
:
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Then,

E
Q0

t

� Z tCt

t
jZsj2ds jFt

	

� � 0t C � 0
E

hˇ
ˇYtCt � VtCt

�
Xt; .X0;W0;�/

�ˇ
ˇ2r0=.r0�1/ˇˇFt

i r0�1
r0

� � 0t;

where we used the identity YtCt D VtCt.XtCt; .X0;W0;�// and the fact that
VtCt.�; .X0;W0;�// is Lipschitz continuous. As usual, the constant � 0 is allowed to
increase from line to line. Multiplying both sides by:

#t
dQ0

0

dP
jFt ;

for a bounded Ft-measurable random variable #t with values in RC, we get:

E
Q0
0

�

#t

Z tCt

t
jZsj2ds

	

� � 0
E
Q0
0

�

#t

Z tCt

t
ds

	

:

Now, by a standard approximation argument, we deduce that, for any bounded and
progressively measurable process .#s/0�s�T with values in RC, we have:

E
Q0
0

� Z T

0

#sjZsj2ds

	

� � 0
E
Q0
0

� Z T

0

#sds

	

:

Choosing #s D 1fjZsj
2>� 0g, we complete the proof. ut

1.4.4 Revisiting the Pontryagin Stochastic Maximum Principle

The derivation of the above representation of the value function requires invertibility
of the diffusion matrix � . When � is not invertible, if the coefficients are differen-
tiable, we may use a stochastic version of the Pontryagin maximum principle instead
of the first prong of the probabilistic approach described above.

Using the same set-up for the environment, together with the full Hamiltonian H
as defined for example in (1.34), the approach based on the Pontryagin stochastic
maximum principle leads to the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t;Yt/

�
dt

C��t;Xt; �t
�
dWt C �0

�
t;Xt; �t

�
dW0

t ;

dYt D �@xH
�
t;Xt; �t;Yt;Zt;Z0t ; Ǫ .t;Xt; �t;Yt/

�
dt

CZtdWt C Z0t dW0
t C dMt;

YT D @xg.XT ; �T/;

(1.54)
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where M D .Mt/0�t�T is a square-integrable, mean-zero continuous martingale,
of zero cross-variation with .W0;W/. We refer to (1.34) for the definition of the
Hamiltonian H. Since the control ˛ D .˛t/0�t�T does not appear in the volatilities
� and �0, we can use the reduced Hamiltonian H.r/ defined as:

H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/;

for t 2 Œ0;T�, x; y 2 R
d, � 2 X and ˛ 2 A, to determine which minimizer Ǫ to

use. Recall (1.32) for a previous discussion of this fact. So as before, we denote by
Ǫ .t; x; �; y/ a minimizer of the Hamiltonian, namely:

Ǫ .t; x; �; y/ 2 argmin˛2AH.r/.t; x; �; y; ˛/ D argmin˛2AH.t; x; �; y; z; z0; ˛/;

and again, existence, uniqueness, and smoothness properties of a minimizer can be
derived under suitable convexity conditions, taking full advantage of the fact that A
is a closed convex subset of Rk. See for instance Lemma 1.56 for a typical result.

Necessary Condition
Since the framework is nonstandard, we provide a proof of the necessary part
of the Pontryagin stochastic maximum for optimal control problems in random
environment, very much in the spirit of Subsection 1.4.1.

Assumption (Necessary SMP in Random Environment).

(A1) The functions b and f are differentiable with respect to .x; ˛/, the
mappings Rd � A 3 .x; ˛/ 7! @x.b; f /.t; x; �; ˛/ and R

d � A 3 .x; ˛/ 7!
@˛.b; f /.t; x; �; ˛/ being continuous for each .t; �/ 2 Œ0;T� � X .
Similarly, the functions � , �0 and g are differentiable with respect to
x, the mapping R

d 3 x 7! @x.�; �
0/.t; x; �/ being continuous for each

.t; �/ 2 Œ0;T� � X , and R
d 3 .x; �/ 7! @xg.x; �/ being continuous for

each � 2 X .
(A2) The functions Œ0;T� 3 t 7! .b; f /.t; 0; 0X ; 0A/ and Œ0;T� 3 t 7!

.�; �0/.t; 0; 0X / are uniformly bounded, for some points 0X 2 X and
0A 2 A. The derivatives @.x;˛/b and @x.�; �

0/ are uniformly bounded.
There exists a constant L such that, for any R � 0 and any .t; x; �; ˛/
with jxj � R, d.0X ; �/ � R and j˛j � R, j@xf .t; x; �; ˛/j, j@xg.x; �/j
and j@˛f .t; x; �; ˛/j are bounded by L.1C R/.

Following the approach we took to generalize the standard Pontryagin stochastic
maximum principle to the case of the optimal control of McKean-Vlasov diffusion
processes in Theorem (Vol I)-6.14, we arrive at the following form of the necessary
part of the principle. Clearly, it is tailored to the random environment framework
considered in this part of the book.
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Theorem 1.59 Under assumption Necessary SMP in Random Environment, if
we assume further that the Hamiltonian H is convex in ˛ 2 A, then if the admissible
control ˛ D .˛t/0�t�T 2 A is optimal, for the associated controlled state X D
.Xt/0�t�T , and the corresponding solution .Y;Z;Z0;M/ D .Yt;Zt;Z0t ;Mt/0�t�T of
the adjoint backward SDE:

8
ˆ̂
<

ˆ̂
:

dYt D �@xH
�
t;Xt; �t;Yt;Zt;Z0t ; ˛t

�
dt

CZtdWt C Z0t dW0
t C dMt; t 2 Œ0;T�;

YT D @xg.XT ; �T/;

(1.55)

we have:

8˛ 2 A; H.r/.t;Xt; �t;Yt; ˛t/ � H.r/.t;Xt; �t;Yt; ˛/; (1.56)

Leb1 ˝ P almost everywhere.

Proof. The proof is similar to the proof of Theorem (Vol I)-6.14 in Subsection (Vol I)-6.3.1,
so we only provide the main steps, and focus on the main differences. We first introduce
some notation. For ˛ 2 A and ˇ 2 H

2;k such that ˛ C �ˇ 2 A for � > 0 small enough, we
let � D .�t D .Xt; �t; ˛t//0�t�T and we define the variation process V D .Vt/0�t�T as the
solution of the stochastic differential equation:

dVt D �
@xb.t; �t/ � Vt C @˛b.t; �t/ � ˇt

�
dt C �

@x�.t; �t/ � Vt
�
dWt C �

@x�
0.t; �t/ � Vt

�
dW0

t ;

for t 2 Œ0; T�, with V0 D 0. Notice that we write �.t; �/ and �0.t; �/ with � D .x; �; ˛/,
even though we assume that � and �0 do not depend upon the control parameter ˛. If we
let ˛� D .˛�t D ˛t C �ˇt/0�t�T and X� D X˛� , then, repeating the computations of Lemma
(Vol I)-6.10, we have:

lim
�&0

E

�

sup
0�t�T

ˇ
ˇ
ˇ
X�t � Xt

�
� Vt

ˇ
ˇ
ˇ
2
	

D 0: (1.57)

Recalling the definition of J�.˛/ in (1.31), in analogy with Lemma (Vol I)-6.11, we also
have that the function A 3 ˛ 7! J�.˛/ is Gâteaux differentiable in the direction ˇ and its
derivative is given by:

d

d�
J�.˛ C �ˇ/

ˇ
ˇ
�D0

D E

� Z T

0

�
@xf .t; �t/ � Vt C @˛f .t; �t/ � ˇt

�
dt C @xg.XT ; �T/ � VT

	

:

(1.58)

Consider now the BSDE (1.55) by treating Xt as part of the randomness of the driver of this
BSDE. The discussion of Example 1.20 says that it admits a unique solution .Y;Z;Z0;M/
on .˝;F ;F;P/. Then we check, as in Lemma (Vol I)-6.12, that:
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EŒYT � VT � D E

Z T

0

�
Yt � �@˛b.t; �t/ � ˇt

� � @xf .t; �t/ � Vt
�

dt: (1.59)

As in the proof of Lemma (Vol I)-6.12, the argument relies on an integration by parts.
However, some care is needed because of the additional presence of M. The proof now
requires the use of stochastic integration by parts for discontinuous semi-martingales. In
particular, one has to check that

R �

0
Yt� � dMt is a true martingale. The standard argument is

to prove that the supremum over Œ0; T� is integrable by applying Burkholder-Davies-Gundy
inequality together with the a priori estimate:

E

�
Z T

0

jYt�j2d
�

trace
�
ŒM�t

��
�1=2	

� E
�

sup
t2Œ0;T�

jYtj2
�1=2

E
�
trace

�
ŒM�T

��1=2
< 1:

Putting together the duality relation (1.59) and (1.58), and using the terminal condition for
YT , we deduce that the Gâteaux derivative of J� at ˛ in the direction ˇ can be written as:

d

d�
J�.˛ C �ˇ/

ˇ
ˇ
�D0

D E

Z T

0

@˛H.r/.t;Xt; �t; Yt; ˛t/ � ˇt dt: (1.60)

Finally, we conclude as we did in the proof of Theorem (Vol I)-6.14. ut

Sufficiency
We now turn to a convenient form of the sufficient condition for the Pontryagin
stochastic maximum principle, very much in the spirit of Theorem (Vol I)-3.17. In
order to do so, we introduce the following set of assumptions:

Assumption (Sufficient SMP in Random Environment). Assume that there
exist two constants L � 0 and � > 0 such that:

(A1) The function b has the form b.t; x; �; ˛/ D b0.t; �/C b1.t/x C b2.t/˛,
where b0, b1 and b2 are measurable mappings with values in R

d, Rd�d

and R
d�k respectively, and satisfy:

jb0.t; �/j � L
�
1C d.0X ; �/

�
; jb1.t/j; jb2.t/j � L;

for some point 0X 2 X . Similarly, there exist measurable functions
Œ0;T� � X 3 .t; �/ 7! .�0; �

0
0 /.t; �/ and Œ0;T� 3 t 7! .�1; �

0
1 /.t/, with

values in .Rd�d/2 and .Rd�d�d/2, such that:

�.t; x; �/ D �0.t; �/C �1.t/x; �0.t; x; �/ D �00 .t; �/C �01 .t/x;

where, for all t 2 Œ0;T� and � 2 X ,

j.�0; �00 /.t; �/j � L
�
1C d.0X ; �/

�
; j.�1; �01 /.t/j � L:

(continued)
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(A2) The function f is measurable and, for any t 2 Œ0;T� and � 2 X , the
function R

d � A 3 .x; ˛/ 7! f .t; x; �; ˛/ is continuously differentiable
with L-Lipschitz continuous derivatives, and f is convex and uniformly
�-convex in ˛ in the sense that:

f .t; x0; �; ˛0/�f .t; x; �; ˛/�.x0�x; ˛0�˛/�@.x;˛/f .t; x; �; ˛/ � �j˛0�˛j2;

where @.x;˛/f stands for the gradient in the joint variables .x; ˛/.
Moreover,

jf .t; x; �; ˛/j � L
�
1C jxj2 C Œd.0X ; �/�

2 C j˛j2�;
j.@xf ; @˛f /.t; x; �; ˛/j � L

�
1C jxj C d.0X ; �/C j˛j�:

(A3) The function g is measurable and, for any � 2 X , the function R
d 3

x 7! g.x; �/ is continuously differentiable and convex, and has a L-
Lipschitz-continuous derivative. Moreover,

jg.x; �/j � L
�
1C jxj2 C Œd.0X ; �/�

2
�
;

j@xg.x; �/j � L
�
1C jxj C d.0X ; �/

�
:

Notice that assumption Sufficient SMP in Random Environment subsumes
assumption Hamiltonian Minimization in Random Environment. In particular,
Lemma 1.56 addressing the regularity of Ǫ applies.

Here is the corresponding version of Theorem (Vol I)-3.17.

Theorem 1.60 Under assumption Sufficient SMP in Random Environment,
consider an admissible set-up .˝;F ;F;P/ for some input .X0;W0;�;W/. The
forward-backward system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t;Yt/

�
dt

C��t;Xt; �t
�
dWt C �0

�
t;Xt; �t

�
dW0

t ;

dYt D �@xH
�
t;Xt; �t;Yt;Zt;Z0t ; Ǫ .t;Xt; �t;Yt/

�
dt

CZtdWt C Z0t dW0
t C dMt;

(1.61)

with X0 as initial condition and YT D @xg.XT ; �T/ as terminal condition, where
.Mt/0�t�T is a square-integrable càd-làg martingale, with M0 D 0 and zero cross-
variation with .W0;W/, has a unique solution . OXt; OYt; OZt; OZ0t ; OMt/0�t�T such that:

E

�

sup
0�t�T

�j OXtj2 C j OYtj2 C j OMtj2
�C

Z T

0

�j OZtj2 C j OZ0t j2�dt

	

< C1; (1.62)
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and if we set Ǫ D . Ǫ t D Ǫ .t; OXt; �t; OYt//0�t�T , then for any progressively
measurable control ˇ D .ˇt/0�t�T satisfying E

R T
0

jˇtj2dt < 1, it holds:

J�
� Ǫ �C �E

Z T

0

jˇt � Ǫ tj2dt � J�
�
ˇ
�
: (1.63)

As by Proposition 1.52, the FBSDE (1.61) admits a decoupling field U which is
C-Lipschitz-continuous in x uniformly in the other variables, for a constant C which
only depends on L and T, and in particular, which is independent of t 2 Œ0;T�. As a
result, OY may be represented as a function of OX as in Proposition 1.50.

Also, for any t 2 Œ0;T�, .x; NP0/ 2 R
d � P2. N̋ 0;t/ with N̋ 0;t D C.Œt;T�IRd/ �

D.Œt;T�IX /, such that .w0s /t�s�T is a d-dimensional Brownian motion starting from
zero under NP0 with respect to the natural filtration generated by the canonical
process .w0s ; �s/t�s�T , it holds:

jUt.x; NP0; �/j � C
�
1C jxj C E

NP0� sup
t�s�T

d.0X ; �s/
2 jGtC

�1=2
�
;

where the � -field GtC is defined as GtC D \">0�fw0s ; �sI t � s � t C "g.

Proof. Provided that (1.61) is indeed solvable, the proof of (1.63) is a straightforward
replication of the proof of Theorem (Vol I)-3.17 with the additional appeal, as in the proof of
Theorem 1.59, to the stochastic integration by parts formula for discontinuous martingales in
order to handle the fact that M is discontinuous.

So we only need to prove the unique strong solvability of (1.61). By Lemma 1.56, we first
observe that (1.61) has Lipschitz continuous coefficients. In order to complete the proof, it is
thus sufficient to check the assumption of Proposition 1.52. Again the proof is a replication
of the case when � is deterministic, see for instance Lemma (Vol I)-4.56. We reproduce
it here for the sake of completeness. Given x; y 2 R

d , we consider on some t-initialized
set-up .˝;F ; .Fs/t�s�T ;P/ for an input .W0

s ; �s;Ws/t�s�T and no initial information, two
solutions of (1.61), if they do exist, .Xt;x;Yt;x;Zt;x;Z0;t;x;Mt;x/ and .Xt;y;Yt;y;Zt;y;Z0;t;y;Mt;y/

with x and y as initial conditions at time t. Repeating the proof of (1.63), but taking into
account the fact that the initial conditions may be different and using conditional expectations
given Ft instead of expectations, we get:

.y � x/ � Yt;x
t C Et

� Z T

t
f .r;Xt;x

r ; �r; Ǫ t;x
r /dr C g.Xt;x

T ; �T/

	

C �Et

� Z T

t
j Ǫ t;x

r � Ǫ t;y
r j2dr

	

� Et

� Z T

t
f .r;Xt;y

r ; �r; Ǫ t;y
r /dr C g.Xt;y

T ; �T/

	

;

where we used the short notations . Ǫ t;

s D Ǫ .s;Xt;


s ; �s; Y
t;

s //t�s�T , for 
 D x or y, and

EtŒ�� D EŒ�jFt�. Exchanging the roles of x and y, we get:
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.x � y/ � Yt;y
t C Et

� Z T

t
f .r;Xt;y

r ; �r; Ǫ t;y
r /dr C g.Xt;y

T ; �T/

	

C �Et

� Z T

t
j Ǫ t;y

r � Ǫ t;y
r j2dr

	

� Et

� Z T

t
f .r;Xt;x

r ; �r; Ǫ t;x
r /dr C g.Xt;x

T ; �T/

	

:

Adding these two inequalities, we deduce that:

2�Et

� Z T

t
j Ǫ t;y

r � Ǫ t;x
r j2

	

� .y � x/ � .Yt;y
t � Yt;x

t /: (1.64)

Now, one can check that:

Et
�

sup
t�s�T

ˇ
ˇXt;x

s � Xt;y
s

ˇ
ˇ2
� � C




jx � yj2 C Et

� Z T

t
j Ǫ t;x

r � Ǫ t;y
r j2dr

	�

;

and, then:

Et
�

sup
t�s�T

ˇ
ˇYt;x

s � Yt;y
s

ˇ
ˇ2
� � C




jx � yj2 C Et

� Z T

t
j Ǫ t;x

r � Ǫ t;y
r j2dr

	�

; (1.65)

for some constant C depending only L, �, and T in the assumptions. By (1.64) and (1.65),
we easily deduce that the assumptions of Proposition 1.52 are satisfied.

We now discuss the growth of the decoupling field Ut at time t. Going back to (1.63) and
choosing x D 0 and ˇ � 0A therein, for some point 0A 2 A, we see that:

Et

� Z T

t
f
�
s;Xt;0

s ; �s; Ǫ t;0
s

�
ds C g

�
Xt;0

T ; �T
�C �

Z T

t
j Ǫ t;0

s � 0Aj2ds

	

� J�.0A/; (1.66)

the dynamics associated with the null control being given by the solution of:

dX0
s D b

�
s;X0

s; �s; 0A
�
ds C �

�
s;X0

s; �s
�
dWs C �0

�
s;X0

s; �s
�
dW0

s ; s 2 Œt; T� I X0
t D 0:

It is clear that:

Et
�

sup
t�s�T

jX0
sj2
� � C0

�
1C Et

�
sup

0�s�T
d.0X ; �s/

2
��
;

for a constant C0 independent of t, where 0X denotes any fixed point in X . Therefore, by
(1.66), we get:

Et

� Z T

t
f
�
s;Xt;0

s ; �s; Ǫ t;0
s

�
ds C g

�
Xt;0

T ; �T
�C �

Z T

t
j Ǫ t;0

s j2ds

	

� C0
�
1C Et

�
sup

0�s�T
d.0X ; �s/

2
��
:
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Using the fact that g and f are convex in .x; ˛/, we get for any � 2 .0; 1/:

Et

� Z T

t
f .s; 0; �s; 0A/ds C g

�
0; �T

�C �

Z T

t
j Ǫ t;0

s j2ds

	

� C0

�

1C ��1
Et
�

sup
0�s�T

d.0X ; �s/
2
�C �Et

�
sup

t�s�T
jXt;0

s j2�C �Et

Z T

t
j Ǫ t;0

s j2ds

	

:

Allowing the constant C0 to increase from line to line, it is then quite straightforward to
deduce that:

Et

� Z T

t
j Ǫ t;0

s j2ds

	

� C0
h
1C Et

�
sup

0�s�T
d.0X ; �s/

2
�i
;

and then:

Et
�

sup
t�s�T

�jXt;0
s j2 C jYt;0

s j2�� � C0
�
1C Et

�
sup

0�s�T
d.0X ; �s/

2
��
; (1.67)

from which we conclude that, P-almost surely:
ˇ
ˇ
ˇUt

�
0;L

�
.W0

s ; �s/t�s�T j�t
�
; .W0

s ; �s/t�s�T

�ˇ
ˇ
ˇ � C0

h
1C �

Et
�

sup
0�s�T

d.0X ; �s/
2
��1=2

i
:

Using the Lipschitz property of Ut, we deduce that, P-almost surely, for all x 2 R
d:

ˇ
ˇ
ˇUt

�
x;L

�
.W0

s ; �s/t�s�T j�t
�
; .W0

s ; �s/t�s�T

�ˇ
ˇ
ˇ

� C0
h
1C jxj C �

Et
�

sup
0�s�T

d.0X ; �s/
2
��1=2

i
:

(1.68)

The argument may be reproduced on any admissible set-up. In particular, we may choose
the canonical set-up introduced in the proof of Proposition 1.46 with any distribution NP0 for
.w0s ; �s/t�s�T , provided that it satisfies the conditions required therein. ut

Remark 1.61 Under the assumption of Proposition 1.55, Itô-Wentzell formula
provides another expression for the optimal solution. Therefore, if uniqueness of the
optimal solution holds, the two decoupling fields constructed in this section should
satisfy:

Ut
�
x;L

�
.W0

s � W0
t ; �s/t�s�T jFnat;W0

t

�
;Fnat;W0

t

� D @xU�.t; x/;

for t 2 Œ0;T� and x 2 R
d, where in the left-hand side, we used the same form for the

decoupling field as in Remark 1.49.
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1.5 Notes & Complements

The notion of FBSDEs in a random environment is fully justified by our desire to
handle mean field games with a common noise, whose role will be played by W0 in
the next chapters while W will still denote, as in Volume I, the idiosyncratic noise.
The environment � D .�t/0�t�T in the coefficients of the equation will account for
the random state of the population when subject to systemic shocks.

Because of the random nature of �, it is then necessary to specify the correlations
between .X0;W0;�;W/ and the filtration F supporting the FBSDE. While the
pair .W0;W/ is explicitly assumed to be an F-Brownian motion, the measurability
properties of the process � with respect to F may take several forms. The easiest
case is when � is adapted to the filtration generated by W0, possibly augmented
with some initial information; in such a case, the FBSDE is somewhat standard
despite the random nature of the coefficients. However, this case is limited for the
applications we have in mind: When solving mean field games with a common
noise, we shall face cases where � involves an additional source of randomness
beyond �0 and W0. This is the rationale for introducing the compatibility condition
in Subsection 1.1.1. The property used to define immersion of filtrations was
introduced by Brémaud and Yor under the name of (H)-hypothesis in [68].
The two equivalences merged into the characterization of compatibility given in
Proposition 1.10 can be found in Lemma 2.17 of [216] by Jacod and Mémin and in
Theorem 3 of [68] of Brémaud and Yor. Many different names and characterizations
are associated with this property of a filtration enlargement. Jeanblanc and Le Cam
call it immersion in [219], Jacod and Mémin use the notion of very good extensions
in [216], and El Karoui, Nguyen, and Jeanblanc use instead the notion of natural
extensions in [225]. We borrowed the terminology compatible from Kurtz [247], as
in [100, 255]. As explained in the text, compatibility imposes a form of fairness
in the observations: Given the realization of .X0;W0;�;W/ up until time t, the
observation of Ft does not introduce any bias in the realization of .X0;W0;�;W/
after time t. The interest of the notion of compatibility is especially visible in the
statement of Theorem 1.33: Provided that strong uniqueness holds true, the law of
the solution to the FBSDE in environment � only depends on the joint distribution
of the input. This is a crucial observation as it permits to choose, in a somewhat
systematic way, the canonical space as underlying probability space.

We shall use the notion of compatibility throughout this volume and shed new
light on it in the last chapter, when dealing with mean field games of timing, see
Section 7.2.

To the best of our knowledge, the use of compatibility conditions for handling
backward SDEs with random coefficients goes back to the papers by Buckdahn,
Engelbert, and Rǎşcanu [78] and Buckdahn and Engelbert [76,77] on weak solutions
to backward SDEs. Therein, the compatibility condition is expressed in terms of a
martingale property, in the spirit of Lemma 1.9. In this regard, it is worth mentioning
that this notion of compatibility, although named differently as we mentioned
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earlier, was first introduced by Jacod [215] and Jacod and Mémin [216] in order to
address the connection between weak and strong solutions to a pretty general class
of stochastic differential equations. The papers by Kurtz [246,247], from which the
term compatible is borrowed, also deal with weak and strong solutions to stochastic
models.

In full generality, this notion of compatibility, although named differently, was
first introduced by Jacod [215] and Jacod and Mémin [216] in order to address the
connection between weak and strong solutions to a pretty general class of stochastic
differential equations. The term compatible is borrowed from the papers by Kurtz
[246,247], which also deal with weak and strong solutions to stochastic models. In
fact, it is fair to say that many different names and characterizations are associated
with compatibility as a enlargement of filtration property: (H)-hypothesis [68],
immersion [219], very good extensions [216], and natural extensions [225], while
we borrow the term compatible from Kurtz.

The Kunita-Watanabe decomposition used in Subsection 1.1.3 goes back to the
original paper by Kunita and Watanabe [244]. Within the framework of BSDEs, it
was first used by El Karoui and Huang [224] to deal with filtrations that do not
satisfy the martingale representation theorem, see also El Karoui, Peng, and Quenez
[226]. For more recent examples of application, we refer to [29, 111, 240, 333].

Earlier version of the Yamada-Watanabe theorem for coupled FBSDEs with
deterministic coefficients were proposed by Antonelli and Ma [26], Delarue [132],
Kurtz [246], and Bahlali, Mezerdi, N’zi, and Ouknine [32]. To the best of our
knowledge, the version within a random environment, as given in the text, see
Theorem 1.33, is new.

It is worth noticing that the theory developed in this chapter for FBSDEs in a
random environment addresses almost exclusively the notion of strong solutions,
namely solutions that are adapted to the input. Theorem 1.33, our version of the
Yamada-Watanabe theorem, is a case in point. In the next chapter, we shall face
FBSDEs of McKean-Vlasov type whose solutions are not adapted to the input. As
a result, we shall call them weak solutions. In order to select among all the weak
solutions, those that are meaningful from the physical point of view, we shall require
not only the input but also the output to be compatible with respect to the filtration
F entering the definition of the underlying probabilistic set-up.

The concept of decoupling field for forward-backward stochastic differential
equations with random coefficients is due to Ma, Wu, Zhang, and Zhang [272],
while the induction scheme described under the header General Mechanism of
Subsection 1.3.3 was introduced by Delarue in [132] and revisited next in [272].

The proof of the Souslin-Kuratowski theorem used in Proposition 1.32 may be
found in Chapter 6 of Bogachev’s monograph [64]. For the definition and the
basic properties of the J1 Skorohod topology, we refer the reader to Billingsley’s
textbook [57].

Existence and properties of regular versions of conditional probabilities, as
exposed in the statement of Theorem 1.1, can be found in many textbooks on
probability and measure theory, for example [57, 64, 143, 301].
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The use of random value functions and the verification result given in Proposi-
tion 1.55 are borrowed from Peng’s paper [305]. Itô-Wentzell’s formula, which is
involved in the derivation of the verification argument based on the stochastic HJB
equation, may be found in [105] or [243]. Existence and uniqueness of a classical
solution to the stochastic HJB equation are discussed in Cardaliaguet et al. [86], see
also Duboscq and Réveillac [142] for similar prospects. We refer to Ma, Yin, and
Zhang [273] for the connection between backward SPDEs and forward-backward
SDEs with random coefficients. As far as we know, the analysis in Subsection
1.4.3 is new. The formulation is tailor-made to mean field games with a common
noise, as introduced in the next chapter. In analogy with our proof of Proposition
1.58, the author in [333] handles quadratic BSDEs when the filtration driving the
backward equation may be larger than the filtration generated by a Wiener process.
The use of the stochastic Pontryagin principle in Subsection 1.4.4 is more standard:
the stochastic Pontryagin principle is known to be well fitted to stochastic optimal
control problems with random coefficients.



2MFGs with a Common Noise: Strong and Weak
Solutions

Abstract

The purpose of this chapter is to introduce the notion of mean field game with a
common noise. This terminology refers to the fact that in the finitely many player
games from which the mean field game is derived, the states of the individual
players are subject to correlated noise terms. In a typical model, each individual
player feels an idiosyncratic noise as well as random shocks common to all the
players. At the level of the mathematical analysis, the common noise introduces
a randomization of most of the quantities and equations. In equilibrium, the
statistical distribution of the population is no longer deterministic. One of the
main feature of the chapter is the introduction and the analysis of the concepts
of weak and strong solutions, very much in the spirit of the classical theory of
stochastic differential equations.

2.1 Conditional Propagation of Chaos

Throughout the chapter, we consider game models in which players are subjected
to two independent sources of noise: an idiosyncratic noise, independent from one
individual to another, and a separate one, common to all the players, accounting
for the common environment in which the individual states evolve. We extend the
strategy implemented in the previous chapters using the asymptotic analysis of large
N-player games to introduce mean field games. In order to do so, we first need
to extend the McKean-Vlasov theory of propagation of chaos to accommodate the
presence of the common noise.
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2.1.1 N-Player Games with a Common Noise

For the sake of simplicity, and because the theoretical results presented in this
chapter are restricted to this case, we assume that the dynamics in R

d, with d � 1,
of the private state of player i 2 f1; � � � ;Ng are given by stochastic differential
equations (SDEs) of the form:

dXi
t D b

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dt C �

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dWi

t C �0
�
t;Xi

t ; N�N
t ; ˛

i
t

�
dW0

t ; (2.1)

where W0;W1; � � � ;WN are N C 1 independent d-dimensional Brownian motions
defined on some complete filtered probability space .˝;F ;F D .Ft/t�0;P/. All the
computations performed in this chapter apply as well when the dimension of the
Brownian motions, say m, is different from d as long as the matrices � and �0 are
assumed to be d � m-dimensional instead of d � d. Since this generalization will
only render the notation more cumbersome without bringing any new insight into
the arguments, we restrict ourselves to Brownian motions with the same dimensions
as the states. Also, we refer the reader to the Notes & Complements at the end of the
chapter for a discussion of the general case of common noise given by a space-time
white noise Gaussian measure. As in the previous chapters, the term N�N

t in (2.1)
denotes the empirical distribution of the individual states at time t:

N�N
t D 1

N

NX

iD1
ıXi

t
: (2.2)

The processes ˛i D ..˛i
t/t�0/1�i�N are progressively measurable processes, with

values in a Borel subset A of some Euclidean space R
k, with k � 1, A being often

taken to be a closed convex subset of R
k. They stand for control processes. The

coefficients b, � and �0 are measurable functions defined on Œ0;T��R
d �P.Rd/�A

with values in R
d, Rd�d and R

d�d respectively. As in the previous chapters, the set
P.Rd/ denotes the space of probability measures on R

d endowed with the topology
of weak convergence.

Given this general set-up, the purpose of the chapter is to discuss asymptotic
Nash equilibria when the number of players tends to infinity, each player attempting
to minimize a cost functional of the same type as in the previous chapters, namely:

Ji.˛1; � � � ;˛N/ D E

� Z T

0

f .t;Xi
t ; N�N

t ; ˛
i
t/dt C g.Xi

T ; N�N
T /

	

:

Because of the presence of extra terms in the state dynamics, we need to reformulate
the notion of mean field game in such a more general framework. We shall call these
new game models, mean field games with a common noise.
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Intuitively speaking, even in the limit N ! 1, the equilibrium distribution of
the population should still feel the influence of the common noise W0, and for that
reason, it should not be deterministic. This forces us to revisit carefully the concepts
introduced and analyzed in the previous chapters, and identify the right notion of
stochastic solution to mean field games with a common noise. In the spirit of the
time honored theory of classical stochastic differential equations, we introduce two
concepts of solution: strong and weak solutions, differentiating them by whether or
not the solution in question is adapted to the common noise.

Because of the presence of the common noise, we need to revisit several of the
basic tools used so far in the analysis of mean field games, and understand what
changes should be made when the input data of the models are parameterized by
some form of external random environment. In line with the developments in the
case of deterministic environment, we use the random distribution of the population
in equilibrium as a code for the random environment. Because of this new twist in
the set-up, we shall often appeal to the theory of FBSDEs and optimization in a
random environment developed in the previous Chapter 1.

We first discuss conditional McKean-Vlasov SDEs. Subsequently, we introduce
the notions of strong and weak solutions to MFGs with a common noise. We prove
a suitable version of the classical Yamada-Watanabe Theorem in this framework.
Recall that we already discussed a version of the Yamada-Watanabe Theorem for
forward-backward SDEs in Chapter 1.

2.1.2 Set-Up for a Conditional McKean-Vlasov Theory

Before we can tackle the difficult problems raised by the equilibrium theory of large
games, we need to understand the behavior as N tends to infinity of the solutions
of symmetric systems of N stochastic equations coupled in a mean field way, and
driven by idiosyncratic and common noises as in (2.1). In other words, we consider
this asymptotic regime first ignoring the optimization component of the problem.
For this purpose, we find it convenient to assume that all the models are defined on
the same probability space supporting an infinite sequence of independent Wiener
processes. So the model for a symmetric system of size N will be given by a system
of N SDEs of the form:

dXi
t D b

�
t;Xi

t ; N�N
t

�
dt C �

�
t;Xi

t ; N�N
t

�
dWi

t C �0
�
t;Xi

t ; N�N
t

�
dW0

t

t 2 Œ0;T�; i 2 f1; � � � ;Ng;
(2.3)

for some T > 0, where .W0;W1; � � � ;WN ; � � � / is a sequence of independent d-
dimensional Wiener processes on some complete probability space .˝;F ;P/. In
this section, the coefficients b, � and �0 are measurable functions defined on Œ0;T��
R

d �P.Rd/with values in R
d, Rd�d and R

d�d respectively, and as usual, N�N
t denotes
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for any t 2 Œ0;T�, the empirical distribution (2.2) of the .Xi
t/iD1;��� ;N . Here, W0 is said

to be the common source of noise, and as typical in the McKean-Vlasov theory, we
shall often refer to the .Xi

t/iD1;��� ;N as particles.

Exchangeable Sequences of Random Variables
When (2.3) is uniquely solvable and the initial conditions are exchangeable, the
random variables X1t ; � � � ;XN

t are exchangeable. Recall that a sequence .Xn/n�1 of
random variables is said to be exchangeable if for every n � 1, the distribution of
.X1; � � � ;Xn/ is invariant under permutation of the indices. This simple remark has
very useful consequences because of the fundamental result of De Finetti’s theory
of exchangeable sequences of random variables:

Theorem 2.1 For any exchangeable sequence of random variables .Xn/n�1 of order
1, i.e., such that EŒjX1j� < 1, it holds, P almost surely,

lim
n!1

1

n

nX

iD1
Xi D E

�
X1jF1

�
;

where F1 is the tail � -field F1 D
\

n�1
�fXk; k � ng.

Intuitively, this form of law of large numbers says that, when exchangeability
holds, the empirical measure of the random variables .Xn/n�1 behave asymptotically
as if they were conditionally independent and identically distributed given the tail
� -field F1.

For that reason, and coming back to our current set-up, one may wonder about
the convergence of the empirical measure N�N

t as N tends to 1. When �0 � 0,
the standard theory of propagation of chaos says that, asymptotically, particles
become independent and identically distributed, and N�N

t converges to their common
asymptotic distribution. When �0 is not trivial, such a result cannot hold since, even
in the limit N ! 1, the particles must still keep track of the common noise W0, so
they cannot become independent.

Although particles do not become asymptotically independent, in light of Theo-
rem 2.1, it sounds reasonable to expect them to become asymptotically independent
conditionally on the information generated by the common noise. So it is tempting
to conjecture that, as N tends to 1, the empirical distribution N�N

t converges towards
the common conditional distribution of each particle given the common source of
noise W0. We resolve this issue by a brute force computation in the next paragraph.

Nonlinear Stochastic Fokker-Planck Equation
In order to understand the asymptotic behavior of the empirical distributions N�N

t , we
consider their action on test functions. Fixing a smooth test function � with compact
support in Œ0;T� � R

d and using a standard form of Itô’s formula, we compute:
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d
˝
�.t; � /; 1

N

NX

jD1
ı

X
j
t

˛ D 1

N

NX

jD1
d�.t;Xj

t/

D 1

N

NX

jD1




@t�.t;X
j
t/dt C @x�.t;X

j
t/ � dXj

t C 1

2
trace

n
@2xx�.t;X

j
t/d
�
Xj;Xj

�

t

o�

D 1

N

NX

jD1
@t�.t;X

j
t/dt C 1

N

NX

jD1
@x�.t;X

j
t/ � ���t;Xj

t ; N�N
t

�
dWj

t

�

C 1

N

NX

jD1
@x�.t;X

j
t/ � b

�
t;Xj

t ; N�N
t

�
dt

C 1

N

NX

jD1
@x�.t;X

j
t/ � ��0�t;Xj

t ; N�N
t

�
dW0

t

�

C 1

2N

NX

jD1
trace




Œ����
�
t;Xj

t ; N�N
t

�C Œ�0�0��
�
t;Xj

t ; N�N
t

�
�

@2xx�.t;X
j
t/

�

dt:

Thinking about the limit as N ! 1 and using the definition of the measures N�N
t we

can rewrite the above equality as:

h�.t; � /; N�N
t i � h�.0; � /; N�N

0 i

D
Z t

0

˝
@t�.s; � /; N�N

s ids C
Z t

0

˝
@x�.s; � / � b

�
s; � ; N�N

s

�
; N�N

s

˛
ds

C 1

2

Z t

0

�

trace




Œ����
�
s; � ; N�N

s

�C Œ�0�0��
�
s; � ; N�N

s

�
�

@2xx�.t; � /
�

; N�N
s

�

ds

C
Z t

0

˝
@x�.s; � / � �0�s; � ; N�N

s

�
dW0

s ; N�N
s

˛C O.N�1=2/;

where the Landau notation O.N�1=2/ is to be understood, for example, in the L2-
norm sense if � is bounded. So if, as N ! 1, the limit

�
�t D lim

N!1 N�N
t

�

0�t�T

exists in the weak functional sense, the above calculation shows that the limit
� D .�t/0�t�T solves (at least formally) the Stochastic Partial Differential Equation
(SPDE):



112 2 MFGs with a Common Noise: Strong and Weak Solutions

d�t D �@x � �b�t; � ; �t
�
�t
�
dt � @x �


h
�0
�
t; � ; �t

�
dW0

t

i
�t

�

C 1

2
trace



@2xx

�

�
���

��
t; � ; �t

�C �
�0�0�

��
t; � ; �t

�
�

�t

	�

dt:

(2.4)

This SPDE reads as a nonlinear stochastic Fokker-Planck equation. Next, we
identify the nonlinear forward SDE (most likely of the McKean-Vlasov type)
leading to such a stochastic Fokker-Planck equation.

2.1.3 Formulation of the Limit Problem

While we started with a discussion of games with finitely many players, we now
switch to the mathematical set-up of mean field games where the state of a single
representative player is the object of interest. In order to disentangle the relative
effects of the different sources of noise, we follow the strategy suggested in
Subsection 1.2.3, see in particular (1.16). We introduce two complete probability
spaces:

�
˝0;F0;P0/ and

�
˝1;F1;P1

�
;

endowed with two right-continuous and complete filtrations F
0 D .F0

t /t�0 and
F
1 D .F1

t /t�0. We shall assume that the common noise W0 is constructed on the
space .˝0;F0;P0/ and the idiosyncratic noises .Wn/n�1 are constructed on the space
.˝1;F1;P1/. By convention, the index 0 always refers to the common noise and the
index 1 to the idiosyncratic ones. We then define the product structure

˝ D ˝0 �˝1; F ; F D �
Ft
�

t�0; P; (2.5)

where .F ;P/ is the completion of .F0 ˝ F1;P0 ˝ P
1/ and F is the complete and

right continuous augmentation of .F0
t ˝F1

t /t�0. Generic elements of˝ are denoted
! D .!0; !1/ with !0 2 ˝0 and !1 2 ˝1. Given such a set-up, we shall construct
the solution to (2.3) on the product space ˝.

Remark 2.2 Like in our discussion following Definition 1.28 in Subsection 1.2.3,
there is no need to impose a compatibility condition in the construction of the
probabilistic set-up .˝;F ;P/. The reason is that there is no random environment
entering the definition of this set-up. Indeed, for any F0-measurable Rd-valued ran-
dom variable X0 accounting for some initial information, the process .X0;W0;W/
is automatically compatible with respect to the filtration F. This follows from the
fact that .W0;W/ is a 2d-dimensional Brownian motion with respect to F. Here,
like most everywhere in the book, we use W for W1 for the sake of simplicity.
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Remark 2.3 With a slight abuse of notation, we shall not distinguish a random
variable X constructed on .˝0;F0;P0/ (resp. .˝1;F1;P1/) with its natural
extension QX W .!0; !1/ 7! X.!0/ (resp. QX W .!0; !1/ 7! X.!1/) on .˝;F ;P/.
Similarly, for a sub-� -algebra G0 of F0 (resp. G1 of F1), we shall often just write
G0 (resp. G1) for the sub-� -algebra G0 ˝ f;; ˝1g (resp. f;; ˝0g ˝ G1) of F .

Conditional Distributions Given F 0

In order to formulate rigorously the McKean-Vlasov limit, we recall the following
useful result, which is nothing but a refinement of Fubini’s theorem. Given an R

d-
valued random variable X on ˝ equipped with the � -algebra F0 ˝ F1, we have
that, for any !0 2 ˝0, the section X.!0; �/ W ˝1 3 !1 7! X.!0; !1/ is a random
variable on˝1 and we may consider the law of X.!0; �/, namely L.X.!0; �//, as the
realization of a mapping from ˝0 into P.Rd/. Below, this mapping is shown to be
a random variable from .˝0;F0;P0/ into P.Rd/ endowed with its Borel � -field.

However, this fact may not remain true when F0 ˝ F1 is replaced by its
completion. A standard counter example is X.!0; !1/ D 1C0 .!

0/1C1 .!
1/ where

C0 2 F0 has zero P
0-probability and C1 is a nonmeasurable subset of ˝1. Indeed,

X is clearly measurable from ˝ into R with respect to the completion of F0 ˝ F1.
However, for any !0 2 C0, there is no way to compute the law of the section as it is
not a random variable on ˝1 equipped with F1.

This observation is rather annoying as we decided to work systematically with
complete probability spaces and with complete filtrations. In order to overcome this
difficulty, we notice that, in the example above, X.!0; �/ is not a random variable
on .˝1;F1;P1/ for !0 in an exceptional event only. It turns out that this fact may
be generalized into a more general statement, which is quite classical in measure
theory.

Given an R
d-valued random variable X on ˝ equipped with the completion F of

F0 ˝ F1, for P0-a.e. !0 2 ˝0, X.!0; �/ is a random variable on .˝1;F1;P1/.

In particular, we may define L.X0.!0; �// for almost every !0 2 ˝0. On the
exceptional event where L.X0.!0; �// cannot be computed, we may assign it
arbitrary values in P.Rd/. We claim that the resulting mapping L1.X0/ W ˝0 3
!0 7! L.X0.!0; �// is a random variable from ˝0 to P.R/.

Lemma 2.4 Given a random variable X from ˝, equipped as above with the
completion F of F0 ˝ F1, into R

d, the mapping L1.X/ W ˝0 3 !0 7! L.X.!0; �//
is almost surely well defined under P

0, and forms a random variable from
.˝0;F0;P0/ into P.Rd/ endowed with its Borel � -field, as defined in the statement
of Proposition (Vol I)-5.7. The random variable L1.X/ provides a conditional law
of X given F0.

Moreover, if Y is a version of X which is measurable from .˝;F0 ˝F1/ into R
d,

then L1.Y/ coincides with L1.X/ with probability 1 under P0.
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Note that, in practice, we shall never specify the definition of L1.X/ on the
exceptional event where it cannot be defined. Also, notice that any other conditional
law of X given F0 is P

0 almost surely equal to L1.X/. This follows from the fact
that B.Rd/ is generated by a countable �-system and fits the remark given after the
statement of Theorem 1.1.

Observe finally that the statement may be easily extended to the case when X
takes values in a Polish space S .

Proof. By definition of the completion, there exists a random variable Y W ˝ ! R
d ,

measurable with respect to F0 ˝ F1, such that PŒX D Y� D 1. We then check that
˝0 3 !0 7! L.Y.!0; �// is a random variable from .˝0;F0/ into P.Rd/. By Proposition
(Vol I)-5.7, it suffices to prove that, for any D 2 B.Rd/, the mapping ˝0 3 !0 7!
ŒL.Y.!0; �//�.D/ is measurable. Noticing that, for all !0 2 ˝,

�
L
�
Y.!0; �/��.D/ D P

1
�
Y.!0; �/ 2 D

�
;

the result easily follows from the standard version of Fubini-Tonelli theorem. Observe also
that, for another version QY of Y (that is QY is also measurable with respect to F0 ˝ F1 and
PŒY D QY� D 1), then L1.Y/ and L1. QY/ are P

0-almost surely equal.
We now denote by ˝0;well defined the collection of !0 2 ˝0 such that X.!0; �/ is a

random variable from .˝1;F1;P1/ into R
d. We then let L1.X/.!0/ D L.X.!0; �// for

!0 2 ˝0;well-defined. And, for !0 62 ˝0;well defined, we assign a fixed arbitrary value in
P.Rd/ to L1.X/.!0/. Now, it is a known fact in measure theory that the complemen-
tary of ˝0;well defined is a null set and that, for !0 in an event of probability 1 under
P
0, P1ŒX.!0; �/ D Y.!0; �/� D 1. In particular, we can find an event in F0, of measure 1

under P
0, on which L1.X/ D L1.Y/. Since F0 is complete, we deduce that L1.X/ is a

random variable.
In order to prove that L1.X/ provides a conditional law of X given F0, we consider

C 2 F0 and D 2 B.Rd/. We have

E
�
1C1D.X/

� D E
�
1C1D.Y/

�

D E
0
�
1CP

1
�
Y 2 D

�� D E
0
�
1CL1.Y/.D/

� D E
0
�
1CL1.X/.D/

�
;

which completes the proof. ut

We apply the same argument in order to formulate the limit problem associated
with (2.3). Precisely, using the same notation as in Lemma 2.4 for the conditional
distribution, we associate with (2.3) the conditional McKean-Vlasov SDE (MKV
SDE for short):

dXt D b
�
t;Xt;L1.Xt/

�
dt C �

�
t;Xt;L1.Xt/

�
dWt C �0

�
t;Xt;L1.Xt/

�
dW0

t ; (2.6)

for t 2 Œ0;T�, this equation being set on the product space˝ D ˝0�˝1. Because of
the augmentation of F in (2.5), we face the same kind of difficulty as in Lemma 2.4.
In other words, nothing guarantees a priori that the flow .L1.Xt//0�t�T is adapted
to F

0. Fortunately, we can appeal to the following result.
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Lemma 2.5 Given an R
d-valued process .Xt/t�0, adapted to the filtration F,

consider for any t � 0, a version of L1.Xt/ as defined in Lemma 2.4. Then,
the P.Rd/-valued process .L1.Xt//t�0 is adapted to F

0. If, moreover, .Xt/t�0 has
continuous paths and satisfies EŒsup0�t�T jXtj2� < 1 for all T > 0, then we can find
a version of each L1.Xt/, t � 0, such that the process .L1.Xt//t�0 has continuous
paths in P2.Rd/ and is F0-adapted.

Proof. Given t � 0, we know that Xt is measurable with respect to the completion of F0
tC"

˝
F1

tC"
for any " > 0. We then apply Lemma 2.4, but with F0

tC"
instead of F0 and F1

tC"
instead

of F1. We deduce that (any version of) L1.Xt/ is measurable with respect to F0
tC"

. Letting "
tend to 0, we get that (any version of) L1.Xt/ is measurable with respect to F0

t .
In order to prove the second claim, it suffices to construct, for any T > 0, a version of

each L1.Xt/, with t 2 Œ0; T�, such that the process .L1.Xt//0�t�T has continuous paths from
Œ0; T� into P2.Rd/. Since X D .Xt/0�t�T is assumed to have continuous paths, we can find
another R

d-valued process, denoted by Y D .Yt/0�t�T , with continuous paths, such that
Y is a random variable from .˝;F0 ˝ F1/ with values in C.Œ0; T�IRd/ and PŒX D Y� D
1. Since EŒsup0�t�T jYtj2� < 1, E1Œsup0�t�T jYtj2� is finite with probability 1 under P

0.
From Theorem (Vol I)-5.5 with p D 2, we easily deduce that, P0-almost surely, the mapping
Œ0; T� 3 t 7! L1.Yt/ 2 P2.Rd/ is continuous. By Lemma 2.4, L1.Yt/ is a version of L1.Xt/.
Since F0

t is complete, L1.Yt/ is F0
t -measurable. ut

As a byproduct of the proof, observe that we can find a common exceptional
event N 2 F0 such that, outside N, for all t 2 Œ0;T�, L1.Xt/ is defined as L1.Yt/ and
is thus “well defined”. Put differently, for !0 outside N, it makes sense to consider
the entire flow .L1.Xt//0�t�T .

Solving the Conditional McKean-Vlasov SDE
Based on our discussion in the previous paragraph, we can introduce the following
definition.

Definition 2.6 On the probabilistic set-up .˝;F ;F;P/ defined in (2.5), for any
square integrable F0-measurable initial condition X0 with values in R

d, we call
a solution to the conditional McKean-Vlasov SDE (2.6) on the interval Œ0;T�
an .Ft/0�t�T-adapted process X D .Xt/0�t�T , with continuous paths, such that
EŒsup0�t�T jXtj2� < 1,

E

Z T

0

�ˇ
ˇb
�
t;Xt;L1.Xt/

�ˇ
ˇC ˇ

ˇ�
�
t;Xt;L1.Xt/

�ˇ
ˇ2 C ˇ

ˇ�0
�
t;Xt;L1.Xt/

�ˇ
ˇ2
�

dt < 1;

and the process X, together with a continuous P2.Rd/-valued and F
0-adapted

version of .L1.Xt//0�t�T , satisfy (2.6) with probability 1 under P.

We can now identify the SPDE (2.4) as the stochastic Fokker-Planck equation
satisfied by the process .L1.Xt//0�t�T for any solution X D .Xt/0�t�T of (2.6).



116 2 MFGs with a Common Noise: Strong and Weak Solutions

Proposition 2.7 Let X D .Xt/0�t�T be a solution of (2.6) on .˝;F ;F;P/ and let
� D .�t D L1.Xt//0�t�T be the flow of marginal conditional distributions of X
given the common source of noise. Then, with P

0-probability 1, � satisfies (2.4) in
the sense of distributions when acting on smooth functions from R

d to R that tend
to 0 at infinity.

Proof. Given a test function � on R
d in a dense countable subset of the set C1

0 .RdIR/ of
smooth functions from R

d to R that tend to 0 at infinity, it suffices to expand .�.Xt//0�t�T

by means of Itô’s formula and take expectation under P
1 of both sides of the expansion

to compute E
1Œ�.Xt/� for any t 2 Œ0; T�. Observe that, for any t 2 Œ0; T�, E1Œ�.Xt/� is

well defined up to an exceptional event in F0. Writing Xt as et.X/ where X is the path
.Xs/0�s�T regarded as a random variable with values in C.Œ0; T�IRd/ and et is the mapping
C.Œ0; T�IRd/ 3 x 7! xt, we can easily assume that the exceptional event in F0 on which
E
1Œ�.Xt/� is not well defined is in fact the same for all t 2 Œ0; T�.

Now, we recall that, for all t 2 Œ0; T�, P0-almost surely, E1Œ�.Xt/� is equal to h�;�ti.
Since both quantities are continuous in time, this permits to identify, with probability 1 under
P
0, the path .h�;�ti/0�t�T for all � in a dense countable subset of C1

0 .RdIR/. ut

Since we shall restrict the analysis to square integrable initial conditions, it makes
sense to limit ourselves to the case when b, � and �0 are defined on Œ0;T� � R

d �
P2.Rd/ only, as opposed to the entire Œ0;T��R

d �P.Rd/. In complete analogy with
assumption MKV SDE in Subsection (Vol I)-4.2.1, we shall assume:

Assumption (Conditional MKV SDE). The functions b, � and �0 are
bounded on bounded subsets of Œ0;T� � R

d � P2.Rd/, and are Lipschitz
continuous in x and �, uniformly in t 2 Œ0;T�, Rd being equipped with the
Euclidean norm and P2.Rd/ with the 2-Wasserstein distance.

The definition of the 2-Wasserstein distance denoted by W2 was introduced in
Chapter (Vol I)-5. Along the lines of Theorem (Vol I)-4.21, we prove:

Proposition 2.8 Let assumption Conditional MKV SDE be in force. Then, given a
square integrable F0-measurable initial condition X0, there exists a unique solution
to the conditional McKean-Vlasov SDE (2.6) on the filtered probability space
.˝;F ;F;P/.

Proof. The proof is just a variant of the proof of Theorem (Vol I)-4.21, but we give it for the
sake of completeness. It consists in a new application of the contraction mapping theorem.
We consider the space S2;d of all Rd-valued F-progressively measurable processes satisfying:

E
�

sup
0�t�T

jXtj2
�
< 1;

and we equip it with the norm:

kXk2S D E
�

sup
0�t�T

jXtj2
�
< 1:
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The space S
2;d, equipped with kXkS, is a Banach space. Furthermore, for all X 2 S

2;d, we
can find a P2.Rd/-valued and F

0-adapted version of .L1.Xt//0�t�T with continuous paths.
In particular, we can define:

Ut D 
 C
Z t

0

b
�
s;Xs;L1.Xs/

�
ds

C
Z t

0

�
�
s;Xs;L1.Xs/

�
dWs C

Z t

0

�0
�
s;Xs;L1.Xs/

�
dW0

s ; 0 � t � T:

It is easy to show that U 2 S
2;d. If we fix X and X0 in S

2;d and we denote by U and U0

the processes defined via the above equality from X and X0 respectively, we have for any
t 2 Œ0; T�:

E

�

sup
0�s�t

ˇ
ˇ
ˇ
ˇ

Z s

0

h
b
�
r;X0

r;L1.X0
r/
� � b

�
r;Xr;L1.Xr/

�i
dr

ˇ
ˇ
ˇ
ˇ

2	

� C.T/E

� Z t

0

�
jX0

s � Xsj2 C W2

�
L1.X0

s/;L1.Xs/
�2
�

ds

	

� C.T/
Z t

0

E
�jX0

s � Xsj2
�
ds;

where C.T/ is a constant that only depends upon T and the Lipschitz constant of b, whose
value is allowed to vary from line to line. Above, we used the obvious bound:

E

h
W2

�
L1.X0

s/;L1.Xs/
�2
i

� E

h
E
1
�jX0

s � Xsj2
�i D E

�jX0
s � Xsj2

�
;

E
1 denoting the expectation with respect to !1 2 ˝1. Burkholder-Davis-Gundy’s inequality

provides the same type of estimates for the stochastic integrals. This yields, allowing the
constant C.T/ to depend on the Lipschitz constants of � and �0:

E
�

sup
0�s�t

jU0
s � Usj2

� � C.T/
Z t

0

E
�jX0

s � Xsj2
�
ds:

Calling ˚ the mapping S
2;d 3 X 7! U 2 S

2;d and iterating the above inequality, we get, for
any integer k > 1:

E
�

sup
0�t�T

j˚ k.X0/t � ˚ k.X/tj2
� � c.T/k

Z T

0

.T � s/k�1

.k � 1/Š E
�jX0

s � Xsj2
�
ds

� c.T/kTk

kŠ
kX0 � XkS2 ;

where ˚ k denotes the k-th composition of the mapping ˚ with itself. This shows that for k
large enough, ˚ k is a strict contraction. Hence ˚ admits a unique fixed point. ut
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More About the Flow of Conditional Marginal Distributions �

As expected, we can check that, whenever X0 is just constructed on ˝1, the flow of
conditional marginal distributions � D .L1.Xt//0�t�T of a solution X coincides with
the conditional marginal distributions of the solution given the smaller information
generated by the common noise W0. More generally, we claim:

Proposition 2.9 Let assumption Conditional MKV SDE be in force. For a given
initial condition X0 2 L2.˝;F0;PIRd/, let X D .Xt/0�t�T be the unique solution
of the conditional McKean-Vlasov SDE (2.6). Then, for any t 2 Œ0;T�, with P

0-
probability 1, L1.Xt/ provides a version of the conditional distribution of Xt given
the � -field F0

0 _ �fW0g, regarded as a sub-� -algebra of F .

Proof. By Fubini’s theorem – see Lemma 2.4 for the way to handle the completion of the
product � -field – we clearly have, for any event C0

0 2 F0
0 , F0

0 being here regarded as a sub-
� -algebra of F0, any bounded and measurable function F on the space C.Œ0; T�IRd/, and any
bounded and measurable function ' on R

d,

E
�
1C00�˝1F.W0/'.Xt/

� D E
0
�
1C00

F.W0/E1
�
'.Xt/

��

D E
0

�

1C00
F.W0/

Z

Rd
'.x/�t.dx/

	

;

where �t.dx/ is understood as �t.!
0/.dx/ with �t.!

0/ D L.Xt.!
0; �//. In order to complete

the proof, it suffices to check that the mapping ˝0 3 !0 7! �t.!
0/ 2 P2.Rd/ is measurable

with respect to the completion of the � -field generated by F0
0 and W0.

In order to check this last point, we may equip ˝0 with the filtration F
0;.F0

0 ;W
0/ generated

by F0
0 and W0, which is known to be right-continuous by Blumenthal’s zero-one law. We then

apply Proposition 2.8 on the resulting probabilistic set-up. Combined with Lemma 2.5, this
permits to construct a solution X0 D .X0

t /0�t�T to (2.6) such that ˝0 3 !0 7! L1.X0
t .!

0; �//
is measurable with respect to F

0;.F0
0 ;W

0/. The key point is then to notice that X0 is also
a solution to (2.6) on the original set-up equipped with F

0 instead of F
0;.F0

0 ;W
0/. By the

uniqueness part in Proposition 2.8, which holds on any canonical set-up, X0 must coincide
with X. This completes the proof. ut

Remark 2.10 Here are several specific cases of interest in the sequel:

1. If X0 is just defined on .˝1;F1
0 ;P

1/, we can assume that F0
0 is almost surely

trivial. In particular, by repeating the proof of Proposition 2.9, we get that L1fXtg
is a version of the conditional law of Xt given W0. This fits the aforementioned
case where W0 plays the role of a common or systemic noise.

2. If X0 is defined on .˝0;F0
0 ;P

0/, we can assume that F0
0 is the completion of

�fX0g. Then, L1.Xt/ is a version of the conditional law of Xt given .X0;W0/. In
this setting, the full-fledged common noise is no more W0 but the entire .X0;W0/

“initial condition-common noise.”
3. More generally, if X0 is measurable with respect to �fX00;X

1
0g with X00 being

constructed on .˝0;F0
0 ;P

0/ and taking values in a Polish space S0 and X10 being
constructed on .˝1;F1

0 ;P
1/ and taking values in a Polish space S1, we can work
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with F0
0 being given by the completion of �fX00g. In particular, L1.Xt/ is a version

of the conditional law of Xt given .X00;W
0/ and .X00;W

0/ ends up playing the role
of systemic noise.

4. When the common noise is not present (i.e., �0 � 0 or W0 � 0), the conditional
distribution L1.Xt/ reduces to the standard marginal distribution L.Xt/ and the
SPDE (2.4) reduces to a deterministic PDE. It is the Fokker-Planck equation
associated with the nonlinear McKean-Vlasov diffusion process X D .Xt/0�t�T .
We then recover the framework investigated in Chapter (Vol I)-4.

Proposition 2.9 and Remark 2.10 suggest that another type of uniqueness should
hold true, at the intersection between weak and strong according to the terminology
introduced in Chapter 1. Indeed, with the same notation as in the third item in
Remark 2.10, we may expect that the flow of conditional distributions .L1.Xt//0�t�T

remains the same whenever .X10;W/ is replaced by another pair .X100 ;W
0/ with the

same distribution, as long as .X00;W
0/ is kept untouched.

Proposition 2.11 On top of assumption Conditional MKV SDE, assume further
that X0 is almost surely equal to .X00;X

1
0/, for a measurable mapping WS0�S1 !

R
d where S0 and S1 are Polish spaces equipped with their Borel � -fields, and for

two random variables X00 and X10 constructed on .˝0;F0
0 ;P

0/ and .˝1;F1
0 ;P

1/

respectively and taking values in S0 and S1 respectively. On .˝1;F1;P1/, consider
another random variable X100 from .˝1;F1

0 ;P
1/ to S1 with the same law as

X10 and another F
1-Brownian motion W0 D .W 0

t /0�t�T with values in R
d, let

X0 D  .X00;X
1
0/ and X0

0 D  .X00;X
10
0 /, and denote by X D .Xt/0�t�T and

X0 D .X0
t/0�t�T the solutions of the conditional McKean-Vlasov SDE (2.6), when

driven by .X0;W0;W/ and .X0
0;W

0;W0/ respectively. Then, with P
0-probability 1,

for any t 2 Œ0;T�,
L1.Xt/ D L1.X0

t/:

Observe that we here defined the two Brownian motions W and W0 on the same
probability space .˝1;F1;F1;P1/. Whenever W and W0 are defined on distinct
spaces, it suffices to use the product of the two underlying probability spaces to
recover the framework used in the statement.

Proof. The proof consists in an application of the Yamada-Watanabe Theorem 1.33 proved
in Chapter 1. Indeed, under the notation of the statement, we may call �0 D .�0

t/0�t�T the
flow of conditional marginal distributions of X0 given �fX00 ;W

0g, namely:

�0
t D L1.X0

t /; t 2 Œ0; T�:
Then, we can see the equation satisfied by X0 as the forward equation of a uniquely
solvable forward-backward stochastic differential equation with X0

0 as initial condition and
with coefficients driven by the environment �0. By Proposition 2.9 and Remark 2.10, �0 is
adapted to �fX00 ;W

0g and, with the terminology used in Chapter 1, the set-up .˝;F ;F;P/
used for the construction of X0 is equipped with the input .X0;X00 ;W;W

0/. As explained
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in Remark 2.2, this set-up is admissible. Therefore, in order to apply Theorem 1.33, it
suffices to choose F � G � 0 therein. Consequently, we can find a measurable map
˚ W Rd � C.Œ0; T�IRd/ � D.Œ0; T�IP2.Rd// � C.Œ0; T�IRd/ ! C.Œ0; T�IRd/ such that:

P

h
X0 D ˚

�
 .X00 ;X

10
0 /;W

0;�0;W0
�i D 1:

Inspired by the proof of Theorem 2.8, we may consider the auxiliary SDE:

Ut D X0 C
Z t

0

b
�
s;Us; �

0
s

�
ds C

Z t

0

�
�
s;Us; �

0
s

�
dWs C

Z t

0

�0
�
s;Us; �

0
s

�
dW0

s ;

for 0 � t � T . It makes sense since �0 is F0-adapted. Then, Theorem 1.33 says that, for the
same ˚ as above,

P

h
U D ˚

�
 .X00 ;X

1
0/;W

0;�0;W
�i D 1:

Since .X100 ;W
0/ has the same law as .X10 ;W/ on .˝1;F1;P1/, we deduce that, for almost

every !0 2 ˝0 under P0,

8t 2 Œ0; T�; L1.Ut/.!
0/ D L1.X0

t /.!
0/ D �0

t.!
0/:

This proves that U solves the conditional McKean-Vlasov SDE (2.6), when driven by
.X0;W0;W/. By the uniqueness part in Proposition 2.8, we deduce that:

P
�
U D X

� D 1;

so that, for almost every !0 2 ˝0 under P0,

8t 2 Œ0; T�; �t.!
0/ D L

�
Xt.!

0; �/� D L
�
Ut.!

0; �/� D �0
t.!

0/;

which completes the proof. ut

2.1.4 Conditional Propagation of Chaos

Going back to the particle system (2.3), the aim is now to prove that it converges in a
suitable sense to the solution of the conditional McKean-Vlasov SDE (2.6), our goal
being to extend the classical result of propagation of chaos for systems of particles
in mean field interaction to the conditional case.

As in the standard case, we shall prove the conditional propagation of chaos
through a coupling argument with an auxiliary system of particles. The set-up used
to construct the auxiliary system is the same as in Subsection 2.1.3. We assume
that the space .˝0;F0;F0;P0/ carries the common noise W0 D .W0

t /0�t�T and
the space .˝1;F1;F1;P1/ carries the independent noises .Wn/n�1. For the sake of
simplicity, we also assume that the common noise reduces to the sole W0, meaning
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that the initial condition in (2.3) is supported by .˝1;F1;F1;P1/; however the
result below can be extended to more general forms of common noise, at least those
covered by Remark 2.10. We thus assume that .˝1;F1;F1;P1/ carries a family of
identically distributed and independent F1

0 -measurable random variables .Xn
0/n�1

with values in R
d and such that E1ŒjX10 j2� < 1. For any n � 1, we then call

Xn D .Xn
t /0�t�T the solution to the McKean-Vlasov SDE (2.6), but with Wn instead

of W as driving noise, and Xn
0 as initial condition. In other words:

dXn
t D b

�
t;Xn

t ;L1.Xn
t /
�
dt C �

�
t;Xn

t ;L1.Xn
t /
�
dWn

t

C �0
�
t;Xn

t ;L1.Xn
t /
�
dW0

t :

for t 2 Œ0;T�with Xn
0 D Xn

0 as initial condition. For each n � 1, the above SDE, with
the prescribed initial condition, is uniquely solvable under assumption Conditional
MKV SDE. Moreover, by Proposition 2.11, we have, for all n � 1,

P
0
h
8t 2 Œ0;T�; L1.Xn

t / D L1.X1t /
i

D 1:

We then claim:

Theorem 2.12 Within the above framework and under assumption Conditional
MKV SDE, the system of particles (2.3) with .X10; � � � ;XN

0 / as initial condition has
a unique solution for every N � 1. It is denoted by ..XN;i

t /0�t�T/iD1;��� ;N. Moreover,

lim
N!1

�
max
1�i�N

E
�

sup
0�t�T

jXN;i
t � Xi

tj2
�C sup

0�t�T
E

h
W2

� 1

N

NX

iD1
ıXN;i

t
;L1.X1t /

�2i� D 0:

When E
1ŒjX10 jq� < 1 for some q > 4, there exists a constant C, only depending on

T, E1ŒjX10 jq� and the Lipschitz constants of b, � and �0, such that:

max
1�i�N

E
�

sup
0�t�T

jXN;i
t � Xi

tj2
�C sup

0�t�T
E

h
W2

� 1

N

NX

iD1
ıXN;i

t
;L1.X1t /

�2i � C�N ;

where .�N/N�1 satisfies:

�N D

8
ˆ̂
<

ˆ̂
:

N�1=2; if d < 4;

N�1=2 log N; if d D 4;

N�2=d; if d > 4:

(2.7)

From now on, we use �N for the function of N and the dimension d given in the
above formula (2.7).
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Proof.

First Step. Under assumption Conditional MKV SDE, it is easily checked that, for any
N � 1, any i 2 f1; � � � ;Ng, and any t 2 Œ0; T�, the mapping:

.Rd/N 3 x D .x1; � � � ; xN/ 7! �
b; �; �0

��
t; xi; N�N

x

�

satisfies the Lipschitz property:

8x D .x1; � � � ; xN/; x0 D .x0
1; � � � ; x0

N/ 2 �Rd
�N
;

ˇ
ˇ
ˇ
�
b; �; �0

��
t; xi; N�N

x

� � �
b; �; �0

��
t; x0

i ; N�N
x0

�ˇˇ
ˇ
2 � C

�
jxi � x0

i j2 C 1

N

NX

jD1

jxj � x0
j j2
�
;

for a constant C which is uniform in t 2 Œ0; T� and N � 1, and where we used the same
notation N�N

x D N�1
PN

iD1 ıxi as in Subsection (Vol I)-5.3.2 for the uniform distribution on
the set fx1; � � � ; xNg. This shows that (2.3) with .X10 ; � � � ;XN

0 / as initial condition has a unique
solution for every N � 1.

Second Step. It is quite standard to prove, for any i 2 f1; � � � ;Ng and any t 2 Œ0; T�,

E
�

sup
0�s�t

jXN;i
s � Xi

sj2
� � C


Z t

0

E

h
jXN;i

s � Xi
sj2 C W2

� N�N
s ;L1.Xi

s/
�2
i
ds

�

; (2.8)

where N�N
s is the empirical measure of .XN;1

s ; � � � ;XN;N
s /. Now,

W2

� N�N
s ;L1.Xi

s/
�2 D W2

� N�N
s ;L1.X1s /

�2

� 2W2

�
N�N

s ;
1

N

NX

jD1

ı
X

j
s

�2 C 2W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2

� 2

N

NX

jD1

jXN;j
s � Xj

sj2 C 2W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2
:

(2.9)

Following the proof of Proposition 2.11, we can find a measurable map:

˚ W Rd � C.Œ0; T�IRd/ � D.Œ0; T�IP2.Rd// � C.Œ0; T�IRd/ ! C.Œ0; T�IRd/;

such that, for any i 2 f1; � � � ;Ng,

P

h
Xi D ˚

�
Xi
0;W

0;L1.X1/;Wi
�i D 1: (2.10)

In the same way, we can find a measurable map:

˚N W �Rd
�N �

�
C.Œ0; T�IRd/

�NC1 !
�
C.Œ0; T�IRd/

�N
;

such that:

�
XN;1; � � � ;XN;N

� D ˚N

��
X10 ; � � � ;XN

0

�
;
�
W0;W1; � � � ;WN

��
:
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More generally, by taking advantage of the symmetry in the structure of the system of
particles (2.3), we get, for any permutation & of f1; � � � ;Ng:

�
XN;&.1/; � � � ;XN;&.N/

� D ˚N
��

X&.1/0 ; � � � ;X&.N/0

�
;W0;W&.1/; � � � ;W&.N/

�
:

Together with (2.10), this implies that the processes ..XN;i;Xi//1�i�N are identically
distributed. Therefore, (2.8) and (2.9) yield:

E
�

sup
0�s�t

jXN;1
s � X1s j2� � C


Z t

0

E

h
jXN;1

s � X1s j2 C W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2i
ds

�

:

By Gronwall’s lemma, we get:

E
�

sup
0�s�t

jXN;1
s � X1sj2

� � C
Z t

0

E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

�2i
ds; (2.11)

where the constant C is allowed to change from line to line.

Third Step. By (2.10), it is clear that the processes .Xi/1�i�N are conditionally independent
and identically distributed given W0 (or F0). In particular, by (5.19) in Chapter (Vol I)-5, we
have, for any s 2 Œ0; T�,

P
0

�

lim
N!1

E
1
h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

�2i D 0

	

D 1: (2.12)

Now,

E
1
h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

�2i

� 2E1
h
W2

� 1

N

NX

jD1

ı
X

j
s
; ı0
��2iC 2E1

h
W2

�
ı0;L1.X1s/

�2i

� 2

N
E
1
h NX

jD1

jXj
sj2
i

C 2E1
h
jX1sj2

i
D 4E1

h
jX1sj2

i
;

(2.13)

so that, from the bound E
0ŒE1ŒjX1sj2�� D EŒjX1sj2� < 1 and by Lebesgue dominated

convergence theorem, we deduce from (2.12) that, for any s 2 Œ0; T�,

lim
N!1

E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

�2i D 0: (2.14)

We claim that the convergence is uniform in s 2 Œ0; T�. Indeed, by Cauchy-Schwarz
inequality, we have, for any s; t 2 Œ0; T�,
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ˇ
ˇ
ˇ
ˇE
h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i � E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

�2i
ˇ
ˇ
ˇ
ˇ

� E

h�
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�
� W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

��2i1=2

� E

h�
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�
C W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s/

��2i1=2
:

So, by (2.13),

ˇ
ˇ
ˇ
ˇE
h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i � E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2i
ˇ
ˇ
ˇ
ˇ

� CE

h�
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�
� W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

��2i1=2
:

By the triangular inequality, we end up with:

ˇ
ˇ
ˇ
ˇE
h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i � E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2i
ˇ
ˇ
ˇ
ˇ

� CE

h
W2

� 1

N

NX

jD1

ı
X

j
t
;
1

N

NX

jD1

ı
X

j
s

�2i1=2 C CE

h
W2

�
L1.X1t /;L1.X1s /

�2i1=2

� CE
�jX1t � X1s j2�1=2 � Cjt � sj1=2;

where we used the Lipschitz property of the coefficients together with the bound

EŒ sup
0�r�T

jX1r j2� � C;

to get the last inequality, and as before, we allowed the constant C to change from line to
line. Therefore, by an equicontinuity argument, the convergence in (2.14) must be uniform
in s 2 Œ0; T�, in other words:

lim
N!1

sup
0�s�T

E

h
W2

� 1

N

NX

jD1

ı
X

j
s
;L1.X1s /

�2i D 0: (2.15)

Going back to (2.11), we get, as a first a consequence,

lim
N!1

E

h
sup
0�t�T

jXN;1
t � X1t j2

i
D 0: (2.16)

As a second consequence of (2.15), we have
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sup
0�t�T

E

h
W2

� 1

N

NX

jD1

ı
X

N;j
t
;L1.X1t /

�2i

� 2 sup
0�t�T

E

h
W2

� 1

N

NX

jD1

ı
X

N;j
t
;
1

N

NX

jD1

ı
X

j
t

�2iC 2 sup
0�t�T

E

h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i

� 2 sup
0�t�T

E

h 1

N

NX

jD1

jXN;j
t � Xj

tj2
i

C 2 sup
0�t�T

E

h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i
;

(2.17)
so that, by (2.15) and (2.16), the left-hand side tends to 0.

Fourth Step. We now discuss the case where X10 has a finite moment of order q, for some
q > 4. As a preliminary remark, we observe that this implies

E
�

sup
0�t�T

jX1t jq� < 1;

which follows from the growth property of the coefficients under assumption Conditional
MKV SDE. Then, by Theorem (Vol I)-5.8 and Remark (Vol I)-5.9, we can find a
deterministic constant c, only depending upon d and q, such that, for any t 2 Œ0; T�, P0-
almost surely,

E
1
h
W2

� 1

N

NX

jD1

ı
X

j
t
;L1.X1t /

�2i � cE1
�j NX1t jq�2=q

�N ;

for the same sequence ."N/N�1 as in the statement. Taking expectation with respect to P
0 and

plugging the above bound into (2.11), we get the desired bound on EŒsup0�t�T jXN;1
t � X1t j2�.

Thanks to (2.17), we get a similar bound for:

sup
0�t�T

E

h
W2

� 1

N

NX

iD1

ıXN;i
t
;L1.X1t /

�2i
;

and this completes the proof. ut

2.2 Strong Solutions to MFGs with Common Noise

2.2.1 Solution Strategy for Mean Field Games

We now return to the N-player game model formulated in the opening Subsec-
tion 2.1.1 and discuss the derivation of mean field games when players are subject
to a common source of noise. Reproducing (2.1) for the sake of convenience, the
states of the N players evolve and interact through the system of SDEs:

dXi
t D b

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dt C �

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dWi

t C �0
�
t;Xi

t ; N�N
t ; ˛

i
t

�
dW0

t ;
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for t 2 Œ0;T�, and the players are assigned cost functionals of the form:

Ji.˛1; � � � ;˛N/ D E

� Z T

0

f
�
t;Xi

t ; N�N
t ; ˛

i
t

�
dt C g

�
Xi

T ; N�N
T

�
	

;

where the control processes ˛1 D .˛1t /t�0; � � � ;˛N D .˛N
t /t�0 are taken in the set A

of Leb1 ˝P-square-integrable F-progressively measurable processes with values in
a closed convex subset A of a Euclidean space R

k for some integer k � 1.
In the spirit of assumption Optimization in a Random Environment of

Chapter 1, we shall assume throughout this subsection:

Assumption (Control).

(A1) The coefficients b, � and �0 are Borel-measurable mappings from
Œ0;T� � R

d � P2.Rd/ � A to R
d, R

d�d and R
d�d respectively. For

any t 2 Œ0;T�, the coefficients b.t; �; �; �/, �.t; �; �; �/ and �0.t; �; �; �/ are
continuous on R

d�P2.Rd/�A. The coefficients b.t; �; �; ˛/, �.t; �; �; ˛/
and �0.t; �; �; ˛/ are Lipschitz continuous in the x variable, uniformly
in .t; �; ˛/ 2 Œ0;T� � P2.Rd/ � A. Moreover, there exists a constant L
such that:

j.b; �; �0/.t; x; �; ˛/j � L
�
1C jxj C j˛j C M2.�/

�
;

where M2.�/
2 stands for the second moment of �.

(A2) The coefficients f and g are real-valued Borel-measurable mappings on
Œ0;T��R

d �P2.Rd/�A and R
d �P2.Rd/ respectively. For any t 2 Œ0;T�,

f .t; �; �; �/ and g.�; �/ are continuous on R
d �P2.Rd/�A and R

d �P2.Rd/

respectively. Moreover,

jf .t; x; �; ˛/j C jg.x; �/j � L
�
1C jxj2 C j˛j2 C �

M2.�/
�2�
:

As in Chapter (Vol I)-3, the question is to determine asymptotic equilibria when
the size of the population N tends to 1.

Imitating the strategy implemented in Chapters (Vol I)-3 and (Vol I)-4, the search
for asymptotic Nash equilibria is to be performed by solving the optimization
problem of one single player interacting with the limit of the flow of empirical
measures . N�N

t /0�t�T . In view of Propositions 2.8 and 2.12, the limit of the flow
of empirical measures . N�N

t /0�t�T should match the flow of conditional marginal
distributions of the optimal path given the common noise, where we recall from
Remark 2.10 that the exact form of the common noise depends upon the dependence
structure of the initial conditions. In order to fit the framework of Proposition 2.8,
we assume throughout this short introduction that the initial conditions X10; � � � ;XN

0
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of the players are independent and identically distributed according to some �0 2
P2.Rd/. In this case, the common noise is to be understood as the sole W0, the
asymptotic empirical distribution of the initial states X10; � � � ;XN

0 matches �0, and is
thus deterministic. Later on in the text, we shall discuss the case where �0 is allowed
to be random.

When compared to the situation described in Chapters (Vol I)-3 and (Vol I)-4,
the first striking difference is that the limit flow is now random as it keeps track
of the common source of noise. For that reason, we shall often refer to the
case investigated in Chapters (Vol I)-3 and (Vol I)-4 as “deterministic”, the word
deterministic emphasizing the fact that the MFG equilibrium is characterized by a
purely deterministic flow of measures. However, the reader needs to remain acutely
aware of the possible misunderstanding due to this terminology. Indeed, despite the
use of the word deterministic, the dynamics of the state of each single player in the
deterministic case are stochastic!

In any case, following in the footsteps of Chapter (Vol I)-3, the search for an
MFG equilibrium when subject to a common source of noise may be implemented
in two major steps:

(i) Given an initial distribution �0 2 P2.Rd/, for any arbitrary continuous P2.Rd/-
valued adapted stochastic process � D .�t/0�t�T , solve the optimization
problem:

inf
.˛t/0�t�T

E

� Z T

0

f .t;Xt; �t; ˛t/dt C g.XT ; �T/

	

; (2.18)

subject to the dynamic constraint:

dXt D b
�
t;Xt; �t; ˛t

�
dt C �

�
t;Xt; �t; ˛t

�
dWt

C �0
�
t;Xt; �t; ˛t

�
dW0

t ;
(2.19)

over the time interval t 2 Œ0;T�, with X0 	 �0, and over controls which are
adapted to both W and W0.

(ii) Determine the measure valued stochastic process � D .�t/0�t�T so that the
flow of conditional marginal distributions of one optimal path .Xt/0�t�T given
W0 is precisely .�t/0�t�T itself, i.e.,

8t 2 Œ0;T�; �t D L
�
Xt j �fW0

s ; 0 � s � T
��
: (2.20)

Recall that we use freely the notation X 	 � in lieu of L.X/ D �, where L.X/
denotes the law of X, which we also denote by P ı X�1 or by PX .
Obviously, in the absence of the common noise term W0, the measure valued
adapted stochastic process � can be taken as a deterministic function Œ0;T� 3 t 7!
�t 2 P2.Rd/, and we are back to the situation investigated in Chapters (Vol I)-3
and (Vol I)-4.
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Remark 2.13. As explained in Remark (Vol I)-3.2, we shall restrict ourselves to the
case where the optimal path .Xt/0�t�T in step (ii) above is unique.

2.2.2 Revisiting the Probabilistic Set-Up

In order to specify in a completely rigorous way the definition of an MFG
equilibrium, we need to revisit the probabilistic set-up introduced earlier. The reason
is twofold:

1. First, we learnt from Subsection 2.1 that, in order to handle conditional McKean-
Vlasov constraints of the same type as (2.20), it might be convenient to
disentangle the two sources of noise W and W0. Still, we said very little about the
way to disentangle the systemic and idiosyncratic noises in the initial condition
X0 of (2.19). It is now necessary to elucidate the construction of X0 whenever
�0 in step (ii) of the search of an MFG equilibrium is allowed to be random,
which is what happens when the conditional law of X0 given the common noise
is required to match a given random variable �0 with values in P2.Rd/.

2. Second, we made clear in Chapter 1 the need to specify a Compatibility
Condition when handling an optimal stochastic control problem in random
environment. In Subsection 1.4.1, compatibility was formulated in terms of the
filtration generated by the initial condition X0, the two noises W0 and W and the
environment �. Now we must say what this compatibly condition becomes when
defining the notion of equilibrium for mean field games with common noise.

In order to follow the approach used in Subsection 2.1, we shall work with two
complete filtered probability spaces .˝0;F0;F0;P0/ and .˝1;F1;F1;P1/, the first
one carrying W0 and the second carrying W. We then equip the product space ˝ D
˝0�˝1 with the completion F of the product � -field under the product probability
measure P D P

0 ˝ P
1, the extension of P to F being still denoted by P. The right-

continuous and complete augmentation of the product filtration is denoted by F.

Specification of the Initial Condition
The first question we address concerns the specification of the initial condition. As
we just explained, the description we have given so far may not suffice for our
purpose. Our aim is to identify the conditional distribution L1.X0/ of the initial
condition X0 of (2.19) with the conditional law of X0 given some information that
may be observed at the macroscopic –or systemic– level, meaning an information
that may be captured from the sole observation of the global population, and not of
the private states of the players. In Remark 2.10, we provided several examples for
this macroscopic initial information. Now we encapsulate all these examples into a
single framework relevant to our analysis.

Throughout the analysis of MFG with common noise, we are given a ran-
dom variable �0 on the probability space .˝0;F0

0 ;P
0/ with values in the space

.P2.Rd/;B.P2.Rd///. Along the line of step (ii) in the search of an MFG equilib-
rium, it is understood as the initial distribution of the population, with the difference
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that it is now allowed to be random. As a main requirement, we impose that the
initial condition X0 of (2.19) is an F0-measurable random variable from ˝ into R

d

satisfying L.X0.!0; �// D �0.!
0/ for P0-almost every !0 2 ˝0, or equivalently,

P
0
�
L1.X0/ D �0

� D 1: (2.21)

The interpretation of (2.21) is twofold. On the one hand, it says that, given !0, the
randomness used to sample a realization of the random variable X0.!0; �/ is enclosed
in F1

0 and is thus independent of �0, W0 and W. According to the terminology
introduced in Definition 1.6, this looks like a compatibility condition in the sense

that F .�0;W0;W/
T can be shown to be independent of F .X0;�0/

0 given F�0
0 , the proof

being given right below. On the other hand, (2.21) implies that, for any Borel subsets
B � R

d and C � P2.Rd/,

E
�
1B.X0/1C.�0/

� D E
0
�
1C.�0/�0.B/

�
;

proving that �0 is the conditional law of X0 given �f�0g, namely, P-almost surely,

L
�
X0 j�0

� D �0: (2.22)

Identity (2.22) is reminiscent of the fixed point condition (2.20) formulated in step
(ii) of the search of an MFG equilibrium, except that �0 is now random.

The proof of the aforementioned compatibility condition is quite straightforward.
It is based on the fact that, under P, F0 is independent of .W0;W/. Then, for any
Borel subsets B0 � R

d, C0 � P2.Rd/, D � C.Œ0;T�IRd/ � C.Œ0;T�IRd/,

E
�
1B0 .X0/1C0 .�0/1D.W0;W/

� D E
�
1B0 .X0/1C0 .�0/

�
E
�
1D.W0;W/

�

D E
�
�0.B0/1C0 .�0/

�
E
�
1D.W0;W/

�
;

which suffices to conclude that F .�0;W0;W/
T is independent of F .X0;�0/

0 given F�0
0 .

Observe that, from Blumenthal’s 0-1 law, F .X0;�0/
0 is also equal to F .X0;�0;W0;W/

0 .
We now address the specific question of the construction of an initial condition

X0 satisfying (2.21) for a given random variable �0 from .˝0;F0
0 ;P

0/ into P2.Rd/.
Such a construction may be achieved by means of Lemma (Vol I)-5.29. Using the
same function  W Œ0; 1��P2.Rd/ ! R

d as in the statement of Lemma (Vol I)-5.29,
and assuming that there exists a uniformly distributed random variable � from
.˝1;F1

0 ;P
1/ into Œ0; 1/, Lemma (Vol I)-5.29 ensures that X0 defined by:

X0.!
0; !1/ D  

�
�.!1/; �0.!

0/
�
; .!0; !1/ 2 ˝0 �˝1; (2.23)

is a random variable from the space .˝;F0;P/ into R
d such that, for any !0 2 ˝0,

L.X0.!0; �// is precisely �0.!0/. It is worth mentioning that, in that case, X0 is of
the form specified in the third item of Remark 2.10.
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Compatibility Condition in the Optimal Control Problem
So far, we addressed the question of compatibility between the initial condition
X0 and the filtration generated by �0, W0 and W. However, we know from
Subsection 1.4.1 that we also need to discuss the compatibility of the process
.X0;W0;�;W/ with the filtration F with respect to which the control process
in (2.18)–(2.19) is required to be progressively measurable.

With the same terminology as in Subsection 1.4.1, the unknown � in the search
of an MFG equilibrium is referred to as a random environment. Whenever � satisfies
the fixed point condition (2.20), compatibility is easily checked since � is adapted
to the Brownian motion W0, see Remark 1.12. Anyhow, as we shall see next, there
are cases for which condition (2.20) is too strong and need to be relaxed. Of course,
so is the case if �0 is random, and we gave instances of this kind in Remark 2.10
within the simpler framework of uncontrolled McKean-Vlasov SDEs. However, the
difficulty we shall face below is more substantial and, even in cases when �0 is
deterministic, it will be needed to enlarge the filtration. In a nutshell, such a difficulty
will occur in cases when � is not adapted to F0

0 _ FW0
. If so is the case, �t is

no longer seen as the conditional law of Xt given W0 (nor F0
0 _ FW0

), but as the
conditional law of Xt given a larger filtration.

When � is not adapted to W0, the question of compatibility really matters. In
full analogy with our discussion in Subsection 1.4.1, it is mandatory to require the
filtration F to be compatible with .X0;W0;�;W/. Unfortunately, this will not suffice
for our purpose. In order to guarantee a weak form of stability of MFG equilibria,
we shall demand more. Instead we shall enlarge the environment � into a process
M D .Mt/0�t�T , with values in a Polish space� which is larger than X D P2.Rd/

in the sense that it is equipped with a family of continuous projection mappings
.�t W � ! X /0�t�T such that � D .�t D �t.Mt//0�t�T . The process M D
.Mt/0�t�T will be called a lifting of �. Although M does not explicitly appear
in the coefficients driving the optimal stochastic control problem (2.18)–(2.19), it
will be part of the input as it will dictate the compatibility condition: the filtration
F will be assumed to be compatible with .X0;W0;M;W/. In order to stress the
fact that M is a lifting of �, we will sometimes write that F is compatible with
.X0;W0; .M;�/;W/.

A typical example for the triple .X ; �; .�t/0�t�T/ is X D P2.Rd/, � D
P2.C.Œ0;T�IRd// and �t W P2.C.Œ0;T�IRd// 3 m 7! �t D m ı e�1

t , where et is the
evaluation mapping at time t on C.Œ0;T�IRd/. Then, for a random variable M with
values in � , we may define Mt as the image of M by the mapping C.Œ0;T�IRd/ 3
x 7! x�^t 2 C.Œ0;T�IRd/. Below, we use a slightly different version. Still with
X D P2.Rd/, we take � D P2.ŒC.Œ0;T�IRd/�2/ D P2.C.Œ0;T�IR2d//. Writing
a vector in R

2d in the form .x;w/ 2 R
d � R

d, we take �t W P2.C.Œ0;T�IR2d// 3
m 7! �t D m ı .ex

t /
�1, where ex

t is the composition of et with the projection
mapping R

d � R
d 3 .x;w/ 7! x (et being now regarded as a mapping from

C.Œ0;T�IR2d/ into R
2d). And, for a random variable M with values in � , we define

Mt as the image of M by the mapping ŒC.Œ0;T�IRd/�2 3 .x;w/ 7! .x;w/�^t 2
C.Œ0;T�IRd/ � C.Œ0;T�IRd/. The notion of lifting is then easily understood. We
view flows of probability measures on R

d as flows of marginal distributions induced
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by the first d coordinates of a continuous process with values in R
2d. In such a case,

Mt is the law of the process stopped at time t and �t is the marginal law of the first
d coordinates at time t. Of course, it is not always possible for a flow of probability
measures to be the flow of marginal distributions of a continuous process, but, in all
the cases we handle below, it is indeed the case.

Note that extending the environment is by no means a limitation for applying the
results of Subsection 1.4. Indeed, it will suffice to replace X by � and � by M to
apply them.

Summary
In order to proceed with the search of an MFG equilibrium, we often use two
probability spaces

�
˝0;F0;P0/ and

�
˝1;F1;P1

�
;

equipped with two right-continuous and complete filtrations F
0 D .F0

t /0�t�T and
F
1 D .F1

t /0�t�T . The common noise W0 D .W0
t /0�t�T is constructed on the

space .˝0;F0;P0/, while the idiosyncratic noise W D .Wt/0�t�T is constructed
on .˝1;F1;P1/. By convention, the index 0 always refers to the common noise and
the index 1 to the idiosyncratic one. We then define the product structure

˝ D ˝0 �˝1; F ; F D �
Ft
�

0�t�T ; P; (2.24)

where .F ;P/ is the completion of .F0˝F1;P0˝P
1/ and F is the complete and right

continuous augmentation of .F0
t ˝ F1

t /0�t�T Generic elements of ˝ are denoted
! D .!0; !1/ with !0 2 ˝0 and !1 2 ˝1.

Given such a set-up, we shall search for an MFG equilibrium on the product space
˝ for an initial random distribution �0 W .˝0;F0

0 / ! .P2.Rd/;B.P2.Rd// and an
initial private state X0 2 L2.˝;F0;PIRd/ satisfying the prescription L.X0.!0; �// D
�0.!

0/ for P0-almost every !0 2 ˝0.

2.2.3 FBSDE Formulation of First Step in the Search for a Solution

In this subsection, we look at the optimal control problem defined in step (i) of the
search of an MFG equilibrium. In order to stay with the framework introduced in
Chapter 1 to handle stochastic optimal control problems in a random environment,
we do not require the probability space to be of the aforementioned product
form (2.24).

For the purpose of the analysis of MFGs with a common noise, we formulate
in a systematic way the optimal control problem in (2.18) and (2.19) by means
of an FBSDE in a random environment. Depending upon the case, we may use
Theorem 1.57 or Theorem 1.60 in order to identify the optimal path of the
underlying optimal control problem as the forward component of the solution of
an FBSDE.
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Although the strategy is very simple, the fact that the system used to represent the
optimal path may involve the coefficients in the cost functional, as in Theorem 1.57,
or their derivatives, as in Theorem 1.60, may render the exposition slightly cumber-
some. In order to capture the commonalities of the two approaches and highlight the
underpinnings of the methodology, we shall make a suitable assumption in order to
merge the two possible cases.

The statement of assumption FBSDE below is based upon the notion of lifting
introduced in the previous Subsection 2.2.2. We now formalize this notion of lifting
in a precise definition.

Definition 2.14. On a complete probability space .˝;F ;F;P/, possibly of a non-
product form, equipped with a complete and right-continuous filtration F and a tuple
.X0;W0;�;W/ satisfying:

1. X0 2 L2.˝;F0;PIRd/,
2. � is a càd-làg F-adapted process with values in X D P2.Rd/ satisfying

EŒsup0�t�T M2.�t/
2� < 1,

3. .W0;W/ is a 2d-Brownian motion with respect to F under P,
4. .X0;W0;�/ is independent of W under P,

we call lifting of �, a càd-làg F-adapted process M D .Mt/0�t�T taking values in
a larger Polish metric space � containing P2.Rd/, such that:

8t 2 Œ0;T�; �t D �t.Mt/;

where .�t/0�t�T is a family of continuous projection mappings from � into P2.Rd/.

We then say that .˝;F ;F;P/ equipped with .X0;W0; .M;�/;W/ is an admissi-
ble lifting if .˝;F ;F;P/ equipped with .X0;W0;M;W/ is admissible in the sense
of Definition 1.13 in Chapter 1, or equivalently if .X0;W0;M;W/ is compatible
with F in the sense of Definition 1.6. Using the same abuse of terminology as before,
we shall often say that .X0;W0; .M;�/;W/ is compatible with the filtration F.

Before stating the form of assumption FBSDE which is relevant to the investiga-
tions of this chapter, we warn the reader that, as we did in Chapter 1, we shall
restrict ourselves to volatility coefficients � and �0 which do not depend upon the
control variable ˛.

Assumption (FBSDE). On top of assumption Control, there exist an integer
m � 1 together with deterministic measurable functions B from Œ0;T�� R

d �
P2.Rd/ � R

m � R
m�d into R

d, F from Œ0;T� � R
d � P2.Rd/ � R

m � .Rm�d/2

into R
m and G from R

d � P2.Rd/ into R
m, such that, for any probabilistic

set-up .˝;F ;F;P/ equipped with a compatible lifting .X0;W0; .M;�/;W/
as above, it holds that:

(continued)
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(A1) The optimal control problem defined in (2.18) and (2.19), namely:

min
˛

J�.˛/; J�.˛/ D E

� Z T

0

f .s;X˛
s ; �s; ˛s/ds C g.X˛

T ; �T/

	

;

where ˛ D .˛t/0�t�T is an F-progressively measurable square-
integrable A-valued process and X˛ D .X˛

t /0�t�T solves:

dX˛
t D b

�
t;X˛

t ; �t; ˛t
�
dt

C �.t;X˛
t ; �t/dWt C �0.t;X˛

t ; �t/dW0
t ; t 2 Œ0;T�;

with X˛
0 D X0 as initial condition, has a unique solution, characterized

as the forward component of the solution of a strongly uniquely solvable
FBSDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D B.t;Xt; �t;Yt;Zt/dt

C�.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ;

dYt D �F.t;Xt; �t;Yt;Zt;Z0t /dt

CZtdWt C Z0t dW0
t C dMt; t 2 Œ0;T�;

(2.25)

with X0 as initial condition for X D .Xt/0�t�T and YT D G.XT ; �T/ as
terminal condition for Y D .Yt/0�t�T , where M D .Mt/0�t�T is a càd-
làg martingale with respect to the filtration F, of zero cross variation
with .W0;W/ and with initial condition M0 D 0.

Once again, we refer the reader to Subsection 1.4, and more generally to Chap-
ter 1, for the FBSDE characterization of a stochastic control problem in a random
environment. Obviously, the coefficients .B;F;G/ need to be connected to the orig-
inal coefficients .b; �; �0; f ; g/. For starters, we require that B is of a specific form.

(A2) There exists a deterministic measurable function L̨ , with values in A
such that:

B.t; x; �; y; z/ D b
�
t; x; �; L̨ .t; x; �; y; z/�;

for all .t; x; �; y; z/ 2 Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d.
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This innocent looking assumption is not without consequences. In particular, it
implies that the optimal state process X is the controlled process associated with the
optimal control Ǫ given by Ǫ t D . L̨ .t;Xt; �t;Yt;Zt//0�t�T .

The typical examples we have in mind are:

1. the FBSDE is associated with the probabilistic representation of the value
function of the control problem, see Theorem 1.57. Notice that in this case, F
does not depend on the variable z0;

2. the FBSDE derives from the stochastic Pontryagin principle, see Theorem 1.60.

Given that the volatilities � and �0 do not depend upon the control parameter ˛,
when it comes to minimizing the Hamiltonian with respect to the control parameter,
in order to make our life easier, we may minimize the reduced Hamiltonian H.r/

instead of the full Hamiltonian H. Denoting as usual by Ǫ .t; x; �; y/ the minimizer
of the reduced Hamiltonian A 3 ˛ 7! H.r/.t; x; �; y; ˛/, in the two important cases
above, the function L̨ is given by:

L̨ .t; x; �; y; z/ D
(

Ǫ�t; x; �; �.t; x; �/�1�z� in the first case;

Ǫ .t; x; �; y/ in the second case.
(2.26)

The form of the coefficients .B;F;G/ is quite clear in both cases. Undoubtedly, B
is completely determined by the coefficient b together with the function L̨ because
of (A2). The coefficients F and G take different forms in each of the two cases and
the processes Y and Z do not have the same meaning. In the first case, Y represents
the optimal cost, while it is associated with the optimal control in the second case.
In both cases, Ǫ is the argument of the minimization of the reduced Hamiltonian.

Finally, we shall require the following two structural conditions:

(A3) There exists a constant L � 0 such that:

j.B; L̨ /.t; x; �; y; z/j � L
�
1C jxj C jyj C jzj C M2.�/

�
;

jF.t; x; �; y; z; z0/j C jG.x; �/j
� L

�
1C jxj C jyj C jzj2 C jz0j C �

M2.�/
�2�
:

Recalling that the solutions to (2.25) are required to satisfy:

E

�

sup
0�t�T

�jXtj2 C jYtj2 C jMtj2
�C

Z T

0

�jZtj2 C jZ0t j2�dt

	

< 1;

we see that the adapted stochastic process . L̨ .t;Xt; �t;Yt;Zt//0�t�T is always
square-integrable on Œ0;T� �˝.
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Note that there is no real loss of generality in requiring assumption FBSDE
to hold on any probabilistic set-up. Indeed, as shown in Theorems 1.57 and 1.60,
existence and uniqueness for FBSDEs of the type (2.25) may be guaranteed on
any arbitrary probabilistic set-up under quite general conditions. We thus assume
that the representation of the optimally controlled paths holds independently of the
probabilistic set-up, which means in particular, that the coefficients .B;F;G/ are
independent of the set-up which is used, and thus of the initial condition. As a result,
they remain the same if the initial condition X0 is changed and/or the initial time 0 is
replaced by any other time t 2 Œ0;T�. Also they remain the same if the environment
process � is changed as long as the prescriptions in Definition 2.14 are fulfilled.

2.2.4 Strong MFG Matching Problem: Solutions and Strong
Solvability

In this subsection, we assume again that the probability space is of the product
form (2.24).

Equilibrium on an Arbitrary Space
We now concentrate on step (ii) of the search for an MFG equilibrium, see (2.20),
which we call the matching problem or the fixed point step.

Throughout the subsection, we work on a probabilistic set-up of the product
form (2.24) equipped with an initial random distribution �0 W .˝0;F0

0 / !
.P2.Rd/;B.P2.Rd// and an initial private state X0 2 L2.˝;F0;PIRd/ satisfying
the prescription L.X0.!0; �// D �0.!

0/ for P0-almost every !0 2 ˝0.
Whenever �0 is random, the fixed point step (2.20) must be revisited as the

flow of marginal equilibrium measures � D .�t/0�t�T cannot be adapted with
respect to the filtration generated by the sole W0. A natural strategy is thus to
require � D .�t/0�t�T to be adapted with respect to the filtration generated
by both �0 and W0. According to the standard terminology in the theory of
stochastic differential equations, this sounds like a strong equilibrium, as the
solution is required to be measurable with respect to the information generated by
the input .�0;W0/. However, pursuing the comparison with the theory of stochastic
differential equations, we also guess that this may not suffice and that there might
be more complicated cases for which � is not adapted to the filtration generated by
.�0;W0/. This prompts us to introduce a quite general definition of an equilibrium,
allowing for solutions which are not necessarily adapted to the common source of
noise.

In order to proceed, we must specify the form of the information generated by the
equilibrium � itself. Recalling that we aim at lifting any equilibrium � with values
in C.Œ0;T�IP2.Rd// into some M with values in P2.ŒC.Œ0;T�IRd/�2/, we introduce
first the following definition.

Definition 2.15. Given a probability space .˝;F ;P/ equipped with a filtration F,
a random variable M from .˝;F/ into P2.C.Œ0;T�IR2d// for T > 0, is said to be
F-adapted if for any t 2 Œ0;T� and any C 2 �fxs;wsI s � tg, where .x;w/ is the
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canonical process on ŒC.Œ0;T�IRd/�2 Š C.Œ0;T�IR2d/, the random variable M.C/
is Ft-measurable. Equivalently, denoting by Fnat;M

t D �
˚
M.C/I C 2 �fxs;wsI s �

tg�, M is F-adapted if and only if Fnat;M
t � Ft for all t 2 Œ0;T�.

In the above statement, the space C.Œ0;T�IR2d/ is equipped with the topology
of the uniform convergence on Œ0;T�, and the space P2.C.Œ0;T�IR2d// with the
corresponding 2-Wasserstein distance. Moreover, M.C/ has to be understood as the
measure of C under the random measure M. Sometimes, we shall write M.!;C/
in order to specify the underlying realization ! 2 ˝. The reader may want to
take a look at Proposition (Vol I)-5.7 for basic properties of the Borel � -field on
P2.C.Œ0;T�IR2d//. Recall in particular that M is a random variable with values
in P2.C.Œ0;T�IR2d// if and only if, for any C 2 B.C.Œ0;T�IR2d//, the mapping
˝ 3 ! 7! M.!;C/ is a random variable. Our choice to denote the canonical
process on C.Œ0;T�IR2d/ by .x;w/ is consistent with the analysis provided in the
sequel. Below, M will stand for the conditional law (given some � -field) of the pair
process formed by the forward component X and the Brownian motion W in an
FBSDE of the same form as (2.25).

The idea behind Definition 2.15 is to specify the measurability properties of a
flow of marginal equilibrium measures � through a lifted random variable M with
values in P2.C.Œ0;T�IR2d// such that, for all t 2 Œ0;T�, �t D M ı .ex

t /
�1, where ex

t
denotes the evaluation map on C.Œ0;T�IR2d/, giving the first d coordinates at time
t. The rationale for this choice will be made clear in Chapter 3 when we discuss the
construction of MFG equilibria.

For the time being, we state a general definition for the solutions of MFG
problems with a common noise (also called an equilibrium).

Definition 2.16. Given a probabilistic set-up .˝;F ;F;P/ as in (2.24), equipped
with Brownian motions W0 and W, an initial random distribution �0 and an initial
private state X0, satisfying in particular the constraint L1.X0/ D �0, we say that
an F0

T -measurable random variable M with values in P2.C.Œ0;T�IR2d// induces
a solution to the MFG problem (2.18)–(2.19)–(2.20), with � D .�t W ˝0 3
!0 7! �t.!

0/ D M.!0/ ı .ex
t /

�1 2 P2.Rd//0�t�T as flow of marginal equilibrium
measures, if

(i) The filtration F is compatible with .X0;W0;M;W/ in the sense of Def-
inition 1.6, with F

nat;.X0;W0;M;W/ therein being the filtration generated by
.X0;W0;W/ and F

nat;M D .Fnat;M
t /0�t�T .

(ii) There exists a Leb1 ˝ P square-integrable and F-progressively measurable
process ˛ D .˛t/0�t�T with values in A, such that the solution X D .Xt/0�t�T

of the SDE:

dXt D b.t;Xt; �t; ˛t/dt C �.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ; t 2 Œ0;T�;
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with X0 as initial condition, satisfies:

P
0
h
!0 2 ˝0 W M.!0/ D L

�
X.!0; �/;W.�/�

i
D 1; (2.27)

(iii) For any other square-integrable and F-progressively measurable control pro-
cess ˇ with values in A, it holds that:

J�.˛/ � J�.ˇ/; (2.28)

where J� is defined as in (A1) in assumption FBSDE.

We then call the pair .W0;M/ (or sometimes M alone) an equilibrium. The flow �

is called the associated flow of equilibrium marginal measures.

Definition 2.16 looks rather complicated at first. In comparison with the original
formulation in Subsection 2.2.1, we changed the fixed point condition (2.20) on the
conditional marginal measures into the fixed point condition (2.27) on the condi-
tional distribution of the whole trajectory, which we denoted by L.X.!0; �/;W.�//
and which we shall also denote by L1.X;W/.!0/. In this respect, we stress the fact
that Lemma 2.4 may be easily extended to random variables taking values in a Polish
space. In comparison with the formulation introduced in Subsection 2.2.1, we also
specified the notion of compatibility used for handling the stochastic optimal control
in the environment � induced by the lifting M.

Hopefully, the reader will understand in the next chapter that we performed these
two changes in order to prove existence of equilibria. Somehow the Compatibility
Condition and the fixed point step dictate the macroscopic information that an agent
should observe on the population in order to implement the Nash strategy. Basically,
we require the agent to observe W0 and the full-fledged conditional law of the whole
path .X;W/ given the realization !0. The useful information is thus much larger
than that generated by W0 and the flow of marginal conditional laws .L1.Xt//0�t�T

– which is nothing but � as we shall check below. As we shall see in the next chapter,
this framework seems to be the right one for constructing solutions to MFG with a
common noise. Except for some specific cases, we will not be able to construct
solutions for which F is compatible with the sole .X0;W0;�;W/.

We insist on the fact that, despite this enlarged framework, the results of
Subsection 1.4 still apply. In order to fit the framework used therein, it suffices
to extend the environment. Instead of �, we may look at the process M D
.Mt D M ı E�1

t /0�t�T , where Et W C.Œ0;T�IR2d/ 3 .x;w/ 7! .xs^t;ws^t/0�s�T 2
C.Œ0;T�IR2d/. Equivalently, this amounts to choosing X in Subsection 1.4 as
P2.C.Œ0;T�IR2d//. It is plain to check that M is a continuous process with values
in C.Œ0;T�IR2d/ and that its canonical filtration coincides with Fnat;M. In particular,
the compatibility requirement in Definition 2.16 may be rewritten as a Compatibility
Condition between F and the filtration generated by .X0;W0;M;W/. Obviously,
the sequence .Mt/0�t�T subsumes .�t/0�t�T since �t is then understood as �t D
Mt ı .ex

t /
�1 with ex

t being the evaluation map providing the first d coordinates at
time t on C.Œ0;T�IR2d/.
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The identification of the canonical filtration generated by M follows from
the following observation. Notice first that the � -field �fEtg generated by Et on
C.Œ0;T�IR2d/ is �fxs;wsI s � tg where .x;w/ denotes the canonical process on
ŒC.Œ0;T�IRd/�2 Š C.Œ0;T�IR2d/. Owing to Proposition (Vol I)-5.7, the � -field
generated by the random variable Mt has the form �

˚
M.C/I C 2 �fxs;wsI s � tg�,

which is exactly Fnat;M
t .

Notice that we shall often use M and M alternatively since they can be easily
identified mathematically speaking. We now make the connection with the matching
problem (ii) articulated in Subsection 2.2.1:

Proposition 2.17. With the notation of Definition 2.16, for P
0-almost every

!0 2 ˝0, it holds:

8t 2 Œ0;T�; �t.!
0/ D L

�
Xt.!

0; �/�:

Moreover, for any t 2 Œ0;T�, �t provides a conditional law of Xt given F0 and of Xt

given F0
t , both � -algebras being regarded as sub-� -algebras of F , see Remark 2.2.

In particular, �t is the conditional law of Xt given Fnat;.W0;M/
t , the latter being also

regarded as a sub-� -algebra of F .

Proof. The first point is rather straightforward. Recall that, for a given t 2 Œ0; T�, ex
t denotes

the evaluation map providing the first d coordinates at time t on C.Œ0; T�IR2d/. It is easy to
check that the mapping P2.C.Œ0; T�IR2d// 3 m 7! m ı .ex

t /
�1 2 P2.Rd/ is measurable (it is

even continuous). Therefore, both ˝0 3 !0 7! �t.!
0/ and ˝0 3 !0 7! L.X.!0; �/;W/ ı

.ex
t /

�1 are random variables. Of course, they coincide P
0-almost surely. Now, for P0-almost

every !0 2 ˝0 and for any C 2 B.Rd/ in a countable generating �-system,

�
L
�
X.!0; �/;W� ı .ex

t /
�1
�
.C/ D P

1
h
!1 2 ˝1 W �X.!0; !1/;W.!1/� 2 .ex

t /
�1.C/

i

D P
1
�
Xt.!

0; �/ 2 C
�

D �
L
�
Xt.!

0; �/��.C/:

We now turn to the second claim. The identification with a conditional law given F0 follows
from Lemma 2.4. In order to complete the proof, it suffices to notice, from Lemma 2.5, that

the mapping ˝0 3 !0 7! �t.!
0/ is F0

t -measurable and is Fnat;.W0;M/
t -measurable. ut

When assumption FBSDE is in force (whatever the probabilistic set-up is), we
use the following characterization of a solution.

Proposition 2.18. When assumption FBSDE is in force, there exists a solu-
tion to the MFG problem (2.18)–(2.19)–(2.20) on the same probabilistic set-up
.˝;F ;F;P/ as in Definition 2.16, if and only if there exists an F-adapted R

d-valued
continuous process X, with X0 as initial condition, such that F is compatible with
.X0;W0;L1.X;W/;W/ and X solves, together with some triple .Y;Z;Z0;M/, the
following McKean-Vlasov FBSDE on .˝;F ;F;P/:
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8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt D B
�
t;Xt;L1.Xt/;Yt;Zt

�
dt C �

�
t;Xt;L1.Xt/

�
dWt

C�0�t;Xt;L1.Xt/
�
dW0

t ;

dYt D �F
�
t;Xt;L1.Xt/;Yt;Zt;Z0t

�
dt

CZtdWt C Z0t dW0
t C dMt; t 2 Œ0;T�;

YT D G
�
XT ;L1.XT/

�
;

(2.29)

where M D .Mt/0�t�T is a càd-làg martingale with respect to the filtration F, with
M0 D 0 and of zero cross variation with .W0;W/. In such a case, the equilibrium is
given by M D L1.X;W/, and its marginals by � D .L1.Xt//0�t�T .

Remark 2.19. The conclusion of Proposition 2.18 is particularly convenient.
Indeed, when assumption FBSDE is satisfied, equation (2.29), when regarded as
an FBSDE in the random environment formed by M D L1.X;W/ and � D .�t D
M ı .ex

t /
�1/0�t�T , is uniquely solvable in the strong sense. So by Theorem 1.33, its

forward component X must be a functional of .X0;W0;M;W/. This says that we
may completely disregard the original filtration F, and just focus on the information
enclosed in .X0;W0;M;W/.

In particular, it is worth mentioning that the process .X0;W0;M;W/ is automat-

ically compatible with .W0;M/ since for all t 2 Œ0;T�, F .W0;M/
T and F .X0;W0;M;W/

t

are conditionally independent given F .W0;M/
t , the definition of a � -field generated

by M being the same as in Definition 2.16. In other words, .X0;W/ is necessarily
observed in a fair way as the observation of .X0;W/ does not introduce any bias
in the observation of .W0;M/. The information enclosed in .W0;M/ is somehow
the canonical information needed to describe an equilibrium. We shall come back
to this point in the next subsection.

We provide the proof of the compatibility property.

Proof. By Lemma 1.7, it suffices to prove that, for all t 2 Œ0; T�, Fnat;.W0;M/
T and

Fnat;.X0;W0;M;W/
t are conditionally independent given Fnat;.W0;M/

t .
For a given t 2 Œ0; T�, consider three Borel subsets Ct;CT ;Et � C.Œ0; T�IRd/, two Borel

subsets Dt;DT � P2.C.Œ0; T�IR2d// and a Borel subset B � R
d. Recalling the notation

Mt D M ı E�1
t , where Et W C.Œ0; T�IR2d/ 3 .x;w/ 7! .xs^t;ws^t/0�s�T 2 C.Œ0; T�IR2d/,

and denoting by W0
�^t and W�^t the processes W0 and W stopped at t, we have:

E
�
1B.X0/1Ct .W

0
�^t/1Dt .Mt/1Et .W�^t/1CT .W

0/1DT .MT/
�

D E
0
�
1Ct .W

0
�^t/1Dt .Mt/1CT .W

0/1DT .MT/E
1
�
1B.X0/1Et .W�^t/

��
:

Observe that the set C D f.x;w/ 2 C.Œ0; T�;R2d/ W .x0;w�^t/ 2 B � Etg belongs to
�fxs;wsI s � tg. Moreover, by definition, we have, for P0-almost every !0 2 ˝0,

E
1
�
1B.X0/1Et .W�^t/

� D M.C/ D M
�
E�1

t .C/
� D Mt.C/;
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since E�1
t .C/ D C. Therefore,

E
�
1B.X0/1Ct .W

0
�^t/1Dt .Mt/1Et .W�^t/1CT .W

0/1DT .MT/
�

D E
0
�
1Ct .W

0
�^t/1Dt .Mt/1CT .W

0/1DT .MT/Mt.C/
�
:

Since Mt.C/ is measurable with respect to Fnat;.W0;M/
t , compatibility follows. ut

Remark 2.20. In contrast with the setting of Chapter 1, the compatibility condition
in Proposition 2.18 concerns the output, through the random variable L1.X;W/,
and not the input.

Intuitively, the compatibility condition is here a way to select solutions that are
somehow meaningful from the physical point of view. We provide in Chapter 3, see
Subsection 3.5.5, an example of a solution that does not satisfy this compatibility
condition.

Strong Solvability and Strong Solutions
Inspired by Definition 1.17, we introduce the following definition.

Definition 2.21. We say that the MFG problem (2.18)–(2.19)–(2.20) is strongly
solvable if it has a solution on any probabilistic set-up in the sense of Defini-
tion 2.16.

The idea behind the notion of strong solvability is that the filtration F
0 can be

arbitrarily chosen. A typical example is to choose F
0 as the usual augmentation of

the canonical filtration generated by the common noise W0 and the initial condition
�0, in which case a mere variation of Lemma 2.4 shows that M is the conditional
law of .X;W/ given .�0;W0/ and �t is the conditional law of Xt given .�0;W0/.
We thus recover the intuitive description of an MFG equilibrium provided in the
preliminary Subsections 2.1.1 and 2.2.1 before we introduced the notion of lifting.

The following definition is here to stress the importance of this example.

Definition 2.22. A solution to the MFG problem (2.18)–(2.19)–(2.20) on a set-up
.˝;F ;F;P/ as in Definition 2.16 is said to be strong if it satisfies Definition 2.16
with F

0 being the complete and right-continuous filtration generated by �0 and W0.

Whenever solvability holds in the strong sense, a convenient way to construct a
strong solution is to work with the canonical set-up N̋ D N̋ 00 � N̋ 1, made of

N̋ 00 D P2.Rd/ � C
�
Œ0;T�IRd

�
;

N̋ 1 D Œ0; 1/ � C.Œ0;T�IRd/;
(2.30)

N̋ 00 being equipped with the completion of the product measure V0˝Wd, where V0
is some initial distribution on the space P2.Rd/ and Wd is the Wiener measure on
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C.Œ0;T�IRd/, and N̋ 1 being equipped with the completion of the product measure
Leb1 ˝ Wd, where Leb1 is the Lebesgue measure on Œ0; 1/. The canonical random
variable on N̋ 00 is denoted by .�0;w0/ and the canonical random variable on N̋ 1 is
denoted by .�;w1/.

Under these conditions, the initial distribution of the population is �0 and the
initial state X0 is defined as:

X0 D  .�; �0/; (2.31)

with  as in Lemma (Vol I)-5.29, see also (2.23).

2.3 Weak Solutions for MFGs with Common Noise

2.3.1 Weak MFG Matching Problem

In parallel with the notion of strong solvability, we may also want to consider a
weaker notion of solvability covering cases for which MFG equilibria only exist on
some (but not necessarily all) probabilistic set-ups.

Definition 2.23. Given V0 2 P2.P2.Rd//, we say that the MFG problem admits
a weak solution (or a weak equilibrium) with V0 as initial condition if there
exists a probabilistic set-up .˝;F ;F;P/ satisfying the same requirements as in
Definition 2.16 on which �0 has V0 as distribution and the MFG problem has an
F0

T -measurable solution M W ˝0 ! P2.C.Œ0;T�IR2d//.
When assumption FBSDE is in force, we say that the MFG problem admits a

weak equilibrium if we can find a probabilistic set-up of the same type as above, for
which�0 has V0 as distribution and there exists an F-adapted R

d-valued continuous
process X such that F is compatible with .X0;W0;L1.X;W/;W/ and X solves,
together with some tuple .Y;Z;Z0;M/, the McKean-Vlasov FBSDE (2.29).

We say that the MFG problem is weakly solvable if we can find a weak equilibrium
in the sense of Definition 2.23. In such a case, we often say that the pair .W0;M/

forms a weak solution. Notice that a weak equilibrium may not be measurable with
respect to the � -field generated by �0 and W0. As a result, we cannot ensure that �t

is the conditional law of Xt given .�0;W0/ as for a strong solution but only that �t

is the conditional law of Xt given .W0;M/, see Proposition 2.17.

Canonical Space and Distribution of an Equilibrium
For the remainder of the chapter we assume that assumption FBSDE holds on any
probabilistic set-up, and we work on the extended canonical space:

N̋ 0 D P2.Rd/ � C.Œ0;T�IRd/ � P2.C.Œ0;T�IR2d//;

N̋ 1 D Œ0; 1/ � C.Œ0;T�IRd/:
(2.32)
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Compared with the canonical space (2.30) introduced for strong MFG equilibria,
we added an additional coordinate to N̋ 0. This extra coordinate is intended to carry
the equilibrium measure M. By Yamada-Watanabe Theorem 1.33 for FBSDEs, the
law of the solution to (2.25) is the same irrespective of the underlying probabilistic
set-up provided that the compatibility condition described in Definition 2.16 holds.
In particular, in order to investigate the law of an equilibrium M on the space
P2.C.Œ0;T�IR2d//, there is no loss of generality in working on the canonical space
directly, see Lemma 2.25 below.

As above, the space N̋ 1 is equipped with the measure NP1 D Leb1˝Wd and is then
completed. The canonical random variable on N̋ 1 is denoted by .�;w D .wt/0�t�T/.
The canonical random variable on N̋ 0 is denoted by .�0;w0 D .w0t /0�t�T ;m/, the
associated flow of marginal measures being denoted by � D .�t D mı.ex

t /
�1/0�t�T ,

where as usual ex
t denotes the evaluation map providing the first d coordinates at

time t on C.Œ0;T�IR2d/. The canonical filtration on N̋ 0 is the filtration generated
by .�0;w0t ;mt/0�t�T where mt D m ı E�1

t , with Et W C.Œ0;T�IR2d/ 3 .x;w/ 7!
.xs^t;ws^t/0�s�T 2 C.Œ0;T�IR2d/. Note that, in contrast with the canonical space
structure introduced in Subsection 1.2.2, the input m D .mt/0�t�T is a continuous
function of time in the present set-up.

The initial distribution of the population is �0 and the initial state X0 is defined
as X0 D  .�; �0/, with  as in Lemma (Vol I)-5.29, see also (2.23).

We now introduce a concept which will help us sort out the roles of probability
measures on the canonical spaces.

Definition 2.24. Given an initial law V0 2 P2.P2.Rd//, we say that a probability
measure M on N̋ 0 equipped with its Borel � -field is a distribution of an equilibrium
if:

1. On the completion . N̋ 0; NF0; NP0/ of . N̋ 0;B. N̋ 0/;M/, equipped with the complete
and right-continuous augmentation F

0 of the canonical filtration, �0 has V0 as
distribution and the process .w0t /0�t�T is a d-dimensional F0-Wiener process,

2. On the product probabilistic set-up . N̋ D N̋ 0 � N̋ 1; NF ; NF; NP/ constructed
as in (2.24), with NP1 D Leb1 ˝ Wd, the canonical process .mt/0�t�T is an
equilibrium in the sense of Definition 2.16.

We are well aware of the fact that the reader may find the terminology distribution of
an equilibrium used in the definition above to be confusing. Indeed, what we already
defined as a weak equilibrium (and even an equilibrium measure from time to time)
is in principle different from this notion of distribution of an equilibrium. We ask the
reader to bear with us just for a little while longer. Our choice of terminology will be
unambiguously vindicated in Lemma 2.25 below. In the meantime, we stress the fact
that, according to Definition 2.23 and the interpretation following its statement, a
weak solution to the equilibrium problem, (or a weak equilibrium) is a pair .W0;M/,
where W0 is a d-dimensional Brownian motion and M is a random variable with
values in P2.C.Œ0;T�IR2d//, that is a random measure on C.Œ0;T�IR2d/. On the other
hand, a distribution of an equilibrium as we just defined it, is what we should expect
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from our experience with the classical theory of weak and strong solutions of SDEs.
It should be a probability measure on a specific canonical space accommodating the
initial condition as well as the noise sources, and for which the canonical process
becomes a solution.

Observe also that on the canonical set-up, the compatibility condition required in
Definition 2.16 is automatically satisfied. Indeed, following the proof of Lemma 1.7,
in order to prove this claim, it suffices to check that, for any t 2 Œ0;T�,

Fnat;�
t and Fnat;.W0;M;W/

T are conditionally independent given Fnat;.X0;W0;M;W/
t . Since

.�;X0;W0;M/ is independent of W, it is actually sufficient to prove that, for any

t 2 Œ0;T�, Fnat;�
t and Fnat;.W0;M/

T are conditionally independent given Fnat;.X0;W0;M/
t .

Now, for any bounded Borel-measurable functions �0t and �0T from C.Œ0;T�IRd/ �
P2.C.Œ0;T�IR2d// into R, �1t from Œ0; 1/ into R and �0 from R

d into R, we have:

E

h
�0.X0/�

1
t .�/�

0
t .W

0;M/�0T.W
0;M/

i

D
Z 1

0

�1t .s/E
h
�0
�
 .s; �0/

�
�0t .W

0;M/�0T.W
0;M/

i
ds

D
Z 1

0

�1t .s/E
h
�0
�
 .s; �0/

�
�0t .W

0;M/E
�
�0T.W

0;M/ jFnat;.W0;M/
t

�i
ds

D E

h
�0.X0/�

1
t .�/�

0
t .W

0;M/E
�
�0T.W

0;M/jFnat;.W0;M/
t

�i
; (2.33)

which proves what we wanted to check.
The following lemma says that every weak equilibrium induces a distribution of

an equilibrium. Because of this result, we are free to use the terminologies weak
solution and distribution of an equilibrium interchangeably.

Lemma 2.25. Under assumption FBSDE, if M is an MFG equilibrium constructed
on some probabilistic set-up .˝;F ;F;P/ equipped with a triplet .X0;W0;W/ and
satisfying the prescription of Definition 2.16, and if we define M as the distribution
of .M ı .ex

0/
�1;W0;M/ on N̋ 0 equipped with its Borel � -field, then M is a

distribution of an equilibrium.

Proof. If (2.25) is solved on an arbitrary admissible set-up with the constraint that

P
0
�
!0 2 ˝0 W M.!0/ D L.X.!0; �/;W/� D 1;

then we can solve the FBSDE (2.25) on the canonical set-up choosing the measure NP0 in
Definition 2.24 as the completion of L.�0;W0;M/, with �0 D M ı e�1

0 . We then define NP
in Definition 2.24 accordingly.

By Theorem 1.33, we know that we can find a measurable mapping � from R
d �

C.Œ0; T�IRd/ � P2.C.Œ0; T�IR2d// � C.Œ0; T�IRd/ such that the forward component of the
solution of the FBSDE is almost surely equal to �.X0;W0;M;W/ on the original set-up and
to �. .�; �0/;w0;m;w/ on the canonical set-up. In particular, letting X D �.X0;W0;M;W/
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and x D �. .�; �0/;w0;m;w/, the law of .X0; �0;W0;M;W;X/ under P is the same as
the law of . .�; �0/; �0;w0;m;w; x/ under NP. We then conclude by Lemma 2.26 below by
noticing that:

NE�1C.X;W/1C0 .�
0;w0;m/

� D NE0�m.C/1C0 .�
0;w0;m/

�
;

for all Borel subsets C0 and C of N̋ 0 and C.Œ0; T�IR2d/, which follows from the fact that
.X0;W0;M;W/ forms an equilibrium. Pay attention to the fact that, in the statement of
Lemma 2.26 below, we use the capital letter X instead of x for the forward component of
the solution of the FBSDE (2.25) as we usually reserve lower cases for canonical processes.

ut

The last step in the proof of Lemma 2.25 can be formalized and its consequence
strengthened in a quite systematic manner.

Lemma 2.26. Under assumption FBSDE, M is a distribution of an equilibrium if,
on the same space N̋ as in Definition 2.24, the solution .Xt;Yt;Zt;Z0t ;Mt/0�t�T to
the FBSDE (2.25) with W0 D w0, W D w and � D � D .�t D m ı .ex

t /
�1/0�t�T ,

satisfies for any Borel subset C � C.Œ0;T�IR2d/ in a countable generating �-system
of B.C.Œ0;T�IR2d//, and any Borel subset C0 � N̋ 0 in a countable generating �-
system of B. N̋ 0/,

NE�1C.X;w/1C0 .�
0;w0;m/

� D NE0�m.C/1C0 .�
0;w0;m/

�
: (2.34)

Being a sufficient condition, equation (2.34) is required for countable families
of sets C and C0 generating the � -fields and closed under pairwise intersection.
However, a simple monotone class argument can be used to prove that it would be
equivalent to assume that (2.34) holds for all the sets C and C0 in these � -fields.

Proof. As .�0;w0; �/ is constructed on N̋ 0, we deduce from Fubini’s theorem that:

NE�1C.X;W/1C0 .�
0;w0;m/

� D NE0� NE1�1C.X;w/
�
1C0 .�

0;w0;m/
�
;

which proves by (2.34) that NP0-almost surely, for any C in a countable generating �-system
of the Borel � -field B.C.Œ0; T�IR2d//,

NE1�1C.X;w/
� D m.C/;

which says exactly that, for NP0-almost every N!0 2 N̋ 0, L.X. N!0; �/;w/ D m. N!0/. ut

2.3.2 Yamada-Watanabe Theorem for MFG Equilibria

From a mathematical standpoint, weak solutions are much more flexible than strong
solutions. However, a weak solution may not be entirely satisfactory from the
practical point of view since the equilibrium may incorporate an extra source of
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noise in addition to the initial condition and the common noise. It is thus very
important to have sufficient conditions to guarantee a posteriori that a weak solution
is actually strong in the sense that it is adapted to the initial condition and to the
common source of noise. The discussion of Subsection 1.2.3 strongly suggests the
desirability of a Yamada-Watanabe type result for MFG equilibria. In order to derive
such a result, we first specify the notion of strong uniqueness.

Definition 2.27. We say that strong uniqueness holds for the MFG equilibrium if,
for any filtered probabilistic set-up .˝;F ;F;P/ as in Definition 2.16, any solutions
Ma and Mb on .˝;F ;F;P/, with the same initial random distribution �0 having
some V0 2 P2.P2.Rd// as law, satisfy:

P
0
�
Ma D Mb

� D 1:

Following Definition 1.18, we shall sometimes specialize the definition by saying
that strong uniqueness holds but only for a prescribed value of L.V0/.

Not surprisingly, weak uniqueness is related to uniqueness in law.

Definition 2.28. We say that weak uniqueness holds for the MFG equilibrium if
any two weak solutions, possibly defined on different filtered probabilistic set-ups
but driven by the same initial law V0 2 P2.P2.Rd//, have the same distribution
on N̋ 0, the notion of distribution of a solution being defined as in the statement of
Lemma 2.25.

Following Definition 2.27, we shall sometimes restrict weak uniqueness to a
given prescribed value of L.V0/.

With these two notions of uniqueness in hand, we can state and prove the main
result of this section, which may be summarized as strong uniqueness implies weak
uniqueness.

Theorem 2.29. Assume that strong uniqueness, as defined in Definition 2.27, holds
true for a specific choice of V0 2 P2.P2.Rd//. If there exists a weak solution with
V0 as initial condition, then there exists a measurable mapping

� W P2.Rd/ � C.Œ0;T�IRd/ ! P2
�
ŒC.Œ0;T�IRd/�2

�

such that, for any weak solution .W0;M/ on a space .˝;F ;F;P/ with initial
random distribution �0 distributed as V0, it holds:

P
0
�
M D �.�0;W0/

� D 1:

In particular, this implies that any weak solution is a strong solution on the
appropriate probability structure.
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Moreover, on any probabilistic set-up .˝;F ;F;P/ as in Definition 2.16, the
initial random distribution �0 having V0 as distribution, the random variable
M D �.�0;W0/ is an equilibrium. So in that case, weak existence implies strong
existence and thus existence of a solution on the canonical space (2.30).

Like for Theorem 1.33, the proof of Theorem 2.29 is an adaptation of the
argument used in the original Yamada-Watanabe theorem for stochastic differential
equations. The starting point is the following lemma.

Lemma 2.30. Given two weak solutions with the same initial condition V0 2
P2.P2.Rd//, denoted by their distributions Ma and Mb on the space N̋ 0, one
can construct a probabilistic set-up .˝;F ;F;P/ satisfying the prescription of
Definition 2.16 and equipped with a tuple .�0;W0;W/ and with two equilibria Ma

and Mb such that .�0;W0;Ma/ and .�0;W0;Mb/ have distributions Ma and Mb

respectively.

Proof.

First Step. Following the proof of Theorem 1.33, we define˝0
input D P2.Rd/�C.Œ0; T�IRd/.

We equip it with its Borel � -field and the product probability measure V0 ˝ Wd, which
we denote Q

0
input. The canonical process is denoted by .�0;w0/ and the canonical fil-

tration by G
0;nat;input D .G0;nat;input

t /0�t�T . The completed filtered space is denoted by
.˝0

input;G0input;G
0;input;Q0

input/. We will use the notation !0input for a generic element of ˝0
input.

Then, we may regard N̋ 0 as ˝0
input � ˝0

output, with ˝0
output D P2.ŒC.Œ0; T�IRd/�2/. The

canonical random variable on˝0
output is denoted by m and the canonical filtration it generates

along the lines of Definition 2.15 is denoted by G
0;nat;output D .G0;nat;output

t /0�t�T . We use the
notation !0output for a generic element of ˝0

output.

We equip the space N̋ 0 with its Borel � -field, and with the measure Ma (resp. Mb).
We denote by .�0;w0;m/ the canonical random variable on N̋ 0 and we call qa (resp. qb) the
conditional law of m on the space ˝0

output D P2.ŒC.Œ0; T�IRd/�2/ given �f�0;w0g. We then
consider the extended space:

Ő 0 D P2.Rd/ � C.Œ0; T�IRd/ � P2
�
ŒC.Œ0; T�IRd/�2

� � P2
�
ŒC.Œ0; T�IRd/�2

�

D ˝0
input � �˝0

output

�2
:

We endow Ő 0 with its Borel � -field and we denote by .�0;w0;ma;mb/ the canonical random
variable. The canonical filtration, as in Definition 2.15, is denoted by OF0;nat. We then define
the probability measure OP0 by:

OP0�C � Da � Db
� D

Z

C
qa
�
!0input;D

a
�
qb
�
!0input;D

b
�
dQ0

input.!
0
input/; (2.35)

for C 2 B.˝0
input/ and Da;Db 2 B.P2.ŒC.Œ0; T�IRd/�2//. We denote by OF0 the completion

of the Borel � -field on Ő 0 under the probability OP0 and by OF0 the right-continuous and
completed augmentation of the canonical filtration. The extension of OP0 to the completed
� -field is still denoted by OP0.
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For a continuous process � D .�t/0�t�T on Ő 0 with values in a Polish space S, we denote
by F

0;nat;� D .F0;nat;�
t /0�t�T the canonical filtration generated by � and we denote by OF0;�

the completion under OP0.
Second Step. We claim that, for any t 2 Œ0; T� and any D 2 G0;nat;output

t , the random variables

qa..�0;w0/;D/ and qb..�0;w0/;D/ are measurable with respect to the completion OF0;.�0;w0/
t

of the � -field F0;nat;.�0;w0/
tC under OP0, the latter being regarded as a sub-� -field of OF0.

Noting that w0 is a Brownian motion under Ma with respect to the filtration generated by
.�0;w0;ma/, we deduce that, for any t 2 Œ0; T�, C 2 G0;nat;input

T and D 2 G0;nat;output
t :

Ma
�
C � D

� D E
Ma�Ma

�
C �˝0

output jF0;nat;.�0;w0/
tC

�
Ma

�
˝0

input � D jF0;nat;.�0;w0/
tC

��

D E
Ma�

1C�˝0
output

Ma
�
˝0

input � D jF0;nat;.�0;w0/
tC

��
;

where we here regarded F
0;nat;.�0;w0/ as a filtration on N̋ 0 instead of Ő 0.

Regarding Ma.˝0
input � D jF0;nat;.�0;w0/

tC / as a G0;nat;input
tC -measurable random variable � W

˝0
input ! R, we then have Ma.C � D/ D E

Q0input Œ1C��. Now, we can also write:

Ma.C � D/ D
Z

C
qa.!0input;D/dQ

0
input.!

0
input/ D E

Q0input
�
1Cqa

��;D��;

where qa.�;D/ is understood as a real valued G0;nat;input
T -measurable random variable on˝0

input.

We deduce that Q
0
input almost surely, qa.�;D/ D � . In particular, with OP0-probability 1,

qa..�0;w0/;D/ D �.�0;w0/. Since the random variable �.�0;w0/ is F0;nat;.�0;w0/
tC -measurable,

qa..�0;w0/;D/ is OF0;.�0;w0/
t -measurable.

Third Step. We now check that w0 is a d-dimensional Brownian motion with respect to OF0.
To do so, we notice once again that w0 is a d-dimensional Brownian motion with respect to
OF0;.�0;w0/ under OP0. Then, we consider C 2 G0;nat;input

t , C0 2 �fw0s � w0t I t � s � Tg and
Da;Db 2 G0;nat;output

t . Then, identifying C0 with a Borel subset of ˝0
input, we have by (2.35):

OP0�.C \ C0/ � Da � Db
� D

Z

C\C0

qa
�
!0input;D

a
�
qb
�
!0input;D

b
�
dQ0

input.!
0
input/

D Q
0
input.C

0/

Z

C
qa
�
!0input;D

a
�
qb
�
!0input;D

b
�
dQ0

input.!
0
input/;

from which we easily deduce that .w0s � w0t /t�s�T is independent of OF0
t . Above we used the

measurability properties of the kernels qa and qb established in the second step.
We now prove that .�0;w0;ma/ is compatible with the filtration OF0, the argument being

the same for .�0;w0;mb/. Given C 2 G0;nat;input
T and Da;Db 2 G0;nat;output

T , it holds that:

OP0�C � Da � Db
� D

Z

C
qa.!0input;D

a/qb.!0input;D
b/dQ0

input.!
0
input/

D
Z

C�Da
qb.!0input;D

b/dMa.!0input; !
0
output/:
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We now recall that qb.�;Db/ is G0;input
t -measurable when Db 2 Gnat;output

t for some t 2 Œ0; T�.
We thus recover the statement of Proposition 1.10 with F

1 the completion (under Ma) of
the right-continuous augmentation of the canonical filtration on N̋ 0 and F

2 D G
nat;output. We

deduce that for any t 2 Œ0; T�, OF0;nat
t and OF0;.�0;w0;ma/

T are conditionally independent given
OF0;.�0;w0;ma/

t . Proceeding as in the proof of Lemma 1.7, we deduce that for any t 2 Œ0; T�,
OF0

t and OF0;.�0;w0;ma/
T are conditionally independent given OF0;.�0;w0;ma/

t , which is to say that
.�0;w0;ma/ is compatible with the filtration OF0.
Fourth Step. We now introduce . N̋ 1; NF1; NF1; NP1/ as in (2.32), NF1 denoting the completion
of the Borel � -field and NF1 the complete and right-continuous augmentation of the canonical
filtration under NP1. The canonical random variable on N̋ 1 is denoted by .�;w/. From
. Ő 0; OF0; OF0; OP0/ and . N̋ 1; NF1; NF1; NP1/, we can construct the product probabilistic set-up
. Ő ; OF ; OF; OP/ by following the procedure outlined in (2.24). Recall in particular that . OF ; OP/
is obtained by completion of . OF0 ˝ NF1; OP0 ˝ NP1/. The initial condition X0 is defined by
X0 D  .�; �0/, with  as in Lemma (Vol I)-5.29, see also (2.23).

From the second step, we know that w0 is an OF0-Brownian motion. It is quite straight-
forward to deduce that .w0;w/ is an OF-Brownian motion. We also know that .�0;w0;ma/

is compatible with the filtration OF0. Reproducing (2.33), we deduce that .X0;w0;ma;w/ is
compatible with OF. Similarly, .X0;w0;mb;w/ is compatible with OF.

Fifth Step. So far, we have proved that the probabilistic set-up . Ő ; OF ; OF; OP/ equipped with
the tuple .X0;w0;ma;w/ (resp. .X0;w0;mb;w/) satisfies the first point in the Definition 2.16
of an MFG equilibrium.

On Ő , we can define .Xa;Ya;Za;Z0;a;Ma/ (resp. .Xb;Yb;Zb;Z0;b;Mb/) as the solution
of the forward-backward system (2.25) with M D .ma ı E�1

t /0�t�T and � D .ma ı
.ex

t /
�1/0�t�T (resp. M D .mb ı E�1

t /0�t�T and � D .mb ı .ex
t /

�1/0�t�T ), where we recall
that Et W C.Œ0; T�IR2d/ 3 .x;w/ 7! .xs^t;ws^t/0�s�T 2 C.Œ0; T�IR2d/ and that ex

t is the
mapping evaluating the first d coordinates at time t on C.Œ0; T�IR2d/. With our construction
of the initial condition, it holds that Xa

0 D Xb
0 D  .�; �0/ D X0.

From Theorem 1.33, we know the existence of a (measurable) functional ˚a (resp.
˚b), defined on R

d � C.Œ0; T�IRd/ � P2.ŒC.Œ0; T�IRd/�2/ � C.Œ0; T�IRd/ and with values
in C.Œ0; T�IRd/, such that, OP-almost surely,

Xa D ˚a
�
X0;w0;ma;w

� D ˚a
�
 .�; �0/;w0;ma;w

�
;

�
respectively Xb D ˚b

�
X0;w0;mb;w

� D ˚b
�
 .�; �0/;w0;mb;w

� �
:

Importantly, the mapping ˚a (resp. ˚b) is independent of the set-up used to solve the
FBSDE (2.25) as long as the law of the input is fixed. Proceeding as in the proof of
Lemma 2.25, this allows to show that OP0 almost surely, L.Xa;w/ D ma, which proves that
.�0;w0;ma/ is a solution with Ma as distribution. The same holds for .w0;mb/. ut

We are now in a position to complete the proof of Theorem 2.29.

Proof of Theorem 2.29.

First Step. We use the same notation as in the proof of Lemma 2.30. Given two weak
solutions with the same initial condition V0 2 P2.P2.Rd// and denoting by Ma and Mb

their distributions, strong uniqueness implies:
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OP0�ma D mb
� D 1; (2.36)

and thus .�0;w0;ma/ D .�0;w0;mb/ with OP0-probability 1, from which we deduce that
Ma D Mb.

Second Step. Assume further that, for a given initial condition V0 2 P2.P2.Rd//, there
exists a weak solution .W0;M/ on some .˝;F ;F;P/, with V0 as initial condition. Denoting
by M the law of the weak solution, and choosing Ma D Mb D M, so that we may denote
by q the common value of qa and qb, we have, for any C, Da and Db as in (2.35),

P
0
�
C � Da � Db

�

D
Z

C

� Z

Da�Db
1

f!
0;a
outputD!

0;b
outputg

q.!0input; d!
0;a
output/q.!

0
input; d!

0;b
output/

	

dQ0
input.!

0
input/;

from which we deduce that, for almost every !0input under Q0
input,

�
q.!0input; �/˝ q.!0input; �/

�n�
!0;aoutput; !

0;b
output

� 2 �˝0
output

�2 W !0;aoutput D !0;boutput

o
D 1;

The only way for the canonical variables ma W Œ˝0
output�

2 3 .!
0;a
output; !

0;b
output/ 7! !

0;a
output 2

˝0
output and mb W Œ˝0

output�
2 3 .!

0;a
output; !

0;b
output/ 7! !

0;a
output 2 ˝0

output to be independent and
almost surely equal is that they are almost surely constant, with �.!0input/ as common value
defined by:

8D 2 B
�
ŒC.Œ0; T�IR/�2�; �

�.!0input/
i
.D/ D

Z

˝0
output

!0output.D/q
�
!0input; d!

0
output

�
:

This proves that:

P
0
�
M D �.�0;W0/

� D 1:

By weak uniqueness, the above is obviously true for any other weak solution.

Third Step. We still assume that there exists a weak solution with V0 as initial condition,
but we do not denote it anymore by .W0;M/. We then prove that, on any probabilistic
set-up .˝;F ;F;P/ as in Definition 2.16, the initial random distribution �0 having V0 as
distribution, the random variable M D �.�0;W0/ is an equilibrium.

Recalling that .x;w/ D .xt;wt/0�t�T denotes the canonical process on ŒC.Œ0; T�IRd/�2,
we observe, by taking D 2 �fxs;wsI s � tg for some t 2 Œ0; T�, that the random variable
˝0

output 3 !0output 7! !0output.D/ is Gnat;output
t -measurable. Then, we deduce from the second

step of the proof of Lemma 2.30 that the mapping ˝0
input 3 !0input 7! Œ�.!0input/�.D/

is G0;input
t -measurable. Therefore, the mapping ˝0

input 3 !0input 7! Œ�.!0input/� ı E�1
t 2

P2.ŒC.Œ0; T�IRd/�2/ is also G0;input
t -measurable, where Et is as in the fifth step of the proof

of Lemma 2.30. We deduce that the process M D .Mt D M ı E�1
t /0�t�T is F

0-adapted,
and thus F0-progressively measurable since it is continuous.
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The compatibility condition in Definition 2.16 is easily checked. Moreover, solving the
FBSDE (2.25) with .Mt/0�t�T as input and X0 as initial condition, we know, as in the fifth
step of Lemma 2.30, that the forward process X may be written as

X D �
�
X0;W0;M;W

�
:

Invoking Lemma 2.26 as in the proof of Lemma 2.25 and as in the fifth step of Lemma 2.30,
we deduce that L1.X;W/ D M, which proves that M induces an equilibrium. ut

2.3.3 Infinite Dimensional Stochastic FBSDEs

We close the chapter with a parallel to the analysis provided in Subsection
(Vol I)-3.1.5 in the absence of common noise. In the same way we argued that
the system of PDEs (Vol I)-(3.12) was the cornerstone of the analytic approach to
MFGs, the results of this chapter show that in the presence of a common noise,
one should be able to extract equilibria from a system of stochastic PDEs, one
of the Hamilton-Jacobi-Bellman type, the other of the Kolmogorov-Fokker-Planck
type. In fact, we already introduced in Subsections 1.4.2 and 2.1.2 all the necessary
ingredients to formulate the SPDE forward-backward system.

Using the minimizer Ǫ of the reduced Hamiltonian introduced in (1.32)
and (1.33), (1.36) says that the counterpart of the backward PDE of the system
(Vol I)-(3.12) is given by the backward stochastic PDE:

dtU.t; �/ D �
h1

2
trace

��
��� C �0.�0/�

�
.t; �; �t/@

2
xxU.t; �/�

C H
�
t; �; �t; @xU.t; �/; Ǫ�t; �; �t; @xU.t; �/��

C trace
�
�0.t; �; �t/@xV.t; �/�

i
dt C V.t; �/ � dW0

t ; (2.37)

with U.T; x/ D g.x; �T/ as terminal condition, and we deduce from (2.4) that the
forward equation takes the form:

d�t D �@x � �b�t; � ; �t; Ǫ .t; �; �t; @xU.t; �//��t
�
dt � @x �




�0
�
t; � ; �t

�
dW0

t �t

�

C 1

2
trace



@2xx

�

�
���

��
t; � ; �t

�C �
�0�0�

��
t; � ; �t

�
�

�t

	�

dt: (2.38)

As we already explained in Subsection 1.4.2, the role of the random field V in the
backward SPDE is to guarantee that the value function U.t; �/ is adapted to the
common noise up until time t.

In this regard, it is worth mentioning that here, the flow of conditional marginal
measures � D .�t/0�t�T is implicitly required to be adapted to the filtration
generated by W0 and the initial condition �0 whenever the latter is random.
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According to the terminology for solutions of MFG problems introduced in this
chapter, and in particular Definition 2.22, the pair (2.37)–(2.38) provides an SPDE
formulation of the search for strong solutions.

2.4 Notes & Complements

Examples of mean field games with a common noise were considered by Carmona,
Fouque, and Sun in [102], Gomes and Saude in [182] and Guéant, Lasry, and Lions
in [189]. The reader may also find examples in Chapter 4.

For practical applications of the theory of MFG to social and biological
phenomena such as herding, bird flocking, fish schooling, : : : , it is more realistic
to model the common source of random shocks from the environment by a zero-
mean Gaussian white noise field W0 D .W0.�;B//�;B, parameterized by the Borel
subsets� of a Polish space � (most often, � D R

` is the most natural choice), and
the Borel subsets B of Œ0;1/, such that:

E
�
W0.�;B/W0.�0;B0/

� D �
�
� \�0�jB \ B0j;

where we use the notation jBj for the Lebesgue measure of a Borel subset of Œ0;1/.
Here � is a nonnegative measure on � , called the spatial intensity of W0. In this
case, the dynamics of the private states are given by SDEs of the form:

dXi
t D b

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dt C �

�
t;Xi

t ; N�N
t ; ˛

i
t

�
dWi

t

C
Z

�

�0
�
t;Xi

t ; N�N
t ; ˛

i
t ; 

�
W0.d
; dt/:

(2.39)

If we think of W0.d
; dt/ as a random noise which is white in time (to provide
the time derivative of a Brownian motion) and colored in space (the spectrum
of the color being given by the Fourier transform of �), then the motivating
example one should keep in mind is a function �0 of the form �0.t; x; �; ˛; 
/ 	
�0.t; x; �; ˛/ı.x � 
/ with � D R

d, where ı is a mollified version of the delta
function which we treat as the actual point mass at 0 for the purpose of this informal
discussion. In this case, integration with respect to the spatial part of the random
measure W0 gives:

Z

Rd
�0.t;Xi

t ; N�N
t ; ˛

i
t ; 
/W

0.d
; dt/ D �0.t;Xi
t ; N�N

t ; ˛
i
t/W

0.Xi
t ; dt/; (2.40)

which says that, at time t, the private state of player i is subject to several sources of
random shocks: its own idiosyncratic noise Wi

t , but also, an independent white noise
shock picked up at the very location/value of her/his own private state.

The case treated in the text corresponds to �0 being independent of 
 , as the
random measure W0 may as well be independent of the spatial component so that
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we can assume that W0.d
; dt/ D W0.dt/ D dW0
t , for an extra Wiener process W0

independent of the space location 
 and of the idiosyncratic noise terms .Wi/1�i�N .
We did not use this general formulation in the text for two main reasons: a) the
technicalities needed to handle the stochastic integrals with respect to the white
noise measure W0 can distract from the understanding of the technology brought to
bear to study games with common noise; b) to keep the presentation to a reasonable
level of technicality, we chose to state and prove the theoretical results of this chapter
in the case of common random shocks given by a standard Wiener process W0.

In our construction of a probabilistic set-up for carrying idiosyncratic and
common noises, our choice for writing the space ˝ as the product of ˝0 and ˝1 is
mostly for convenience. As explained in the statement of Lemma 2.4, it permits to
reduce the conditional law of a random variable X given F0 to the law L1.X/ of the
section of X on ˝1. However, we could also work with a single probability space
˝ instead of the two ˝0 and ˝1, and then with conditional probabilities instead
of L1. For subtleties about the application of Fubini’s theorem on the completion of
product spaces, we refer to any monograph on measure theory and integration, see
for instance Rudin [322].

Our presentation of conditional McKean-Vlasov equations is inspired by Sznit-
man’s seminal lecture notes [325], where he treats the non-conditional case. The
analysis of the conditional case, including the derivation of the stochastic limiting
Fokker-Planck equation with possibly more complex forms of the common noise,
was carried out in Vaillancourt [335], Dawson and Vaillancourt [130], Kurtz and
Xiong [249, 250] and Coghi and Flandoli [120]. The same problem is addressed
in Kolokoltsov and Troeva [237], but with a different point of view, much closer
to the one we adopted in Subsection (Vol I)-5.7.4. De Finetti’s theory, including
the statement of Theorem 2.1, may be found in Aldous’ lectures notes [16]
and in Kingman’s article [230]. See also Billingsley’s monograph for a shorter
account [58].

The notions of weak and strong solutions for mean field games with a common
noise are taken from the work [100] of Carmona, Delarue, and Lacker where they
were based on the notion of relaxed controls. Here, we tried to pattern the notions
of weak and strong solutions very much in the spirit of the standard notions of weak
and strong solutions used in the analysis of stochastic differential equations. The
rationale for lifting the environment from � to M in the search of an equilibrium, as
we did in Subsection 2.2.2, will be made clear in the next chapter. As explained in
the text, the information enclosed in .W0;M/ is somehow the canonical information
needed to describe an equilibrium and this fact will be explicitly used to guarantee
a weak form of stability of the resulting MFG equilibria. As for the notions of weak
and strong equilibria, this idea is borrowed from [100].

The system formed by the forward equation (2.38) and the backward equa-
tion (2.37) reads as an infinite dimensional forward-backward stochastic differential
equation, with .�t/0�t�T as forward component and .U.t; �//0�t�T as backward
one. Standard FBSDE theory says that, provided that existence and uniqueness
of a solution hold true, there should be a decoupling field permitting to express
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the backward variable in terms of the forward one, namely U.t; x/ should write
U.t; x; �t/ for some function U W Œ0;T��R

d �P2.Rd/ 3 .t; x; �/ 7! U.t; x; �/ 2 R.
Moreover, in the spirit of the finite dimensional theory, U , if it exists, is expected
to satisfy a partial differential equation on its domain of definition. In accordance
with the terminology introduced in Subsection (Vol I)-5.7.2, this PDE will be
called the master equation. It is the purpose of Chapters 4 and 5 to provide
sufficient conditions under which U is properly defined and satisfies the master
equation on Œ0;T� � R

d � P2.Rd/. Existence and uniqueness of a classical solution
to (2.37)–(2.38) were addressed by Chassagneux, Crisan, and Delarue [114] and by
Cardaliaguet, Delarue, Lasry, and Lions in [86]. We shall revisit both in Chapter 5.



3Solving MFGs with a Common Noise

Abstract

The lion’s share of this chapter is devoted to the construction of equilibria for
mean field games with a common noise. We develop a general two-step strategy
for the search of weak solutions. The first step is to apply Schauder’s theorem
in order to prove the existence of strong solutions to mean field games driven
by a discretized version of the common noise. The second step is to make use
of a general stability property of weak equilibria in order to pass to the limit
along these discretized equilibria. We also present several criteria for strong
uniqueness, in which cases weak equilibria are known to be strong.

3.1 Introduction

3.1.1 Road Map to Weak Solutions

We learnt from Chapter 2 that solutions to mean field games with a common noise
could be characterized through forward-backward stochastic differential equations
of the conditional McKean-Vlasov type. It is then reasonable to expect that an
approach along the lines of the strategy developed in Chapters (Vol I)-3 and (Vol I)-4
for the solution of mean field games without a common noise could be feasible in
the present situation. In particular, one could imagine an existence proof based on
Schauder’s fixed point theorem. However, as we shall see next, the presence of the
common noise renders such an approach much more intricate. Indeed, equilibria are
now randomized and they live in a much bigger space than in the deterministic case
(i.e., when there is no common noise). This makes compactness arguments much
more difficult to come by.

In order to circumvent this difficulty, we discretize the common source of noise
so that the probability space on which it is defined is of finite cardinality. In this
way, the search for equilibria can take place in a space which is merely a finite
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product of copies of the space used in the deterministic case, and we can use
similar compactness criteria to solve these approximate equilibrium models. Once
equilibria have been constructed for finite sources of common random shocks, we
show that one can extract weakly converging subsequences as the mesh of the
discretization gets finer and finer. Under suitable conditions, we shall prove that any
weak limit solves the original mean field game problem in the weak sense according
to the terminology introduced in Chapter 2.

Making use of the results from Subsection 1.4 on the connection between
optimization in random environment and FBSDEs, we then exhibit three sets of
conditions under which mean field games with a common noise have a weak
solution. We also provide two explicit criteria under which uniqueness holds in
the strong sense. In such a case, we know from the Yamada-Watanabe theorem for
MFG equilibria proven in Chapter 2, that weak solutions to the MFG problem are
also strong solutions. The first strong uniqueness result is based on the Lasry-Lions
monotonicity condition already used in Chapter (Vol I)-3. The second one provides
an interesting instance of failure of uniqueness in the absence of a common noise,
uniqueness being restored by the presence of the common noise.

3.1.2 Statement of the Problem

The set-up is the same as in Definition 2.16. We are given:

1. an initial condition V0 2 P2.P2.Rd//, a complete probability space
.˝0;F0;P0/, endowed with a complete and right-continuous filtration
F
0 D .F0

t /0�t�T , an F0
0 -measurable initial random probability measure �0

on R
d with V0 as distribution, and a d-dimensional F0-Brownian motion

W0 D .W0
t /0�t�T ,

2. a complete probability space .˝1;F1;P1/ endowed with a complete and
right-continuous filtration F

1 D .F1
t /0�t�T and a d-dimensional F

1-
Brownian motion W D .Wt/0�t�T .

We then denote by .˝;F ;P/ the completion of the product space .˝0 �
˝1;F0 ˝ F1;P0 ˝ P

1/ endowed with the filtration F D .Ft/0�t�T obtained
by augmenting the product filtration F

0 ˝ F
1 in a right-continuous way and

by completing it.

As in the previous chapter, we shall make extensive use of the useful notation
L1.X/.!0/ D L.X.!0; �// for !0 2 ˝0 and a random variable X on ˝, see
Subsection 2.1.3.

For a drift b from Œ0;T� � R
d � P2.Rd/ � A to R

d where A is a closed convex
subset of Rk, two (uncontrolled) volatility coefficients � and �0 from Œ0;T� � R

d �
P2.Rd/ to R

d�d, and for cost functions f and g from Œ0;T� � R
d � P2.Rd/ � A to R
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and from R
d � P2.Rd/ to R, the search for an MFG equilibrium along the lines of

Definition 2.16 may be summarized as follows:

(i) Given an F0
0 -measurable random variable �0 W ˝0 ! P2.Rd/, with V0 as

distribution, an initial condition X0 W ˝ ! R
d such that L1.X0/ D �0, and

an F0
T -measurable random variable M with values in P2.C.Œ0;T�IR2d// such

that F is compatible with .X0;W0;M;W/ and �0 D M ı .ex
0/

�1, where ex
t is

the evaluation map providing the first d coordinates at time t on C.Œ0;T�IR2d/,
solve the (standard) stochastic control problem (with random coefficients):

inf
.˛t/0�t�T

E

� Z T

0

f .t;Xt; �t; ˛t/dt C g.XT ; �T/

	

; (3.1)

subject to:

dXt D b
�
t;Xt; �t; ˛t

�
dt C �

�
t;Xt; �t

�
dWt C �0

�
t;Xt; �t

�
dW0

t ; (3.2)

for t 2 Œ0;T�, with X0 as initial condition and with �t D M ı .ex
t /

�1.
(ii) Determine the input M and one solution X D .Xt/0�t�T of the above optimal

control problem so that:

M D L1
�
X;W

�
; P

0 � a:s: : (3.3)

Recall that, whenever F0 is the complete and right-continuous augmentation of the
filtration generated by �0 and W0, solutions are said to be strong. Also, recall that
as explained in Remark 1.12, the compatibility condition is automatically satisfied
in that case.

3.1.3 Overview of the Strategy

In Chapter 2, we introduced assumption FBSDE, under which the optimal paths
of the stochastic optimal control problem (3.1) can be characterized as the forward
component of the solution of an FBSDE of the form:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt D B.t;Xt; �t;Yt;Zt/dt

C�.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ;

dYt D �F.t;Xt; �t;Yt;Zt;Z0t /dt

CZtdWt C Z0t dW0
t C dMt; t 2 Œ0;T�;

YT D G.XT ; �T/;

(3.4)

where .Mt/0�t�T is an F-martingale, with M0 D 0, ŒM;W�� � 0 and ŒM;W0�� � 0.
As in (3.1), � reads as � D .�t D M ı .ex

t /
�1/0�t�T .
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In analogy with the strategy developed in Chapters (Vol I)-3 and (Vol I)-4 for
solving MFGs without common noise, a natural approach is to apply a fixed point
argument of Schauder type in order to get the existence of a solution, and then
to focus on the uniqueness part separately. In the present situation, the fixed point
argument should concern the mapping

˚ W input D �
M.!0/

�

!02˝0 7! output D �
L1.X;W/.!0/

�

!02˝0;

where X is the forward component in the triplet solving FBSDE (3.4) in the random
super-environment M and the random sub-environment .�t D M ı .ex

t /
�1/0�t�T .

Accordingly, the fixed point may be characterized through the solution of a
McKean-Vlasov FBSDE of the conditional type, see Proposition 2.18.

The limitation of such a strategy is quite clear. At first sight, it would seem
quite tempting to solve the fixed point for each !0, but this would be completely
meaningless, since the solution of the backward equation in essence relies on a
martingale representation property and thus integrates !0 under P0. Alternatively,
we could see the whole process as a single input, and then seek a fixed point in a
larger space. However, with such a point of view, we could hardly hope being able
to use a tractable compactness criterion.

Our approach tries to combine the benefits of both alternatives. It consists in
discretizing the randomness encapsulated in !0 in order to reduce the size of the
space on which the fixed point problem is to be solved. In a nutshell, we first prove
that the discretized problem admits strong solutions, and passing to the limit along
a converging subsequence, we establish existence of a weak solution.

3.1.4 Assumption and Main Statement

The purpose of this chapter is to prove the existence of weak equilibria under a
suitable reinforcement of assumption FBSDE introduced in Chapter 2.

The required assumption may be split into three parts, each one concerning: 1)
the regularity properties of the coefficients .b; �; �0; f ; g/; 2) the stochastic control
problem, in the spirit of assumption FBSDE; 3) the regularity properties of the
coefficients entering assumption FBSDE.

We start with:

Assumption (Coefficients MFG with a Common Noise). There exists a
constant L > 0 such that:

(A1) The drift b has the form:

b.t; x; �; ˛/ D b1.t; x; �/C b2.t/˛;

where Œ0;T� 3 t 7! b2.t/ 2 R
d�k is measurable and bounded by L.

(continued)
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(A2) The coefficients b1, � and �0 are Borel-measurable mappings from
Œ0;T� � R

d � P2.Rd/ into R
d, Rd�d and R

d�d respectively. For any
t 2 Œ0;T�, the coefficients b1.t; �; �/, �.t; �; �/ and �0.t; �; �/ are continuous
on R

d � P2.Rd/ and, for any � 2 P2.Rd/, the functions b1.t; �; �/,
�.t; �; �/ and �0.t; �; �/ are continuously differentiable (with respect to
x). Moreover,

j.b1; �; �0/.t; x; �/j � L
�
1C jxj C M2.�/

�
;

j@x.b1; �; �
0/.t; x; �/j � L:

(A3) The coefficients f and g are Borel-measurable mappings from Œ0;T� �
R

d � P2.Rd/ � A to R and from R
d � P2.Rd/ to R respectively. For

any t 2 Œ0;T�, the coefficients f .t; �; �; �/ and g.�; �/ are continuous on
R

d � P2.Rd/ � A and R
d � P2.Rd/ respectively. For any t 2 Œ0;T�

and � 2 P2.Rd/, the function f .t; �; �; �/ is continuously differentiable
(in .x; ˛/) and the function g.�; �/ is continuously differentiable (in x).
Moreover,

jf .t; x; �; ˛/j C jg.x; �/j � L
�
1C jxj2 C j˛j2 C �

M2.�/
�2�
;

j@xf .t; x; �; ˛/j C j@˛f .t; x; �; ˛/j C j@xg.x; �/j
� L

�
1C jxj C j˛j C M2.�/

�
:

Also, the function @˛f is L-Lipschitz-continuous in x.
(A4) f satisfies the following form of L�1-convexity property:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ � L�1j˛0 � ˛j2:

We recall that M2.�/ is defined as .
R
Rd jxj2d�.x//1=2.

Here is now the refinement of assumption FBSDE from Chapter 2. The reader
may want to review part of Subsection 2.2.2 for the notion of lifting:

Assumption (FBSDE MFG with a Common Noise). On top of assumption
Coefficients MFG with a Common Noise, there exist an integer m � 1

together with deterministic measurable coefficients B W Œ0;T��R
d �P2.Rd/�

R
m � R

m�d ! R
d, F W Œ0;T� � R

d � P2.Rd/ � R
m � .Rm�d/2 ! R

m and
G W Rd � P2.Rd/ ! R

m, such that, for any probabilistic set-up .˝;F ;F;P/
equipped with a compatible lifting .X0;W0; .M;�/;W/, one has:

(continued)
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(A1) The optimal control problem defined in (3.1) and (3.2) with X0 as
initial condition, has a unique solution, characterized as the forward
component of the unique strong solution of the FBSDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt D B.t;Xt; �t;Yt;Zt/dt

C�.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ;

dYt D �F.t;Xt; �t;Yt;Zt;Z0t /dt

CZtdWt C Z0t dW0
t C dMt; t 2 Œ0;T�;

(3.5)

with X0 as initial condition for X D .Xt/0�t�T and YT D G.XT ; �T/ as
terminal condition for Y D .Yt/0�t�T , where M D .Mt/0�t�T is a càd-
làg martingale with respect to the filtration F, of zero cross variation
with .W0;W/ and with initial condition M0 D 0.

(A2) For any other sub-environment �0 defined from M as in the statement of
the stability Theorem 1.53, the solution .X0;Y0;Z0;Z00;M0/ to (3.5) with
X0 as initial condition and with � replaced by �0 satisfies, together with
.X;Y;Z;Z0;M/, the stability estimate (1.19) stated in Theorem 1.53.

(A3) There exists a deterministic measurable function L̨ from Œ0;T� � R
d �

P2.Rd/�R
m �R

m�d into A, such that the optimal control Ǫ D . Ǫ t/0�t�T

associated with the problem (3.1)–(3.2) and the initial condition X0
has the form . Ǫ t D L̨ .t;Xt; �t;Yt;Zt//0�t�T , where .X;Y;Z;Z0;M/
is the solution of (3.5). Also, .B.t;Xt; �t;Yt;Zt//0�t�T is equal to
.b.t;Xt; �t; L̨ .t;Xt; �t;Yt;Zt///0�t�T .

Of course, in comparison with assumption FBSDE, the novelty lies in (A2), in
which we require stability of the solutions with respect to the sub-environment.

Regarding the coefficients B, F, and G, we require:

There exists a constant L � 0, such that

(A4) For any t 2 Œ0;T�, the coefficients B.t; �; �; �; �/, F.t; �; �; �; �; �/ are
continuous on R

d�P2.Rd/�R
m�R

m�d and R
d�P2.Rd/�R

m�.Rm�d/2.
Similarly, G is continuous.

(A5) For any x 2 R
d, y 2 R

m, z 2 R
m�d and � 2 P2.Rd/,

jB.t; x; �; y; z/j � L
�
1C jxj C M2.�/C jyj C jzj�;

j L̨ .t; x; �; y; z/j � L
�
1C jxj C M2.�/C jyj C jzj�;

jF.t; x; �; y; z; z0/j C jG.x; �/j � L
�
1C jyj C jzj C jz0j�:

(continued)
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(A6) For any x; x0 2 R
d, y; y0 2 R

m, z; z0; z0; z00 2 R
m�d and � 2 P2.Rd/,

j.B;F/.t; x0; �; y0; z0; z00/ � .B;F/.t; x; �; y; z; z0/ˇˇ
� L

�jx0 � xj C jy0 � yj C jz0 � zj C jz00 � z0j�;
ˇ
ˇG.x0; �/ � G.x; �/

ˇ
ˇ � Ljx0 � xj:

Of course, the above assumptions are tailor-made to the results obtained in
Subsection 1.4 on stochastic control problems in a random environment. Typical
instances in which they are satisfied are given in Section 3.4.

We can now state the main result of the chapter.

Theorem 3.1 Under assumption FBSDE MFG with a Common Noise (which
includes assumption Coefficients MFG with a Common Noise), the mean field
game (3.1)–(3.2)–(3.3) with V0 2 P2.P2.Rd// as initial condition has a weak
solution in the sense of Definition 2.23.

3.2 Stability of Weak Equilibria

The framework of this section is different and more general than in the previous
section. In particular, we do not require assumption Coefficients MFG with a
Common Noise nor assumption FBSDE MFG with a Common Noise.

3.2.1 Passing to the Limit in a Sequence of Weak Equilibria

Our strategy should be clear by now. Undoubtedly, it requires a suitable toolbox
for passing to the limit in weak equilibria. This is what we call stability of weak
equilibria. Basically, we must be able to check that weak limits of weak equilibria
remain weak equilibria! Obviously, this raises crucial questions regarding the
topology used for the convergence, and the criteria used in the characterization
of the weak limits as weak equilibria. In short, the convergence must preserve the
basic features which make it possible to identify a measure-valued process with the
solution of an MFG.

Because of our choice to solve underlying stochastic optimal control problems
by means of forward-backward stochastic differential equations, we understand the
need to introduce a topology which accommodates quite well forward-backward
systems. Unfortunately, it is well known that forward-backward SDEs are not well
adapted to weak convergence. Generally speaking, it is rather difficult to identify
a convenient topology for which the standard tightness criteria are checked by the
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integrand processes .Zt/0�t�T and .Z0t /0�t�T appearing in the backward martingales.
In order to overcome this difficulty, we shall make a systematic use of the necessary
condition in the Pontryagin principle in order to represent the control process
associated with a weak equilibrium in terms of the component .Yt/0�t�T of an
FBSDE instead of .Zt/0�t�T . This will provide us with a more robust structure when
discussing tightness properties of the control processes.

As if the obstacles identified above were not enough of a hindrance, we shall
face another serious difficulty. Generally speaking, it is highly problematic to pass
to the limit in the compatibility conditions underpinning FBSDEs in a random
environment. To overcome this extra hurdle, we shall exploit the full-fledged
conditioning rule involving the enlarged environment M in the definition of a weak
solution in order to guarantee that compatibility is preserved in the limit.

3.2.2 Meyer-Zheng Topology

Most of the results mentioned in this subsection are stated without proof. We refer
the reader to the Notes & Complements at the end of the chapter for references
and a detailed bibliography.

As we said in the previous subsection, we shall prove tightness of the optimal
controls associated with a sequence of weak equilibria by taking advantage of the
necessary condition in the stochastic Pontryagin principle. In this way, any of the
optimal controls under consideration will be given through the backward component
Y D .Yt/0�t�T of the solution to an FBSDE. Such a process being a càd-làg semi-
martingale, we need a topology on the space D.Œ0;T�IRm/ (or larger) for m � 1, and
tightness criteria which can easily be verified for sequences of semi-martingales.

As explained in the Notes & Complements below, this question has been already
addressed in the literature. One frequent suggestion, when dealing with convergence
of backward SDEs, is to work with the so-called Meyer-Zheng topology. Here, we
provide its definition and its basic properties. Once again, we refer to the Notes &
Complements at the end of the chapter for a complete bibliography on the subject.

Description of the Topology
We start with the following definition.

Definition 3.2 Given m � 1, we call M .Œ0;T�IRm/ the space of equivalence
classes of Borel-measurable functions from Œ0;T� to R

m (two functions being
equivalent if they are equal for almost every t 2 Œ0;T� for the Lebesgue measure).
We equip M .Œ0;T�IRm/ with the distance:

dM .x; x0/ D
Z T

0

min
�
1; jx.t/ � x0.t/j�dt;

for two elements x D .x.t//0�t�T and x0 D .x0.t//0�t�T in M .Œ0;T�IRm/.
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Notice that convergence in the metric dM is the convergence in dt-measure: a
sequence of functions .xn/n2N converges to x for dM if and only if:

8" > 0; lim
n!1 Leb1

�
t 2 Œ0;T� W jxn

t � xtj � "
� D 0;

where Leb1 denotes the Lebesgue measure on Œ0;T�.
Obviously, any sequence of continuous functions .xn/n�0 from Œ0;T� to R

m

converging in C.Œ0;T�IRm/ equipped with the topology of the uniform convergence
is convergent in M .Œ0;T�IRm/. Similarly, any sequence of càd-làg functions
.xn/n�0 from Œ0;T� to R

m converging in D.Œ0;T�IRm/ equipped with the Skorohod
J1 topology is convergent in M .Œ0;T�IRm/.

We now list without proof a few properties of the space M .Œ0;T�IRm/.

Lemma 3.3 The space M .Œ0;T�IRm/ equipped with the distance dM is complete
and separable. In particular, it is a Polish space.

We call Meyer-Zheng topology, the topology of the weak convergence on the
space P.M .Œ0;T�IRm// of probability measures on M .Œ0;T�IRm/. The second
claim identifies the compact subsets of .M .Œ0;T�IRm/; dM /.

Lemma 3.4 A subset A � M .Œ0;T�IRm/ is relatively compact for the topology
induced by dM if and only if the following conditions hold true:

lim sup
a!1

sup
x2A

Leb1
�
t 2 Œ0;T� W jx.t/j � a

� D 0;

lim
h&0

sup
x2A

Z T

0

min
�
1; jx..t C h/ ^ T/ � x.t/j�dt D 0:

As an exercise, we let the reader check the following statement.

Lemma 3.5 If a measurable function � W Œ0;T� � R
m ! R is such that for

each t 2 Œ0;T�, the function R
m 3 x 7! �.t; x/ is continuous, then the function

.M .Œ0;T�IRm/; dM / 3 x 7! .�.t; xt//0�t�T 2 .M .Œ0;T�IR/; dM / is continuous.
Also, if .xn/n�0 is a sequence of functions in .M .Œ0;T�IRm/; dM / converging to

x for the distance dM , and if furthermore the uniform integrability property:

lim sup
a!1

sup
n2N

Z T

0

ˇ
ˇ�
�
t; xn.t/

�ˇ
ˇ1fj�.t;xn.t//j�agdt D 0;

holds, then we have:

lim
n!1

Z T

0

ˇ
ˇ�
�
t; x.t/

� � ��t; xn.t/
�ˇ
ˇdt D 0:
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Stochastic Processes and M .Œ0; T�IRm/-Valued Random Variables
We use the above properties to prove a simple tightness criterion for R

m-valued
stochastic processes. First, we identify R

m-valued stochastic processes with random
variables taking values in M .Œ0;T�IRm/. Here, we say that X D .Xt/0�t�T is a
stochastic process if it is a measurable mapping

X W Œ0;T� �˝ 3 .t; !/ 7! Xt.!/;

the domain Œ0;T� � ˝ being equipped with the product � -field B.Œ0;T�/ ˝ F and
the range R

m with its Borel � -field.
For such a stochastic process X on a probability space .˝;F ;P/, we know that,

for any ! 2 ˝, the mapping Œ0;T� 3 t 7! Xt.!/ is measurable. We denote by
NX.!/ its equivalence class for the almost everywhere equality under the Lebesgue
measure. In order to prove that NX can be viewed as a random variable with values in
M .Œ0;T�IRm/, it suffices to check that for any a > 0 and any x 2 M .Œ0;T�IRm/,
the set:

n
! 2 ˝ W

Z T

0

min
�
1; j NXt.!/ � x.t/j�dt < a

o

belongs to F . Of course, this is quite clear since:

Z T

0

min
�
1; j NXt.!/ � x.t/j�dt D

Z T

0

min
�
1; jXt.!/ � x.t/j�dt:

By Fubini’s theorem, the right-hand side is an R-valued random variable. Clearly,
NX and NY are almost surely equal under the probability P if and only if X and Y are
almost everywhere equal under the probability Leb1 ˝ P.

We now proceed with the converse. To any random variable NX with values in
M .Œ0;T�IRm/, we try to associate a canonical representative of the equivalence
class induced by NX.!/ for each ! 2 ˝. The strategy is similar to that used in
Lemma 1.27. Indeed, it is quite tempting to use, as we did before,

Xt.!/ D
8
<

:

lim
n!1 n

Z .tC1=n/^T

t

NXs.!/ds whenever the limit exists;

0 otherwise:

Unfortunately, this approach is not feasible since nothing is known regarding the
integrability of X in time. In order to overcome this difficulty, for each integer p � 1,
we denote by �p W Rm ! R

m the orthogonal projection onto the closed ball of center
0 and of radius p, and for any t 2 Œ0;T� and n � 1 we set:

Xp
t .!/ D

8
<

:

lim
n!1 n

Z .tC1=n/^T

t
�p
� NXs.!/

�
ds whenever the limit exists;

0 otherwise:
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The mapping˝ 3 ! 7! n
R .tC1=n/^T

t �p. NXs.!//ds is an R
m-valued random variable.

For each p � 1, since it is continuous in t for ! fixed, the mapping:

Œ0;T� �˝ 3 .t; !/ 7! n
Z .tC1=n/^T

t
�p. NXs.!//ds 2 R

m

is measurable with respect to B.Œ0;T�/ ˝ F . In particular, Xp D .Xp
t /0�t�T forms

a (jointly measurable) stochastic process. Moreover, by Lebesgue’s differentiation
theorem, for any ! 2 ˝, Leb1.t 2 Œ0;T�I Xp

t .!/ 6D �p. NXt.!/// D 0. Finally, we let:

Xt.!/ D
(

lim
p!1 Xp

t .!/ whenever the limit exists;

0 otherwise:
(3.6)

Clearly, for any ! 2 ˝ and for almost every t 2 Œ0;T�, the sequence .Xp
t .!//p�0

becomes constant for large enough indices. In particular, for any ! 2 ˝, the limit
in (3.6) exists for almost every t 2 Œ0;T�, and NX.!/ is the equivalence class of X.!/.

As a result of the above equivalence, we can associate a probability measure on
M .Œ0;T�IRm/ to each stochastic process X. This probability measure is nothing but
the law of the random variable NX, where NX.!/ is the equivalence class of Œ0;T� 3
t 7! Xt.!/. One of the first result of the general theory of stochastic processes is
that two processes X and Y induce the same distribution on M .Œ0;T�IRm/ if and
only if, for any integer n � 1, for almost every .t1; � � � ; tn/ 2 Œ0;T�n, .Xt1 ; � � � ;Xtn/

and .Yt1 ; � � � ;Ytn/ have the same distribution on .Rm/n.

Weak Convergence
Now that we have a correspondence between (jointly measurable) stochastic
processes and random variables with values in M .Œ0;T�IRm/, we can address the
weak convergence of stochastic processes for the Meyer-Zheng topology on the
space M .Œ0;T�IRm/.

As a starter, we prove the following analogue of Lemma 3.5.

Lemma 3.6 If � W Œ0;T� � R
m ! R is a measurable function such that for each

t 2 Œ0;T�, the function R
m 3 x 7! �.t; x/ is continuous, if .Xn D .Xn

t /0�t�T/n2N[f1g
is a sequence of stochastic processes, Xn being defined on a probability space
.˝n;Fn;Pn/, in such a way that P

1 ı .X1/�1 is the limit of the sequence
.Pn ı .Xn/�1/n�0 for the Meyer-Zheng topology, and if we assume further that:

8" > 0; lim sup
a!1

sup
n�0

P
n

� Z T

0

ˇ
ˇ�
�
t;Xn.t/

�ˇ
ˇ1fj�.t;Xn.t//j�agdt � "

	

D 0; (3.7)
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then P
1Œ
R T
0

j�.t;X1
t /jdt < 1� D 1, and the sequence .Pn ı .�n/�1/n�0 converges

to P
1 ı .�1/�1 on C.Œ0;T�IR/, where for any n 2 N [ f1g, the process �n is

defined for any t 2 Œ0;T� by:

�n
t D

Z t

0

�.s;Xn
s /ds:

Proof.

First Step. Notice first that by assumption (3.7), �n is well defined with P
n-probability 1

for each n � 0 since P
nŒ
R T
0

j�.t;Xn
t /jdt < 1� D 1. When � is bounded, the proof is a direct

consequence of Lemma 3.5 since, in that case, the function M .Œ0; T�IRm/ 3 x 7! .Œ0; T� 3
t 7! R t

0
�.s; xs/ds/ 2 C.Œ0; T�IR/ is continuous.

Second Step. When � is not bounded, we approximate � by �a ı � , where for a > 0, �a W
R ! R coincides with the identity on Œ�a; a� and with the function a�sign.�/ outside Œ�a; a�.
By the uniform integrability assumption, we can choose, for any " > 0, a large enough such
that, for any n � 0,

P
n

� Z T

0

ˇ
ˇ
�
� � �a ı ��.t;Xn

t /
ˇ
ˇdt > "

	

� ": (3.8)

We claim that this also holds true for n D 1. Indeed we have, for any a < a0,

P
n

� Z T

0

ˇ
ˇ
�
�a0 ı � � �a ı ��.t;Xn

t /
ˇ
ˇdt > "

	

� ":

By the first step, .Pn ı .R T
0

j.�a0 ı � � �a ı �/.t;Xn
t /jdt/�1/n�0 converges in the weak sense

to P
1 ı .R T

0
j.�a0 ı � � �a ı �/.t;X1

t /jdt/�1. Then, by the porte-manteau theorem, we get:

P
1

� Z T

0

ˇ
ˇ
�
�a0 ı � � �a ı ��.t;X1

t /
ˇ
ˇdt > "

	

� ": (3.9)

In particular, for all " > 0, there exists a large enough such that for a0 > a:

P
1

� Z T

0

ˇ
ˇ
�
�a0 ı ��.t;X1

t /
ˇ
ˇdt > Ta C "

	

� ";

and then,

P
1

� Z T

0

ˇ
ˇ�.t;X1

t /
ˇ
ˇdt > Ta C "

	

� ";

which shows that:

P
1

� Z T

0

ˇ
ˇ�.t;X1

t /
ˇ
ˇdt < 1

	

D 1:

Returning to (3.9) and letting a0 tend to 1, we deduce that (3.8) holds for n D 1.
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Third Step. It remains to take a bounded and uniformly continuous function  from
C.Œ0; T�IR/ into R. Then, for all a > 0,

ˇ
ˇ
ˇE

n
�
 
�
�n
�� � E

1
�
 
�
�1

��ˇˇ
ˇ

�
ˇ
ˇ
ˇE

n
h
 
� Z �

0

.�a ı �/.t;Xn
t /dt

�i
� E

1
h
 
� Z �

0

.�a ı �/.t;X1
t /dt

�iˇ
ˇ
ˇ

C E
n
h
m
� Z T

0

ˇ
ˇ.�a ı � � �/.t;Xn

t /
ˇ
ˇdt
�i

C E
1
h
m
� Z T

0

ˇ
ˇ.�a ı � � �/.t;X1

t /
ˇ
ˇdt
�i
;

where m is the modulus of continuity of  . According to the second step, we can choose a
large enough such that the last line above is as small as desired, uniformly in n � 0. Choosing
n large enough to handle the first term in the right-hand side, we complete the proof. ut

Now, we provide a simple tightness criterion for semi-martingales. Generally
speaking, the description of relatively compact subsets of the set of probability
measures on M .Œ0;T�IRm/ is given by Prokhorov’s theorem since this space is
Polish. As a consequence of Lemma 3.4, the following characterization holds true:

Proposition 3.7 Let .Xn D .Xn
t /0�t�T/n�0 be a sequence of Rm-valued processes,

each Xn being defined on a probability space .˝n;Fn;Pn/. Then the collection of
distributions .Pn ı .Xn/�1/n�0 on M .Œ0;T�IRm/ is relatively compact in the space
of probability measures on M .Œ0;T�IRm/ if and only if

lim
a!1 sup

n�0

Z T

0

P
n
�jXn

t j � a
�
dt D 0;

lim
h&0

sup
n�0

E
n
Z T

0

min
�
1; jXn..t C h/ ^ T/ � Xn.t/j�dt D 0:

Of course, whenever the distributions .Pn ı .Xn/�1/n�0, each Xn being regarded
as a random variable with values in M .Œ0;T�IRm/, forms a tight family on
M .Œ0;T�IRm/, we may associate with each weak limit a random variable with
values in M .Œ0;T�IRm/, this random variable being constructed on some prob-
ability space .˝;F ;P/, say the canonical one. Then, following the procedure
described above, we may reconstruct a stochastic process X. With a slight abuse
of terminology, we will say that the sequence .Pn ı .Xn/�1/n�0 is tight on
M .Œ0;T�IRm/ equipped with the distance dM , and that P ı X�1 is a weak limit
of .Pn ı .Xn/�1/n�0.

Another simple, but useful, observation is that a sequence .Pn ı .Xn/�1/n�0 is
tight on M .Œ0;T�IRm/ if and only if, for any i 2 f1; � � � ;mg, the collection of laws
formed by the ith coordinate of the .Xn/n�0 is tight on M .Œ0;T�IR/.

As usual with stochastic processes, the difficult part in Proposition 3.7 is to
control the increments appearing in the second condition. This is precisely where
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the theory of martingales comes in. There exists a quite simple criterion for tightness
of semi-martingales, based on the following definition:

Definition 3.8 Let .X D .Xt/0�t�T/ be a real-valued stochastic process adapted to
a complete and right-continuous filtration F D .Ft/0�t�T on a complete probability
space .˝;F ;P/. Assume that the paths of X are in D.Œ0;T�IR/ and that, for any
t 2 Œ0;T�, Xt is integrable. Then, X is said to have a finite conditional variation on
Œ0;T� if the quantity:

VT.X/ D sup
N�1

sup
0Dt0<���<tN DT

E

h N�1X

iD0

ˇ
ˇE
�
XtiC1

� Xti jFti

�ˇ
ˇ
i

(3.10)

is finite, in which case we call VT.X/ the conditional variation of X (with respect
to F).

Of course, whenever X is a martingale, the conditional variation is null, which
is the key observation for understanding the interest of the following tightness
criterion.

Theorem 3.9 Let .Xn D .Xn
t /0�t�T/n�0 be a sequence of càd-làg real-valued

adapted processes, each Xn being defined on a complete probability space
.˝n;Fn;Pn/ equipped with a right-continuous and complete filtration F

n. Denoting
by Vn

T.X
n/ the conditional variation of Xn with respect to F

n under Pn, and assuming
that:

sup
n�0

�
E

n
�jXn

T j�C Vn
T.X

n/
�
< 1;

then the collection of distributions induced by the .Xn/n�0’s is tight on M .Œ0;T�IR/
and any limit reads as the distribution induced by a càd-làg process on
M .Œ0;T�IR/.

3.2.3 Back to MFGs with Common Noise and Main Result

We now return to our original motivation: the stability of weak equilibria for MFGs
with a common noise.

Sequence of Stochastic Optimal Control Problems
In order to make things clear, we start with an optimal stochastic control problem
in a random environment of the type considered in Chapter 1, see for instance
the presentation in Subsection 1.4.1. However, in contrast with the framework of
Chapter 1, we shall not consider a single environment � but instead, a collection
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of environments .�n/n�0. Then, we shall address the question of the asymptotic
behavior of the optimal paths associated with each �n, n � 0, as n tends
to 1.

For each n � 0, we thus consider a complete probability space .˝n;Fn;Pn/

equipped with a right-continuous and complete filtration F
n, and also a

four-tuple .Xn
0;W

0;n;�n;Wn/, Xn
0 being Fn

0 measurable, the pair .W0;n;Wn/

forming a 2d-Brownian motion with respect to the filtration F
n, the process

�n having paths in D.Œ0;T�IX / for some Polish space .X ; dX / and satisfying
E

nŒsup0�t�T dX .0X ; �n
t /
2� < 1, and the triple .Xn

0;W
0;n;�n/ being independent

of Wn. Importantly, we also require that Fn is compatible with the complete and
right-continuous filtration generated by .Xn

0;W
0;n;�n;Wn/, see Subsection 1.1.1.

We are also given a closed convex subset A � R
k, for some k � 1, together with

coefficients .bn; �n; �0;n; f n; gn/n�0 satisfying:

Assumption (Sequence of Optimization Problems). For any integer n � 0,
the coefficients bn W Œ0;T��R

d �X � A ! R
d, �n W Œ0;T��R

d �X ! R
d�d,

�0;n W Œ0;T� � R
d � X ! R

d�d, f n W Œ0;T� � R
d � X � A ! R and gn W

R
d � X ! R are Borel-measurable. Moreover, there exists a constant L � 0

such that, for any integer n � 0,

(A1) bn, �n and �0;n are L-Lipschitz continuous in x, uniformly in t 2 Œ0;T�,
� 2 X and ˛ 2 A.

(A2) bn, �n and �0;n are at most of L-linear growth in .x; �; ˛/, uniformly in
t 2 Œ0;T�, i.e. for all t 2 Œ0;T�, x 2 R

d, � 2 X and ˛ 2 A,

jbn.t; x; �; ˛/j � L
�
1C jxj C dX .0X ; �/C j˛j�;

j.�n; �0;n/.t; x; �/j � L
�
1C jxj C dX .0X ; �/

�
;

where 0X is some arbitrary point in X .
(A3) f n and gn are at most of L-quadratic growth in .x; �; ˛/, uniformly in

t 2 Œ0;T�, i.e. for all t 2 Œ0;T�, x 2 R
d, � 2 X and ˛ 2 A,

jf n.t; x; �; ˛/j � L
�
1C jxj2 C dX .0X ; �/

2 C j˛j2�;
jgn.x; �/j � L

�
1C jxj2 C dX .0X ; �/

2
�
:

We shall also assume:

(A4) The sequence of coefficients .bn; �n; �0;n; f n; gn/n�0 converge to some
.b; �; �0; f ; g/, uniformly on any compact subset of the underlying

(continued)
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domain. For any t 2 Œ0;T�, the functions b.t; �; �; �/ and f .t; �; �; �/ are
continuous on R

d � X � A (with values in R
d and R respectively), the

functions �.t; �; �/ and �0.t; �; �/ are continuous on R
d � X with values

in R
d�d, and the function g is continuous on R

d � X with values in R.

It is worth noting that the bounds on the coefficients .bn; �n; �0;n; f n; gn/n�0
survive the limit n ! 1 and still hold for the coefficients .b; �; �0; f ; g/. Now,
for each integer n � 0, we may consider, on the filtered probability space
.˝n;Fn;Fn;Pn/, controlled processes of the form:

dXt D bn
�
t;Xt; �

n
t ; ˛t

�
dt C �n.t;Xt; �

n
t /dWn

t C �0;n.t;Xt; �
n
t /dW0;n

t ; (3.11)

for t 2 Œ0;T�, with the same Xn
0 as above as initial condition, where .˛t/0�t�T is an

F
n-progressively measurable process with values in A such that:

E
n
Z T

0

j˛tj2dt < 1;

E
n standing for the expectation with respect to P

n. To ˛ D .˛t/0�t�T , we associate
the cost:

Jn;�n
.˛/ D E

n

� Z T

0

f n.s;Xs; �
n
s ; ˛s/ds C gn.XT ; �

n
T/

	

; (3.12)

which depends upon n, not only through the environment �n, but also through
the coefficients .bn; �n; �0;n; f n; gn/. We then assume that, for each n 2 N, Jn;�n

has a unique minimizer Ǫ n D . Ǫ n
t /0�t�T . We refer to Chapter 1 for conditions

under which such an optimizer exists and is unique. The question is then to
investigate the asymptotic behavior of . Ǫ n/n�0 whenever the sequence of triples
..Xn

0;W
0;n;�n//n�0 converges in the weak sense on R

d �C.Œ0;T�IRd/�D.Œ0;T�IX /
as n tends to 1.

In order to do so, we shall assume that the necessary condition in the stochastic
Pontryagin principle holds, see Theorem 1.59. Following (Vol I)-(3.5) and (1.32),
we introduce, for any n � 0, the reduced Hamiltonian:

H.r/;n
�
t; x; �; y; ˛

� D bn.t; x; �; ˛/ � y C f n.t; x; �; ˛/; (3.13)

for t 2 Œ0;T�, x 2 R
d, � 2 X , y 2 R

d, and ˛ 2 A. A minimizer, if and when it
exists, then reads:

Ǫ n
�
t; x; �; y

� 2 argmin˛2AH.r/;n
�
t; x; �; y; ˛

�
: (3.14)
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In order to implement the stochastic Pontryagin principle, we make the following
assumption:

Assumption (Sequence of Necessary SMP). There exists a constant L > 0

such that:

(A1) For any integer n � 0, the drift bn has the form:

bn.t; x; �; ˛/ D bn
1.t; x; �/C bn

2.t/˛;

where the mapping Œ0;T� 3 t 7! bn
2.t/ 2 R

d�k is measurable and
bounded by L.

(A2) For any integer n � 0, the functions bn
1 and f n are differentiable

with respect to x and .x; ˛/ respectively, the mappings R
d 3 x 7!

@xbn
1.t; x; �/, R

d � A 3 .x; ˛/ 7! @xf n.t; x; �; ˛/ and R
d � A 3 .x; ˛/ 7!

@˛f n.t; x; �; ˛/ being continuous for each .t; �/ 2 Œ0;T��X . Similarly,
the functions �n, �0;n and gn are differentiable with respect to x, the
function R

d 3 x 7! @x.�
n; �0;n/.t; x; �/ being continuous for each

.t; �/ 2 Œ0;T� � X , and the function R
d 3 x 7! @xgn.x; �/ being

continuous for each � 2 X .
(A3) For any integer n � 0, any R � 0; and any .t; x; �; ˛/ with jxj � R,

dX .0X ; �/ � R and j˛j � R, j@xf n.t; x; �; ˛/j, j@˛f n.t; x; �; ˛/j and
j@xgn.x; �/j are bounded by L.1 C R/. Moreover, the function @˛f n is
L-Lipschitz-continuous in x.

(A4) For any integer n � 0, f n satisfies the convexity property:

f n.t; x; �; ˛0/ � f n.t; x; �; ˛/ � .˛0 � ˛/ � @˛f n.t; x; �; ˛/

� L�1j˛0 � ˛j2;

for all .t; x; �; ˛; ˛0/ 2 Œ0;T� � R
d � X � A � A.

Following (A4) in assumption Sequence of Optimization Problems, we shall
also assume:

(A5) For any .t; x; �/ 2 Œ0;T� � R
d � X , the function A 3 ˛ 7! f .t; x; �; ˛/

is continuously differentiable and the coefficients .@˛f n/n�0 converge to
@˛f , uniformly on compact subsets.

Implicitly, (A5) needs (A4) in assumption Sequence of Optimization Problems,
as otherwise f would not make sense. Below, we never assume that assumption
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Sequence of Necessary SMP holds true without demanding assumption Sequence
of Optimization Problems to hold true as well. Importantly, the bounds we have
on the coefficients .@˛f n/n�0 pass to the limiting coefficient @˛f . In particular, f is
convex in ˛.

Of course, the rationale for (A1) and (A4) is to guarantee that the Hamiltonian
H.r/;n in (3.13) are strictly convex with respect to ˛, uniformly in n. By Lemmas
(Vol I)-3.3 and 1.56 (see also Lemma (Vol I)-4.43), the minimizer Ǫ n of H.r/;n

in (3.14) is uniquely defined. Similarly, we may associate the Hamiltonian H.r/ with
the limiting coefficients .b; �; �0; f / through the analogue of (3.13). We then call Ǫ
the unique minimizer of H.r/.

We then claim:

Lemma 3.10 Under assumptions Sequence of Necessary SMP and Sequence
of Optimization Problems, the sequence of minimizers . Ǫ n/n�0 converges to Ǫ
uniformly on compact subsets of Œ0;T��R

d �X �R
d. Moreover, for any t 2 Œ0;T�,

the function R
d � X � R

d 3 .x; �; y/ 7! Ǫ .t; x; �; y/ is continuous and there exists
a constant C such that, for any n � 0, any t 2 Œ0;T�, any x; x0; y; y0 2 R

d and any
� 2 X ,

ˇ
ˇ Ǫ n.t; x; �; y/

ˇ
ˇ � C

�
1C jxj C dX .0X ; �/C jyj�;

ˇ
ˇ Ǫ n.t; x0; �; y0/ � Ǫ n.t; x; �; y/

ˇ
ˇ � C

�jx0 � xj C jy0 � yj�:
(3.15)

By letting n tend to 1, observe that (3.15) is also satisfied by the limiting
minimizer Ǫ .

Proof.

First Step. Following the proof of Lemma (Vol I)-3.3, we have, for any integer n � 0 and
any .t; x; �; y/ 2 Œ0; T� � R

d � X � R
d,

� Ǫ n.t; x; �; y/ � Ǫ .t; x; �; y/�

�
�
@˛H.r/;n

�
t; x; �; y; Ǫ n.t; x; �; y/

� � @˛H.r/
�
t; x; �; y; Ǫ .t; x; �; y/�

�
� 0:

Using the convexity of H.r/;n and following once again the proof of Lemma (Vol I)-3.3, we
deduce that:

L�1
ˇ
ˇ Ǫ n.t; x; �; y/ � Ǫ .t; x; �; y/ˇˇ � ˇ

ˇ
�
@˛H.r/ � @˛H.r/;n

��
t; x; �; y; Ǫ .t; x; �; y/�ˇˇ:

By assumption, the right-hand side tends to 0, which proves the first claim in the statement.

Second Step. The claim regarding the growth and the .x; y/-Lipschitz continuity of the
. Ǫ n/n�0’s is a direct consequence of Lemma (Vol I)-3.3. The continuity of Ǫ .t; �/, for each
t 2 Œ0; T�, may be proved by a standard compactness argument. ut
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Assumption (Control Bounds). With the same notation as above for the
sequence of filtered probability spaces ..˝n;Fn;Fn;Pn//n�0, each of them
being equipped with a compatible input .Xn

0;W
0;n/, it holds that:

(A1) The sequences of probability measures .Pn ı .sup0�t�T jXn
t j/�1/n�0 and

.Pn ı .sup0�t�T d.0X ; �n
t //

�1/n�0 are uniformly square-integrable. In
particular,

sup
n�0

E

h
sup
0�t�T

jXn
t j2 C sup

0�t�T

�
dX .0X ; �

n
t /
2
�i
< 1:

Moreover, the sequence of probability measures .Pnı.�n/�1/n�0 is tight
on D.Œ0;T�;X / when equipped with the J1 Skorohod topology.

(A2) For any n � 0, there exists a minimizer Ǫ n D . Ǫ n
t /0�t�T for the cost

functional Jn;�n
such that:

sup
n�0

E
n

� Z T

0

j Ǫ nj2dt

	

< 1:

In particular, for any n � 0, for any F
n-progressively measurable and

square-integrable control .ˇ D .ˇt//0�t�T , the following holds true:

Jn;�n
. Ǫ n/ � Jn;�n

.ˇ/:

In (A1) above, we used the following standard definition: A sequence .mn/n�0 of
probabilities measures on .R;B.R// is said to be uniformly p-integrable, for a real
p > 0, if

lim
a!1 sup

n�0

Z

jxj�a
jxjpdmn.x/ D 0:

Also, the minimizers . Ǫ n/n�0 are unique if assumption FBSDE in Chapter 2 or
assumption FBSDE MFG with a Common Noise is in force.

Here is now the first real result of this section.

Proposition 3.11 Under assumptions Sequence of Optimization Problems,
Sequence of Necessary SMP, and Control Bounds, for each n � 0, denote
by Xn D .Xn

t /0�t�T the optimally controlled process driven by Ǫ n, namely the
solution of (3.11) with ˛ D Ǫ n. Then, the sequence .Pn ı .Xn/�1/n�0 is tight on
C.Œ0;T�IRd/. In particular, the sequence .Pn ı .Xn

0;W
0;n;�n;Wn;Xn/�1/n�0 is tight

on the space ˝input � C.Œ0;T�IRd/.
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Moreover, if .X1
0 ;W

0;1;�1;W1;X1/ is an ˝input � C.Œ0;T�IRd/-valued
process on a complete probability space .˝1;F1;P1/ such that the probability
measure P

1 ı .X1
0 ;W

0;1;�1;W1;X1/�1 is a weak limit of the sequence
.Pn ı .Xn

0;W
0;n;�n;Wn;Xn/�1/n�0, we can associate with the complete and right-

continuous filtration F
1 generated by .X1

0 ;W
0;1;�1;W1;X1/, the stochastic

control problem given by the cost functional:

J�1

.ˇ/ D E
1
� Z T

0

f .s;Xs; �
1
s ; ˇs/ds C g.XT ; �

1
T /

	

; (3.16)

under the dynamic constraint:

dXt D b
�
t;Xt; �

1
t ; ˇt

�
dt C �.t;Xt; �

1
t /dW1

t C �0.t;Xt; �
1
t /dW0;1

t ; (3.17)

for t 2 Œ0;T� with X1
0 as initial condition, for F1-progressively measurable square-

integrable control processes ˇ D .ˇt/0�t�T with values in A.
If the filtration F

1 is compatible with the process .X1
0 ;W

0;1;�1;W1/, then
the process X1 is an optimal path for the control problem (3.16)–(3.17) when
considered on the compatible set-up .˝1;F1;F1;P1/ equipped with the input
.X1
0 ;W

0;1;�1;W1/.

Recall that:

˝input D R
d � C.Œ0;T�IRd/ � D.Œ0;T�IX / � C.Œ0;T�IRd/; (3.18)

C.Œ0;T�IRd/ being equipped with the topology of the uniform convergence, and
D.Œ0;T�IX / with the J1 Skorohod topology. The proof of Proposition 3.11 is
deferred to Subsection 3.2.4 below.

Application to MFGs
One serious difficulty when we try to identify the limit process X1 with an optimal
path for the cost functional J�1

is to check the compatibility condition. Fortunately,
this compatibility is given for free when dealing with weak solutions of MFG with
a common noise, if we lift each environment �n –seen as càd-làg processes with
values in P2.Rd/– into a random variable Mn with values in P2.C.Œ0;T�IR2d//,
according to the lifting procedure described in Definition 2.16. Compatibility is then
understood as compatibility between F

n and the lifted process .Xn
0;W

0;n;Mn;Wn/.
This key observation is the rationale for the lifting procedure underpinning the
definition of an MFG equilibrium.

Here is a first statement that reflects this idea.

Proposition 3.12 Under the assumptions of Proposition 3.11, if X D P2.Rd/,
and if for any n 2 N, there exists a random variable Mn from .˝n;Fn/ into
P2.C.Œ0;T�IR2d// such that:



3.2 Stability of Weak Equilibria 175

1. the filtration F
n is compatible with .Xn

0;W
0;n;Mn;Wn/ in the sense of Defini-

tion 2.16,
2. for any t 2 Œ0;T�, �n

t is P
n-almost surely equal to Mn ı .ex

t /
�1, where ex

t is the
evaluation map providing the first d coordinates at time t on C.Œ0;T�IR2d/,

3. the conditional law of .Xn;Wn/ given .W0;n;Mn/ is Mn,

then, the sequence .Pn ı .Mn/�1/n�0 is tight on P2.C.Œ0;T�IR2d//.
Moreover, on any complete probability space .˝1;F1;P1/, equipped

with a random process .X1
0 ;W

0;1;M1;W1;X1/ such that the probability
measure P

1 ı .X1
0 ;W

0;1;M1;W1;X1/�1 is a weak limit of the sequence
.Pn ı .Xn

0;W
0;n;Mn;Wn;Xn/�1/n�0, the complete and right-continuous filtration

F
1 generated by .X1

0 ;W
0;1;M1;W1;X1/ is compatible with the process

.X1
0 ;W

0;1;M1;W1/. In particular, X1 is an optimal path for the stochastic
optimal control problem (3.16)–(3.17), when it is understood for the filtration
F

1, the super-environment M1, and the sub-environment �1 D .�1
t D

M1 ı .ex
t /

�1/0�t�T .

Observe that, in the above statement, we completely disregard the weak conver-
gence of the sequence .�n/n�0 and the measurability (or compatibility) properties
of any weak limit �1. The reason is that the functional that maps Mn (for
n 2 N [ f1g/ onto �n according to the principle stated in Definition 2.16 is
continuous. Indeed, the mapping e W P2.C.Œ0;T�IR2d// 3 m 7! .m ı .ex

t /
�1/0�t�T 2

C.Œ0;T�;P2.Rd//, which maps each Mn onto �n is 1-Lipschitz continuous, since,
for any two m and m0 in P2.C.Œ0;T�IR2d//, it holds:

sup
0�t�T

W2

�
.e.m//t; .e.m0//t

� D sup
0�t�T

W2

�
m ı .ex

t /
�1;m0 ı .ex

t /
�1�

� W2

�
m;m0�;

where, in the first two arguments, W2 is the 2-Wasserstein distance on P2.Rd/

whereas it denotes the 2-Wasserstein on P2.C.Œ0;T�IR2d// on the second line.
A quick comparison with Definition 2.16 shows that the three items in the state-

ment of Proposition 3.12 are characteristic features of an MFG equilibrium. This
says that we should not be far from our original purpose, namely proving a stability
property for weak solutions to MFG problems. However, in order to do so, we
must fit the framework introduced in Chapter 2, especially that of Definition 2.16.
For this reason, we now require each ˝n to be of the product form ˝0;n � ˝1;n,
where .˝0;n;F0;n;F0;n;P0;n/ and .˝1;n;F1;n;F1;n;P1;n/ are two complete filtered
probability spaces, the filtrations being complete and right-continuous. We then
define .˝n;Fn;Pn/ as the completion of the product space .˝0;n � ˝1;n;F0;n ˝
F1;n;P0;n ˝ P

1;n/ and F
n as the complete and right-continuous augmentation of the

product of the two filtrations. The Brownian motions W0;n and Wn are assumed
to be constructed on .˝0;n;F0;n;F0;n;P0;n/ and .˝1;n;F1;n;F1;n;P1;n/ respectively.
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In order to guarantee a similar decomposition in the limiting setting, we shall appeal
to assumption FBSDE introduced in Chapter 2, as made clear by the main result of
this section.

Theorem 3.13 On top of assumptions Sequence of Optimization Problems and
Sequence of Necessary SMP right above and FBSDE in Chapter 2, assume
further that for any n � 0, there exists a random variable Mn from .˝n;0;Fn;0/

into P2.C.Œ0;T�IR2d// such that the filtration F
n is compatible with the process

.Xn
0;W

0;n;Mn;Wn/.
Letting �n D .�n

t D Mn ı .ex
t /

�1/0�t�T , assume that for each n � 0, there
exists an optimal control Ǫ n D . Ǫ n

t /0�t�T , with Xn D .Xn
t /0�t�T as associated

optimal path, to the optimal stochastic control problem (3.11)–(3.12), such that Mn

coincides with L1.Xn;Wn/ with P
0;n-probability 1.

If the resulting sequence . Ǫ n/n�0 satisfies (A2) in assumption Control Bounds
and the measures .Pn ı .sup0�t�T jXn

t j/�1/n�0 are uniformly square-integrable, then
the family of probability measures .P0;n ı .�n

0;W
0;n;Mn/�1/n�0 is tight on P2.Rd/�

C.Œ0;T�IRd/ � P2.C.Œ0;T�IR2d// and any weak limit generates a weak solution in
the sense of Definition 2.23 and a distribution of an equilibrium in the sense of
Definition 2.24 (for the problem driven by the coefficients .b; �; �0; f ; g/).

Obviously, for any n 2 N, Mn, as defined in the statement, is an MFG equilibrium.

3.2.4 Proof of the Weak Stability of Optimal Paths

We first prove Proposition 3.11.
Throughout the section, we let the assumptions of Proposition 3.11 be in

force, namely assumptions Sequence of Optimization Problems, Sequence of
Necessary SMP and Control Bounds. We shall also use the same notation as in the
statement. The proof of Proposition 3.11 comprises several lemmas. Lemma 3.14
below establishes the first part of the statement in Proposition 3.11.

Lemma 3.14 The family .Pn ı .Xn/�1/n�0 is tight on C.Œ0;T�IRd/ equipped with
the topology of uniform convergence. Moreover, the sequence .Pn ı . Ǫ n/�1/n�0, with
Ǫ n D . Ǫ n

t /t2Œ0;T� for each n � 0, is tight on M .Œ0;T�IRk/ equipped with the Meyer-
Zheng topology. Any weak limit of .Pn ı . Ǫ n/�1/n�0 may be regarded as the law of
an A-valued process.

Proof.

First Step. We start with the following observation. By Theorem 1.59, we know that,
for every n � 0, the optimal control . Ǫ n

t /0�t�T associated with the optimal control
problem (3.11)–(3.12) can be expressed through the backward component of the following
forward-backward system:
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXn
t D bn

�
t;Xn

t ; �
n
t ; Ǫ n

t

�
dt

C�n.t;Xn
t ; �

n
t /dWn

t C �0;n.t;Xn
t ; �

n
t /dW0;n

t ;

dYn
t D �@xHn

�
t;Xn

t ; �
n
t ; Y

n
t ; Z

n
t ; Z

0;n
t ; Ǫ n

t

�
dt

CZn
t dWn

t C Z0;nt dW0;n
t C dMn

t ; t 2 Œ0; T�;

(3.19)

with the terminal condition Yn
T D @xgn.Xn

T ; �
n
T/, where Hn is the full-fledged Hamiltonian:

Hn
�
t; x; �; y; z; z0; ˛

� D bn.t; x; �; ˛/ � y C f n.t; x; �; ˛/

C trace
�
�n.t; x; �/z� C �0;n.t; x; �/.z0/�

�
;

for t 2 Œ0; T�, x 2 R
d, � 2 X , ˛ 2 A, y 2 R

d, and z; z0 2 R
d�d.

The above equation (3.19) is set on the probabilistic set-up .˝n;Fn;Pn/, the filtration F
n

being compatible with .Xn
0 ;W

0;n;�n;Wn/. Recall that Mn D .Mn
t /0�t�T denotes a square-

integrable martingale with respect to F
n with 0 as initial condition and of zero bracket with

.W0;n;Wn/. We refer to Chapter 1 for a complete account.
Taking the square and then the expectation in the backward equation, using (A2) in

Sequence of Optimization Problems, (A1) and (A3) in Sequence of Necessary SMP and
(A1) and (A2) in Control Bounds, we deduce that:

sup
n�0




E
n
�

sup
0�t�T

jYn
t j2�C E

n
Z T

0

�jZn
t j2 C jZ0;nt j2�dt

�

< 1; (3.20)

see for instance the proof of Example 1.20.

Second Step. We now prove that the family .Pn ı .Xn/�1/n�0 is tight in C.Œ0; T�IRd/, using
Aldous’ criterion. For an integer n � 0, a stopping time � with respect to filtration F

n and a
real ı > 0, we have:

E
n
�jXn

.�Cı/^T � Xn
� j
� � E

n

� Z .�Cı/^T

�

ˇ
ˇb.s;Xn

s ; �
n
s ; Ǫ n

s /
ˇ
ˇds

	

C E
n

�ˇ
ˇ
ˇ

Z .�Cı/^T

�

�.s;Xn
s ; �

n
s /dWn

s

ˇ
ˇ
ˇ

	

C E
n

�ˇ
ˇ
ˇ

Z .�Cı/^T

�

�0.s;Xn
s ; �

n
s /dW0;n

s

ˇ
ˇ
ˇ

	

:

Thanks to the bound on the growth of the coefficients, we can find a constant C, independent
of n, ı and � , such that:

E
n
�jXn

.�Cı/^T � Xn
� j
� � Cı1=2

�

E
n
Z .�Cı/^T

�

�
1C jXn

s j C dX .0X ; �n
s /C j Ǫ n

s j�2ds

	1=2

C CE
n

�
Z .�Cı/^T

�

�
1C jXn

s j C dX .0X ; �n
s /
�2

ds

�1=2	

:
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Plugging the bounds we have on the processes Xn, �n and Ǫ n, we deduce (with a possibly
new value of the constant C):

E
n
�jXn

.�Cı/^T � Xn
� j
� � Cı1=2;

which shows that Aldous’ criterion is satisfied.
Therefore, the sequence of measures .Pn ı .Xn/�1/n�0 is tight on D.Œ0; T�IRd/ equipped

with the J1 Skorohod topology, and thus in C.Œ0; T�IRd/ since the processes .Xn/n�0 have
continuous sample paths.

Third Step. We now prove that the sequence .Pn ı .Yn/�1/n�0 is tight on M .Œ0; T�IRd/

equipped with the Meyer-Zheng topology.
Going back to the backward equation (3.19), observe that, for any sequence 0 D t0 < t1 <

� � � < tN D T , the conditional variation of Yn along the grid t0; t1; � � � ; tN can be bounded as
follows:

N�1X

kD0

E
n
hˇ
ˇEn

�
Yn

tkC1
� Yn

tk jFtk

�ˇ
ˇ
i

�
N�1X

kD0

E
n

� Z tkC1

tk

ˇ
ˇ@xHn

�
s;Xn

s ; �
n
s ; Y

n
s ; Z

n
s ; Z

0;n
s ; Ǫ n

s

�ˇ
ˇds

	

D E
n
Z T

0

ˇ
ˇ@xHn

�
s;Xn

s ; �
n
s ; Y

n
s ; Z

n
s ; Z

0;n
s ; Ǫ n

s

�ˇ
ˇds

� CE
n
Z T

0

�
1C jXn

s j C jYn
s j C jZn

s j C jZ0;ns j C j Ǫ n
s j�ds;

the constant C being independent of n thanks to assumption Sequence of Necessary SMP.
Together with (3.20) and assumption Control Bounds, we get:

sup
n�0

sup
N�1

sup
0Dt0<���<tN DT

N�1X

kD0

E
n
�jEn

�
Yn

tkC1
� Yn

tk jFtk

�j� < 1:

By Theorem 3.9 (tightness criterion for the Meyez-Zheng topology), we deduce that the
family of probability measures .Pn ı .Yn/�1/n�0, with Yn D .Yn

t /0�t�T , is tight on
M.Œ0; T�IRd/ equipped with the Meyer-Zheng topology. Any weak limit is supported by
D.Œ0; T�IRd/.

Fourth Step. In order to complete the proof, we recall that, for each n � 0 and each t 2 Œ0; T�,
Ǫ n

t D Ǫ n.t;Xn
t ; �

n
t ; Y

n
t /. We know that the sequence of functions . Ǫ n/n�0 converges to Ǫ ,

uniformly on compact subsets of Œ0; T� � R
d � X � R

m to Ǫ , see Lemma 3.10.
Then, we may expand Ǫ n

t as

Ǫ n
t D Ǫ n.t;Xn

t ; �
n
t ; Y

n
t / D � Ǫ n � Ǫ �.t;Xn

t ; �
n
t ; Y

n
t /C Ǫ .t;Xn

t ; �
n
t ; Y

n
t /:

For a given compact set K � R
d � X � R

m, we can write:

Z T

0

min
�
1;
ˇ
ˇ
� Ǫ n � Ǫ �.t;Xn

t ; �
n
t ; Y

n
t /
ˇ
ˇ
�

dt

� T sup
.t;x;�;˛/2Œ0;T��K

ˇ
ˇ
� Ǫ n � Ǫ�.t; x; �; ˛/ˇˇC

Z T

0

1f.Xn
t ;�

n
t ;Y

n
t /62Kgdt:

(3.21)
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For K being fixed, we know that the first term in the right-hand side tends to 0 as n tends to
1. Regarding the second term in the right-hand side, we have:

E
n
Z T

0

1f.Xn
t ;�

n
t ;Y

n
t /62Kgdt D

Z T

0

P
n
�
.Xn

t ; �
n
t ; Y

n
t / 62 K

�
dt:

Choosing K of the form K D Kx � K� � Ky, with Kx being a compact subset of Rd, K� a
compact subset of X , and Ky a compact subset of Rm, we have the bound:

E
n
Z T

0

1f.Xn
t ;�

n
t ;Y

n
t /62Kgdt �

Z T

0

�
P
�
Xn

t 62 Kx
�C P

�
�n

t 62 K�
�C P

�
Yn

t 62 Ky
��

dt:

Owing to Proposition 3.7, we know that, for any " > 0, we can choose Ky such that:

Z T

0

P
�
Yn

t 62 Ky
�
dt � ":

Similarly, from the properties of the uniform topology on C.Œ0; T�IRd/ and of the J1
Skorohod topology on D.Œ0; T�IRm/, we can choose, for any " > 0, Kx and K� such that:

Z T

0

�
P
�
Xn

t 62 Kx
�C P

�
�n

t 62 K�
��

dt � ":

Returning to (3.21), we deduce that:

lim
n!1

E
n
Z T

0

min
�
1;
ˇ
ˇŒ Ǫ n � Ǫ �.t;Xn

t ; �
n
t ; Y

n
t /
ˇ
ˇ
�

dt D 0;

that is:

8" > 0; lim
n!1

P
n
h
dM

� Ǫ n; . Ǫ .t;Xn
t ; �

n
t ; Y

n
t //0�t�T

� � "
i

D 0:

In order to complete the proof, it remains to check that the sequence of probability measures
.Pn ı . Ǫ .t;Xn

t ; �
n
t ; Y

n
t //

�1
0�t�T/n�0 converges to P

1 ı . Ǫ .t;X1
t ; �1

t ; Y1
t //�10�t�T provided

that .Pn ı .Xn
t ; �

n
t ; Y

n
t /

�1
0�t�T/n�0 converges to P

1 ı .X1
t ; �1

t ; Y1
t /�10�t�T , the latter being

obviously true up to a subsequence. This follows from the continuous mapping theorem,
using the fact that Ǫ .t; �/ is continuous, for each t 2 Œ0; T�, see Lemma 3.10. ut

We now turn to the second part of the statement of Proposition 3.11.

Lemma 3.15 With the same notation and assumptions as in the statement of
Lemma 3.14, consider a complete probability space .˝1;F1;P1/ equipped
with a process .X1

0 ;W
0;1;�1;W1;X1; Ǫ 1/ whose law under P

1 is a weak
limit of the sequence .Pn ı .Xn

0;W
0;n;�n;Wn;Xn; Ǫ n/�1/n�0 on the space ˝input �

C.Œ0;T�IRd/ � M .Œ0;T�IRk/, with ˝input as in (3.18). Denote by F
1 the com-

plete and right-continuous filtration generated by .X1
0 ;W

0;1;�1;W1;X1/ on
.˝1;F1;P1/.
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Then, up to a modification, Ǫ 1 is an F
1-progressively measurable square-

integrable process with values in A and the pair .X1; Ǫ 1/ solves the SDE (3.17).
Moreover, for any F

1-progressively measurable and square-integrable process
ˇ D .ˇt/0�t�T with values in A, it holds that:

J�1� Ǫ 1� � J�1�
ˇ
�
;

where J�1

denotes the same cost functional as in (3.16).
Therefore, if the filtration F

1 is compatible with .X1
0 ;W

0;1;�1;W1/, Ǫ 1
is a minimizer of the optimal stochastic control problem (3.16)–(3.17) when
considered on the compatible set-up .˝1;F1;F1;P1/ equipped with the input
.X1
0 ;W

0;1;�1;W1/.

Proof.

First Step. We first observe that, by assumption, the sequences .Pn ı .Xn
0/

�1/n�0 and
.Pn ı .�n/�1/n�0 are tight on the spaces R

d and D.Œ0; T�IX / respectively. Moreover, by
Lemma 3.14, the sequences .Pn ı .Xn/�1/n�0 and .Pn ı . Ǫ n/�1/n�0 are tight on C.Œ0; T�IRd/

and M .Œ0; T�IRk/ respectively. It is quite standard to deduce that that the sequence .Pn ı
.�n/�1/n�0, with

�n D �
Xn
0 ;W

0;n;�n;Wn;Xn; Ǫ n�;

is tight on the space indicated in the statement.
Therefore, we are allowed to consider a weak limit. On some complete probability space

.˝1;F1;P1/, we call �1 D .X1
0 ;W0;1;�1;W1;X1; Ǫ 1/ a process distributed

according to the weak limit, the process Ǫ 1 being reconstructed as an A-valued process by
the same argument as in Lemma 3.14, namely Ǫ 1 D . Ǫ .t;X1

t ; �1
t ; Y1

t //0�t�T for another
càd-làg process Y1 D .Y1

t /0�t�T with values in R
d. We then denote by G

1 the complete
and right-continuous augmentation of the filtration generated by �1. Pay attention that, at
this stage of the proof, we do not know whether G1 is strictly larger than F

1 or not, with
F

1 defined as in the statement.
The first step is to check that the limit process satisfies (3.17). In this regard, it is

quite obvious that the initial condition of X1 is X1
0 ; it is also pretty standard to check

that .W0;1;W1/ is a 2d-dimensional Brownian motion with respect to the filtration G
1.

Thanks to (A1) and (A2) in assumption Control Bounds, we also have that:

E
1

�

sup
0�t�T

jX1
t j2 C

Z T

0

j Ǫ1
s j2ds

	

< 1;

where, to handle the second term, we made use of Lemma 3.6 with � therein being a bounded
approximation of the function j Ǫ .t; �; �; �/j2. In order to identify the limit process with a
solution of the SDE (3.17), we introduce, for any n 2 N [ f1g, the auxiliary processes:

Bn D



Bn
t D

Z t

0

bn.s;Xn
s ; �

n
s ; Ǫ n

s /ds

�

0�t�T

;

˙ n D



˙n
t D

Z t

0

�n.s;Xn
s ; �

n
s /dWn

s

�

0�t�T

;

˙ 0;n D



˙0;n
t D

Z t

0

�0;n.s;Xn
s ; �

n
s /dW0;n

s

�

0�t�T

:
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We claim that .Pn ı .Bn/�1/n�0 weakly converges to P
1 ı .B1/�1 on C.Œ0; T�IRd/.

Indeed, by the same argument as in the fourth step of Lemma 3.14, the sequences .Pn ı
.bn.t;Xn

t ; �
n
t ; Ǫ n

t //
�1
0�t�T/n�0 and P

1 ı .b.t;Xn
t ; �

n
t ; Ǫ n

t //
�1
0�t�T have the same weak limits

on M .Œ0; T�IRd/. Now, by Lemma 3.6 –using the growth condition (A2) and the continuity
condition (A4) in assumption Sequence of Optimization Problems together with (A1) and
(A2) in assumption Control Bounds in order to check the uniform integrability condition–,
we deduce that .Pn ı .Bn/�1/n�0 converges weakly to P

1 ı .B1/�1 on C.Œ0; T�IRd/.
We now address the same question for the sequences .˙ n/n�0 and .˙ 0;n/n�0. For

simplicity, we only provide the analysis for the sequence .˙ n/n�0. By the same argu-
ment as above, we know that .Pn ı .�n.t;Xn

t ; �
n
t //

�1
0�t�T/n�0 converges weakly to P

1 ı
.�.t;X1

t ; �1
t /�1/0�t�T on M .Œ0; T�IRd�d/. Replace for a while �n by

�n;h.t; x; �/ D 1

h

Z t

.t�h/C

�n.s; x; �/ds; t 2 Œ0; T�; x 2 R
d; � 2 X ;

for some h > 0, and define �1;h in the same way, with �n in the right-hand side being
replaced by � . Then, for each integer n � 0, the function �n;h is jointly continuous
in all the parameters, and similarly for the function �1;h. Once again, we have that
.Pn ı .�1;h.t;Xn

t ; �
n
t //

�1
0�t�T/n�0 converges weakly to P

1 ı .�h.t;X1
t ; �1

t //�10�t�T , but
on D.Œ0; T�IRd�d/ equipped with J1. Thanks to the growth condition (A2) in assumption
Sequence of Optimization Problems and to the bounds (A1) in assumption Control
Bounds and (3.19), we know from a result by Kurtz and Protter, see the Notes &
Complements in the appendix, that .Pn ı.˙ n;h/�1/n�0 weakly converges to P

1 ı.˙ 1;h/�1

on C.Œ0; T�IRd/, with a quite obvious definition of ˙ n;h and ˙ 1;h. In order to prove the same
result for h D 0, we consider the differences ˙ n;h � ˙ n and ˙ 1;h � ˙ 1. In order to do so,
we observe that, for any .x; �/ 2 R

d � X ,

lim
h!0

Z T

0

j�1;h.t; x; �/ � �.t; x; �/jdt D 0;

which is a consequence of Lebesgue’s differentiation theorem. Now, for any compact subset
K � R

d � X , we call:

wK.t; ı/ D sup
˚j�.t; x0; �0/ � �.t; x; �/jI jx � x0j � ı; dX .�; �0/ � ı

�

the modulus of continuity of �.t; �/ on K. Then, for any ı > 0 and any ı-net .xi; �i/1�i�N

of K,

Z T

0

sup
.x;�/2K

j�1;h.t; x; �/ � �.t; x; �/jdt

�
NX

iD1

Z T

0

j�1;h.t; xi; �i/ � �.t; xi; �i/jdt C
Z T

0

wK.t; ı/dt:

From the growth condition (A2) in assumption Sequence of Optimization Problems and by
Lebesgue’s dominated convergence theorem, the second term in the right-hand side tends to
0 as ı tends to 0. Therefore, the left-hand side tends to 0 as h tends to 0. Now, since .�n/n�0

converges to � , uniformly on any compact subset of Œ0; T� � R
d � X , we also have:
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lim
h&0

sup
n�0

Z T

0

sup
.x;�/2K

j�n;h.t; x; �/ � �n.t; x; �/jdt D 0:

Then, by a standard uniform integrability argument based on (A1) in assumption Control
Bounds, we easily get that:

lim
h&0

sup
n�0

E
n
�

sup
0�t�T

j˙n;h
t �˙n

t j� D 0; lim
h&0

E
1
�

sup
0�t�T

j˙1;h
t �˙1

t j� D 0:

This suffices to prove that .Pn ı .˙ n/�1/n�0 converges to P
1 ı .˙ 1/�1. Importantly,

convergence holds in the joint sense, namely the whole .Pn ı .�n;Bn;˙ n;˙ 0;n/�1/n�0

converges to P
1 ı .�1;B1;˙ 1;˙ 0;1/�1 in the weak sense.

Second Step. Passing to the limit in (3.11), we deduce that, with P
1-probability 1, for all

t 2 Œ0; T�,
X1

t D X1
0 C B1

t C˙1
t C˙0;1

t

D X1
0 C

Z t

0

b.s;X1
s ; �1

s ; Ǫ1
s /ds C

Z t

0

�.s;X1
s ; �1

s /dW1
s

C
Z t

0

�0.s;X1
s ; �1

s /dW0;1
s :

(3.22)

We deduce that the process .
R t
0

b.s;X1
s ; �1

s ; Ǫ 1
s /ds/0�t�T is F

1-adapted. Recalling the
form of b specified in (A1) in assumption Sequence of Necessary SMP, we deduce that
.
R t
0

b2.s/ Ǫ1
s ds/0�t�T is F1-adapted

Now, we have, for almost every t 2 Œ0; T�, with P
1-probability 1,

b2.t/ Ǫ 1
t D lim

p!1
p
Z t

.t�1=p/C

b2.s/ Ǫ1
s ds;

Since F
1 is complete, we obtain that, for t outside a subset of Œ0; T� of zero Lebesgue

measure, b2.t/ Ǫ1
t is F1

t -measurable.
Calling . Ǫ o;1

t /0�t�T the optional projection of . Ǫ1
t /0�t�T given the filtration F

1,
which takes values in A by convexity of A, we deduce that, for almost every t 2 Œ0; T�,
with probability 1 under P1,

b2.t/ Ǫ 1
t D E

1
�
b2.t/ Ǫ 1

t jF1
t

� D b2.t/ Ǫ o;1
t :

Plugging into (3.22), we get:

X1
t D X1

0 C
Z t

0

b.s;X1
s ; �1

s ; Ǫ o;1
s /ds

C
Z t

0

�.s;X1
s ; �1

s /dWs C
Z t

0

�0.s;X1
s ; �1

s /dW0
s :

(3.23)

Third Step. We now pass to the limit in the inequality (A3) of assumption Control Bounds.
We proceed as follows. Since the process �1 is càd-làg, we can find a countable

subset T � Œ0; T�, such that, with probability 1 under P1, �1 is continuous at any point
t 2 Œ0; T� n T . In particular, for any integer N � 1, we can find an increasing sequence
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0 D tN
0 < tN

1 < � � � < tN
N D T , of step-size less than 2T=N, such that tN

i 2 Œ0; T� n T . Given
such a sequence, we also consider a family .˚.tN

i ; �//iD0;��� ;N�1 of bounded and continuous
functions from ˝input � C.Œ0; T�IRd/ into A, with ˝input as in (3.18).

For any n 2 N [ f1g, we define the process:

ˇn;N
t D

N�1X

iD0

1ŒtNi ;tNiC1/
.t/˚

�
tN
i ;X

n
0 ;W

0;n
�^tNi

;�n
�^tNi

;Wn
�^tNi

;Xn
�^tNi

�
; t 2 Œ0; T�; (3.24)

where the notation � ^ tN
i in .W0;n

�^tNi
;�n

�^tNi
;Wn

�^tNi
;Xn

�^tNi
/ indicates that the processes are

stopped at tN
i . By (A2) in Control Bounds, we know that, for any n � 0,

Jn;�n
. Ǫ n/ � Jn;�n

.ˇn;N/;

with ˇn;N D .ˇ
n;N
t /0�t�T .

We now observe that, for each i 2 f0; � � � ;Ng, .�n
�^tNi

/n�0 converges weakly to �1

�^tNi
.

This follows from the fact that, for any t 2 Œ0; T�, the mapping D.Œ0; T�IX / 3 � 7! ��^t is
continuous at any path � that admits t as point of continuity. As above, weak convergence
holds jointly with that of the other processes involved in the analysis. We deduce that the
sequence .ˇn;N/n�0 converges weakly to ˇ1;N in D.Œ0; T�I A/, the convergence holding
jointly with that of the other processes.

Recalling (A1) in assumption Control Bounds and (3.20), we notice from the growth
property of the minimizers . Ǫ n/n�0 in Lemma 3.10 that supn�0 E

nŒsup0�t�T j Ǫ n
t j2� < 1.

Therefore, by Lemma 3.6 and the growth condition (A3) in assumption Sequence of
Optimization Problems, we deduce that:




g.Xn
T ; �

n
T/C

Z T

0

f .s;Xn
s ; �

n
s ; Ǫ n

s /ds

�

n�0

(3.25)

converges in law toward:

g.X1
T ; �1

T /C
Z T

0

f .s;X1
s ; �1

s ; Ǫ 1
s /ds: (3.26)

Now, in order to handle the fact that we do not have any square uniform integrability property
on the processes .˛n/n�0, we split the second term in (3.25) into:

Z T

0

f .s;Xn
s ; �

n
s ; Ǫ n

s /ds D
Z T

0

�
f .s;Xn

s ; �
n
s ; 0/C @˛f .s;Xn

s ; �
n
s ; 0/ � Ǫ n

s

�
ds

C
Z T

0

�
f .s;Xn

s ; �
n
s ; Ǫ n

s / � f .s;Xn
s ; �

n
s ; 0/ � @˛f .s;Xn

s ; �
n
s ; 0/ � Ǫ n

s

�
ds:

Using the various bounds on the coefficients together with (A1) in assumption Control
Bounds, we deduce from a standard uniform integrability argument that:

lim
n!1

E
n
Z T

0

�
f .s;Xn

s ; �
n
s ; 0/C @˛f .s;Xn

s ; �
n
s ; 0/ � Ǫ n

s

�
ds

D E
1

Z T

0

�
f .s;X1

s ; �1
s ; 0/C @˛f .s;X1

s ; �1
s ; 0/ � Ǫ1

s

�
ds:
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By Fatou’s lemma for weak convergence, we also have:

lim inf
n!1

E
n

� Z T

0

�
f .s;Xn

s ; �
n
s ; Ǫ n

s / � f .s;Xn
s ; �

n
s ; 0/ � @˛f .Xn

s ; �
n
s ; 0/ � Ǫ n

s

�
ds

	

� E
1

� Z T

0

�
f .s;X1

s ; �1
s ; Ǫ 1

s / � f .s;X1
s ; �1

s ; 0/ � @˛f .s;X1
s ; �1

s ; 0/ � Ǫ1
s

�
ds

	

;

since, by convexity of f with respect to ˛, the integrands in the left and right-hand sides are
nonnegative.

Returning to (3.25) and (3.26) and observing that the remaining terms may be easily
managed by a uniform integrability argument, we deduce that:

J�1

. Ǫ 1/ � lim inf
n!1

Jn;�n
.ˇn;N/: (3.27)

In order to pass to the limit in the right-hand side, we need to introduce, for each
n 2 N [ f1g, the solution Xn;N to the SDE (3.11) (including the case n D 1)
when set on .˝n;Fn;Pn/ with ˛ D ˇn;N . Arguing as above, we can prove that the
sequence of tuples .Xn

0 ;W
0;n;�n;Wn;Xn;N ;ˇn;N/n�0 converges in distribution toward

.X1
0 ;W0;1;�1;W1;X1;N ;ˇ1;N/. Implicitly, we chose to construct the weak limit

of .Xn
0 ;W

0;n;�n;Wn;Xn;N ;ˇn;N/n�0 on the same probability space .˝1;F1;P1/ as
above. This is possible because the SDE (3.17) is uniquely solvable in the strong sense
when the input .X1

0 ;W0;1;�1;W1;ˇ1;N/ is given. In particular, whatever the complete
filtered probability space .˝;F ;G;P/ carrying a copy .X0;W0;�;W;ˇN/ of the input
.X1
0 ;W0;1;�1;W1;ˇ1;N/ –with the constraint that .W0;W/ is a 2d-Brownian motion

with respect to G and .X0;W0;�;W;ˇN/ is G-progressively measurable–, the solution XN

to (3.17) is necessarily progressively measurable with respect to the complete and right-
continuous augmentation F of the filtration generated by .X0;W0;�;W;ˇN/. To prove
it, it suffices to solve the equation on the space .˝;F ;F;P/; by a standard uniqueness
argument based on Gronwall’s lemma, the solution coincides with XN . In comparison
with Theorem 1.33, which shows the analogue for FBSDEs, there is no need to discuss
any compatibility condition: What really matters here is that .W0;W/ is a G-Brownian
motion. Once XN is known to be F-progressively measurable, we can invoke Theorem 1.33
restricted to the special case when the backward equation is trivial, with .˝;F ;F;P/
as set-up and .�;ˇN/ as environment. Now, the compatibility condition required in the
statement of Theorem 1.33 holds since F is generated by .X0;W0;�;W;ˇN/. This says that
XN is a measurable function of the input and that its law is independent of the probability
space on which it is constructed. In particular, we can reconstruct it for free on the space
.˝1;F1;F1;P1/.

As above, we deduce that:


Z T

0

f .s;Xn;N
s ; �n

s ; ˇ
n;N
s /ds C g.Xn;N

T ; �n
T/

�

n�0

converges in law toward:

Z T

0

f .s;X1;N
s ; �1

s ; ˇ1;N
s /ds C g.X1;N

T ; �1
T /:
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In order to complete the proof, it suffices to prove a uniform integrability argument. Recalling
that the processes .ˇn;N/n�0 are uniformly bounded in n and taking advantage of assumption
Sequence of Optimization Problems, there exists a constant C, independent of n but
depending on N, such that:

jg.Xn;N
T ; �n

T/j C
Z T

0

jf .t;Xn;N
t ; �n

t ; ˇ
n;N
t /jdt

� C
�
1C sup

0�t�T
jXn;N

t j2 C sup
0�t�T

�
dX .0X ; �n

t /
�2
�
:

(3.28)

Now, by a standard stability argument for SDEs, we can find a constant C, independent of n
but depending on N, such that:

sup
0�t�T

jXn;N
t j2 � C

�
jXn
0 j2 C sup

0�t�T

�
dX .0�; �n

t /
�2
�
:

Together with (A1) in assumption Control Bounds, this implies that the sequence .Pn ı
.sup0�t�T jXn;N

t j/�1/n�0 is uniformly square-integrable. Therefore, considering the law
under Pn of the left-hand side in (3.28), we get a sequence of uniformly integrable measures
(uniformly with respect to n � 0). We deduce that the sequence .Jn;�n

.ˇn;N//n�0 converges
to J�1

.ˇ1;N/, so that (3.27) yields:

J�1

. Ǫ 1/ � J�1

.ˇ1;N/: (3.29)

Now, we use the fact that any F
1-progressively measurable and square integrable control

ˇ D .ˇt/0�t�T with values in A may be approximated in L2.Œ0; T� � ˝1I Leb1 ˝
P

1/ by a sequence of controls .ˇ1;N/N�1 for a suitable choice, for each N � 1, of
the functions .˚.tN

i ; �//1�i�N in (3.24). Under the growth and regularity conditions in
assumption Sequence of Optimization Problems, it is then standard to check that the
sequence .J�1

.ˇ1;N//N�1 converges to J�1

.ˇ/, which shows that (3.29) holds true with
J�1

.ˇ1;N/ replaced by J�1

.ˇ/.
The strategy for constructing the functions .˚.tN

i ; �//1�i�N is well known. Denoting by �R

the orthogonal projection from R
k onto the intersection A\B.0;R/where B.0;R/ is the closed

ball of center 0 and of radius R > 0, we first approximate ˇ in L2.Œ0; T��˝1I Leb1 ˝P
1/

by .�R.ˇt//0�t�T . Notice that, since A is closed and convex, so is A \ B.0;R/; therefore, the
projection is well defined. This says that ˇ may be assumed to be bounded. Then, considering
an approximating process of the form:



1

h

Z t

t�h
ˇsds

�

0�t�T

;

for some h > 0, we may assume that ˇ has Lipschitz-continuous paths. Above, ˇ is extended
to negative times by assigning to them a fixed arbitrary value in A. The important point is
that the above approximation is A-valued since A is closed and convex. Then, for any mesh
.tN

i /iD0;��� ;N as in (3.24), we approximate ˇ by the process:


 NX

iD1

ˇtNi�1
1ŒtNi�1;tNi /.t/

�

0�t�T

:
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By time continuity of the process ˇ, each ˇti is measurable with respect to the completion
of the � -field �fX1

0 ;W0;1
s ; �1

s ;W1
s ;X1

s I s � tN
i g. Thus, we can find a version which is

measurable with respect to �fX1
0 ;W0;1

s ; �1
s ;W1

s ;X1
s I s � tN

i g, from which we deduce
that, for each i 2 f0; � � � ;N � 1g, there exists a bounded and measurable function ˚.tN

i ; �/
from ˝input � C.Œ0; T�IRd/ into A such that:

ˇtNi
D ˚.tN

i ;X
1
0 ;W0;1

�^tNi
;�1

�^tNi
;W1

�^tNi
;X1

�^tNi
/:

Using another approximation argument, this time in the Hilbert space:

L2
�
˝input � C.Œ0; T�IRd/;P1 ı .X1

0 ;W0;1

�^tNi
;�1

�^tNi
;W1

�^tNi
;X1

�^tNi
/�1

�
;

we can assume that each ˚.tN
i�1; �/ is continuous. To do so, we may invoke a generalization

of Lusin’s theorem to Euclidean-space-valued functions defined on a Polish space, see the
Notes & Complements below, and then compose by the projection on the convex set A.

Fourth Step. As a consequence of (3.29), we deduce, with the same notation as in (3.23) for
the optional projection . Ǫ o;1

t /0�t�T of . Ǫ 1
t /0�t�T :

J�1

. Ǫ 1/ � J�1

. Ǫ o;1/: (3.30)

Recalling the SDE (3.23) and taking advantage of the convexity of f with respect to ˛, we
observe that:

J�1

. Ǫ 1/ D E
1

� Z T

0

f .s;X1
s ; �1

s ; Ǫ1
s /ds C g.X1

T ; �1
T /

	

� E
1

� Z T

0

f .s;X1
s ; �1

s ; Ǫ o;1
s /ds C g.X1

T ; �1
T /

	

C E
1

� Z T

0

� Ǫ 1
s � Ǫ o;1

s

� � @˛f .s;X1
s ; �1

s ; Ǫ o;1
s /ds

	

C L�1
E

1

�Z T

0

ˇ
ˇ Ǫ1

s � Ǫ o;1
s

ˇ
ˇ2ds

	

:

By definition of the optional projection, we have E1Œ. Ǫ1
s � Ǫ o;1

s / �@˛f .s;X1
s ; �1

s ; Ǫ o;1
s /�

D 0 for all s 2 Œ0; T�. By (3.30), this shows that:

E
1

Z T

0

j Ǫ1
s � Ǫ o;1

s j2ds D 0;

and thus Ǫ 1 has an F
1-progressively measurable modification.

Last Step. Whenever compatibility holds true, the third claim in the statement is an obvious
consequence of the second claim. ut

3.2.5 Proof of the Solvability Theorem

We now turn to the proof of Theorem 3.13. We start with the proof of Proposi-
tion 3.12.
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Proof of Proposition 3.12
The first step of the proof is to show that the random variables .Mn/n�0 are tight.
This will follow from the following general lemma:

Lemma 3.16 Assume that for each integer n � 0, Xn D .Xn
t /0�t�T is a process on

a complete probability space .˝n;Fn;Pn/ with paths in C.Œ0;T�IRd/, such that the
family of processes .Pn ı .Xn/�1/n�0 is tight and .kXnk1 D sup0�t�T jXn

t j/n�0 is
uniformly square-integrable, in the sense that:

lim
a!1 sup

n�0
E

n
�
kXnk211fkXnk1�ag

�
D 0:

Assume also that, for any n � 0, there exist a sub-� -field Gn � Fn together with
a random variable Mn from .˝n;Gn;Pn/ into P2.C.Œ0;T�IR2d// which provides a
version of the conditional law of .Xn;Wn/ given Gn. Then, the random variables
.Mn/n�0 are tight in P2.C.Œ0;T�IR2d//.

Proof. We first prove that the random variables .Mn/n�0 are tight on the space
P.C.Œ0; T�IR2d//, equipped with the topology of weak convergence.

Since the family .Xn;Wn/n�0 is tight on C.Œ0; T�IR2d/, we can find, for any " > 0, a
sequence of compact subsets .Kp � C.Œ0; T�IR2d//p2N such that:

8p 2 N; sup
n�0

P
n
�
.Xn;Wn/ 62 Kp

� � "

4p
:

Therefore,

8p 2 N; sup
n�0

E
n
�
Mn.K{

p /
� � "

4p

and then,

8p 2 N; sup
n�0

P
n
�
Mn.K{

p / � 1

2p

�
� "

2p
:

Summing over p 2 N, we deduce that:

sup
n�0

P
n
�[

p2N

˚
Mn.K{

p / � 1

2p

�� � 2":

Clearly the collection of probability measures m 2 P.C.Œ0; T�IR2d/ such that m.K{

p / � 2�p

for all p � 0 is relatively compact for the topology of weak convergence. This proves that
the sequence .Mn/n�0 of random measures is tight on P.C.Œ0; T�IR2d// equipped with the
weak topology.

In order to prove that tightness holds on P2.C.Œ0; T�IR2d// equipped with the Wasserstein
distance, we make use of the second assumption in the statement. We know that the sequence
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of probability measures .Pn ı .sup0�t�T j.Xn
t ;W

n
t /j/�1/n�0 is uniformly square-integrable.

Therefore, proceeding as above, we can find, for any " > 0, a sequence of positive reals
.ap/p2N such that:

8p 2 N; sup
n�0

E
n
�

sup
0�t�T

j.Xn
t ;W

n
t /j21fsup0�t�T j.Xn

t ;W
n
t /j�apg

�
� "

4p
;

from which we get:

8p 2 N; sup
n�0

E
n


Z

k.x;w/k1�ap

k.x;w/k21dMn.x;w/
�

� "

4p
:

Therefore,

8p 2 N; sup
n�0

P
n


Z

k.x;w/k1�ap

k.x;w/k21dMn.x;w/ � 2�p

�

� "

2p
:

Finally,

sup
n�0

P
n


[

p2N

 Z

k.x;w/k1�ap

k.x;w/k21dMn.x;w/ � 2�p

��

� 2":

The result follows from Corollary (Vol I)-5.6. ut

We now turn to:

Proof of Proposition 3.12. The tightness property of the random variables .Mn/n�0 is a
direct consequence of Lemma 3.16.

It thus remains to prove the compatibility property. To this end, we notice that, for all
real-valued bounded and continuous functions ' on C.Œ0; T�IR2d/ and  on C.Œ0; T�IRd/ �
P2.C.Œ0; T�IR2d//,

E
n
�
'.Xn;Wn/ .W0;n;Mn/

� D E
n

�
Z

C.Œ0;T�IR2d/

'.x;w/dMn.x;w/
�

 .W0;n;Mn/

	

:

Since the mapping P2.C.Œ0; T�IR2d// 3 m 7! R
C.Œ0;T�IR2d/

'.x;w/dm.x;w/ is continuous, we

may pass to the limit as n tends to 1. We denote by .X1
0 ;W0;1;M1;W1;X1/ a process

whose law under P1 is a weak limit of the sequence .Pn ı .Xn
0 ;W

0;n;Mn;Wn;Xn/�1/n�0;
then, we get:

E
1
�
'.X1;W1/ .W0;1;M1/

�

D E
1

�
Z

C.Œ0;T�IR2d/

'.x;w/dM1.x;w/
�

 .W0;1;M1/

	

;

so that, in the limiting setting as well, M1 is a version of the conditional law of .X1;W1/

given .W0;1;M1/.
Now, compatibility follows from the same argument as in the proof of Remark 2.19. We

do it again in order to make the argument self-contained. Following the proof of Lemma 1.7,

it suffices to prove that, for all t 2 Œ0; T�, Fnat;.W0;1;M1/
T and Fnat;.W0;1;M1;X1;W1/;

t are
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conditionally independent given Fnat;.W0;1;M1/
t . Observe indeed that X1

0 , which usually
appears in compatibility conditions, is here encoded by X1.

For a given t 2 Œ0; T�, consider four Borel subsets Ct;CT ;Bt;Et � C.Œ0; T�IRd/ and
two Borel subsets Dt;DT � P2.C.Œ0; T�IR2d//. Letting M1

t D M1 ı E�1
t , where Et W

C.Œ0; T�IR2d/ 3 .x;w/ 7! .xs^t;ws^t/0�s�T 2 C.Œ0; T�IRd/, we have:

E
�
1Ct .W

0;1
�^t /1Dt .M

1
t /1Bt .X

1
�^t/1Et .W

1
�^t/1CT .W

0;1/1DT .M
1
T /
�

D E

h
1Ct .W

0;1
�^t /1Dt .M

1
t /1CT .W

0;1/1DT .M
1
T /M1

�
E�1

t

�
Bt � Et

��i

D E

h
1Ct .W

0;1
�^t /1Dt .M

1
t /1CT .W

0;1/1DT .M
1
T /M1

t

�
Bt � Et

�i
:

Since M1
t .Bt � Et/ is measurable with respect to Fnat;.W0;1;M1/

t , compatibility easily
follows.

The conclusion follows from Proposition 3.11, applied with .Mn/n�0 as sequence of
environments and using the fact that the mapping P2.C.Œ0; T�IR2d// 3 m 7! .m ı
.ex

t /
�1/0�t�T 2 C.Œ0; T�IP2.Rd// is continuous. ut

Conclusion
We now have all the ingredients to complete the proof of Theorem 3.13:

Proof of Theorem 3.13. The first point is to check that, under the assumptions of Theo-
rem 3.13, the assumptions of Proposition 3.12 are satisfied. The main point is to observe
from Lemma 3.16 that the sequence .P0;n ı .Mn/�1/n�0 is tight on P2.C.Œ0; T�IR2d//. As
a consequence, the sequence .P0;n ı .�n/�1/n�0 is tight on C.Œ0; T�IP2.Rd//, where �n D
.�n

t D Mnı.ex
t /

�1/0�t�T . This follows from the fact the mapping P2.C.Œ0; T�IR2d// 3 m 7!
.m ı .ex

t /
�1/0�t�T 2 C.Œ0; T�IP2.Rd// is continuous. Moreover, since the measures .Pn ı

.sup0�t�T jXn
t j/�1/n�0 are assumed to be uniformly square-integrable, it is straightforward to

check that the sequence .P0;n ı .sup0�t�T k�n
t k2/�1/n�0 is also uniformly square-integrable.

This shows that assumption Control Bounds is satisfied.
We now apply Proposition 3.12. There is a complete probability space .˝1;F1;P1/,

equipped with a random process .X1
0 ;W0;1;M1;W1;X1/ and with the complete and

right-continuous filtration F
1 generated by .X1

0 ;W0;1;M1;W1;X1/, for which F
1

is compatible with .X1
0 ;W0;1;M1;W1/ and X1 is an optimal path for the stochastic

optimal control problem (3.16)–(3.17), when it is understood with respect to the filtration
F

1, to the super-environment M1 and to the sub-environment �1 D .�1
t D M1 ı

.ex
t /

�1/0�t�T . Moreover, as shown by the proof of Proposition 3.12, M1 provides a version
of the conditional law of .X1;W1/ given .W0;1;M1/.

The end of the proof is a mere adaptation of the argument used to establish Lemma 2.25.
We duplicate it for the sake of completeness. To do so, we appeal to assumption
FBSDE. We deduce that the process X1 is the unique solution of a uniquely solvable
FBSDE, called .?/, set on the probability space .˝1;F1;P1/ equipped with the
tuple .X1

0 ;W0;1;M1;W1/. We transfer this solution to the extended canonical space
introduced in Chapter 2, see (2.32):

N̋ 0 D P2.Rd/ � C.Œ0; T�IRd/ � P2.C.Œ0; T�IR2d//;

N̋ 1 D Œ0; 1/ � C.Œ0; T�IRd/:
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We equip N̋ 0 with the law of the process .�1
0 ;W

0;1;M1/ under P
1 and we call

. N̋ 0; NF0; NP0/ the completed space. The complete and right-continuous augmentation of
the canonical filtration is denoted by NF0 and the canonical random variable is denoted
by .�0;w;m/. We then denote by � D .�t D m ı .ex

t /
�1/0�t�T the sub-environment

deriving from m. As in (2.32), we equip N̋ 1 with the product of the uniform and the Wiener
laws and we call . N̋ 1; NF1; NP1/ the completed space. The complete and right-continuous
augmentation of the canonical filtration is denoted by NF1 and the canonical random variable
is denoted by .�;w/. Following Definition 2.24, the completion of the product of the spaces
. N̋ 0; NF0; NF0; NP0/ and . N̋ 1; NF1; NF1; NP1/ is denoted by . N̋ ; NF ; NF; NP/. On . N̋ ; NF ; NF; NP/, we may
solve the FBSDE .?/ with X0 D  .�; �0/ as initial conditions, with  as in (2.23).
The forward component of the solution is denoted by X D .Xt/0�t�T . By assumption
FBSDE, X D .Xt/0�t�T is the unique optimal path of the analogue of the stochastic control
problem (3.16)–(3.17), but set on . N̋ ; NF ; NF; NP/ equipped with .X0;w0; .m; �/;w/.

Importantly, by Theorem 1.33, the two distributions NP ı .�0;w0;m;w;X/�1 and P
1 ı

.�1
0 ;W

0;1;M1;W1;X1/�1 are equal. Since �1
0 D M1 ı .ex

0/
�1 and M1 is the

conditional law of .X1;W1/ given .W0;1;M1/ under P1, we also have that m is the
conditional law of .X;w/ given .w0;m/ under NP. Equivalently, for NP0-almost every !0 2 N̋ 0,
L.X.!0; �/;w/ D m.!0/, which completes the proof. ut

3.3 Solving MFGs by Constructing Approximate Equilibria

We now turn to the proof of Theorem 3.1. The strategy consists in two main steps:

(i) We first solve an approximate problem in which the conditioning is discrete;
(ii) Next, we extract a converging subsequence by means of a tightness argument,

using the tools introduced in the previous section.

Throughout the section, V0 denotes an initial distribution in P2.P2.Rd//; also, we
assume that assumptions Coefficients MFG with a Common Noise and FBSDE
MFG with a Common Noise are in force.

3.3.1 Approximate Problem

We let N̋ 00 and N̋ 1 be the canonical spaces P2.Rd/ � C.Œ0;T�IRd/ and Œ0; 1/ �
C.Œ0;T�IRd/. We denote by .�0;w0 D .w0t /0�t�T/ the canonical process on N̋ 00
and by .�;w D .wt/0�t�T/ the canonical process on N̋ 1. The completion of N̋ 00
equipped with the Borel � -field and with the product measure V0 ˝ Wd is denoted
by . N̋ 0; NF0; NP0/. We then call NF0 the complete and right-continuous augmentation
of the canonical filtration. Similarly, the completion of N̋ 1 equipped with the Borel
� -field and with the product measure Leb1 ˝ Wd is denoted by . N̋ 1; NF1; NP1/. The
complete and right-continuous augmentation of the canonical filtration is denoted
by NF1. The completion of the product space is denoted by . N̋ D N̋ 00� N̋ 1; NF ; NF; NP/
along the same lines as in (2.5).
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Discretization of the Common Noise
In order to construct the discrete conditioning, we choose two integers `; n � 1, `
referring to the step size of the space grid and n to the step size of the time grid.
Denoting by bxc the floor part of x, we then let ˘.1/

� be the projection from R into
itself defined by:

˘
.1/
� W R 3 x 7!


��1b�xc if jxj � �;

�sign.x/ if jxj > �;

with � D 2`, and

˘
.d/
� W Rd 3 x D .x1; � � � ; xd/ 7! ˘

.d/
� .x/ D �

˘
.1/
� .x1/; � � � ; ˘.1/

� .xd/
�
:

For any integer j � 1, we also consider the projection ˘.d/
�;j from .Rd/j into itself

defined iteratively by:

˘
.d/
�;1 � ˘

.d/
� ;

˘
.d/
�;jC1.x

1; � � � ; xjC1/ D .y1; � � � ; yj; yjC1/; for .x1; � � � ; xjC1/ 2 .Rd/jC1;

where

.y1; � � � ; yj/ D ˘
.d/
�;j.x

1; � � � ; xj/ 2 .Rd/j; yjC1 D ˘
.d/
�

�
yj C xjC1 � xj

� 2 R
d:

The following lemma will be very useful in the sequel.

Lemma 3.17 With the above notation, for .x1; � � � ; xj/ 2 .Rd/j such that, for any
i 2 f1; � � � ; jg, jxij1 � � � 1, with jxij1 D supkD1;��� ;d j.xi/kj, let:

.y1; � � � ; yj/ D ˘
.d/
�;j.x

1; � � � ; xj/:

Then, provided that j � �, it holds for any i 2 f1; � � � ; jg:

jxi � yij1 � i

�
:

Proof. When i D 1, the result is obvious since jx1j1 � � � 1. When i 2 f2; � � � ; jg, for
j � �, and jyi�1 � xi�1j1 � .i � 1/=�, we have:

jyi�1 C xi � xi�1j1 � � � 1C i � 1
�

< �;

so that:

ˇ
ˇ.yi�1 C xi � xi�1/ �˘.d/

� .yi�1 C xi � xi�1/
ˇ
ˇ
1

� 1

�
:
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Therefore,

jxi � yij1 � ˇ
ˇxi � .yi�1 C xi � xi�1/

ˇ
ˇ
1

C ˇ
ˇ.yi�1 C xi � xi�1/ �˘.d/

� .yi�1 C xi � xi�1/
ˇ
ˇ
1

� ˇ
ˇxi � .yi�1 C xi � xi�1/

ˇ
ˇ
1

C 1

�
D jxi�1 � yi�1j1 C 1

�
� i

�
;

and the result follows by induction. ut

Given an integer n, we let N D 2n, we consider the dyadic time mesh:

ti D iT

N
; i 2 f0; 1; � � � ;Ng; (3.31)

and we define the discrete random variables:

.V1; � � � ;VN�1/ D ˘
.d/
�;N�1

�
w0t1 ; � � � ;w0tN�1

�
: (3.32)

By independence of the increments of the Brownian motion, it is pretty clear that:

Lemma 3.18 Given i D 1; � � � ;N�1, the random vector .V1; � � � ;Vi/ has the whole
J

i as support, with J D f��;��C 1=�;��C 2=�; � � � ; � � 1=�;�gd.

The random variables V1; � � � ;VN�1 must be understood as a discretization of the
common noise w0.

Discretization of the Initial Distribution
We now proceed with the discretization of the initial distribution �0. With the same
notation as above, we may consider �0 ı .˘.d/

� /�1, which is a probability measure
on J.

Here, �0 ı .˘.d/
� /�1 reads as a vector of weights indexed by the elements of

J, namely .Œ�0 ı .˘.d/
� /�1�.x//x2J. We then define new weights, with values in

f0; 1=�2dC4; � � � ; 1 � 1=�2dC4; 1g:

�0 D
X

x2J
˘
.1/

�2dC4

��
�0 ı .˘.d/

� /�1
�
.x/
�
ıx

C



1 �
X

x2J
˘
.1/

�2dC4

��
�0 ı .˘.d/

� /�1
�
.x/
��

ı0:

(3.33)

Importantly, �0 D .�0.x//x2J forms a random variable with values in the set
f0; 1=�2dC4; � � � ; 1gJ. Its law is denoted by L.�0/ and we denote by Supp.L.�0// �
f0; 1=�2dC4; � � � ; 1gJ its support. The law of �0, seen as a random variable with
values in P2.Rd/, is denoted by L.�0/ and its support is S

0 D Supp.L.�0// D
fPx2J %.x/ıxI % 2 Supp.L.�0//g.
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By independence of �0 and w0, the random variable .�0;V1; � � � ;VN�1/ has the
whole finite product space S

0 � J
N�1 as its topological support.

Discretized Input
Below, we call a discretized input a family # D .#0; � � � ; #N�1/ where, for any
i D 0; � � � ;N � 1,

# i W S0 � J
i ! C

�
Œti; tiC1�IP2.Rd/

�
; (3.34)

P2.Rd/ being endowed with the 2-Wasserstein distance with the constraint that,
when i D 0, #0.&/ D & for all & 2 S

0. We then let, for all .&; v1; � � � ; vN�1/ 2
S
0 � J

N�1 and t 2 Œ0;T�,
8
<

:

#t.&; v1; � � � ; vN�1/ D �
# i.&; v1; � � � ; vi/

�

t;

t 2 Œti; tiC1/; i 2 f0; � � � ;N � 1g;
#T.&; v1; � � � ; vN�1/ D �

#N�1.&; v1; � � � ; vN�1/
�

T ;

(3.35)

which permits to define the P2.Rd/-valued càd-làg process:

�t D #t.�0;V1; � � � ;VN�1/; t 2 Œ0;T�: (3.36)

Given such an input # , we consider the associated forward-backward SDE (3.4)
with � D .�t/0�t�T given by (3.36). By assumption FBSDE MFG with a
Common Noise, we know that, for a given discretized input # , the FBSDE (3.4)
set on the space . N̋ ; NF ; NF; NP/ equipped with .X0 D  .�; �0/;w0;�;w/ has a unique
solution, with as in (2.23). Notice that there is no need to check any Compatibility
Condition since the environment � is adapted with respect to the filtration generated
by .�0;w0/. For the same reason, pay attention that M � 0.

We then call discretized output the family ˚.#/ D .'0.#/; � � � ; 'N�1.#// of
measures:

8
<

:

˚t.&; v1; � � � ; vN�1/ D �
' i.#/.&; v1; � � � ; vi/

�

t;

t 2 Œti; tiC1/; i 2 f0; � � � ;N � 1g;
˚T.&; v1; � � � ; vN�1/ D �

'N�1.#/.&; v1; � � � ; vN�1/
�

T ;

with

' i.#/.&; v1; � � � ; vi/ W Œti; tiC1� 3 t 7!L
�
Xt j�0 D &;V1 D v1; � � � ;Vi D vi

�
;

(3.37)

for & 2 S
0 and v1; � � � ; vi 2 J, which is well defined as a function from S

0 � J
i

into C.Œti; tiC1�IP2.Rd// since the law of .�0;V1; � � � ;Vi/ has the whole S
0 � J

i as
support.
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Pay attention that ˚.#/ and .˚t.#//0�t�T denote two slightly different objects,
but we can easily associate .˚t.#//0�t�T with ˚.#/ and conversely.

The purpose of the next section is to prove:

Theorem 3.19 Within the above framework, including two integers `; n � 1, let
� D 2` and N D 2n. Then, the mapping ˚ defined by (3.37) has a fixed point
# D .#0; � � � ; #N�1/, .#0; � � � ; #N�1/ forming a discretized input as in (3.34). It
satisfies:

sup
t2Œ0;T�

sup
&2S0

sup
v1;��� ;vN�12J

� Z

Rd
jxj4�˚t.#/.&; v1; � � � ; vN�1/

�
.dx/

	

� C;

and

sup
s;t2Œ0;T�

sup
&2S0

sup
v1;��� ;vN�12J

h
W2

�
˚t.#/.&; v1; � � � ; vN�1/; ˚s.#/.&; v1; � � � ; vN�1/

�i

� C.t � s/1=2;

for a constant C � 0, possibly depending on ` and n.

3.3.2 Solvability of the Approximate Fixed Point Problem

This subsection is devoted to the proof of Theorem 3.19, the values of `;� and n;N
being fixed, with � D 2` and N D 2n throughout.

Preliminary Lemmas
The proof is divided into several lemmas. Given a discretized input # , we first prove
estimates which will be needed later on. We denote by .X;Y;Z;Z0;M � 0/ the
solution to the FBSDE (3.4) driven by � given by (3.36), and by the initial condition
X0 D  .�; �0/, with �0 as in (3.33).

Lemma 3.20 There exists a constant C, depending on ` and n but not on # , such
that, for any i 2 f0; � � � ;N � 1g, for any s; t 2 Œti; tiC1� and for any & 2 S

0 and
v1; � � � ; vi 2 J

i,

W2

�
L
�
Xt j�0 D &;V1 D v1; � � � ;Vi D vi

�
; L
�
Xs j�0 D &;V1 D v1; � � � ;Vi D vi

��

� C.t � s/1=2: (3.38)

In particular, for each i 2 f0; � � � ;N � 1g, ' i.#/ appears as a mapping from
S
0 � J

i into C.Œti; tiC1�IP2.Rd//, P2.Rd/ being endowed with the 2-Wasserstein
distance W2.
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Proof. For a given .&; v1; � � � ; vN�1/ 2 S
0 � J

N�1, we know that PŒ�0 D &;V1 D
v1; � � � ;VN�1 D vN�1� > 0. Therefore, for any i 2 f0; � � � ;N � 1g, for any s; t 2 Œti; tiC1�,

W2

�
L
�
Xt j�0 D &;V1 D v1; � � � ;Vi D vi

�
;L
�
Xs j�0 D &;V1 D v1; � � � ;Vi D vi

��

� NE�jXt � Xsj2 j�0 D &;V1 D v1; � � � ;Vi D vi
�1=2

�

 NE�jXt � Xsj2

�

NP��0 D &;V1 D v1; � � � ;Vi D vi
�

�1=2

:

Since the coefficients F and G satisfy the growth condition from (A5) in assumption FBSDE
MFG with a Common Noise, we can find a constant C, independent of the input # , such
that:

NE
�

sup
t2Œ0;T�

jYtj4 C

Z T

0

�jZtj2 C jZ0t j2�dt

�2	

� C;

which is a quite standard inequality in BSDE theory since M � 0 here.
Using the fact that the coefficients B, � , and �0 satisfy the growth condition from (A5)

in assumption FBSDE MFG with a Common Noise and applying Gronwall’s lemma, we
deduce that there exists a constant C, independent of the input # , such that:

NE
h

sup
t2Œ0;T�

jXtj4
i

� C; (3.39)

where we used the fact that any realization of �0 has support included in Œ��;��d.
Finally, using once again (A5) in assumption FBSDE MFG with a Common Noise, we

can find a constant C such that, for any s; t 2 Œ0; T�,

NE�jXt � Xsj2
� � Cjt � sj:

Since

inf
&2S0

inf
v1;��� ;vN�12J

h NP��0 D &;V1 D v1; � � � ;VN�1 D vN�1

�i
> 0;

we can easily complete the proof. ut

With the notation introduced in (3.37), Lemma 3.20 says that:

8& 2 S
0; 8v1; � � � ; vN�1 2 J; 8i 2 f0; � � � ;N � 1g; 8s; t 2 Œti; tiC1�;

ˇ
ˇ
�
' i.#/.&; v1; � � � ; vi/

�

t � �
' i.#/.&; v1; � � � ; vi/

�

s

ˇ
ˇ � Cjt � sj1=2;
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so that, for each i 2 f0; � � � ;N � 1g, ' i.#/.&; v1; � � � ; vi/ 2 C.Œti; tiC1�IP2.Rd//

or, equivalently, ' i.#/ 2 ŒC.Œti; tiC1�IP2.Rd//�S
0�Ji

. Put differently, we can view
˚ D .'0; � � � ; 'N�1/ as a mapping from the set ŒC.Œti; tiC1�IP2.Rd//�S

0�Ji
into itself:

˚ D �
'0; � � � ; 'N�1� W

N�1Y

iD0

�
C.Œti; tiC1�IP2.Rd//

�S0�Ji !
N�1Y

iD0

�
C.Œti; tiC1�IP2.Rd//

�S0�Ji

.#0; � � � ; #N�1/ D # 7! ˚.#/ D �
'0.#/; � � � ; 'N�1.#/

�
:

As a by-product, we get the following reformulation of Lemma 3.20:

Lemma 3.21 There exists a constant C, depending on ` and n, such that, for any
discretized input # D .#0; � � � ; #N�1/, the output ˚.#/ satisfies:

sup
t2Œ0;T�

sup
&2S0

sup
v1;��� ;vN�12J

� Z

Rd
jxj4�˚t.#/.&; v1; � � � ; vN�1/

�
.dx/

	

� C; (3.40)

and

sup
s;t2Œ0;T�

sup
&2S0

sup
v1;��� ;vN�12J

h
W2

�
˚t.#/.&; v1; � � � ; vN�1/; ˚s.#/.&; v1; � � � ; vN�1/

�i

� C.t � s/1=2: (3.41)

Proof. The proof of (3.40) uses the same ingredients as the proof of Lemma 3.20. First,
we observe that the support of �0;V1; � � � ;VN�1 is of finite cardinality. Second, we notice
from (3.39) that, for any input # 2 QN�1

iD0 ŒC.Œti; tiC1�IP2.Rd//�S
0�Ji

, the forward component
X of the system (3.4) satisfies:

sup
0�t�T

NE�jXtj4
� � C;

for some constant C independent of the input # . Inequality (3.40) easily follows. Inequal-
ity (3.41) then follows from (3.38). ut

Final Step
Here is now the final step in the proof of Theorem 3.19.

Lemma 3.22 With the same notation as in (3.34) and (3.35), consider the set E of
discretized inputs # such that, for any i 2 f0; � � � ;N � 1g, any t 2 Œti; tiC1�, any
& 2 S

0 and any v1; � � � ; vi 2 J
i,

Z

Rd
jxj4�# i.&; v1; � � � ; vi/

�

t.dx/ � C; (3.42)

where the constant C is the same as in Lemma 3.21. Then, the restriction of the
mapping ˚ to E has a fixed point.
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Proof. Following the proof of Theorem (Vol I)-4.39, existence of a fixed point is proved
by means of Schauder’s fixed point theorem. To this end, we first notice that E is a convex
subspace of the product space:

N�1Y

iD0

�
C
�
Œti; tiC1�IM1

f .R
d/
��S0�Ji

;

where M1
f .R

d/ denotes the set of finite signed measures � over Rd such that Rd 3 x 7! jxj
is integrable under j�j equipped with the Kantorovich-Rubinstein norm k�kKR?defined as

k�kKR? D j�.Rd/j C sup

 Z

Rd
h.x/d�.x/I h 2 Lip1.R

d/; h.0/ D 0

�

:

In order to apply Schauder’s fixed point theorem, we prove that ˚ is continuous and that its
range has a compact closure.

Continuity follows from (A2) in assumption FBSDE MFG with a Common Noise, see
also (1.19) and Theorem 1.53. Given two inputs # and # 0 in E , we call .X;Y;Z;Z0;M/ and
.X0;Y0;Z0;Z00;M0/ the corresponding solutions to the FBSDE (3.4) with M � M0 � 0,
when driven by � and �0 associated with # and # 0 through (3.36) and by the same initial
condition X0 D  .�; �0/. We then have:

NE
h

sup
0�t�T

jXt � X0
t j2
i

� C NE
�
ˇ
ˇG.XT ; �T

� � G.XT ; �
0
T/
ˇ
ˇ2

C
Z T

0

ˇ
ˇ
�
B;F; �; �0

��
t;Xt; �t; Yt; Zt; Z

0
t

�

� �
B;F; �; �0

��
t;Xt; �

0
t ; Yt; Zt; Z

0
t

�ˇ
ˇ2dt

	

;

for a constant C independent of # and # 0. Observe that:

NE
hˇ
ˇG.XT ; �T

� � G.XT ; �
0
T/
ˇ
ˇ2
i

�
X

&2S0

X

v1;��� ;vN�12J

NE
hˇ
ˇG
�
XT ; Œ#

N�1.&; v1; � � � ; vN�1/�T
�

� G
�
XT ; Œ.#

0/N�1.&; v1; � � � ; vN�1/�T
�ˇ
ˇ2
i
:

Similarly,

NE
� Z T

0

ˇ
ˇ
�
B;F; �; �0

��
t;Xt; �t; Yt; Zt; Z

0
t

� � �
B;F; �; �0

��
t;Xt; �

0
t ; Yt; Zt; Z

0
t

�ˇ
ˇ2dt

	

�
N�1X

iD0

X

&2S0

X

v1;��� ;vN�12J

NE
� Z tiC1

ti

ˇ
ˇ
�
B;F; �; �0

��
t;Xt; Œ#

i.&; v1; � � � ; vi/�t; Yt; Zt; Z
0
t

�

� �
B;F; �; �0

��
t;Xt; Œ.#

0/i.&; v1; � � � ; vi/�t; Yt; Zt; Z
0
t

�ˇ
ˇ2dt

	

:
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Thanks to the growth and continuity properties in assumptions FBSDE MFG with a
Common Noise and Coefficients MFG with a Common Noise, we deduce that:

lim
# 0!#

NE
h

sup
0�t�T

jXt � X0
t j2
i

D 0:

Following the same argument as in the proof of Lemma 3.21, we can find a constant C,
independent of # and # 0, such that, for any i 2 f0; � � � ;N�1g, any & 2 S

0, any v1; � � � ; vi 2 J

and any t 2 Œti; tiC1/,

W2

�
L.Xt j�0 D &;V1 D v1; � � � ;Vi D vi/;L.X0

t j�0 D &;V1 D v1; � � � ;Vi D vi/
�

� C NE�jXt � X0
t j2
�1=2

;

from which we deduce that:

lim
# 0!#

sup
iD0;��� ;N�1

sup
v1;��� ;vi2J

sup
s2Œti;tiC1�

W2

��
' i.#/.&; v1; � � � ; vi/

�

s;
�
' i.# 0/.&; v1; � � � ; vi/

�

s

�
D 0;

which shows that the restriction of ˚ to E is continuous.
We now establish the relative compactness of the range of ˚ . To this end, we are given an

input # 2 E . We then observe that, for any i 2 f0; � � � ;N � 1g, t 2 Œti; tiC1/ and A 2 B.Rd/,

NP�Xt 2 A
� D NE��˚t.#/.�0;V1; � � � ;VN�1/

�
.A/
�
: (3.43)

Using again the fact that the support of the random vector .�0;V1; � � � ;VN�1/ has finite
cardinality, we deduce that there exists a constant, still denoted by C, possibly depending
upon ` and n, such that, for any & 2 S

0, any v1; � � � ; vN�1 2 J and any t 2 Œ0; T�,
�
˚t.#/.&; v1; � � � ; vN�1/

�
.A/ � C NP�Xt 2 A

�
:

By (3.39), we know that, for any " > 0, we can find a compact subset K � R
d (K being

independent of the input �), such that:

sup
0�t�T

NP�Xt 62 K
�
< ":

Therefore, for any & 2 S
0, any v1; � � � ; vN�1 2 J and any t 2 Œ0; T�,
�
˚t.#/.&; v1; � � � ; vN�1/

��
K{

� � C":

It follows that there exists a subset K � P.Rd/, independent of # , compact for the topology
of weak convergence, such that, for any & 2 S

0, any v1; � � � ; vN�1 2 J, and any t 2 Œ0; T�,

˚t.#/.&; v1; � � � ; vN�1/ 2 K: (3.44)

Using (3.40), we conclude that ˚t.#/ always (i.e. for any t 2 Œ0; T� and any input # ) lives in
a compact subset, still denoted by K, of P2.Rd/ endowed with the Wasserstein distance W2.
We emphasize the fact that K is independent of # .
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Finally, (3.41) allows us to use Arzelà-Ascoli theorem and infer that, for any i 2
f0; � � � ;N � 1g, there exists a compact subset C.Œti; tiC1�IP2.Rd// that contains the mapping

Œti; tiC1� 3 t 7! ' i.#/.&; v1; � � � ; vi/ 2 C
�
Œti; tiC1�IP2.Rd/

�
;

for all input # 2 E , any & 2 S
0 and any v1; � � � ; vN�1 2 J

N�1. Since &; v1; � � � ; vN�1 are
restricted to a finite set, we conclude that the range of ˚ has a compact closure in E . ut

3.3.3 Tightness of the Approximating Solutions

The goal is now to let the parameters ` and n in the statement of Theorem 3.19
vary while still using the notations � D 2` and N D 2n. Accordingly, in the
definition (3.37), we now specify the dependence of the various terms upon the
parameters ` and n defined in Subsection 3.3.1. So we write ˚`;n for ˚ , �`0 for �0,
and .V`;n

i /1�i�N�1 for .Vi/1�i�N�1. We call # `;n a fixed point of ˚`;n and we let:

�`;n D
�
�`;nt D # `;n

t

�
�`0; .V

`;n
1 ; � � � ;V`;n

N�1/
��

0�t�T
: (3.45)

We then denote by .X`;n;Y`;n;Z`;n;Z0;`;n;M`;n � 0/ the solution of the
FBSDE (3.4) driven by �`;n and with the initial condition X`0 D  .�; �`0/,
the function  being defined as in (2.23), see also Lemma (Vol I)-5.29. So
.X`;n;Y`;n;Z`;n;Z0;`;n/ solves the forward-backward SDE of the conditional
McKean-Vlasov type:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dX`;nt D B
�
t;X`;nt ; �

`;n
t ;Y`;nt ;Z`;nt

�
dt

C��t;X`;nt ; �
`;n
t

�
dwt C �0

�
t;X`;nt ; �

`;n
t

�
dw0t ;

dY`;nt D �F
�
t;X`;nt ; �

`;n
t ;Y`;nt ;Z`;nt ;Z0;`;nt

�
dt

CZ`;nt dwt C Z0;`;nt dw0t ; t 2 Œ0;T�;

(3.46)

with Y`;nT D G.X`;nT ; �
`;n
T / as terminal condition. Recall that in the present situation,

there is no additional martingale term M`;n D .M`;n
t /0�t�T since the environment is

adapted to the noise w0.
Saying that �`;n satisfies (3.45) is the same as saying that �`;n D .�

`;n
t /0�t�T

satisfies the discrete McKean-Vlasov constraint:

8i 2 f0; � � � ;N � 1g; 8t 2 Œti; tiC1/; �`;nt D L
�
X`;nt j�`0;V`;n

1 ; � � � ;V`;n
i

�
;

the equality remaining true when i D N � 1 and t D tN D T .
The purpose of this paragraph is to investigate the tightness properties of the

families
� NP ı ��`;n D .�`;nt /0�t�T

��1�

`;n�1 and
� NP ı �X`;n D .X`;nt /0�t�T

��1�

`;n�1:
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Tightness of
�
X`;n�

`;n�1

We start with an important a priori estimate.

Lemma 3.23 There exists a constant C such that, for any `; n � 1,

NE� sup
0�t�T

jX`;nt j2� � C:

Moreover, the family . NP ı .X`;n/�1/`;n�1 is tight on the space C.Œ0;T�IRd/ and the
family .sup0�t�T jX`;nt j/`;n�1 is uniformly square-integrable under NP.

Proof.

First Step. We shall use the following inequality repeatedly. From the definition (3.33), we
have, for any a � 0,

Z

Rd
jxj211fjxj1�agd�`0.x/

�
Z

Rd
jxj211fjxj1�agd

�
�0 ı �˘.d/

�

��1�
.x/

D
Z

Rd

ˇ
ˇ˘

.d/
� .x/

ˇ
ˇ2
1

1
fj˘

.d/
� .x/j1�ag

d�0.x/ �
Z

Rd

�
1C jxj�21fjxj�a�1gd�0.x/:

(3.47)

To pass from the first to the second line, we used the fact that the weight of any nonzero x in
J is less under �`0 than under �0 ı .˘.d/

� /�1, see (3.33).
Therefore,

NE
Z

Rd
jxj211fjxj1�agd�`0.x/ � NE

Z

Rd

�
1C jxj�21fjxj�a�1gd�0.x/: (3.48)

Now, observe that:

NE
Z

Rd

�
1C jxj�2d�0.x/ � 2

�
1C NE�M2.�

0/2
��
< 1;

the last inequality following from the fact that V0 2 P2.P2.Rd//. We deduce that:

sup
`�1

NE
Z

Rd
jxj2d�`0.x/ < 1: (3.49)

Moreover, by Lebesgue’s dominated convergence theorem,

lim
a!1

NE
Z

Rd

�
1C jxj�21fjxj�a�1gd�0.x/ D 0;

and thus

lim
a!1

sup
`�1

NE
Z

Rd
jxj21fjxj�agd�`0.x/ D 0: (3.50)
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Second Step. From (3.49), we notice that:

sup
`�1

NE�jX`0j2
�
< 1:

Now, thanks to (A5) in assumption FBSDE MFG with a Common Noise, we can prove that
there exists a constant C, independent of ` and n, such that:

NE
�

sup
t2Œ0;T�

jY`;nt j4 C

Z T

0

�jZ`;nt j2 C jZ0;`;nt j2�dt

�2	

� C; (3.51)

where .X`;n;Y`;n;Z`;n;Z0;`;n/ is the solution of FBSDE (3.46). The above inequality is similar
to that used in the proof of Lemma 3.20, but here we emphasize that the constant C therein
is independent of the parameters n and `.

Plugging (3.51) and (3.49) into the forward equation satisfied by X`;n in the FBSDE (3.4)
and using (A5) in assumption FBSDE MFG with a Common Noise and (A2) in assumption
Coefficients MFG with a Common Noise, we deduce that:

sup
`;n�1

NE� sup
0�t�T

jX`;nt j2� < 1:

Tightness of the family . NP ı .X`;n/�1/`;n�1 is then proved by means of Aldous’ criterion as
in the proof of Lemma 3.14.

Third Step. We now prove that the family .sup0�t�T jX`;nt j/`;n�1 is uniformly square-
integrable.

To do so, we observe first that the family .jX`0j/`�1 is uniformly square-integrable, namely,

lim
a!1

sup
`�1

NE�jX`0j21fjX`0j�ag

� D 0; (3.52)

which follows from (3.50) together with the fact that�`0 is the conditional law of X`0 given�`0.
In order to formulate our second observation, we define NF0;`;n as the filtration:

NF0;`;n
t D �

˚
�`0;V

`;n
1 ; � � � ;V`;n

i

�
; t 2 Œti; tiC1/; i 2 f1; � � � ;Ng;

NF0;`;n
T D �

˚
�`0;V

`;n
1 ; � � � ;V`;n

N�1

�
:

Notice that NF0;`;n
0 may be just denoted by NF0;`

0 . Then, we claim that for any t 2 Œ0; T�:

NE
h
M2

�
�`;nt

�4 ˇˇ NF0;`
0

i
D NE

h NE�jX`;nt j2 j NF0;`;n
t

�2 ˇˇ NF0;`
0

i

D NE
h NE
h NE�jX`;nt j2 j NF0

t

� ˇ
ˇ NF0;`;n

t

i2 ˇ
ˇ NF0;`

0

i

� NE
h NE
h NE�jX`;nt j2 j NF0

t

�2 ˇˇ NF0;`;n
t

i ˇ
ˇ NF0;`

0

i

D NE
h NE�jX`;nt j2 j NF0

t

�2 ˇˇ NF0;`
0

i
:

(3.53)

Also, recall from Proposition 2.17 that NEŒjX`;nt j2 j NF0
t � merely writes NE1ŒjX`;nt j2�, up to a NP0

exceptional event.
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Now, applying Itô’s formula and taking advantage of the growth conditions on the
coefficients, we can find a constant C, independent of ` and n, such that for all t 2 Œ0; T�:

NE1�jX`;nt j2� � C

�

1C NE1�ˇˇX`0j2
�C

Z t

0

� NE1�jX`;ns j2�C M2.�
`;n
s /2

�
ds

C
Z t

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

	

C 2 NE1

Z t

0

X`;ns � �0.s;X`;ns ; �`;ns /dW0
s

�

:

(3.54)

By stochastic Fubini’s theorem, the last term is equal to:

NE1

Z t

0

X`;ns � �0.s;X`;ns ; �`;ns /dW0
s

�

D
Z t

0

NE1
h�
�0.s;X`;ns ; �`;ns /

��
X`;ns

i
� dW0

s :

Our goal now is to take the square and then the conditional expectation given NF0;`
0 under NP0

in (3.54). As a preliminary step, notice that:

NE0
�
Z t

0

NE1
h�
�0.s;X`;ns ; �`;ns /

��
X`;ns

i
� dW0

s

�2 ˇ
ˇ NF0;`

0

	

� C NE0
� Z t

0

ˇ
ˇ
ˇ NE1

h�
�0.s;X`;ns ; �`;ns /

��
X`;ns

iˇ
ˇ
ˇ
2

ds
ˇ
ˇ NF0;`

0

	

� C NE0
� Z t

0

h
1C NE1�jX`;ns j2�2 C M2.�

`;n
s /4

i
ds
ˇ
ˇ NF0;`

0

	

;

the constant C being allowed to vary from line to line provided that it remains independent
of ` and n.

Returning to (3.54), we get:

NE0
h NE1�jX`;nt j2�2 j NF0;`

0

i
� C

�

1C NE0
h NE1�ˇˇX`0j2

�2 j NF0;`
0

i

C
Z t

0

� NE0
h NE1�jX`;ns j2�2 C M2.�

`;n
s /4 j NF0;`

0

i�
ds

C NE0
�
Z T

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

		

:

Now, by (3.53), we deduce that for any t 2 Œ0; T�:

NE0
h NE1�jX`;nt j2�2 j NF0;`

0

i
� C

�

1C NE0
h NE1�ˇˇX`0j2

�2 j NF0;`
0

i

C
Z t

0

NE0
h NE1�jX`;ns j2�2 j NF0;`

0

i
ds

C NE0
�
Z T

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

		

:
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By a standard application of Gronwall’s lemma, we obtain:

sup
0�t�T

NE0
h NE1�jX`;nt j2�2 j NF0;`

0

i
� C

�

1C NE0
h NE1�ˇˇX`0j2

�2 j NF0;`
0

i

C NE0
�
Z T

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

		

:

Observe that:

NE0
h NE1�ˇˇX`0j2

�2 j NF0;`
0

i
D

Z

Rd
jxj2d�`0.x/

�2

D M2.�
`
0/
4:

Therefore, by invoking (3.53) again, we conclude that for any t 2 Œ0; T�:

sup
0�t�T

NE0
h
M2.�

n;`
t /4 j NF0;`

0

i
� C

�

1C M2.�
`
0/
4

C NE0
�
Z T

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

		

:

Fourth Step. Observe that, in the above inequality, the term in the left-hand side is also equal
to:

sup
0�t�T

NE0
h
M2.�

n;`
t /4 j NF0;`

0

i
D sup

0�t�T

NE
h
M2.�

n;`
t /4 j NF `

0

i
;

where NF `
0 D �f�`0; �g is a sub-� -field of NF0.

Using the conclusion of the third step and reapplying Gronwall’s lemma, we obtain:

NE
h

sup
0�t�T

jX`;nt j4 j NF `
0

i1=2 � C




1C jX`0j2 C M2.�
`
0/
2

C NE0
�
Z T

0

� NE1�jY`;ns j2 C jZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

	1=2

C NE
�
Z T

0

�jY`;nt j2 C jZ`;nt j2�dt

�2 ˇ
ˇ NF `

0

	1=2�

:

By (3.47), the sequence .M2.�
`
0/
2/`�1 is bounded by C.1C M2.�

0/2/. Also, from (3.51), we
know that:

sup
`;n�1

NE
�

NE0
�
Z T

0

� NE1�jY`;ns j2CjZ`;ns j2�
�

ds

�2 ˇ
ˇ NF0;`

0

	

C NE
�
Z T

0

�jY`;nt j2CjZ`;nt j2�dt

�2 ˇ
ˇ NF `

0

		

<1:

Thus, recalling (3.52), the family . NEŒsup0�t�T jX`;nt j4 j NF `
0 �
1=2/`;n�1 is uniformly integrable.

We deduce that the family .sup0�t�T jX`;nt j2/`;n�1 is uniformly integrable, see for instance
(Vol I)-(4.45). ut
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Tightness of
�
�`;n

�
`;n�1

We now look at the flows of equilibrium measures ..�`;nt /0�t�T/`;n�1. They are only
right continuous in time. For that reason, tightness must be investigated in the space
D.Œ0;T�IP2.Rd//. In order to avoid some of the unpleasant idiosyncrasies of the
topology of that space, we work with continuous interpolations of .�`;nt /0�t�T , prove
that they are tight on C.Œ0;T�IP2.Rd//, and then show that .�`;nt /0�t�T stays close
enough to its interpolation as ` and n tend to infinity.

We first define a lifting of each .�
`;n
t /0�t�T . Imitating the role of M in

Definition 2.16 of an equilibrium, we let:

M`;n D L
�
.X`;nt ;wt/0�t�T j�`0;V`;n

1 ; � � � ;V`;n
N�1

�
: (3.55)

For any t 2 Œ0;T�, we define:

N�`;nt D M`;n ı .ex
t /

�1 D L
�
X`;nt j�`0;V`;n

1 ; � � � ;V`;n
N�1

�
;

and we prove the following tightness result:

Lemma 3.24 The family . NP ı .M`;n/�1/`;n�1 is tight on P2.C.Œ0;T�IR2d//. In
particular, the family . NP ı . N�`;n/�1/`;n�1 is tight on C.Œ0;T�IP2.Rd//.

Proof. The first claim is a straightforward adaptation of Lemma 3.16. The second claim
follows from the fact that the mapping P2.C.Œ0; T�IR2d// 3 m 7! .m ı .ex

t /
�1/0�t�T 2

C.Œ0; T�IP2.Rd// is continuous. ut

The distance between the interpolation N�`;n and �`;n is controlled by the
following lemma:

Lemma 3.25 The following limit holds true:

lim
n!1 sup

`�1
NE
h

sup
0�t�T

W2.�
`;n
t ; N�`;nt /2

i1=2 D 0:

Proof.

First Step. We first notice that, for any i 2 f0; � � � ;N � 1g, X`;nti is independent of the � -
algebra generated by .w0s � w0ti ;ws � wti/, s 2 Œti; T�. Therefore, we have:

�`;nti DL
�

X`;nti

ˇ
ˇ�`0;V

`;n
1 ; � � �;V`;n

i ; w0.iC1/T=N�w0iT=N ;w
0
.iC2/T=N � w0.iC1/T=N ;w

0
T�w0.N�1/T=N

�
:

By construction, see (3.32), V`;n
iC1
; � � � ;V`;n

N�1 belong to the � -field:

�
n
V`;n
1 ; � � � ;V`;n

i ;w0.iC1/T=N � w0iT=N ;w
0
.iC2/T=N � w0.iC1/T=N ;w

0
T � w0.N�1/T=N

o
;
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from which we deduce that:

�`;nti D L
�
X`;nti

ˇ
ˇ�`0;V

`;n
1 ; � � � ;V`;n

N�1

� D N�`;nti :

Second Step. Therefore, for any i 2 f0; � � � ;N � 1g,

sup
t2Œti;tiC1�

W2

� N�`;nt ; �`;nt

�2 � 2 sup
t2Œti;tiC1�

W2

� N�`;nt ; N�`;nti

�2 C 2 sup
t2Œti;tiC1�

W2

�
�`;nt ; �`;nti

�2

� 2 NE
h

sup
t2Œti;tiC1�

ˇ
ˇX`;nt � X`;nti

ˇ
ˇ2
ˇ
ˇ�`0;V

`;n
1 ; � � � ;V`;n

N�1

i

C 2 NE
h

sup
t2Œti;tiC1�

ˇ
ˇX`;nt � X`;nti

ˇ
ˇ2
ˇ
ˇ�`0;V

`;n
1 ; � � � ;V`;n

i

i
;

and then:

sup
t2Œ0;T�

W2

� N�`;nt ; �`;nt

�2 � 2 NE
h

sup
jt�sj�2�n

ˇ
ˇX`;nt � X`;ns

ˇ
ˇ2
ˇ
ˇ�`0;V

`;n
1 ; � � � ;V`;n

N�1

i

C 2 sup
iD0;��� ;N�1

NE
h

sup
jt�sj�2�n

ˇ
ˇX`;nt � X`;ns

ˇ
ˇ2
ˇ
ˇ�`0;V

`;n
1 ; � � � ;V`;n

i

i
:

Taking expectations and applying Doob’s inequality, we get:

NE
h

sup
t2Œ0;T�

W2

� N�`;nt ; �`;nt

�2
i

� C NE
h

sup
jt�sj�2�n

ˇ
ˇX`;nt � X`;ns

ˇ
ˇ2
i
:

By Lemma 3.23 and by a standard uniform integrability argument, we get that the right-hand
side tends to 0 as n tends to 1, uniformly in ` � 1. ut

3.3.4 Extraction of a Subsequence

By Lemmas 3.23 and 3.24, the sequence . NP ı .w0;M`;n;X`;n;w/�1/`;n�1 is tight on
the space

C.Œ0;T�IRd/ � P2
�
C.Œ0;T�IR2d/

� � C.Œ0;T�IRd/ � C.Œ0;T�IRd/:

We now aim at making use of Theorem 3.13.
In order to do so, we must check that the family of optimal controls . Ǫ `;n/`;n�1

associated with the optimal paths .X`;n/`;n�1 satisfy (A2) in assumption Control
Bounds:

Lemma 3.26 There exists a constant C such that, for any `; n � 1,

NE
Z T

0

j Ǫ `;nt j2dt � C:
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Proof. The proof is based on the fact that, for each `; n � 1, Ǫ `;n is equal to

Ǫ `;n D � L̨ .t;X`;nt ; �`;nt ; Y`;nt ; Z`;nt /
�

0�t�T :

We complete it by combining (A5) in assumption FBSDE MFG with a Common Noise
with the bounds for .X`;n;Y`;n;Z`;n/`;n�1 in the statement of Lemma 3.23 and in its proof,
see for instance (3.51). ut

We also need to guarantee that, asymptotically, the initial measure �`0 gets to �0:

Lemma 3.27 As ` ! 1, W2.�
`
0; �

0/ converges in probability to 0.

Proof. We recall the definition (3.33) of �`0, for ` � 1:

�`0 D
X

x2J`

˘
.1/

�2dC4

��
�0ı.˘.d/

� /�1
�
.x/
�
ıx C




1�
X

x2J`

˘
.1/

�2dC4

��
�0ı.˘.d/

� /�1
�
.x/
��

ı0;

where we put the superscript ` in J
.`/ in order to emphasize the dependence upon `.

Let, for any ` � 1,

�0;` D
X

x2J.`/

�
�0 ı .˘.d/

� /�1
�
.x/ıx:

Then,

W2.�
`
0; �

0;`/2 �
X

x2J.`/

jxj2
h�
�0 ı .˘.d/

� /�1
�
.x/ �˘.1/

�2dC4

��
�0 ı .˘.d/

� /�1
�
.x/
�i
:

Observe that the cardinality of J.`/ is less than C�2d, for a constant C independent of `. We
easily deduce that W2.�

`
0; �

0;`/2 � ��2.
Now, it is easily checked that for a new value of C:

W2.�
0; �0;`/2 �

Z

Rd

ˇ
ˇ˘

.d/
� .x/ � x

ˇ
ˇ2d�0.x/ � C��2 C C

Z

Rd
1fjxj��g.1C jxj2/d�0.x/;

which tends to 0 as ` tends to 1. ut

Finally, the last point to check is that, asymptotically, M`;n gets closer and
closer to the conditional law of .X`;n;w/ given .�0;w0/. Observe indeed that here,
differently from the framework used in the statement of Theorem 3.13, M`;n is not
the conditional law of .X`;n;w/ given .w0;M`;n/, but the conditional law of .X`;n;w/
given a discretization of .�0;w0/.

Lemma 3.28 Consider a complete probability space .˝1;F1;P1/ equipped
with a process .W0;1;M1;W1;X1/ whose law under P

1 is a weak limit of
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. NPı.w0;M`;n;w;X`;n/�1/`;n�1 on C.Œ0;T�IRd/�P2.C.Œ0;T�IR2d//�C.Œ0;T�IRd/�
C.Œ0;T�IRd/ as ` and n tend to 1 with the prescription ` D 2n. Then, M1 is the
conditional law of .X1;W1/ given .W0;1;M1/.

Proof. For two bounded uniformly continuous functions h0 and h1, h0 from C.Œ0; T�IRd/ �
P2.C.Œ0; T�IR2d// into R and h1 from C.Œ0; T�IRd/�C.Œ0; T�IRd/ into R, we have by (3.55),
for any `; n � 1:

NE
h
h0
� NV`;n

;M`;n
�
h1
�
X`;n;w

�i D NE
�

h0
� NV`;n

;M`;n
�
Z

C.Œ0;T�IR2d/

h1.v;m/dM`;n.v;m/

	

;

(3.56)
where we let NV`;n

t D V`;n
i�1 if t 2 Œ.i�1/T=N; iT=N/ D Œ.i�1/T=2n; iT=2n/ and NV`;n

T D V`;n
N�1.

Here comes the prescription ` D 2n. By Lemma 3.17, we know that, on the event

n
sup
0�t�T

jw0t j � � � 1 D 2` � 1 D 4n � 1
o
;

it holds, for any i 2 f1; � � � ;N � 1g,

ˇ
ˇV`;n

i � w0iT=N

ˇ
ˇ
1

� i

�
� 2n

4n
D 1

2n
;

where we used the fact that N D 2n < 4n D 2` D �. Thus,

lim
n!1

NP
h

sup
0�t�T

ˇ
ˇ NV`;n

t � w0t
ˇ
ˇ
1

� 1

2n
C sup

0�s;t�T;jt�sj�1=2n

ˇ
ˇw0s � w0t

ˇ
ˇ
i

D 1:

This shows that, in (3.56),

lim
n!1

ˇ
ˇ
ˇ NE
h
h0
� NV`;n

;M`;n
�
h1
�
X`;n;w

�i � NE
h
h0
�
w0;M`;n

�
h1
�
X`;n;w

�iˇˇ
ˇ D 0;

lim
n!1

ˇ
ˇ
ˇ
ˇ
NE
�

h0
� NV`;n

;M`;n
�
Z

C.Œ0;T�IR2d/

h1.v;m/dM`;n.v;m/

	

� NE
�

h0
�
w0;M`;n

�
Z

C.Œ0;T�IR2d/

h1.v;m/dM`;n.v;m/

	ˇ
ˇ
ˇ
ˇ D 0:

Therefore, passing to the limit in both sides of (3.56), we obtain:

E
1
h
h0
�
W0;1;M1

�
h1
�
X1;W1

�i

D E
1

�

h0
�
W0;1;M1

�
Z

C.Œ0;T�IR2d/

h1.v;m/dM1.v;m/

	

:

This suffices to complete the proof. ut

Conclusion
We now have all the ingredients to complete the proof of Theorem 3.1. Up to the
fact that M`;n only fits the conditional law of .X`;n;w/ given .w0;M`;n/ in the limit
`; n ! 1, we are in a similar framework to that of the statement of Theorem 3.13,
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and this suffices to conclude. In this respect, Lemma 3.25 is used to pass to the
limit in the approximating coefficients and Lemma 3.27 guarantees that the limiting
initial condition has the right distribution.

3.4 Explicit Solvability Results

Our goal is now to identify conditions under which Theorem 3.1 applies.
The examples we have in mind are those specified right below the statement of

assumption FBSDE in Subsection 2.2.3:

1. the FBSDE (3.5) is constructed by means of Theorem 1.57 and is intended to
describe the dynamics of the value function of the underlying stochastic control
problem;

2. the FBSDE (3.5) is constructed by means of the stochastic Pontryagin maximum
principle, as explained in the statement of Theorem 1.60.

3.4.1 Using the Representation of the Value Function

A first strategy is to characterize the value function of the optimal stochastic control
problem (3.1)–(3.2) as the value function of an FBSDE in the spirit of Theorem 1.57
and Proposition 1.58.

Assumption (MFG with a Common Noise HJB). There exist two constants
L � 0 and � > 0 such that:

(A1) The drift b has the form:

b.t; x; �; ˛/ D b1.t; x; �/C b2.t/˛;

where the mapping Œ0;T� 3 t 7! b2.t/ 2 R
d�k is measurable and

bounded by L.
(A2) The coefficients b1, � , and �0 are Borel-measurable mappings from

Œ0;T� � R
d � P2.Rd/ into R

d, Rd�d, and R
d�d respectively. For any

t 2 Œ0;T�, the functions b1.t; �; �/, �.t; �; �/, and �0.t; �; �/ are continuous
on R

d � P2.Rd/ and, for any � 2 P2.Rd/, the functions b1.t; �; �/,
�.t; �; �/ and �0.t; �; �/ are continuously differentiable with respect to
x. Moreover,

j.b1; �; ��1; �0/.t; x; �/j � L;

j@x.b1; �; �
0/.t; x; �/j � L:

In particular, � is invertible.

(continued)
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(A3) The coefficients f and g are Borel-measurable mappings from Œ0;T� �
R

d � P2.Rd/ � A to R and from R
d � P2.Rd/ to R respectively. For

any t 2 Œ0;T�, the functions f .t; �; �; �/ and g.�; �/ are continuous on R
d �

P2.Rd/ � A and R
d � P2.Rd/ respectively. For any t 2 Œ0;T� and � 2

P2.Rd/, the function f .t; �; �; �/ is continuously differentiable (in .x; ˛/)
and the function g.�; �/ is continuously differentiable in x. Moreover,

jf .t; x; �; ˛/j � L
�
1C j˛j2�; jg.x; �/j � L;

j@xf .t; x; �; ˛/j C j@xg.x; �/j � L; j@˛f .t; x; �; ˛/j � L
�
1C j˛j�;

and the function @˛f is L-Lipschitz-continuous in x.
(A4) f satisfies the uniform �-convexity property:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ � �j˛0 � ˛j2:

In full analogy with Lemmas (Vol I)-3.3 and 3.10, there exists a minimizer Ǫ
of the reduced Hamiltonian H.r/, whose definition is similar to (3.13). For any t 2
Œ0;T�, the function R

d � P2.Rd/ � R
d 3 .x; �; y/ 7! Ǫ .t; x; �; y/ is continuous and

there exists a constant C such that, for any t 2 Œ0;T�, any x; x0; y; y0 2 R
d and any

� 2 P2.Rd/,

ˇ
ˇ Ǫ .t; x; �; y/ˇˇ � C

�
1C jyj�;

ˇ
ˇ Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/ˇˇ � C

�jx0 � xj C jy0 � yj�:
(3.57)

Here, the boundedness of Ǫ in .x; �/ follows from that of @˛f .
We know that, under assumption MFG with a Common Noise HJB, the

assumptions of Proposition 1.58 and Theorem 1.57 are satisfied. For any super-
environment M and any sub-environment � D .�t/0�t�T , the solution of the
stochastic optimal control problem (3.1)–(3.2) may be characterized as the unique
solution of the forward-backward system (3.4) with the following truncated coeffi-
cients:

B.t; x; �; y; z/ D  .z/b
�
t; x; �; �

� Ǫ�t; x; �; �.t; x; �/�1�z���;
F.t; x; �; y; z; z0/ D  .z/f

�
t; x; �; �

� Ǫ�t; x; �; �.t; x; �/�1�z���;
G.x; �/ D g.x; �/:

(3.58)

which are thus independent of y. Above, the functions � and  are the same cut-
off functions as in the statement of Proposition 1.58. They satisfy �.˛/ D ˛ for
j˛j � C.1 C R/ and  .z/ D 1 for jzj � R and  .z/ D 0 for jzj � 2R, with
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j .z/ �  .z0/j � .4jz � z0j/=min.jzj; jz0j/, for the same R as in the statement of
Theorem 1.57. By Theorem 1.57, �,  , and R may be chosen independently of the
input � D .�t/0�t�T .

By Theorem 3.1, we get:

Theorem 3.29 Under assumption MFG with a Common Noise HJB, the mean
field game (3.1)–(3.2)–(3.3) with V0 2 P2.P2.Rd// as initial condition has a weak
solution in the sense of Definition 2.23.

Of course, the solution to the mean field game may be characterized through
an FBSDE of the conditional McKean-Vlasov type, whose form derives from the
FBSDE (3.5) along the procedure described in the statement of Proposition 2.18.

3.4.2 Using the Stochastic Pontryagin Principle

We now discuss the case when the solutions of the optimal stochastic control
problem (3.1)–(3.2) are characterized by means of the stochastic maximum principle
in Theorem 1.60.

Assumption (MFG with a Common Noise SMP). There exist two constants
L � 0 and � > 0 such that:

(A1) The drift b is an affine function of .x; ˛/ in the sense that it is of the
form:

b.t; x; �; ˛/ D b0.t; �/C b1.t/x C b2.t/˛; (3.59)

where b0, b1 and b2 are R
d, Rd�d and R

d�k valued respectively, and are
measurable. and satisfy:

jb0.t; �/j � L
�
1C M2.�/

�
; j.b1; b2/.t/j � L:

Similarly, � and �0 have the form:

�.t; x; �/ D �0.t; �/C �1.t/x;

�0.t; x; �/ D �00 .t; �/C �01 .t/x;
(3.60)

where Œ0;T� � P2.Rd/ 3 .t; �/ 7! .�0; �
0
0 /.t; �/ and Œ0;T� 3

t 7! .�1; �
0
1 /.t/ are measurable mappings with values in .Rd�d/2 and

.Rd�d�d/2 and satisfy:

j.�0; �00 /.t; �/j � L
�
1C M2.�/

�
; j.�1; �01 /.t/j � L:

(A2) For any t 2 Œ0;T�, the function P2.Rd/ 3 � 7! .b0; �0; �00 /.t; �/ is
continuous.

(continued)
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(A3) The coefficients f and g are measurable. For any t 2 Œ0;T�, the functions
f .t; �; �; �/ and g.�; �/ are continuous on R

d �P2.Rd/�A and R
d �P2.Rd/

respectively. For any t 2 Œ0;T� and � 2 P2.Rd/, the functions Rd � A 3
.x; ˛/ 7! f .t; x; �; ˛/ and R

d 3 x 7! g.x; �/ are once continuously
differentiable. Moreover,

ˇ
ˇ@xf .t; x; �; ˛/

ˇ
ˇ;
ˇ
ˇ@xg.x; �/

ˇ
ˇ � L;

ˇ
ˇ@˛f .t; x; �; ˛/

ˇ
ˇ � L

�
1C j˛j�:

For any t 2 Œ0;T�, the functions @xf .t; �; �; �/, @˛f .t; �; �; �/ and @xg are
continuous in .x; �; ˛/ and in .x; �/ respectively, and are L-Lipschitz
continuous in .x; ˛/ and in x.

(A4) The two cost functions f and g are at most of quadratic growth:

ˇ
ˇf .t; x; �; ˛/

ˇ
ˇC ˇ

ˇg.x; �/
ˇ
ˇ � L

�
1C jxj2 C �

M2.�/
�2 C j˛j2

�
:

(A5) The terminal cost function g is convex in the variable x and the running
cost function f is convex and uniformly �-convex in ˛ in the sense that:

f .t; x0; �; ˛0/�f .t; x; �; ˛/��x0�x; ˛0�˛��@.x;˛/f .t; x; �; ˛/ � �j˛0�˛j2;

where @.x;˛/f denotes the gradient of f in the variables .x; ˛/.

Observe from (A3) that the growth condition (A4) could be strengthened for free.
However, we prefer (A4) in its current form as we shall make use of it right below.

By Lemmas (Vol I)-3.3 and 3.10, there exists a minimizer Ǫ to the reduced
Hamiltonian H.r/ given by:

H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/:

The minimizer Ǫ satisfies (3.57).
Moreover, by Theorem 1.60, we know that, for any super-environment M and

any sub-environment � D .�t/0�t�T , the solution of the stochastic optimal control
problem (3.1)–(3.2) may be characterized as the unique solution of the forward-
backward system (3.4) with the following coefficients:

B.t; x; �; y/ D b
�
t; x; �; Ǫ .t; x; �; y/�;

F.t; x; �; y; z; z0/ D @xH
�
t; x; �; y; z; z0; ˛

�ˇˇ
ˇ
˛D Ǫ.t;x;�;y/;

G.x; �/ D @xg.x; �/;

(3.61)
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where H is the full Hamiltonian defined as:

H.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/

C trace
�
�.t; x; �/z�

�C trace
�
�0.t; x; �/.z0/�

�
:

By Theorem 3.1, we get:

Theorem 3.30 Under assumption MFG with a Common Noise SMP, the mean
field game (3.1)–(3.2)–(3.3) with V0 2 P2.P2.Rd// as initial condition has a weak
solution in the sense of Definition 2.23.

As in the previous subsection, the solution to the mean field game may be
characterized through an FBSDE of the conditional McKean-Vlasov type, whose
form derives from the FBSDE (3.5) along the procedure described in the statement
of Proposition 2.18.

3.4.3 Allowing for Quadratic Cost Functionals

Theorem 3.30 may be compared with Proposition (Vol I)-4.57, which applies
without common noise when @xf and @xg are bounded. Our goal is now to relax the
boundedness assumption in full analogy with Theorem (Vol I)-4.53 when viewed as
a relaxation of Proposition (Vol I)-4.57. Allowing @xf and @xg to be unbounded is
particularly important if we want to handle quadratic cost functionals.

Not surprisingly, we shall use the same type of assumptions as those introduced
in the statement of Theorem (Vol I)-4.53, namely:

Assumption (MFG with a Common Noise SMP Relaxed). We assume that
A D R

k and that there exist two constants L � 0 and � > 0 such that:

(A1) Assumption MFG with a Common Noise SMP is in force except for
the requirement

ˇ
ˇ@xf .t; x; �; ˛/

ˇ
ˇ � L;

ˇ
ˇ@xg.x; �/

ˇ
ˇ � L;

in (A4), even though all the other requirements are maintained.
(A2) For all t 2 Œ0;T�, x; x0 2 R

d, ˛; ˛0 2 R
k and �;�0 2 P2.Rd/, it holds:

ˇ
ˇf .t; x0; �0; ˛0/ � f .t; x; �; ˛/

ˇ
ˇC ˇ

ˇg.x0; �0/ � g.x; �/
ˇ
ˇ

� L
�
1C j.x0; ˛0/j C j.x; ˛/j C M2.�/C M2.�

0/
�

� �j.x0; ˛0/ � .x; ˛/j C W2.�
0; �/

�
:

(continued)
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(A3) For all .t; x/ 2 Œ0;T� � R
d,

x � @xf .t; 0; ıx; 0/ � �L.1C jxj/; x � @xg.0; ıx/ � �L.1C jxj/:

(A4) In (3.59) and (3.60), the functions b0, �0 and �00 are bounded by L and
the function �1 is identically zero.

Once again, by Lemmas (Vol I)-3.3 and 3.10, there exists a minimizer Ǫ to
the reduced Hamiltonian H.r/. The minimizer Ǫ satisfies the Lipschitz and growth
conditions in (3.57).

The desired extension of Theorem 3.30 is the following.

Theorem 3.31 Under assumption MFG with a Common Noise SMP Relaxed,
the mean field game (3.1)–(3.2)–(3.3) with V0 2 P2.P2.Rd// as initial condition
has a weak solution in the sense of Definition 2.23.

The strategy is the same as for the proof of Theorem (Vol I)-4.53. It relies
on a suitable approximation procedure. The first step is an adaptation of Lemma
(Vol I)-4.58.

Lemma 3.32 Assume that we can find two sequences of functions .f n/n�1 and
.gn/n�1 satisfying:
.i/ there exist two constants L0 and �0 > 0 such that, for any n � 1, the

coefficients .b; �; �0; f n; gn/ satisfy assumption MFG with a Common Noise SMP
Relaxed with respect to L0 and �0;
.ii/ .f n; @xf n; @˛f n/ (resp. .gn; @xgn/) converges toward .f ; @xf ; @˛f / (resp.

.g; @xg/) uniformly on bounded subsets of Œ0;T� � R
d � P2.Rd/ � R

k (resp.
R

d � P2.Rd/);
.iii/ for any n � 1, the mean field game (3.1)–(3.2)–(3.3), driven by

.b; �; �0; f n; gn/ instead of .b; �; �0; f ; g/ and with V0 2 P2.P2.Rd// as initial
condition, has a weak solution.

Under these conditions, the mean field game (3.1)–(3.2)–(3.3), with coefficients
.b; �; �0; f ; g/ and initial condition V0 2 P2.P2.Rd//, has a weak solution.

Taking for granted the result of Lemma 3.32, the key point is to let, for any
integer p � 1 and any t 2 Œ0;T�, x 2 R

d, � 2 P2.Rd/, and ˛ 2 R
k,

f p.t; x; �; ˛/ D f .t; x; �; ˛/C 1

p
jxj2I gp.x; �/ D g.x; �/C 1

p
jxj2;

so that the functions f p and gp are strictly convex in the joint variable .x; ˛/.
Then, by Lemma (Vol I)-4.59, we can find, for any p � 1, two sequences
of functions .f p;n/n�1 and .gp;n/n�1 such that the sequence .b; �; �0; f p;n; gp;n/n�1
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satisfies assumptions .i/ and .ii/ in the statement of Lemma 3.32 and, for each
n � 1, the tuple .b; �; �0; f p;n; gp;n/ satisfies assumption MFG with a Common
Noise SMP. Therefore, by combining Theorem 3.30 and Lemma 3.32, we deduce
that the mean field game (3.1)–(3.2)–(3.3) driven by .b; �; �0; f p; gp/ instead of
.b; �; �0; f ; g/ and with V0 2 P2.P2.Rd// as initial condition, has a weak solution.
Reapplying Lemma 3.32, we deduce that the mean field game (3.1)–(3.2)–(3.3),
driven by .b; �; �0; f ; g/ and with V0 2 P2.P2.Rd// as initial condition, is weakly
solvable, from which Theorem 3.31 easily follows.

3.4.4 Proof of the Approximation Lemma

In order to complete the proof of Theorem 3.31, it remains to prove Lemma 3.32.
The proof is split into several steps. Throughout the analysis, we work, for every
n � 1, with a probability space .˝n;Fn;Fn;Pn/ of the product form as in
Definition 2.16, where ˝n is equal to ˝0;n � ˝1;n and .˝0;n;F0;n;F0;n;P0;n/ and
.˝1;n;F1;n;F1;n;P1;n/ are two complete filtered probability spaces, the filtrations
being complete and right-continuous. We then ask .˝n;Fn;Pn/ to be the completion
of the product space .˝0;n �˝1;n;F0;n ˝F1;n;P0;n ˝P

1;n/ and F
n to be the complete

and right-continuous augmentation of the product of the two filtrations. We then
equip .˝0;n;F0;n;F0;n;P0;n/ with an F

0;n-Brownian motion W0;n with values in R
d

and with an F0;n
0 -measurable random variable �n

0 with values in P2.Rd/ and with
distribution V0 2 P2.P2.Rd//. Similarly, we equip .˝1;n;F1;n;F1;n;P1;n/ with an
F
1;n-Brownian motion Wn with values in R

d. We also equip .˝n;Fn;Fn;Pn/ with a
random variable Xn

0 with values in R
d such that �n

0 D L1;n.Xn
0/, where L1;n denotes

the marginal law on .˝1;n;F1;n;F1;n;P1;n/.
We assume that, for any n � 1, there exists a random variable Mn, constructed on

the space .˝0;n;F0;n;F0;n;P0;n/ and with values in P2.C.Œ0;T�IR2d//, that induces,
together with .Xn

0;W
0;n;Wn/, a solution to the mean field game (3.1)–(3.2)–(3.3)

with .b; �; �0; f n; gn/ as coefficients and V0 2 P2.P2.Rd// as initial condition.
Observe that, from Lemma 2.25, all the solutions may be constructed on the

same canonical space. In particular, we can assume that ˝n, ˝0;n and ˝1;n are
independent of n. We can even assume that F1;n, F1;n and P

1;n are also independent
of n. Accordingly, we can construct Xn

0 , W0;n and Wn independently of n. As a result,
we shall drop the index n in all the aforementioned quantities ˝n, ˝0;n, ˝1;n, F1;n,
F
1;n, P1;n, Xn

0 , W0;n and Wn, but not in the others. As we work on the canonical
space, we could do the same for Mn, but, for the sake of clarity, we feel better to
keep the index n in the notation. In order to avoid any confusion between P

n and P
1;n

when dropping out the index n, for n D 1, we shall write P1;1 for P1;n, and similarly
for F1;n and F

1;n.
For each n � 1, the MFG equilibrium Mn may be represented through a tuple

.Xn;Yn;Zn;Z0;n;Mn/ solving an FBSDE of the form (3.5) on .˝;Fn;Fn;Pn/

equipped with .X0;W0;Mn;W/ and with �n D .Mn ı .ex
t /

�1/0�t�T as
sub-environment. For each n � 1, the coefficients of the FBSDE read:
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B.t; x; �; y/ D b
�
t; x; �; Ǫ n.t; x; �; y/

�
;

F.t; x; �; y; z; z0/ D @xHn
�
t; x; �; y; z; z0; ˛

�ˇˇ
ˇ
˛D Ǫn.t;x;�;y/

;

G.x; �/ D @xgn.x; �/;

(3.62)

where:

Hn.t; x; �; y; z; z0; ˛/ D b.t; x; �; ˛/ � y C f n.t; x; �; ˛/

C trace
�
�.t; x; �/z�

�C trace
�
�0.t; x; �/.z0/�

�
;

and

Ǫ n.t; x; �; y/ D argmin˛2Rk H.r/;n.t; x; �; y; ˛/;

with

H.r/;n.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f n.t; x; �; ˛/:

Compactness of the Approximating MFG Equilibria
As an application, we have:

Lemma 3.33 Under the assumption of Lemma 3.32, the sequence of probability
measures .Pn ı .Xn/�1/n�1 is tight on C.Œ0;T�IRd/ and the sequence .Pn ı
.sup0�t�T jXn

t j2/�1/n�1 is uniformly square-integrable. Moreover,

sup
n�1

E
n

�

sup
0�t�T

jYn
t j2 C

Z T

0

�jZn
t j2 C jZ0;nt j2�dt

	

< 1: (3.63)

Proof. The proof is an adaptation of the proof of Lemma (Vol I)-4.58. For that reason, we
shall only give a sketch. For any n � 1 and t 2 Œ0; T�, we let Ǫ n

t D Ǫ n.t;Xn
t ; �

n
t ; Y

n
t /. The

crucial point is to prove that:

sup
n�1

E
n

� Z T

0

j Ǫ n
s j2ds

	

< 1: (3.64)

We then apply Theorem 1.60 with two different choices for ˛. Using the letter ˇn to denote
the effective choice of ˛ and calling Un the corresponding controlled paths, we shall consider
the two cases:

.i/ ˇn
s D E

1;1. Ǫ n
s / for t � s � TI .ii/ ˇn

s D 0 for t � s � T; (3.65)

for some t 2 Œ0; T�.
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We compare the cost to each of these controls with the optimal cost in order to derive
useful information on the optimal control . Ǫ n

s /0�s�T . The comparison relies on the stochastic
Pontryagin principle proved in Theorem 1.60 and, more precisely, on the fact that a similar
version to (1.63) holds true, but with the initial time 0 being replaced by some t 2 Œ0; T�
and with the expectation being replaced by the conditional expectation given Fn

t . We already
accounted for this extension in the proof of Theorem 1.60. Throughout the proof, we shall
write E

n
t for the conditional expectation E

nŒ � jFn
t � and E

0;n
t for the conditional expectation

E
nŒ � jF0;n

t �, which is also equal to E
1;1
E

n
t and to E

n
t E

1;1.

First Step. We first consider .i/ in (3.65), for some t 2 Œ0; T�. In this case,

Un
s D Xn

t C
Z s

t

�
b0.r; �

n
r /C b1.r/U

n
r C b2.r/E

1;1. Ǫ n
r /
�
dr

C
Z s

t
�0.r; �

n
r /dWr C

Z s

t

�
�00 .r; �

n
r /C �01 .r/U

n
r

�
dW0

r ; s 2 Œt; T�:
(3.66)

By taking expectation under P1;1 on both sides of (3.66), we have E
1;1.Un

s / D E
1;1.Xn

s /, for
s 2 Œt; T�, since .E1;1.Un

s //t�s�T and .E1;1.Xn
s //t�s�T satisfy the same SDE. Moreover,

�
Un

s � E
1;1.Un

s /
� D �

Xn
t � E

1;1.Xn
t /
�C

Z s

t
b1.r/

�
Un

r � E
1;1.Un

r /
�
ds

C
Z s

t
�0.r; �

n
r /dWr

C
Z s

t

�
�01 .r/

�
Un

r � E
1;1.Un

r /
��

dW0
r ; s 2 Œt; T�;

from which it easily follows that there exists a constant C such that, for all n � 1,

sup
t�s�T

E
0;n
t

�jUn
s � E

1;1.Un
s /j2

� � C
�
1C E

0;n
t

�jXn
t � E

1;1.Xn
t /j2

��
: (3.67)

By the conditional version of Theorem 1.60 at time t, with gn.�; �n
T/ as terminal cost and

.f n.s; �; �n
s ; �//t�s�T as running cost, we get, taking the expectation under E

1;1 and then
following (Vol I)-(4.87),

E
0;n
t

�
gn
�
E
1;1.Un

T/; �
n
T

��

C E
0;n
t

Z T

t

h
�0
ˇ
ˇ Ǫ n

s � E
1;1. Ǫ n

s /
ˇ
ˇ2 C f n

�
s;E1;1.Un

s /; �
n
s ;E

1;1. Ǫ n
s /
�i

ds

� E
0;n
t

�

gn
�
Un

T ; �
n
T

�C
Z T

t
f n
�
s;Un

s ; �
n
s ;E

1;1. Ǫ n
s /
�
ds

	

:

(3.68)

Using (A2) in assumption MFG with Common Noise SMP Relaxed, we deduce that there
exists a constant C (independent of n) such that:



3.4 Explicit Solvability Results 217

E
0;n
t

Z T

t

ˇ
ˇ Ǫ n

s � E
1;1. Ǫ n

s /
ˇ
ˇ2ds

� C
�
1C E

0;n
t

�jUn
T j2�1=2 C E

0;n
t

�jXn
T j2�1=2

�
E
0;n
t

�jUn
T � E

1;1.Un
T/j2

�1=2

C C
Z T

t

h�
1C E

0;n
t

�jUn
s j2�1=2 C E

0;n
t

�jXn
s j2�1=2 C E

0;n
t

�j Ǫ n
s j2�1=2

�

� E
0;n
t

�jUn
s � E

1;1.Un
s /j2

�1=2
i
ds;

where we used the fact that:

E
0;n
t ŒM2.�

n
s /
2� D E

0;n
t

�
E
1;1ŒjXn

s j2�� D E
n
�
E

nŒjXn
s j2 jF0;n

T � jF0;n
t

� D E
0;n
t ŒjXn

s j2�:

From (3.67) together with the identity E
1;1.Un

s / D E
1;1.Xn

s /, for all s 2 Œt; T�, we obtain:

E
0;n
t

Z T

t

ˇ
ˇ Ǫ n

s � E
1;1. Ǫ n

s /
ˇ
ˇ2ds � C

�

1C sup
t�s�T

E
0;n
t ŒjXn

s j2�1=2 C



E
0;n
t

Z T

t
j Ǫ n

s j2ds

�1=2	

�
�
1C E

0;n
t

�jXn
t � E

1;1.Xn
t /j2

�1=2
�
:

(3.69)

Next, we observe from the growth conditions on the coefficients that:

sup
t�s�T

E
0;n
t ŒjXn

s j2� � C

�

1C E
0;n
t ŒjXn

t j2�C E
0;n
t

Z T

t
j Ǫ n

s j2ds

	

: (3.70)

Also, duplicating the proof of (3.67), we have:

sup
t�s�T

E
0;n
t

�jXn
s � E

1;1.Xn
s /j2

�

� C

�

1C E
0;n
t

�jXn
t � E

1;1.Xn
t /j2

�C E
0;n
t

Z T

t
j Ǫ n

s � E
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(3.71)

which is similar to (Vol I)-(4.89).
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Second Step. We now compare Xn to the process controlled by the null control. So we
consider case .ii/ in (3.65), and now,
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s D Xn

t C
Z s

t

�
b0.r; �

n
r /C b1.r/U

n
r

�
dr

C
Z s

t
�0.r; �

n
r /dWr C

Z s

t

�
�00 .r; �

n
r /C �01 .r/U

n
r

�
dW0

r ;

with s 2 Œt; T�. Thanks to the growth conditions on the coefficients together with (3.70), we
have supn�1 E

0;n
t Œsupt�s�T jUn

s j2� � C.1CE
0;n
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t j2�/. Using Theorem 1.60 as before in the
derivation of (3.68), we get:
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:

By convexity of f n with respect to ˛ and by the growth conditions on @˛f in assumption
MFG with a Common Noise SMP, we have:
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for some constant C, independent of n. Using (A2) in assumption MFG with a Common
Noise SMP Relaxed, we obtain:
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where we used the fact that E1;1ŒXn
t � D R
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By (3.71) and Young’s inequality, we obtain:
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By convexity of gn and f n in x, we obtain:
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Using (A3) in assumption MFG with Common Noise SMP Relaxed together with (3.70)
and following (4.91) in the proof of Lemma (Vol I)-4.58, we deduce that:
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As a consequence, it also holds that:
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The estimates (3.72) and (3.73) are specially relevant. Recall indeed from Lemma 3.10 that
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n
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t j/, for t 2 Œ0; T�. Expressing Yn
t in terms of the decoupling

field and using Theorem 1.60 in order to control the growth of the decoupling field, see in
particular (1.68), we know that, for any t 2 Œ0; T�,
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for a constant C independent of n. Therefore,
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In particular, by (3.73), it holds, Leb1 ˝ P
n almost everywhere,

j Ǫ n
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where we used the fact that supt�s�T M2.�
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deduce that:
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Third Step. Returning to the SDE satisfied by the forward process Xn, for any n � 1, and
plugging (3.74) therein, it is quite straightforward to deduce, by means of Itô’s formula, that:
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(3.75)

for a constant C independent of n.
Taking the square of the supremum between 0 and t and then the conditional expectation

given F0;n
0 , we deduce, by Gronwall’s lemma, that:
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the constant C being allowed to increase from line to line. Injecting the above bound
into (3.74) and duplicating the argument used to prove (3.75), we get:
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which, together with the fact that X0 is square integrable, suffices to prove the uniform square-
integrability of the family .Pn ı .sup0�s�T jXn
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Since the law of X0 under Pn is independent of n, we deduce that:
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This shows that:
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where we used the obvious fact that:

sup
n�1

E
n
�

sup
0�t�T

jXn
t j2� (3.76)

is finite. Now, tightness of the sequence .Pn ı .Xn/�1/n�0 follows from Aldous’ criterion, as
in the proof of Lemma 3.14.

Finally, (3.64) is a consequence of (3.74) and (3.63) may be proved by combining the
bound for (3.76) with standard estimates for BSDEs, see for instance Example 1.20. ut

End of the Proof of Lemma 3.32
Now, Lemma 3.32 follows from Theorem 3.13. Observe that assumption FBSDE is
guaranteed by Theorem 1.60.

3.5 Uniqueness of Strong Solutions

We now discuss two cases of strong uniqueness. The first one relies on the Lasry and
Lions monotonicity condition introduced in Section (Vol I)-3.4 in the absence of a
common noise. The second one is of a different nature. It provides an interesting
example of a model for which the common noise restores strong uniqueness even
though uniqueness does not hold in its absence.

3.5.1 Lasry-Lions Monotonicity Condition

Proposition 3.34 On top of assumption Coefficients MFG with a Common
Noise, assume that b, � and �0 are independent of � and that f has the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/; t 2 Œ0;T�; x 2 R
d; ˛ 2 A; � 2 P2.Rd/;

f0.t; �; �/ and g satisfying the Lasry-Lions monotonicity condition of Definition
(Vol I)-3.28 for any t 2 Œ0;T�, which we recall below for the sake of completeness.

Assume further that, for any probabilistic set-up .˝;F ;F;P/ of the same product
form as in Definition 2.16, equipped with two Brownian motions W0 and W,
an initial random distribution �0 and an initial private state X0 satisfying the
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constraint L1.X0/ D �0, for any F0
T -measurable random variable M with values in

P2.C.Œ0;T�IR2d// such that F is compatible with .X0;W0;M;W/, the optimization
problem (3.1)–(3.2), with � D .�t D M ı .ex

t /
�1/0�t�T , has a unique minimizer Ǫ .

Then, strong uniqueness holds for the mean field game (3.1)–(3.2)–(3.3), in the
sense of Definition 2.27. Moreover, the weak solutions given by Theorems 3.29, 3.30,
and 3.31 are actually strong solutions, in the sense of Definition 2.22.

Recall that a real valued function h on R
d � P2.Rd/ is said to be monotone (in

the sense of Lasry and Lions) if, for all � 2 P2.Rd/, the mapping R
d 3 x 7! h.x; �/

is at most of quadratic growth, and for all �;�0 2 P2.Rd/, we have:

Z

Rd
Œh.x; �/ � h.x; �0/� d.� � �0/.x/ � 0: (3.77)

Proof. We first introduce some necessary new notation. Given a general set-up as in the
statement of the proposition, we consider two solutions M and M0 to the mean field game.
We then call � D .�t/0�t�T and �0 D .�0

t/0�t�T the corresponding sub-environments. We

also denote by Ǫ � D . Ǫ �
t /0�t�T and Ǫ �0 D . Ǫ�0

t /0�t�T the respective optimal controls in

the environments .M;�/ and .M0;�0/, and by X� D .X�
t /0�t�T and X�0 D .X�0

t /0�t�T the
corresponding optimal paths. We also denote by J�. Ǫ �/ and J�0

. Ǫ �0

/ the associated costs.
We assume that the random variables M and M0 differ on an event of positive probability.

Then, the processes Ǫ � and Ǫ �0

must differ on a measurable subset of Œ0; T�˝ F of positive
Leb1 ˝ P-measure, as otherwise X� and then X�0

would coincide up to a P-null set which
would imply that M and M0 also coincide.

Therefore, by strict optimality of Ǫ � in the environment �, we have:

E

� Z T

0

f
�
t;X�

t ; �t; Ǫ �
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where we used the fact that, in the environment �, the process driven by Ǫ �0

is exactly
X�0

since the drift b and the diffusion coefficients � and �0 do not depend on the measure
argument. Similarly, we have:
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Adding the two inequalities, we get:
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t

�
dt C g.X�0

T ; �T/

	

� E

� Z T

0

f
�
t;X�0

t ; �
0
t ; Ǫ�0
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which reads:
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;

which contradicts the monotonicity assumption.
The second part of the statement is a mere consequence of Theorem 2.29. ut

3.5.2 Common Noise and Restoration of Uniqueness

An interesting question, both from the theoretical and practical points of view,
is to investigate whether the common noise can contribute to strong uniqueness.
It is indeed a well-known fact that, for finite dimensional stochastic differential
equations, the presence of noise can restore strong uniqueness for systems driven
by singular coefficients. The reader is referred to the Notes & Complements at the
end of the chapter for references.

In the current context, the question seems really challenging, as the noise is
finite-dimensional while the unknown, namely the equilibrium measure, evolves in
an infinite dimensional space. One should expect that a very strong hypoellipticity
property would be needed for the noise to propagate throughout the whole system
and force uniqueness of the equilibrium.

Quite surprisingly, we provide here a simple model for which such a phenomenon
does occur. The example is designed in such a way that the optimal feedback can be
explicitly computed from the sole knowledge of the mean of the equilibrium. In this
way, the required hypoellipticity property in the space of measures just consists in a
standard ellipticity property in dimension one.

Using the notation of the general set-up introduced in Subsection 3.1.2, we
assume that the dynamics of X are one dimensional and take the form:

dXt D �
b.t; �t/C Xt C ˛t

�
dt C dWt C �0dW0

t ; t 2 Œ0;T�; (3.78)

with some (deterministic) initial condition X0 D x0 2 R, where � D .�t/0�t�T

denotes a flow of square-integrable random probability measures on R, and ˛ D
.˛t/0�t�T a one-dimensional control with values in A D R. Here b W Œ0;T� �
P2.R/ ! R is measurable, bounded, and W2-Lipschitz continuous in the measure
argument, uniformly in time t 2 Œ0;T�. Finally, �0 is a nonnegative real constant.
We use a cost functional of the form:

J�.˛/ D E

� Z T

0

1

2

��
Xt C f .t; �t/

�2 C ˛2t
�
dt C 1

2

�
XT C g.�T/

�2
	

; (3.79)
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where f W Œ0;T� � P2.R/ ! R and g W P2.R/ ! R are bounded, measurable, and
W2-Lipschitz continuous in the measure argument, uniformly in time t 2 Œ0;T�.

The reduced Hamiltonian from Subsection 3.4.1 takes the simple form:

H.r/.t; x; �; ˛; y/ D �
b.t; �/C x C ˛

�
y C 1

2

�
x C f .t; �/

�2 C 1

2
˛2;

for t 2 Œ0;T�, x; y; ˛ 2 R, and � 2 P2.R/. Given the values of x, y and �, the
minimizer of H is easily computed and simply reads Ǫ .t; x; �; y/ D �y.

It is easily checked that the assumptions of the stochastic Pontryagin principle
in Theorem 1.60 hold true. For any given flow of random measures � D .�t/0�t�T

deriving from some super-environment M such that .W0;M;W/ is compatible with
F, the forward-backward system derived from the stochastic Pontryagin principle
reads:

(
dXt D �

b.t; �t/C Xt � Yt
�
dt C dWt C �0dW0

t ;

dYt D ��Xt C Yt C f .t; �t/
�
dt C ZtdWt C Z0t dW0

t C dMt;
(3.80)

where .Mt/0�t�T is a square-integrable càd-làg martingale, of zero cross-variation
with .W0;W/ and with M0 D 0, the terminal condition being:

YT D XT C g.�T/: (3.81)

It is easily checked that assumption MFG with a Common Noise SMP Relaxed
holds. For this reason, the remainder of the section is devoted to the analysis of
uniqueness.

Theorem 3.35 On top of the above assumption, assume that �0 > 0. Then, the con-
ditional McKean-Vlasov problem consisting of the forward-backward system (3.80),
with terminal condition (3.81) and constraint:

8t 2 Œ0;T�; �t D M ı .ex
t /

�1; with M D L1
�
X;W

�
; (3.82)

admits a unique strong solution. In particular the mean field game (3.1)–(3.2)–
(3.3) with the above coefficients admits a unique strong equilibrium in the sense
of Definition 2.22.

The next proposition shows that, in the above statement, strong uniqueness is due
to the presence of the common noise W0:

Proposition 3.36 Consider the same framework as in the statement of Theo-
rem 3.35, but assume that �0 D 0. Then, we may find x0, b, f , and g, for which
the mean field game (3.1)–(3.2)–(3.3) admits an infinite number of deterministic
equilibria.
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The proofs of Theorem 3.35 and Proposition 3.36 rely on the following charac-
terization of the equilibria.

Theorem 3.37 Consider the framework of Theorem 3.35 with �0 � 0. Then, we
can find coefficients:

Nb; Nf W Œ0;T� � R ! R; Ng W R ! R;

which are bounded on the whole space, Lipschitz continuous in the space variable
uniformly in time, and which only depend upon b, f , and g respectively (in particular
they are independent of the initial condition x0 and the viscosity parameter �0), such
that a 5-tuple .X;Y;Z;Z0;M/ D .Xt;Yt;Zt;Z0t ;Mt/0�t�T is a solution on the set-
up .˝;F ;F;P/ equipped with .W0;M;W/, for some super-environment M, of the
conditional McKean-Vlasov problem consisting of (3.80)-(3.81)-(3.82) if and only
if the process Y D .Yt/0�t�T has the form:

Yt D �tXt C �t; t 2 Œ0;T�;

where 	 D .�t/0�t�T solves the well-posed Riccati equation:

P�t D �2t � 2�t � 1; �T D 1; (3.83)

the process X D .Xt/0�t�T solves the forward equation:

dXt D �Nb.t; N�t/C Xt � Yt
�
dt C dWt C �0dW0

t ; t 2 Œ0;T� I X0 D x0; (3.84)

and the pair . N�;
/ D . N�t; �t/0�t�T is F0-progressively measurable and solves on
the space .˝0;F0;F0;P0/ the forward-backward stochastic differential equation:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

d N�t D
�Nb�t; N�t

�C .1 � �t/ N�t � �t

�
dt C �0dW0

t ;

d�t D ��.1 � �t/�t C Nf .t; N�t/C Nb.t; N�t/�t
�
dt

Cdm0
t ; t 2 Œ0;T�;

N�0 D x0; �T D Ng. N�T/;

(3.85)

where m0 D .m0
t /0�t�T is a square-integrable càd-làg martingale on the space

.˝0;F0;F0;P0/ with m0
0 D 0 as initial condition, and .W0; N�/ is compatible with

F
0. Moreover, it must hold:

8t 2 Œ0;T�; P
0
� N�t D E

1ŒXt�
� D 1: (3.86)

Theorem 3.37 says that equilibria to the MFG problem associated with the
dynamics (3.78) and with the cost functional (3.79) may be characterized through
the auxiliary forward-backward system (3.85) satisfied by their means. Put it
differently, an equilibrium may be characterized by its mean only. Indeed, as we
shall see in the proof of Theorem 3.37, equilibria must be Gaussian given the
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realization of W0, their conditional variance being explicitly determined through
the linear-quadratic structure of the dynamics (3.78) and the cost functional (3.85),
independently of the choice of b, f , g, � , and x0.

The fact that equilibria may be entirely described through their conditional means
trivialize the analysis of the hypoellipticity property of the process . N�t/0�t�T .

Taking Theorem 3.37 for granted momentarily, the proofs of Theorem 3.35 and
Proposition 3.36 will follow from standard results for classical forward-backward
SDEs:

1. When �0 > 0, the forward-backward system enters the so-called nondegenerate
regime in which the noise forces uniqueness of a solution.

2. When �0 D 0, the auxiliary forward-backward system is deterministic (or
inviscid) and may develop discontinuities or, using the same language as in the
theory of hyperbolic equations, shocks. Because of that, we may observe, for a
relevant choice of the coefficients, several solutions.

Remark 3.38 The compatibility condition required in the statement of Theo-
rem 3.37 is a way to select a weak solution to the FBSDE (3.85) which makes sense
from the physical point of view. We accounted for a similar fact in Remark 2.20.
In particular, we shall prove that, for the selected solution, the martingale m0 D
.m0

t /0�t�T can be represented as a stochastic integral with respect to W0. We provide
a counter-example in Subsection 3.5.5 below.

3.5.3 Auxiliary Results for the Restoration of Uniqueness

The proofs of Theorem 3.35 and Proposition 3.36 rely on the following characteri-
zation of the equilibria.

Lemma 3.39 Under the assumptions and notation of Theorem 3.35, but allowing
�0 � 0, for any F0

T -measurable super-environment M and the associated F
0-

progressively measurable sub-environment � D .�t D Mı.ex
t /

�1/0�t�T with values
in P2.R/, a 5-tuple .X;Y;Z;Z0;M/ D .Xt;Yt;Zt;Z0t ;Mt/0�t�T is a solution of the
forward-backward system (3.80) with terminal condition (3.81) if and only if the
process Y is of the form:

Yt D �tXt C �t; t 2 Œ0;T�;

where 	 D .�t/0�t�T is the unique solution of the Riccati equation (3.83), and

 D .�t/0�t�T solves the backward stochastic differential equation:

d�t D ��.1 � �t/�t C f .t; �t/C b.t; �t/�t
�
dt C dm0

t ; �T D g.�T/; (3.87)

where m0 D .m0
t /0�t�T is a square-integrable càd-làg martingale on the space

.˝0;F0;F0;P0/, with 0 as initial condition.
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Proof. Referring to Subsection (Vol I)-3.5.1, see also (Vol I)-(2.48)-(2.49), we first notice
that the Riccati equation is uniquely solvable on the whole Œ0; T�. Alternatively, unique
solvability can be checked directly by noticing that any local solution must remain in the
interval Œ1 � p

2; 1 C p
2�, whose end points are the roots of the characteristic quadratic

equation. Now, consider a pair .X;Y/ such that:

dXt D �
b.t; �t/C Xt � Yt

�
dt C dWt C �0dW0

t ;

with

Yt D �tXt C �t; t 2 Œ0; T�;

for some process .�t/0�t�T . Then, Y D .Yt/0�t�T is a semi-martingale if and only if 
 D
.�t/0�t�T is also a semi-martingale. Moreover,

d�t D dYt � P�tXtdt � �tdXt

D dYt � P�tXtdt � �t
�
b.t; �t/C Xt � �tXt � �t

�
dt � �t

�
dWt C �0dW0

t

�

D dYt � �
�2t � 2�t � 1�Xtdt � �t

�
b.t; �t/C Xt � �tXt � �t

�
dt

� �t
�
dWt C �0dW0

t

�

D dYt C ��
�t C 1

�
Xt � �t

�
b.t; �t/ � �t

��
dt � �t

�
dWt C �0dW0

t

�

D dYt C �
Yt C Xt � �tb.t; �t/C .�t � 1/�t

�
dt � �t

�
dWt C �0dW0

t

�
:

In particular, .M0
t D Yt C R t

0
ŒXs C Ys C f .s; �s/�ds/0�t�T is a local martingale if and only if

.m0
t D �t C R t

0
Œf .s; �s/C �sb.s; �s/C .1 � �s/�s�ds/0�t�T is also a local martingale.

Moreover, if EŒsup0�t�T jYtj2� is finite, then EŒsup0�t�T jXtj2� is also finite because
of the equation satisfied by X, so that EŒsup0�t�T j�tj2� is finite as well by definition
of 
. Conversely, if EŒsup0�t�T j�tj2� is finite, so is EŒsup0�t�T jXtj2� as we can see by
plugging the definition of Y in terms of 
 in the SDE satisfied by X. We then deduce that
EŒsup0�t�T jYtj2� is finite. In particular, .M0

t /0�t�T is a square-integrable martingale if and
only if .m0

t /0�t�T is a square-integrable martingale. This completes the proof. ut

We can now turn to the characterization of the equilibria.

Proof of Theorem 3.37. By Lemma 3.39, we know that solutions of the conditional McKean-
Vlasov problem (3.80)-(3.81)-(3.82) are characterized by the forward-backward equation:

8
<

:

dXt D �
b.t; �t/C .1 � �t/Xt � �t

�
dt C dWt C �0dW0

t ;

d�t D ���1 � �t
�
�t C f .t; �t/C b.t; �t/�t

�
dt C dm0

t ;

(3.88)

with the terminal condition �T D g.�T/ and the McKean-Vlasov constraint:

8t 2 Œ0; T�; �t D M ı .ex
t /

�1; M D L1.X;W/:
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In order to proceed with the analysis of the system (3.88), we make the following two
observations. The first one is that the forward component of the system admits an explicit
factorization (in terms of 
 D .�t/0�t�T ):

Xt D exp


Z t

0

.1 � �s/ds

��

x0 C
Z t

0

exp




�
Z s

0

.1 � �r/dr

�
�
b.s; �s/ � �s

�
ds

C
Z t

0

exp




�
Z s

0

.1 � �r/dr

�

dWs (3.89)

C �0
Z t

0

exp




�
Z s

0

.1 � �r/dr

�

dW0
s

	

;

for t 2 Œ0; T�. The second observation is that, whenever the flow of random measures � D
.�t/0�t�T is frozen, the backward equation in (3.88) is uniquely solvable and the unique
solution may be constructed on the space .˝0;F0;P0/ equipped with .W0;M/. Indeed, we
know from Lemma 1.15 that F0 is compatible with .W0;M/, which shows that it makes
sense to solve the equation on .˝0;F0;F0;P0/ equipped with .W0;M/. The solution takes
a very simple form. Letting:

$t D exp




�
Z t

0

.1 � �s/ds

�

; t 2 Œ0; T�;

we have:

�t D $tE
0

� Z T

t
$�1

s

�
f .s; �s/C b.s; �s/�s

�
ds C$�1

T g.�T/ jF0
t

	

:

The compatibility condition is then especially useful to compute the above conditional
expectation. In order to transfer the resulting solution .
;m0/ to .˝;F ;F;P/ equipped with
.W0;M;W/, it suffices to notice that m0 is automatically an F-martingale, which is a special
case of Proposition 1.10. Put it differently, the solution .
;m0/ D .�t;m0

t /0�t�T to the
backward equation (3.87), when solved on .˝;F ;F;P/ equipped with .W0;M;W/, is a
progressively measurable process on the space .˝0;F0;F0;P0/. As a consequence, (3.89)
says that the process .Xt/0�t�T is, conditional on F0, an Ornstein-Uhlenbeck process with
conditional mean and variance functions:

N�t D exp


Z t

0

.1 � �s/ds

��

x0 C
Z t

0

exp




�
Z s

0

.1 � �r/dr

�
�
b.s; �s/ � �s

�
ds

C �0
Z t

0

exp




�
Z s

0

.1 � �r/dr

�

dW0
s

	

;

N�2t D exp




2

Z t

0

.1 � �s/ds

�Z t

0

exp




� 2
Z s

0

.1 � �r/dr

�

ds;

for t 2 Œ0; T�. Notice that the stochastic integral in the definition of the mean can be defined
pathwise by means of an integration by parts.
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Therefore, under the McKean-Vlasov constraint (3.82), �t is, for any t 2 Œ0; T�, a normal
distribution with N�t as random mean and N�2t as deterministic variance. In particular, the
variance at time t is entirely determined, independently of the initial condition x0. We thus
let, for any real N� 2 R,

�Nb; Nf ��t; N�� D �
b; f
��

t;N . N�; N�2t /
�
; t 2 Œ0; T� I Ng. N�/ D g

�
N . N�; N�2T /

�
:

From these definitions, it is easily checked that Nb, Nf , and Ng are bounded and are Lipschitz
continuous in N� uniformly in time. Moreover, it is plain to check that the backward equation
in (3.85) is satisfied. Taking the mean under P1 in the constraint (3.82), it is clear that (3.86)
holds true. Similarly, by taking the mean under P

1 in the forward equation in (3.88), we
deduce that the forward equation in (3.85) is satisfied.

Conversely, if the auxiliary SDE (3.84) and the forward-backward system (3.85) are
satisfied with Yt D �tXt C�t, then X must have an expansion similar to (3.89). In particular, it
has Gaussian marginal distributions with variance N�2t at time t 2 Œ0; T�. Moreover, computing
the conditional mean in (3.84) using in addition the fact that Yt expands in terms of .Xt; �t/

and �t is F0-measurable, we check that .E1ŒXt�/0�t�T and . N�t/0�t�T solve the same linear
(random coefficients) SDE, with the same initial condition, and are thus equal. This shows
that the additional constraint (3.86) holds and that the McKean-Vlasov constraint (3.82) holds
with M D L1.X;W/ and

�t D N
� N�t; N�2t

�
; t 2 Œ0; T�:

This permits to rewrite the coefficients Nb, Nf , and Ng of the variable N�t in (3.84) and (3.85) as
functions b, f , and g of �t. In particular, we deduce from equation (3.84) that the forward
equation (3.88) is satisfied, which completes the proof. Then, it only remains to observe that
the filtration generated by .W0;M/, recall Definition 2.15, coincides with the one generated
by .W0; N�/; thus, it is compatible with F

0 if and only if the other is compatible. The backward
equation in (3.88) easily follows. ut

3.5.4 Proof of the Restoration of Uniqueness

Case with a Common Noise
We start with:

Proof of Theorem 3.35. By Theorem 3.37, it suffices to prove that the auxiliary forward-
backward system (3.85) has a unique solution. Recall that it takes the form:

8
ˆ̂
<

ˆ̂
:

d N�t D
�Nb�t; N�t

�C .1 � �t/ N�t � �t

�
dt C �0dW0

t ;

d�t D �
��
1 � �t

�
�t C Nf .t; N�t/C Nb.t; N�t/�t

�
dt C dm0

t ; t 2 Œ0; T�;
�T D Ng. N�T/;

(3.90)

We would like to apply Theorem (Vol I)-4.12, but unfortunately, the coefficients of the
forward equation are not bounded. In order to overcome this difficulty, we use the following
change of unknown:
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O�t D $t N�t; $t D exp




�
Z t

0

.1 � �s/ds

�

; t 2 Œ0; T�;

and set:

Ob.t; x/ D $t Nb.t;$�1
t x/; Of .t; x/ D Nf .t;$�1

t x/; Og.x/ D Ng.$�1
T x/;

for t 2 Œ0; T�, and x 2 R. Since the weights .$t/0�t�T are bounded from below and from
above by constants that depend on T only, the coefficients:

Ob; Of W Œ0; T� � R ! R; Og W R ! R

are bounded on the whole domain and Lipschitz continuous in the space variable. Therefore,
the pair . N�t; �t/0�t�T solves the system (3.90) if and only if the pair . O�t; �t/0�t�T solves the
system:

8
ˆ̂
<

ˆ̂
:

d O�t D
�Ob�t; O�t

� �$t�t

�
dt C$0

t �dW0
t ;

d�t D �
��
1 � �t

�
�t C Of .t; O�t/C$�1

t
Ob.t; O�t/�t

�
dt C dm0

t ; t 2 Œ0; T�;
�T D Og. N�T/:

By Theorem (Vol I)-4.12, there exists a solution such that .m0
t /0�t�T writes as a stochastic

integral with respect to W0; and it is the only one to have this property. Moreover, there exists
a decoupling field which is Lipschitz continuous in space, uniformly in time. Duplicating the
proof of Proposition 1.52, this says that uniqueness holds among the most general class of
solutions for which .m0

t /0�t�T is a general martingale. Most importantly, the solution is
progressively measurable with respect to the complete and right-continuous augmentation of
the filtration generated by W0. In particular, .W0; N�/ is compatible with F

0. ut

The Case Without Common Noise
Proof of Proposition 3.36. The starting point is the same as in the proof of Theorem 3.35.
It suffices to exhibit coefficients b, f , and g such that the system (3.90) (with �0 D 0) has
several solutions.

The key point is to use the same kind of change of unknown as in the proof of
Theorem 3.35:

O�t D $t N�t; O�t D $�1
t �t; $t D exp




�
Z t

0

.1 � �s/ds

�

; t 2 Œ0; T�:

Then, . N�t; N�t/0�t�T is a (deterministic) solution to (3.90) if and only if . O�t; O�t/0�t�T is a
deterministic solution to:

8
ˆ̂
<

ˆ̂
:

d O�t D
�Ob�t; O�t

� �$2
t O�t

�
dt

d O�t D �$�1
t

�Of .t; O�t/C$�1
t

Ob.t; O�t/�t

�
dt; t 2 Œ0; T�;

O�T D $�1
T Og. O�T/;

(3.91)
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with the same definition of the coefficients Ob, Of and Og as in the proof of Theorem 3.35. Notice
that we removed the martingale part as we are just looking for deterministic solutions of the
ordinary forward-backward system above. Assume now that b D 0, so that Nb and Ob are also
zero, and choose f and g in such a way that:

Of .t; x/ D �$3
t x; Og.x/ D $T x; x 2 Œ�R;R�;

for some large enough real R > 0. Then, the system reduces to:

d O�t D �$2
t O�tdt; d O�t D $2

t O�tdt; t 2 Œ0; T� I O�T D O�T ; (3.92)

provided that the solution . O�t; O�t/0�t�T remains in Œ�R;R�2.
With the solution ' of the ordinary differential equation P'.t/ D $�2

'.t/, for t 2 Œ0; T� and
with '.0/ D 0, the existence and uniqueness of which are established right below, we finally
get that . O�t; O�t/0�t�T solves (3.92) if and only if the time changed curves . O�'.t/; O�'.t//0�t�T

satisfy:

d
� O�'.t/

� D � O�'.t/dt; d
� O�'.t/

� D O�'.t/dt; t 2 Œ0; T� I O�'.T/ D O�'.T/:

Choosing T D '�1.�=4/, which is shown below to be possible, we recover exactly the
example discussed in Subsection (Vol I)-4.3.4. We deduce that, whenever x0 D 0, there exist
infinitely many solutions which remain in Œ�R;R�2.

We now address the existence and uniqueness of a solution ' to the ordinary differential
equation P'.t/ D $�2

'.t/, for t 2 Œ0; T�, with the initial condition '.0/ D 0. Of course, we
observe that, for a given extension of .�t/0�t�T to times t < 0 and t > T , the equation
is locally uniquely solvable. The local solution satisfies '.t/ � 0 for t in the interval
of definition of the solution, which shows in particular that the extension of the function
.�t/0�t�T to negative times plays no role. Now, we recall that .�t/0�t�T satisfies the Riccati
equation P�t D �2t � 2�t � 1 D .�t � 1/2 � 2. Recalling that �t 2 Œ1 � p

2; 1 C p
2� for all

t 2 Œ0; T�, we deduce that .�t/0�t�T is nonincreasing on Œ0; T�. Since �T D 1, this shows that
.�t/0�t�T remains in Œ1; 1C p

2�. As a by-product, for all t 2 Œ0; T�, $�2
t � 1. In particular,

on any interval Œ0; S� on which ' is defined and satisfies '.S/ � T , it holds that P' � 1, from
which we deduce that, for any t 2 Œ0; S�, '.t/ � t. As a by-product, ' can be uniquely defined
on the entire Œ0; T� and it satisfies '.Œ0; T�/ � Œ0; T�, proving that the extension of .�t/0�t�T

outside Œ0; T� does not matter.
It then remains to prove that we can choose T such that '.T/ D �=4. Notice that it is not

completely trivial because ' depends on T itself through the solution of the Riccati equation.
To emphasize this fact, we write 'T for ' and �T for �. Using the fact that the derivatives of
'T and �T on Œ0; T� are in Œ0; 1� and Œ�2; 0� respectively, we can use a compactness argument
to prove that the mapping T 7! 'T.T/ is continuous. In particular, it suffices to show that
there exists T such that 'T.T/ � �=4 to prove that there exists T such that 'T.T/ D �=4. We
argue by contradiction. If 'T.T/ < �=4 for all T > 0, then, for all T > 0 and all t 2 Œ0; T�,

P'T.t/ � exp




� 2
Z �=4

0

.1 � �T
s /ds

�

� exp
� �

p
2�

2

�
;

and then 'T.t/ � exp.�
p
2�
2
/T . The contradiction easily follows. ut
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3.5.5 Further Developments on Weak Solutions

To close this part of the book devoted to mean field games with a common noise,
we revisit the previous example through the lens of the notion of weak equilibrium
introduced in Chapter 2.

Weak Solutions That Are Not Strong
We now adapt the previous analysis in order to provide an example for which the
mean field game is uniquely solvable in the weak sense but not in the strong sense.
In lieu of (3.78), consider instead:

dXt D �
b.t; �t/C Xt C ˛t

�
dt C dWt C sign. N�t/dW0

t ; t 2 Œ0;T�; (3.93)

where, for a flow � D .�t/0�t�T of square integrable probability measures on R,
N� stands for the mean function . N�t D R

R
xd�t.x//0�t�T . Here and only here, we

define the sign function as sign.x/ D 1 if x � 0, sign.x/ D �1 if x < 0, so that, in
contrast with our previous definition of the sign function, sign.0/ 6D 0.

For the same cost functional as in (3.79), we can easily adapt the statement of
Theorem 3.37 in order to characterize the solutions of the corresponding mean field
game through the forward-backward system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

d N�t D
�Nb�t; N�t

�C .1 � �t/ N�t � �t

�
dt C sign. N�t/dW0

t

d�t D ��.1 � �t/�t C Nf .t; N�t/C Nb.t; N�t/�t
�
dt

Cdm0
t ; t 2 Œ0;T�;

N�0 D x0; �T D Ng. N�T/;

(3.94)

which is obviously similar to (3.85). Here the coefficients Nb, Nf , and Ng are the same as
in Theorem 3.37 with �0 D 1. The proof is easily adapted to the present situation.
It suffices to observe that the process .

R t
0

sign. N�s/dW0
s /0�t�T is a Brownian motion,

which permits to recover the setting used in the proof of Theorem 3.37.
Under the same assumption as in the statement of Theorem 3.37, it is quite

simple to provide weak solutions to (3.94). It suffices to solve (3.94) with
.
R t
0

sign. N�s/dW0
s /0�t�T replaced by a prescribed F

0-Brownian motion W00, and
then let .W0

t D R t
0

sign. N�s/dW00
s /0�t�T . Solvability of the system driven by W00

is tackled by the same argument as in the proof of Theorem 3.35. The resulting
solution is adapted with respect to the filtration generated by W00. In particular, the
filtration generated by .W0;�/ coincides with that generated by W00 and is thus
compatible with F

0.
Actually, weak solutions must have the same law. Put differently, uniqueness

must hold in law. Indeed, by the same argument as above, any solution to (3.94) may
be regarded as a solution to an equation of the same form as (3.90), but driven by
.W00

t D R t
0

sign. N�s/dW0
s /0�t�T . Arguing as in the proof of Theorem 3.35, solutions

are written as a common function of W00. Therefore, they all have the same law.
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Most importantly, there exists a deterministic decoupling field u W Œ0;T��R ! R

such that, for all t 2 Œ0;T�, �t D u.t; N�t/. Indeed, by the same change of Brownian
motion as above, (3.94) reduces to (3.90). We showed in the proof of Theorem 3.35
that the solution to (3.90) was given by Theorem (Vol I)-4.12, which provides the
decoupling field.

Now, we claim that there is no strong solution when Nb, Nf , and Ng are odd and
N�0 D 0. Indeed in this case, for any solution . N�;
;m0/, .� N�;�
;�m0/ is also a
solution to (3.94). In this regard, observe that this holds true despite our definition
of the sign function, which is not odd. Indeed, using the fact that u is bounded and
invoking Girsanov theorem, it is easily checked that, for any t 2 .0;T�, P0Œ N�t D
0� D 0. Therefore, we must have �u.t; x/ D u.t;�x/ for any t 2 Œ0;T� and x 2 R.
Therefore, for any solution to (3.94), N� solves:

d N�t D NB.t; N�t/dt C sign. N�t/dW0
t ; t 2 Œ0;T� I N�0 D 0;

where NB is odd in space. By Tanaka’s formula,

dj N�tj D sign. N�t/ NB.t; N�t/dt C dW0
t C dL N�

t ; t 2 Œ0;T�;

where .L N�
t /0�t�T is the local time of N� at 0. We then argue as in the analysis of

the standard Tanaka SDE. Since NB is odd, we have sign. N�t/ NB.t; N�t/ D NB.t; j N�tj/.
Therefore, W0 must be measurable with respect to the filtration generated by j N�j,
which is strictly smaller than the filtration generated by N�. This shows that N� cannot
be adapted to W0, proving that we cannot have a strong solution.

More About the Compatibility Condition
We close this section with an example for which the compatibility condition
between . N�;
/ D . N�t; �t/0�t�T and F

0 in the statement in Theorem 3.37 is
not satisfied. This example highlights the practical meaning of the Compatibility
Condition.

With the same notation as in the proof of Proposition 3.36, consider the forward-
backward system:

8
ˆ̂
<

ˆ̂
:

d O�t D �$2
t O�tdt;

d O�t D �$�2
t sign. O�t/dt; t 2 Œ0; 1�;

O�0 D 0; O�1 D �4$�2
1 N�1;

(3.95)

where the sign function is as before except that we let sign.0/ D 0. For a symmetric
random variable " defined on some .˝0;F0;P0/ and taking values in f�1; 1g, it is
easy to check that the functions O
 and O� defined by:

8
<

:

O�t D �$�2
t .t � 1

2
/C";

O�t D 1
2

�
t � 1

2

�2
C"; t 2 Œ0; 1�;



234 3 Solving MFGs with a Common Noise

solve (3.95). The solution is obviously measurable with respect to the completion of
the � -field generated by ". Without any loss of generality, we may assume that F0

coincides with this � -field. We then let F0 D .F0
t D F0/0�t�1.

We then recover a system of the form (3.91) with Ob � 0. Following the proof of
Theorem 3.35, we can associate with . O�t; O�t/0�t�1 a solution to (3.90) with Nb � 0.
Following the proof of Lemma 3.39, we may construct a pair .X;Y/ solving a system
of the form:

8
ˆ̂
<

ˆ̂
:

dXt D �
Xt � Yt

�
dt;

dYt D ��Xt C Yt C f .t; �t/
�
dt; t 2 Œ0; 1�;

X0 D 0; Y1 D X1 C g.�1/:

The process Y reads Yt D �tXt C$t O�t, for all t 2 Œ0; 1�, with �t D 0 for t 2 Œ0; 1=2�.
In particular, X may follow two paths, according to the value of ". Clearly, for
t 2 Œ0; 1=2�, Xt D 0 and then Mt D 0, where the process M D .Mt/0�t�1
has the same definition as in Subsection 2.2.4. In particular, FM

0 reduces to the
null sets. Moreover, FM

1 is equal to the completion of the � -field generated by
", namely F0 D F0

0 . In particular, conditional on FM
0 , FM

1 and F0
0 are not

independent. Therefore, the compatibility condition fails, which had to be expected
since F0

0 anticipates on the future of the environment: O�1 is F0
0 -measurable but is

not observable before t D 1=2.

3.6 Notes & Complements

To the best of our knowledge, there are very few published results on the solvability
of mean field games with a common noise. We believe that the recent paper [100]
by Carmona, Delarue, and Lacker is the only work which addresses the problem
in a general framework. Under the additional condition that the coefficients
satisfy monotonicity conditions, in the sense of Lasry-Lions or in the sense of
Definition (Vol I)-3.31, existence and uniqueness have directly been investigated
in the papers by Ahuja [11] and by Cardaliaguet, Delarue, Lasry, and Lions [86].
In the latter, the authors used a continuation method very much in the spirit of
that implemented in Chapter (Vol I)-6. A more specific existence result has been
established by Lacker and Webster [257] under the assumption that the coefficients
satisfy suitable properties of invariance by translation.

The strategy used in this chapter for proving Theorem 3.1 shares some common
features with that developed in [100]. Generally speaking, both approaches rely on
the same discretization procedure of the conditioning upon the realizations of the
common noise. In both cases, this first step is essential since it permits to apply
the same fixed point argument as when there is no common noise. However, these
two approaches differ from one another in the method used to pass to the limit
along the relaxation of the discretization in the conditioning. Whatever the strategy,
the crucial point is to establish the compactness of the sequence of equilibrium
optimal controls associated with each of the discretized conditioning. In the text,
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we rely on the Pontryagin stochastic maximum principle to prove tightness of
this sequence with respect to the so-called Meyer-Zheng topology. An alternative
strategy is proposed in [100] by relaxing the notion of controls, in analogy with
what we did in Section (Vol I)-6.6 to handle optimal control problems of McKean-
Vlasov diffusion processes. Generally speaking, the notion of relaxed controls is
very useful as it provides simple compactness criteria. However, in order to maintain
consistency across the different chapters, we chose not to invoke this weaker notion,
and to perform the analysis of the weak solvability of MFGs with a common noise
by means of forward-backward stochastic differential equations only. In the end,
the structural conditions used in [100] to prove existence of a weak solution with
a control in the strong (or classical) sense may be compared to those used in the
text. On one hand, in order to use the maximum principle, we demand more on
the regularity properties of the coefficients. On the other hand, the use of the non-
degeneracy property in the assumption of Theorem 3.29 allows us to avoid any
convexity assumption for the cost functionals in the direction x, while convexity in
the direction x is required in [100]. Of course, weak solutions with relaxed controls,
that is to say very weak solutions, exist under much weaker conditions than those
used in this chapter.

In the proof of Theorem 3.1, a major technical difficulty for passing to the limit
along the discretization procedure is to check that in the limit, the probabilistic set-
up satisfies the required compatibility condition. This is especially clear from the
statement of Proposition 3.11. As explained in the text, compatibility is necessary
to identify the limit process with an equilibrium. Here, it follows for free from the
procedure introduced in Definition 2.16 for lifting the environment into a super-
environment. The idea for this trick is borrowed from [100].

The Meyer-Zheng topology used for proving tightness of the adjoint processes in
the Pontryagin stochastic maximum principle goes back to the earlier paper [280]
by Meyer and Zheng. Part of our presentation was inspired by the paper by Kurtz
[245]. Meyer-Zheng’s topology has been widely used in the analysis of backward
SDEs. See for example [78,275,296]. Throughout the chapter, the theorem used for
passing to the limit in the various stochastic integrals is taken from Kurtz and Protter
[248]. The generalization of Lusin’s theorem invoked in the proof of Lemma 3.15
may be found in Bogachev [64], see Theorem 7.1.13 therein.

As for the last part of the chapter about the restoration of uniqueness by the
common noise forcing, we make the following observations. First, we recall that
this question has been widely discussed within the classical theory of stochastic
differential equations since the early works of Zvonkin [346] and Veretennikov
[336]. We refer to Flandoli’s monograph [156] for an overview of the subject,
including a discussion on the infinite dimensional case. In the case of mean field
games, the specific example discussed in the paper is inspired by the note [159] by
Foguen Tchuendom. Proposition 3.36 raises interesting questions about the possible
selection of physical equilibria by letting the viscosity � tend to 0. Our guess is
that, for the counter-example studied in the proof of Proposition 3.36, it should be
possible to carry out an analysis similar to that performed by Bafico and Baldi in
[30] for standard stochastic differential equations with a vanishing viscosity.
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4The Master Field and the Master Equation

Abstract

We introduce the concept of master field within the framework of mean field
games with a common noise. We present it as the decoupling field of an infinite
dimensional forward-backward system of stochastic partial differential equations
characterizing the equilibria. The forward equation is a stochastic Fokker-Planck
equation and the backward equation a stochastic Hamilton-Jacobi-Bellman
equation. We show that whenever existence and uniqueness of equilibria hold
for any initial condition, the master field is a viscosity solution of Lions’ master
equation.

4.1 Introduction and Construction of the Master Field

4.1.1 General Objective

As explained in Chapters (Vol I)-3 and 2, mean field game equilibria may be
described by means of a system of partial differential equations (PDEs) where time
runs in opposite directions. The forward PDE is a Fokker-Planck equation describ-
ing the dynamics of the statistical distribution of the population in equilibrium. The
backward PDE is a Hamilton-Jacobi-Bellman equation describing the evolution of
the optimal expected costs in equilibrium. Both equations become stochastic when
the state dynamics depend upon an additional source of randomness common to all
the players. This extra source of random shocks was referred to as a common noise
in Chapters 2 and 3.

Such a system of (possibly stochastic) PDEs is reminiscent of the standard
theory of finite dimensional forward-backward stochastic differential equations
we presented in Chapter (Vol I)-4. A remarkable feature of these systems is the
existence of a so-called decoupling field which gives the solution of the backward
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equation at any given time, as a function of the solution at the same time, of the
forward equation. Our first goal is to extend this connection to the forward-backward
systems used to characterize mean field games. The corresponding decoupling field
will be called master field.

In the existing literature, the decoupling field is constructed mostly when the
corresponding forward-backward system is uniquely solvable. As shown in Chap-
ter (Vol I)-4, when the coefficients of the system are deterministic, the decoupling
field is deterministic as well, so that the value of the backward component at a given
time reads as a function of the sole value of the forward component at the same
time. This remarkable fact reflects the Markovian nature of the forward component
of the solution. The objective here is to adapt the approach to mean field games, and
to construct the master field when an equilibrium exists and is unique. Uniqueness,
which will be understood in a weak sense according to the terminology introduced
in Chapter 2, could be viewed as a proxy for the Markov property in the finite
dimensional case with deterministic coefficients. Explicit examples were already
given in Chapter 3.

Another key feature of decoupling fields in finite dimension is the fact that they
solve a nonlinear PDE. Generally speaking, solvability holds in the viscosity sense
but, under suitable regularity conditions on the coefficients, the decoupling field may
be smooth, and thus solve the aforementioned PDE in the classical sense as well.
In the case of mean field games, the master field is expected to solve an equation
called the master equation, a PDE on the product of the state space and the space of
probability measures on the state space. Within the framework of mean field games
without common noise, we already encountered instances of the master equation in
Chapter (Vol I)-5 as examples of applications of the chain rule for smooth functions
on the Wasserstein space P2.Rd/. In this chapter, we prove that the master field is a
viscosity solution of the master equation, the key argument consisting in a suitable
version of the dynamic programming principle. Smoothness properties of the master
field will be investigated in Chapter 5.

The formulation of the master equation relies heavily on the differential calculus
on the Wasserstein space introduced in Chapter (Vol I)-5. The chain rule for flows
of probability measures established in Section (Vol I)-5.6 plays a crucial role in
its derivation. To be more specific, an extended version that holds for flows of
random (or conditional) measures will be needed if we want to handle models with
a common source of noise.

The concept of master equation and the use of the terminology master go back
to the seminal lectures of P. L. Lions at the Collège de France. The word master
emphasizes the fact that all the information needed to describe the equilibria of the
game is contained in a single equation, namely the master equation. This equation
plays the same role as the Chapman-Kolmorogov equation, also called “master
equation” in physics, for the evolution of a Markov semi-group. As we shall see, this
connection between the master equation for a mean field game and the Chapman-
Kolmorogov equation for a Markov semi-group can be made precise: The generator
of the master equation coincides with the generator of the semi-group associated
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with the McKean-Vlasov SDE satisfied by the state of a representative player
when the population is in equilibrium; we already introduced the latter generator
in Subsection (Vol I)-5.7.4.

The outline of the chapter is as follows. We first provide a systematic construction
of the master field under the assumption that the mean field game admits a unique
weak equilibrium in the sense of Chapter 2. This master field is then shown to satisfy
the dynamic programming principle. Next, by means of an extended version of the
chain rule proved in Chapter (Vol I)-5, we identify the form of the master equation
and show that the master field is a viscosity solution. Finally, we revisit some of the
examples discussed in the first chapter in light of these new analytic tools.

4.1.2 General Set-Up

The construction of the master field given in this chapter applies to the general
framework of mean field games with a common noise introduced in Chapter 2, a
review of which is given below for the reader’s convenience, even if it is short on
specifics at times.

The set-up is the same as in Definition 2.16. We are given:

1. an initial condition V0 2 P2.P2.Rd//, a complete probability space
.˝0;F0;P0/, endowed with a complete and right-continuous filtration
F
0 D .F0

t /0�t�T and a d-dimensional F
0-Brownian motion W0 D

.W0
t /0�t�T ,

2. a complete probability space .˝1;F1;P1/ endowed with a complete and
right-continuous filtration F

1 D .F1
t /0�t�T and a d-dimensional F

1-
Brownian motion W D .Wt/0�t�T .

.˝;F ;P/ will be the completion of the product space .˝0 � ˝1;F0 ˝
F1;P0 ˝ P

1/ endowed with the filtration F D .Ft/0�t�T obtained by
augmenting the product filtration F

0 ˝ F
1 in a right-continuous way and

completing it.

We recall the useful notation L1.X/.!0/ D L.X.!0; �// when !0 2 ˝0 and X is
a random variable on ˝ which was introduced in Subsection 2.1.3.

For a drift b from Œ0;T� � R
d � P2.Rd/ � A with values in R

d, where A is a
closed convex subset of Rk, two (uncontrolled) volatility functions � and �0 from
Œ0;T� � R

d � P2.Rd/ to R
d�d and two running and terminal scalar cost functions f

and g defined on Œ0;T��R
d �P2.Rd/� A and R

d �P2.Rd/ respectively, the search
for an MFG equilibrium along the lines of Definition 2.16 consists in the following
two-step procedure:
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(i) Given an F0-measurable random variable �0 W ˝0 ! P2.Rd/, with V0 as
distribution, an initial condition X0 W ˝ ! R

d such that L1.X0/ D �0, and
an F0

T -measurable random variable M with values in P2.C.Œ0;T�IR2d// such
that F is compatible with .X0;W0;M;W/ and �0 D Mı .ex

0/
�1, where ex

t is the
mapping evaluating the first d coordinates at time t on C.Œ0;T�IR2d/, solve the
(standard) stochastic control problem (with random coefficients):

inf
.˛s/0�s�T

E

� Z T

0

f .s;Xs; �s; ˛s/ds C g.XT ; �T/

	

(4.1)

subject to:

dXs D b
�
s;Xs; �s; ˛s

�
ds C �

�
s;Xs; �s

�
dWs C �0

�
s;Xs; �s

�
dW0

s ; (4.2)

with X0 as initial condition and with �s D M ı .ex
s/

�1, for 0 � s � T .
(ii) Determine the input M so that, for one optimal path .Xs/0��T , it holds that:

M D L1
�
X;W

�
: (4.3)

In order to guarantee the well posedness of the cost functional (4.1) and the
unique solvability of (4.2), we shall assume the following throughout the chapter.

Assumption (Control). There exists a constant L � 0 such that:

(A1) For any t 2 Œ0;T�, the coefficients b.t; �; �; �/ and .�; �0/.t; �; �/ are contin-
uous on R

d �P2.Rd/�A and R
d �P2.Rd/ respectively. The coefficients

b.t; �; �; ˛/, �.t; �; �/ and �0.t; �; �/ are L-Lipschitz continuous in the x
variable, uniformly in .t; �; ˛/ 2 Œ0;T� � P2.Rd/ � A. Moreover,

jb.t; x; �; ˛/j C j.�; �0/.t; x; �/j � L
�
1C jxj C j˛j C M2.�/

�
;

where, as usual, M2.�/
2 denotes the second moment of �.

(A2) f and g are Borel-measurable scalar functions on Œ0;T��R
d�P2.Rd/�A

and R
d �P2.Rd/ respectively. For any t 2 Œ0;T�, the functions f .t; �; �; �/

and g.�; �/ are continuous on R
d � P2.Rd/ � A and R

d � P2.Rd/

respectively. Moreover,

jf .t; x; �; ˛/j C jg.x; �/j � �
�
1C jxj2 C j˛j2 C M2.�/

2
�
:

Arbitrary Initial Time. Throughout the chapter, we shall consider equilibria that
may be initialized at a time t 2 Œ0;T� different from 0. Of course, this requires a
suitable adaptation of the definition of the optimization problem (4.1)-(4.2), and in
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particular of the cost functional, with t in lieu of 0 in the integral of the running
cost. This also requires a redefinition of the notion of equilibrium: we let the reader
adapt Definition 2.16 accordingly. In the new definition, we shall force the Brownian
motions W0 and W, which are then defined on Œt;T�, to start from 0 at time t.
Moreover, the super-environment M is required to take values in P2.C.Œt;T�IR2d//,
and its canonical filtration is defined along the lines of Definition 2.15, the canonical
process therein being defined on Œt;T� in lieu of Œ0;T�. The compatibility condition
is now understood as compatibility between F and .Xt; .W0

s /t�s�T ;M; .Ws/t�s�T/,
M being regarded as a random variable with values in P2.C.Œt;T�IR2d//. Following
Definition 1.39, we shall sometimes say that the set-up .˝;F ;F;P/ is t-initialized,
the initial information being generated by the sole initial private state Xt.

It is plain to check that all the results of Chapter 2 are easily adapted to these
t-initialized set-ups.

A Primer on the Master Field
According to the discussion in Subsection 2.3.3 of Chapter 2, the search for
an optimum in (4.1)–(4.2) may be connected to the solvability of an infinite
dimensional FBSDE of the form (2.37)–(2.38), with a stochastic Fokker-Planck
equation as forward equation and a stochastic HJB equation as backward equation.
This is especially meaningful if we seek strong solutions, namely equilibria �

that are adapted to the noise W0, in which case there is no need to require
compatibility between F and .X0;W0;M;W/. If existence and uniqueness hold,
it sounds reasonable to expect a generalization of the concept of decoupling
field, already discussed in Subsection (Vol I)-4.1 in the finite dimensional setting.
Roughly speaking, the existence of a decoupling field says that the backward
component must read as a deterministic function of the forward component, which
in our case, and with the same kind of notations as in (2.37)–(2.38), reads:

for a.e. !0 2 ˝0; for all t 2 Œ0;T�; U�.t; �; !0/ D U
�
t; �t.!

0/
�
.�/;

where U�.t; �; !0/ is the random value function of the optimization problem in the
random environment �. We emphasize that the reason for appealing to an analogue
of the notion of decoupling field introduced in Subsection (Vol I)-4.1 rather than its
generalization discussed in Subsection 1.3 is the fact that here, the coefficients are
deterministic (although they are infinite dimensional).

The present discussion being set at a rather informal level, there is no real need to
specify the space of functions to which U�.t; �; !0/ is expected to belong. Moreover,
� D .�t/0�t�T is the solution of the forward Fokker-Planck equation describing the
evolution of the population in equilibrium. The definition of the function U does not
depend upon �. It is a function from Œ0;T� � P2.Rd/ into the space of functions of
the same type as U�.t; �; !0/, since P2.Rd/ appears as the state space of the forward
component. Specifying the values U�.t; �; !0/ at points x of the physical state space
R

d (which makes sense for example if U�.t; �; !0/ is a continuous function), this
relationship also writes:
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for a.e. !0 2 ˝0; for all .t; x/ 2 Œ0;T� � R
d; U�.t; x; !0/ D U

�
t; �t.!

0/
�
.x/;

or, for a.e. !0 2 ˝0, for all .t; x/ 2 Œ0;T� � R
d,

U�.t; x; !0/ D U
�
t; x; �t.!

0/
�
: (4.4)

Basically, U is the object we are tracking in this chapter. It is touted as the master
field of the game.

4.1.3 Construction of the Master Field

We now provide a rigorous construction of the master field which does not require
the analysis of the infinite dimensional forward-backward system (2.37)–(2.38)
describing the equilibria of the game. Our strategy is to make systematic use of the
forward-backward stochastic differential equations that describe the optimal paths
of the underlying optimization problem.

Throughout this section, we use the same assumptions as in Subsection 2.2.3, but
with an arbitrary initial time t 2 Œ0;T� in lieu of 0.

Assumption (FBSDE). On top of assumption Control, there exist an integer
m � 1 together with deterministic measurable functions B W Œ0;T� � R

d �
P2.Rd/ � R

m � R
m�d ! R

d, F W Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d ! R

m,
G W Rd � P2.Rd/ ! R

m and L̨ W Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d ! A,

such that:

(A1) For any t 2 Œ0;T�, and any t-initialized probabilistic set-up .˝;F ;F;P/
equipped with a compatible lifting .Xt;W0; .M;�/;W/ as in Subsec-
tion 4.1.2, the conditional law L1.Xt/ of the initial condition Xt possibly
differing from �t, the optimal control problem defined in (4.1)–(4.2),
namely:

min
˛

J�.˛/; J�.˛/ D E

� Z T

t
f .s;X˛

s ; �s; ˛s/ds C g.X˛
T ; �T/

	

;

where ˛D.˛s/t�s�T is an F-progressively measurable square-integrable
A-valued control process and X˛ D .X˛

s /t�s�T solves:

dX˛
s D b

�
s;X˛

s ; �s; ˛s
�
ds C �.s;X˛

s ; �s/dWs C �0.s;X˛
s ; �s/dW0

s ;

for s 2 Œt;T� and with X˛
t D Xt as initial condition, has a unique

solution, characterized as the forward component of the unique solution
to the strongly uniquely solvable FBSDE:

(continued)
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D B.s;Xs; �s;Ys;Zs/ds

C�.s;Xs; �s/dWs C �0.s;Xs; �s/dW0
s ;

dYs D �F.s;Xs; �s;Ys;Zs;Z0s /ds

CZsdWs C Z0s dW0
s C dMs; s 2 Œt;T�;

(4.5)

with Xt as initial condition for X D .Xs/t�s�T and YT D G.XT ; �T/ as
terminal condition for Y D .Ys/t�s�T , where M D .Ms/t�s�T is a càd-
làg martingale with respect to the filtration F, of zero cross variation
with .W0;W/ and with initial condition Mt D 0.

(A2) For all .t; x; �; y; z/ 2 Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d,

B.t; x; �; y; z/ D b
�
t; x; �; L̨ .t; x; �; y; z/�;

(A3) There exists a constant L � 0 such that:

j.�; �0/.t; x; �/j � L
�
1C jxj C M2.�/

�
;

j.B; L̨ /.t; x; �; y; z/j � L
�
1C jxj C jyj C jzj C M2.�/

�
;

jF.t; x; �; y; z; z0/j C jG.x; �/j
� L

�
1C jxj C jyj C jzj2 C jz0j2 C �

M2.�/
�2�
;

for all .t; x; �; y; z/ 2 Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d.

Recall that the typical examples we have in mind for the FBSDE (4.5) are:

1. the FBSDE is associated with the value function of the control problem, as in
Theorem 1.57, in which case F does not depend on z0;

2. the FBSDE derives from the stochastic Pontryagin principle, as in Theorem 1.60.

As we already emphasized in formula (2.26) of Subsection 2.2.3, if we denote
by Ǫ .t; x; �; y/ the minimizer of the reduced Hamiltonian H.r/.t; x; �; y; � /, the
function L̨ is given by L̨ .t; x; �; y; z/ D Ǫ .t; x; �; �.t; x; �/�1�z/ in the first case
and L̨ .t; x; �; y; z/ D Ǫ .t; x; �; y/ in the second.

The construction of the master field is now quite simple, although its description
still requires some more notations. The intuitive idea is the following: assume that,
for any fixed initial distribution � 2 P2.Rd/, there exists a unique weak equilibrium
to the mean field game, the population having � as initial condition at time t, in the
sense that we can find a general probabilistic set-up on which we can construct a
weak solution as in Chapter 2, and that any other solution has the same distribution.
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Then U.t; x; �/ must be the optimal cost of the optimization problem (4.1), when
� therein denotes the equilibrium of the game and X is forced to start from x at
time t. Now since we have a characterization of such an optimal cost in terms of
the initial value of the backward component of an FBSDE, we can represent it in a
systematic way.

The best way to standardize the procedure is to transfer the weak solutions to
the canonical space, as already discussed in Chapter 2, see Definition 2.24 and
Lemma 2.25. The principle here is the same, except that now, the initial time may
be any time t 2 Œ0;T�. Assume that, for some .t; �/ 2 Œ0;T� � P2.Rd/, there
exists a unique weak equilibrium to the MFG problem when the population starts
from the distribution � at time t. Following the statement of Lemma 2.25, we call
Mt;� the (unique) distribution of the triplet .�t;W0;M/ Š .�t;W0

s ;Ms/t�s�T on
P2.Rd/ � C.Œt;T�IRd/ � P2.C.Œt;T�IR2d//, for any weak solution M initialized
with M ı .ex

t /
�1 D � and constructed on some t-initialized probabilistic set-up

.˝;F ;F;P/. Here, .˝;F ;F;P/ is required to satisfy the same prescription as in
Definition 2.16 and in particular, to be equipped with some d-dimensional Brownian
motion W0, which is regarded as the common noise. Of course, the first marginal of
Mt;� on P2.Rd/ is ı�, the Dirac mass at �. Once again, uniqueness follows from
the uniqueness in law of the equilibrium: any weak solution, with the prescribed
initial condition �, generates the same distribution Mt;�. Now, we can consider the
same canonical space N̋ as in Chapter 2, see (2.32) and Definition 2.24, namely
(pay attention that the spaces depend on t, which is fixed in the present situation):

N̋ t D N̋ 0;t � N̋ 1;t;
N̋ 0;t D P2.Rd/ � C.Œt;T�IRd/ � P2

�
C.Œt;T�IR2d/

�
;

N̋ 1;t D Œ0; 1/ � C.Œt;T�IRd/:

(4.6)

As in Definition 2.24, we can denote by . N̋ 0;t;F0;t;�;P0;t;�/ the completion of N̋ 0;t
equipped with its Borel � -field and with the probability measure Mt;�. Similarly,
we can denote by . N̋ 1;t;F1;t;P1;t/ the completion of N̋ 1;t equipped with its Borel
� -field and with the probability measure Leb1 ˝ W t

d, where Leb1 is the Lebesgue
measure on Œ0; 1/ and W t

d is the d-dimensional Wiener measure on C.Œt;T�IRd/. We
then call . N̋ t;F t;�;Pt;�/ the completion of the product space . N̋ 0;t � N̋ 1;t;F0;t;� ˝
F1;t;P0;t;�˝P

1;t/. When t is equal to 0, we shall systematically remove the symbol t
in the superscripts .0; t; �/ and .1; t/ (so that N̋ 0;t is just denoted by N̋ 0 and so on. . . )

The canonical random variable on N̋ 1;t is denoted by .�;w D .ws/t�s�T/.
The complete and right-continuous augmentation of the filtration generated by
.�;w/ is denoted by F

1;t D .F1;t
s /t�s�T . The canonical random variable on N̋ 0;t

is denoted by .�0;w0 D .w0s /t�s�T ;m/, the associated flow of marginal measures
being denoted by � D .�s D m ı .ex

s/
�1/t�s�T . We call F0;t;� D .F0;t;�

s /t�s�T

the filtration generated by .�0;w0s ;ms/t�s�T where ms D m ı .E t
s/

�1, with
E t

s W C.Œt;T�IR2d/ 3 .x;w/ 7! .xr^s;wr^s/t�s�T 2 C.Œt;T�IR2d/. On N̋ t, we let
F

t;� be the complete and right-continuous augmentation of the product filtration.
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Finally, the initial state xt of the population is then defined as xt D  .�; �0/, with
 as in (2.23) and Lemma (Vol I)-5.29.

At this stage of the discussion, the presence of P2.Rd/ in N̋ 0;t in the definition
of N̋ 0;t may seem like an overkill as � is a fixed deterministic probability measure.
Indeed, we could use N̋ 00;t D C.Œt;T�IRd/ � P2.C.Œt;T�IR2d// as canonical space
instead of N̋ 0;t. The rationale for working with N̋ 0;t will be made clear below, when
we work with equilibria starting from initial random states with values in P2.Rd/.

On such a canonical set-up, we can solve the forward-backward system:
(

dxs D B.s; xs; �s; ys; zs/ds C �.s; xs; �s/dws C �0.s; xs; �s/dw0s ;

dys D �F.s; xs; �s; ys; zs; z0s /ds C zsdws C z0s dw0s C dms;

with xt D  .�; �0/ as initial condition at time t and with yT D G.xT ; �T/ as terminal
condition, where m has zero cross variation with .w0;w/ and mt D 0 as initial value.

More generally, for any random variable 
 2 L2. N̋ t; �f�0; �g;Pt;�IRd/, we can
solve, on the set-up . N̋ t;F t;�;Ft;�;Pt;�/ equipped with .
;w0;m;w/, the FBSDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dxt;

s D B

�
s; xt;


s ; �s; y
t;

s ; z

t;

s
�
ds

C��s; xt;

s ; �s

�
dws C �0

�
s; xt;


s ; �s
�
dw0s ;

dyt;

s D �F

�
s; xt;


s ; �s; y
t;

s ; z

t;

s ; z

0;t;

s
�
ds

Czt;

s dws C z0;t;
s dw0s C dmt;


s ;

(4.7)

with xt;

t D 
 as initial condition at time t and with yt;


T D G.xt;

T ; �T/ as terminal

condition, where mt;
 has zero cross variation with .w0;w/ and mt;

t D 0 as initial

value. Compatibility between F
t;� and .
;w0;m;w/ may be checked along the line

of identity (2.33) following Definition 2.24 in Chapter 2.
From Theorem 1.33, the law of .xt;
 ; yt;
 ; zt;
 ; z0;t;
 ;mt;
 / is uniquely determined

by the law of the input .
;w0;m;w/. Therefore, the law of the pair .
; yt;

t / is

uniquely determined as well. The guess is that, when 
 D xt, yt;

t should be a

function of the sole xt, and that their relationship should be of the form yt D
U.t; xt; �

0/ D U.t; xt; �/ for the same U as in (4.4). In order to access the function
U , one has to use conditioning on the value of Xt or, equivalently, to solve (4.7) but
under the prescription that 
 D x for some deterministic x.

This suggests that we take a special look at the case 
 D x in (4.7), leading to
what can be regarded as the definition of the master field.

Definition 4.1 Let us assume that weak existence and uniqueness hold for any
initial condition .t;V/ 2 Œ0;T��P2.P2.Rd// in the sense that all the weak solutions
of the mean field game with .t;V/ as initial condition have the same distribution.
Let us also assume that assumption FBSDE holds. For any .t; �/ 2 Œ0;T��P2.Rd/

we denote by Mt;� the law of the equilibrium on the space P2.Rd/� C.Œt;T�IRd/�
P2.C.Œt;T�IR2d// with V D ı� as initial condition, and we define the function U on
Œ0;T� � R

d � P2.Rd/ by:
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U.t; x; �/

D
Z � Z T

t
f
�
s; xt;x

s ; �s; L̨ .s; xt;x
s ; �s; y

t;x
s ; z

t;x
s /
�
ds C g.xt;x

T ; �T/

	

d
h
Mt;� ˝ W t

d

i
;

where the integral is over the set P2.Rd/ � C.Œt;T�IRd/ � P2.C.Œt;T�IR2d// �
C.Œt;T�IRd/, � is understood as �D.�sDm ı .ex

s/
�1/t�s�T , and where .xt;x

s ; y
t;x
s ; z

t;x
s ;

z0;t;xs /t�s�T is the solution of (4.7) with 
 � x.

Above, we denoted by Mt;� ˝ W t
d the completion of the measure Mt;� ˝ W t

d,
namely the extension of Mt;� ˝ W t

d to the completion of the Borel � -field on
P2.Rd/ � C.Œt;T�IRd/ � P2.C.Œt;T�IRd// � C.Œt;T�IRd/.

The interpretation of U.t; x; �/ is quite clear: it is the optimal cost of the
optimization problem (4.1)–(4.2) in the random environment .ms/t�s�T , with x
as initial condition at time t and with .w0s ;ms;ws/t�s�T D .w0s � w0t ;ms;ws �
wt/t�s�T as t-initialized set-up. Importantly, this interpretation is independent of
the probabilistic set-up used to construct the MFG equilibrium and to solve the
FBSDE (4.7). Indeed, by assumption, the law of the equilibrium is independent of
the underlying probabilistic set-up and, by assumption FBSDE, the joint law of
the MFG equilibrium and the solution of the FBSDE is also independent of the
underlying probabilistic set-up, see Theorem 1.33.

We refer the reader to Theorems 3.29, 3.30, and 3.31 in Chapter 3 for examples
of existence of weak solutions. We refer to Proposition 3.34 and Theorem 3.35
in the same chapter for examples of strong and thus weak uniqueness, and to
Subsection 3.5.5 for an example for which weak uniqueness holds while strong
does not. Some of these examples will be revisited in paragraph 4.4.4 below.

4.1.4 Dynamic Programming Principle

In standard forward-backward stochastic differential equations, the decoupling field
makes the connection between the backward component of the solution and the
forward component at any time. Equation (4.4) is the expected counterpart in the
current infinite dimensional framework. A natural question is to determine whether
the mapping U constructed in Definition 4.1 indeed satisfies such a principle
(provided uniqueness of the equilibria holds and assumption FBSDE is in force).

Another way to formulate (4.4) is to demand that, along the equilibrium � D
.�t/0�t�T and the optimal path X D .Xt/0�t�T , U.t;Xt; �t/ be, at any time t 2 Œ0;T�,
the optimal remaining cost from t to T . This would express, under the uniqueness
property (and the technical assumption FBSDE), the Markovian nature of solutions:
at any time, the optimal remaining cost would be a deterministic function of the
private (random) state of the player and of the collective (random) state of the
population.
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We prove below that this is indeed the case. As a byproduct, we shall derive a
version of the dynamic programming principle for mean field games.

Of course, the intuitive idea behind the Markovian nature alluded to above is that
we can restart the analysis from the initial condition .Xt; �t/, despite the fact that �t

is a random measure. Because of that, we shall often consider weak solutions with
random initial conditions as we did in Definition 2.24. Given an initial time t 2 Œ0;T�
and a distribution V 2 P2.P2.Rd//, a weak solution is a probability measure Mt;V

on the space N̋ 0;t. When V D ı� for some � 2 P2.Rd/, it holds that Mt;V D Mt;�.
Of course, we shall often write Mt;� for Mt;ı� .

For such V and Mt;V , we call . N̋ 0;t;F0;t;V ;P0;t;V/ the completion of N̋ 0;t
equipped with its Borel � -field and Mt;V . As above, we can equip it with a filtration
F
0;t;V . We then define . N̋ t;F t;V ;Ft;V ;Pt;V/ accordingly.

We start with a quite technical (but necessary) lemma for ensuring that U is
indeed a measurable function.

Proposition 4.2 Assume that weak existence and uniqueness hold for any initial
condition .t;V/ 2 Œ0;T� � P2.P2.Rd// and that assumption FBSDE is in force.
Then, for any t 2 Œ0;T�, the function R

d � P2.Rd/ 3 .x; �/ 7! U.t; x; �/ is
measurable.

Proof. The strategy relies on the Souslin-Kuratowski theorem, see Proposition 1.32.
Throughout the proof, we fix the value of t 2 Œ0; T�.
First Step. The idea is to introduce the set S of probability measures M 2 P2. N̋ 0;t/ that
generate an equilibrium after time t with a Dirac initial condition ı�, for some � 2 P2.Rd/.

In order to make clear the definition of S, we need some preliminary notations. As
usual, we denote by .�0;w0;m/ the canonical random variable on N̋ 0;t. Then, we let
� D .�s D m ı .ex

s/
�1/t�s�T . The canonical filtration generated by .�0;w0;m/ along the

lines of Definition 2.15 is denoted by F
0;t;nat D .F0;t;nat

s /t�s�T . For M 2 P. N̋ 0;t/, we call
. N̋ 0;t;F0;t;M;P0;t;M/ the completion of . N̋ 0;t;B. N̋ 0;t/;M/ and we denote by F

0;t;M the
completion and right-continuous augmentation of F0;t;nat under M.

We then equip the product space N̋ 0;t � N̋ 1;t with its Borel � -field and the product measure
M˝.Leb1˝W t

d/. The canonical random variable on N̋ 0;t � N̋ 1;t is denoted by .w0;m; �;w/,
the canonical filtration being denoted by F

t;nat D .F t;nat
s /t�s�T . The completed space is

denoted by . N̋ 0;t � N̋ 1;t;F t;M;Pt;M/ and the complete and right-continuous augmentation
of the canonical filtration is denoted by F

t;M.
We now consider M 2 P2. N̋ 0;t/ such that under M:

1. the process w0 D .w0s /t�s�T is a d-dimensional Brownian motion with respect to
.F0;t;nat

s /t�s�T starting from w0t D 0;
2. the random variable �0 is almost surely constant, which means that, with probability 1

under M, for any B 2 B.Rd/,

�0.B/ D
Z

N̋ 0;t
�0.B/M.d�0; dw0; dm/ I (4.8)

3. the random variable mt D m ı E�1
t satisfies, with probability 1, m ı .ex

t /
�1 D �0.
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Using the same argument as in (2.33), we deduce that the filtration .Ft;M
s /t�s�T is compatible

with the process .xt; .w0s ;ms;ws/t�s�T/, where xt is defined as xt D  .�; �0/. In particular,
we may regard . N̋ 0;t� N̋ 1;t;F t;M; .F t;M

s /t�s�T ;P
t;M/ equipped with .xt; .w0s ;ms;ws/t�s�T/

as a t-initialized set-up. On this t-initialized set-up, we can consider the forward-backward
system:

(
dxs D B

�
s; xs; �s; ys; zs

�
ds C �

�
s; xs; �s

�
dws C �0

�
s; xs; �s

�
dw0s ;

dys D �F
�
s; xs; �s; ys; zs; z0s

�
ds C zsdws C z0s dw0s C dms; t � s � T;

(4.9)

with xt D  .�; �0/ as initial condition and with Œm;w�� � 0 and Œm;w0�� � 0 on Œt; T� and
mt D 0.

We then say that M 2 S if, in addition to 1, 2 and 3 above, we also have:

4. P
t;MŒm D L1.x;w/� D 1.

Following Lemma 2.26, condition 4 above may be reformulated as follows:

4’. For any Borel subset C � C.Œt; T�IR2d/ in a countable generating �-system of
B.C.Œt; T�IR2d// and any Borel subset C0 � N̋ 0;t in a countable generating �-system
of B. N̋ 0;t/,

P
t;M ı .�0;w0;m; x;w/�1�C0 � C

� D E
t;M�

1C.x;w/1C0 .�
0;w0;m/

�

D
Z

N̋ 0;t
m.C/1C0 .�

0;w0;m/dM;

where x D .xs/t�s�T .

Clearly, the set S is the set of distributions of all the equilibria starting from a deterministic
initial condition at time t 2 Œ0; T�.
Second Step. We now notice that the set of probability measures M such that point 1 above
holds is a closed subset of P2. N̋ 0;t/. Similarly, recalling that the mapping P2.Rd/ 3 �0 7!
�0.B/ is measurable for any Borel subset B 2 B.Rd/, we deduce that, for any B 2 B.Rd/,
the condition (4.8) defines a Borel subset of P2. N̋ 0;t/. Choosing B in a generating countable
�-system of B.Rd/, we deduce that the set of probability measures M such that point 2
holds is also a Borel subset of P2. N̋ 0;t/. Regarding point 3, we notice that the set of pairs
.�0;m/ 2 P2.Rd/ � P2.C.Œ0; T�IR2d//, such that �0 D m ı .ex

t /
�1 is closed. Therefore, the

set of probability measures M such that point 3 holds is a closed subset of P2. N̋ 0;t/.
It remains to do the same with point 4’. By uniqueness of the solution to the FBSDE (4.9),

we know from a mere adaptation of Proposition 1.31 that the law of .�0;w0;m; xs;w/ on
N̋ 0;t � ŒC.Œt; T�IRd/�2 depends on the law M in a measurable way. Therefore, the set of

probability measures M such that point 4’ holds true is a Borel subset of P2. N̋ 0;t/. Hence,
S is a Borel subset of P2. N̋ 0;t/.

Now, we consider the mapping:

H W S 3 M 7!
Z

N̋ 0;t
�0dM;
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where, for any C 2 B.Rd/, Œ
R

N̋ 0;t �
0dM�.C/ D R

N̋ 0;t �
0.C/dM. Weak existence and

uniqueness say that, for any � 2 P2.Rd/, there exists a unique M such that H.M/ D �.
Put differently, H is one-to-one and onto. By Proposition 1.32, the mapping P2.Rd/ 3 � 7!
Mt;� is measurable, where Mt;� denotes the weak solution, or equivalently the law of the
equilibrium, starting from � at time t.

Third Step. Now, the claim follows from a new application of Proposition 1.31, which
guarantees that the law of .xt;x; yt;x;

R �

t .z
t;x
s ; z

0;t;x
s /ds;m/, regarded as an element of

P2.C.Œt; T�IRd/ � D.Œt; T�IRm/ � C.Œt; T�IR2.m�d// � P2.C.Œt; T�IR2d///, is the image,
by a measurable function, of .x;Mt;�/, regarded as an element of Rd � P2. N̋ 0;t/. By the
second step, it is also the image, by a measurable function, of .x; �/, regarded as an element
of Rd � P2.Rd/. The proof is easily completed. ut

Here is now the first main result of this section.

Proposition 4.3 Assume that weak existence and uniqueness hold for any ini-
tial condition .t;V/ 2 Œ0;T� � P2.P2.Rd// and that assumption FBSDE is in
force. Then, for every MFG solution .X0;W0;M;W/ on a set-up .˝;F ;F D
.Ft/0�t�T ;P/ as in Definition 2.16, with X D .Xt/0�t�T as optimal path, it holds,
for any control ˇ D .ˇt/0�t�T constructed on the same set-up and progressively
measurable with respect to the complete and right-continuous augmentation of the
filtration generated by .X0;W0;M;W/, for any t 2 Œ0;T� and P-almost surely:

U
�
t;Xt; �t

� � E

� Z T

t
f .s;Xt;ˇ

s ; �s; ˇs/ds C g.Xt;ˇ
T ; �T/

ˇ
ˇ
ˇFnat;.X0;W0;W;W/

t

	

;

where Xt;ˇ D .Xt;ˇ
s /t�s�T is the solution of the controlled SDE (4.2) driven by

.ˇs/t�s�T and initialized with Xˇ
t D Xt at time t.

Furthermore, equality holds when ˇ D . L̨ .s;Xs; �s;Ys;Zs//t�s�T , and the result
remains true if the weak solution starts from some initial time t0 6D 0.

As usual, the control process ˇ is required to be A-valued, F-measurable and square-
integrable, see Chapter 1. We also refer to (A1) in assumption FBSDE for the form
of Xˇ .

Proof. Following Definition 2.24 (see also the proof of Lemma 2.30), any weak solution with
some V as initial condition generates a solution M on the canonical space N̋ 0 D P2.Rd/ �
C.Œ0; T�IRd/ � P2.C.Œ0; T�IR2d//. On the enlarged probability space N̋ D N̋ 0 � N̋ 1, with
.�0;w0;m; �;w/ as canonical process, equipped with the completion NP of the probability
measure M ˝ .Leb1 ˝ Wd/ and with the complete and right-continuous augmentation NF
of the canonical filtration according to the procedure described in Subsection 4.1.3, we can
consider the forward-backward system

dxt D B.t; xt; �t; yt; zt/dt C �.t; xt; �t/dwt C �0.t; xt; �t/dw0t ;

dyt D �F.t; xt; �t; yt; zt; z
0
t /dt C ztdwt C z0t dw0t C dmt;

with x0 D  .�; �0/ as initial condition and yT D G.xT ; �T/ as terminal boundary condition,
where m D .mt/0�t�T is a càd-làg martingale with Œm;w�� � 0, Œm;w0�� � 0 and m0 D 0.
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First Step. We now fix some t 2 Œ0; T�. Then, we consider the following regular conditional
probability measures on . N̋ ;B. N̋ //:

(a) We call .Pt;B
! /!2 N̋ the regular conditional probability measure of M ˝ .Leb1 ˝ Wd/

given the � -field �f�0;w0s ;ms; �;wsI s � tg. For any realization ! 2 N̋ , we call
. N̋ ;F t

!;P
t
!/ the completion of . N̋ ;B. N̋ /;Pt;B

! / and then F
t
! the complete and right-

continuous augmentation of the canonical filtration;
(b) We let .Qt;B

! /!2 N̋ be the regular conditional probability measure of M ˝ .Leb1 ˝ Wd/

given the � -field �f�0;w0s ;msI s � tg. For any realization ! 2 N̋ , we call . N̋ ;G t
!;Q

t
!/

the completion of . N̋ ;B. N̋ /;Qt;B
! / and then G

t
! the complete and right-continuous

augmentation of the canonical filtration.

By a mere adaptation of the proof of Lemma 1.43, we can prove that, for NP-almost every
! 2 N̋ , on the space N̋ equipped with either .F t

!;P
t
!/ or .G t

!;Q
t
!/, it holds that:

(c) The processes .�0;w0;m/ and .�;w/ are independent;
(d) The process .w0s � w0t ;ws � wt/t�s�T forms a 2d-dimensional Brownian motion with

respect to the filtration generated by .�0;w0;m; �;w/, and thus with respect to F
t
! or,

respectively, Gt
! ;

(e) The process .xt;w0s � w0t ;ms;ws � wt/t�s�T is compatible with .F t
s;!/t�s�T or,

respectively, .G t
s;!/t�s�T ;

(f) The process .xs; ys; zs; z0s ;ms � mt/t�s�T satisfies the FBSDE:
dxs D B.s; xs; �s; ys; zs/ds C �.s; xs; �s/dws C �0.s; xs; �s/dw0s ;

dys D �F.s; xs; �s; ys; zs; z
0
s /ds C zsdws C z0s dw0s C d

�
ms � mt

�
;

(4.10)

for s 2 Œt; T�, with the terminal condition yT D G.xT ; �T/, the process .ms � mt/t�s�T being
a square integrable martingale of zero cross variation with .w0s � w0t ;ws � wt/t�s�T .

Importantly, observe that the law of the initial condition in (4.10) is different under Pt
! and

Q
t
! . Indeed, under Pt

! , it is concentrated on xt.!/, namely P
t
!Œ!

0 2 N̋ I xt.!
0/ D xt.!/� D 1,

while under Q
t
! , xt has the distribution �t.!/. The first claim is quite obvious. We refer

to the proof of Lemma 1.43 for a detailed account on the way to handle the fact that xt is
measurable with respect to the completion of the Borel � -field. The second assertion follows
from the more general fact that, for NP-almost every ! 2 N̋ , for any C0 2 B. N̋ 0/ and
C 2 B.C.Œ0; T�IR2d//,

Q
t
!

h˚�
�0;w0;m

� 2 C0
� \ ˚

.x;w/ 2 C
�i D E

Q!t

h
1C0
�
�0;w0;m

�
m.C/

i
: (4.11)

In order to prove (4.11), it suffices to notice that, for any C0;t 2 �f�0;w0s ;msI s � tg,
Z

C0;t
E
Qt
!
�
1C0 .�

0;w0;m/1C.x;w/
�
d NP.!/ D E

NP
h
1C0;t 1C0

�
�0;w0;m

�
1C.x;w/

i

D E
NP
h
1C0;t 1C0

�
�0;w0;m

�
m.C/

i

D
Z

C0;t
E
Qt
!
�
1C0
�
�0;w0;m

�
m.C/

�
d NP.!/:

Choosing C0 and C in countable generating �-systems, we easily complete the proof
of (4.11).
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Second Step. We now return to (e) and (f). They say that, for NP-almost every ! 2 ˝, under
Q

t
! , .xs/t�s�T is an optimal path of the stochastic optimal control problem (4.1)–(4.2) set on

the t-initialized set-up . N̋ ;F t
T;! ;F

t
!;Q

t
!/ equipped with .xt; .w0s � w0t ;ms;ws � wt/t�s�T/,

provided that, obviously, the running cost is then integrated from t to T in (4.1).
Combined with (4.11), we shall deduce that, under Q

t
! , .�t;w0s � w0t ;ms/t�s�T is a

solution to the MFG problem set on Œt; T� instead of Œ0; T� and with �t.!/ as initial
distribution. Regarding the latter point, notice indeed that, with probability 1 under NP,
Q

t
!Œ!

0 2 N̋ W �t.!
0/ D �t.!/� D 1. In order to fit the exact definition of an equilibrium,

we have to check that Qt
! has a product form. To do so, we call .P0;t;B

!0
/!02 N̋ 0 the regular

conditional probability measure on . N̋ 0;B. N̋ 0// of M given �f�0;w0s ;msI s � tg. It is
easily checked that, for NP-almost every ! 2 N̋ , Qt;B

! D P
0;t;B
!0

˝ .Leb1 ˝ Wd/. In particular,

calling . N̋ 0;F0;t
!0
;P

0;t
!0
/ the completion of . N̋ 0;B. N̋ 0/;P0;t;B

!0
/, for any realization !0 2 N̋ 0,

we recover the setting used in the Definition 2.16 of an MFG solution.

Third Step. Consider now a square-integrable and . NFs/t�s�T -progressively measurable

control process Ň D . Ň
s/t�s�T and then denote by x Ň D .x

Ň
s /t�s�T the solution, on N̋

equipped with . NF; NP/, of the SDE:

dx Ň

s D b
�
s; x Ň

s ; �s; Ň
s
�
ds C �

�
s; x Ň

s ; �s
�
dws C �0

�
s; x Ň

s ; �s
�
dw0s ; s 2 Œt; T�;

with x
Ň

t D xt as initial condition.
For a while, we assume Ň to be progressively measurable with respect to the filtration

generated by .x0;w0;m;w/. Following the proof of Lemma 1.40, it is clear that, for NP-almost

every ! 2 N̋ , .x
Ň
s ; Ň

s/t�s�T solves, under the probability measure P
t
! , the SDE:

dx Ň

s D b
�
s; x Ň

s ; �s; Ň
s
�
ds C �

�
s; x Ň

s ; �s
�
dws C �0

�
s; x Ň

s ; �s
�
dw0s ; s 2 Œt; T�;

with initial condition xt.!/ in the sense that Pt
!Œ!

0 2 N̋ I x
Ň

t .!
0/ D xt.!/� D 1. In particular,

.x
Ň
s /t�s�T can be regarded as a controlled path starting from xt.!/ on the t-initialized set-up

. N̋ ;F t
!;T ; .F t

!;s/t�s�T ;P
t
!/ equipped with .w0s � w0t ;ms;ws � wt/t�s�T .

We know that the optimal path for the stochastic optimal control problem (4.1)–(4.2)
starting from xt.!/ on the t-initialized set-up . N̋ ;F t

!; .F t
!;s/t�s�T ;P

t
!/ equipped with

.w0s � w0t ;ms;ws � wt/t�s�T is given by the solution of the FBSDE (4.10), so:

E
Pt
!

� Z T

t
f
�
s; xs; �s; Ǫs

�
ds C g.xT ; �T/

	

� E
Pt
!

� Z T

t
f
�
s; x Ň

s ; �s; Ň
s
�
ds C g.x

Ň

T ; �T/

	

;

(4.12)
where Ǫs D L̨ .s; xs; �s; ys; zs/.

Fourth Step. By independence of .�0;w0;m/ and .�;w/ under NP, we observe that, for almost
every ! 2 N̋ under NP, the marginal laws of .�0;w0;m/ under Pt

! and Q
t
! are the same. In

particular, under Pt
! , .�t;w0s �w0t ;ms/t�s�T has the law Mt;�t.!/ of the MFG equilibrium with

�t.!/ as initial condition, where we used the same notation as in Definition 4.1. Therefore,
under P

t
! , the input .�t;w0s � w0t ;ms;ws � wt/t�s�T of the FBSDE (4.10) is distributed

according to Mt;�t.!/ ˝ W t
d. We deduce that the left-hand side in (4.12) coincides with

U.t; xt.!/; �t.!//.
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Moreover, we know that the right-hand side may be identified with the conditional
expectation:

E
NP

� Z T

t
f .s; x Ň

s ; �s; Ň
s/ds C g.x

Ň

T ; �T/
ˇ
ˇ
ˇ �
˚
�0;w0s ;ms; �;wsI s � t

�
	

;

evaluated at !. Indeed, for a random variable � from . N̋ ; NFT/ into R, we can find a random
variable Q� from . N̋ ;B. N̋ // into R such that NPŒ� D Q�� D 1. From the proof of Lemma 1.43,
we learn that, for NP-almost every ! 2 N̋ , Q� is F t

!;T -measurable and P
t
!Œ� D Q�� D 1.

Therefore, for NP-almost every ! 2 N̋ ,

E
NP
�
� j �f�0;w0s ;ms; �;wsI s � tg�.!/ D E

NP
� Q� j �f�0;w0s ;ms; �;wsI s � tg�.!/

D E
Pt
!
� Q�� D E

Pt
!
�
�
�
:

Now, using the fact that U.t; �; �/ is measurable, by conditioning (4.12) with respect to the
� -field �fx0;w0s ;ms;wsI s � tg � �fx0;w0s ;ms; �;wsI s � tg, we get:

E
NP
h
U
�
t; xt; �t

� j �˚x0;w0s ;ms;wsI s � t
�i

� E
NP

� Z T

t
f .s; x Ň

s ; �s; Ň
s/ds C g.x

Ň

T ; �T/
ˇ
ˇ
ˇ �
˚
x0;w

0
s ;ms;wsI s � t

�
	

:

Last Step. By progressive measurability with respect to the filtration generated by the
process .x0;w0;m;w/, there exists a progressively measurable mapping b from the product
space R

d � C.Œ0; T�IRd/ � P2.C.Œ0; T�IR2d// � C.Œ0; T�IRd/ equipped with the canonical
filtration into A such that Ň D b.x0;w0;m;w/. It is thus quite straightforward to transfer
Ň into some ˇ D .ˇs/t�s�T onto the original space .˝;F ;F;P/. Then, we may denote
Xˇ D .Xˇ

s /t�s�T the solution to the controlled SDE (4.2) on the original space .˝;F ;F;P/,
with Xˇ

t D Xt as initial condition at time t. Since the solution may be constructed by a
Picard iteration, it is quite straightforward to prove that .X0;W0;M;W;

R �

t ˇsds;Xˇ/ and

.x0;w0;m;w;
R �

t
Ň
sds; x Ň

/ have the same law. We deduce that:

E

h
U.t;Xt; �t/

ˇ
ˇFnat;.X0;W0;M;W/

t

i

� E

� Z T

t
f .s;Xˇ

s ; �s; ˇs/ds C g.Xˇ
T ; �T/

ˇ
ˇ
ˇFnat;.X0;W0;W;W/

t

	

:

Since Xt is measurable with respect to the completion of Fnat;.X0;W0;M;W/
t under P, this

completes the proof of the upper bound when .ˇs/t�s�T is progressively measurable with
respect to the filtration generated by .x0;w0;m;w/.

When ˇ D .ˇs/t�s�T is general, we claim that we can find a process Q̌ D . Q̌
s/t�s�T ,

progressively measurable with respect to the filtration generated by .X0;W0;M;W/, such
that Q̌ and ˇ are almost everywhere equal under Leb1 ˝ NP, which suffices to complete the
proof of the upper bound.

From the interpretation of the left-hand side in (4.12), we deduce that the equality holds
when ˇ D . L̨ .s;Xs; �s; Ys; Zs//t�s�T . ut
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Corollary 4.4 Assume that weak existence and uniqueness hold for any initial
condition .t;V/ 2 Œ0;T� � P2.P2.Rd// and that assumption FBSDE is in force.
Then, for any probability space .˝;F ;P/ equipped with two random variables �
and 
 , with values in P2.Rd/ and R

d respectively, � having distribution V and 

being square-integrable, it holds:

E
�jU.t; 
; �/j� < 1:

Proof. As usual, we call M the law of the equilibrium initialized with the law V at time t.
We also call .q.�; �//�2P2.Rd/ the conditional law of 
 given the realization of �.

Without any loss of generality, we assume that t D 0. We then use the same notation as in
the proof of Proposition 4.3. On N̋ , equipped with the completion NP of the product measure
M ˝ .Leb1 ˝ Wd/ on N̋ 0 � N̋ 1, we consider the random variable x0 D  .�; q.�0; �//.
By definition of  in (2.23), L1.x0/ is distributed according to q.�0; �/. Therefore, the pair
.�0; x0/ is distributed according to P ı .�; 
/�1.

Now, we consider the solution .x; y; z; z0;m/ of the FBSDE (4.10) with x0 as initial
condition. By repeating the arguments in the proof of Proposition 4.3, we see that, for NP-
almost every ! 2 N̋ , under Pt

! , with t D 0,

U
�
0; x0.!/; �

0.!/
� D E

P0!

� Z T

0

f
�
s; xs; �s; Ǫs

�
ds C g.xT ; �T/

	

;

so that:

ˇ
ˇU
�
0; x0.!/; �

0.!/
�ˇ
ˇ � E

P0!

� Z T

0

ˇ
ˇf
�
s; xs; �s; Ǫs

�ˇ
ˇds C ˇ

ˇg.xT ; �T/
ˇ
ˇ

	

:

Owing to the growth properties of f and g and to the integrability conditions of the processes
x, � and Ǫ , the right-hand side is integrable, which completes the proof. ut

The following is the main result of this section.

Theorem 4.5 Assume that weak existence and uniqueness hold for any initial
condition .t;V/ 2 Œ0;T� � P2.P2.Rd// and that assumption FBSDE is in force.
Then, for every solution .X0;W0;M;W/ on a set-up .˝;F ;F D .Ft/0�t�T ;P/ as
in Definition 2.16, with X D .Xt/0�t�T as optimal path, it holds, for any control
ˇ D .ˇt/0�t�T constructed on the same set-up and progressively measurable
with respect to the complete and right-continuous augmentation of the filtration
generated by .X0;W0;M;W/, for any 0 � t � t C h � T and P-almost surely:

U
�
t;Xt; �t

�

D E

� Z tCh

t
f .s;Xˇ

s ; �s; ˇs/ds C U.t C h;Xˇ
tCh; �tCh/

ˇ
ˇ
ˇFnat;.X0;W0;W;W/

t

	

;

where Xt;ˇ D .Xt;ˇ
s /t�s�T is the solution of the controlled SDE (4.2) driven by

.ˇs/t�s�T and initialized with Xˇ
t D Xt at time t.
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Moreover, equality holds when ˇ D . L̨ .s;Xs; �s;Ys;Zs//t�s�T , and the result
remains true if the weak solution starts from some initial time t0 6D 0.

Proof. The proof is based on the arguments used to show Proposition 4.3. Naturally, we use
the same notation.

First Step. We first work on the canonical space N̋ . Recalling the interpretation of the left-
hand side in (4.12), we have, for NP-almost every ! 2 N̋ :

U
�
t; xt.!/; �t.!/

� D E
Pt
!

� Z T

t
f
�
s; xs; �s; Ǫs

�
ds C g.xT ; �T/

	

D E
Pt
!

� Z tCh

t
f
�
s; xs; �s; Ǫs

�
ds C

Z T

tCh
f
�
s; xs; �s; Ǫs

�
ds C g.xT ; �T/

	

:

Now, by taking conditional expectation given �f�0;w0s ;ms; �;wsI s � t C hg inside the
expectation in the right-hand side, we deduce from Proposition 4.3 that:

U
�
t; xt.!/; �t.!/

� � E
Pt
!

� Z tCh

t
f
�
s; xs; �s; Ǫs

�
ds C U.t C h; xtCh; �tCh/

	

;

which shows the lower bound in the statement, as the above can be transferred onto the
original space by the same argument as in the proof of Proposition 4.3.

Second Step. To prove the converse inequality, we shall work under the conditional
probability P

tCh
! . Given some control ˇ D .ˇs/t�s�T , progressively measurable with respect

to the canonical filtration generated by .x0;w0;m;w/, we call .xˇ
s /t�s�T the solution of:

dxˇ
s D b

�
s; xˇ

s ; �s; ˇs
�
ds C �

�
s; xˇ

s ; �s
�
dws C �0

�
s; xˇ

s ; �s
�
dw0s ; t � s � T;

with xˇ
t Dxt as initial condition. On . N̋ ;F ; .Fs/tCh�s�T ; NP/ equipped with the tCh initialized

set-up .Fnat;.�0;w0;m;�;w/
tCh ; .w0s � w0tCh;ms;ws � wt/tCh�s�T/, Fnat;.�0;w0;m;�;w/

tCh here playing the
role of the initial information, see Chapter 1, we then solve the same FBSDE as in (4.10), but
with a different initial condition at time t C h instead of t, namely

dxtCh
s D B

�
s; xtCh

s ; �s; y
tCh
s ; ztCh

s

�
ds C �

�
s; xtCh

s ; �s
�
dws C �0

�
s; xtCh

s ; �s
�
dw0s ;

dytCh
s D �F

�
s; xtCh

s ; �s; y
tCh
s ; ztCh

s ; z0;tCh
s

�
ds C ztCh

s dws C z0;tCh
s dw0s C dmtCh

s ;

for s 2 Œt C h; T�, with xtCh
tCh D xˇ

tCh as initial condition and ytCh
T D G.xtCh

T ; �T/ as terminal

condition, where Œ NmtCh;w�� � 0, Œ NmtCh;w0�� � 0 and mtCh
tCh D 0. Then, as in the first

step of the proof of Proposition 4.3, we know that, for NP-almost every ! 2 N̋ , the above
FBSDE still holds true on the .t C h/-initialized set-up . N̋ ;F tCh

! ;FtCh
! ;PtCh

! / equipped with
.w0s �w0tCh;ms;ws�wt/tCh�s�T . The initial condition is given by P

tCh
! Œ!0 2 N̋ W xtCh

tCh.!
0/ D

xˇ

tCh.!/� D 1. Following once again the interpretation of the left-hand side in (4.12), we
know that:

U
�
t C h; xˇ

tCh.!/; �tCh.!/
� D E

P
tCh
!

� Z T

tCh
f
�
s; xtCh

s ; �s; Ǫ tCh
s

�
ds C g

�
xtCh

T ; �T
�
	

;
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with Ǫ tCh
s D L̨ .s; xtCh

s ; �s; ytCh
s ; ztCh

s /. Now, we let:

.Nxs; N̨s/ D
(
.xˇ

s ; ˇs/; s 2 Œt; t C h/;
.xtCh

s ; Ǫ tCh
s /; s 2 Œt C h; T�:

The process .Nxs/t�s�T is a controlled process, controlled by . N̨s/t�s�T . Applying Proposi-
tion 4.3 and making use of the above identity, we deduce that:

U
�
t; xt.!/; �t.!/

� � E
Pt
!

� Z T

tCh
f .s; Nxs; �s; N̨s/ds C

Z tCh

t
f .s; Nxs; �s; N̨s/ds C g.NxT ; �T/

	

D E
Pt
!

� Z tCh

t
f .s; xˇ

s ; �s; ˇs/ds C U.t C h; xˇ

tCh; �tCh/

	

;

from which we complete the proof by transferring the inequality onto the original space by
the same argument as above. ut

Remark 4.6 We shall not discuss the case when ˇ is just progressively measurable
with respect to the larger filtration F, as the current version of Theorem 4.5 will
suffice for our purpose. This would require to extend the canonical space with an
additional factor carrying the control process Ň .

4.2 Master Field and Optimal Feedback

Our purpose here is to shed new light on the connection between the master field U
and the optimal control . L̨ .s; xt;x

s ; �s; yt;x
s ; z

t;x
s //t�s�T appearing in the Definition 4.1

of U . Recall that since � and �0 are assumed to be independent of the control
parameter ˛, in the two most important cases of interest, the function L̨ is given
explicitly by formula (2.26) in terms of the minimizer Ǫ of the reduced Hamiltonian:

H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/;

for x; y 2 R
d, � 2 P2.Rd/, ˛ 2 A, namely:

Ǫ .t; x; �; y/ D argmin˛2AH.r/.t; x; �; y; ˛/: (4.13)

From classical results of the standard theory of stochastic optimal control, we expect
that the optimal control of the optimization problem (4.1) in the environment � D
.�t/0�t�T is given by a feedback function which, in the present situation, should be
of the form:

Œ0;T� � R
d 3 .t; x/ 7! Ǫ�t; x; �t; @xU�.t; x/

�
; (4.14)
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where U� stands for the value function in the environment � as in the relation-
ship (4.4), see for instance Proposition 1.55. As a result, once we choose to work on
a specific set-up, the value of the optimal control . Ǫ t/0�t�T should be given by:

Ǫ t D L̨�t;Xt; �t;Yt;Zt
� D Ǫ�t;Xt; �t; @xU.t;Xt; �t/

�
; (4.15)

since we expect from the relationship (4.4) that:

@xU�.t; x/ D @xU.t; x; �/: (4.16)

The objective of this section is to make the relationships (4.15) and (4.16) rigorous.

4.2.1 Master Field and Pontryagin Stochastic Maximum Principle

In order to establish (4.16), we shall make use of the necessary part of the Pontryagin
stochastic maximum principle, as given for example in Theorem 1.59. But first, we
recast assumption Necessary SMP in Random Environment of Chapter 1 for the
present context.

Assumption (Necessary SMP Master).

(A1) The functions b and f are differentiable with respect to .x; ˛/, the
mappings Rd � A 3 .x; ˛/ 7! @x.b; f /.t; x; �; ˛/ and R

d � A 3 .x; ˛/ 7!
@˛.b; f /.t; x; �; ˛/ being continuous for each .t; �/ 2 Œ0;T� � P2.Rd/.
Similarly, the functions � , �0 and g are differentiable with respect to
x, the mapping R

d 3 x 7! @x.�; �
0/.t; x; �/ being continuous for each

.t; �/ 2 Œ0;T� � P2.Rd/, and the mapping R
d 3 .x; �/ 7! @xg.x; �/

being continuous for each � 2 P2.Rd/.
(A2) The function Œ0;T� 3 t 7! .b; �; �0; f /.t; 0; ı0; 0A/ is uniformly

bounded, for some point 0A 2 A. The derivatives @x.b; �; �0/ and
@˛b are uniformly bounded. There exists a constant L such that, for
any R � 0 and any .t; x; �; ˛/ with jxj � R, M2.�/ � R and
j˛j � R, j@xf .t; x; �; ˛/j, j@xg.x; �/j and j@˛f .t; x; �; ˛/j are bounded
by L.1C R/.

In addition, we shall also require the following condition on the Hamiltonian.

(A3) For any .t; x; �; y/ 2 Œ0;T� � R
d � P2.Rd/ � R

d, the function A 3
˛ 7! H.r/.t; x; �; y; ˛/ is convex in the variable ˛, and admits a unique
minimizer Ǫ .t; x; �; y/. It satisfies, for any ˇ 2 A,

@˛H.r/
�
t; x; �; y; Ǫ .t; x; �; y/� � �ˇ � Ǫ .t; x; �; y/� � 0: (4.17)
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Again, since � and �0 are independent of ˛, condition (A3) would be exactly the
same if we were to write it in terms of the full Hamiltonian instead of the reduced
Hamiltonian. We reformulate Theorem 1.59 in the following way.

Proposition 4.7 Let the assumptions and notations of Definition 4.1 be in force,
and let us assume further that assumption Necessary SMP Master holds. Then, for
any t 2 Œ0;T/ and x 2 R

d, we must have:

L̨ .s; xt;x
s ; �s; y

t;x
s ; z

t;x
s / D Ǫ .s; xt;x

s ; �s; �
t;x
s /; ds ˝ dPt;� a.e.;

where, on the t-initialized set-up . N̋ t;F t;�;Ft;�;Pt;�/ equipped with .w0;m;w/, the
process �t;x D .� t;x

s /t�s�T solves, the backward equation:

d� t;x
s D �@xH

�
s; xt;x

s ; �s; �
t;x
s ; 	

t;x
s ; 	

0;t;x
s ; L̨ .s; xt;x

s ; �s; y
t;x
s ; z

t;x
s /
�
ds

C 	 t;x
s dws C 	0;t;xs dw0s C dnt;x

s ;
(4.18)

with � t;x
T D @xg.xt;x

T ; �T/, where .nt;x
s /t�s�T is a martingale with respect to F

t;� with
Œnt;x;w0�� � 0, Œnt;x;w�� � 0 and nt;x

t D 0. In particular,

E
t;�
�

sup
t�s�T

j� t;x
s j2� < 1:

It is important for practical purposes that the mapping R
d 3 x 7! E

t;�Œ� t;x� is
continuous. The following lemma shows that this is indeed the case provided that
the solution .xt;x; yt;x; zt;x; z0;t;x;mt;x/ to (4.7) with 
 D x is continuous (in a suitable
sense) with respect to x.

Lemma 4.8 Under the same assumptions and notations as in Proposition 4.7, there
exists a constant C � 0 such that, for any pair .t; �/ 2 Œ0;T��R

d and any x; x0 2 R
d,

ˇ
ˇEt;�Œ� t;x

t � � E
t;�Œ� t;x0

t �
ˇ
ˇ2

� C

�

E
t;�
Z T

t

ˇ
ˇ@xH

�
s; xt;x

s ; �s; �
t;x
s ; 	

t;x
s ; 	

0;t;x
s ; L̨ .s; xt;x

s ; �s; y
t;x
s ; z

t;x
s /
�

� @xH
�
s; xt;x0

s ; �s; �
t;x
s ; 	

t;x
s ; 	

0;t;x
s ; L̨ .s; xt;x0

s ; �s; y
t;x0

s ; zt;x0

s /
�ˇ
ˇ2ds

C E
t;�
hˇ
ˇ@xg.xt;x

T ; �T/ � @xg.xt;x0

T ; �T/
ˇ
ˇ2
i	

:

Proof. The proof just follows from standard stability estimates for BSDEs similar to those
used in Example 1.20. They are based on the fact that, by boundedness of @xb, @x� and @x�

0,
the auxiliary BSDE (4.18) has a Lipschitz continuous driver in � , 	, and 	0. ut

Remark 4.9 From (4.15), we may expect � t;x
t to be almost surely constant under

P
t;�. We shall return to this point in Corollary 4.11 below.
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4.2.2 Space Derivative of the Master Field

Since our goal is to prove (4.15), we need to identify conditions under which the
master field is differentiable in the space direction. In order to do so, we add the
following assumption.

Assumption (Decoupling Master). On top of Assumption FBSDE, we also
assume that:

(A1) For any t 2 Œ0;T�, any t-initialized probabilistic set-up .˝;F ;F;P/
equipped with a compatible lifting .W0; .M;�/;W/ as in Subsec-
tion 4.1.2, and any x; x0 2 R

d, the solutions .X;Y;Z;Z0;M/ and
.X0;Y0;Z0;Z00;M0/ to (4.5) with x and x0 as initial conditions, satisfy
the stability estimate (1.19) stated in Theorem 1.53, for a constant �
independent of x and x0.

(A2) For any .t; �/ 2 Œ0;T� � P2.Rd/, the function R
d � R

m � R
m�d 3

.x; y; z/ 7! L̨ .t; x; �; y; z/ is continuous.

We are now able to identify the space derivative of the master field.

Theorem 4.10 Let the assumptions and notation of Definition 4.1 be in force, and
let us assume further that assumptions Necessary SMP Master and Decoupling
Master hold.

Then, for any .t; �/ 2 Œ0;T� � P2.Rd/, the mapping R
d 3 x 7! U.t; x; �/ is

continuously differentiable and

8x 2 R
d; @xU.t; x; �/ D E

t;�Œ� t;x
t �;

where the right-hand side is as in the statement of Proposition 4.7.

Proof. Throughout the proof, we use the same notations as in Definition 4.1. The strategy is
then a variant of that used for proving Theorem 1.59.

First Step. The time index t and the measure � being fixed, we consider, on the canonical
set-up N̋ t, a square-integrable F

t-progressively measurable process ˇ D .ˇs/t�s�T with
values in A. For any x 2 R

d, we then call xt;x;ˇ D .xt;x;ˇ
s /t�s�T the solution of the SDE:

dxt;x;ˇ
s D b.s; xt;x;ˇ

s ; �s; ˇs/ds C �.s; xt;x;ˇ
s ; �s/dws C �0.s; xt;x;ˇ

s ; �s/dw0s ; s 2 Œt; T�;

with the initial condition xt;x;ˇ
t D x. We also write Ǫ t;x D . L̨ .s; xt;x

s ; �s; yt;x
s ; z

t;x
s //t�s�T for

the optimal feedback under the initial condition .t; x/ and in the environment m. With these
notations, we recall that xt;x D xt;x; Ǫ t;x

.
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Then, following the proof of Theorem 1.59, see in particular (1.57), we have for any unit
vector e 2 R

d:

lim
�!0

E
t;�
h

sup
t�s�T

ˇ
ˇ
ˇ
1

�

�
xt;xC�e; Ǫ t;x

s � xt;x
s

� � @ext;x
s

ˇ
ˇ
ˇ
2i D 0;

where

d
�
@ext;x

s

� D @xb
�
s; xt;x

s ; �s; Ǫ t;x
s

�
@ext;x

s ds

C @x�
�
s; xt;x

s ; �s
�
@ext;x

s dws C @x�
0
�
s; xt;x

s ; �s
�
@ext;x

s dw0s ;
(4.19)

for s 2 Œt; T�, and with @ext;x
t D e as initial condition.

Second Step. By Proposition 4.3, using the fact that Ǫ t;x is progressively measurable with
respect to the complete and right-continuous augmentation of the filtration generated by
.w0;m;w/, we have, for any real h > 0,

U.t; x C he; �/ � U.t; x; �/ � E
t;�

� Z T

t

�
f
�
s; xt;xChe; Ǫ t;x

s ; �s; Ǫ t;x
s

� � f
�
s; xt;x

s ; �s; Ǫ t;x
s

��
ds

C g
�
xt;xChe; Ǫ t;x

T ; �T
� � g

�
xt;x

T ; �T
�
	

:

Dividing by h and letting h & 0, we deduce that:

lim sup
h&0

1

h

�
U.t; x C he; �/ � U.t; x; �/

�

� E
t;�

� Z T

t
@xf
�
s; xt;x

s ; �s; Ǫ t;x
s

� � @ext;x
s ds C @eg.xt;x

T ; �T/ � @ext;x
T

	

:

Now, by a standard application of Itô’s formula, which is reminiscent of the proof of
Theorem 1.59, see (1.58) and (1.59), we have:

E
t;�

� Z T

t
@xf
�
s; xt;x

s ; �s; Ǫ t;x
s

� � @ext;x
s ds C @xg.xt;x

T ; �T/ � @ext;x
T

	

D E
t;�

� Z T

t
@xf
�
s; xt;x

s ; �s; Ǫ t;x
s

� � @ext;x
s ds C �

t;x
T � @ext;x

T

	

D E
t;�
�
� t;x

t

� � e;

from which we deduce that:

lim sup
h&0

1

h

�
U.t; x C he; �/ � U.t; x; �/

� � E
t;�Œ� t;x

t � � e: (4.20)

Using the same type of argument with h < 0, we get in a similar way that:

lim inf
h%0

1

h

�
U.t; x C he; �/ � U.t; x; �/

� � E
t;�Œ� t;x

t � � e: (4.21)
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Third Step. Assuming that Rd 3 x 7! U.t; x; �/ and R
d 3 x 7! E

t;�Œ�
t;x
t � are continuous, we

use (4.20) and (4.21) to prove that U.t; �; �/ is continuously differentiable.
For the same unit vector e as above, consider the curve:

� W R 3 s 7! U.t; x C se; �/ � U.t; x; �/ �
Z s

0

�
E

t;�
�
� t;xCre

t

� � e
�

dr:

By assumption, � is continuous. Moreover, by (4.20) and (4.21), it satisfies:

8s 2 R; lim sup
h&0

�.s C h/ � �.s/
h

� 0; lim inf
h%0

�.s C h/ � �.s/
h

� 0: (4.22)

Considering a mollification kernel � W R ! R with compact support, we know that the
mollified curve:

� 
 � W R 3 s 7!
Z

R

�.s � r/�.r/dr;

is continuously differentiable. Clearly, it must satisfy (4.22). In particular, � 
 � must be
nonincreasing and nondecreasing. It is thus constant, which proves that � is also constant
and thus:

lim
h!0

1

h

�
U.t; x C he; �/ � U.t; x; �/

� D E
t;�Œ� t;x

t � � e;

which shows, by continuity of the right-hand side, that U is continuously differentiable in x.

Last Step. It remains to check that, for .t; �/ fixed, the mappings Rd 3 x 7! U.t; x; �/ and
R

d 3 x 7! E
t;�Œ�x

t � are continuous.
We make use of the stability estimate in Theorem 1.53. It says that, for any x; x0 2 R

d:

E
t;�

�

sup
t�s�T

�jxt;x
s � xt;x0

s j2 C jyt;x
s � yt;x0

s j2�C
Z T

t
jzt;x

s � zt;x0

s j2ds

	

� Cjx � x0j2:

Plugging these bounds into the Definition 4.1 of the master field and making use of the
regularity properties of f , g and L̨ , we deduce that Rd 3 x 7! U.t; x; �/ is continuous.
Similarly, from Lemma 4.8, we deduce that the mapping R

d 3 x 7! E
t;�Œ�

t;x
t � is continuous.

ut

The following corollary gives a representation of the solution of the backward
SDE (4.18) in Proposition 4.7 in terms of the master field evaluated along the
solution of the forward state equation.

Corollary 4.11 Under the assumption of Theorem 4.10, for any .t; �/ 2 Œ0;T� �
P2.Rd/, and any x 2 R

d, there exists an at most countable subset Q � Œt;T� such
that, for any s 2 Œt;T� n Q, with probability 1 under Pt;�,

� t;x
s D @xU.s; xt;x

s ; �s/:
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According to Proposition 1.46, @xU.s; �; �s/ plays, at time s 2 Œt;T�nQ, the role of
the decoupling field of the backward equation (4.18) when coupled with the forward
equation (4.7), with 
 D x.

Proof. Instead of using the general framework of decoupling fields, as defined in Proposi-
tion 1.46, we provide a direct proof. Working on the canonical set-up and fixing s 2 Œt; T�,
we have by Proposition 4.3:

U.s; xt;x
s ; �s/

D E
t;�

� Z T

s
f
�
r; xt;x

r ; �r; Ǫ t;x
r

�
dr C g.xt;x

T ; �T/
ˇ
ˇ �
˚
w0r ;mr;wrI t � r � s

�
	

;
(4.23)

and for any h 2 R and unitary vector e 2 R
d,

U.s; xt;xChe
s ; �s/ � E

t;�

� Z T

s
f
�
r; xt;xChe; Ǫ t;x

r ; �r; Ǫ t;x
r

�
dr

C g.xt;xChe; Ǫ t;x

T ; �T/
ˇ
ˇ �
˚
w0r ;mr;wrI t � r � s

�
	

;

(4.24)

where we used the same notation as in the proof of Theorem 4.10. Therefore, subtract-
ing (4.23) to (4.24), dividing by h > 0 and letting h tend to 0, we must have:

@xU.s; xt;x
s ; �s/ � @ext;x

s � E
t;�

� Z T

s
@xf
�
r; xt;x

r ; �r; Ǫ t;x
r

� � @ext;x
r dr

C @eg.xt;x
T ; �T/ � @ext;x

T

ˇ
ˇ �
�
w0r ;mr;wrI t � r � s

�
	

:

Following the proof of Theorem 4.10, we can prove by integration by parts that the right-hand
side is equal to � t;x

s � @ext;x
s . Therefore,

@xU.s; xt;x
s ; �s/ � @ext;x

s � E
t;�
h
� t;x

s � @ext;x
s

ˇ
ˇ �
�
w0r ;mr;wrI t � r � s

�i

D E
t;�
h
� t;x

s

ˇ
ˇ �
�
w0r ;mr;wrI t � r � s

�i � @ext;x
s ;

the last line following from the fact that @ext;x
s is measurable with respect to the completion

of the � -field �fw0r ;mr;wrI t � r � sg, as it is the limit in L2 of random variables that are
measurable with respect to the completion of �fw0r ;mr;wrI t � r � sg. Changing h > 0 into
h < 0 and repeating the argument, we get that the inequality is actually an equality:

@xU.s; xt;x
s ; �s/ � @ext;x

s D E
t;�
h
� t;x

s

ˇ
ˇ �
˚
w0r ;mr;wrI t � r � s

�i � @ext;x
s :

The above holds true, for any s 2 Œt; T� and any unitary vector e 2 R
d, with probability 1

under Pt
�.

It is a standard procedure to check that @ext;x
s reads rxt;x

s e where rxt;x
s solves the linearized

equation (4.19), but in R
d�d instead of R

d, with the identity matrix as initial condition.
From the theory of linear SDEs (see the Notes & Complements at the end of the chapter for
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references), rxt;x
s is invertible with P

t;�-probability 1, from which we get, for all s 2 Œt; T�,
with probability 1 under Pt;�,

@xU.s; xt;x
s ; �s/ D E

t;�
h
� t;x

s

ˇ
ˇ �
˚
w0r ;mr;wrI t � r � s

�i
:

Recall now that � D .�s/t�s�T is càd-làg. Therefore, we can find an at most countable
subset Q � Œt; T�, such that, for any s 2 Œt; T�nQ, Pt;�Œlimr%s �

t;x
r D � t;x

s � D 1. Now, for any
s 2 Œt; T� and r 2 Œt; s/, � t;x

r is measurable with respect to the completion of �fw0u;mu;wuI t �
u � sg. Therefore, for s 2 Œt; T� n Q, � t;x

s is measurable with respect to the completion of
�fw0r ;mr;wrI t � r � sg. We deduce that, for such an s, with P

t;�-probability 1:

@xU.s; xt;x
s ; �s/ D � t;x

s ;

which completes the proof. ut

We refer the reader to Subsection 4.4.4 below for a set of self-contained assump-
tions under which Theorem 4.10 holds.

4.3 Itô’s Formula Along a Flow of Conditional Measures

Throughout the next two sections, our goal is to prove that the master field solves, in
a suitable sense, a partial differential equation on the space of probability measures,
referred to as the master equation in the sequel. In the spirit of the examples
discussed in Section (Vol I)-5.7, the derivation of such a PDE relies on a suitable
use of the chain rule for functions defined on the Wasserstein space P2.Rd/. For
that reason, we now extend the discussion initiated in Chapter (Vol I)-5 on the
differentiation of a smooth functional along a flow of measures, the main objective
being to generalize the Itô formula proved in Section (Vol I)-5.6 to the case when
the measures may be random.

4.3.1 Conditional Measures of an Itô Process Subject to Two Noises

The typical framework we have in mind is the following: X D .Xt/t�0 is an Itô
process of the form

dXt D Btdt C˙tdWt C˙0
t dW0

t ; t � 0; (4.25)

for two d-dimensional independent Brownian motions W D .Wt/t�0 and W0 D
.W0

t /t�0 defined on a general set-up of the same form as in Subsection 4.1.2, namely:

1. we are given complete probability spaces .˝0;F0;P0/ and .˝1;F1;P1/, the
space .˝1;F1;P1/ being the completion of a probability space with a countably
generated � -field, endowed with complete and right-continuous filtrations F0 D
.F0

t /t�0 and F
1 D .F1

t /t�0 and d-dimensional F0 and F
1 Brownian motions

W0 D .W0
t /t�0, and W D .Wt/t�0 respectively.
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2. we denote by .˝;F ;P/ the completion of the product space .˝0 � ˝1;F0 ˝
F1;P0 ˝ P

1/ endowed with the filtration F D .Ft/t�0 obtained by augmenting
the product filtration F

0 ˝ F
1 in a right-continuous way and by completing it.

As usual, we denote by E
0 the expectation on the first space, by E

1 the
expectation on the second space and by E the expectation on the product space.

In that framework, .Bt/t�0, .˙t/t�0 and .˙0
t /t�0 are progressively measurable

processes with respect to F, with values in R
d, Rd�d and R

d�d respectively, such
that for any finite horizon T > 0,

E

� Z T

0

�jBtj2 C j˙tj4 C j˙0
t j4�dt

	

< 1: (4.26)

Because of Lemmas 2.4 and 2.5, we know that P0-almost surely, for any T > 0, the
quantity E

1Œsup0�t�T jXtj2� is finite, proving that, for P0 almost every !0 2 ˝0, for
any t 2 Œ0;C1/, the random variable Xt.!

0; �/ is in L2.˝1;F1;P1/. We can thus
define:

�t.!
0/ D L1.Xt/.!

0/ D L
�
Xt.!

0; �/�:
In the spirit of Section (Vol I)-5.6, we investigate the possible time differentiabil-

ity of quantities of the form .U.�t//t�0, for a given smooth function U on the space
P2.Rd/.

Progressively Measurable Versions of Conditional Expectations
Throughout the analysis, we shall associate with real valued F-progressively mea-
surable processes .�t/t�0, conditional expectations of the form .E1Œ�t�/t�0 whenever
sufficient integrability conditions are in force. For this reason, we first collect several
conditions under which such a process is well defined and may be regarded as an
F
0-progressively measurable process.

Joint Measurability. We start with the following observation, which may be
proved by a mere adaptation of Lemmas 2.4 and 2.5. Let � W Œ0;C1/ � ˝ ! R

be a B.Œ0;C1//˝ F-measurable mapping. Since B.Œ0;C1//˝ F is included in
the completion of B.Œ0;C1//˝ .F0 ˝ F1/ under Leb1 ˝ P

0 ˝ P
1, there exists a

mapping Q� W Œ0;C1/ �˝ ! R, B.Œ0;C1//˝ .F0 ˝ F1/-measurable, which is
almost everywhere equal to � under the completion of Leb1 ˝ P

0 ˝ P
1.

Now, if � takes values in RC, we may consider .E1Œ�t�/t�0, each E
1Œ�t� being

regarded as an F0-measurable random variable with values in Œ0;C1� uniquely
defined up to a null subset. Then, up to a null set under Leb1 ˝ P

0, E1Œ�t� D E
1Œ Q�t�;

moreover, the mapping Œ0;C1/ � ˝0 3 .t; !0/ 7! E
1Œ�t�.!

0/ is measurable
with respect to the completion of B.Œ0;C1// ˝ F0 under Leb1 ˝ P

0. Arguing
as Subsection 2.1.3, we deduce that, for P0-almost every !0 2 ˝0, the mapping
Œ0;C1/ 3 t 7! E

1Œ�t� is measurable (with respect to the completion of the Borel
� -field) and for all t � 0,
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Z t

0

E
1Œ�s�ds D

Z t

0

E
1Œ Q�s�ds:

In the more general case when � takes values in R, we assume in addition that, for
P
0-almost every !0 2 ˝0, for all t � 0,

Z t

0

E
1Œj�sj�ds < 1;

which makes sense since, for P0-almost every !0 2 ˝0, the mapping Œ0;C1/ 3
t 7! E

1Œj�tj� is measurable. Then, up to a null set under Leb1 ˝ P
0, the mappings

Œ0;C1/ � ˝0 3 .t; !0/ 7! E
1Œ.�t/C�.!0/ and Œ0;C1/ � ˝0 3 .t; !0/ 7!

E
1Œ.�t/��.!0/ are finite, where as usual we denote by xC and x� the positive

and negative parts of any real number x. The map Œ0;C1/ � ˝0 3 .t; !0/ 7!
E
1Œ�t�.!

0/1fE1Œj�tj�.!0/<1g is measurable with respect to the completion of the � -
field B.Œ0;C1//˝F0 under Leb1˝P

0. As above, up to a null set under Leb1˝P
0,

E
1Œ�t� D E

1Œ Q�t�. Moreover, for all t � 0, we also have:

Z t

0

E
1Œ�s�ds D

Z t

0

E
1Œ Q�s�ds:

This says that we can redefine .E1Œ�t�/t�0, up to a Leb1 ˝ P
0 null set so that it

becomes B.Œ0;C1//˝ F
0-measurable.

When � D .�t/t�0 is progressively measurable, we know that for any t � 0,
E
1Œ�t� is F0

t -measurable. If we call .�0t /t�0 a B.Œ0;C1//˝ F
0-measurable version

of .E1Œ�t�/t�0, then for all t � 0 except in a Borel subset N � Œ0;C1/ of
zero Lebesgue measure, P

0Œ�0t D E
1Œ�t�� D 1, which proves that �0t is F0

t -
measurable for all t 62 N. Now, the mapping Œ0;C1/ � ˝0 3 .t; !0/ 7! �0t 1N.t/
is jointly measurable and forms an adapted process with respect to F

0. By standard
results in the general theory of stochastic processes, we can find an F

0-measurable
modification. This says that we can a redefine .E1Œ�t�/t�0, up to a Leb1 ˝ P

0 - null
set, so that it becomes F0-progressively measurable.

Measurability with Values in L2. We now assume that Leb1 ˝ P
0Œ.s; !0/ 2

Œ0;C1/ � ˝0 W E
1Œ�2s �.!

0/ D 1� D 0. Then, we know that for any random
variable Z 2 L2.˝1;F1;P1IR/, the mapping Œ0;C1/ � ˝0 3 .t; !0/ 7!
E
1Œj�t � Zj2�.!0/1fE1Œj�tj2�.!0/<1g is measurable with respect to the completion

of B.Œ0;C1// ˝ F0 under Leb1 ˝ P
0 and coincides with .t; !0/ 7! E

1Œj Q�t �
Zj2�.!0/1fE1Œj Q�tj2�.!0/<1g, for the same . Q�t/t�0 as above, up to a Leb1 ˝ P

0 - null set

in B.Œ0;C1//˝F0. Since .˝1;F1;P1/ is the completion of a countably generated
probability space, we know that L2.˝1;F1;P1IR/ is separable. Hence, the mapping
Œ0;C1/ � ˝0 3 .t; !0/ 7! �t.!

0; �/1fE1Œj�tj2�.!0/<1g 2 L2.˝1;F1;P1IR/ is
measurable with respect to the completion of B.Œ0;C1//˝F0 under Leb1˝P

0, and
it coincides with the mapping Œ0;C1/�˝0 3 .t; !0/ 7! Q�t.!

0; �/1fE1Œj Q�tj2�.!0/<1g 2
L2.˝1;F1;P1IR/ up to a null set in B.Œ0;C1//˝ F0 under Leb1 ˝ P

0.
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4.3.2 Refresher on C2-Regularity

In Chapter (Vol I)-5, we introduced two notions of C2 regularity for a function of
measures. We called the strongest one full C2 regularity and the weakest one partial
C2 regularity. We then proved that partial C2 regularity was sufficient to expand a
function along a deterministic flow of measures. In the present situation, saying that
the flow .�t/t�0 is deterministic means that the dynamics of .Xt/t�0 only feel the
noise .Wt/t�0. Note also that, .�t/t�0 being deterministic, the second-order partial
derivatives in the direction � played no role in the expansion.

Full C2-Regularity
Things are different when .�t/t�0 is random. As in the standard chain rule for
Itô processes, the expansion is expected to rely on the second-order derivatives in
the direction of the measure. This suggests that we may need to assume full C2
regularity, whose definition we recall from Chapter (Vol I)-5.

Assumption (Full C2 Regularity). We shall say that a real valued function u
on P2.Rd/ is fully C2 regular if:

(A1) The function u is C1 in the sense of L-differentiation, and its first
derivative has a jointly continuous version P2.Rd/ � R

d 3 .�; v/ 7!
@�u.�/.v/ 2 R

d.
(A2) For each fixed � 2 P2.Rd/, the version of Rd 3 v 7! @�u.�/.v/ 2 R

d

used in (A1) is differentiable on R
d in the classical sense and its

derivative is given by a jointly continuous function P2.Rd/ � R
d 3

.�; v/ 7! @v@�u.�/.v/ 2 R
d�d.

(A3) For each fixed v 2 R
d, the version of P2.Rd/ 3 � 7! @�u.�/.v/ 2

R
d used in (A1) is L-differentiable component by component, with a

derivative given by a function .�; v; v0/ 7! @2�u.�/.v/.v0/ 2 R
d�d

such that for any � 2 P2.Rd/ and any X 2 L2.˝;F ;PIRd/ with
L.X/ D � over an atomless Polish probability space .˝;F ;P/,
@2�u.�/.x/.X/ gives the Fréchet derivative at X of L2.˝;F ;PIRd/ 3
X0 7! @�u.L.X0//.v/, for every v 2 R

d. Denoting @2�u.�/.v/.v0/ by
@2�u.�/.v; v0/, the map P2.Rd/�R

d �R
d 3 .�; v; v0/ 7! @2�u.�/.v; v0/

is also assumed to be continuous for the product topology.

It is worth recalling Remark (Vol I)-5.82.

Remark 4.12 The following observations may be useful.

1. Under (A1), there exists one and only one version of @�u.�/.�/ 2 L2.Rd; �IRd/

for each � 2 P2.Rd/ such that the mapping P2.Rd/ � R
d 3 .�; v/ 7!

@�u.�/.v/ 2 R
d is jointly continuous.
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2. Under (A2), there exists one and only one version of @�u.�/.�/ for each � 2
P2.Rd/ such that Rd 3 v 7! @�u.�/.v/ is differentiable for each � 2 P2.Rd/

and the mapping P2.Rd/ � R
d 3 .�; v/ 7! @v@�u.�/.v/ is jointly continuous.

In particular, the values of the derivatives @v@�u.�/.v/, for � 2 P2.Rd/ and
v 2 R

d, are uniquely determined.
3. Under (A3), there exists one and only one continuous version of @�u.�/.�/ for

each � 2 P2.Rd/ such that for each fixed v 2 R
d, the mapping P2.Rd/ 3 � 7!

@�u.�/.v/ is L-continuously differentiable and the derivative P2.Rd/�R
d�R

d 3
.�; v; v0/ 7! @2�u.�/.v; v0/ is jointly continuous. Also, the values of @2�u are
uniquely determined.

For the sake of definiteness, we also remind the reader of the following important
result involving this notion of regularity. Recall Proposition (Vol I)-5.91.

Proposition 4.13 Let us assume that the function u is fully C2 regular. Then, for
each integer N � 1, its empirical projection uN defined as the function uN W .Rd/N 3
.x1; � � � ; xN/ 7! u.N�1PN

iD1 ıxi/ is C2 on .Rd/N and, for all x1; � � � ; xN 2 R
d,

@2xixj u
N.x1; � � � ; xN/

D 1

N
@v@�u



1

N

NX

`D1
ıx`

�

.xi/ıi;jC 1

N2
@2�u



1

N

NX

`D1
ıx`

�

.xi; xj/;

the equality being an equality between elements of Rd�d.

Simple C2-Regularity
Inspired by the notion of partial C2 regularity used in Chapter (Vol I)-5, we shall
slightly weaken the assumption Full C2 Regularity, by requiring continuity of the
second-order derivatives only at points .v; �/ and .v; v0; �/ such that v and v0
belong to the support of �. This is what we shall call simple C2 regularity:

Assumption (Simple C2 Regularity). We say that a real valued function u on
P2.Rd/ is simply C2 regular if the following three conditions are satisfied.

(A1) The function u is C1 in the sense of L-differentiation, and its first
derivative has a version P2.Rd/ � R

d 3 .�; v/ 7! @�u.�/.v/ 2 R
d

which is locally bounded and is continuous at any .�; v/ such that
v 2 Supp.�/.

(A2) The version of Rd 3 v 7! @�u.�/.v/ 2 R
d used in (A1) for each � 2

P2.Rd/ is differentiable on R
d in the classical sense and its derivative

forms a global map P2.Rd/�R
d 3 .�; v/ 7! @v@�u.�/.v/ 2 R

d which
is locally bounded and is jointly continuous at any point .�; v/ such that
v 2 Supp.�/.

(continued)
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(A3) The version of R
d 3 v 7! @�u.�/.v/ 2 R

d used in (A1) for each
� 2 P2.Rd/ is such that for any v 2 R

d, the mapping P2.Rd/ 3
� 7! @�u.�/.v/ 2 R

d is L-differentiable component by component,
with a derivative given by a function .�; v0/ 7! @2�u.�/.v/.v0/ 2 R

d�d.
Denoting @2�u.�/.v/.v0/ by @2�u.�/.v; v0/, we can find a version of each
@2�u.�/.v; �/ such that the global map P2.Rd/�R

d �R
d 3 .�; v; v0/ 7!

@2�u.�/.v; v0/ is locally bounded and is jointly continuous at any point
.�; v; v0/ such that v; v0 2 Supp.�/.

We stress the fact that under assumption Simple C2 Regularity, for any
� 2 P2.Rd/, the functions @�u.�/.�/ and @v@�u.�/.�/ are uniquely defined on
the support Supp.�/ of �; also the function @2�u.�/.�; �/ is uniquely defined on
ŒSupp.�/�2. Observe also that (A3) is demanding. In contrast with what we have
done so far, it requires to consider @�u.�/.v/ at pairs .�; v/ 2 P2.Rd/ � R

d for
which v may not be in the support of �.

4.3.3 Chain Rule Under C2-Regularity

We consider an R
d-valued Itô process of the same form as (4.25). In order to extend

the chain rule proven in Theorem (Vol I)-5.92 to the current framework, we need a
copy . Q̋ 1; QF1; QP1/ of the probability space .˝1;F1;P1/, the expectation under QP1
being denoted by QE1.

Given such a copy, we consider, for any random variable X defined on ˝ D
˝0�˝1, the random variable QX, defined as a copy of X on the space Q̋ D ˝0� Q̋ 1.
In particular, we shall consider the copies . QXt/t�0, . QBt/t�0, . Q̇ t/t�0 and . Q̇ 0

t /t�0 of
the processes .Xt/t�0, .Bt/t�0, .˙t/t�0 and .˙0

t /t�0.

Theorem 4.14 Assume that u is simply C2 and that, for any compact subset K �
P2.Rd/,

sup
�2K

� Z

Rd

ˇ
ˇ@�u.�/.v/

ˇ
ˇ2d�.v/C

Z

Rd

ˇ
ˇ
ˇ@v@�u.�/.v/

ˇ
ˇ
ˇ
2

d�.v/

C
Z

Rd

Z

Rd

ˇ
ˇ
ˇ@2�u.�/.v; v0/

ˇ
ˇ
ˇ
2

d�.v/d�.v0/
	

< C1:

(4.27)

Then, letting

�t.!
0/ D L1.Xt/.!

0/; !0 2 ˝0; t � 0;
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with X satisfying (4.25), it holds that, P0-almost surely, for all t � 0,

u.�t/ D u.�0/C
Z t

0

E
1
�
@�u.�s/.Xs/ � Bs

�
ds

C
Z t

0

E
1
��
˙0

s

��
@�u

�
�s
��

Xs
�� � dW0

s

C 1

2

Z t

0

E
1
h
trace

˚
@v@�u.�s/.Xs/˙s˙

�
s

�i
ds

C 1

2

Z t

0

E
1
h
trace

˚
@v@�u

�
�s
��

Xs
�
˙0

s

�
˙0

s

���
i
ds

C 1

2

Z t

0

E
1 QE1

h
trace

˚
@2�u.�s/.Xs; QXs/˙

0
s

� Q̇ 0
s

���
i
ds:

(4.28)

Notice that except for the last one, all the expectations under E1 could be rewritten
as expectations under QE1, using the copies . QXt/t�0, . QBt/t�0, . Q̇ t/t�0 and . Q̇ 0

t /t�0 of
the processes .Xt/t�0, .Bt/t�0, .˙t/t�0 and .˙0

t /t�0. In the last term, the expectation
is taken under both E

1 and QE1: Notice also that, conditional on F
0 D .F0

t /t�0, the
processes .Xt; ˙

0
t /t�0 and . QXt; Q̇ 0

t /t�0 are independent on ˝0 �˝1 � Q̋ 1.
Importantly, we observe that all the integrands that appear in the right-hand

side of (4.27) have versions, up to a null subset in B.Œ0;C1// ˝ F0, that are
F
0-progressively measurable. The proof is as follows. First we observe that, for

each � 2 P2.Rd/, the mappings R
d 3 v 7! @�u.�/.v/1Supp.�/.v/, Rd 3 v 7!

@v@�u.�/.v/1Supp.�/.v/ and R
d � R

d 3 .v; v0/ 7! @v@�u.�/.v; v0/1Supp.�/2 .v; v
0/

are measurable as the restrictions to the support of � are continuous. Then, we know
that for any compactly supported smooth functions %d from R

d into itself and %d�d

from R
d�d into itself, the mappings:

L2.˝1;F1;P1IRd/ 3 X 7! %d
�
@�u.L.X//.X/

� 2 L2.˝1;F1;P1IRd/

L2.˝1;F1;P1IRd/ 3 X 7! %d�d
�
@v@�u.L.X//.X/

� 2 L2.˝1;F1;P1IRd�d/;

L2.˝1;F1;P1IRd/ 3 X

7! %d�d
�
@2�u.L.X//.X; QX/� 2 L2.˝1 � Q̋ 1;F1 ˝ QF1;P1 ˝ QP1IRd�d/;

are continuous. For the latter, we use the fact that the mapping L2.˝1;F1;P1IRd/ 3
X 7! QX 2 L2. Q̋ 1; QF1; QP1IRd/ is obviously continuous as . Q̋ 1; QF1; QP1/ just consists
in a copy of . Q̋ 1; QF1; QP1/. By the bound EŒsup0�t�T jXtj2� < 1, which holds true
for T > 0, we know that P0Œ8T > 0; E1Œsup0�t�T jXtj2� < 1� D 1. We deduce that
the process:

Œ0;C1/ �˝0 3 .t; !0/ 7! Xt.!
0; �/ 2 L2.˝1;F1;P1IRd/
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has a version with continuous trajectories. Following Lemma 2.5 and the discussion
in Subsection 4.3.1, the latter is also F

0-adapted. Therefore, the mapping:

Œ0;C1/ �˝0 3 .t; !0/ 7! %d
�
@�u.L1.Xt//.Xt/

�
.!0; �/ 2 L2.˝1;F1;P1IRd/

is continuous and F
0-adapted. By the discussion in Subsection 4.3.1, we know that

the mapping:

Œ0;C1/ �˝0 3 .t; !0/ 7! Bt.!
0; �/ 2 L2.˝1;F1;P1IRd/

admits an F
0-progressively measurable version. By continuity of the inner product

in L2.˝1;F1;P1IRd/, we deduce that:

Œ0;C1/ �˝0 3 .t; !0/ 7! E
1
�
%d
�
@�u

�
L1.Xt/

�
.Xt/

� � Bt
�
.!0/

admits an F
0-progressively measurable version. By letting %d tend to the identity

function, we complete the analysis of the second term in the first line of (4.28). The
same arguments hold for the other terms.

Also, from the equality P
0Œ8T > 0; E1Œsup0�t�T jXtj2� < 1� D 1, we know

that, with P
0-probability 1, for all T > 0, there exists a compact subset of P2.Rd/

containing the family .�t/0�t�T , see Corollary (Vol I)-5.6. Therefore,

P
0

�

sup
0�t�T

Z

Rd
j@vu.�t/.v/j2d�t.v/ < 1

	

D 1;

that is

P
0

�

sup
0�t�T

E
1
�j@vu.�t/.Xt/j2

�
< 1

	

D 1:

This shows that .
R t
0
E
1Œ@vu.�s/.Xs/ � Bs�ds/t�0 defines an F

0-adapted continuous
process. A similar argument can be used for the other terms in (4.28). Importantly,
observe that the integrand of the stochastic integral therein satisfies:

P
0

�

8t � 0;

Z t

0

ˇ
ˇ
ˇE

1
��
˙0

s

��
@�u

�
�s
��

Xs
��ˇˇ
ˇ
2

ds < 1
#

D 1;

which shows that the stochastic integral is well defined as a local martingale, though
under the standing assumptions, it may not be square-integrable.

As for Theorem (Vol I)-5.92, the proof of Theorem 4.14 relies on a mollification
argument, whose statement and proof are given first. The reader may want to
compare this result with the similar Lemma (Vol I)-5.95.
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Lemma 4.15 Assume that the chain rule holds for any function u that is fully C2
with first and second order derivatives that are bounded and uniformly continuous
with respect to the space and measure arguments. Then, it also holds for any
function u that is simply C2.

Proof. Throughout the proof, we use the same copy . Q̋ 1; QF1; QP1/ of the space .˝1;F1;P1/

as in Theorem 4.14. For a random variable X defined on .˝1;F1;P1/ (respectively on
.˝;F ;P/), we denote by QX the copy of X on . Q̋ 1; QF1; QP1/ (respectively on . Q̋ ; QF ; QP/).
Functions of the measure argument will be systematically lifted onto L2. Q̋ 1; QF1; QP1IRd/.

First Step. We assume that there exists a sequence of functions .un/n�1 from P2.Rd/ into
R

d such that, for each n � 1, the chain rule can be applied to un. Moreover, we assume that
for any � and any v; v0 2 Supp.�/, the following limits hold as n tends to C1:

un.�/ ! u.�/; @�un.�/.v/ ! @�u.�/.v/;

@v@�un.�/.v/ ! @v@�u.�/.v/;

@2�un.�/.v; v
0/ ! @2�u.�/.v; v0/:

(4.29)

We also assume that, for any compact subset K � P2.Rd/,

sup
�2K

sup
n�1

� Z

Rd

ˇ
ˇ@�un.�/.v/

ˇ
ˇ2d�.v/C

Z

Rd

ˇ
ˇ
ˇ@v@�un.�/.v/

ˇ
ˇ
ˇ
2

d�.v/

C
Z

Rd

Z

Rd

ˇ
ˇ
ˇ@2�un.�/.v; v

0/
ˇ
ˇ
ˇ
2

d�.v/d�.v0/

	

< 1:

(4.30)

Now, we recall that for .t; !0/ outside a null Borel subset of Œ0;C1/ �˝0, we have:

E
1
h
jXt.!

0; �/j2CjBt.!
0; �/j2Cˇˇ˙0

t .!
0; �/ˇˇ2Cˇˇ�˙t˙

�
t

�
.!0; �/ˇˇ2Cˇˇ�˙0

t .˙
0
t /
�
�
.!0; �/ˇˇ2

i
< 1:

Therefore, by a standard uniform integrability argument, for .t; !0/ outside a null Borel
subset of Œ0;C1/ �˝0, we have:

lim
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E
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h
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D E
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h
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Similarly,

lim
n!1

E
1 QE1

h
trace

n
@2�un

�
L.Xt/

��
Xt; QXt

�
˙0

t

� Q̇ 0
t

��
oi

D E
1 QE1

h
trace

n
@2�u

�
L.Xt/

��
Xt; QXt

�
˙0

t

� Q̇ 0
t

��
oi
:
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In order to pass to the limit in the chain rule itself, we must pass to the limit in the integrals.
To do so, we recall that, for any T > 0,

E

h
sup
0�t�T

jXtj2
i
< 1;

from which we get that, for P0-almost every !0 2 ˝0,

E
1
�

sup
0�t�T

jXtj2
�
.!0/ < 1:

Therefore, by Corollary (Vol I)-5.6, we deduce that, with P
0-probability 1, there exists a

compact subset of P2.Rd/ containing the family .�t/0�t�T . In particular, on an event of
P
0-probability 1, we have by (4.30):
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< 1:

This suffices to apply Lebesgue’s dominated convergence theorem in order to pass to the
limit in the four Lebesgue integrals in (4.28). So as n tends to C1,

sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z t
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E
1
�
@�un.�s/.Xs/ � Bs

�
ds �

Z t

0

E
1
�
@�u.�s/.Xs/ � Bs

�
ds

ˇ
ˇ
ˇ
ˇ ! 0

in probability under P0, with similar results for the other terms.
In fact, the same result also holds true for the stochastic integral. Indeed, considering

the random variable ˝0 3 !0 7! L1.sup0�t�T jXtj/.!0/ 2 P2.Œ0;C1// for a given
T > 0, we can find, for any " > 0, a compact subset K" of P2.Œ0;C1// such that
P
0ŒL1.sup0�t�T jXtj/ 2 K"� � 1 � ". As relative compactness in P2.Œ0;C1// is mostly

described in terms of tails of distributions, we can assume that, for any Œ0;C1/-valued
random variables 	 and 	0 such that 	 � 	0, L.	0/ 2 K" ) L.	/ 2 K". In particular, letting:

�� D inf
n
t � 0 W L1� sup

0�s�t
jXsj

� 62 K�

o
^ T;

we clearly have that P0Œ�" < T� � ". Also, since we may regard .L1.sup0�s�t jXsj//t�0 as an
F
0-adapted continuous process with values in P2.Œ0;C1//, �" is a stopping time. Then, by

repeating the same argument as above, using in addition Lebesgue’s dominated convergence
theorem, we have, for any � > 0:
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from which we easily deduce that, as n tends to C1,
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converges to 0 in probability under P0. This suffices to derive (4.28).

Second Step. It remains to construct the sequence .un/n�1. We use the same mollification
procedure as in the proofs of Lemma (Vol I)-5.95 and Theorem (Vol I)-5.99. We proceed in
several steps. First, for a given smooth function � W Rd ! R

d with compact support, we let:

8� 2 P2.Rd/;
�
u ? �

�
.�/ D u

�
� ı ��1

�
;

where � ı ��1 denotes the push forward image of � by �. It is pretty clear that the
lifted version of u ? � is Qu ı �, where Qu is the lift of u and � is canonically lifted as
Q� W L2. Q̋ 1; QF1; QP1IRd/ 3 QX 7! �. QX/. Following if needed (Vol I)-(5.87), we have (with
streamlined notations):
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@2�.v/C @v
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@�u
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� ı ��1

���
�.v/

�
@�.v/˝ @�.v/:

(4.31)

Above, we used versions of @�u for which the derivatives appearing on each line do exist.
Then, following the proofs of Lemma (Vol I)-5.95 and Theorem (Vol I)-5.99, we deduce

that u ? � and its first and second order derivatives are bounded and are continuous at points
.�; v/ such that v is in the support of �. Moreover, if we choose a sequence of compactly
supported smooth functions .�n/n�1 such that j�n.v/j � Cjvj, j@�n.v/j � C and j@2�n.v/j �
C, for any n � 1 and v 2 R

d and for a constant C � 0, and �n.v/ D v for any n � 1 and v
with jvj � n, then the sequence .un D u ? �n/n�1 satisfies (4.29) and (4.30). The net result is
that we can assume u to be bounded without any loss of generality.

Now, arguing as in the proof of Theorem (Vol I)-5.99 and denoting by ' the density of
the standard Gaussian distribution of dimension d, the function P2.Rd/ 3 � 7! u.� 
 '/
satisfies:

@2�
�
u.� 
 '/�.v;w/ D

Z

Rd

Z

Rd
@2�u.� 
 '/.v � v0;w � w0/'.v0/'.w0/dv0dw0:

By the same argument as in the proof of Theorem (Vol I)-5.99, the map .�; v;w/ 7! @2�Œu.�

'/�.v;w/ is continuous. The same holds for P2.Rd/ � R

d � R
d 3 .�; v;w/ 7! @2�Œu.� 


'�/�.v;w/, where '� is the density of N.0; �Id/. Moreover, for any � 2 P2.R/d and v;w 2
Supp.�/, @2�Œu.� 
 '�/�.v;w/ ! @2�u.�/.v;w/ as " tends to 0, a similar result holding for
the other derivatives as well. See the proof of Theorem (Vol I)-5.99. This shows (4.29) with
.u� D u.� 
 '�//�>0. For the same family, (4.30) is easily checked since, for any compact
subset K � P2.Rd/, the set f� 
 '�I � 2 K; � 2 .0; 1/g is included in another compact
subset.
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In particular, we can assume that u and its first and second order derivatives are bounded
and continuous. Repeating the first approximation argument, we can restrict the arguments
in u and in its derivatives to compact subsets; as a byproduct, we can assume that u and
its first and second order derivatives are bounded and uniformly continuous, see Lemma
(Vol I)-(5.94) if necessary. ut

We now turn to the proof of Theorem 4.14, which goes along the same lines as
the proof of Theorem (Vol I)-5.92.

Proof of Theorem 4.14. By Lemma 4.15, we can assume that u and its first and second order
derivatives are bounded and uniformly continuous. Also, recalling that u can be replaced by
u?', for some compactly supported smooth function ', we can replace .Xt/t�0 by .'.Xt//t�0.
This says that we can assume that .Xt/t�0 is a bounded Itô process. In fact, repeating the proof
of Lemma 4.15, we can even assume that .Bt/t�0, .˙t/t�0 and .˙0

t /t�0 are all bounded.
Indeed, it suffices to prove the chain rule when .Xt/t�0 is driven by truncated processes and
then pass to the limit along the truncation.

First Step. For each integer N � 1, we construct N copies .X` D .X`t /t�0/`D1;��� ;N of .Xt/t�0

driven by independent idiosyncratic noises .W` D .W`
t /t�0/`D1;��� ;N in lieu of W D .Wt/t�0,

and the same common noise W0 D .W0
t /t�0. This requires to define copies of the initial

conditions and the coefficients of the Itô process X. Recalling that the filtered probability
space .˝;F ;F;P/ on which the process X is constructed is the completion of .˝0�˝1;F0˝
F1;P0 ˝P

1/ equipped with the complete and right-continuous augmentation of F0 ˝F
1, we

introduce a family ..˝1;`;F1;`;F1;`;P1;`//`D1;��� ;N of copies of the space .˝1;F1;F1;P1/

and then let for any ` 2 f1; � � � ;Ng, . N̋ `; NF `; NF`; NP`/ be the completion of .˝0 �˝1;`;F0 ˝
F1;`;P0 ˝ P

1;`/ equipped with the complete and right-continuous augmentation of F
0 ˝

F
1;`, where we put a “bar” on the different symbols so that there is no confusion between
. N̋ 1; NF1; NF1; NP1/ and .˝1;F1;F1;P1/. On each . N̋ `; NF `; NF`; NP`/ with ` 2 f1; � � � ;Ng, it is
now quite simple to copy the initial condition and the coefficients of the Itô process X. As
X0 reads as a measurable mapping X0 W ˝0 � ˝1 3 .!0; !1/ 7! X0.!0; !1/ 2 R

d, the
copy X`0 , for any ` 2 f1; � � � ;Ng, reads X`0 W ˝0 � ˝1;` 3 .!0; !1;`/ 7! X`0.!

0; !1;`/ D
X0.!0; !1;`/ 2 R

d, and similarly for .Bt/t�0, .˙t/t�0 and .˙0
t /t�0, the copies of which are

respectively denoted by B` D .B`t /t�0, ˙ ` D .˙`
t /t�0 and ˙ 0;` D .˙

0;`
t /t�0. In the end, for

any ` 2 f1; � � � ;Ng, the copy X` D .X`t /t�0 of X has dynamics:

dX`t D B`t dt C˙`
t dW`

t C˙0;`
t dW0

t ; t � 0:

We now collect all the N copies on a single probability space . N̋ 1:::N ; NF1:::N ; NP1:::N/, obtained
as the completion of .˝0 �˝1;1:::N ;F0 ˝ F1;1:::N ;P0 ˝ P

1;1:::N/, with:

˝1;1:::N D
NY

`D1

˝1;`; F1;1:::N D
NO

`D1

F1;`; F1;1:::N D
NO

`D1

F
1;`; P1;1:::N D

NO

`D1

P
1;`;

and equipped with the complete and right-continuous augmentation NF1:::N of F0 ˝ F
1;1:::N .

All the various random variables constructed on the different spaces ˝0, ˝1;1,
N̋ 1; � � � ; ˝1;N , N̋ N , can then be canonically transferred to . N̋ 1:::N ; NF1:::N ; NF1:::N ; NP1:::N/.

Indeed, for any ` 2 f1; � � � ;Ng and any event E in NF `, the set f.!0; !1; � � � ; !N/ 2 N̋ 1:::N W
.!0; !`/ 2 Eg belongs to NF1:::N , which is obviously true if E 2 F0 ˝ F1;` and which is also
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true if E is a null subset of . N̋ `; NF `; NP`/. This allows to define, on the same space, the flow
of marginal empirical measures:

N�N
t D 1

N

NX

`D1

ıX`t
; t � 0:

Notice that, for any !0 2 ˝0, the processes .X`.!0; �/ D .X`t .!
0; �//t�0/`D1;��� ;N are

independent and identically distributed.
We now have all the required ingredients to apply Itô’s formula to uN.X1t ; � � � ;XN

t /,
where, as in Chapter (Vol I)-5, uN is the empirical projection defined as uN.x1; � � � ; xN/ D
u.N�1

PN
iD1 ıxi/. Applying the classical Itô formula to uN and expressing the result in terms

of L-derivatives using Proposition 4.13, we deduce that NP1:::N-almost surely on the space
. N̋ 1:::N ; NF1:::N ; NP1:::N/, for any t � 0:

uN
�
X1t ; � � � ;XN

t

� D uN
�
X10 ; � � � ;XN

0

� C 1

N

NX

`D1

Z t

0

@�u
� N�N

s

�
.X`s / � B`s ds

C 1

N

NX

`D1

Z t

0

@�u
� N�N

s

�
.X`s / � �˙`

s dW`
s

�C 1

N

NX

`D1

Z t

0

@�u
� N�N

s

�
.X`s / � �˙0;`

s dW0
s

�

C 1

2N

� NX

`D1

Z t

0

trace
˚
@v@�u

� N�N
s

�
.X`s /A

`
s

�
ds C

NX

`D1

Z t

0

trace
˚
@v@�u

� N�N
s

�
.X`s /A

0;`
s

�
ds

	

C 1

2N2

� NX

`D1

Z t

0

trace
˚
@2�u

� N�N
s

�
.X`s ;X

`
s /A

`
s

�
ds C

NX

`;`0D1

Z t

0

trace
˚
@2�u

� N�N
s

�
.X`s ;X

`0

s /A
0;`;`0

s

�
ds

	

;

with A`s D ˙`
s .˙

`
s /
�, A0;`;`

0

s D ˙0;`
s .˙0;`0

s /� and A0;`s D A0;`;`s .
We now proceed as in the proof of Theorem (Vol I)-5.92, paying attention to the fact that,

for Leb1 ˝ P
0 almost every .t; !0/ 2 Œ0;C1/ �˝0, all the vectors:

�� N�N
t .!

0; �/;X`t .!0; �/;B`t .!0; �/;˙`
t .!

0; �/;˙0;`
t .!0; �/;A`t .!0; �/;A0;`t .!0; �/�

�

`D1;��� ;N

have the same law on . N̋ 1;1:::N ; NF1;1:::N ; NP1;1:::N/, the same being true for the vectors:
�� N�N

t .!
0; �/;X`t .!0; �/;X`

0

t .!
0; �/;A0;`;`0

t .!0; �/�
�

`;`0D1;��� ;N;` 6D`0
:

Therefore, taking expectations with respect to NP1;1:::N in the above expansion, we get, for any
t � 0 and almost every !0 2 ˝0 under P0,

NE1;1:::N�u� N�N
t .!

0; �/�� D NE1;1:::N�u� N�N
0 .!

0; �/��

C
Z t

0

NE1;1:::N�@�u
� N�N

s .!
0; �/��X1s .!0; �/

� � B1s .!
0; �/�ds
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C
Z t

0

NE1;1:::N��˙0;1
s .!0; �/��@�u

� N�N
s .!

0; �/��X1s .!0; �/
�� � dW0

s (4.32)

C 1

2

Z t

0

NE1;1:::N
h
trace

˚
@v@�u

� N�N
s .!

0; �/��X1s .!0; �/
�
A1s .!

0; �/�
i
ds

C 1

2

Z t

0

NE1;1:::N
h
trace

˚
@v@�u

� N�N
s .!

0; �/��X1s .!0; �/
�
A0;1s .!0; �/�

i
ds

C 1

2

Z t

0

NE1;1:::N
h
trace

˚
@2�u

� N�N
s .!

0; �/��X1s .!0; �/;X2s .!0; �/
�
A0;1;2s .!0; �/�

i
ds

C O.1=N/;

where O.�/ stands for the Landau notation, the underlying constant being uniform in !0 2 ˝0

and in t in a compact subset of Œ0;C1/.

Second Step. We now investigate the convergence of the flow of measures . N�N
t .!

0; �//t�0 to
.�1t .!

0//t�0. We proceed as follows. We use the fact that, under the expectation E, for any
T > 0,

8s; s0 2 Œ0; T�; E
�jXs � Xs0 jp� � Cpjs0 � sjp=2;

for a constant Cp depending only on p and T . By Kolmogorov’s continuity theorem, we can
find for any ˛ 2 .0; 1=2/, a random variable 
 defined on .˝;F ;P/, with finite moments of
any order, such that for every ! D .!0; !1/ 2 ˝ D ˝0 �˝1,

8s; s0 2 Œ0; T�; ˇ
ˇXs0 .!0; !1/ � Xs.!

0; !1/
ˇ
ˇ � 
.!0; !1/js0 � sj˛:

Denoting by 
` the copy of 
 on ˝0 � ˝1;`, constructed for each ` D 1; � � � ;N with the
procedure described earlier, we have for every .!0; !1;`/ 2 N̋ ` D ˝0 �˝1;`,

8s; s0 2 Œ0; T�; ˇ
ˇX`s0.!

0; !1;`/ � X`s .!
0; !1;`/

ˇ
ˇ � 
`.!0; !1;`/js0 � sj˛:

In the sequel, the variables .
`/`D1;��� ;N are extended in an obvious way to the whole N̋ 1:::N D
˝0� N̋ 1;1:::N . For P0-almost every !0 2 ˝0, the variables .
`.!0; �//`D1;��� ;N are independent
and identically distributed under NP1;1:::N .

The real T > 0 being fixed, we consider the subdivision .sq D qT=Q/qD0;��� ;Q of Œ0; T�,
for an integer Q � 1. For a given s 2 Œ0; T/, we set Ns D qT=Q whenever qT=Q � s <
.q C 1/T=Q. When s D T , we let Ns D T . Then, for P0-almost every !0 2 ˝0,

NE1;1:::N
h

sup
0�s�T

�
W2

� N�N
s .!

0; �/; �1s .!0/
��2i

� C




NE1;1:::N
h

sup
0�s�T

�
W2

� N�N
s .!

0; �/; N�N
Ns .!

0; �/�
�2i

C sup
0�s�T

�
W2

�
�1s .!

0/; �1Ns .!
0/
��2

C NE1;1:::N
h

sup
qD0;��� ;Q

�
W2

� N�N
sq
.!0; �/; �1sq

.!0/
��2i

�

;

(4.33)
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for a universal constant C, and where we let, for every s 2 Œ0; T�,
�1s .!

0/ D L
�
X1s .!

0; �/�:
We notice that, in (4.33),

NE1;1:::N
h

sup
0�s�T

W2

�
N�N

s .!
0; �/; N�N

Ns .!
0; �/

�2i

� 1

N
NE1;1:::N

h
sup

0�s�T

NX

`D1

ˇ
ˇX`s .!

0; �/ � X`Ns .!
0; �/ˇˇ2

i

� 1

N

� T

Q

�2˛ NE1;1:::N
h NX

`D1

�

`.!0; �/�2

i
D � T

Q

�2˛
E
1
��

.!0; �/�2�;

so that, for P0-almost every !0 2 ˝0,

lim sup
N!1

NE1;1:::N
h

sup
0�s�T

W2

�
N�N

s .!
0; �/; N�N

Ns .!
0; �/

�2i � � T

Q

�2˛
E
1
��

.!0; �/�2�:

Similarly,

sup
0�s�T

W2

�
�1s .!

0/; �1Ns .!
0/
�2 � sup

0�s�T
E
1
�jXs.!

0; �/ � XNs.!
0; �/j2�

� � T

Q

�2˛
E
1
��

.!0; �/�2�;

so that, for P0-almost every !0 2 ˝0,

lim sup
N!1

sup
0�s�T

W2

�
�1s .!

0/; �1Ns .!
0/
�2 � � T

Q

�2˛
E
1
��

.!0; �/�2�:

Taking the lim sup over N in (4.33) and recalling that the 2-Wasserstein distance between a
distribution and the empirical distribution of any of its sample tends to 0 in L2 norm as the
size of the sample tends to 1, see (Vol I)-(5.19) if needed, we get:

lim sup
N!1

NE1;1:::N
h

sup
0�s�T

W2

�
N�N

s .!
0; �/; �1s .!0/

�2i � C
� T

Q

�2˛
E
1
��

.!0; �/�2�:

Recalling that, with P
0-probability 1, E1Œ.
.!0; �//2� < 1 and letting Q ! 1, we deduce

that, for P0- almost every !0 2 ˝0,

lim sup
N!1

NE1;1:::N
h

sup
0�s�T

W2

�
N�N

s .!
0; �/; �1s .!0/

�2i D 0:

Third Step. Using the boundedness and the continuity of the coefficients it is now plain to
pass to the limit in (4.32). The value of t � 0 being fixed, all the terms in (4.32) converge in
P0 probability. In the limit, we get the identity:
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NE1�u��1t .!0/
�� D NE1�u��10.!0/

��C
Z t

0

NE1�@�u
�
�1s .!

0/
��

X1s .!
0; �/�B1s .!0; �/

�
ds

C
Z t

0

NE1��˙0;1
s .!0; �/��@�u

�
�1s .!

0/
��

X1s .!
0; �/�� � dW0

s

C 1

2

Z t

0

NE1
h
trace

˚
@v@�u

�
�1s .!

0/
��

X1s .!
0; �/�A1s .!0; �/

�i
ds (4.34)

C 1

2

Z t

0

NE1
h
trace

˚
@v@�u

�
�1s .!

0/
��

X1s .!
0; �/�A0;1s .!0; �/�

i
ds

C 1

2

Z t

0

NE1
h
trace

˚
@2�u

�
�1s .!

0/
��

X1s .!
0; �/;X2s .!0; �/

�
A0;1;2s .!0; �/�

i
ds:

By pathwise continuity (in t) of the various terms in the above identity, (4.34) holds
P
0-almost surely, for every t 2 Œ0; T�. To conclude the proof notice that the process
.�t;Xt;Bt; ˙t; ˙

0/0�t�T has the same distribution as .�1t ;X
1
t ;B

1
t ; ˙t; ˙

0;1
t /0�t�T and

that the stochastic process .�1t ;X
1
t ;X

2
t ; ˙

0;1
t ; ˙

0;2
t /0�t�T has the same distribution as

.�t;Xt; QXt; ˙
0
t ;

Q̇ 0
t /0�t�T . ut

4.3.4 Chain Rule in Both the State and the Measure Variables

For the purpose of the next section, we prove an extension of the chain rule to
functions u which depend on both .t; x/ and the measure argument �. Recall that
t stands for time, and x for the state variable in the physical space on which the
probability measure � is defined.

For a given T > 0, we say that a function

u W Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! u.t; x; �/ 2 R

is simply C1;2;2 if the conditions (A1)–(A4) below are satisfied.

Assumption (Joint Chain Rule Common Noise). For a given T > 0, the
function u is a continuous function from Œ0;T��R

d�P2.Rd/ to R that satisfies:

(A1) u is differentiable with respect to t and the partial derivative @tu W Œ0;T��
R

d � P2.Rd/ ! R is continuous.
(A2) u is twice differentiable with respect to x and the partial derivatives @xu W

Œ0;T� � R
d � P2.Rd/ ! R

d and @2xxu W Œ0;T� � R
d � P2.Rd/ ! R

d�d

are continuous.
(A3) For any .t; x/ 2 Œ0;T� � R

d, the mapping P2.Rd/ 3 � 7! u.t; x; �/ is
simply C2; moreover, the versions of @�u.t; x; �/.�/ and of its derivatives
used for each � 2 P2.Rd/ in the simple C2 property is such that the
global maps Œ0;T��R

d �P2.Rd/�R
d 3 .t; x; �; v/ 7! @�u.t; x; �/.v/ 2

(continued)
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R
d, Œ0;T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7! @v@�u.t; x; �/.v/ 2

R
d�d, and Œ0;T� � R

d � P2.Rd/ � R
d � R

d 3 .t; x; �; v; v0/ 7!
@2�u.t; x; �/.v; v0/ 2 R

d�d are locally bounded and continuous at any
points .t; x; �; v/ such that v 2 Supp.�/ and .t; x; �; v; v0/ such that
v; v0 2 Supp.�/.

(A4) For the same version of the derivative of u in � as in (A3), the global
map Œ0;T��R

d �P2.Rd/�R
d 3 .t; x; �; v/ 7! @�u.t; x; �/.v/ 2 R

d is
differentiable in x, the partial derivative @x@�u W Œ0;T��R

d �P2.Rd/�
R

d 3 .t; x; �; v/ 7! @x@�u.t; x; �/.v/ 2 R
d�d being locally bounded

and continuous at any point .t; x; �; v/ such that v 2 Supp.�/.

Remark 4.16 When @x@�u is bounded, the mapping:

Œ0;T� � R
d�L2.˝1;F1;P1IRd/ 3 .t; x;X/

7! @x@�u.t; x;L1.X//.X/ 2 L2.˝1;F1;P1IRd/

is continuous. In particular, it is easy to check that Schwarz’ theorem applies in such
a framework. To be more specific, it permits to exchange the derivative in R

d and
the Fréchet derivative in L2.˝1;F1;P1IRd/. Hence, for any .t; x/ 2 Œ0;T��R

d, the
function P2.Rd/ 3 � 7! @xu.t; x; �/ is L-differentiable with respect to � and

@�@xu.t; x; �/.�/ D
h
@x@�u.t; x; �/.�/

i�
:

The following theorem is the generalization of the chain rule proved in Proposi-
tion (Vol I)-5.102 for deterministic flows of marginal distributions. In order to state
the appropriate chain rule, we consider two R

d-valued Itô processes X0 D .X0t /0�t�T

and X D .Xt/0�t�T . The process X D .Xt/0�t�T satisfies the same assumption as in
Subsection 4.3.1. In particular, its dynamics are given by (4.25), but on Œ0;T� in lieu
of the whole Œ0;C1/, with coefficients satisfying (4.26). The touted Itô’s expansion
will be computed along the flow of its conditional marginal laws. In this sense, it
plays the role played by the Itô process � D .
t/0�t�T in Proposition (Vol I)-5.102.

Similarly, the Itô process X0 D .X0t /0�t�T is assumed to satisfy:

dX0t D btdt C �tdWt C �0t dW0
t ; t 2 Œ0;T�; (4.35)

with .bt/0�t�T , .�t/0�t�T and .�0t /0�t�T satisfying the same assumptions as the
coefficients .Bt/0�t�T , .˙t/0�t�T and .˙0

t /0�t�T in (4.26). For the purpose of the
chain rule we are about to prove, this process plays the role of the Itô process
X D .Xt/0�t�T in Proposition (Vol I)-5.102. The main difference is that because
of the presence of the common noise W0 in the dynamics of both Itô processes, we
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consider the flow of conditional marginal distributions given the common noise, and
as a result, the new chain rule will involve second order L-derivatives which were
not present in the original chain rule of Proposition (Vol I)-5.102.

Theorem 4.17 Let us assume that the Itô processes X0 and X are as above, and
that u is a simply C1;2;2 function from Œ0;T� � R

d � P2.Rd/ to R such that, for any
compact subset K � R

d � P2.Rd/,

sup
.t;x;�/2Œ0;T��K

� Z

Rd

ˇ
ˇ@�u.t; x; �/.v/

ˇ
ˇ2d�.v/C
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ˇ
ˇ@v
�
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�
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ˇ
ˇ
ˇ
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d�.v/

C
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ˇ
ˇ
ˇ@x@�u.t; x; �/.v/

ˇ
ˇ
ˇ
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d�.v/ (4.36)
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ˇ
ˇ@2�u.t; x; �/.v; v0/

ˇ
ˇ
ˇ
2

d�.v/d�.v0/
	

< 1;

Then, letting:

�t.!
0/ D L

�
Xt.!

0; �/�; !0 2 ˝0; t 2 Œ0;T�;

it holds that, P-almost surely, for all t 2 Œ0;T�,

u.t;X0t ; �t/ D u.0;X00 ; �0/C
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@tu.s;X
0
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where, as in the statement of Theorem 4.14, the processes . QXt/t�0, . QBt/t�0, . Q̇ t/t�0
and . Q̇ 0

t /t�0 are copies of the processes .Xt/t�0, .Bt/t�0, .˙t/t�0 and .˙0
t /t�0 on

the space Q̋ D ˝0 � Q̋ 1. In the penultimate term, QQ̋ 1 is a new copy of ˝1 and

. QQXt/t�0 and . QQ̇ 0
t /t�0 are copies of the processes .Xt/t�0 and .˙t/t�0 on the space

QQ̋ D ˝0 � QQ̋ 1.

By adapting the discussion right after the statement of Theorem 4.14, see also
Remark (Vol I)-5.103, we notice that all the integrands appearing in the chain
rule have versions, up a to null subset in B.Œ0;T�/ ˝ F , that are F-progressively
measurable. Moreover, with P-probability 1, all the Lebesgue integrals in time are
well defined, and the stochastic integrals form local martingales.

The various terms in (4.37) may be interpreted as follows. The third and fourth
terms in the right-hand side read as a “drift” term; the fifth, sixth and seventh terms
form a local martingale; the terms on the fourth line read as the brackets deriving
from X0; the fifth, sixth and seventh lines correspond to the brackets deriving from
X; the last line is the bracket between X0 and X.

Proof. A reasonable strategy would be to repeat the arguments used in the proof of
Theorem 4.14. However, for pedagogical reasons, we choose to give a slightly different proof.

First Step. First we remark that it is enough to prove the chain rule when u does not depend
upon time as the extension to the time inhomogeneous case is straightforward. Indeed, we
may incorporate time as an additional component of the Itô process X0. When u is twice
differentiable in .t; x; �/ in the sense that it satisfies assumption Joint Chain Rule Common
Noise, but with t incorporated as an additional space variable, then the time-dependent
version of the chain rule follows from a mere application of the time-independent version.
When u is not twice differentiable with respect to the time variable, we may mollify u it in
that direction and use an approximation argument similar to the one used in the first step of
the proof of Lemma 4.15.

We now restrict ourselves to the time-independent case, in which case we can use another
approximation argument, replacing R

d � P2.Rd/ 3 .x; �/ 7! u.x; �/ by R
d � P2.Rd/ 3

.x; �/ 7! u.�.x/; .� 
 '�/ ı ��1/, for � denoting a smooth function from R
d into R

d with
compact support and for '� denoting the density of the Gaussian distribution N.0; �Id/.
Arguing again as in the first step of the proof of Lemma 4.15, it suffices to prove the chain
rule for Rd �P2.Rd/ 3 .x; �/ 7! u.�.x/; .�
'�/ ı��1/ and then to pass to the limit along a
sequence of functions .�n/n�1 converging in a suitable sense to the identity function on R

d ,
and � & 0.

The rationale for considering R
d � P2.Rd/ 3 .x; �/ 7! u.�.x/; .� 
 '�/ ı ��1/ in lieu of

R
d � P2.Rd/ 3 .x; �/ 7! u is clear. Owing to assumption Joint Chain Rule with Common

Noise and repeating the computations performed in the proof of Theorem 4.14, we indeed
observe that Rd �P2.Rd/ 3 .x; �/ 7! u.�.x/; .� 
 '�/ ı ��1/ satisfies the same assumption,
but, in addition, all the derivatives of order one and two are bounded and continuous on the
whole space.

Second Step. From now on, we thus assume that u W Rd �P2.Rd/ ! R
d is time-independent

and that all the derivatives of order 1 and 2 appearing in assumption Joint Chain Rule with
Common Noise are bounded and continuous on the whole space. In particular, this says that
the functions:
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R
d � L2.˝1;F1;P1IRd/ 3 .x;X/

7! @�u
�
x;L1.X/

�
.X/ 2 L2.˝1;F1;P1IRd/;

R
d � L2.˝1;F1;P1IRd/ 3 .x;X/

7! @x@�u
�
x;L1.X/

�
.X/ 2 L2.˝1;F1;P1IRd�d/;

R
d � L2.˝1;F1;P1IRd/ 3 .x;X/

7! @v@�u
�
x;L1.X/

�
.X/ 2 L2.˝1;F1;P1IRd�d/;

R
d � L2.˝1;F1;P1IRd/ 3 .x;X/

7! @2�u
�
x;L1.X/

�
.X; QX/ 2 L2.˝1 � Q̋ 1;F1 ˝ F1;P1 ˝ QP1IRd�d/;

R
d � R

d � L2.˝1;F1;P1IRd/ 3 .x; v;X/
7! @2�u

�
x;L1.X/

�
.v;X/ 2 L2.˝1;F1;P1IRd�d/;

(4.38)

are continuous. The next step is to replace .X0t /t�0 by .ıX0t
/t�0 so that it can be viewed as a

measure-valued process. In this way, the entire noise .W;W0/ D .Wt;W0
t /t�0 can be treated

as the common noise, so that ıX0t
is indeed the conditional law of X0t given the common noise.

The reader might object to the rationale of such a point of view. After all, the common
noise in the dynamics of the Itô process associated with .�t/t�0 is W0 only, and not .W;W0/.
Actually, in the dynamics of the Itô process .Xt/t�0, W may be replaced by an independent
copy, say QW, which may be constructed by considering the completion of the enlarged
probability space .˝ � Q̋ 1 D ˝0 �˝1 � Q̋ 1;F � QF1;P˝ QP1/, with . Q̋ 1; QF1; QP1/ denoting,
as usual, a copy of .˝1;F1;P1/. This does not affect the dynamics of .�t/t�0 and thus
guarantees that there is no conflict in choosing .W;W0/ as the common noise in the dynamics
of X0.

With such an approach, the function u, originally defined on R
d � P2.Rd/, is lifted onto

the space P2.R2d/. The lift reads:

V.�/ D u
� Z

Rd
xd�1.x/; �2

�
; � 2 P2.R2d/;

where �1 denotes the image of � by the mapping R
d � R

d 3 .x1; x2/ 7! x1 and �2 the image
of � by the mapping R

d � R
d 3 .x1; x2/ 7! x2.

It is then an easy exercise to compute the derivatives of V in terms of those of u.
Denoting by QV the lift of V on L2.˝1;F1;P1IR2d/, we have, for any random variables
X; Y 2 L2.˝1;F1;P1IR2d/ and any " > 0,

QV�X C "Y
� D V

�
L1
�
X C "Y

��

D u
�
E
1.X1/C "E1.Y1/;L1

�
X2 C "Y2

��
;

where X1 and X2 are the d-dimensional coordinates of X, seen as a random vector with values
in R

d � R
d, and similarly for Y1 and Y2.
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Then, differentiating with respect to ", we easily get that QV is differentiable in the direction
Y at X, with:

d

d" j"D0

QV�X C "Y
� D E

1
h
@xu
�
E
1.X1/;L1.X2/

�
Y1 C @�u

�
E
1.X1/;L.X2/

�
.X2/Y2

i
:

Since the two mappings:

�
L2.˝1;F1;P1IRd/

�2 3 .X1;X2/ 7! @xu
�
E
1.X1/;L1.X2/

� 2 L2.˝1;F1;P1IRd/;

�
L2.˝1;F1;P1IRd/

�23.X1;X2/ 7!@�u
�
E
1.X1/;L.X2/

�
.X2/ 2 L2.˝1;F1;P1IRd/;

are continuous, we deduce that QV is Fréchet differentiable and that, for any .v1; v2/ 2 R
d�R

d,
@�V.�/.v1; v2/ is the 2d-dimensional vector with d-dimensional coordinates given by:

@�V.�/.v1; v2/ D



@xu


Z

Rd
xd�1.x/; �2

�

; @�u


Z

Rd
xd�1.x/; �2

�

.v2/

�

;

the first coordinate reading as @�1V.�/.v1; v2/ and the second one as @�2V.�/.v1; v2/.
Therefore, differentiating with respect to � again, we have that, for any .v1; v2/ 2 R

d � R
d

and any .v0
1; v

0
2/ 2 R

d � R
d, @2�V.�/..v1; v2/; .v0

1; v
0
2// reads as a vector in .Rd � R

d/2, with
entries:

@2�1V.�/
�
.v1; v2/; .v

0
1; v

0
2/
� D @2xxu


Z

Rd
xd�1.x/; �2

�

;

@�1@�2V.�/
�
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0
1; v

0
2/
� D @x@�u


Z

Rd
xd�1.x/; �2

�

.v2/;

@�2@�1V.�/
�
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0
1; v

0
2/
� D

�

@x@�u


Z

Rd
xd�1.x/; �2

�

.v0
2/

	�

;

@2�2V.�/
�
.v1; v2/; .v

0
1; v

0
2/
� D @2�u


Z

Rd
xd�1.x/; �2

�

.v2; v
0
2/:

(4.39)

In order to fully justify (4.39), we use the same argument as above. Namely, we first
prove that directional derivatives exist. Then, we use the continuity of the various mappings
in (4.38) to deduce that differentiability holds true in the Fréchet sense. Observe that we used
Remark 4.16 in the third line.

Finally, differentiating R
d � R

d 3 .v1; v2/ 7! @�V.�/.v1; v2/ with respect to v1; v2, we
identify the second order derivative @v@�V.�/.v1; v2/ with an element of .Rd �R

d/2 with the
entries:

@v1@�1V.�/.v1; v2/ D @v2@�1V.�/.v1; v2/ D @v1@�2V.�/.v1; v2/ D 0;

@v2@�2V.�/.v1; v2/ D @v@�u


Z

Rd
xd�1.x/; �2

�

.v1; v2/:

Clearly, V is fully C2.
Third Step. The final form of the chain rule is then obtained by applying Theorem 4.14 to
V , the idiosyncratic noise in the dynamics of X being replaced by a copy QW of W defined on
. Q̋ 1; QF1; QP1/. The various symbols E1 in the statement of Theorem 4.14 are to be replaced
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by the expectation symbol QE1, acting on the copies QX, QB, Q̇ and Q̇ 0 (see the definition of

the statement) of X, B, ˙ and ˙ 0. Also, the symbol QE1 in (4.28) should be replaced by QQE1,
accounting for the expectation on a second copy . QQ̋ 1; QQF1; QQP1/; similarly, we should replace
QX and Q̇ 0 by copies QQX and QQ̇ 0. Since the dynamics of X0 do not incorporate the idiosyncratic
noise QW, notice finally that X0 is never integrated with respect to QE1.

We now explain how the various terms in (4.37) follow from the derivatives we just
computed. First, we notice that in the function V , the measure �1 is taken as the Dirac
measure at X0t for t varying in Œ0; T�. Then, the first-order terms in (4.37) are well understood
as they correspond to a standard first-order expansion. The structure of the second-order
terms is slightly more subtle. The second-order derivative in �1 yields the standard second-
order derivative in the direction x and the second-order derivatives in .v2; �2/ give the same
second-order structure as in Theorem 4.14. Finally, the second-order cross-derivatives in �1
and �2 yield @x@�, each with a coefficient 1=2. ut

4.4 The Master Equation

Our goal is now to prove that the master field U , as defined in Definition 4.1 of
Section 4.1, satisfies a PDE on the enlarged state space comprising the physical
states in R

d and probability measures on R
d to account for their statistical

distributions.

4.4.1 General Principle for Deriving the Equation

The fact that U solves a PDE is reminiscent of the theory of finite dimensional
forward-backward stochastic differential equations. The construction of the master
field performed in Section 4.1 was designed in such a way that the value function
describing the dynamics of the cost functional in equilibrium reads as a function
of the solution of the forward Fokker-Planck equation describing the dynamics
of the population in equilibrium. As the value function solves some backward
Hamilton-Jacobi-Bellman equation, see (2.37)–(2.38), the master field reads as a
generalization of the notion of decoupling field introduced in the theory of finite
dimensional forward-backward stochastic differential equations, which is known to
provide a sort of nonlinear Feynman-Kac formula.

If it should not come as a surprise that U might solve a PDE, the real questions
are in fact to determine which PDE, and in which sense it is satisfied. In order
to guess the form of the PDE, it suffices to combine the dynamic programming
principle proven in Theorem 4.5 with the chain rule established in Theorem 4.17.
The dynamic programming principle indeed says that, along a weak equilibrium of
the mean field game, the process:




U.t;Xt; �t/ �
Z t

0

f
�
s;Xs; �s; L̨ .s;Xs; �s;Ys;Zs/

�
ds

�

0�t�T

(4.40)
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should be a martingale whenever .Xt;Yt;Zt;Z0t ;Mt/0�t�T is the solution of the
forward-backward system (4.5) characterizing the optimal path under the flow of
measures .�t/0�t�T . Expanding the process .U.t;Xt; �t//0�t�T by means of Itô’s
formula, one expects to uncover the PDE by identifying to 0 the bounded variation
term in the Itô expansion of the above martingale.

Obviously, the main shortcoming of this approach is the requirement that U be
differentiable with respect to the space and measure arguments in order for the
application of Itô’s formula to be licit. Therefore, we should first prove that U
is indeed differentiable. We shall not attempt to do that at this stage because it
involves technical issues which we postpone to the next Chapter 5. Without any
differentiability property of U , the most we can hope for is to prove that the PDE
holds in the viscosity sense, for a suitable notion of viscosity solution which needs
to be identified.

The main advantage of the concept of viscosity solution is that existence is almost
for free once the dynamic programming principle and Itô’s formula are available. On
the other hand, uniqueness is a more challenging issue that we shall not address in
this book.

Still, before we introduce the notion of viscosity solution and prove the existence
of a such a solution, a few remarks concerning the equation are in order. It is
tempting to believe that the PDE ought to be stochastic because of the presence
of the common noise in the dynamics of the players. However, our experience with
the theory of finite-dimensional forward-backward stochastic differential equations
tells us that this should not be the case. Indeed, in the case of finite-dimensional
forward-backward stochastic differential equations with deterministic coefficients,
the decoupling field is deterministic and satisfies, at least formally, a deterministic
PDE. The reasons remain the same in the current framework. The coefficients of
the infinite dimensional forward-backward system comprising the Fokker-Planck
and the Hamilton-Jacobi-Bellman equations are deterministic functions of the
unknowns, namely the equilibrium measure (which is random) and the value
function (which is random as well). For that reason, the PDE satisfied by the master
field is expected to be deterministic. The presence of the common noise W0 in the
dynamics of the players is merely the reason for the existence of a nontrivial second-
order term in the PDE.

To close this informal discussion, we stress that the PDE satisfied by the master
field will be called the master equation, according to the terminology introduced by
Lions in his lectures at the Collège de France.

4.4.2 Formal Derivation of the Master Equation

The astute reader is presumably already aware of the fact that the formal computa-
tion based on the martingale property of (4.40) works perfectly well provided that
the optimal control . L̨ .t;Xt; �t; Yt;Zt//0�t�T can be expressed in terms of some
feedback function, depending on U , evaluated along the optimal path .Xt/0�t�T .



4.4 The Master Equation 287

The identification performed in Proposition 4.7 and Corollary 4.11 indicates that
the following should be true:

L̨�t;Xt; �t;Yt;Zt
� D Ǫ�t;Xt; �t; @xU.t;Xt; �t/

�
;

where, as above,

Ǫ .t; x; �; y/ D argmin˛2AH.r/.t; x; �; y; ˛/;

the reduced Hamiltonian H.r/ taking the shortened form:

H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/;

for x; y 2 R
d, � 2 P2.Rd/, ˛ 2 A, since both � and �0 are independent of the

control.
So when U is smooth, we have all the necessary ingredients to derive the form of

the master equation. By means of the chain rule in Theorem 4.17, it must hold that:

@tU.t; x; �/C b
�
t; x; �; Ǫ.t; x; �; @xU.t; x; �//
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C
Z
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Z

R2d
trace

h

�0.t; v; �/.�0/�.t; v0; �/@2�U.s; x; �/.v; v0/
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d�.v/d�.v0/

C
Z
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trace

h
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d�.v/

C f
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t; x; �; Ǫ.t; x; �; @xU.t; x; �//

� D 0;

(4.41)

for t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/, and with the terminal condition U.T; x; �/ D

g.x; �/.
This equation can be rearranged in order to compare it with the Hamilton-Jacobi-

Bellman equation associated with the underlying optimization problem. Denoting
by H� the minimized Hamiltonian:

H�.t; x; �; p/ D b
�
t; x; �; Ǫ .t; x; �; p/� � p C f

�
t; x; �; Ǫ .t; x; �; p/�;

D inf
˛2Rd

�
b.t; x; �; ˛/ � p C f .t; x; �; ˛/

�

D inf
˛2Rd

H.r/.t; x; �; p; ˛/;
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for t 2 Œ0;T�, x 2 R
d, � 2 P2.Rd/, and p 2 R

d, and where H.r/ is the reduced
Hamiltonian, the equation may be rewritten in the form:

@tU.t; x; �/C H�
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trace
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i

d�.v/ D 0:

(4.42)

Notice that the terms in the first two lines of the equation are exactly the same
as in the standard HJB equation associated with the optimization part of the MFG
problem. The remaining terms, in the fourth remaining lines, are connected with the
dynamics of the population themselves.

The master equation is expected to encapsulate all the information needed to
describe the solution of the associated MFG. We shall prove later on that it is indeed
the case.

First-Order Master Equation
The master equation is simpler in the absence of the common noise. Indeed, if �0 D
0, the equation reduces to:

@tU.t; x; �/C b
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t; x; �; Ǫ .t; x; �; @xU.t; x; �/
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t; v; �; Ǫ .t; v; �; @xU.t; v; �//

� � @�U.t; x; �/.v/d�.v/

C 1

2
trace

h�
���

�
.t; x; �/@2xxU.t; x; �/

i

C 1

2

Z

Rd
trace

h�
���

�
.t; v; �/@v@�U.t; x; �/.v/

i
d�.v/

C f
�
t; x; �; Ǫ .t; x; �; @xU.t; x; �//

� D 0;

(4.43)

for t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/, with U.T; x; �/ D g.x; �/ as terminal

condition. A remarkable feature of this equation is the absence of second-order
partial derivatives @2�. For that reason, we shall say that this equation is of the first
order, although the terminology could be misleading since it remains of the second-
order in x as long as � ¤ 0.
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Importantly, observe that in this case, we recover the equation postulated in the
verification principle established in Proposition (Vol I)-5.106, whose statement may
now be reformulated as follows: any classical solution of the master equation yields
an equilibrium to the corresponding MFG problem.

As before, equation (4.43) can be rewritten in terms of the minimized Hamilto-
nian H� in order to compare it with a standard Hamilton-Jacobi-Bellman equation:

@tU.t; x; �/C H��t; x; �; @xU.t; x; �/
�C 1

2
trace

h�
���

�
.t; x; �/@2xxU.t; x; �/

i

C
Z

Rd
b
�
t; v; �; Ǫ .t; v; �; @xU.t; v; �//

� � @�U.t; x; �/.v/d�.v/

C 1

2

Z

Rd
trace

h�
���

�
.t; v; �/@v@�U.t; x; �/.v/

i
d�.v/ D 0;

for t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/, with the terminal condition U.T; x; �/ D

g.x; �/.

4.4.3 The Master Field as a Viscosity Solution

We now prove that the master field defined in Definition 4.1 is a viscosity solution
of the master equation (4.41). In preparation for the definition of a viscosity solution
of (4.41), we first define the class of test functions used for that purpose.

Definition 4.18 A function � W Œ0;T� � R
d � P2.Rd/ ! R which is simply C1;2;2 in

the sense of the definition given in assumption Joint Chain Rule Common Noise
in Subsection 4.3.4, is said to be a test function if the quantities:

Z

Rd

hˇ
ˇ@��.t; x; �/.v/

ˇ
ˇ2 C ˇ

ˇ@x@��.t; x; �/.v/
ˇ
ˇ2
i
d�.v/

C
Z

Rd

Z

Rd

ˇ
ˇ@2��.t; x; �/.v; v

0/
ˇ
ˇ2d�.v/d�.v0/

(4.44)

and

sup
v2Rd

ˇ
ˇ@v@��.t; x; �/.v/

ˇ
ˇ

(4.45)

are finite, uniformly in .t; x; �/ in compact subsets of Œ0;T� � R
d � P2.Rd/.

Observe that any function � as in the statement of Definition 4.18 satisfies:

j@��.t; x; �/.v/j �
Z

Rd
j@��.t; x; �/.v0/jd�.v0/

C sup
v02Rd

ˇ
ˇ@v@��.t; x; �/.v

0/
ˇ
ˇ
Z

Rd
jv�v0jd�.v0/
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�
� Z

Rd
j@��.t; x; �/.v0/j2d�.v0/

�1=2

C sup
v02Rd

ˇ
ˇ@v@��.t; x; �/.v

0/
�jvj C M2.�/

�
; (4.46)

so that the mapping R
d 3 v 7! @��.t; x; �/.v/ is at most of linear growth (in v),

uniformly in .t; x; �/ in compact subsets.
We are now ready to define what we mean by a viscosity solution of (4.41).

Definition 4.19 Let assumption FBSDE be in force, the coefficients b, f , g, � , �0,
and L̨ that appear therein being jointly continuous in all their variables. Let us
assume further that the optimizer Ǫ in (4.13) is uniquely defined, jointly continuous
in all its variables, and is at most of linear growth in .x; y/, uniformly in .t; �/ in
compact subsets.

We then say that a real valued continuous function u on Œ0;T� � R
d � P2.Rd/,

continuously differentiable in the direction x (that is @xu W Œ0;T� � R
d � P2.Rd/ 3

.t; x; �/ 7! @xu.t; x; �/ is continuous) is a viscosity solution of the master
equation (4.41) if:

1. the function Œ0;T� � P2.Rd/ 3 .t; �/ 7! R
Rd j@xu.t; v; �/j2d�.v/ is bounded on

any compact subset,
2. for any .t; x; �/ 2 Œ0;T/ � R

d � P2.Rd/ and any test function � W Œ0;T� � R
d �

P2.Rd/ ! R such that u.t; x; �/ D �.t; x; �/ and u.s; y; �/ � �.s; y; �/ (resp.
u.s; y; �/ � �.s; y; �/) for all .s; y; �/ in a neighborhood of .t; x; �/, it holds that

@t�.t; x; �/C b
�
t; x; �; Ǫ .t; x; �; @xu.t; x; �//

� � @x�.t; x; �/

C
Z

Rd
b
�
t; v; �; Ǫ .t; v; �; @xu.t; v; �//

� � @��.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
.t; x; �/@2xx�.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
.t; v; �/@v@��.t; x; �/.v/

i
d�.v/ (4.47)

C 1

2

Z

R2d
trace

h
�0.t; v; �/.�0/�.t; v0; �/@2��.t; x; �/.v; v0/

i
d�.v/d�.v0/

C
Z

Rd
trace

h
�0.t; x; �/

�
�0
��
.t; v; �/@x@��.t; x; �/.v/

i
d�.v/

C f
�
t; x; �; Ǫ .t; x; �; @xu.t; x; �//

� � 0 .resp: � 0/;

3. u.T; x; �/ D g.x; �/, for any .x; �/ 2 R
d � P2.Rd/.
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The reader must pay attention to the fact that, contrary to the usual definition
of viscosity solutions of parabolic equations, inequality (4.47) keeps track of the
derivative of u in the direction x. In fact, using the fact that .t; x; �/ is a minimum
(respectively maximum) point of u � � and that u is continuously differentiable in
the space variable, it holds that

@xu.t; x; �/ D @x�.t; x; �/;

which shows that, in the first and last lines of the equation, the gradient of u in x can
be replaced by the gradient of � in x.

However, we emphasize that it is not possible to replace the gradient in x of
u by the gradient of � in x in the second line of the equation since the term that
appears there is nonlocal. Indeed, it relies on the values of @xu.t; �; �/ on the whole
support of �. The simple comparison of u and � in the neighborhood of .t; x; �/ is
not sufficient to compare @xu.t; v; �/ with @x�.t; v; �/ for v away from x. This is
the reason why, in the definition, u is assumed to be continuously differentiable in
x. In that framework, condition 1 in the definition guarantees that the second line
in (4.47) is well defined.

Moreover, while condition (4.44) is reminiscent of (4.36) in the statement of
Theorem 4.17, condition (4.45) looks more stringent. Actually, it is mandatory in
order to give a sense to the integral that appears in the fourth line of (4.47), at least
when � and �0 are of linear growth in x, which is the case under assumptions MFG
with a Common Noise SMP and MFG with a Common Noise SMP Relaxed in
Section 3.4. The fact that the bound involves a supremum over v 2 R

d may seem
rather restrictive. In fact, thanks to Proposition (Vol I)-5.36, we have a systematic
tool in order to identify a Lipschitz continuous version (in the direction v) of
the derivative @��, in which case @v@�� is indeed bounded. When � and �0 are
bounded, such a constraint may be relaxed.

Note finally that, in comparison with the standard definition of viscosity solutions
of parabolic equations, the signs in (4.47) are reversed since the equation (4.41) (or
equivalently (4.47)) is set backward in time.

Implementing the dynamic programming principle proven in Proposition 4.5
together with the chain rule established in Theorem 4.17, we get:

Proposition 4.20 Let assumption FBSDE be in force, the coefficients b, f , g, � , �0,
and L̨ that appear therein being jointly continuous in all the parameters, and let us
assume further that the optimizer Ǫ in (4.13) is uniquely defined, jointly continuous
in all the parameters and at most of linear growth in .x; y/ uniformly in .t; �/ in
compact subsets.

Suppose also that weak existence and uniqueness to the mean field game hold
for any initial condition .t;V/ 2 Œ0;T� � P2.P2.Rd// and that the master field U
is jointly continuous in the three parameters .t; x; �/ and is differentiable in x, the
partial derivative @xU being jointly continuous in the three parameters .t; x; �/.
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Finally, assume that, with the same notations as in Definition 4.1, with P
t;�-

probability 1, and for almost every s 2 Œt;T�:

L̨ .s; xt;x
s ; �s; y

t;x
s ; z

t;x
s / D Ǫ�s; xt;x

s ; �s; @xU.s; xt;x
s ; �s/

�
: (4.48)

Then, U is a viscosity solution of the master equation (4.41).

We refer the reader to Proposition 4.7 and Corollary 4.11 for sufficient conditions
under which the identification (4.48) of the optimal feedback holds. Examples will
be given at the end of the section.

Proof. The proof is quite similar to that for standard stochastic optimal control problems,
but some attention must be paid to the fact that the measure argument is infinite dimensional.
We first introduce a new notation for the purpose of the proof. Given .t; x; �/ 2 Œ0; T��R

d �
P2.Rd/ and a test function � as in Definition 4.18, we denote by �Œ��.t; x; �/ the left-hand
side of (4.47).

First Step. We check that the mapping Œ0; T� � R
d � P2.Rd/ 3 .t; x; �/ 7! �Œ��.t; x; �/ is

continuous. A quick glance at the left-hand side in (4.47) shows that the only difficulty is to
check the continuity of the integral terms which appear on the second, fourth, fifth, and sixth
lines. To this end, we notice that the terms appearing on the second, fourth, and sixth lines
are of the form EŒ	.t; x;L.
/; 
/ � @�.t; x;L.
//.
/�, where 
 is a random variable defined
on some auxiliary probability space, which may be .˝;F ;P/ itself, with � as distribution,
	.t; x; �; v/ being a coefficient that may be b.t; v; �; Ǫ .t; v; �; @xU.t; v; �///, .���/.t; v; �/,
.�0.�0/�/.t; v; �/ or �0.t; x; �/.�0.t; v; �//� and, similarly, @�.t; x; �/.v/ possibly matching
@��.t; x; �/.v/, @v@��.t; x; �/.v/ or @x@��.t; x; �/.v/.

We now consider a sequence .tn; xn; 
n/n�1 that converges to .t; x; 
/, .
n/n�1 converging
on the L2 space defined over the auxiliary probability space. In order to establish the
continuity of the terms on the second, fourth, and sixth lines, it suffices to show that, with the
same convention as above:

lim
n!1

E
�
	
�
tn; xn;L.
n/; 
n

� � @��tn; xn;L.
n/
�
.
n/

�

D E
�
	
�
t; x;L.
/; 


� � @��t; x;L.
/�.
/�:
(4.49)

When 	.t; x; �; v/ has the form b.t; v; �; Ǫ .t; v; �; @xU.t; v; �///, we know that as n tends to
1,

b
�
tn; 
n;L.
n/; Ǫ�tn; 
n;L.
n/; @xU.tn; 
n;L.
n//

��

! b
�
t; 
;L.
/; Ǫ�t; 
;L.
/; @xU.t; 
;L.
//

��
;

in probability. Moreover, because of point 1 in Definition 4.19 and the linear growth property
of b and Ǫ in the variable y, all the terms above are uniformly bounded in L2. Now, by
assumption on �, see in particular (4.46), the sequence .@�.tn; xn;L.
n//.
n//n�1 converges
in probability to @�.t; x;L.
//.
/ and is uniformly integrable in L2. By a standard uniform
integrability argument, we deduce that, for  and @� as on the second line of (4.47), (4.49)
holds true, so that the term on the second line of (4.47) is continuous. A similar argument
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holds for the term on the sixth line, since �0 is at most of linear growth in the space
variable, which guarantees that the sequence ..�0/�.tn; 
n;L.
n///n�1 is uniformly square-
integrable. For the terms on the fourth line, we may also proceed in the same way, using
in addition (4.47) and noticing once again that the sequences ..���/.tn; 
n;L.
n///n�1 and
...�0/.�0/�/.tn; 
n;L.
n///n�1 are uniformly integrable since � and �0 are most of linear
growth.

Finally, the term on the fifth line may be represented in the form:

E
�
�0.t; 
;L.
//.�0.t; 
 0;L.
 0///�@2��.t; x;L.
//.
; 
 0/

�
;

where 
 and 
 0 are independent random variables that both have distribution �. This means
that, in order to investigate the analogue of (4.49), we must consider two sequence .
n/n�1

and .
 0
n/n�1 converging in L2 to 
 and 
 0 respectively, with the prescription that, for each

n � 1, 
n and 
 0
n are independent and identically distributed. By independence, the sequence

.�0.tn; 
n;L.
n//.�
0.t; 
 0

n;L.
 0
n///

�/n�1 is uniformly integrable in L2, which is enough to
apply the same argument as above.

Second Step. Given .t; x; �/ 2 Œ0; T��R
d �P2.Rd/, we consider the same canonical set-up

N̋ t D N̋ 0;t � N̋ 1;t as in the Definition 4.1 of the master field. The canonical process on N̋ 0;t
is denoted by .�0;w0; �/ and the canonical process on N̋ 1;t by .�;w/. Denoting by Mt;� the
law of the equilibrium starting from � at time t, we let P0;t;� be the completion of ı� ˝Mt;�

and then P
1;t be the completion of Leb1 ˝ W t

d. As in subsection 4.1.3, the completion of
the product probability measure P

0;t;� ˝ P
1;t on N̋ t is denoted by P

t;�. We then denote by
.xt;x; yt;x; zt;x;mt;x/ the solution of the forward-backward system (4.7) with 
 D x.

The dynamic programming principle Proposition 4.3 implies that, for any 0 � t � s <
s C h � T ,

E
t;�
� Z sCh

s
f
�
r; xt;x

r ; �r; L̨ .r; xt;x
r ; �r; y

t;x
r ; z

t;x
r /
�
drCU.s C h; xt;x

sCh; �s/
ˇ
ˇFnat;t;. .�;�0/;w0;m;w/

s

	

D U.s; xt;x
s ; �s/;

where Fnat;t;. .�;�0/;w0;m;w/
s D Fnat;. .�;�0/;w0r ;mr ;wr/t�r�T

s .
Applying the above identity over the interval .s C "; s C h/ in lieu of .s; s C h/, for

0 < " < h, letting " tend to 0 and using the continuity of U , we deduce that:

E
t;�
� Z sCh

s
f
�
r; xt;x

r ; �r; L̨ .r; xt;x
r ; �r; y

t;x
r ; z

t;x
r /
�
drCU.s C h; xt;x

sCh; �sCh/
ˇ
ˇF t;. .�;�0/;w0;m;w/

s

	

D U.s; xt;x
s ; �s/;

where F t;. .�;�0/;w0;m;w/
s is the completion of \">0Fnat;t;. .�;�0/;w0;m;w/

sC"
.

Now, since the process .xt;x; yt;x; zt;x/ is progressively measurable with respect to the

filtration F
t;. .�;�0/;w0;m;w/ D .F t;. .�;�0/;w0;m;w/

s /t�s�T , the process:


Z s

t
f
�
r; xt;x

r ; �r; L̨ .r; xt;x
r ; �r; y

t;x
r ; z

t;x
r /
�
dr C U.s C h; xt;x

sCh; �s/

�

t�s�T

is a martingale with respect to F
t;. .�;�0/;w0;m;w/ under Pt;�.
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Therefore, for any F
t;. .�;�0/;w0;m;w/-stopping time � with values in Œt; T�,

U.t; x; �/ D E
t;�

� Z �

t
f
�
r; xt;x

r ; �r; L̨ .r; xt;x
r ; �r; y

t;x
r ; z

t;x
r /
�
dr C U.�; xt;x

� ; �� /

	

:

By assumption, we can identify L̨ .s; xt;x
s ; �s; yt;x

s ; z
t;x
s / with Ǫ .s; xt;x

s ; �s; @xU.s; xt;x
s ; �s//, so we

get:

U.t; x; �/ D E
t;�

� Z �

t
f
�

s; xt;x
s ; �s; Ǫ�s; xt;x

s ; �s; @xU.s; xt;x
s ; �s/

��
ds C U.�; xt;x

� ; �� /

	

:

Take now a test function � such that U.t; x; �/ D �.t; x; �/ and assume that, under Pt;�, the
process .xt;x

s ; �s/t�s�� lives in a compact set and satisfies U.�; xt;x
� ; �� / � �.�; xt;x

� ; �� /. We
then intend to apply Theorem 4.17 and to take expectation in the subsequent expansion, with
u � �, .X0s /t�s�T D .xt;x

s^� /t�s�T and .Xs/t�s�T D .xt;

s /t�s�T , with 
 D  .�; �0/. Observe

from the growth properties of the coefficients under assumption FBSDE that:

E
t;�

� Z �

t

�jB.s; xt;x
s ; �s; y

t;x
s ; z

t;x
s /j2 C j�.s; xt;x

s ; �s/j4 C j�0.s; xt;x
s ; �s/j4

�
ds

	

< 1;

which shows that .X0s D xt;x
s^� /t�s�T here satisfies (4.26). Unfortunately, .Xs D xt;


s /t�s�T

does not, which prevents us from applying Theorem 4.17 in a straightforward manner. Still,
we claim that .�.s; xt;x

s ; �s//t�s�� may be expanded as in (4.37). The detailed argument is as
follows, the key point therein being to use the fact that (4.44) and (4.45) are finite. To make it
clear, we first apply our generalized form of Itô’s formula to .�.s; xt;x

s^� ; .�s
'�/ı��1//t�s�T ,
where '� is the d-dimensional Gaussian kernel of variance �Id and � is a smooth function
with compact support, see the proof of Lemma 4.15. Since .xt;x

s^� /t�s�T lives in a compact set,
all the derivatives that are involved in the expansion (4.37) are bounded, and the expansion
can be fully justified by using the same approximation arguments as in the proofs of Lemma
4.15 and Theorem 4.17. Then, we take expectation in the expansion and let � tend to 0 first
and then � tend to the identity uniformly on compact subsets. This can be done by combining
the arguments used in the first step, the boundedness of the two quantities (4.44) and (4.45),
and the expressions (4.31) for the derivatives of the approximating coefficients, assuming in
addition that j@2�.v/j � C.1C jvj/�1. As a result, we get:

0 � E
t;�

� Z �

t
�Œ��.s; xt;x

s ; �s/ds

	

:

Third Step. We now assume that U and � satisfy U.s; y; �/ � �.s; y; �/ for all .s; y; �/ such
that:

js � tj C jy � xj C W2.�; �/ � ı: (4.50)

The goal is to prove that �Œ��.t; x; �/ � 0. We proceed by contradiction assuming that
�Œ��.t; x; �/ > 0. By continuity of �Œ��, we can change ı in such a way that:

�Œ��.s; y; �/ > 0; (4.51)
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for all .s; y; �/ 2 Œ0; T� � R
d � P2.Rd/ such that js � tj C jy � xj C W2.�; �/ < ı. Since the

pair .xt;x; �/ is continuous in time under Pt;�, we may find, for a given � 2 .0; 1=2/, a real
h 2 .0; ı/ and a compact subset K � P2.Rd/ such that:

P
t;�
h

sup
t�s�tCh

�jxt;x
s � xj C W2.�s; �/

�
> ı

i
� �; P

t;�
h
8s 2 Œt; T�; �s 62 K

i
� �: (4.52)

Choose � as the first exit time:

� D inf
˚
s � t W jxt;x

s � xj C W2.�s; �/ � ı; �s 62 K
� ^ .t C h/:

Since the filtration F
0;t satisfies the usual conditions, the first exit time inffs � t W �s 62 Kg

is an F
0;t stopping time. By continuity of the process .xt;x; �/, the first exit time inffs � t W

jxt;x
s � xj C W2.�s; �/ � ıg is an F

t stopping time. We deduce that � is an F
t stopping time.

Since all the conditions of the second step are now satisfied, we conclude that:

0 � E
t;�

� Z �

t
�Œ��.s; xt;x

s ; �s/ds

	

:

By (4.51), this says that Pt;�
�
�K D t

� D 1, which is a contradiction with (4.52), from which
it follows that

P
t;�
�
�K < t C h

�
< 2� < 1:

This completes the proof. ut

4.4.4 Revisiting the Existence and Uniqueness Results of Chapter 3

We now return to the existence and uniqueness results proven in Chapter 3 and show
that in all these cases, the master field is well defined and is a continuous viscosity
solution of the master equation in the sense provided in the previous subsection.

Using Assumptions MFG with a Common Noise HJB and Lasry-Lions
Monotonicity
Our first result is the following.

Theorem 4.21 Let assumption MFG with a Common Noise HJB from Subsec-
tion 3.4.1 hold. Let us assume moreover that b, � and �0 are independent of �, that
f has the form

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/; t 2 Œ0;T�; x 2 R
d; ˛ 2 A; � 2 P2.Rd/;

f0.t; �; �/ and g satisfying the Lasry-Lions monotonicity property (3.77) and being L-
Lipschitz in the measure argument for the same L as in assumption MFG with
a Common Noise HJB, and that the coefficients b, f , g, � , and �0 are jointly
continuous in all their variables and that their derivatives in x and ˛, which exist
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under assumption MFG with a Common Noise HJB, are jointly continuous. Then,
the master field U is well defined and is a continuous viscosity solution of the master
equation (4.41).

Proof. The proof is rather long, so it is important to keep the gory details in check. We are
trying to apply Proposition 4.20, and most of our efforts will be devoted to checking the
continuity of the master field and its derivative with respect to the state variable x.

First Step. We first recall from the proof of Theorem 3.29 in Subsection 3.4.1 and from
Subsection 2.2.3 that, under assumption MFG with a Common Noise HJB, assumption
FBSDE holds, the coefficients .B;F;G/ driving the system (4.5) being given by (3.58). In
particular, L̨ .t; x; �; y; z/ is equal to Ǫ .t; x; �; �.t; x/�1�z/ where Ǫ .t; x; �; y/ is the optimizer
of the reduced Hamiltonian, see for instance (4.14). Since b, � and �0 are independent of �
and f has a separated structure, Ǫ is independent of �. We shall denote it by Ǫ .t; x; y/. As
already explained in the proof of Theorem 3.29, convexity of the Hamiltonian ensures that
the minimizer Ǫ is continuous in all its variables, including time since all the coefficients are
time continuous. Moreover, by (3.57), Ǫ is at most of linear growth, which proves that the
preliminary assumptions in both Definition 4.19 and Proposition 4.20 are satisfied.

Now, by Theorem 3.29, we know that, for any initial condition .t; �/ 2 Œ0; T��P2.Rd/, the
MFG problem admits a weak equilibrium. By Proposition 3.34, the equilibrium is strongly
unique so that by Lemma 2.30, it is also unique in law. So the master field is well defined by
Definition 4.1.

We shall prove point 1 in Definition 4.19 below. In fact, we prove that U is Lipschitz
continuous in the space variable, uniformly in the time and measure arguments.

For the time being, we check that the identity (4.48) in Proposition 4.20 is satisfied.
To this end, it suffices to check that assumption Necessary SMP Master and Decoupling
Master hold. Assumption Necessary SMP Master is easily checked under assumption
MFG with a Common Noise HJB, using in addition the fact that the derivatives of the
coefficients in x and ˛ are here assumed to be jointly continuous. In assumption Decoupling
Master, (A2) is already known. The most demanding assumption is (A1), but this follows
from the combination of Theorem 1.57 and Theorem 1.53. Therefore, Theorem 4.10 and
Corollary 4.11 apply, and we can argue that assumption (4.48) is satisfied.

Second Step. It now remains to discuss the continuity of the master field and of its derivative
in space. Given an initial condition .t; x; �/ 2 Œ0; T� � R

d � P2.Rd/, we use the same
representation of U.t; x; �/ as in Definition 4.1. Namely, denoting by Mt;� the law of the
equilibrium on the space P2.Rd/ � C.Œt; T�IRd/ � P2.C.Œt; T�IR2d//, we have:

U.t; x; �/ D
Z � Z T

t
f
�

s; xx
s ; �s; Ǫ�s; xx

s ; �
�1�.s; xx

s/z
x
s/
��

ds C g.xx
T ; �T/

	

d
h
Mt;� ˝ W t

d

i
;

the integral being over the space P2.Rd/ � C.Œt; T�IRd/ � P2.C.Œt; T�IR2d// � C.Œt; T�IRd/,
and the process .xx

s ; y
x
s ; z

x
s ; z

0;x
s ;m

x
s/t�s�T satisfying the forward-backward system:

(
dxx

s D B
�
s; xx

s ; y
x
s ; z

x
s

�
ds C �.s; xx

s/dws C �0.s; xx
s/dw0s ;

dyx
s D �F

�
s; xx

s ; �s; yx
s ; z

x
s ; z

0;x
s

�
ds C zx

sdws C z0;xs dw0s C dmx
s ;

(4.53)



4.4 The Master Equation 297

for s 2 Œt; T�, on the same probabilistic set-up as in Definition 4.1, with x as initial condition
for xt and G.xx

T ; �T/ as terminal condition for yx
T , and where mx D .mx

s/t�s�T is a càd-làg
martingale of zero cross-variation with .w0;w/ and with mx

t D 0 as initial value. Remember
in particular that, on such a probabilistic set-up, the random variable .�0;w0;m0/ is forced to
be distributed according to the law of the equilibrium starting from � at time t. Pay attention
that we removed the measure argument in the coefficients of the forward equation.

Recalling the definition of N̋ t, N̋ 0;t and N̋ 1;t, see (4.6), we let P0;t;� be the completion
of ı� ˝ Mt;� on N̋ 0;t and then P

1;t be the completion of Leb1 ˝ W t
d on N̋ 1;t. As in

subsection 4.1.3, the completion of the product probability P
0;t;� ˝ P

1;t measure on N̋ t is
denoted by P

t;�.
In the framework of assumption MFG with a Common Noise HJB, we know from (3.58)

that the coefficients driving the auxiliary FBSDE (4.53) (or equivalently (4.5)) are exactly
those that appear in the definition of U (after removal of the cut-off functions ' and  
in (3.58)). In particular, taking the expectation in the backward part of (4.5), we deduce
that U.t; x; �/ coincides with E

t;�Œyx
t �. Now, Et;�Œyx

t � may be represented as the expectation
of the value at time .t; x/ of the decoupling field of the FBSDE (4.53) on the t-initialized
set-up . N̋ t;F t;�;Ft;�;Pt;�/ equipped with .w0;m;w/. From Proposition 1.57, we know that
the decoupling field is Lipschitz continuous in the direction x, uniformly in time and in the
environment. In particular, U is Lipschitz continuous in the direction x, uniformly in time t
and in the measure argument �.

Third Step. In order to investigate the smoothness in the direction of �, we make use of
the Lasry-Lions monotonicity condition. The first step is to notice that, under the standing
assumption, the reduced Hamiltonian H.r/ defined in assumption MFG with a Common
Noise MFG is strictly convex in the direction of the control ˛. The key point is then to insert
such a convexity bound into (1.41).

In order to proceed, we start with an helpful observation: Strong uniqueness of the MFG
holds true, see Proposition 3.34. As a by-product, we know from Proposition 2.29 that, for
a given � 2 P2.Rd/, under Mt;�, the equilibrium m is almost surely equal to a function of
.�0;w0/. Since �0 is almost surely equal to �, this says that we can simply use C.Œt; T�IRd/

as canonical space for the construction of the equilibrium. Instead of N̋ 0;t, we shall use
Ő 0;t D C.Œt; T�IRd/ equipped with the completion .F0;t;P0;t/ of .B. Ő 0;t/;W t

d/ and with the
complete (and automatically right-continuous) augmentation F

0;t of the canonical filtration.
We then construct . Ő t;F t;Pt/ as the completion of . Ő 0;t � N̋ 1;t;F0;t ˝F1;t;P0;t ˝P

1;t/. As
usual, we equip it with the complete and right-continuous augmentation F

t D .F t
s/t�s�T

of the product filtration. On this simpler setting, we let m� D �.�;w0/, with � as in
Proposition 2.29 but on Œt; T� instead of Œ0; T�. Notice that we removed the parameter � from
the various notations used for the � -fields and the probability measures. Moreover, whenever
there is no possible confusion, we shall also forget the superscript � in m and we shall just
write m for m�. Given the definition of m, we may define � as above and then solve (4.53)
on . Ő t;F t;Ft;Pt/. Importantly, there is no need to check any compatibility condition since
the environment m is, up to null sets, adapted to the noise w0. Below, we shall use the
same notation .xx; yx; zx; z0;x;mx/ for the solution to (4.53). This is licit since the solution
constructed on . Ő t;F t;Ft;Pt/ may be canonically embedded into . N̋ t;F t;�;Ft;�;Pt;�/.
Observe that mx is null since m is adapted to the noise w0. We now consider a square
integrable F t

t -measurable random variable 
 with values in R
d and a square-integrable F

t-
progressively measurable control process ˇ D .ˇs/t�s�T with values in A. Then, we consider
the solution x
;ˇ D .x
;ˇs /t�s�T of the SDE:
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dx
;ˇs D b
�
s; x
;ˇs ; ˇs

�
ds C �

�
s; x
;ˇs

�
dws C �0

�
s; x
;ˇs

�
dw0s ; x
;ˇt D 
: (4.54)

Recall that, under the standing assumption Lasry-Lions Monotonicity, the coefficient b is
independent of the measure argument and the coefficients � and �0 are independent of both
the control parameter and the measure argument. With x
;ˇ as above and with some initial
� 2 P2.Rd/, we associate the cost functional (for simplicity, we do not specify the time t in
the left-hand side right below):

J
;�.ˇ/ D E
t

� Z T

t
f .s; x
;ˇs ; �s; ˇs/ds C g.x
;ˇT ; �T/

	

: (4.55)

Below, we shall focus on the special, though important, case 
 D  .�; �/, with  

as in (2.23), the set-up . Ő t;F t;Ft;Pt/ being equipped with .�;w0;w/. We then just
denote x
;ˇ by xˇ . For the same value of 
, we denote by Ǫ D . Ǫs/t�s�T the process
. Ǫ .s; xs; �

�1�.s; xs/zs//t�s�T , where instead of x, we put 
 as initial condition in the five-tuple
.x
 ; y
 ; z
 ; z0;
 ;m
 � 0/ solving (4.53), the equation being defined on . Ő t;F t;Ft;Pt/, and
where we wrote x for x
 . In particular, with our notation, we have x D x Ǫ . From assumption
MFG with a Common Noise HJB, L̨ .s; xs; �s; ys; zs/ is here equal to Ǫ .s; xs; �.s; xs/

�1�zs/.
Then, using the bound (1.41), we deduce that, whenever ˇ is bounded,

J
;�.ˇ/ � J
;�. Ǫ / � �Et
Z T

t
j Ǫs � ˇsj2ds; (4.56)

for the same constant � as in assumption MFG with a Common Noise HJB. From
Proposition 1.57 together with (3.57), we know that Ǫ is bounded by a constant C, which is
independent of t, 
 and �. Therefore, from assumption MFG with a Common Noise HJB,
we must have, recalling that the coefficients .b; �; �0/ are independent of � and allowing the
value of the constant C to increase from line to line,

E
t
�

sup
t�s�T

jxsj2
� � C

�
1C E

t
�j
j2��: (4.57)

By our special choice of 
, we know that .xs/t�s�T describes the optimal path of a typical
player when the population is in equilibrium, that is, for any s 2 Œt; T�, for P0;t almost every
!0 2 Ő 0;t,

�s.!
0/ D L

�
xs.!

0; �/�:

Therefore, by (4.57), we deduce that:

sup
t�s�T

E
t
��

M2.�s/
�2� � C

�
1C �

M2.�/
�2�
: (4.58)

Fourth Step. The goal is now to consider another initial condition �0 2 P2.Rd/ for the
equilibrium. We let m0 D m�0

and we define �0 accordingly.



4.4 The Master Equation 299

We now define the initial private states associated with the two equilibria. We proceed
differently from above. We call O W Œ0; 1/ � P2.R2d/ ! R

2d the analogue of the mapping
 given by (2.23), see also Lemma (Vol I)-5.29, but in dimension 2d instead of d. Then, for
some coupling � between � and �0, we let .xt; x0

t/ D O .�; �/; each coordinate xt and x0
t

being of dimension d, xt being distributed according to � and x0
t being distributed according

to �0. On . Ő t;F t;Ft;Pt/ we can solve (4.53) with xt and x0
t as respective initial conditions.

We call .x; y; z; z0;m � 0/ and .x0; y0; z0; z00;m0 � 0/ the respective solutions, the
superscript prime in the second notation indicating that the environment is m0 instead of
m. Then, as in the second step, we let Ǫ D . Ǫs/t�s�T D . Ǫ .s; xs; �.s; xs/

�1�zs//t�s�T and
Ǫ 0 D . Ǫ 0

s/t�s�T D . Ǫ .s; x0
s; �.s; x

0
s/

�1�z0
s//t�s�T .

Now, given a square-integrable Ft-progressively measurable control process ˇ with values
in A, we denote by xˇ and xˇ;0 the solutions (on the extended space) of the SDE (4.54) with
xt and x0

t as respective initial conditions. In particular,

x D x Ǫ and x0 D x Ǫ
0
;0:

Similar to (4.55), we now let:

J.ˇ/ D E
t

� Z T

t
f .s; xˇ

s ; �s; ˇs/ds C g.xˇ
T ; �T/

	

;

J0.ˇ/ D E
t

� Z T

t
f .s; xˇ;0

s ; �0
s; ˇs/ds C g.xˇ;0

T ; �0
T/

	

:

(4.59)

Choosing ˇ D ˛0 in (4.56), which is licit since the latter is known to be bounded, see
Proposition 1.57, we get:

J. Ǫ 0/ � J. Ǫ / � �Et
Z T

t
j Ǫ 0

s � Ǫsj2ds;

that is:

J0. Ǫ 0/ � J. Ǫ / � �Et
Z T

t
j Ǫ 0

s � Ǫsj2ds C J0. Ǫ 0/ � J. Ǫ 0/: (4.60)

Now, recalling the decomposition f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/, we write:

J0. Ǫ 0/ � J. Ǫ 0/

D E
t

� Z T

t

�
f0
�
s; x0

s; �
0
s

� � f0
�
s; x0

s; �s
��

ds C g
�
x0

T ; �
0
T

� � g
�
x0

T ; �T
�
	

C E
t

� Z T

t

�
f
�
s; x0

s; �s; Ǫ 0
s

� � f
�
s; x Ǫ

0

s ; �s; Ǫ 0
s

��
ds C g

�
x0

T ; �T
� � g

�
x Ǫ

0

T ; �T
�
	

:

(4.61)

By definition of an equilibrium, we also have, for any s 2 Œt; T� and for P0;t-almost every
!0 2 Ő 0;t:

�s.!
0/ D L

�
xs.!

0; �/�; �0
s.!

0/ D L
�
x0

s.!
0; �/�: (4.62)
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Therefore, the first line in the right-hand side of (4.61) reads:

E
t

� Z T

t

�
f0
�
s; x0

s; �
0
s

� � f0
�
s; x0

s; �s
��

ds C g
�
x0

T ; �
0
T

� � g
�
x0

T ; �T
�
	

(4.63)

D E
0;t

� Z T

t

Z

Rd

�
f0
�
s; x; �0

s

� � f0
�
s; x; �s

��
d�0

s.x/C
Z

Rd

�
g.x; �0

T/�g.x; �T/
�
d�0

T.x/

	

:

Now, using the Lipschitz property of the coefficients f and g in the space argument, see
assumption MFG with a Common Noise HJB, the second term in the right-hand side
of (4.61) satisfies the bound:

ˇ
ˇ
ˇ
ˇE

t

� Z T

t

�
f
�
s; x0

s; �s; Ǫ 0
s

� � f
�
s; x Ǫ

0

s ; �s; Ǫ 0
s

��
ds C g

�
x0

T ; �T
� � g

�
x Ǫ

0

T ; �T
�
	ˇ
ˇ
ˇ
ˇ

� C sup
t�s�T

E
t
�jx0

s � x Ǫ
0

s j2�1=2:

Recalling that x0 D x Ǫ
0
;0, we easily deduce from the Lipschitz property of the coefficients b,

� and �0 in the space direction that:

ˇ
ˇ
ˇ
ˇE

t

� Z T

t

�
f
�
s; x0

s; �s; Ǫ 0
s

� � f
�
s; x Ǫ

0

s ; �s; Ǫ 0
s

��
ds C g

�
x0

T ; �T
� � g

�
x Ǫ

0

T ; �T
�
	ˇ
ˇ
ˇ
ˇ

� CE
tŒjx0

t � xtj2�1=2: (4.64)

Therefore, from (4.60), (4.61), (4.63), and (4.64), we finally deduce that:

�Et
Z T

t
j Ǫ 0

s � Ǫsj2ds C E
t

� Z T

t

Z

Rd

�
f0
�
s; x; �0

s

� � f0
�
s; x; �s

��
d�0

s.x/

C
Z

Rd

�
g.x; �0

T/ � g.x; �T/
�
d�0

T.x/

	

� CE
tŒjx0

t � xtj2�1=2 C J0. Ǫ 0/ � J. Ǫ /:

Exchanging the roles of .xt; �/ and .x0
t ; �

0/, summing the two resulting inequalities, and
using the Lasry-Lions monotonicity condition from Subsection 3.5.1, we get:

�Et
Z T

t
j Ǫ 0

s � Ǫsj2ds � CE
t
�jx0

t � xtj2
�1=2

: (4.65)

In particular, we must also have:

E
t
h

sup
t�s�T

ˇ
ˇxs � x0

s

ˇ
ˇ2
i

� C
�
E

t
�jxt � x0

t j2
�1=2 C E

t
�jxt � x0

t j2
��
:

Therefore, by (4.62),

E
0;t
h

sup
t�s�T

�
W2.�s; �

0
s/
�2
i

� C
�
E

t
�jxt � x0

t j2
�1=2 C E

t
�jxt � x0

t j2
��
: (4.66)

Fifth Step. We consider the FBSDE (4.53) with initial condition x at time t, and with m
or m0 as environments. By Theorem 1.57, both FBSDEs have a unique solution with a
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bounded martingale integrand. We call .xx; yx; zx; z0;x;mx/ and .xx;0; yx;0; zx;0; z0;x;0;mx;0/ the
respective solutions. Importantly, we regard both solutions as solutions on . Ő t;F t;Ft;Pt/

equipped with .m;m0/ as single super-environment. Since the compatibility constraint is
trivially satisfied, we deduce from Theorem 1.57 the following stability estimate:

E
t

�

sup
t�s�T

jxx
s � xx;0

s j2 C
Z T

t
jzx

s � zx;0
s j2ds

	

� C
�
E

t
�jxt � x0

t j2
�1=2 C E

t
�jxt � x0

t j2
��
:

(4.67)

Recall that:

U.t; x; �/ D E
t

� Z T

t
f
�
s; xx

s ; �s; Ǫ .s; xx
s ; �.s; x

x
s/

�1�zx
s/
�
ds C g.xx

T ; �T/

	

;

U.t; x; �0/ D E
t

� Z T

t
f
�
s; xx;0

s ; �
0
s; Ǫ .s; xx;0

s ; �.s; x
x;0
s /

�1�zx;0
s /
�
ds C g.xx;0

T ; �
0
T/

	

;

and that because of Proposition 1.57, the processes zx and zx;0 are bounded by a constant
C, independent of x, �, and �0. Therefore, from (3.57), the optimal control processes
. Ǫ .s; xx

s ; �.s; x
x
s/

�1�zx
s//t�s�T and . Ǫ .s; xx;0

s ; �.s; x
x;0
s /

�1�zx;0
s //t�s�T are bounded indepen-

dently of x, �0 and t. Moreover, the standing assumption implies that g is Lipschitz
continuous in the space and measure arguments and f is locally Lipschitz continuous in the
space, measure, and control arguments, the Lipschitz constant being at most of linear growth
in the control argument, uniformly in time. From this, (4.66) and (4.67) we deduce that:

jU.t; x; �/ � U.t; x; �0/j � C
�
E

t
�jxt � x0

t j2
�1=2 C E

t
�jxt � x0

t j2
��1=2

:

If we denote by � the joint distribution of .xt; x0
t/ as before, � is any coupling between � and

�0, we get:

jU.t; x; �/ � U.t; x; �0/j � C

�
Z

R2d
j	 � 	0j2d�.	; 	0/

�1=2

C
Z

R2d
j	 � 	0j2d�.	; 	0/

	1=2

:

Since the constant C is independent of � , we can take the infimum over � and conclude that:

jU.t; x; �/ � U.t; x; �0/j � C
��

W2.�; �
0/
�1=2 C W2.�; �

0/
�
: (4.68)

Now, the time regularity of U easily follows. Indeed, by Theorem 4.5,

U.t; x; �/ � U.t C h; x; �/

D E
t

�

U.t C h; xx
tCh; �tCh/�U.t C h; x; �/C

Z tCh

t
f
�
s; xx

s ; �s; Ǫ .s; xx
s ; �.s; x

x
s/

�1�zx
s/
�
ds

	

:
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Since the control process . Ǫ .s; xx
s ; �.s; x

x
s/

�1�zx
s//t�s�T is bounded independently of x, �,

and t, we deduce from the Lipschitz property of U in the space argument and from the 1=2-
Hölder property (4.68) in the measure argument, that:

ˇ
ˇU.t; x; �/ � U.t C h; x; �/

ˇ
ˇ

� C
�

h C E
t
�jxx

tCh � xj�C E
t
��

W2.�tCh; �/
�1=2 C W2.�tCh; �/

��
;

from which we easily get:

ˇ
ˇU.t; x; �/ � U.t C h; x; �/

ˇ
ˇ � Ch1=4:

Last Step. We now discuss the regularity of @xU . To do so, since assumptions Necessary
SMP Master and Decoupling Master hold in the present situation, we use the representation
of @xU provided by Theorem 4.10. So with the same notations as above, we consider on the
space . Ő t;F t;Ft;Pt/, the two backward SDEs with Lipschitz coefficients:

d�x
s D �@xH

�
s; xx

s ; �s; �
x
s ; 	

x
s ; 	

0;x
s ; Ǫ x

s

�
ds C 	x

s dws C 	0;xs dw0s ;

d�x0;0
s D �@xH

�
s; x0;x0

s ; �0
s; �

x0;0
s ; 	x0;0

s ; 	0;x
0;0

s ; Ǫ x0;0
s

�
ds C 	x0;0

s dws C 	0;x
0;0

s dw0s ;
(4.69)

for t � s � T , with �x
T D @xg.xx

T ; �T/, �
x0;0
T D @xg.xx0;0

T ; �0
T/. Observe as above that there is

no additional orthogonal martingale in the dynamics since the filtration is Brownian. Above,
we used the notations:

Ǫ x
s D Ǫ�s; xx

s ; �.s; x
x
s/

�1�zx
s

�
;

Ǫ 0;x0

s D Ǫ�s; xx0;0
s ; �.s; xx0;0

s /�1�zx0;0
s

�
; t � s � T:

Using the fact that all the processes appearing in the coefficients are adapted with respect
to the completion of the filtration generated by the noises w0 and w, the solutions of
both equations may be easily regarded as the solutions of similar equations but set onto
. N̋ t;F t;�;Ft;�;Pt;�/ and . N̋ t;F t;�0

;Ft;�0

;Pt;�0

/. In this regard, both solutions fit the setting
used in the statement of Theorem 4.10. We deduce that:

@xU.t; x; �/ D E
t
�
�x

t

�
; @xU.t; x0; �0/ D E

t
�
�x0;0

t

�
:

Actually, Corollary 4.11 applies as well, from which we derive the identification �x
s D

@xU.s; xx
s ; �s/ and �x0;0

s D @xU.s; xx0;0
s ; �0

s/. We get that:

.�x
s /t�s�T and .�x0;0

s /t�s�T

are bounded by a constant C, which is independent of t, x, x0, � and �0. We stress the fact
that both bounds hold with P

t-probability 1 for all s 2 Œt; T�. This follows from the fact that
both .�x

s /t�s�T and .�x0;0
s /t�s�T are continuous since we work in a Brownian filtration. Also,

up to a modification of C, we have:

E
t

�
Z T

t

�j	x
s j2 C j	0;xs j2�ds

�2	

� C: (4.70)
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Moreover, because of assumption (A1) of MFG with a Common Noise HJB, the partial
derivative @xH.t; x; �; y; z; z0; ˛/ is affine in y, z, and z0, the matrix coefficient multiplying
y being equal to @xb1.t; x/, and the coefficient multiplying z and z0 being equal to @x�.t; x/
and @x�

0.t; x/ respectively. All of them are uniformly bounded in .t; x/ by (A2) of the same
assumption. Therefore, by standard BSDE stability property, we get that:

E
t
�

sup
t�s�T

j�x
s � �x0;0

s j2�

� C

�

E
t
�j@xg.xx

T ; �T/ � @xg.xx0;0
T ; �0

T/j2
�

C E
t
Z T

t

�
j@xf .s; xx

s ; �s; ˛
x
s / � @xf .s; xx0;0

s ; �0
s; ˛

x0;0
s /j2

C j@xb.s; xx
s/ � @xb.s; xx0;0

s /j2

C j@x.�; �
0/.s; xx

s/ � @x.�; �
0/.s; xx0;0

s /j2�j	x
s j2 C j	0;xs j2�

�
ds

	

:

(4.71)

Importantly, we observe from (4.70) and from the fact that @x� and @x�
0 are bounded that

the last term in the right-hand side can be bounded by:

E
t

� Z T

t

�
j@x.�; �

0/.s; xx
s/ � @x.�; �

0/.s; xx0;0
s /j2�j	x

s j2 C j	0;xs j2�
�

ds

	

� CE
t
h

sup
t�s�T

ˇ
ˇ@x.�; �

0/.s; xx
s/ � @x.�; �

0/.s; xx0;0
s /

ˇ
ˇ4
i1=2

:

(4.72)

We now choose the coupling � between � and �0 in the introduction of the fourth step
as an optimal coupling for the 2-Wasserstein distance, so that EtŒjxt � x0

t j2� D W2.�; �
0/2.

By combining Theorem 1.53, which holds true since both environments here derive from the
common source of noise w0, (4.65), (4.66) and (4.67), we get that:

E
t

�

sup
t�s�T

jxx
s � xx0;0

s j2 C
Z T

t
j Ǫ x

s � Ǫ x0;0
s j2ds

	

� C
�
jx � x0j2 C W2.�; �

0/C �
W2.�; �

0/
�1=2

�
:

(4.73)

Recall moreover (4.66):

E
0;t
h

sup
t�s�T

�
W2.�s; �

0
s/
�2
i

� C
�

W2.�; �
0/C �

W2.�; �
0/
�1=2

�
: (4.74)

From (4.71), (4.72), and (4.74) and by boundedness and continuity of the coefficients
in (4.71), we easily deduce that, for any t 2 Œ0; T�,

lim
.x0;�0/!.x;�/

@xU.t; x0; �0/ D @xU.t; x; �/:
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We shall prove that the convergence is uniform in t when .x; �/ and .x0; �0/ are restricted to a
compact subset K � R

d �P2.Rd/, with K D Kx �K�, Kx and K� being compact subsets of
R

d and P2.Rd/ respectively. The strategy relies on a tightness argument. Since b is bounded
in .t; x/ and is at most of linear growth in ˛ and since zt;x;� is bounded, independently of t, x,
and �, it is indeed clear that the family of distributions .Pt ı .xt;x;�

s /�1/t2Œ0;T�;s2Œt;T�;.x;�/2K is
tight on R

d. Here, the superscript .t; x; �/ in .xt;x;�; yt;x;�; zt;x;�; z0;t;x;�;mt;x;�/ indicates that
the FBSDE (4.53) is initialized with x at time t and that, in the coefficients of the FBSDE, the
environment m is initialized with � at time t, namely m D mt;�, where, in the latter notation,
we also indicate the dependence upon t. Moreover, by a similar argument, for any t 2 Œ0; T�,
any � 2 K� and any D 2 F t, it holds, for all a > 0,

E
t
�

sup
t�s�T

jxt;�
s j21D

� � C
�
E

t
�jxt;�

t j21D
�C �

P
t.D/

�1=2
�

� C
�

a2Pt.D/C
Z

fjxj�ag

jxj2d�.x/C �
P

t.D/
�1=2

�
;

where the second term in the right-hand side of the first line follows from Cauchy-Schwarz’
inequality. Here, .xt;�; yt;�; zt;�;mt;�/ denotes the solution to (4.53) with xt D  .�; �/ as
initial condition at time t and with m D mt;� as environment, see (2.23).

This proves that:

lim
ı!0

sup
0�t�T

sup
�2K�

sup
D2F tWPt.D/�ı

E
t
�

sup
t�s�T

jxt;�
s j21D

� D 0:

Recalling that �t;�
s D L1.Xt;�

s / and following Lemma 3.16, we deduce that the family of
distributions:

�
P

t ı .�t;�
s /�1

�

t2Œ0;T�;s2Œt;T�;�2K�

is tight on P2.Rd/. Therefore, for any " > 0, there exists a compact subset K" � R
d�P2.Rd/,

with K" D K"
x �K"

�, K"
x and K"

� being compact subsets of Rd and P2.Rd/ respectively, such
that

8.x; �/ 2 K; sup0�t�T supt�s�T P
t
�
.xt;x;�

s ; �
t;�
s / 62 K"

� � ";

sup0�t�T P
t
�9s 2 Œt; T� W xt;x;�

s 62 K"
x

� � ":
(4.75)

Returning to (4.71), (4.72), and (4.73) and introducing the modulii of continuity of the
bounded and continuous functions @xg, @xf , @xb1, @x� and @x�

0 on the compact sets K",
Œ0; T� � K" � f˛ 2 A W j˛j � Cg, Œ0; T� � K" and Œ0; T� � K"

x respectively, with C a
common bound to all the processes Ǫ t;x;� D . Ǫ .s; xt;x;�

s ; �.s; xt;x;�
s /�1�zt;x;�

s //t�s�T , we can
find a bounded (measurable) function w" W RC ! RC, with:

lim
ı&0

w".ı/ D 0;
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such that, for any ı > 0 and any .x; �/; .x0; �0/ 2 K,

E
t
�

sup
t�s�T

j� t;x;�
s � � t;x0;�0

s j2�

� C

�

"C w".ı/C P
t
�

sup
t�s�T

jxt;x;�
s � xt;x0;�0

s j C W2.�
t;�
T ; �

t;�0

T / > ı
�

C
Z T

t
P

t
�jxt;x;�

s � xt;x0;�0

s j C W2.�
t;�
s ; �t;�0

s /C j˛t;x;�
s � ˛t;x0;�0

s j > ı�ds

	1=2

;

where we used the same notation convention as above for �t;x;� and Ǫ t;x;� and where
we used the fact that, in (4.71), the tuple .xx0;0; �0;�x0;0; �x0;0; �0;x

0;0; Ǫ x0;0/ matches
.xt;x0;�0

; �t;�0

;�t;x0;�0

; �t;x0;�0

�t;x0;�0 Ǫ t;x0;�0

/. From (4.73) and (4.74), this shows that:

lim
.x0;�0/!.x;�/

sup
0�s�T

sup
.x;�/;.x0;�0/2K

j@xU.s; x; �/ � @xU.s; x0; �0/j D 0: (4.76)

Following the analysis of the time regularity of U , we finally get:

@xU.t; x; �/ � @xU.t C h; x; �/

D E
t

�

@xU
�
t C h; xt;x;�

tCh ; �
t;�
tCh

� � @xU.t C h; x; �/

C
Z tCh

t
@xH

�
s; xt;x;�

s ; �t;�
s ; � t;x;�

s ; 	 t;x;�
s ; 	0;t;x;�s ; Ǫ�s; xt;x;�

s ; �.s; xt;x;�
s /�1�zt;x;�

s

��
ds

	

:

In order to handle the first term in the right-hand side, we use (4.76), together with the
tightness property (4.75) and the fact that @xU is bounded. Recalling that the integral on the
last line is bounded by C.h C h1=2EŒ

R T
t .j	 t;x;�

s j2 C j	0;t;x;�s j2/ds�1=2/, we thus deduce that, for
any "; ı > 0 and any .x; �/ 2 K,

ˇ
ˇ@xU.t; x; �/ � @xU.t C h; x; �/

ˇ
ˇ

� C
�
"C w".ı/C P

t
�jxt;x;�

tCh � xj C W2.�
t;�
tCh; �/ > ı

�C h1=2
�

� C
�
"C w".ı/C ı�1h1=2

�
;

where w".ı/ ! 0 as ı ! 0. Time continuity of @xU easily follows. ut

Remark 4.22 Under the assumptions of Theorem 4.21, we know, as shown in the
third step of the proof, that, for any V 2 P2.P2.Rd//, the equilibrium M initialized
with the distribution V at (say) time 0 and constructed on some probability space
.˝;F ;F;P/ of the product form, equipped with .X0;W0; �0;W/, with �0 	 V
and L1.X0/ D �0, is adapted with respect to the filtration generated by the initial
distribution �0 of the population and by the common noise W0. In particular,
Blumenthal’s zero-one law says that, in the FBSDE (4.5) (or equivalently (4.7), with
t D 0 and 
 D X0), with �s D Mı .ex

s/
�1, the completion of the filtration generated
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by .X0;W0;M;W/ is right-continuous. Therefore, in the conditional expectation

appearing in the statement of Proposition 4.3, we may replace Fnat;.X0;W0;M;W/
t by

F .X0;W0;�0;W/
t . Then, the conditional expectation identifies with Yt when ˇ D Ǫ ,

which shows that Yt D U.t;Xt; �t/. Hence, at any time t 2 Œ0;T�, U.t; �; �t/ reads
as the decoupling field, at time t, of the FBSDE (4.5).

Using Assumption MFG with a Common Noise SMP Relaxed and
Lasry-Lions Monotonicity Condition
In the same way as above, we claim:

Theorem 4.23 Let assumption MFG with a Common Noise SMP Relaxed in
Subsection 3.4.3 together with the Lasry-Lions monotonicity conditions in Subsec-
tion 3.5.1 be in force, namely b, � , and �0 are independent of �, f has the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/; t 2 Œ0;T�; x 2 R
d; ˛ 2 A; � 2 P2.Rd/;

f0.t; �; �/ and g satisfying the monotonicity property (3.77). Assume moreover that
the coefficients b, f , g, � , and �0 are jointly continuous in all the parameters
and that their derivatives in x and ˛, which exist under assumption MFG with a
Common Noise SMP Relaxed, are jointly continuous in all its variables. Then, the
master field U is well defined and is a continuous viscosity solution of the master
equation (4.41).

Proof. The proof goes along the same lines as in Theorem 4.21. So we just point out the
main differences. Throughout the whole discussion, the time index t is kept fixed. Moreover,
we shall assume that the probability measures � and �0 and the random variables xt and x0

t
that appear in the proof of Theorem 4.21 have a bounded second-order moment, less than
some arbitrarily fixed constant c. Similarly, we can assume that the initial positions x and x0

that we shall consider have norms not greater than c. With such a c at hand, all the constants
C that appear below may depend on c.

For starters, we notice that the coefficients driving the forward-backward system (4.53)
are no longer given by (3.58) but by (3.61). In particular, U.t; x; �/ does not coincide anymore
with yx

t in (4.53). From Theorem 4.10, yx
t , which is also equal to �x

t , matches @xU.t; x; �/.
Notice that we can argue that it is possible to remove E

t;� in Theorem 4.10. Indeed, for the
same reasons as in the proof of Theorem 4.21, the filtration used for solving the FBSDE is
the completion of the filtration generated by the two noises w0 and w, and as a consequence,
the initial value of the backward component is almost surely deterministic. Observe also that
assumptions Necessary SMP Master and Decoupling Master are satisfied, which makes
licit the application of Theorem 4.10 and Corollary 4.11. Importantly, (A1) is ensured by
Theorem 1.60.

For the time being, we focus on the proof of (4.66). By (1.63), the lower bound (4.56)
remains true with Ǫ 
 D . Ǫ .s; xs; ys//t�s�T , where .x; y/ D .x
; Ǫ ; y
; Ǫ / with 
 D  .�; �0/.
Similarly, following the third step in the proof of Lemma 3.33, it is pretty clear that (4.57)
and (4.58) remain valid as well. However, it is not true anymore that Ǫ is bounded.
Indeed, the proof of (3.74) merely implies that, for any s 2 Œt; T�, j Ǫsj � C.1 C jxsj C
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supt�r�s E
1;tŒjxrj2�1=2/. Still, together with the local Lipschitz property of the coefficients f

and g –see assumption MFG with a Common Noise SMP Relaxed–, this is sufficient to
repeat the proof of (4.64) and (4.66).

Now, we can investigate jU.t; x; �/ � U.t; x0; �/j, for jxj; jx0j � c and M2.�/ � c.
Using the same notation as in the fifth step of the proof of Theorem 4.21 and applying
Theorem 1.53, we obtain:

E
t
h

sup
t�s�T

�jxx
s � xx0

s j2 C jyx
s � yx0

s j2�
i

� Cjx � x0j2:

The key point is to use this bound with the definitions of U.t; x; �/ and U.t; x0; �/ from
Definition 4.1, which take the form:

U.t; x; �/ D E
t

� Z T

t
f
�
s; xx

s ; �s; Ǫ .s; xx
s ; y

x
s/
�
ds C g.xx

T ; �T/

	

;

U.t; x0; �/ D E
t

� Z T

t
f
�
s; xx0

s ; �s; Ǫ .s; xx0

s ; y
x0

s /
�
ds C g.xx0

T ; �T/

	

:

Following (3.63) in the statement of Lemma 3.33 (see (3.72) for the proof) and using the fact
that Ǫ is at most of linear growth, we claim that:

E
t
h

sup
t�s�T

�j Ǫ .s; xx
s ; y

x
s/j2 C j Ǫ .s; xx0

s ; y
x0

s /j2
�
ds

	

� C:

Therefore, using the local Lipschitz continuity properties of f and g together with the
Lipschitz continuity of Ǫ and the bound (4.58), we easily deduce that U is Lipschitz
continuous in the direction x on any bounded subset of Œ0; T� � R

d � P2.Rd/.
In order to investigate continuity in the directions t and �, we proceed as in the fifth step

of the proof of Theorem 4.21, with the proviso that the constant C that appears in all the
estimates may depend on c.

It then remains to investigate the regularity of @xU . Again, we may proceed as in the last
step of the proof of Theorem 4.21, noticing that the setting here is easier to handle since @xb
is constant in x. We then get an analogue of (4.71), but without the terms involving @xb, @x�

and @x�
0 since the latter are constant functions. Then, using the fact that, under assumption

MFG with a Common Noise SMP Relaxed (see (A4) therein), @xg and @xf are Lipschitz
continuous in .x; �/ and .x; �; ˛/, we complete the proof. ut

Remark 4.24 As pointed out in the proof of Theorem 4.23, we know from Theo-
rem 4.10 that yx

t in (4.53) coincides with @xU.t; x; �/.

4.5 Revisiting the Examples of Chapter 1 of the First Volume

4.5.1 Revisiting the Coupled OUs Game

As starters, we revisit the benchmark example of the Ornstein-Uhlenbeck state
processes coupled through their empirical mean introduced in Chapter (Vol I)-1 and



308 4 The Master Field and the Master Equation

solved in several forms in Section (Vol I)-2.5. Taking advantage of the fact that we
constructed exact Nash equilibria in Chapter (Vol I)-2, we can approach the master
equation and its solution by passing to the limit in the equations satisfied by the
value functions of the finite games, such a strategy being somewhat reminiscent of
Lemma (Vol I)-1.2.

Throughout this subsection, we use the same notations as in Section (Vol I)-2.5.
We invite the reader to check that section for the definitions and meanings of the
objects and quantities we use below.

The Limit N ! 1 of the N-Player Game
Our starting point here is the set of value functions constructed by the PDE method
based on the solution of a system of coupled HJB equations. We emphasize the
dependence upon the number N of players and we now write:

• �N
t and �N

t for the solutions �t and �t, at time t, of the system (Vol I)-2.82,
• Vi;N.t; x/ D .�N

t =2/.Nx � xi/2 C �N
t for the value function of player i in the N

player game, when evaluated at the point .t; x/.

Clearly,

lim
N!1 �N

t D �1
t ; and lim

N!1�N
t D �1

t ;

where the functions �1
t and �1

t solve the system:

8
<

:

P�1
t D 2.a C q/�1

t C .�1
t /

2 � .� � q2/;

P�1
t D �1

2
�2.1 � �2/�1

t ;
(4.77)

which is solved in the same way as when N is finite. Thanks to the remark on Riccati
equations in Subsection (Vol I)-2.5.1, we find:

�1
t D �.� � q2/

�
e.ı

C�ı�/.T�t/ � 1� � c
�
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � c

�
e.ıC�ı�/.T�t/ � 1� ; (4.78)

and

�1
t D 1

2
�2.1 � �2/

Z T

t
�1

s ds; (4.79)

where:

ı˙ D �.a C q/˙ p
R; with R D .a C q/2 C � � q2 > 0: (4.80)
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Next we consider the equilibrium behavior of the players’ value functions
.Vi;N/iD1;��� ;N . For the purpose of the present discussion we notice that the value
functions .Vi;N/iD1;��� ;N of all the players in the N player game can be written as:

Vi;N
�
t; .x1; � � � ; xN/

� D VN




t; xi;
1

N

NX

jD1
ıxj

�

;

for t 2 Œ0;T� and .x1; � � � ; xN/ 2 R
N , where the single function VN is defined as:

VN.t; x; �/ D �N
t

2




x �
Z

R

xd�.x/

�2

C �N
t ; .t; x; �/ 2 Œ0;T� � R � P1.R/:

Since the dependence upon the measure is only through the mean of the measure,
we shall often use the function:

vN.t; x; N�/ D �N
t

2
.x � N�/2 C �N

t ; .t; x; N�/ 2 Œ0;T� � R � R:

Notice that, at least for .t; x; N�/ fixed, we have:

lim
N!1 vN.t; x; N�/ D v1.t; x; N�/

where:

v1.t; x; N�/ D �1
t

2
.x � N�/2 C �1

t ; .t; x; N�/ 2 Œ0;T� � R � R:

Similarly, all the optimal strategies in (Vol I)-(2.86) may be expressed through a
single feedback function Ǫ N.t; x; N�/ D Œq C .1 � 1=N/�N

t �. N� � x/ since Ǫ i
t D

Ǫ N.t;Xi
t ; 1=N

PN
iD1 Xi

t/. Clearly,

lim
N!1 Ǫ N.t; x; �/ D Ǫ1.t; x; N�/;

where Ǫ1.t; x; N�/ D Œq C �1
t �. N� � x/.

Search for an Asymptotic Equilibrium
We now consider a filtered probability space .˝;F ;P/ obtained as above as the
completion of .˝0 � ˝1;F0 ˝ F1;F0 ˝ F

1;P0 ˝ P
1/, where .˝0;F0;P0/ and

.˝1;F1;P1/ are two complete probability spaces equipped respectively with two
complete and right-continuous filtrations F

0 and F
1 and with two 1-dimensional

Brownian motions W0 and W. Also, .˝1;F1;P1/ is equipped with an F1
0 -

measurable random variable X0 satisfying E
1ŒjX0j2� < 1.
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Now that we have a candidate for the asymptotic optimal feedback function, we
consider the solution of the McKean-Vlasov equation:

d OXt D
h
a
� N�t � OXt/C ˛1.t; OXt; N�t/

i
dt C �

�
�dW0

t C
p
1 � �2dWt

�

D �
a C q C �1

t

�� N�t � OXt/dt C �
�
�dW0

t C
p
1 � �2dWt

�
;

(4.81)

subject to the initial condition OX0 D X0, for an F1
0 -measurable square-integrable

random variable X0, and to the condition N�t D E
1Œ OXt� (so that N�0 D E

1ŒX0�).
Implementing the form of Ǫ1.t; x; N�/, we get:

d N�t D ��dW0
t ; t 2 Œ0;T�; (4.82)

which suggests the investigation of conditional equilibria with . N�t/0�t�T as flow
of conditional means. In order to proceed, we observe that OX can be written as a
progressively measurable function of X0, W0, W. In particular, M D L1. OX;W/
is measurable with respect to �fW0g and the 4-tuple .X0;W0;M;W/ is obviously
compatible with the filtration F. This shows that the set-up induced by our candidate
for solving the mean field game is admissible.

On such a set-up, we consider an optimization problem in the random envi-
ronment . N�t/0�t�T , along the lines of Section 1.4. Namely, we minimize the cost
functional:

J N�.˛/ D E

�
c

2

� N�T � X˛
T

�2 C
Z T

0

� �

2

� N�t � X˛
t

�2 � q˛t
� N�t � X˛

t

�C 1

2

�
˛t
�2�

dt

	

;

over square-integrable progressively measurable scalar-valued stochastic processes
˛ D .˛t/0�t�T , the dynamics of the process .X˛

t /0�t�T being subject to X˛
0 D X0

and to:

dX˛
t D a. N�t � X˛

t /dt C ˛tdt C �
�
�dW0

t C
p
1 � �2dWt

�
; t 2 Œ0;T�:

The reduced Hamiltonian reads:

H.r/.x; N�; y; ˛/ D �
a
� N� � x

�C ˛
�
y C ˛2

2
� q˛

� N� � x
�C �

2

� N� � x
�2
;

for .x; N�; y/ 2 R
3, the minimizer being given by Ǫ .t; x; N�; y/ D q. N� � x/ � y. We

notice that:

Ǫ1.t; x; N�/ D Ǫ�t; x; N�; �1
t .x � N�/�:

This suggests the use of the Pontryagin stochastic maximum principle with .Yt D
�1

t .
OXt � N�t//0�t�T in order to check that . Ǫ1.t; OXt; N�t//0�t�T is the optimal control

process and . OXt/0�t�T is the optimal state associated with the minimization of
the functional J N� in the environment . N�t/0�t�T . Thanks to the condition � � q2,
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H is convex in .x; ˛/, so that Theorem 1.60 indeed applies. From the Riccati
equation (4.77) satisfied by .�1

t /0�t�T , we get:

d
�
�1

t .
OXt � N�t/

� D � P�1
t � .a C q/�1

t � �
�1

t

�2�
. OXt � N�t/dt C ��1

t

p
1 � �2dWt

D �
.a C q/�1

t � .� � q2/
�
. OXt � N�t/dt C ��1

t

p
1 � �2dWt:

Now,

@xH.r/.x; N�; y; ˛/ D q˛ � ay � �. N� � x/;

so that:

@xH.r/
�
x; N�; �1

t .x � N�/; Ǫ1.t; x; N�/� D .q2 � �/. N� � x/ � .a C q/�1
t .x � N�/

D ��.a C q/�1
t � .� � q2/

�
.x � N�/:

Observe that it is perfectly licit to formulate the Pontryagin principle by means of the
sole reduced Hamiltonian since the volatility coefficients are constant. This proves
that:

d
�
�1

t .
OXt � N�t/

�D�@xH
� OXt; N�t; �

1
t .

OXt � N�t/; Ǫ1.t; OXt; N�t/
�
dtC��1

t

p
1 � �2dWt;

for t 2 Œ0;T�. This guarantees that, in the environment . N�t/0�t�T (or in the super-
environment M), the solution . OXt/0�t�T to (4.81) is the optimal path. By (4.82),
this proves that the flow of conditional marginal measures of . OXt/0�t�T forms an
equilibrium. The equilibrium is strong since it is adapted to the filtration generated
by W0.

Search for the Master Field
From the previous analysis, one clearly sees that, in the environment . N�t/0�t�T , the
random field Œ0;T��R 3 .t; x/ 7! v1.t; x; N�t/ is the (random) value function of the
optimization problem with random coefficients. Therefore, a natural candidate for
the master field is the mapping:

U1 W Œ0;T� � R � P2.R/ 3 .t; x; �/ 7! v1�t; x;
Z

R

xd�.x/
�

D �1
t

2
.x � N�/2 C �1

t ;

where we use the generic notation N� for the mean of �. Notice that N� is now a
deterministic number while it was a random number in the previous subsection.
Notice also that we defined U on Œ0;T��R�P2.R/ although the measure argument
could be taken in the larger space P1.R/. Our choice is motivated by the desire to
fit the framework of Definition 4.1.
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We now check that U1 solves the master equation. From (4.42), the latter reads:

@tU.t; x; �/C H��x; �; @xU.t; x; �/
�

C �2

2
@2xxU.t; x; �/C �2�2

2

Z

R2
@2�U.s; x; �/.v; v0/d�.v/d�.v0/

C �2

2

Z

R

@v@�U.t; x; �/.v/d�.v/C �2�2
Z

R

@x@�U.t; x; �/.v/d�.v/

C
Z

R

.a C q C �1
t /. N� � v/@�U.t; x; �/.v/d�.v/ D 0;

where the minimized Hamiltonian is given by:

H�.x; N�; y/ D .a C q/. N� � x/y � 1

2
y2 C 1

2
.� � q2/. N� � x/2:

In order to proceed, we compute all the terms appearing in the master equation one
by one. We first notice that:

@tU1.t; x; �/C H��x; �; @xU1.t; x; �/
�

D P�1
t

2
.x � N�/2C P�1

t �.a C q/.x � N�/2�1
t � 1

2

�
�1

t

�2
.x � N�/2C 1

2
.� � q2/.x � N�/2

D P�1
t ;

(4.83)

where we used the Riccati equation (4.77) to pass from the second to the third line.
Now, using the differential calculus developed in Chapter (Vol I)-5, we get:

@2xxU1.t; x; �/ D �1
t ; @�U1.t; x; �/.v/ D �1

t . N� � x/;

@x@�U1.t; x; �/.v/ D ��1
t ; @v@�U1.t; x; �/.v/ D 0;

@2�U1.t; x; �/.v; v0/ D �1
t ;

for .t; x; �; v; v0/ 2 Œ0;T� � R � P2.R/ � R � R. Therefore,

�2

2
@2xxU1.t; x; �/C �2�2

2

Z

R2
@2�U1.s; x; �/.v; v0/d�.v/d�.v0/

C �2

2

Z

R

@v@�U1.t; x; �/.v/d�.v/C �2�2
Z

R

@x@�U1.t; x; �/.v/d�.v/

D �2

2
.1 � �2/�1

t D � P�1
t ; (4.84)
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the last line following from the second equation in (4.77). Finally, thanks to the form
of @�U1,

Z

R

.a C q C �1
t /. N� � v/@�U1.t; x; �/.v/d�.v/ D 0: (4.85)

The sum of the terms in (4.83), (4.84), and (4.85) is zero, which indeed shows that
U1 solves the master equation.

4.5.2 Revisiting the First Macro-Economic Growth Model

We apply the strategy and the tools developed in this chapter to the first growth
model discussed in Subsection (Vol I)-1.4.1.

Throughout this subsection, we use the notations of Subsection (Vol I)-1.4.1. We
refer the reader to that subsection for the definitions and meanings of the objects
we use below. Actually, we shall just use the fact that a, b, c, and E below are
positive constants and that p > 1. Also, we recall that we are dealing with a
maximization instead of minimization problem; in this respect, the theoretical
results established before remain true provided that the Hamiltonian is defined
accordingly.

Form of the Master Equation
The reduced Hamiltonian of the system reads:

H.r/.x; �; y; ˛/ D ˛y C c
xa

Œ.d�=dx/.x/�b
� E

p

˛p

Œ�.Œx;1//�b
;

for x; ˛ � 0, y 2 R, and � 2 P2.R/, which makes sense when � has a density
which does not vanish at x. As in Chapter (Vol I)-1, we use the convention that the
first term is set to 0 when the density is not defined or is itself 0 and that the second
term is set to 0 when � does not charge the interval Œx;1/.

The value Ǫ .x; �; y/ of ˛ maximizing H.r/ is given, at least for y � 0, by:

Ǫ .x; �; y/ D



y

E

�
�.Œx;1//

�b
�1=.p�1/

(4.86)

so that:

H.r/
�
x; �; y; Ǫ .x; �; y/� D



y

E

�
�.Œx;1//

�b
�1=.p�1/

y C c
xa

Œ.d�=dx/.x/�b

� E

p

�
.y=E/Œ�.Œx;1//�b

�p=.p�1/

Œ�.Œx;1//�b

Dp�1
p

E�1=.p�1/yp=.p�1/��.Œx;1//
�b=.p�1/Cc

xa

Œ.d�=dx/.x/�b
:
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Therefore, from (4.42), we deduce that the master equation takes the form (at least
at points .t; x; �/ for which � has a density that does not vanish at x and for which
@xU.t; x; �/ � 0):

@tU.t; x; �/C p � 1
pE1=.p�1/

�
@xU.t; x; �/

�p=.p�1/�
�.Œx;1//

�b=.p�1/

C c
xa

Œ.d�=dx/.x/�b
C �2

2
x2@2xxU.t; x; �/

C
Z

R



@xU.t; v; �/

E

�
�.Œx;1//

�b
�1=.p�1/

@�U.t; x; �/.v/d�.v/

C�2

2

Z

R

v2@v@�U.t; x; �/.v/d�.v/C�2

2

Z

R2
vv0@2�U.s; x; �/.v; v0/d�.v/d�.v0/

C �2
Z

R

xv@x@�U.t; x; �/.v/d�.v/ D 0;

with the terminal condition U.T; �; �/ � 0.
We now specialize the equation when � is a Pareto distribution of parameter

q > 0, in which case we write �.q/ instead of �. Using the explicit formula
(Vol I)-(1.26) for the density of �.q/ and the fact that:

�.q/.Œx;1// D 1 ^ qk

xk
;

we get:

f
�
x; �.q/; ˛

� D c
xa

.kqk=xkC1/b
1fx�qg � E

p

˛p

1 ^ .qkb=xkb/

D c

kbqkb
xaCb.kC1/1fx�qg � E

pqkb
˛p
�
xkb _ qkb

�
;

and

Ǫ .x; �; y/ D
�

y

E

�qkb

xkb
^ 1

�	1=.p�1/
; (4.87)

so that:

H.r/
�
x; �.q/; y; Ǫ .x; �; y/�

D p � 1
p

E�1=.p�1/yp=.p�1/ �qkb=.p�1/

xkb=.p�1/ ^ 1
�

C c
xaC.kC1/b

kbqkb
1fx�qg:
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Therefore, the master equation becomes:

@tU
�
t; x; �.q/

�

C p � 1
pE1=.p�1/

�
@xU.t; x; �.q/

�p=.p�1/�qkb=.p�1/

xkb=.p�1/ ^ 1
�

C c
xaC.kC1/b

kbqkb
1fx�qg

C �2

2
x2@2xxU

�
t; x; �.q/

�

C
Z

R



@xU.t; v; �/

E

�qkb

vkb
^ 1

��1=.p�1/
@�U

�
t; x; �.q/

�
.v/d�.q/.v/

C �2

2

Z

R

v2@v@�U
�
t; x; �.q/

�
.v/d�.q/.v/

C �2
Z

R

xv@x@�U
�
t; x; �.q/

�
.v/d�.q/.v/

C �2

2

Z

R2
vv0@2�U

�
s; x; �.q/

�
.v; v0/d�.q/.v/d�.q/.v0/ D 0:

(4.88)

Master Equation Along Pareto Distributions
Assuming that the initial distribution of the values of the state is given by the
Pareto distribution �.1/, we restrict the search for equilibria to Pareto distributions.
This means that the description of the equilibrium flow of measures, denoted
by .�t/0�t�T throughout the analysis, reduces to the description of the flow of
corresponding Pareto parameters, denoted by .qt/0�t�T .

By (4.86), the optimal feedback function must read:

.t; x/ 7!
�
@xU.t; x; �t/

E

�qkb
t

xkb
^ 1

�	1=.p�1/

D
�
@xU.t; x; �.qt//

E

�qkb
t

xkb
^ 1

�	1=.p�1/
;

where �.qt/ denotes the Pareto distribution of parameter qt. In order to guarantee
that the equilibrium flow of measures is of Pareto type, it must satisfy the condition:

�tx D


@xU.t; x; �.qt//

E

qkb
t

xkb

�1=.p�1/
; x � qt: (4.89)

for some mapping Œ0;T� 3 t 7! �t 2 .0;C1/. There is no need to check the
condition for x < qt as the path driven by the Pareto distribution is always greater
than or equal to .qt/t�0.
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Since we focus on equilibria of Pareto type, we compute the master field U at
Pareto distributions only. Given a parameter q > 0, we make the formal change of
unknown:

V.t; x; q/ D U
�
t; x; �.q/

�
;

where, as above, �.q/ stands for the Pareto distribution of parameter q. We then
compute, at least formally, the derivatives of V in terms of those of U , so that we
can reformulate the master equation for U as a PDE for V . We clearly have (we shall
specify later to which domain the triple .t; x; q/ should belong):

@tV.t; x; q/ D @tU
�
t; x; �.q/

�
;

@xV.t; x; q/ D @xU
�
t; x; �.q/

�
;

@2xxV.t; x; q/ D @2xxU
�
t; x; �.q/

�
:

In order to compute the derivative of V with respect to q, we must make the
connection with the derivatives of U in the direction of �. The key point is then
to differentiate the mapping q 7! U.t; x; �.q//. Recalling that, for a random variable
X with Pareto distribution of parameter 1, qX 	 �.q/, the trick is to notice that:

V.t; x; q/ D U
�
t; x;L.qX/

�
;

so that:

@qV.t; x; q/ D E
�
@�U

�
t; x; �.q/

�
.qX/X

� D 1

q

Z

R

@�U
�
t; x; �.q/

�
.v/vd�.q/.v/:

In particular,

@2xqV.t; x; q/ D 1

q

Z

R

@x@�U
�
t; x; �.q/

�
.v/vd�.q/.v/:

Similarly,

@2qV.t; x; q/ D 1

q2

Z

R

@v@�U
�
t; x; �.q/

�
.v/v2d�.q/.v/

C 1

q2

Z

R

Z

R

@2�U
�
t; x; �.q/

�
.v/vv0d�.q/.v/d�.q/.v0/:

Moreover, the relationship (4.89) takes the form:

�tx D


@xV.t; x; qt/

E

qkb
t

xkb

�1=.p�1/
; x � qt:
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Rewriting (4.88), we get:

@tV.t; x; q/C p � 1
pE1=.p�1/

�
@xV.t; x; q/

�p=.p�1/�qkb=.p�1/

xkb=.p�1/ ^ 1
�

C c
xaC.kC1/b

kbqkb
1fx�qg C �tq@qV.t; x; q/C 1

2
�2
�
x2@2xV.t; x; q/

C q2@2qV.t; x; q/C 2xq@2xqV.t; x; q/
� D 0:

(4.90)

Now we look for a continuously differentiable path Œ0;T� 3 t 7! Bt 2 Œ0;C1/,
with BT D 0, such that:

V.t; x; q/ D Bt
xpCbk

qbk
; (4.91)

solves the parameterized master equation (4.90) on the set fx � qg. Under the
additional condition that a C b D p, B must be the solution of the equation:

PBt C p � 1
pE1=.p�1/

�
Bt.p C bk/

�p=.p�1/ C c

kb
� �tBtbk C �2

2
Btp.p � 1/ D 0:

Condition (4.89) reads:

�t D
�Bt.p C bk/

E

�1=.p�1/
; (4.92)

so that the above equation for B becomes:

PBt C .p C bk/1=.p�1/

E1=.p�1/
�
p � 1 � bk

p

�
Bp=.p�1/

t C �2

2
p.p � 1/Bt C c

kb
D 0; (4.93)

for t 2 Œ0;T�, with the terminal condition BT D 0. This equation is locally uniquely
solvable. The key point is that the local solution is nonnegative. If B vanishes at
some time t, necessarily PBt < 0, so that Bt�ı > 0 for ı small enough. Moreover, if
p.p � 1/ < bk, the local solution cannot exceed the smallest positive root B of the
equation:

.p C bk/1=.p�1/

E1=.p�1/
�
p � 1 � bk

p

�
Bp=.p�1/ C �2

2
p.p � 1/B C c

kb
D 0;

so that the local solution to (4.93) can be extended to the entire Œ0;T�, proving that
the ODE admits a unique solution.
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Equilibrium Given by Pareto Distributions
The above analysis suggests that, whenever X0 has a Pareto distribution of parameter
q0, the flow of marginal conditional distributions (given .W0

t /0�t�T ) of the process:

dXt D �tXtdt C �XtdW0
t ; t 2 Œ0;T�;

generates an MFG equilibrium with .�t/0�t�T as in (4.92), for .Bt/0�t�T solving the
ODE (4.93). Denoting by �t the conditional distribution of Xt (given the common
noise), it holds that �t D �.qt/, where:

qt D exp
� Z t

0

�sds � �2

2
t C �W0

t

�
; t 2 Œ0;T�:

In order to check that .Xt/0�t�T maximizes the reward functional associated with
the running reward f given by:

f .x; �; ˛/ D c
xa

Œ.d�=dx/.x/�b
� E

p

˛p

Œ�.Œx;1//�b
;

we first check that:



V.t;Xt; qt/C
Z t

0

f
�
Xs; �s; �sXs

�
ds

�

0�t�T

; for s 2 Œ0;T�;

is a martingale. The proof follows from a straightforward application of Itô’s
formula combined with the PDE (4.90). The fact that (4.90) is satisfied for x � q
only is not a problem since with probability 1, Xt > qt for any t 2 Œ0;T�. Notice
that the equality Xt D qt holds for scenarios for which X0 D q0, which are of zero
probability.

Given this martingale property, it still remains to check that for any Lipschitz
continuous feedback function ˛ W Œ0;T� � RC ! RC, the process:




V.t;X˛
t ; qt/C

Z t

0

f
�
X˛

s ; �s; ˛s
�
ds

�

0�t�T

(4.94)

is a super-martingale where .X˛
t /0�t�T solves:

dX˛
t D ˛.t;X˛

t /dt C �X˛
t dW0

t ; t 2 Œ0;T�;

with X˛
0 D X0 and ˛t D ˛.t;X˛

t / for t 2 Œ0;T�. We shall prove this assertion when
T is small enough. The proof goes along the lines of Proposition 1.55 and relies
once again on Itô’s formula. The only difficulty is that X˛

t might be smaller than
qt for some t 2 Œ0;T�. In other words, we are facing the fact that V satisfies the
PDE (4.90) on the set Œ0;T� � fx � qg only. In order to circumvent this obstacle, a
possible strategy is to replace V by:
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V.t; x; q/ D Btx
p
� xbk

qbk
_ 1

�
;

for the same constant Bt as above. Obviously, the PDE (4.90) is not satisfied when
x < q, but V defines, at least in small time, a super-solution on the set Œ0;T� � f0 �
x < qg, as (4.90) holds with D 0 replaced by � 0when T is small enough. Generally
speaking, this follows from the simple fact that Bt tends to 0 when t tends to T .
Computations are rather straightforward. It suffices to observe that the left-hand
side in (4.90) becomes, for x < q,

� PBt C p � 1
pE1=.p�1/

� p

p � 1Bt
�p=.p�1/ C 1

2
�2p.p � 1/Bt

�
xp:

Inserting the ODE (4.93) satisfied by .Bt/0�t�T , this may be rewritten under the
form:

�
h.Bt/ � c

kb

�
xp;

where h W R ! R is a continuous function matching 0 in 0.
Heuristically, this should suffice for our purpose, but the justification requires

some modicum of care as the function V , when extended as above to the set
Œ0;T� � f0 � x < qg, is not C1;2 (which is the standard condition needed in order
to apply Itô’s expansion), the first-order derivatives in .x; q/ being discontinuous
on the diagonal fx D qg. The argument for justifying the Itô expansion is a
bit technical so that we only sketch it in broad strokes. We write V.t;X˛

t ; qt/ D
Bt.X˛

t /
pŒ'.X˛

t =qt/�
bk, with '.r/ D max.1; r/. The key point is that .X˛

t =qt/0�t�T

is always a bounded variation process, so that the expansion of .'.X˛
t =qt//0�t�T

only requires to control '0 and not '00. Then, we can regularize ' by a sequence
.'n/n�1 such that .'n/

0.r/ D 0, for r � 1 � 1=n, .'n/
0.r/ D 1, for r � 1 and

.'n/
0.r/ 2 Œ0; 1� for r 2 Œ1 � 1=n; 1�. The fact that .'n/

0.r/ is uniformly bounded in
n permits to expand .Bt.X˛

t /
pŒ'n.X˛

t =qt/�
bk/0�t�T and then to pass to the limit. The

super-martingale property shows that

Z

Rd
V.0; x; q0/d�.q0/.x/ � sup

.˛t/0�t�T

E

� Z T

0

f .X˛
t ; qt; ˛t/dt

	

; (4.95)

which, together with the martingale property along .Xt/0�t�T , shows that equality
holds and that the Pareto distributions .�t D �.qt//0�t�T form an MFG equilibrium.

4.6 Notes & Complements

As already stated in Chapter 1, the concept of decoupling field for finite dimensional
forward-backward SDEs with random coefficients is due to Ma, Wu, Zhang, and
Zhang [272]. For a flow of random measures .�t/0�t�T given by the conditional
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distributions of the state of a population in equilibrium given the realization of the
common noise, the random field Œ0;T��R

d 3 .t; x/ 7! U.t; x; �t/ coincides with the
value function of the underlying optimal control problem in the random environment
.�t/0�t�T , see Remark 4.22. In particular, this random field can be identified with
the decoupling field of the finite-dimensional forward-backward SDE representing
the value function. This makes the connection between the notion of master field
introduced in this chapter, and the notion of decoupling field introduced in [272]
and investigated in Chapter 1.

In any case, the master field must be regarded as an infinite-dimensional
generalization of the notion of decoupling field used in the standard theory of
finite-dimensional forward-backward SDEs with deterministic, instead of random,
coefficients. Actually, the terminology decoupling field did not appear in the earlier
works on the subject. See for instance the works [297, 298] by Pardoux and
Peng together with the references in the more recent monograph by Pardoux and
Rǎşcanu [299]. Instead, forward-backward SDEs with deterministic coefficients
were regarded as nonlinear Feynman-Kac formulas. In this respect, our introduction
of the master field can be interpreted as an infinite-dimensional nonlinear Feynman-
Kac formula.

The definition of the master field provided in this chapter has been suggested by
Carmona and Delarue in [97], but the analysis of the master field provided in the
first section of the chapter is entirely new. In particular, the dynamic programming
principle given in Proposition 4.2 is new. Here, our formulation is explicitly based
upon the representation of the underlying optimal control problem by means of a
forward-backward system. Obviously, it would be interesting to address directly the
validity of the dynamic programming principle.

Although our definition of the master field together with its subsequent analysis
is somewhat new, the general concept goes back to Lasry and Lions. In his lectures
[265] at Collège de France, Lions introduced the master equation presented in
Section 4.4. The connection between the master field and the master equation is
pretty clear: as highlighted in this chapter, the solution of the master equation is the
master field. Here, we took a typically probabilistic road for connecting both: we
started from the value function of the game, which we called the master field, and
then we derived the equation satisfied in the viscosity sense by the value function. In
this regard, the dynamic programming principle played a crucial role. In the end, the
forward-backward system of the McKean-Vlasov type (4.7) provides a Lagrangian
description of the mean field game while the master equation (4.41) reads as an
Eulerian description. Equivalently, the forward and backward components of the
system (4.7) form the stochastic characteristics of the master equation. Lasry and
Lions’ point of view for introducing the master equation is slightly different: when
there is no common noise, they call system of characteristics the mean field game
system (Vol I)-(3.12) in Chapter (Vol I)-3 formed by the Fokker-Planck equation
and the Hamilton-Jacobi-Bellman equation, in which case the characteristics are
deterministic.

The derivation of the master equation from the dynamic programming principle
is quite standard in the theory of optimal control problems. We refer the reader to
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the monographs by Fleming and Soner [157] and by Yong and Zhou [343] for
a general overview of the use of viscosity solutions in the theory of stochastic
optimal control. The notion of viscosity solutions for equations on spaces of
probability measures is connected with the wider literature on viscosity solutions
for HJB equations in infinite dimension, as discussed in the series of papers by
Crandall and Lions [121–124]. We also refer to the forthcoming monograph by
Fabbri, Gozzi, and Swiech on stochastic optimal control in infinite dimensions,
see [150]. Within the framework of mean field games, we refer to the notes by
Cardaliaguet [83] for an instance of viscosity solutions of the master equation.
Therein, Cardaliaguet discusses the particular case of games with deterministic state
dynamics. Accordingly, the solutions of the master equation are understood in the
viscosity sense, very much in the spirit of Definition 4.19.

As noticed in the articles [50,97], the notion of master equation may be extended
to other types of stochastic control problems, including the control of McKean-
Vlasov diffusion processes presented in Chapter (Vol I)-6. Recently, Pham and
Wei [311, 312] investigated the corresponding form of the dynamic programming
principle together with the existence and uniqueness of viscosity solutions to the
corresponding master equation, when reformulated as a PDE in a Hilbert space. In
both papers, part of the analysis relies on the same chain rule as the one we use here,
see Theorem 4.17, which is inspired by the chain rule originally established in the
papers by Buckdahn, Li, Peng, and Rainer [79] and by Chassagneux, Crisan and
Delarue [114].

We refer to the next Chapter 5 for further results and further references on the
master equation and, more on the existence and uniqueness of classical solutions.

Results on the invertibility of the gradient of the flow formed by the solution of
an SDE, as used in the proof of Corollary 4.11, may be found in Protter [315].
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Abstract

This chapter is concerned with existence and uniqueness of classical solutions to
the master equation. The importance of classical solutions will be demonstrated
in the next chapter where they play a crucial role in proving the convergence of
games with finitely many players to mean field games. We propose constructions
based on the differentiability properties of the flow generated by the solutions
of the forward-backward system of the McKean-Vlasov type representing the
equilibrium of the mean field game on an L2-space. Existence of a classical
solution is first established for small time. It is then extended to arbitrary finite
time horizons under the additional Lasry-Lions monotonicity condition.

5.1 Master Field of a McKean-Vlasov FBSDE

5.1.1 General Prospect

The starting point of our analysis is a mild generalization of the notion of master
field introduced and studied in the previous Chapter 4.

So far, the master field U W Œ0;T� � R
d � P2.Rd/ ! R has been regarded

as the value function of the underlying mean field game. For an initial condition
.t; x; �/, x standing for the private state of the representative player at time t and �
for the conditional distribution of the population at time t given the realization of
the systemic noise, U.t; x; �/ is defined as the equilibrium expected future cost to
the representative player at time t.

Below, we shall exploit another, though indissolubly connected, interpretation
of U.t; x; �/. As we already accounted for in Remark 4.22, whenever equilibria
are represented by means of the forward-backward system associated with the
Hamilton-Jacobi-Bellman formulation of the optimization problem – as opposed
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to the formulation based on the Pontryagin maximum principle – U.t; x; �/ may
also be written as the initial value, at time t, of the backward component .Ys/t�s�T

of the conditional McKean-Vlasov FBSDE characterizing the equilibrium. Under
such an identification, the master field appears as a decoupling field that permits
to express the realization of the backward component of the underlying McKean-
Vlasov FBSDE in terms of the realization of the forward component and of
its distribution. The fact that the master field acts both on the private state of
the representative player and on the conditional distribution of the population is
reminiscent of the fact that, here, the state space for the forward component of the
solution of the conditional McKean-Vlasov FBSDE is the whole Rd�P2.Rd/. In this
way, writing U.t; �; �/ as a function defined on the enlarged state space R

d � P2.Rd/

sounds as a natural extension of the situation encountered with standard FBSDEs
in Chapter (Vol I)-4 for which the decoupling field at time t writes as a function
defined on the state space R

d.
We already commented on these observations in Chapter 4. Here, we go one

step further and extend the notion of master field to any FBSDE of the conditional
McKean-Vlasov type provided that it is uniquely solvable in the strong sense. We
cast the first objectives of this chapter in the following terms. We address the
smoothness of the master field of a general FBSDE of the conditional McKean-
Vlasov type by investigating the smoothness of the flow formed by the solution of
the FBSDE in the space L2.˝;F ;PIRd/, where .˝;F ;P/ denotes the probability
space on which the forward-backward system is defined. When the McKean-Vlasov
FBSDE derives from a mean field game, these general results will establish the
required differentiability properties of the master field underpinning the mean field
game. In particular, whenever enough smoothness holds, this will imply that the
master field is not only a viscosity solution of the master equation as proved in the
previous chapter, but also a classical solution.

One critical feature of this approach is the fact that the flow property is
investigated in L2.˝;F ;PIRd/. This is reminiscent of the construction of the L-
differential calculus defined in Chapter (Vol I)-5 by lifting functions of probability
measures into functions of random variables. Similarly, we discuss the smoothness
properties of the master field at the level of random variables. This is especially
convenient for us since the forward component of a McKean-Vlasov FBSDE takes
values in L2.˝;F ;PIRd/. We refer the reader to the Notes & Complements at the
end of the chapter for references from which this approach is borrowed.

The analysis is split into two main steps. Imitating the induction argument used
in Chapter (Vol I)-4 to solve a general FBSDE of the McKean-Vlasov type, we first
consider the case of a small enough time horizon T . In the special case of mean field
games, we then succeed in applying the short time analysis iteratively on a time
horizon of arbitrary length provided that the Lasry-Lions monotonicity condition is
in force.
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5.1.2 Definition of the Master Field

Throughout the chapter, we use the same probabilistic set-up as in Definition 2.16.

We are given:

1. a complete probability space .˝0;F0;P0/, endowed with a complete
and right-continuous filtration F

0 D .F0
t /0�t�T and a d-dimensional F0-

Brownian motion W0 D .W0
t /0�t�T ,

2. the completion .˝1;F1;P1/ of a countably generated space, endowed
with a complete and right-continuous filtration F

1 D .F1
t /0�t�T and a

d-dimensional F1-Brownian motion W D .Wt/0�t�T .

We then denote by .˝;F ;P/ the completion of the product space .˝0 ˝
˝1;F0 ˝ F1;P0 ˝ P

1/ endowed with the filtration F D .Ft/0�t�T obtained
by augmenting the product filtration F

0 ˝ F
1 in a right-continuous way and

by completing it. We are also given an F0-measurable R
d-valued random

variable 
 .

We recall the useful notation L1.X/.!0/ D L.X.!0; �// for !0 2 ˝0 and a
random variable X on ˝, see Subsection 2.1.3.

Importantly, we shall assume that .˝1;F1
0 ;P

1/ is rich enough so that, for any
distribution � 2 P2.Rq/, with q � 1, we can construct an F1

0 -measurable-random
variable with � as distribution. We refer to (2.30)–(2.31) in Chapter 2 for a possible
construction of such a space.

Forward-Backward System of the Conditional McKean-Vlasov Type
We are now given a maturity time T > 0 together with coefficients:

B W Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d � R

m�d ! R
d;

F W Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d � R

m�d ! R
m;

G W Rd � P2.Rd/ ! R
m;

�; �0 W Œ0;T� � R
d � P2.Rd/ ! R

d�d;

for two integers d;m � 1. For some initial condition 
 2 L2.˝;F0;PIRd/, we then
consider the following system of equations:
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8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt D B
�
t;Xt;L1.Xt/;Yt;Zt;Z0t

�
dt

C��t;Xt;L1.Xt/
�
dWt C �0

�
t;Xt;L1.Xt/

�
dW0

t ;

dYt D �F
�
t;Xt;L1.Xt/;Yt;Zt;Z0t

�
dt

CZtdWt C Z0t dW0
t ; t 2 Œ0;T�;

X0 D 
; YT D G
�
XT ;L1.XT/

�
:

(5.1)

The unknowns X D .Xt/0�t�T , Y D .Yt/0�t�T , Z D .Zt/0�t�T and Z0 D .Z0t /0�t�T

have dimensions d, m, m � d, and m � d respectively.

Definition 5.1 In the above probabilistic set-up, we call a solution to (5.1) any
four-tuple .X;Y;Z;Z0/ of F-progressively measurable processes, with values in
R

d, Rm, Rm�d and R
m�d respectively, X and Y having continuous paths, such that:

E

�

sup
0�t�T

�
jXtj2 C jYtj2

�
C
Z T

0

�jZtj2 C jZ0t j2�dt

	

< 1;

and such that (5.1) holds with P-probability 1.

In the framework of Definition 5.1, the construction of .L1.Xt//0�t�T in (5.1)
is made clear by Lemma 2.5. It is worth mentioning that system (5.1) matches
system (2.29) in Chapter 2, except for the fact that in the backward equation, the
martingale term is now written as the sum of two stochastic integrals with respect
to W0 and W. The rationale for requiring the martingale part to be of this specific
form is that we shall only work with strong solutions, namely with solutions that are
progressively measurable with respect to the completion of the filtration generated
by the initial condition 
 and .W0;W/, in which case martingales can be represented
as stochastic integrals. As a by-product, the process Y is necessarily continuous in
time; in contrast, observe that Y may be discontinuous in the framework discussed in
Definition 1.17. In this regard, we check below that, if X is progressively measurable
with respect to F

.
;W0;W/, then .L1.Xt//0�t�T is progressively measurable with
respect to the filtration F

0;.L1.
/;W0/ on .˝0;F0;P0/. In particular, all the processes
appearing in (5.1) are F

.
;W0;W/-progressively measurable whenever .X;Y;Z;Z0/
is F

.
;W0;W/-progressively measurable, which makes licit the application of the
martingale representation theorem.

As already stated, our goal is to show that, under appropriate assumptions, there
exists not only a unique solution to (5.1), but also a continuous decoupling field
U W Œ0;T��R

d �P2.Rd/ ! R
m such that Ys D U.s;Xs;L1.Xs//, 0 � s � T . Pushing

further the analysis initiated in Chapter 4, we shall provide explicit conditions under
which U is a classical solution (instead of a viscosity solution) to some master
equation on Œ0;T� � R

d � P2.Rd/.



5.1 Master Field of a McKean-Vlasov FBSDE 327

Master Field of a Conditional McKean-Vlasov FBSDE
Somehow, the strategy for constructing the master field is similar to the one we used
in Chapter (Vol I)-4 to define the decoupling field of a standard FBSDE. In any
case, we must let the initial condition of the FBSDE (5.1) vary. This prompts us to
consider the following version of (5.1), appropriately initialized at .t; 
/, for some
t 2 Œ0;T� and 
 2 L2.˝;Ft;PIRd/:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt;

s D B

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s ;Z

t;

s ;Z

0It;

s

�
ds

C��s;Xt;

s ;L1.Xt;


s /
�
dWs C �0

�
s;Xt;


s ;L1.Xt;

s /
�
dW0

s ;

dYt;

s D �F

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s ;Z

t;

s ;Z

0It;

s

�
ds

CZt;

s dWs C Z0It;
s dW0

s ; s 2 Œt;T�;
Xt;


t D 
; Yt;

T D G

�
Xt;


T ;L1.X
t;

T /
�
:

(5.2)

As a typical example for 
 , we shall consider 
 2 L2.˝1;F1
t ;P

1IRd/ and L1.
/ D
�, for some given � 2 P2.Rd/. This choice is possible thanks to the preliminary
assumption we made in the first lines of the subsection: the space .˝1;F1

0 ;P
1/ is

assumed to be rich enough so that, for any � 2 P2.Rd/, there exists a random
variable 
 2 L2.˝1;F1

0 ;P
1IRd/ with L1.
/ D �.

Of course, what really matters here is � and not 
 . According to the terminology
introduced in Chapter (Vol I)-5, 
 is just a lifting used to represent �. For a given
� 2 P2.Rd/, we may find several 
’s such that L1.
/ D �. However, it is important
to notice that under the prescription L1.
/ D �, the construction of the decoupling
field is somehow oblivious to the particular choice of 
 .

The latter observation is based upon the following weak uniqueness property,
which is reminiscent of Proposition 2.11 for conditional McKean-Vlasov SDEs.
Assume indeed that (5.2) has a unique .Fs/t�s�T -progressively measurable solution
.Xt;
 ;Yt;
 ;Zt;
 ;Z0It;
 /, with a solution which is progressively measurable with
respect to the completion of the filtration generated by .
;W0

s � W0
t ;Ws � Wt/t�s�T .

Then, for any s 2 Œt;T�, there exists a function˚s W Rd�C.Œt; s�IRd/�C.Œt; s�IRd/ !
R

d such that:

P

h
Xt;


s D ˚s

�

; .W0

r � W0
t /t�r�s; .Wr � Wt/t�r�s

�i
D 1:

Therefore, with probability 1 under P0,

L1.Xt;

s / D �

�˝ W t
d

� ı
h
˚s

�
�; .W0

r � W0
t /t�r�s; �

�i�1
: (5.3)

Of course, observe that ˚s may depend on the law of 
 . Following the proof of

Lemma 2.5, .L1.Xt;

s //t�s�T is F0;.W0

r �W0
t /t�r�T

s -measurable. By continuity of the
trajectories, it is progressively measurable with respect to the completion of the
filtration generated by .W0

s � W0
t /t�s�T . In particular, we may regard it as an
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environment: obviously .˝;F ; .Fs/t�s�T ;P/ is compatible with .
;W0
s � W0

t ;Ws �
Wt/t�s�T and thus with the process .
;W0

s �W0
t ;L1.X

t;

s /;Ws �Wt/t�s�T . Therefore,

if for any P2.Rd/-valued environment � D .�s/t�s�T and any Ft-measurable
initial condition Xt such that .Xt; .W0

s � W0
t ; �s;Ws � Wt/t�s�T/ is compatible with

.Fs/t�s�T , the auxiliary system:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dX�
s D B

�
s;X�

s ; �s;Y
�
s ;Z

�
s ;Z

0I�
s
�
ds

C��s;X�
s ; �s

�
dWs C �0

�
s;X�

s ; �s
�
dW0

s ;

dY�
s D �F

�
s;X�

s ; �s;Y
�
s ;Z

�
s ;Z

0I�
s
�
ds

CZ�
s dWs C Z0s dW0;�

s C dM�
s ; s 2 Œt;T�;

X�
t D Xt; Y�

T D G
�
X�

T ; �T
�
;

(5.4)

has the strong uniqueness property as defined in Definition 1.18, then, by
Theorem 1.33, we can find a measurable function ˚ W R

d � C.Œt;T�IRd/ �
D.Œt;T�IP2.Rd// � C.Œt;T�IRd/ ! C.Œt;T�IRd/ such that:

P

h
Xt;
 D ˚

�

;
�
W0

r � W0
t

�

t�r�T ;
�
L1.Xt;


r /
�

t�r�T ;
�
Wr � Wt

�

t�r�T

�i
D 1:

Now, if 
 0 is another lifting of � constructed on .˝1;F1
t ;P

1/ such that L1.
 0/ D �,
then we may let:

X0 D ˚
�

 0;
�
W0

r � W0
t

�

t�r�T ;
�
L1.Xt;


r /
�

t�r�T ;
�
Wr � Wt

�

t�r�T

�
;

where we put 
 0 instead of 
 in the first component. Since the argument in
the function in the right-hand side has the same law, under P, as the process
.
; .W0

r � W0
t /t�r�T ; .L1.Xt;


r //t�r�T ; .Wr � Wt/t�r�T/, we deduce from a new
application of Theorem 1.33 that X0 is the forward component of the solution of
the system (5.2) when regarded as an auxiliary system of the same type as (5.4)
with � D .L1.Xt;


r //t�r�T as environment but with Xt D 
 0 in lieu of Xt D 
 as
initial condition. Obviously, by construction of X0, with probability 1 under P0,

8r 2 Œt;T�; L1.X0
r/ D L1.Xt;


r /;

from which we get that X0 is the forward component of a solution of (5.2) with 
 0
in lieu of 
 . If, as above, we assume that uniqueness holds true for (5.2), then X0
coincides with Xt;
0

. This shows that, with probability 1 under P0,

P
0
h
8s 2 Œt;T�; L1.Xt;


s / D L1.Xt;
0

s /
i

D 1; (5.5)

which is the required ingredient to define the master field.
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Thanks to (5.5), it now makes sense, for a given � 2 P2.Rd/, to consider
.L1.Xt;


r //t�r�T without specifying the choice of the lifted random variable 
 that
has � as conditional distribution given W0. We then introduce, for any x 2 R

d,

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dXt;x;�
s D B

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s ;Zt;x;�

s ;Z0It;x;�s
�
ds

C��s;Xt;x;�
s ;L1.Xt;


s /
�
dWs

C�0�s;Xt;x;�
s ;L1.Xt;


s /
�
dW0

s ;

dYt;x;�
s D �F

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s ;Zt;x;�

s ;Z0It;x;�s
�
ds

CZt;x;�
s dWs C Z0It;x;�s dW0

s ; s 2 Œt;T�;
Xt;x;�

t D x; Yt;x;�
T D G

�
Xt;x;�

T ;L1.Xt;

T /
�
:

(5.6)

Under the assumption that (5.2) is uniquely solvable and that its solution is
progressively measurable with respect to the completion of the filtration generated
by .
; .W0

s � W0
t /t�s�T ; .Ws � Wt/t�s�T/, existence and uniqueness of a solution

to (5.6) hold true provided that the auxiliary system (5.4) is strongly uniquely
solvable along the lines of Definition 1.19. Indeed, since the environment � D
.L1.Xt;


s //t�s�T is F
.W0

s �W0
t /t�s�T -progressively measurable, the auxiliary system

can be solved with respect to the smaller filtration F
.W0

s �W0
t ;Ws�Wt/t�s�T instead

of .Fs/t�s�T . The resulting solution then coincides with the solution obtained by
working with the larger filtration. As a consequence, the martingale M� in (5.4) is
0 since it has 0 bracket with .W0

s � W0
t ;Ws � Wt/t�s�T . We recover (5.6).

This prompts us to specify the definition of the master field of the FBSDE (5.2)
of conditional McKean-Vlasov type as follows.

Definition 5.2 Assume that for any .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/ and any

random variable 
 2 L2.˝1;F1
t ;P

1IRd/ with distribution �, (5.2) has a unique

progressively measurable solution .Xt;

s ;Y

t;

s ;Z

t;

s ;Z

0It;

s /s2Œt;T�, which is progres-

sively measurable with respect to the completion of the filtration generated by
.
;W0

s � W0
t ;Ws � Wt/t�s�T . Furthermore, assume that the auxiliary system (5.4) is

strongly uniquely solvable in the sense of Definition 1.19.
Then, under these conditions, (5.6) has a unique solution, which we shall denote

by .Xt;x;�
s ;Yt;x;�

s ;Zt;x;�
s ;Z0;t;x;�/s2Œt;T�. It is independent of the choice of the lifting 
 of

�. Under these conditions, we call master field of (5.2) (or of (5.6)) the function:

U W Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! Yt;x;�

t 2 R
m: (5.7)

Observe that Yt;x;�
t in (5.7) is almost surely deterministic since (5.6) can be solved

by equipping the probabilistic set-up with the filtration generated by .W0
s �W0

t /t�s�T

and .Ws � Wt/t�s�T .
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We already discussed conditions under which existence and uniqueness hold:

1. For example, when the coefficients B, F, G, and � are Lipschitz continuous
in all the variables except possibly time, and there is no common noise, then
Theorem (Vol I)-4.24 ensures that (5.2) and (5.6) are uniquely solvable in small
time. This short time solvability result may be easily adapted to the case when
there is a common noise. We shall come back to this point below.

2. Also, when the coefficients B, F, G, � , and �0 derive from a mean field
game, either through the method based on the representation of the value
function or through the stochastic Pontryagin principle, Theorems 3.29, 3.30, and
3.31 together with Proposition 3.34 ensure, though under different sets of
conditions, that (5.2) is uniquely solvable. In all cases, (5.6) is uniquely solvable
as well, since the unique solvability property is part of assumption FBSDE
in Subsection 2.2.3, which is known to hold true under the assumptions of
Theorems 3.29, 3.30, and 3.31.

Remark 5.3 Regarding our preliminary discussion in Subsection 5.1 on the inter-
pretation of the master field of a mean field game as the decoupling field of an
FBSDE of the McKean-Vlasov type, it is worth emphasizing one more time that
when the McKean Vlasov FBSDE used to characterize the solution of a mean field
game derives from the stochastic Pontryagin principle, the decoupling field of the
FBSDE does not coincide with the master field of the game but instead, with its
gradient in space. We already made this point in Subsection 4.2.2, and we will come
back to it in Section 5.4.

5.1.3 Short Time Analysis

Our analysis of the master field, as defined in Definition 5.2, is performed first for
a short enough time horizon T . It is only in a second part, when we concentrate
on conditional McKean-Vlasov FBSDEs derived from mean field games, that we
switch to the case of an arbitrary T . In doing so, we shall benefit from the existence
and uniqueness results proved in Chapter 4.

We start with the same kind of assumption as in Subsection (Vol I)-4.2.3.

Assumption (Conditional MKV FBSDE in Small Time). There exist two
constants �;L � 0 such that:

(A1) The mappings B, F, G, � , and �0 are measurable from Œ0;T� � R
d �

P2.Rd/�R
m �R

m�d �R
m�d to R

d, from Œ0;T��R
d �P2.Rd/�R

m �
R

m�d �R
m�d to R

m, from R
d �P2.Rd/ to R

m, from Œ0;T��R
d �P2.Rd/

to R
d�d and from Œ0;T� � R

d � P2.Rd/ to R
d�d respectively.

(continued)
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(A2) For all t 2 Œ0;T�, the coefficients B.t; 0; ı0; 0; 0; 0/, F.t; 0; ı0; 0; 0; 0/,
�.t; 0; ı0/ and �0.t; 0; ı0/ are bounded by � . Similarly, G.0; ı0/ is
bounded by � .

(A3) 8t 2 Œ0;T�, 8x; x0 2 R
d, 8y; y0 2 R

m, 8z; z0; z0; z00 2 R
m�d, 8�;�0 2

P2.Rd/,

j.B;F/.t; x; �; y; z; z0/ � .B;F/.t; x0; �0; y0; z0; z00/j
� L

�jx � x0j C jy � y0j C jz � z0j C jz0 � z00j C W2.�; �
0/
�
;

j.�; �0/.t; x; �/ � .�; �0/.t; x0; �0/j � L
�jx � x0j C W2.�; �

0/
�
;

jG.x; �/ � G.x0; �0/j � L
�jx � x0j C W2.�; �

0/
�
:

In full similarity with Theorems (Vol I)-4.24 and 1.45, we prove the following
result:

Theorem 5.4 Under assumption Conditional MKV FBSDE in Small Time, there
exist two constants c > 0 and C � 0, only depending upon the parameter L in the
assumption, such that for T � c, for any initial condition .t; 
/, with t 2 Œ0;T� and

 2 L2.˝;Ft;PIRd/, the FBSDE (5.2) has a unique solution .Xt;
 ;Yt;
 ;Zt;
 ;Z0It;
 /.
This solution is progressively measurable with respect to the completion of the
filtration generated by .
;L1.
/;W0

s � W0
t ;Ws � Wt/t�s�T .

Moreover, for any 
 0 2 L2.˝;Ft;PIRd/ and any tuple .B0;F0;G0; � 0; �00/
satisfying assumption Conditional MKV FBSDE in Small Time, the solution
.X0;Y0;Z0;Z0I0/ to (5.2) with .B0;F0;G0; � 0; �00/ in lieu of .B;F;G; �; �0/ as coeffi-
cients and .t; 
 0/ in lieu of .t; 
/ as initial condition, satisfies:

E

�

sup
t�s�T

�jXs � X0
sj2 C jYs � Y 0

sj2
�C

Z T

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇFt

	

� C



E

�

j
 � 
 0j2 C ˇ
ˇ.G � G0/

�
XT ;L1.XT/

�ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B � B0;F � F0; � � � 0; �0 � �00�.s; �s/

ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

(5.8)

C E

�

j
 � 
 0j2 C ˇ
ˇ.G � G0/

�
XT ;L1.XT/

�ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B � B0;F � F0; � � � 0; �0 � �00�.s; �s/

ˇ
ˇ2ds

ˇ
ˇ
ˇF0

t

	�

;

where we used the notations .X;Y;Z;Z0/ for .Xt;
 ;Yt;
 ;Zt;
 ;Z0It;
 /, and � for .�s D
.Xs;L1.Xs/;Ys;Zs;Z0s //t�s�T .
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Obviously, there is a slight abuse of notation in (5.8) since � � � 0 and �0 � �00
are independent of the variables y and z.

Proof. The first part of the proof is a mere adaptation of the arguments used to prove
Theorem (Vol I)-4.24. Given a proxy for the solution of the forward equation, we solve the
backward equation and, plugging this solution of the backward equation into the coefficients
of the forward equation, we get a new proxy for the solution of the forward equation. The
goal is to prove that this procedure creates a contraction when T is small enough.

For a given proxy .Y;Z;Z0/ D .Ys; Zs; Z0s /t�s�T , with .Y;Z;Z0/ being progressively
measurable with respect to F

.
;L1.
/;W0
s �W0

t ;Ws�Wt/t�s�T , the forward equation takes the same
form as in (5.2), namely:

dXs D B
�
s;Xs;L1.Xs/; Ys; Zs; Z

0
s

�
ds

C �
�
s;Xs;L1.Xs/

�
dWs C �0

�
s;Xs;L1.Xs/

�
dW0

s ; s 2 Œt; T�;
(5.9)

with Xt D 
 as initial condition at time t.
In order to solve the forward equation (5.9), one must invoke an obvious generalization of

Proposition 2.8 that allows for random coefficients b, � , and �0, using the same notation
as in the statement of Proposition 2.8. Additionally, we must pay attention to the fact
that .L1.Xs//t�s�T is progressively measurable with respect to the completion of the
filtration generated by .L1.
/;W0

s � W0
t /t�s�T , which guarantees that the coefficients in

the backward equation that has to be solved next are indeed progressively measurable with
respect to the completion of the filtration generated by .
;L1.
/;W0

s � W0
t ;Ws � Wt/t�s�T .

Adaptedness follows from the fact that, for a given proxy .Y;Z;Z0/, the solution to the
equation (5.9) is constructed by means of a Picard iteration. At each step of the iteration
and at any time s 2 Œt; T�, we can find a measurable mapping ˚s from R

d � P2.Rd/ �
C.Œt; s�IRd/ � C.Œt; s�IRd/ such that the next outcome at time s in the iteration reads
Xs D ˚s.
;L1.
/; .W0

r � W0
t /t�r�s; .Wr � Wt/t�r�T/ with probability 1, from which we

get that Xs is F .
;L1.
/;.W0
r �W0

t /t�r�s;.Wr�Wt/t�r�s/
s -measurable. Moreover, with probability 1

under P0,

L1.Xs/ D �
L1.
/˝ W t

d

� ı
h
˚s
��;L1.
/; .W0

r � W0
t /t�r�s; �

�i�1

:

It is standard to deduce that L1.Xs/ is F0;.L1.
/;.W0
r �W0

t /t�r�s/
s -measurable, see for instance

Lemma 2.4 or Proposition (Vol I)-5.7.
The proof of the stability property (5.8) goes along the lines of the proof of Theorem 1.45.

It must be divided into two main steps. The first one is to regard .L1.Xs//t�s�T and
.L1.X0

s//t�s�T as environments, and then to apply Theorem 1.45. This provides the following
estimate:

E

�

sup
t�s�T

�jXs � X0
sj2 C jYs � Y 0

s j2
�C

Z T

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇFt

	

� CE

�

j
 � 
 0j2 C ˇ
ˇG
�
XT ;L1.XT/

� � G0
�
XT ;L1.XT/

�ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B;F; �; �0

�
.s; �s/ � �

B0;F0; � 0; �00
��

s;Xs;L1.X0
s/; Ys; Zs

�ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:
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Using the Lipschitz property of the coefficients, we get:

E

�

sup
t�s�T

�jXs � X0
sj2 C jYs � Y 0

s j2
�C

Z T

t

�jZs � Z0
sj2 C jZ0s � Z00s j2�ds

ˇ
ˇFt

	

� CE

�

E
1
�

sup
t�s�T

jXs � X0
sj2
�C j
 � 
 0j2 C ˇ

ˇ.G � G0/
�
XT ;L1.XT/

�ˇ
ˇ2 (5.10)

C
Z T

t

ˇ
ˇ
�
B � B0;F � F0; � � � 0; �0 � �00�.s; �s/

ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:

Plugging the above bound in the forward equation satisfied by X � X0, we easily get the
same type of bound, but for X � X0, with an additional T in front of E1Œsupt�s�T jXs � X0

sj2�,
namely:

E

h
sup

t�s�T
jXs � X0

sj2 jFt

i
� CTE

h
E
1
�

sup
t�s�T

jXs � X0
sj2
� jFt

i

C CE

�

j
 � 
 0j2 C ˇ
ˇ.G � G0/

�
XT ;L1.XT/

�ˇ
ˇ2 (5.11)

C
Z T

t

ˇ
ˇ
�
B � B0;F � F0; � � � 0; �0 � �00�.s; �s/

ˇ
ˇ2ds

ˇ
ˇ
ˇFt

	

:

Now, we observe that, for a real-valued integrable random variable 	 on .˝0;F0;P0/,
EŒ	jFt� D E

0Œ	jF0
t �, where, in the left-hand side, 	 is regarded as extended to .˝;F ;P/

in the usual way. Moreover, for a real-valued integrable random variable 	 on .˝;F ;P/,
E
1ŒEŒ	jFt�� D E

0ŒE1.	/jF0
t � D EŒE1.	/jFt� D EŒ	jF0

t �, see Lemma 5.16 below.
Therefore, taking the expectation under P1 in (5.11), we get, for T small enough,

E

h
E
1
�

sup
t�s�T

jXs � X0
sj2
� jFt

i

� CE

�

j
 � 
 0j2 C ˇ
ˇ.G � G0/

�
XT ;L1.XT/

�ˇ
ˇ2

C
Z T

t

ˇ
ˇ
�
B � B0;F � F0; � � � 0; �0 � �00�.s; �s/

ˇ
ˇ2ds

ˇ
ˇ
ˇF0

t

	

:

Plugging the above bound into (5.10), we complete the proof. ut

Remark 5.5 We stress the fact that, in the statement of Theorem 5.4, the random
variable L1.
/ may not be measurable with respect to �f
g. Consider for instance

 D 1C0�C1 , with C0 2 F0

t , C1 2 F1
t and P

0.C0/ D P
1.C1/ D 1=2. Then,

�f
g D f;; ˝;C0 � C1; .C0 � C1/{g, while L1.
/.!0/ is the Bernoulli distribution
of parameter 1=2 if !0 2 C0 and is the Bernoulli distribution of parameter 0 if
!0 62 C0. In particular, �fL1.
/g D f;; ˝0;C0; .C0/{g.

Remark 5.6 By adapting the argument used in Example 1.20, we can show that
uniqueness in Theorem 5.4 holds true for a larger class of equations. Namely, any
solution of the system:
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8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt;

s D B

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s ;Z

t;

s ;Z

0It;

s

�
ds

C��s;Xt;

s ;L1.Xt;


s /
�
dWs C �0

�
s;Xt;


s ;L1.Xt;

s /
�
dW0

s ;

dYt;

s D �F

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s ;Z

t;

s ;Z

0It;

s

�
ds

CZt;

s dWs C Z0It;
s dW0

s C dMt;

s ; s 2 Œt;T�;

Xt;

t D 
; Yt;


T D G
�
Xt;


T ;L1.X
t;

T /
�
;

where .Mt;

s /t�s�T in the second equation is an m-dimensional càd-làg martingale

starting from 0 at time t and of zero bracket with .Ws�Wt/t�s�T and .W0
s �W0

t /t�s�T ,
coincides in short time with the solution of (5.2), as given by Theorem 5.4. In
particular, .Mt;


s /t�s�T must be zero.

Thanks to Theorems 1.45 and 5.4, we have all the necessary ingredients needed
in the definition of the master field as stated in Definition 5.2. By a mere variation
of the proof of Lemma (Vol I)-4.5, we have:

Proposition 5.7 Under assumption Conditional MKV FBSDE in Small Time
and with the notation of Theorem 5.4, there exists a constant C0 such that, for T � c,
for all .t; x; �/ and .t0; x0; �0/ in Œ0;T� � R

d � P2.Rd/,

jU.t; x; �/j � C0�1C jxj C M2.�/
�
;

jU.t; x; �/ � U.t0; x0; �0/j
� C0�jx � x0j C W2.�; �

0/
�C �

1C jxj C M2.�/
�jt � t0j1=2:

As a consequence of Proposition 5.7, we get the fact that U is indeed a decoupling
field for the FBSDE 5.1.

Proposition 5.8 Under assumption Conditional MKV FBSDE in Small Time
and with the same notation as in the statement of Theorem 5.4, consider a square-
integrable Ft-measurable initial condition 
 at time t. Then, for T � c, with C as in
the statement of Theorem 5.4, it holds that:

Yt;

t D U

�
t; 
;L1.
/

�
:

In particular, with probability 1 under P, for all s 2 Œt;T�,

Yt;

s D U

�
s;Xt;


s ;L1.Xt;

s /
�
:

Proof. The proof is a variant of the conditioning arguments used in Chapter 1, see for
instance Lemma 1.40, but it bypasses any use of regular conditional probabilities. Instead,
we take full advantage of the smoothness of U .
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First Step. Without any loss of generality, we assume that 
 is F0
t ˝ F1

t -measurable. Under
the standing assumption, we know that L2.˝1;F1;P1IRd/ is separable. Regarding 
 as a
random variable from .˝0;F0

t ;P
0/ with values in L2.˝1;F1;P1IRd/, which is licit since

for any Z 2 L2.˝1;F1
t ;P

1IRd/, ˝0 3 !0 7! E
1ŒjZ � 
j2�.!0/ is a random variable, we

deduce that for any N � 1, there exists a compact subset KN � L2.˝1;F1
t ;P

1IRd/ such that
P
0Œ
 62 KN � � 1=N.

Now, for each N � 1, we can find a covering of KN with nN pairwise disjoint Borel
subsets BN

1 ; � � � ;BN
N of diameter less than 1=N. For each i 2 f1; � � � ; nNg, we choose one

point XN
i in BN

i and we define:


N.!0; �/ D
nNX

iD1

XN
i 1BN

i

�

.!0; �/�;

so that:

k
N.!0; �/ � 
.!0; �/kL2.˝1;F1;P1IRd/ � 1

N
1KN

�

.!0; �/�

C k
.!0; �/kL2.˝1;F1
t ;P

1IRd/1K{

N

�

.!0; �/�;

and thus,

lim
N!1

E
0
h
k
N � 
k2

L2.˝1;F1
t ;P

1IRd/

i
D 0:

Second Step. We now approximate each XN
i by a simple random variable NXN

i at most at
distance 1=N from XN

i in L2.˝1;F1
t ;P

1IRd/. Writing:

NXN
i .!

1/ D
mN

iX

jD1

NxN
i;j1AN

i;j
.!1/; !1 2 ˝1;

where NxN
i;1; � � � ; NxN

i;mN
i

2 R
d and AN

i;1; � � � ;AN
i;mN

i
are N pairwise disjoint events in F1

t covering

˝1, we let:

N
N.!0; !1/ D
nNX

iD1

mN
iX

jD1

NxN
i;j1AN

i;j
.!1/1BN

i

�

.!0; �/�; !0 2 ˝0; !1 2 ˝1;

or, equivalently,

N
N.!0; �/ D
nNX

iD1

NXN
i 1BN

i

�

.!0; �/�; !0 2 ˝0:

Obviously,

lim
N!1

E
0
h
kN
N � 
k2

L2.˝1;F1
t ;P

1IRd/

i
D 0:

Third Step. Now, we observe that, for P-almost every ! D .!0; !1/ 2 ˝0 �˝1,

Yt;N
N
.!0; !1/ D

nNX

iD1

Yt;NXN
i .!0; !1/1BN

i

�

.!0; �/�C Yt;0

t 1BN
0

�

.!0; �/�;
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where BN
0 D ˝1 n .[N

iD1B
N
i /, and,

Yt;NXN
i .!0; !1/ D

mN
iX

jD1

Yt;NxN
i;j;L1.NXN

i /.!0; !1/1AN
i;j
.!1/;

from which we deduce that:

Yt;N
N

t .!0; !1/ D
nNX

iD1

mN
iX

jD1

U
�
t; NxN

i;j;L1. NXN
i /
�
1BN

i

�

.!0; �/�1AN

i;j
.!1/C U.t; 0; ı0/1BN

0

�

.!0; �/�;

and then, for P-almost every ! D .!0; !1/ 2 ˝0 �˝1,

Yt;N
N

t .!0; !1/ D U
�

t; N
N.!0; !1/;L1
� N
N.!0; �/�

�
:

By the stability Theorem 5.4, .Yt;N
N

t /N�1 converges to Yt;

t in L2.˝;F ;PIRm/. Thanks to the

regularity of U , the right-hand side converges in probability to U.t; 
;L1.
//. This completes
the first part of the proof. The second part, concerning the representation of Yt;


s , easily
follows. ut

5.1.4 Solution of a Master PDE

Our goal is to prove that, under suitable regularity properties of the coefficients,
the master field U satisfies the assumptions of the Itô formula proved in Chapter 4
for functions of an Itô process and the marginal laws of a possibly different Itô
process. In other words, we are looking for conditions under which U is C1;2;2 over
Œ0;T� � R

d � P2.Rd/ (with values in R
m) in the sense defined in assumption Joint

Chain Rule Common Noise in Subsection 4.3.4.
Assume for a while that this is indeed the case and then apply Itô’s formula in

Theorem 4.17 with:

X0 D �
Xt;x;�

s

�

t�s�T ; � D �
L1.Xt;


s /t�s�T
�
;

for t 2 Œ0;T�, x 2 R
d, � 2 P2.Rd/ and 
 2 L2.˝1;F1

t ;P
1IRd/ with L1.
/ D �.

Then, (4.37) yields:

U
�
t C h;Xt;x;�

tCh ;L1.X
t;

tCh/

� D U.t; x; �/

C
Z tCh

t
@xU

�
s;Xt;x;�

s ;L1.Xt;

s /
� � B

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s ;Zt;x;�

s ;Z0It;x;�
s

�
ds

C
Z tCh

t

QE1
h

@�U
�
s;Xt;x;�

s ;L1.Xt;

s /
��QXt;


s

� � B
�
s; QXt;


s ;L1.Xt;

s /; QYt;


s ; QZt;

s ; QZ0It;


s

�i

ds
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C
Z tCh

t
@xU

�
s;Xt;x;�

s ;L1.Xt;

s /
� � ���s;Xt;x;�

s ;L1.Xt;

s /
�
dWs

�

C
Z tCh

t
@xU

�
s;Xt;x;�

s ;L1.Xt;

s /
� � ��0�s;Xt;x;�

s ;L1.Xt;

s /
�
dW0

s

�

C
Z tCh

t

QE1�.�0/��s; QXt;

s ;L1.Xt;


s /
�
@�U

�
s;Xt;x;�

s ;L1.Xt;

s /
��QXt;


s

�� � dW0
s

C 1

2

Z tCh

t
trace

�
@2xxU

�
s;Xt;x;�

s ;L1.Xt;

s /
�

(5.12)

� �
��� C �0.�0/�

��
s;Xt;x;�

s ;L1.Xt;

s /
��

ds

C 1

2

Z tCh

t

QE1�trace
�
@v@�U

�
s;Xt;x;�

s ;L1.Xt;

s /
�
.QXt;


s /

� �
��� C �0.�0/�

��
s; QXt;


s ;L1.Xt;

s /
���

ds

C 1

2

Z tCh

t

QE1 QQE1
h

trace
˚
@2�U

�
s;Xt;x;�

s ;L1.Xt;

s /
��QXt;


s ;
QQXt;


s

�

� �
�0
�
s; QXt;


s ;L1.Xt;

s /
�
.�0/�

�
s; QQXt;


s ;L1.Xt;

s /
���i

ds

C
Z tCh

t

QE1
h

trace
˚
@x@�U.s;Xt;x;�

s ;L1.Xt;

s //.QXt;


s /

� �0
�
s;Xt;x;�

s ;L1.Xt;

s /
��
�0
�
s;Xt;


s ;L1.Xt;

s /
����

i

ds:

Identifying the left-hand side with Yt;x;�
tCh and recalling the FBSDE (5.6) satisfied

by the process .Xt;x;�;Yt;x;�;Zt;x;�;Z0It;x;�/, we deduce that, Leb1 ˝ P almost-
everywhere,

Zt;x;�
s D ��

�
s;Xt;x;�

s ;L1.Xt;

s /
�
@xU

�
s;Xt;x;�

s ;L1.Xt;

s /
�
;

Z0It;x;�s D �
�0
���

s;Xt;x;�
s ;L1.Xt;


s /
�
@xU

�
s;Xt;x;�

s ;L1.Xt;

s /
�

C QE1�.�0/�.s; QXt;

s ;L1.Xt;


s //@�U.s;Xt;x;�
s ;L1.Xt;


s //.
QXt;


s /
�
;

and replacing x by 
 , we get:

Zt;

s D ��

�
s;Xt;


s ;L1.Xt;

s /
�
@xU

�
s;Xt;


s ;L1.Xt;

s /
�
;

Z0It;
s D �
�0
���

s;Xt;

s ;L1.Xt;


s /
�
@xU

�
s;Xt;


s ;L1.Xt;

s /
�

C QE1�.�0/�.s; QXt;

s ;L1.Xt;


s //@�U.s;Xt;

s ;L1.Xt;


s //.
QXt;


s /
�
:
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Moreover, U satisfies the PDE:

@tU.t; x; �/

C B
�
t; x; �;U.t; x; �/; @�x U.t; x; �/; @�

0

.x;�/U.t; x; �/
� � @xU.t; x; �/

C
Z

Rd
B
�
t; v; �;U.t; v; �/; @�x U.t; v; �/; @�

0

.x;�/U.t; v; �/
� � @�U.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
.t; x; �/@2xxU.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
.t; v; �/@v@�U.t; x; �/.v/

i

d�.v/ (5.13)

C 1

2

Z

R2d
trace

h

�0.t; v; �/.�0/�.t; v0; �/@2�U.t; x; �/.v; v0/
i

d�.v/d�.v0/

C
Z

Rd
trace

h

�0.t; x; �/
�
�0
��
.t; v; �/@x@�U.t; x; �/.v/

i

d�.v/

C F
�
t; x; �;U.t; x; �/; @�x U.t; x; �/; @�

0

.x;�/U.t; x; �/
� D 0;

with the terminal condition U.T; x; �/ D G.x; �/, where we have let:

@�x U.t; x; �/ D ��.t; x; �/@xU.t; x; �/;

@�
0

x U.t; x; �/ D .�0/�.t; x; �/@xU.t; x; �/;

@�
0

� U.t; x; �/ D
Z

Rd
.�0/�.t; v; �/@�U.t; x; �/.v/d�.v/;

@�
0

.x;�/U.t; x; �/ D @�
0

x U.t; x; �/C @�
0

� U.t; x; �/:

Our first objective in this chapter is to prove that, for small time, and for
sufficiently smooth coefficients B, F, G, � , and �0, U satisfies the required regularity
conditions to apply the chain rule. This will prove that, at least for small time, U is
a classical solution of (5.13), see Theorem 5.10 below. We shall also prove that it is
the unique solution to satisfy suitable growth conditions, see Theorem 5.11. Next,
our second objective is to extend the result to time intervals of arbitrary lengths
when the coefficients B, F, and G come from a mean field game along the lines of
one of the examples discussed in Subsection 4.4.4.

5.1.5 Statements of the Main Results

In order to simplify the analysis, most of the results below are just stated
in the case when � and �0 are constant and B and F are independent of z
and z0.
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Here is the statement of the first main result of this chapter: whenever T is small
enough and the coefficients B, F, G, � , and �0 are smooth enough, the master field
is a classical solution of the master equation.

As emphasized in the above warning, we shall restrict the proof to the case of
coefficients B and F independent of z and z0, and constant volatilities � and �0. In
the Notes & Complements at the end of the chapter, we provide references to papers
in which the result is shown to hold under more general conditions.

Although seemingly restrictive, this assumption on the structure of the coeffi-
cients will suffice to establish the existence of a smooth solution to the master
equation deriving from mean field games, at least whenever the coefficients of the
game are of a specific form. See Section 5.4.

Smoothness Conditions on the Coefficients
The smoothness of U will be established in Sections 5.2 and 5.3 when T is small
enough and the following assumptions are in force:

Assumption (Smooth Coefficients Order 2). The functions � and �0 are
constant and the coefficients B and F are independent of the variables z and z0.
Moreover, there exist two constants �;L � 0 such that, for h W Œ0;T� � R

q �
P2.Rd/ 3 .t;w; �/ 7! h.t;w; �/ 2 R

l being B, F, or G, with q D d C m in the
first two cases and q D d in the last case, l D d in the first case, l D m in the
second and third cases, and h being also independent of t when equal to G, it
holds that:

(A1) h W Œ0;T� � R
q � P2.Rd/ ! R

l is continuous, twice differentiable with
respect to w, and the partial derivatives @wh W Œ0;T� � R

q � P2.Rd/ !
R

l�q and @2wh W Œ0;T� � R
q � P2.Rd/ ! R

l�q�q are continuous and
bounded by L and � respectively; moreover, jh.t; 0; ı0/j � � .

(A2) For any .t;w/ 2 Œ0;T� � R
q, the mapping P2.Rd/ 3 � 7! h.t;w; �/

is fully C2; moreover, the function Œ0;T� � R
q � P2.Rd/ � R

d 3
.t;w; �; v/ 7! @�h.t;w; �/.v/ 2 R

l�d is continuous and bounded by
L, and the functions Œ0;T� � R

q � P2.Rd/ � R
d 3 .t;w; �; v/ 7!

@v@�h.t;w; �/.v/ 2 R
l�d�d and Œ0;T� � R

q � P2.Rd/ � R
d � R

d 3
.t;w; �; v; v0/ 7! @2�h.t;w; �/.v; v0/ 2 R

l�d�d are continuous and
bounded by � .

(A3) The version of the derivative of h with respect to � used in the C2
property is such that the global map Œ0;T� � R

q � P2.Rd/ � R
d 3

.t;w; �; v/ 7! @�h.t;w; �/.v/ 2 R
l�d is differentiable in w, the

partial derivative @w@�h W Œ0;T� � P2.Rd/ � R
d 3 .t;w; �; v/ 7!

@w@�h.t;w; �/.v/ 2 R
l�d�q being continuous and bounded by � .

(continued)
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(A4) For any t 2 Œ0;T�, for any w;w0 2 R
q, v; v0; Qv; Qv0 2 R

d and �;�0 2
P2.Rd/,

j@2wh.t;w; �/ � @2wh.t;w0; �0/j � �
�jw � w0j C W1.�; �

0/
�
;

j.@v@�h; @w@�h/.t;w; �/.v/ � .@v@�h; @w@�h/.t;w0; �0/.v0/j
� �

�jw � w0j C jv � v0j C W1.�; �
0/
�
;

j@2�h.t;w; �/.v; Qv/ � @2�h.t;w0; �0/.v0; Qv0/j
� �

�jw � w0j C jv � v0j C j Qv � Qv0j C W1.�; �
0/
�
;

where, in the last two lines, we used the versions of the derivatives
provided by (A2) and (A3).

(A5) The two constants � and �0 are bounded by � .

Notice actually that, in (A2) and (A3), there is one and only one globally
continuous version of each of the derivatives @�h, @v@�h and @2�h, @w@�h, see for
instance Remarks (Vol I)-5.82 and 4.12.

Observe that assumption Smooth Coefficients Order 2 subsumes assumption
Conditional MKV FBSDE in Small Time. Indeed, since @wh and @�h are assumed
to be bounded by L, we have for all t 2 Œ0;T�, x; x0 2 R

d, y; y0 2 R
m and �;�0 2

P2.Rd/,

j.B;F/.t; x; �; y/ � .B;F/.t; x0; �0; y0/j
� L

�jx � x0j C jy � y0j C W1.�; �
0/
�
;

jG.x; �/ � G.x0; �0/j � L
�jx � x0j C W1.�; �

0/
�
:

(5.14)

The fact the above bounds hold with respect to the 1-Wasserstein distance W1 in lieu
of the 2-Wasserstein distance W2 as in assumption Conditional MKV FBSDE in
Small Time will play a key role in the analysis. It says that the coefficients B and F
can be extended to the whole Œ0;T��R

d �P1.Rd/�R
m � Œ0;T��R

d �P2.Rd/�R
m,

and similarly for G. However, we shall not make use of any of these extensions.
Also, for the same reasons as in Remark 4.16, Schwarz’ theorem can be applied

to h as in assumption Smooth Coefficients Order 2: for any .t;w/ 2 Œ0;T� �
R

q, the mapping P2.Rd/ 3 � 7! @wh.t;w; �/ is L-differentiable with respect
to � and @�@wh.t;w; �/.�/ D Œ@w@�h.t;w; �/.�/��. In particular, we can find a
version of @�@wh.t;w; �/.�/ which is bounded by � and which satisfies (A4).
As a consequence, all the second derivatives of h are bounded and we easily
deduce that @wh and @�h satisfy the same Lipschitz properties as @2wh and @v@�h
in (A4). In particular, h satisfies assumption Joint Chain Rule Common Noise in
Subsection 4.3.4.
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Obviously, assumption Smooth Coefficients Order 2 is rather restrictive, though
the mollification procedure used in the proof of Lemma 4.15, see (4.31) and the lines
after, provides a systematic way to construct coefficients satisfying this assumption,
see also Lemma (Vol I)-5.94.

Finally, observe that the distinction between L and � in assumption Smooth
Coefficients Order 2 is important: L will dictate the length of the interval on which
we shall prove the existence of a classical solution to the master equation, while �
will not play any role in this regard.

Statements
Inspired by assumption Smooth Coefficients Order 2, we let:

Definition 5.9 For an integer m � 1, we denote by Sm the space of functions
V W Œ0;T� � R

d � P2.Rd/ 3 .t; x; �/ 7! V.t; x; �/ 2 R
m for which we can find

a constant C � 0 such that:

(i) V satisfies the same properties as h in assumption Smooth Coefficients
Order 2, but with L and � replaced by C and with q D d and l D m, namely:
(i.a) V is continuous and is twice differentiable with respect to x, and @xV and

@2xV are continuous and bounded by C; moreover, jV.t; 0; ı0/j � C.
(i.b) For any .t; x/ 2 Œ0;T��R

d, the map P2.Rd/ 3 � 7! V.t; x; �/ is fully C2;
the function Œ0;T��R

d �P2.Rd/�R
d 3 .t; x; �; v/ 7! @�V.t;w; �/.v/ 2

R
d�d is continuous and bounded by C, and the functions Œ0;T� � R

d �
P2.Rd/ � R

d 3 .t; x; �; v/ 7! @v@�V.t; x; �/.v/ 2 R
m�d�d and Œ0;T� �

R
d �P2.Rd/�R

d �R
d 3 .t;w; �; v; v0/ 7! @2�V.t; x; �/.v; v0/ 2 R

m�d�d

are continuous and bounded by C.
(i.c) The map Œ0;T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7! @�V.t; x; �/.v/ 2

R
m�d is differentiable in x, the partial derivative @x@�V W Œ0;T��P2.Rd/�

R
d 3 .t; x; �; v/ 7! @x@�V.t;w; �/.v/ 2 R

m�d�d being continuous and
bounded by C.

(i.d) For any t 2 Œ0;T�, for any x; x0 2 R
d, v; v0; Qv; Qv0 2 R

d and �;�0 2
P2.Rd/,

j@2xV.t; x; �/ � @2xV.t; x0; �0/j � C
�jx � x0j C W1.�; �

0/
�
;

j.@v@�V; @x@�V/.t; x; �/.v/ � .@v@�V; @x@�V/.t; x0; �0/.v0/j
� C

�jx � x0j C jv � v0j C W1.�; �
0/
�
;

j@2�V.t; x; �/.v; Qv/ � @2�V.t; x0; �0/.v0; Qv0/j
� C

�jx � x0j C jv � v0j C j Qv � Qv0j C W1.�; �
0/
�
:
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(ii) For any x 2 R
d and � 2 P2.Rd/, the function Œ0;T� 3 t 7! V.t; x; �/

is continuously differentiable and @tV is at most of linear growth in .x; �/,
uniformly in t, and is jointly continuous in all the variables.

The set Sm is the space we use below for investigating existence and uniqueness
of a solution to (5.13). In short time, our main result now takes the following form:

Theorem 5.10 Under assumption Smooth Coefficients Order 2, there exists a
constant c D c.L/, c not depending upon � , such that, for T � c, the function
U defined in (5.7) is in Sm and satisfies the corresponding form of the PDE (5.13)
when the coefficients are independent of the variables z and z0, and � and �0 are
constant.

Furthermore, uniqueness also holds in the class Sm.

Theorem 5.11 Under assumption Conditional MKV FBSDE in Small Time,
and provided that � and �0 are bounded, there exists at most one solution to the
PDE (5.13) in the class Sm, whatever the length T is.

Notice that Theorem 5.11 still holds under the weaker assumption Conditional
MKV FBSDE in Small Time. In particular, � and �0 may not be constant and
B and F may depend on .z; z0/.

Extension to arbitrary time intervals will be discussed in Section 5.4. The
principle for extending the result from small to long horizons has been already
discussed in Chapter (Vol I)-4. Basically, it is still the same: the goal is to prove that,
throughout the induction used to extend the result, the master field remains in a space
of admissible boundary conditions for which the length of the interval of solvability
can be bounded from below. Generally speaking, this requires, first to isolate a class
of functions on R

d � P2.Rd/ in which the master field remains at any time, and
second, to control the Lipschitz constant of the master field, uniformly along the
induction. In our case, the Lipschitz constant means the Lipschitz constant in both
the space variable and the measure argument. In Section 5.4, we give two examples,
taken from Subsection 4.4.4, for which the Lipschitz constant of the master field
can indeed be controlled. In both cases, the forward-backward system derives from
a mean field game.

5.2 First-Order Smoothness for Small Time Horizons

The purpose of this section is to prove that, in small time, the mapping U given
in Definition 5.2 satisfies the smoothness property required to apply the chain rule.
We prove this by showing that the stochastic flows defined in (5.2) and (5.6) are
differentiable with respect to 
 2 L2.˝1;F1

t ;P
1IRd/, x 2 R

d and � 2 P2.Rd/.
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Since we now assume that � and �0 are constant and B and F are independent
of Meme Remarque concernant z0, we rewrite these equations for the sake of
definiteness:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt;

s D B

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s
�
ds C �dWs C �0dW0

s ;

dYt;

s D �F

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;

s
�
ds C Zt;


s dWs

CZ0It;
s dW0
s ; s 2 Œt;T�;

Xt;

t D 
; Yt;


T D G
�
Xt;


T ;L1.X
t;

T /
�
;

and

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXt;x;�
s D B

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s

�
ds C �dWs C �0dW0

s ;

dYt;x;�
s D �F

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s

�
ds

CZt;x;�
s dWs C Z0It;x;�s dW0

s ; s 2 Œt;T�;
Xt;x;�

t D x; Yt;x;�
T D G

�
Xt;x;�

T ;L1.Xt;

T /
�
;

where � D L1.
/.
Taking advantage of the fact that the coefficients are independent of z and z0, we

shall drop the processes Zt;
 , Z0It;
 , Zt;x;� and Z0It;x;� in the above equations. Instead,
using the convenient notations Es D EŒ � jFs� and E

0
s D EŒ � jF0

s �, we shall write:

8
ˆ̂
<

ˆ̂
:

Xt;

s D 
 C

Z s

t
B
�
r;Xt;


r ;L1.Xt;

r /;Y

t;

r

�
dr C �Ws C �0W0

s ;

Yt;

s D Es

� Z T

s
F
�
r;Xt;


r ;L1.Xt;

r /;Y

t;

r

�
dr C G

�
Xt;


T ;L1.X
t;

T /
�
	

;

(5.15)

for s 2 Œt;T�, and

8
ˆ̂
<

ˆ̂
:

Xt;x;�
s D x C

Z s

t
B
�
r;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
dr C �Ws C �0W0

s ;

Yt;x;�
s D Es

� Z T

s
F
�
r;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
dr C G

�
Xt;x;�

T ;L1.Xt;

T /
�
	

;

(5.16)

for s 2 Œt;T�, where � D L1.
/. Obviously, the mapping P2.Rd/ 3 � 7!
.Xt;x;�;Yt;x;�/ 2 S

2.Œt;T�IRd/ � S
2.Œt;T�IRm/ may be canonically lifted into

L2.˝1;F1
t ;P

1IRd/ 3 
 7! .Xt;x;
 ;Yt;x;
 /, the image of which just reads as a new
notation for the solution of the FBSDE (5.16). This new notation will be useful as it
permits to keep track of the dependence upon the original random variable 
 which
has � as distribution.

Throughout the proof, we use the notation k�kp for the Lp norm, p 2 Œ1;1�, of
a random variable � 2 Lp.˝1;F1;P1IRd/. Also, we assume T � 1.
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5.2.1 Warm-Up: Linearization

We start with a weaker version of assumption Smooth Coefficients Order 2, in
which coefficients are just required to be once continuously differentiable.

François: when we say that h could be B of F, shouldn’t we mention ‘up to re-
ordering of the variables x, � and y and regrouping .x; y/ into a single variable w’.

If we do that, we may want to do it earlier as well.

Assumption (Smooth Coefficients Order 1). There exist two constants
�;L � 0 such that, for h W Œ0;T��R

q �P2.Rd/ 3 .t;w; �/ 7! h.t;w; �/ 2 R
l

being B, F, or G with q D d C m in the first two cases and q D d in the last
cases, l D d in the first case, l D m in the second and third cases, and h being
independent of t when equal to G, it holds that:

(A1) h is once differentiable with respect to w and the partial derivative @wh W
Œ0;T� � R

q � P2.Rd/ ! R
l�q is continuous and bounded by L.

(A2) For any .t;w/ 2 Œ0;T� � R
q, the mapping P2.Rd/ 3 � 7! h.t;w; �/ is

L-differentiable; for all .t;w; �/ 2 Œ0;T� � R
q � P2.Rd/, the function

R
d 3 v 7! @�h.t;w; �/.v/ has a version such that the mapping Œ0;T� �

R
q�P2.Rd/�R

d 3 .t;w; �; v/ 7! @�h.t;w; �/.v/ 2 R
l�d is continuous

and bounded by L.
(A3) For any t 2 Œ0;T�, the function R

q � P2.Rd/ 3 .w; �/ 7! @wh.t;w; �/
is � -Lipschitz, namely, for all w;w0 2 R

q and all �;�0 2 P2.Rd/,

j@wh.t;w; �/ � @wh.t;w0; �0/j � �
�jw � w0j C W1.�; �

0/
�
:

Similarly, for all v; v0 2 R
d,

j@�h.t;w; �/.v/�@�h.t;w0; �0/.v0/j� � �
�jw�w0jCjv�v0jCW1.�; �

0/
�
:

(A4) jh.t; 0; ı0/j is bounded by � .

From an argument already used in Subsection 5.1.5, we see that assumption
Smooth Coefficients Order 1 implies (5.14).

Revisiting the Stability Estimates for the Original FBSDE System
As a consequence of Theorem 5.4, we have the following bounds:

Lemma 5.12 There exist two constants c D c.L/ > 0 and C � 0 such that, for
T � c, for any t 2 Œ0;T�, x 2 R

d, 
 2 L2.˝1;F1
t ;P

1IRd/ and � 2 P2.Rd/,
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Et

h
sup

t�s�T

�jXt;

s j2 C jYt;


s j2�
i1=2 � C

�
1C j
j C k
k2

�
;

E

h
sup

t�s�T

�jXt;x;�
s j2 C jYt;x;�

s j2�
i1=2 � C

�
1C jxj C k
k2

�
;

(5.17)

and, for any x0 2 R
d, 
 0 2 L2.˝1;F1

t ;P
1IRd/ and �0 2 P2.Rd/,

Et

h
sup

t�s�T

�jXt;

s � Xt;
0

s j2 C jYt;

s � Yt;
0

s j2�
i1=2

� C
�j
 � 
 0j C k
 � 
 0k2

�
;

E

h
sup

t�s�T

�jXt;x;�
s � Xt;x0;�0

s j2 C jYt;x;�
s � Yt;x;�0

s j2�
i1=2

� C
�jx � x0j C W2.�; �

0/
�
:

(5.18)

Observe in fact that the application of Theorem 5.4 is not entirely licit since
.Xt;x;�;Yt;x;�;Zt;x;�;Z0It;x;�/ is not the solution of a McKean-Vlasov FBSDE, the
flow .L1.Xt;


s //t�s�T in the coefficients reading as a parameter. However, the proof
of Theorem 5.4 may be easily adapted. This will be clarified in the proof of
Proposition 5.13 below.

As made clear by the statement of Lemma 5.12, it will be useful to use the
notation S

2.Œt;T�IRq/ for the space of continuous and .Fs/t�s�T -adapted process
with values in R

q.
In the statement above, the notation c D c.L/ emphasizes the fact that c only

depends on the Lipschitz constant L of assumption Smooth Coefficients Order 1.
In contrast, the constant C may depend upon the other parameter � appearing in
(A3) and (A4), but there is no need to keep track of this dependence for our current
purposes.

We now make a crucial observation: the two bounds in (5.18) are not optimal.
Thanks to the fact that the coefficients � and �0 are constant and to the fact that
the derivatives of the coefficients in the direction � are bounded in L1, the two
bounds (5.18) in expectations can be turned into pointwise bounds.

Proposition 5.13 There exist two constants c D c.L/ > 0 and C � 0 such that, for
T � c, for any t 2 Œ0;T�, x; x0 2 R

d, 
; 
 0 2 L2.˝1;F1
t ;P

1IRd/ and�;�0 2 P2.Rd/,
with P-probability 1 it holds:

sup
t�s�T

�jXt;

s � Xt;
0

s j C jYt;

s � Yt;
0

s j� � C
�j
 � 
 0j C k
 � 
 0k1

�
;

sup
t�s�T

�jXt;x;�
s � Xt;x0;�0

s j C jYt;x;�
s � Yt;x0;�0

s j� � C
�jx � x0j C W1.�; �

0/
�
:
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Proof. The proof relies on two main observations. The first one is to notice that the
coefficients are L-Lipschitz continuous in the direction � with respect to the 1-Wasserstein
distance W1, which is of course stronger than the regularity assumption used in Theorem 5.4,
where coefficients are just assumed to be Lipschitz continuous with respect to W2. The second
observation is that � and �0 are constant.

First Step. Based on these observations, we compute the difference between the forward

components .Xt;

s /t�s�T and .Xt;
0

s /t�s�T . By Gronwall’s lemma we get, for T � 1, for a
constant C only depending on L and for t � s � T ,

sup
s�u�T

jXt;

u � Xt;
0

u j

� jXt;

s � Xt;
0

s j C C
Z T

s

�
jYt;


u � Yt;
0

u j C E
1
�jXt;


u � Xt;
0

u j�
�

du:

(5.19)

Taking the expectation under P1, we obtain, for T � c, with c > 0 only depending on L,

sup
s�u�T

jXt;

u � Xt;
0

u j � jXt;

s � Xt;
0

s j C E
1
�jXt;


s � Xt;
0

s j�

C C
Z T

s

�
jYt;


u � Yt;
0

u j C E
1
�jYt;


u � Yt;
0

u j�
�

du;

(5.20)

where we allow the constant C to increase from line to line.

Second Step. For t � r � s � T , we now write:

Er
�jYt;


s � Yt;
0

s j� � Er

hˇ
ˇG
�
Xt;


T ;L1.X
t;

T /
� � G

�
Xt;
0

T ;L1.Xt;
0

T /
�ˇ
ˇ
i

C Er

� Z T

s

ˇ
ˇF
�
u;Xt;


u ;L1.Xt;

u /; Y

t;

u

� � F
�
u;Xt;
0

u ;L1.Xt;
0

u /; Yt;
0

u

�ˇ
ˇdu

	

;

from which we get:

Er
�jYt;


s � Yt;
0

s j� � C
�

sup
r�u�T

Er

h
jXt;


u � Xt;
0

u j C E
1
�jXt;


u � Xt;
0

u j�
i�

C C
Z T

s
Er
�jYt;


u � Yt;
0

u j�du:

By (5.20), we get:

Er
�jYt;


s � Yt;
0

s j� � C
�
jXt;


r � Xt;
0

r j C E
1
�jXt;


r � Xt;
0

r j�
�

C C
Z T

s
Er

hˇ
ˇYt;


u � Yt;
0

u

ˇ
ˇC E

1
�ˇ
ˇYt;


u � Yt;
0

u

�i
du:

Taking the expectation under P1 and appealing to Gronwall’s lemma once again, we get:

sup
r�s�T

Er
�jYt;


s � Yt;
0

s j� � C
�
jXt;


r � Xt;
0

r j C E
1
�jXt;


r � Xt;
0

r j�
�
;
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where we used the fact that E1ŒEŒ � jFr�� D EŒE1Œ � �jFr�, see Lemma 5.16 at the end of the
subsection for a proof. In particular, choosing r D s in the above left-hand side, we get, for
T small enough:

jYt;

s � Yt;
0

s j � C
�
jXt;


s � Xt;
0

s j C E
1
�jXt;


s � Xt;
0

s j�
�
:

Plugging this estimate into (5.20), we get:

sup
s�u�T

jXt;

u � Xt;
0

u j � C
�
jXt;


s � Xt;
0

s j C E
1
�jXt;


s � Xt;
0

s j�
�
: (5.21)

Choosing s D t, we easily complete the proof of the first inequality. The second inequality
easily follows from the same strategy. ut

The strategy for investigating the derivatives of the solutions to (5.15) and (5.16)
is standard. We identify the derivatives with the solutions of linearized systems,
obtained by formal differentiation of the original equation. For that reason, the
analysis of the differentiability relies on some preliminary stability estimates for
linear FBSDEs of the conditional McKean-Vlasov type.

Linearized System
Generally speaking, we are dealing with a linear FBSDE of the form:

Xs D �C
Z s

t
ıB
�
r; �r; QX0

r

��
#r; QX 0

r

�
dr;

Ys D Es

� Z T

s
ıF
�
r; �r; QX0

r

��
#r; QX 0

r

�
dr C ıG

�
XT ; QX0

T

��
XT ; QX 0

T

�
	

;

(5.22)

for s 2 Œt;T�, where � is an initial condition in L2.˝1;F1
t ;P

1IRd/, � D .X;Y/ and
� 0 D .X0;Y0/ are solutions of (5.15) or (5.16), # D .X ;Y/ denotes the unknowns
in the above equation and X 0 is an auxiliary process, which may be X itself (in
which case it is unknown). As usual, the symbol 	 denotes an independent copy
on . Q̋ 1; QF1; QP1/. The processes X, X0, X and X 0 have the same dimension, the
same being true for the processes Y, Y0 and Y . The coefficients read as measurable
mappings:

ıB W Œ0;T� �
h�
R

d � R
m
� � L2. Q̋ 1; QF1; QP1IRd/

i2 ! R
d

�
r; ..x; y/; QX/; ..u; v/; QU/� 7! ıB

�
r; .x; y/; QX��.u; v/; QU�;

ıF W Œ0;T� �
h�
R

d � R
m
� � L2. Q̋ 1; QF1; QP1IRd/

i2 ! R
m

�
r; ..x; y/; QX/; ..u; v/; QU/� 7! ıF

�
r; .x; y/; QX��.u; v/; QU�;

ıG W
h
R

d � L2. Q̋ 1; QF1; QP1IRd/
i2 ! R

m

�
..x; y/; QX/; ..u; v/; QU/� 7! ıG

�
.x; y/; QX��.u; v/; QU�:

Here is an example for ıB, ıF, and ıG.



348 5 Classical Solutions to the Master Equation

Example 5.14. As a typical example for the coefficients ıB, ıF, and ıG, we may
think of the derivatives, with respect to some parameter �, of the original coefficients
B, F, and G when computed along some couple �� D .X�;Y�/ solving (5.1). As for
the parameterization by �, we may think of the parameterization with respect to the
initial condition which is applied to the entire system.

The exact form of the coefficients ıB, ıF, and ıG can then be derived by
replacing B, F, and G by a generic continuously differentiable Lipschitz function
h W Œ0;T��.Rd �R

m/�P2.Rd/ ! R
l as in assumption Smooth Coefficients Order

1, and by applying the following procedure. Given such a generic h, we consider a
process of the form:

�
h
�
r; ��r ;L1.X�r /

��

r2Œt;T�;

where R 3 � 7! .��r /r2Œt;T� 2 S
2.Œt;T�IRd/ � S

2.Œt;T�IRm/ is differentiable with
respect to �, with derivatives taken in the aforementioned space:

��r j�D0 D �r;
d

d� j�D0
��r D #r; r 2 Œt;T�;

the process .#r/r2Œt;T� taking its values in R
d � R

m and, for the moment, having
nothing to do with the solution of (5.22). Then, it is easy to check that the mapping
R 3 � 7! .h.r; ��r ;L1.X�r ///r2Œt;T� 2 S

2.Œt;T�IRq/ is differentiable and that the
derivative reads as follows:

@h.r; �r; QXr/.#r; QXr/

D @wh
�
r; �r;L1.Xr/

�
#r C QE1�@�h

�
r; �r;L1.Xr/

�
. QXr/ QXr

�
;

(5.23)

where Xr denotes the first d-dimensional component of Vr. Of course, if h only
acts on .Xr;L1.Xr//r2Œt;T� instead of .�r;L1.Xr//r2Œt;T�, then differentiability is
understood accordingly.

In Example 5.14, the coefficients ıB, ıF, and ıG are obtained by replacing
h by B, F, and G and by computing @B, @F and @G accordingly. We then have
.ıB; ıF; ıG/ D .@B; @F; @G/.

Leaving Example 5.14 and going back to the general case, we apply the
same procedure: in order to specify the form of ıB, ıF, and ıG together with
the assumptions they satisfy, it suffices to make explicit the generic form of a
function ıH that may be ıB, ıF, or ıG and to detail the assumptions it satisfies.
Given a square-integrable process V D .Vr/r2Œt;T�, possibly matching .Xr/r2Œt;T�
or .�r/r2Œt;T�, together with another square-integrable process .Vr/r2Œt;T�, possibly
matching .Xr/r2Œt;T� or .#r/r2Œt;T�, we assume that ıH.r;Vr; QX0

r/ acts on .Vr; QX 0
r / in

the following way:
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ıH
�
r;Vr; QX0

r

��
Vr; QX 0

r

� D ıH`

�
r;Vr; QX0

r

��
Vr; QX 0

r

�C ıHa.r/; (5.24)

where ıHa.r/ is square-integrable and ıH`.r;Vr; QX0
r/ acts linearly on .Vr; QX 0

r / in the
following sense:

ıH`.r;Vr; QX0
r/.Vr; QX 0

r / D ıh`.r;Vr; QX0
r/Vr C QE1�ı QH`.r;Vr; QX0

r/
QX 0
r

�
: (5.25)

Here ıh`.r; �/ and ı QH`.r; �/ are maps from R
q � L2. Q̋ 1; QF1; QP1IRd/ into R

l�q and
from R

q � L2. Q̋ 1; QF1; QP1IRd/ into L2. Q̋ 1; QF1; QP1IRl�d/ respectively, for suitable
q and l. Moreover, there exist two constants �;L � 0 such that, for r 2 Œ0;T�,
w;w0 2 R

q and QX; QX0 2 L2. Q̋ 1; QF1; QP1IRd/,

ˇ
ˇıh`.r;w; QX/ˇˇ � L; jı QH`.r;w; QX/j � L; (5.26)

the second bound holding with QP1-probability 1, and,

ˇ
ˇıh`.r;w; QX/ � ıh`.r;w0; QX0/

ˇ
ˇ � �

h
jw � w0j C QE1�j QX � QX0j�

i
;

jı QH`.r;w; QX/ � ı QH`.r;w
0; QX0/j

� �
h
jw � w0j C j QX � QX0j C QE1�j QX � QX0j�

i
;

(5.27)

the second bound holding with QP1-probability 1. Conditions (5.26) and (5.27)
must be compared with assumption Smooth Coefficients Order 1, the constant
L in (5.26) playing the role of L in assumption Smooth Coefficients Order 1. It is
worth mentioning that the constant L has a major role in the sequel as it dictates the
size of the time interval on which all the estimates derived in this section hold.

The comparison between (5.26)–(5.27) and assumption Smooth Coefficients
Order 1 may be made more explicit within the framework of Example 5.14.

Example 5.15 (Continuation of Example 5.14). Conditions (5.26) and (5.27)
read as follows when ıh`.r;Vr; QX0

r/ D @wh.r; �r;L1.Xr// and ı QH`.r;Vr; QX0
r/ D

@�h.r; �r;L1.Xr//. QX0
r/ in the decomposition (5.23):

1. Equation (5.26) expresses the fact that the derivatives of h in the directions w
and � are bounded in L1. Importantly and as already suggested, the constant L
corresponds to L in assumption Smooth Coefficients Order 1.

2. Equation (5.27) says that the derivatives in the directions w and � are Lipschitz
continuous.

Conditioning on the Product Space
We now provide several technical lemmas that we shall use repeatedly throughout
the section.
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Lemma 5.16 Let 	 be an R-valued integrable random variable defined on
.˝;F ;P/. Then, P - almost surely, it holds that:

E
1
�
EŒ	jFt�

� D E
0
�
E
1.	/jF0

t

� D E
�
E
1.	/jFt

� D EŒ	jF0
t �:

Proof. Without any loss of generality, we can assume that 	 is F0 ˝ F1-measurable.
Consider a bounded F0

t ˝F1
t -measurable random variable �with values in R. Integrating

first with respect to the variable !1, we have:

E
�
�E1.	/

� D E
�
E
1.�/	

�
:

Notice that E1.�/, seen as a random variable from˝0�˝1 to R, is Ft-measurable. Therefore,

E
�
�E1.	/

� D E
�
E
1.�/EŒ	jFt�

�
:

Again, integrating first with respect to !1 in the right-hand side, we get:

E
�
�E1.	/

� D E
�
�E1

�
EŒ	jFt�

��
:

By the same argument as above, E1.EŒ	jFt�/ is Ft-measurable. This shows that:

E
�
E
1.	/jFt

� D E
1
�
EŒ	jFt�

�
:

Now, E1.	/ may be regarded as a random variable on .˝0;F0;P0/. Therefore, for any B0 2
F0

t and B1 2 F1
t ,

E
�
1B0�B1E

1.	/
� D E

0
�
1B0E

1.	/
�
P
1ŒB1�

D E
0
�
1B0E

0ŒE1.	/jF0
t �
�
P
1ŒB1�:

Regarding E
0ŒE1.	/jF0

t � as a random variable on .˝;F ;P/, we deduce that E0ŒE1.	/jF0
t � D

EŒE1.	/jFt�. Finally, choosing B1 D ˝1 in the above equality, we get E0ŒE1.	/jF0
t � D

EŒ	jF0
t �, hence completing the proof. ut

5.2.2 Estimate of the Solution to the Linearized Sysem

Part of our analysis relies on stability estimates for systems of a more general form
than (5.22). Indeed we need to analyze systems of the form:

Xs D �C
Z s

t
ıB
�
r; N�r; QX00

r

�� N#r; QX 00
r

�
dr;

Ys D Es

� Z T

s
ıF
�
r; N�r; QX00

r

�� N#r; QX 00
r

�
dr C ıG

�
XT ; QX0

T

��
XT ; QX 0

T

�
	

;

(5.28)

the difference between (5.28) and (5.22) being that the coefficients (except for the
terminal condition) may depend on processes N# and X 00 other than N� , X00, though
of the same dimensions. Observe that the unknown X appears only once, in ıG.
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Notation. For � 2 ŒT; 1�, a pair # D .#s D .Xs;Ys//s2Œt;T� with values in
S
2.Œt;T�IRd/� S

2.Œt;T�IRm/ and a pair of random variables .X; �/ with values in a
Euclidean space, we let:

Es.#/ D jXsj C � jYsj: (5.29)

Note that Es.#/ depends on � , even though we omit this dependence in the notation.
We also let:

Ra.s/ D Es

�

� jıGa.T/j C
Z T

t

ˇ
ˇ
�
ıBa.r/; ıFa.r/

�ˇ
ˇdr

	

D Es

�

� jıGa.T/j C
Z T

s

ˇ
ˇ
�
ıBa.r/; ıFa.r/

�ˇ
ˇdr

	

C
Z s

t

ˇ
ˇ
�
ıBa.r/; ıFa.r/

�ˇ
ˇdr:

(5.30)

We claim that:

Lemma 5.17 There exists a constant C, only depending on L, such that for any
solution # D .X ;Y/ to a system of the same type as (5.28), it holds, with
probability 1,

Es.#/ � C




j�j CRa.s/CEs

h
�E1

�jX 0
T j�C

Z T

t

�j N#rj CE
1
�jX 00

r j��dr
i�

: (5.31)

Proof.

First Step. We start with the trivial case when the coefficients ıB` and ıF` and ı QG` are null.
See (5.24) and (5.25) for the notations replacing H therein by B, F or G. Then, (5.28) reads
as a system driven by the linear part ıg` which appears in the decomposition of ıG in the
form (5.25), plus a remainder involving ıBa, ıFa and ıGa. Then, we have, for all s 2 Œt; T�,

sup
s�r�T

jXrj � jXsj C
Z T

s
jıBa.r/jdr;

while,

jYsj � LEs
�jXT j�C Es

�jıGa.T/j
�C

Z T

s
Es
�jıFa.r/j

�
dr;

so that:

jYsj � LjXsj C Es
�jıGa.T/j j�C

Z T

s
Es
�jıBa.r/j C jıFa.r/j

�
dr

� Lj�j C C


Z s

t
jıBa.r/jdr C Es

�jıGa.T/j
�C

Z T

s
Es
�jıBa.r/j C jıFa.r/j

�
dr

�

;
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for a constant C only depending on L. Therefore,

Es.#/ � C
�j�j C Ra.s/

�
:

Second Step. When ıB` and ıF` are nonzero, we view them as parts of ıBa and ıFa when
evaluated along the values of . N�;X00; N# ;X 00/. Similarly, we can see ı QG` as a part of ıGa

when evaluated along the values of .XT ; QX0
T ;X 0

T/. We are thus led back to the previous case,
but with a generalized version of the remainder term Ra. The analysis of the new remainder
may be split into three pieces: a first term involving ıb` and ıf`; a second term involving ı QB`,
ı QF` and ı QG`; a last term involving ıBa, ıFa and ıGa, corresponding to the original Ra. As a
final bound, we get:

Es.#/ � C




j�j C �Es

hˇ
ˇ QE1�ı QG`.XT ;X

0
T/

QX 0
T

�ˇ
ˇC ˇ

ˇıGa.T/
ˇ
ˇ
i

C Es

� Z T

t

�ˇ
ˇ.ıb`; ıf`/

�
s; N�r; QX00

r

� N#r

ˇ
ˇC ˇ

ˇ QE1�.ı QB`; ı QF`/. N�s; QX00
s /

QX 00
s

�ˇ
ˇ

C ˇ
ˇ.ıBa; ıFa/.r/

ˇ
ˇ
�

dr

	�

:

By boundedness of .ıb`; ıf`/ and of .ı QB`; ı QF`; ı QG`/, we get:

Es.#/ � C




j�j C Ra.s/C Es

h
� QE1�j QX 0

T j�C
Z T

t
Es

h
j N#rj C QE1�j QX 00

r j�
i
dr
i�

; (5.32)

which completes the proof. ut

In particular, we have the following useful result for systems of the form (5.22)
obtained by requiring # D N# together with X 0 D X 00 in (5.31), and setting � small
enough.

Corollary 5.18 There exist two constants c;C > 0, only depending on L, such that,
for T � �2 � c and for any solution # to a system of the type (5.22), it holds with
P-probability 1:

Es.#/ � C




j�j C Ra.s/C Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

uj�du

	�

C C

�

Z T

t




j�j C Ra.r/C Er

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

uj�du

	�

dr;

sup
t�s�T

Es.#/ � C




j�j C sup
t�s�T

Ra.s/ (5.33)

C sup
t�s�T

Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

uj�du

	�

:
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When # D # 0, it holds with P-probability 1,

Es.#/ � C
h
j�j C k�k1 C Ra.s/C E

1
�
Ra.s/

�i

C C

�

Z T

t

h
j�j C k�k1 C Ra.r/C E

1
�
Ra.r/

�i
dr;

sup
t�s�T

Es.#/ � C
h
j�j C k�k1 C sup

t�s�T

�
Ra.s/C E

1
�
Ra.s/

��i
:

(5.34)

Proof.

First Step. We start with the proof of (5.33). We rewrite (5.31) with the prescription # D N#
and X 0 D X 00:

Es.#/ � C




j�j C Ra.s/C Es

�

�E1
�jX 0

T j�C
Z T

t

�j#uj C E
1
�jX 0

u j��du

	�

:

For t � r � s � T , taking conditional expectation given Fr, we get:

Er
�
Es.#/

� � C




j�j C Er
�
Ra.s/

�C Er

�

�E1
�jX 0

T j�C
Z T

t

�j#uj C E
1
�jX 0

u j��du

	�

� C




j�j C Ra.r/C Er

�

�E1
�jX 0

T j�C
Z T

t

�j#uj C E
1
�jX 0

u j��du

	�

;

(5.35)
where we used the equality ErŒRa.s/� D Ra.r/. Observe now from (5.29) that:

T sup
r�u�T

Er
�j#uj� � �2 sup

r�u�T
Er
�j#uj� � � sup

r�u�T
Er
�
Eu.#/

�
;

from which we get:

sup
r�s�T

Er
�
Es.#/

� � C




j�j C Ra.r/C Er

�

�E1
�jX 0

T j�C
Z r

t
j#ujdu C

Z T

t
E
1
�jX 0

u j�du

	�

C C� sup
r�u�T

Er
�jEu.#/j

�
:

Choosing � small enough in (5.31), we obtain:

sup
r�s�T

Er
�
Es.#/

� � C




j�j C Ra.r/C Er

�

�E1
�jX 0

T j�C
Z r

t
j#ujdu C

Z T

t
E
1
�jX 0

u j�du

	�

:
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Choosing r D s and using the same trick as above for controlling # , we finally have:

Es.#/ � C




j�j C Ra.s/C Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

u j�du

	�

C C
Z s

t
j#ujdu

� C




j�j C Ra.s/C Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

u j�du

	�

C C

�

Z s

t
Eu.#/du:

By Gronwall’s lemma, we deduce:

Es.#/ � C




j�j C Ra.s/C Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

u j�du

	�

C C

�

Z T

t




j�j C Ra.r/C Er

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

u j�du

	�

dr;

where we used the fact that T � �2. Then, taking the supremum over s, we get:

sup
t�s�T

Es.#/ � C




j�j C sup
t�s�T

Ra.s/C sup
t�s�T

Es

�

�E1
�jX 0

T j�C
Z T

t
E
1
�jX 0

u j�du

	�

:

Second Step. Whenever X D X 0, (5.35) reads:

Er
�
Es.#/

� � C




j�j C Ra.r/C Er

�

�E1
�jXT j�C

Z T

t

�j#uj C E
1
�jXuj��du

	�

:

Taking expectation under P1 and invoking Lemma 5.16, we get:

Er

h
E
1
�
Es.#/

�i � C




k�k1 C E
1
�
Ra.r/

�C Er

�

�E1
�jXT j�C

Z T

t
E
1
�j#uj�du

	�

:

Adding the two inequalities, we obtain:

Er
�
Es.#/

�C Er

h
E
1
�
Es.#/

�i � C




j�j C k�k1 C Ra.r/C E
1ŒRa.r/�

C Er

�

�E1
�jXT j�C

Z T

t

�j#uj C E
1
�j#uj��du

	�

:

Choosing s D T and then � small enough, we get a bound for E1ŒjXT j�, which basically says
that we can remove E

1ŒjXT j� in the above right-hand side. Repeating the same computations
as those developed in the first step to handle (5.35), we deduce:

Es.#/ � C
�
j�j C k�k1 C Ra.s/C E

1
�
Ra.s/

��

C C

�

Z T

t

�
j�j C Ra.r/C k�k1 C E

1
�
Ra.r/

��
dr;

together with:

sup
t�s�T

�
Es.#/C E

1
�
Es.#/

�� � C
h
j�j C k�k1 C sup

t�s�T

�
Ra.s/C E

1
�
Ra.s/

��i
;

which completes the proof. ut



5.2 First-Order Smoothness for Small Time Horizons 355

5.2.3 Stability Estimates

The next step is to compare two solutions of (5.28), say #1 and #2, driven by two
different tuples of coefficients .ıB1; ıF1; ıG1/ and .ıB2; ıF2; ıG2/ satisfying:

ıb1` � ıb2`; ıf
1
` � ıf 2` ; ıg

1
` � ıg2`;

ı QB1` � ı QB2`; ı QF1` � ı QF2` ; ı QG1
` � ı QG2

`;

and by two different sets of inputs:

. N�1;X0;1;X00;1; N#1
;X 0;1;X 00;1/ and . N�2;X0;2;X00;2; N#2

;X 0;2;X 00;2/;

and with the same starting point �.
We denote by .Ra.s//t�s�T the process:

Ra.s/

D Es

�
ˇ
ˇ.ıG1

a � ıG2
a/.T/

ˇ
ˇC

Z T

t

ˇ
ˇ.ıB1a � ıB2a; ıF1a � ıF2a/.r/

ˇ
ˇdr

	

:
(5.36)

Recall (5.30) for the definition of Ra.s/. Also, we denote by R1
a and R2

a the remain-
ders associated with the tuples .ıB1; ıF1; ıG1/ and .ıB2; ıF2; ıG2/ through (5.30).
Then, we have:

Lemma 5.19 There exist three constants c, C, and K, with c and C only depending
on L, and K only depending on T, L, and � , such that, for T � c,

Es
�
#1 � #2

� � CRa.s/

C CEs

�

�E1
�jX 0;1

T � X 0;2
T j�C

Z T

t

�
j N#1u � N#2u j C E

1
�jX 00;1

u � X 00;2
u j�

�
du

	

C K
�
Es C E

0
s

�
�n
1 ^

�
jX1T � X2T j C jX0;1

T � X0;2
T j C E

1
�jX0;1

T � X0;2
T j�

�o

� �jX 2
T j C jX 0;2

T j� (5.37)

C
Z T

t

hn
1 ^

�
j N�1u � N�2u j C jX00;1

u � X00;2
u j C E

1
�jX00;1

u � X00;2
u j�

�o

� �j N#2u j C jX 00;2
u j�

i
du

	

;

where the symbol Es C E
0
s accounts for the fact that we consider the sum of the two

conditional expectations under P with respect to Fs and F0
s .

Notice from Lemma 5.16 that, in (5.37), E0s Œ � � also reads as EsŒE
1Œ � ��.
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Remark 5.20 Specialized to the particular case �1 D N�1 D �2 D N�2, X0;1 D
X00;1 D X0;2 D X00;2, #1 D N#1

, #2 D N#2
, X 1 D X 0;1 D X 00;1, X 2 D X 0;2 D X 00;2

and Ra D 0, Lemma 5.19 reads as a short time uniqueness result for (5.22) when
X 0 D X .

Proof. We use linearity in computing the difference of the two systems of the form (5.28)

satisfied by #1 and #2. The resulting system is linear in # D #1 � #2,  N# D N#1 �
N#2

, X 0 D X 0;1 � X 0;2, and X 00 D X 00;1 � X 00;2, but contains some remainders. We
denote these remainders byıBa,ıFa, andıGa. Using the notations introduced in (5.24)
and (5.25), they may be expanded as:

ıHa.s/ D �
ıh1`.s; N�1s ; QX00;1

s / � ıh1`.s; N�2s ; QX00;2
s /

� N#2s
C QE1��ı QH1

` .s; N�1s ; QX00;1
s / � ı QH1

` .s; N�2s ; QX00;2
s /

� QX 00;2
s

�

C ıH1
a.s/ � ıH2

a.s/;

ıGa.T/ D �
ıg1`.X

1
T ;

QX1;0T / � ıg1`.X2T ; QX0;2
T /
�
X 2

T

C QE1��ı QG1
`.X

1
T ;

QX0;1
T / � ı QG1

`.X
2
T ;

QX0;2
T /
� QX 0;2

T

�

C ıG1
a.T/ � ıG2

a.T/;

(5.38)

where ıHa may stand for ıBa or ıGa and ıH1 may stand for ıB1 or ıF1, with a
corresponding meaning for ıh1` , ı QH1

` and ıH1
a : ıh1` may be ıb1` or ıf 1` ; ı QH1

` may be ı QB1`
or ı QF1` ; ıH1

a may be ıB1a or ıF1a ; and ıH2
a may be ıB2a or ıF2a . With these notations in hand,

the terms ıHa.s/ and ıGa.T/ come from (recall (5.24)):

ıH1
�
r; N�1r ; QX00;1

r

�� N#1r ; QX 00;1
r

� � ıH2
�
r; N�2r ; QX00;2

r

�� N#2r ; QX 00;2
r

�

D ıH1
`

�
r; N�1r ; QX00;1

r

��
 N#r;  QX 00

r

�CıHa.r/;

ıG1
�
X1T ; QX0;1

T

��
X 1

T ;
QX 0;1
T

� � ıG2
�
X2T ; QX0;2

T

��
X 2

T ;
QX 0;2
T

�

D ıG1
`

�
X1T ; QX0;1

T

��
XT ;  QX 0

T

�CıGa.T/:

(5.39)

Our goal is to apply Lemma 5.17. In the statement of Lemma 5.17, we see from (5.39)
that # must be understood as # , N# as  N# , and similarly for the processes labeled with
“prime” and “double prime”. Moreover, the remainder .ıBa; ıFa; ıGa/ in the statement must
be understood as .ıBa; ıFa; ıGa/.

We estimate the remainder terms in (5.31), recalling (5.30) for the meaning of the
remainder in the stability estimate. By (5.38), the remainder can be split into three pieces
according to ıh1` , ı QH1

` and ıH1
a � ıH2

a .

First Step. We first provide an upper bound for the terms involving .ıb1`; ıf
1
` / and ıg1` . We

make use of assumption (5.27) and of the conditional Cauchy-Schwarz’ inequality. Getting
rid of the constant � in front of jıGa.T/j in (5.30), we let:

r`.s/ D Es

�
ˇ
ˇ
�
ıg1`.X

1
T ;

QX0;1
T / � ıg1`.X2T ; QX0;2

T /
�
X 2

T

ˇ
ˇ

C
Z T

t

ˇ
ˇ
�
.ıb1`; ıf

1
` /.u; N�1u ; QX00;1

u / � .ıb1`; ıf 1` /.u; N�2u ; QX00;2
u /

� N#2u
ˇ
ˇdu

	

:
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Recalling the bound (5.26) together with the Lipschitz property (5.27), we know that for a
generic function ıh1` , which may be ıb1` or ıf 1` ,

ˇ
ˇ
�
ıh1`.u; N�1u ; QX00;1

u / � ıh1`.u; N�2u ; QX00;2
u /

� N#2u
ˇ
ˇ

�
h
L ^

n
�
�
j N�1u � N�2u j C E

1
�jX00;1

u � X00;2
u j�

�oi
j N#2u j:

(5.40)

Therefore, we get, for a constant K, allowed to vary from line to line,

Es

� Z T

t

ˇ
ˇ
�
.ıb1`; ıf

1
` /.u; N�1u ; QX00;1

u / � .ıb1`; ıf 1` /.u; N�2u ; QX00;2
u /

� N#2u
ˇ
ˇdu

	

� KEs

� Z T

t

n
1 ^

�
j N�1u � N�2u j C E

1
�jX00;1

u � X00;2
u j�

�o
j N#2u jdu

	

:

Finally, the term involving ıg1` can also be handled in a similar way, provided the “bar”
process is replaced by the “non-bar” process and the “double prime” process by the “prime”
process. We thus get:

r`.s/ � KEs

�n
1 ^

�
jX1T � X2T j C E

1
�jX0;1

T � X0;2
T j�

�o
jX 2

T j

C
Z T

t

hn
1 ^

�
j N�1u � N�2u j C E

1
�jX00;1

u � X00;2
u j�

�o
j N#2u j

i
du

	

:

Second Step. We now provide an upper bound for the terms involving ı QB1` , ı QF1` or ı QG1
` . We

can make use of the bound (5.26) or the Lipschitz property (5.27). For a generic function
ı QH1

` , which may be ı QB1` or ı QF1` , we get:

ˇ
ˇ QE1��ı QH1

` .u; N�1u ; QX00;1
u / � ı QH1

` .u; N�2u ; QX00;2
u /

� QX 00;2
u

�ˇ
ˇ

� � E
1
hn
1 ^

�
j N�1u � N�2u j C jX00;1

u � X00;2
u j C E

1
�jX00;1

u � X00;2
u j�

�o
jX 00;2

u j
i
:

(5.41)

Obviously, we have a similar bound for the term involving QG`. Letting:

 QR`.s/ D Es

�
ˇ
ˇ QE1��ı QG1

`.X
1
T ;

QX0;1
T / � ı QG1

`.X
2
T ;

QX0;2
T /
� QX 0;2

T

�ˇ
ˇ

C
Z T

t

ˇ
ˇ QE1��.ı QB1`; ı QF1` /.u; N�1u ; QX00;1

u / � .ı QB1`; ı QF1` /.u; N�2u ; QX00;2
u /

� QX 00;2
u

�ˇ
ˇdu

	

;

we get:

 QR`.s/ � KE
0
s

�n
1 ^

�
jX1T � X2T j C jX0;1

T � X0;2
T j C E

1
�jX0;1

T � X0;2
T j�

�o
jX 0;2

T j

C
Z T

t

hn
1 ^

�
j N�1u � N�2u j C jX00;1

u � X00;2
u j C E

1
�jX00;1

u � X00;2
u j�

�o
jX 00;2

u j
i
du

	

:

Conclusion. In order to complete the proof of the first part, notice that the terms labeled by
a directly give the remainder Ra.s/ in (5.37). ut
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Remark 5.21 As the reader may guess, the terms of the form #2, X 0;2 and X 00;2
in (5.37) will be handled by means of Corollary 5.18. However, we note that when
compared with jXsj C jYsj, the term Es.#/ used in Corollary 5.18 incorporates
an additional pre-factor � , see (5.29). Roughly speaking, both quantities are
‘equivalent’ provided � is not too small. In the sequel, we often choose � exactly
equal to c, so that jXsj C jYsj and Es.#/ are comparable.

Corollary 5.22 Consider a family of progressively measurable random paths:

�
.�
 ;X0;
 / W Œt;T� 3 s 7! .�
s ;X

0;

s /
�



;

parameterized by 
 2 L2.˝1;F1
t ;P

1IRd/, and assume that there exists a constant
( such that, for all 
1 and 
2:

sup
s2Œt;T�

h
j�
1s � �
2s j C jX0;
1

s � X0;
2
s j

i
� (

�j
1 � 
2j C k
1 � 
2k1
�
: (5.42)

Then, there exist two constants c and K0, with c only depending on L, and K0 only
depending on L, � , and (, such that for T � �2 � c, choosing in the statement of
Lemma 5.19:

. N� i
; N# i

/ D .� i;# i/; X00;i D X0;i; X 00;i D X 0;i;

with .� i;X0;i/ D .�
i ;X0;
i/ for i D 1; 2, with probability 1 and for all s 2 Œt;T�, it
holds:

sup
t�s�T

Es
�
#1 � #2

�

� K0
"

sup
t�s�T

�
Ra.s/C Es

�
T C E

1ŒT �
��

C sup
t�s�T

Es

�

�E1
�jX 0;1

T � X 0;2
T j�C

Z T

t
E
1
�jX 0;1

u � X 0;2
u j�du

	#

;

(5.43)

with:

T D
n
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�jX 2
T j C jX 0;2

T j�

C
Z T

t

hn
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�j#2u j C jX 0;2
u j�

i
du:
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When # i D .X i;Y i/, with X i D X i;0, we have, modifying the values of c and K0 if
necessary,

sup
t�s�T

Es.#
1 � #2/ (5.44)

� K0� sup
t�s�T

Ra.s/C E
1
h

sup
t�s�T

Ra.s/
i

C sup
t�s�T

Es
�
T C E

1ŒT �
��
;

where:

T C E
1
�
T
� � C

n
j�j C k�k1 C sup

t�r�T
R2

a.r/C E
1
�

sup
t�r�T

R2
a.r/

�o

^
n
E
1
h
j
1 � 
2j

�
j�j C sup

t�r�T
R2

a.r/
�i

C
�
j
1 � 
2j C k
1 � 
2k1

�

�
�
j�j C k�k1 C sup

t�r�T
R2

a.r/C E
1
h

sup
t�r�T

R2
a.r/

i�o
:

Proof.

First Step. The strategy is to make use of Lemma 5.19 and to insert (5.42) in (5.37). Since

we consider the case . N� i
; N# i

/ D .� i;# i/ and .X00;i;X 00;i/ D .X0;i;X 0;i/, (5.37) yields:

Es
�
#1 � #2

� � CRa.s/

C CEs

�

�E1
�jX 0;1

T � X 0;2
T j�C

Z T

t

�
j#1u � #2u j C E

1
�jX 0;1

u � X 0;2
u j�

�
du

	

C K0
�
Es C E

0
s

�
�n
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�jX 2
T j C jX 0;2

T j�

C
Z T

t

hn
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�j#2u j C jX 0;2
u j�

i
du

	

;

(5.45)

where K0 may depend on K and (. Letting:

T D
n
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�jX 2
T j C jX 0;2

T j�

C
Z T

t

hn
1 ^

�
j
1 � 
2j C k
1 � 
2k1

�o�j#2u j C jX 0;2
u j�

i
du;

we can rewrite (5.45) as follows:

Es
�
#1 � #2

� � CRa.s/C K0
Es
�
T C E

1ŒT �
�

C CEs

�

�E1
�jX 0;1

T � X 0;2
T j�C

Z T

t

�
j#1u � #2u j C E

1
�jX 0;1

u � X 0;2
u j�

�
du

	

:
(5.46)
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We thus recover the same setting as in the first step of the proof of Corollary 5.18. Since
T � �2, we deduce that there exist two constants c0 > 0 and K0 � 0, with c0 only depending
on L and with K0 only depending on L, � , and (, such that:

sup
t�s�T

Es
�
#1 � #2

� � K0

�

sup
t�s�T

�
Ra.s/C Es

�
T C E

1ŒT �
��

C sup
t�s�T

Es

�

�E1
�jX 0;1

T � X 0;2
T j�C

Z T

t
E
1
�jX 0;1

u � X 0;2
u j�du

	

:

Second Step. We now prove (5.44) when X i D X 0;i, for i D 1; 2. Returning to (5.46), we
then recover the same setting as in the second step of the proof of Corollary 5.18. We get:

sup
t�s�T

Es.#
1 � #2/ � K0

�
sup

t�s�T
Ra.s/C E

1
h

sup
t�s�T

Ra.s/
i

C sup
t�s�T

Es
�
T C E

1ŒT �
��
:

We now make use of (5.34) in the statement of Corollary 5.18, choosing �2 D c therein.
Following Remark 5.21, this provides a bound not only for Es.#

2/ but also for j#2s j. We
deduce that:

T � C
n
1^
�
j
1 � 
2j C k
1 � 
2k1

�oh
j�j C k�k1 C sup

t�s�T

�
R2

a.s/C E
1
�
R2

a.s/
��i
:

Then, using the fact that, for two random variables � and � 0, E1Œ� ^ � 0� � E
1Œ� �^E

1Œ� 0�, we
have:

E
1
�
T
� � C

n
k�k1 C E

1
�

sup
t�s�T

R2
a.s/

�o

^
n
E
1
h
j
1 � 
2j

�
j�j C sup

t�s�T
R2

a.s/
�i

C k
1 � 
2k1
�
k�k1 C E

1
h

sup
t�s�T

R2
a.s/

i�o
:

Finally,

T C E
1
�
T
� � C

n
j�j C k�k1 C sup

t�s�T
R2

a.s/C E
1
�

sup
t�s�T

R2
a.s/

�o

^
n
E
1
h
j
1 � 
2j

�
j�j C sup

t�s�T
R2

a.s/
�i

C
�
j
1 � 
2j C k
1 � 
2k1

�

�
�
j�j C k�k1 C sup

t�s�T
R2

a.s/C E
1
h

sup
t�s�T

R2
a.s/

i�o
:

The result easily follows. ut
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5.2.4 Analysis of the First-Order Derivatives

First-Order Derivatives of the McKean-Vlasov System
As we already explained in Examples 5.14 and 5.15, the form of the system (5.22)
has been chosen to allow the investigation of the derivative of the system of the
original FBSDE in the direction of the measure. Thus, we shall make use of the
results from Subsection 5.2.3.

To make things clear, we also recall the identification of h`, QH` and Ha in (5.23):

ıh`.t;w; QX / D @wh
�
t;w;L1. QX /�;

ı QH`.t;w; QX / D @�h
�
t;w;L1. QX /�. QX /; Ha D 0:

(5.47)

The next results state the first order differentiability of the McKean-Vlasov
system (5.15).

Lemma 5.23 Given a continuously differentiable path of initial conditions R 3
� 7! 
� 2 L2.˝1;F1

t ;P
1IRd/, t standing for the initial time in Œ0;T�, we can find a

constant c D c.L/ > 0 such that, for T � c, the path R 3 � 7! �� D .X�;Y�/ D
� t;
� 2 S

2.Œt;T�IRd/ � S
2.Œt;T�IRm/ is continuously differentiable.

Proof.

First Step. Under assumption Smooth Coefficients Order 1, existence and uniqueness of
a solution to (5.1) may be proved for a small time horizon T by a contraction argument,
see Theorem 5.4. We can approximate .X�;Y�/ as the limit of a Picard sequence �n;� D
.Xn;�;Yn;�/, defined by:

XnC1;�
s D 
� C

Z s

t
B
�
r; �n;�

r ;L1.Xn;�
r /

�
dr C �

�
Ws � Wt

�C �0
�
W0

s � W0
t

�
;

YnC1;�
s D Es

�

G
�
XnC1;�

T ;L1.XnC1;�
T /

�C
Z T

s
F
�
r; �n;�

r ;L1.Xn;�
r /

�
dr

	

;

with the initialization �0;� � 0. We can prove by induction that, for any n � 0, the mapping
R 3 � 7! �n;� D .Xn;�;Yn;�/ 2 S

2.Œt; T�IRd/ � S
2.Œt; T�IRm/ is continuously differentiable.

We give just a sketch of the proof. For the forward component, this follows from the fact
that given a continuously differentiable path R 3 � 7! h� 2 S

2.Œt; T�IR/, the path R 3
� 7! .

R s
t h�r dr/s2Œt;T� with values in S

2.Œt; T�IR/ is continuously differentiable. To handle the
backward component, it suffices to prove first that the path R 3 � 7! .EsŒh�T �/s2Œt;T�, with
values in S

2.Œt; T�IR/, is continuously differentiable, which is straightforward by means of
Doob’s inequality. This is enough to handle the terminal condition and also the driver since
we can split the integral from s to T into an integral from t to s, to which we can apply the
result used for the forward component, and an integral from t to T , which can be seen as a
new hT . In this way, we can prove that R 3 � 7! YnC1;� is continuously differentiable from
R to S

2.Œt; T�IRm/.
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The derivatives, denoted by .X n;�;Yn;�/, satisfy the system:

X nC1;�
s D �� C

Z s

t
@B
�
r; �n;�

r ; QXn;�
r

��
#n;�

r ; QX n;�
r

�
dr;

YnC1;�
s D Es

�

@G
�
XnC1;�

T ; QXnC1;�
T

��
X nC1;�

T ; QX nC1;�
T

�

C
Z T

s
@F
�
r; �n;�

r ; QXn;�
r

��
#n;�

r ; QX n;�
r

�
dr

	

;

(5.48)

where we have used the notations �� D Œd=d��
�, #n;� D .X n;�;Yn;�/ and where @B, @F,
and @G are defined according to (5.23). We thus obtain a system of the form (5.28) with
� D �nC1;�, X D X0 D XnC1;�, N� D �n;�, X00 D Xn;�, # D #nC1;�, X D X 0 D X nC1;�,
N# D #n;�, X 00 D X n;�, and �� playing the role of �.

Second Step. We now apply Lemma 5.17, noticing that the remainder Ra therein is zero,
see (5.47). We get:

Es
�
#nC1;�

� � C




j��j C Es

�

�E1
�jX nC1;�

T j�C
Z T

t

�j#n;�
r j C E

1
�jX n;�

r j��dr

	�

:

Applying the same strategy as in the proof of Corollary 5.18, we obtain, for t � r � s � T ,

Er
�
Es
�
#nC1;�

�� � C




j��j C Er

�

�E1
�jX nC1;�

T j�C
Z T

t

h
j#n;�

u j C E
1
�jX n;�

u j�
i
du

	�

:

(5.49)
Taking the expectation under P1, we deduce that:

Er

h
E
1
�jX nC1;�

s j�
i

� C




k��k1 C Er

�

�E1
�jX nC1;�

T j�C
Z T

t
E
1
�j#n;�

u j�du

	�

:

Choosing s D T in the left-hand side and then � small enough and allowing the constant C
to increase from line to line, this yields:

Er

h
E
1
�jX nC1;�

T j�
i

� C




k��k1 C Er

� Z T

t
E
1
�j#n;�

u j�du

	�

:

By plugging into (5.49), we get:

Er
�
Es
�
#nC1;�

�� � C




j��j C k��k1 C Er

� Z T

t

�
j#n;�

u j C E
1
�j#n;�

u j�
�

du

	�

;

and then, by taking the expectation under P1 once again,

Er

h
Es
�
#nC1;�

�C E
1
�
Es
�
#nC1;�

��i

� C




j��j C k��k1 C Er

� Z T

t

�
j#n;�

u j C E
1
�j#n;�

u j�
�

du

	�

:
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In particular, for T � �2,

Er

h
Es
�
#nC1;�

�C E
1
�
Es
�
#nC1;�

��i

� C
h
j��j C k��k1 C � sup

t�u�T

�
Er

h
Eu
�
#n;�

�C E
1
�
Eu
�
#n;�

��i�i
;

and, passing the supremum inside the conditional expectation and choosing r D s and
entering the supremum inside the conditional expectation in the right-hand side,

Es
�
#nC1;�

�C E
1
�
Es
�
#nC1;�

��

� C

�

j��j C k��k1 C �Es

h
sup

t�u�T

�
Eu
�
#n;�

�C E
1
�
Eu
�
#n;�

���i
	

:

By induction, we deduce that, for C� � 1=2, with probability 1 under P,

sup
t�s�T

h
Es
�
#n;�

�C E
1
�
Es
�
#n;�

��i

�
n�1X

iD0

C
�
C�
�i
�
j��j C k��k1

�
� 2C

�
j��j C k��k1

�
;

where we used the fact that #0;� D 0. Choosing � exactly equal to 1=.2C/, we get, for a new
constant C0,

sup
t�s�T

h
j#n;�

s j C E
1
�j#n;�

s j�
i

� 2C0
�
j��j C k��k1

�
:

Third Step. We now make use of (5.37) in Lemma 5.19 in order to compare #n;� and #nCj;�,
for j � 1. Clearly, the remainder Ra in (5.36) is zero since the Ra terms are here equal
to zero, recall (5.47). By the above argument, j#n;�

s j and E
1Œj#n;�

s j� are less than C0.j��j C
E
1Œj��j�/. Therefore, (5.37) with #1 D #nCj;�, #2 D #n;�, N#1 D #nCj�1;�, N#2 D #n�1;�,

X 1 D X 0;1 D X nCj;�, X 2 D X 0;2 D X n;�, X 00;1 D X nCj�1;�, X 00;2 D X n�j;�, �1 D
�nCj;�, �2 D �n;�, N�1 D �nCj�1;�, N�2 D �n�1;�, X1 D X0;1 D XnCj;�, X2 D X0;2 D Xn;�,
X00;1 D XnCj�1;�, X00;2 D Xn�1;�, yields:

Es
�
#nCj;� � #n;�

�

� CEs

�

�E1
�jX nCj;�

T � X n;�
T j�C

Z T

t

�

j#nCj�1;�
u � #n�1;�

u j C E
1
�jX nCj�1;�

u � X n�1;�
u j�

�

du

	

C K0
�
Es C E

0
s

�
�n

1^
�

jXnCj;�
T � Xn;�

T j C E
1
�jXnCj;�

T � Xn;�
T j�

�o

�
�

j��j C k��k1
�

(5.50)

C
Z T

t

hn

1^
�

j�nCj�1;�
u � �n�1;�

u j C E
1
�jXnCj�1;�

u � Xn�1;�
u j�

�o�

j��j C k��k1
�i

du

	

;

where K0 is a constant only depending on L and � .
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In order to complete the proof, it remains to estimate the difference �nCj;� � �n;�. We
start with the case j D 1. To do so, we follow the proof of Proposition 5.13. In full analogy
with (5.19), we claim that, for all s 2 Œt; T�, it holds that:

sup
t�r�s

jXnC1;�
r � Xn;�

r j � C
Z s

t

�
j�n;�

r � �n�1;�
r j C E

1
�jXn;�

r � Xn�1;�
r j�

�
dr; (5.51)

while, reproducing the second step of the proof Proposition 5.13, we obtain, for all t � r �
s � T ,

Er
�jYnC1;�

s � Yn;�
s j� � CEr

h
jXnC1;�

T � Xn;�
T j C E

1
�jXnC1;�

T � Xn;�
T j�

i

C C
Z T

s
Er

h
j�n;�

u � �n�1;�
u j C E

1
�jXn;�

u � Xn�1;�
u j�

i
du;

where C only depends on L. Plugging (5.51) into the above inequality, we deduce that:

Er
�jYnC1;�

s � Yn;�
s j� � C

Z T

t
Er

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
du:

By taking the conditional expectation in (5.51) and allowing the constant C to increase from
line to line, we get:

Er
�j�nC1;�

s � �n;�
s j� � C

Z T

r
Er

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
du

C C
Z r

t

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
du:

By taking the expectation under P1, we finally have:

Er

h
j�nC1;�

s � �n;�
s j C E

1
�j�nC1;�

s � �n;�
s j�

i

� C
Z T

r
Er

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
du

C C
Z r

t

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
du:

Therefore, taking the supremum over s 2 Œr; T� and then over r 2 Œt; T�, we obtain:

sup
t�r�s�T

Er

h
j�nC1;�

s � �n;�
s j C E

1
�j�nC1;�

s � �n;�
s j�

i

� CT sup
t�r�u�T

Er

h
j�n;�

u � �n�1;�
u j C E

1
�j�nC1;�

u � �n;�
u j�

i

C CT sup
t�u�T

h
j�n;�

u � �n�1;�
u j C E

1
�j�n;�

u � �n�1;�
u j�

i
;

(5.52)

where, to define the supremum on the first and second lines, we used the fact that, for a real-
valued process .	s/t�s�T with continuous paths such that .supt�s�T j	sj/t�s�T is integrable,
we can construct a version of the conditional expectations .ErŒ	s�/t�r�s�T such that, with
probability 1, for all t � r � s � T ,
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lim
.s0;r0/!.s;r/;s0>s;r0>r

Er0

�
	s0

� D Er
�
	s
�
:

To do so, it suffices to construct first .ErŒ	s�/t�r�T for s in a dense countable subset Q of
Œt; T�, each process .ErŒ	s�/t�r�T being right-continuous. Then, denoting by w the pathwise
modulus of continuity of the paths of 	, we observe that, for any r 2 Œt; T� and s; s0 2 Q,

ˇ
ˇErŒ	s� � ErŒ	s0 �

ˇ
ˇ � sup

t�r�T
Er
�
w.js0 � sj/�:

In order to complete the construction, we notice that the family .supt�r�T ErŒw."/�/">0
converges to 0 almost surely since it is nondecreasing in " and converges to 0 in probability as
" tends to 0. Therefore, on a common event of probability 1, all the mappings Q 3 s 7! ErŒ	s�,
for r 2 Œt; T�, extends into a continuous mapping and the resulting collection of mappings
.Œt; T� 3 s 7! ErŒ	s�/r2Œt;T� is uniformly continuous.

Also, since EsŒ	s� D 	s for all s 2 Q, the version we just constructed must satisfy, by an
obvious continuity argument, EsŒ	s� D 	s for all s 2 Œt; T�, on a common event of probability
1. In particular, supt�r�s�T ErŒ	s� � supt�s�T 	s.

Therefore, going back to (5.52) and choosing CT � 1=4 therein, we deduce that:

sup
t�s�T

h
j�nC1;�

s � �n;�
s j C E

1
�j�nC1;�

s � �n;�
s j�

i
� 1

2n
 �;

for n � 0, with:

 � D sup
t�r�u�T

Er

h
j�1;�u j C E

1
�j�1;�u j�

i
:

Importantly, observe that EŒ. �/2� < 1, the bound being uniform with respect to � in
compact subsets of R. Also, by the triangle inequality, �nCj � �n satisfies the same bound as
�nC1 � �n, for any j � 1, up to an additional multiplicative factor 2 in the right-hand side.

Returning to (5.50) and plugging the above bound, we deduce that, for a new value of the
constant K0:
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� CEs
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���j��j C k��k1 C E
1
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 n;�j��j��

i

; (5.53)

where we have let  n;� D 1 ^ .2�n �/.

Fourth Step. Take the supremum with respect to s in (5.53) and then the expectation of the
square under P. By Doob’s inequality and from the fact that � � 1, we deduce:
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h
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;
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for possibly new values of C and K0. Choosing C�2 � 1=3 and T � �2, we finally have:

E

h
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t�s�T
Es
�
#nCj;� � #n;�

�2
i

� 1

2
E

h
sup

t�s�T
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1
�
 n;�

��2
�
j��j C k��k1 C E

1
�
 n;�j��j�

�2i
;

(5.54)

for a new value of K0.
Observe now that the sequence .EŒ. n;�/2�/n�0 converges to 0, uniformly with respect

to � in compact subsets of R. Observe also that the sequence . n;�/n�0 is bounded by
1. Moreover, by continuity of the map R 3 � 7! �� 2 L2.˝1;F1

t ;P
1IRd/, the random

variables .��/�2Œa;b� are uniformly square-integrable, for any a < b. Therefore, the left-hand
side in (5.54) converges to 0 as n tends to 1, the convergence being uniform with respect to
� in compact subsets and in j � 1. By a Cauchy argument, the proof is completed. ut

We emphasize that the derivative process Œd=d��j�D0�� given by Lemma 5.23
satisfies (5.22) with � D �, with X D X0 D X0 and X D X 0 D Œd=d��j�D0X�

and with the coefficients given in (5.47). In particular, for T small enough, the
uniqueness of the solution to (5.22) (see Remark 5.20) ensures that the derivative
process at � D 0 depends only on the family .
�/�2R through 
0 and Œd=d��j�D0
�.
Thus, when 
0 D 
 and Œd=d��j�D0
� D �, we may denote by .@�Xt;
 ; @�Yt;
 / the
tangent process at 
 in the direction �. It satisfies:
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(5.55)

or equivalently, using the notation (5.23),
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(5.56)
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where we let @�� t;
 D .@�Xt;
 ; @�Yt;
 /. By linearity of the system, @�� t;
 is linear in
�. By a direct application of Corollary 5.18 – recall ıHa D 0 in the current case –
we have:

Lemma 5.24 There exist two constants c > 0 and C, only depending on L, such
that, for T � c, it holds, for any 
; � 2 L2.˝1;F1;P1IRd/, with probability 1
under P,

sup
t�s�T

j@�� t;

s j � C

�j�j C k�k1
�
; (5.57)

and

sup
t�s�T

E
1
�j@�� t;


s j� � Ck�k1: (5.58)

By taking the expectation of the square in the inequality (5.57), we deduce that
the map L2.˝1;F1

t ;P
1IRd/ 3 � 7! @�� t;
 2 S

2.Œt;T�IRd/ � S
2.Œt;T�IRm/ is

continuous, which proves that L2.˝1;F1
t ;P

1IRd/ 3 
 7! � t;
 2 S
2.Œt;T�IRd/ �

S
2.Œt;T�IRm/ is Gâteaux differentiable. The next lemma shows that the Gâteaux

derivative is continuous:

Lemma 5.25 There exist two constants c > 0 and C, with c only depending on L
and C only depending on L and � , such that, for T � c, it holds, for any 
1; 
2; � 2
L2.˝1;F1
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1IRd/, with probability 1 under P,

sup
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�
:

Proof. The first inequality is a consequence of Proposition 5.13 and of (5.44) in Corol-
lary 5.22, with R2

a D Ra D 0. The second inequality easily follows by taking expectation
under P1. ut

First-Order Derivatives of the Non-McKean-Vlasov System with Respect
to �

We reproduce the same analysis as above, but with the process � t;x;
 instead of � t;


by taking advantage of the fact that the dependence of the coefficients of the system
(5.6) upon the law of � t;
 is already known to be smooth. This permits to discuss the
differentiability of � t;x;
 in a straightforward manner. Importantly, recall that � t;x;


coincides with � t;x;� if 
 	 �. Throughout the analysis, we shall use both notations,
choosing one or the other according to the context.
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We mimic the strategy of the previous subsection. Considering a continuously
differentiable mapping R 3 � 7! 
� 2 L2.˝1;F1

t ;P
1IRd/, we prove that the

mapping R 3 � 7! .Xt;x;
� ;Yt;x;
� / 2 S
2.Œt;T�IRd/ � S

2.Œt;T�IRm/ is continuously
differentiable. The crucial insight is that, for any � 2 R, the coefficients of the
FBSDE (5.6) satisfied by � t;x;
� depend in a smooth way upon the solution � t;
� of
the FBSDE (5.2). Since we have already established the continuous differentiability
of the mapping � 7! � t;
� , it suffices now to prove that the solution of a
standard FBSDE depending on a parameter � in a continuously differentiable way
is also continuously differentiable with respect to �. The proof consists in a mere
adaptation of the proof of Lemma 5.23. We shall omit it. When 
0 D 
 and
Œd=d���D0
� D �, we shall denote the directional derivative at 
 in the � direction
by:

�
@�Xt;x;


s ; @�Yt;x;

s

�

s2Œt;T�;

seen as an element of S
2.Œt;T�IRd/ � S

2.Œt;T�IRm/. By the same argument as
above, the pair process .@�Xt;x;
 ; @�Yt;x;
 / satisfies a “differentiated” system, of the
type (5.22), namely:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@�Xt;x;

s D

Z s

t

�
@xB

�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
@�Xt;x;


r

C@yB
�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
@�Yt;x;


r

C QE1�@�B
�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
. QXt;


r /@�
QXt;


r

��
dr;

@�Yt;x;

s D Es

�

@xG
�
Xt;x;


T ;L1.Xt;

T /
�
@�Xt;x;


T

C QE1�@�G
�
Xt;x;


T ;L1.Xt;

T /
�
. QXt;


T /@�
QXt;


T

�

C
Z T

s

�
@xF

�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
@�Xt;x;


r

C@yF
�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
@�Yt;x;


r

C QE1�@�F
�
r;Xt;x;


r ;L1.Xt;

r /;Y

t;x;

r

�
. QXt;


r /@�
QXt;


r

��
dr

	

;

(5.59)

for s 2 Œt;T�. Equivalently, using the notation (5.23),

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@�Xt;x;

s D

Z s

t
@B
�
r; � t;x;


r ; QXt;

r

��
@��

t;x;

r ; @� QXt;


r

�
dr;

@�Yt;

s D Es

�

@G
�
Xt;x;


T ; QXt;

T

��
@�Xt;x;


T ; @� QXt;

T

�

C
Z T

s
@F
�
r; � t;x;


r ; QXt;

r

��
@��

t;x;

r ; @� QXt;


r

�
dr

	

;

(5.60)
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where, as usual, we have let @�� t;x;
 D .@�Xt;x;
 ; @�Yt;x;
 /. Importantly, the law of
the process @�� t;x;
 depends on 
 through the joint law L1.
; �/; here, the shorten
notation @�� t;x;�, with � D L1.
/, would be meaningless.

As uniqueness holds in small time, the solution only depends on the family
.
�/�2R through the values of 
 and �. In comparison with (5.22), we have � D 0,
� D � t;x;�, X0 D Xt;
 , # D @�� t;x;
 and X 0 D @�Xt;
 , the tangent process
@�Xt;
 being given by Lemma 5.23 and (5.55). The coefficients are of the general
shape (5.24) and (5.25). When h stands for one of the functions B, F, or G and V for
� t;x;
 or Xt;x;
 and X0 for Xt;
 , according to the cases, it holds, as in (5.47),

ıh`
�
s;Vs; QX0

s

� D @wh
�
s;Vs;L1. QX0

s/
�
;

ı QH`

�
s;Vs; QX0

s

� D @�h
�
s;Vs;L1. QX0

s/
�
. QX0

s/;

ıHa D 0:

(5.61)

Combining Proposition 5.13 with Corollaries 5.18 and 5.22, we deduce, in
analogy with Lemma 5.25:

Lemma 5.26 There exist two constants c and C, with c only depending on L
and C only depending on � , such that, for T � c, it holds, for all 
1; 
2; � 2
L2.˝1;F1

t ;P
1IRd/, with probability 1 under P,

sup
t�s�T

j@�� t;x;

s j � Ck�k1;

sup
t�s�T

j@�� t;x;
1
s � @�� t;x;
2

s j � C
�
E
1
�j
1 � 
2j j�j�C k
1 � 
2k1k�k1

�
:

(5.62)

Proof. The first bound in (5.62) is a direct consequence of (5.33) in Corollary 5.18, with
� D 0, Ra D 0 and X 0 D @�Xt;
 , combined with (5.58) in Lemma 5.24.

The second bound follows from (5.43) in Corollary 5.22, with � D 0, R2
a D Ra D 0,

�
i D � t;x;
i , # 
i D @�� t;x;
i , X0;
i D Xt;
i and X 0;i D @�Xt;
i , for i D 1; 2, combined with
Lemma 5.25. ut

We deduce:

Lemma 5.27 For T � c, with c > 0 only depending on L, for any t 2 Œ0;T� and
x 2 R

d, the function:

L2.˝1;F1
t ;P

1IRd/ 3 
 7! Yt;x;

t

is continuously Fréchet differentiable. In particular, the function P2.Rd/ 3 � 7!
U.t; x; �/ D Yt;x;�

t is L-differentiable. Moreover, for all x 2 R
d, for all 
1; 
2; � 2

L2.˝1;F1;P1IRd/, we have, with �1 D L1.
1/ and �2 D L1.
2/,
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k@�U.t; x; �1/.
1/k1 � C;

E
1
��
@�U.t; x; �1/.
1/ � @�U.t; x; �2/.
2/

�
�
�

� C
�
k
1 � 
2k1k�k1 C E

1
�j
1 � 
2j j�j�

�
:

(5.63)

Proof. We know that, for every .t; x/ 2 Œ0; T� � R
d, the mapping:

L2.˝1;F1
t ;P

1IRd/ 3 
 7! Yt;x;

t

is Gâteaux differentiable, the derivative in the direction � at point 
 reading @�Yt;x;

t .

As already argued right below Lemma 5.24, the mapping L2.˝1;F1
t ;P

1IRd/ 3 � 7!
@�Yt;x;


t 2 R
m is linear and continuous. Hence, we can find a random variable, denoted

DYt;x;

t 2 L2.˝1;F1

t ;P
1IRm�d/ such that:

@�Yt;x;

t D E

1
�
DYt;x;


t �
�
:

By the second line in (5.62), the mapping:

L2.˝1;F1
t ;P

1IRd/ 3 
 7! DYt;x;

t 2 L2.˝1;F1

t ;P
1IRm�d/

is continuous, from which we deduce that L2.˝1;F1
t ;P

1IRd/ 3 
 7! Yt;x;

t is continuously

Fréchet differentiable.
Since L2.˝1;F1

t ;P
1IRd/ 3 
 7! Yt;x;


t is the lift of P2.Rd/ 3 � 7! Yt;x;�
t D U.t; x; �/,

this shows that P2.Rd/ 3 � 7! U.t; x; �/ 2 R
m is L-differentiable. Moreover, DYt;x;


t D
@�U.t; x;L1.
//.
/. Now, the first line in (5.62) shows that

ˇ
ˇ
ˇE

1
�
@�U.t; x;L1.
//.
/�

�ˇˇ
ˇ � C1k�k1;

which proves the first line (5.63). In the same way, the second claim in (5.63) follows from
the second line in (5.62). ut

We now discuss the Lipschitz property in x of @�U.t; x; �/:

Lemma 5.28 For T � c, with c > 0 only depending on L, we can find a constant C
such that, for 
 2 L2.˝1;F1

t ;P
1IRd/ with � as distribution,

8x1; x2 2 R
d;

�
�@�U.t; x1; �/.
/ � @�U.t; x2; �/.
/

�
�1 � Cjx1 � x2j:

Proof. Thanks to the relationship @�Yt;x;

t D E

1Œ@�U.t; x;L1.
//.
/��, it suffices to discuss

the Lipschitz property in x of the tangent process .@�Xt;x;

s ; @�Yt;x;


s /s2Œt;T�, seen as an element
of S2.Œt; T�IRd/ � S

2.Œt; T�IRm/, 
 and � denoting elements of L2.˝1;F1
t ;P

1IRd/.
Basically, the strategy is the same as in the proofs of Lemmas 5.25 and 5.26. It is

based on a tailored-made version of Corollary 5.22, obtained by applying Lemma 5.12 and

Lemma 5.19 with �1 D N�1 D � t;x1;
 , �2 D N�2 D � t;x2;
 , X0;1 D X0;2 D X00;1 D X00;2 D Xt;


and X 0;1 D X 0;2 D X 00;1 D X 00;2 D @�� t;
 . Informally, it consists in choosing � D 0 and in
replacing j
1 � 
2j by jx1 � x2j and k
1 � 
2k1 by 0 in the statement of Corollary 5.22.

We end up with j@�Yt;x1;

t � @�Yt;x2;


t j � Cjx1 � x2j k�k1: ut
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Derivatives with Respect to the Space Argument
We now discuss the derivatives of U with respect to the variable x. Returning
to (5.16), it is pretty clear that the process .Xt;x;�;Yt;x;�/ can be regarded as the
solution of a standard FBSDE parameterized by the law � of some random variable

 2 L2.˝1;F1

t ;P
1IRd/. Therefore, the smoothness with respect to the parameter

x can be tackled in a standard fashion, without worrying about the McKean-
Vlasov structure. Equivalently, the result can be obtained by applying the results
of Subsection 5.2.3, with the following version of ıH.r; �/ in (5.24):

ıH`.r;Vr/.Vr/ D @xh
�
r;Vr;L1.Xt;


r /
�
Vr;

ıh`.r;Vr/ D @xh
�
r;Vr;L1.Xt;


r /
�
;

ı QH` D 0;

ıHa.r/ D 0:

(5.64)

Proceeding as before, we claim that the map R
d 3 x 7! .Xt;x;�;Yt;x;�/ 2

S
2.Œt;T�IRd/ � S

2.Œt;T�IRm/ is continuously differentiable. The tangent process
.@xXt;x;�; @xYt;x;�/ is regarded as a process with paths in S

2.Œt;T�IRd�d/ �
S
2.Œt;T�IRm�d/. On the model of (5.59), it satisfies the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@xXt;x;�
s D Id C

Z s

t

�
@xB

�
s;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
@xXt;x;�

r

C@yB
�
s;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
@xYt;x;�

r

�
dr;

@xYt;x;�
s D Es

�

@xG
�
Xt;x;�

T ;L1.Xt;

T /
�
@xXt;x;�

T

C
Z T

s

�
@xF

�
r;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
@xXt;x;�

r

C@yF
�
r;Xt;x;�

r ;L1.Xt;

r /;Y

t;x;�
r

�
@xYt;x;�

r

�
dr

	

;

(5.65)

for s 2 Œt;T�.
As a consequence, we easily get from Corollary 5.18, for T � c, with c only

depending on L, supt�s�T j@x�
t;x;�
s j � C. Recalling the identity U.t; x; �/ D �

t;x;�
t ,

we deduce that R
d 3 x 7! U.t; x; �/ is continuously differentiable and that

k@xUk1 � C, which is reminiscent of the bounds obtained in Chapter (Vol I)-4
for the Lipschitz constant of the decoupling field of a standard FBSDE. In the
same way, we can adapt Lemmas 5.25 or 5.26 in order to investigate the difference
@x�

t;x1;� � @x�
t;x2;� for two elements x1; x2 2 R

d. It can be checked that, for any
t 2 Œ0;T�, any � 2 P2.Rd/, the mapping R

d 3 x 7! @xU.t; x; �/ is C-Lipschitz
continuous. Intuitively, such a property is much simpler to prove than the continuity
of @�U because of the very simple structure of H.r; �/ in (5.64), the function @xh
being Lipschitz-continuous with respect to the first argument.
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To get the smoothness of @xU in the direction �, we may investigate the
difference @x�

t;x;�1 � @x�
t;x;�2 , with �i D L1.
i/, for 
i 2 L2.˝1;F1

t ;P
1IRd/ and

i D 1; 2. Reapplying Corollary 5.22, exactly in the same way as in the proof of
Lemma 5.26, we deduce that, for all x 2 R

d, 
1; 
2 2 L2.˝1;F1
t ;P

1IRd/,

ˇ
ˇ@xU

�
t; x;L1.
1/

� � @xU
�
t; x;L1.
2/

�ˇ
ˇ � CE

1
�j
1 � 
2j

�
; (5.66)

that is, for all �1; �2 2 P2.Rd/,

ˇ
ˇ@xU.t; x; �1/ � @xU.t; x; �2/

ˇ
ˇ � CW1.�1; �2/:

Final Statement
The following provides a complete statement about the first-order differentiability:

Theorem 5.29 For T � c, with c only depending on L, and t 2 Œ0;T�, the function
R

d � P2.Rd/ 3 .x; �/ 7! U.t; x; �/ is continuously differentiable and there exists a
constant C � 0, such that for all t 2 Œ0;T�, x 2 R

d and � 2 P2.Rd/, j@xU.t; x; �/j
is bounded by C and, for all x1; x2 2 R

d and �1; �2 2 P2.Rd/,

jU.t; x1; �1/ � U.t; x2; �2/j C j@xU.t; x1; �1/ � @xU.t; x2; �2/j
� C

�jx1 � x2j C W1.�1; �2/
�
;

(5.67)

Moreover, the function Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! @xU.t; x; �/ 2 R

m�d is
continuous. Also, it holds, for all t 2 Œ0;T�, x 2 R

d, 
 2 L2.˝1;F1
t ;P

1IRd/,

�
�@�U

�
t; x;L1.
/

�
.
/
�
�1 � C; (5.68)

and, for all 
1; 
2; � 2 L2.˝1;F1
t ;P

1IRd/, with 
1 	 �1 and 
2 	 �2,

E
1
��
@�U.t; x1; �1/.
1/ � @�U.t; x2; �2/.
2/

�
�
�

� C
h
k�k1

�jx1 � x2j C k
1 � 
2k1
�C E

1
�j
1 � 
2j j�j�

i
:

(5.69)

In particular, for each .t; x; �/ 2 Œ0;T��R
d�P2.Rd/, we can find a version (which is

necessarily unique) in L2.Rd; �IRm�d/ of the function R
d 3 v 7! @�U.t; x; �/.v/ 2

R
m�d such that the map .t; x; �; v/ 7! @�U.t; x; �/.v/ is continuous and bounded

by C and satisfies for all t 2 Œ0;T�, x1; x2 2 R
d, v1; v2 2 R

d and �1; �2 2 P2.Rd/:

ˇ
ˇ@�U.t; x1; �1/.v1/ � @�U.t; x2; �2/.v2/

ˇ
ˇ

� C
�jx1 � x2j C jv1 � v2j C W1.�1; �2/

�
:

(5.70)

We refer the reader to Subsection (Vol I)-5.3.4 for an account on the notion
of joint differentiability for functions defined on the product space R

d � P2.Rd/.
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According to the terminology introduced in Chapter (Vol I)-5, U.t; �; �/ is said to
be fully C1. Uniqueness of the jointly continuous version is discussed in Remark
(Vol I)-5.82, see also Remark 4.12.

In order to prove (5.70), we shall make use of Lemma (Vol I)-5.41, the statement
of which we recall under the new label (5.30).

Lemma 5.30 Let .u.x; �/.�//x2Rn;�2P2.Rd/ be a collection of real-valued functions
satisfying, for all x 2 R

n and� 2 P2.Rd/, u.x; �/.�/ 2 L1.Rd; �IR/, and for which
there exists a constant C such that, for all x; x0 2 R

n, and 
; 
 0; � 2 L2.˝;F ;PIRd/,

E
��

u.x;L.
//.
/ � u.x0;L.
 0//.
 0/
�
�
�

� C
h
k�k1

�jx � x0j C k
 � 
 0k1
�C E

�j
 � 
 0j j�j�
i
;

where .˝;F ;P/ is an atomless probability space. Then, for each .x; �/ 2 R
n �

P2.Rd/, we can find a version of u.x; �/.�/ 2 L1.Rd; �IR/ such that, for the same
constant C as above, for all x; x0 2 R

n, �;�0 2 P2.Rd/ and v; v0 2 R
d,

ˇ
ˇu.x; �/.v/ � u.x0; �0/.v0/

ˇ
ˇ � C

�jx � x0j C W1.�; �
0/C jv � v0j�:

We now turn to the proof of Theorem 5.29.

Proof of Theorem 5.29.

First Step. The Lipschitz property of U.t; �; �/ is a direct consequence of Proposition 5.13.
The joint continuous differentiability is a consequence of the partial continuous differentia-
bility and of the joint continuity properties of the derivatives, see Lemmas 5.27 and 5.28
together with (5.66) and the discussion right above (5.66). Obviously, (5.67) and (5.69)
follow in the same way. Moreover, (5.68) is a straightforward consequence of (5.63).

Thus, for any t 2 Œ0; T�, the existence of a version of @�U.t; �; �/.�/ satisfying (5.70)
follows from the auxiliary Lemma 5.30. Hence, the maps @xU.t; �; �/ and @�U.t; �; �/.�/ are
uniformly continuous, uniformly in the time parameter t 2 Œ0; T�.
Second Step. We now discuss the time continuity of the derivatives. In order to make the
analysis consistent, we shall require the generic initial condition 
 to be F1

0 -measurable,
or equivalently, to belong to L2.˝1;F1

0 ;P
1IRd/. This is by no means a limitation since we

assumed .˝1;F1
0 ;P

1/ to be rich enough so that, for any distribution � 2 P2.Rq/, with q � 1,
there exists an F1

0 -measurable-random variable with � as distribution.
We start with the time continuity of @�U.t; �; �/.�/. We claim that it suffices to prove that,

for any .x; 
/ 2 R
d � L2.˝1;F1

0 ;P
1IRd/, the map Œ0; T� 3 t 7! @�U.t; x;L1.
//.
/ 2

L2.˝1;F1
0 ;P

1IRm�d/ is continuous. Assume indeed that continuity holds true in this sense
and use the fact that, by the uniform bound (5.68) and the uniform continuity property (5.70),
the family of functions .@�U.s; x; �/.�//s2Œ0;T� is, for any .x; �/ 2 R

d � P2.Rd/, relatively
compact for the topology of uniform convergence on compact subsets of R

d: The time
continuity property in L2.˝1;F1

0 ;P
1IRm�d/ says that any limit of @�U.s; x; �/.�/ as s tends

to t must coincide with a version of @�U.t; x; �/.�/ in L2.Rd; �IRm�d/. In particular, when
� has full support, any limit as s tends to t, must coincide with @�U.t; x; �/.�/, since, in
that case, there is only one continuous version in L2.Rd; �IRm�d/. This proves that, for all
v 2 R

d, @�U.s; x; �/.v/ tends to @�U.t; x; �/.v/ when � has full support. When � is no
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more of full support, we may approximate it, in P2.Rd/, by a sequence of measures .�n/n�0

with full support. Owing once again to (5.70), we can exchange the two limits taken over s
tends to t and n tends to 1, namely

lim
s!t

@�U.s; x; �/.v/

D lim
s!t

lim
n!1

@�U.s; x; �n/.v/

D lim
n!1

lim
s!t

@�U.s; x; �n/.v/ D lim
n!1

@�U.t; x; �n/.v/ D @�U.t; x; �/.v/;

which proves that, in any case, for all v 2 R
d, @�U.s; x; �/.v/ tends to @�U.t; x; �/.v/

Third Step. Following our plan, we now prove that, for all .x; 
/ 2 R
d �L2.˝1;F1

0 ;P
1IRd/,

the map Œ0; T� 3 t 7! @�U.t; x; �/.
/ 2 L2.˝1;F1
0 ;P

1IRm�d/ is continuous.
Considering 
; � 2 L2.˝1;F1

0 ;P
1IRd/ together with 0 � t � s � T , and letting � D

L1.
/, it suffices to bound the time increment

E
1
h�
@�U.t; x; �

�
.
/ � @�U

�
s; x; �

�
.
/
�
�
i

by C.t; s/k�k2, the constant C.t; s/ being independent of � and converging to 0 as s � t tends
to 0. We have:

E
1
h�
@�U.t; x; �/.
/ � @�U.s; x; �/.
/

�
�
i

D QE1
h�
@�U.t; x; �/. Q
/ � @�U.s; x; �/. Q
/

�
Q�
i

D E QE1
h�
@�U

�
s;Xt;x;


s ;L1
�
Xt;


s

��� QXt;

s

� � @�U.s; x; �/. Q
/
�

Q�
i

C E QE1
h�
@�U.t; x; �/. Q
/ � @�U

�
s;Xt;x;


s ;L1
�
Xt;


s

��� QXt;

s

�� Q�
i
:

(5.71)

By the smoothness property of @�U.s; �; �/.�/, the first term in the right-hand side is bounded

by C.EŒjXt;x;

s � xj2�1=2 C EŒjXt;


s � 
j2�1=2/k�k2, the constant C being allowed to increase
from line to line. The coefficients of (5.2) and (5.6) being at most of linear growth, we deduce
from (5.17) that EŒjXt;


s � 
j2�1=2 and EŒjXt;x;

s � xj2�1=2 are less than C.1 C k
k2/.s � t/1=2

and C.1C jxj C k
k2/.s � t/1=2 respectively. Therefore, the first term in the last line of (5.71)
is bounded by:

C
�
1C jxj C k
k2

�
.s � t/1=2: (5.72)

We now handle the second term in the last line of (5.71). Differentiating with respect to 

in the direction � the two relationships U.t; x; �/ D Yt;x;


t and U.s;Xt;x;

s ;L1.Xt;


s // D Yt;x;

s ,

we obtain:

QE1�@�U.t; x; �/. Q
/ Q�� D @�Yt;x;

t ;

QE1�@�U
�
s;Xt;x;


s ;L1.Xt;

s /
�� QXt;


s

�
@� QXt;


s

�

D @�Yt;x;

s � @xU

�
s;Xt;x;


s ;L1.Xt;

s /
�
@�Xt;x;


s ;
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and then:

E QE1
h�
@�U.t; x; �/. Q
/ � @�U

�
s;Xt;x;


s ;L1
�
Xt;


s

��� QXt;

s

�� Q�
i

D E
�
@�Yt;x;


t � @�Yt;x;

s

�C E

h
@xU

�
s;Xt;x;


s ;L1
�
Xt;


s

��
@�Xt;x;


s

i

C E QE1
h
@�U

�
s;Xt;x;


s ;L1
�
Xt;


s

��� QXt;

s

��
@� QXt;


s � Q��
i
:

The first term in the right-hand side writes E
R s

t @F.r; � t;x;

r ; QXt;


r /.@��
t;x;

r ; @� QXt;


r /dr, with
the same notations as in (5.23). By assumption Smooth Coefficients Order 1 and by
Lemmas 5.24 and 5.26, it is bounded by C.s � t/k�k1. Since @xU is bounded, the second
term is less than CEŒj@�Xt;x;


s j� D CEŒj@�Xt;x;

s � @�Xt;x;


t j�, where we used the fact that

@�Xt;x;

t D 0. Owing to assumption Smooth Coefficients Order 1 and Lemmas 5.24 and 5.26

again and taking advantage of the form of the linearized system (5.59), it is less than
C.s � t/k�k1. For the third term, we first recall the first bound in (5.63). We get that it
is less than CEŒj@�Xt;


s � �j�. Then, combining the form of the linearized system (5.55) with
assumption Smooth Coefficients Order 1 and Lemma 5.24, we deduce that it is bounded
by C.s � t/k�k1. Continuity of Œ0; T� 3 t 7! @�U.t; x; �/.
/ 2 L2.˝1;F1

0 ;P
1IRm�d/ easily

follows.

Conclusion. Continuity of Œ0; T� 3 t 7! @xU.t; x; �/ 2 R
m�d , for .x; �/ 2 R

d � P2.Rd/, is
proved in the same way. ut

5.3 Solutions to the Master Equation in Small Time

The goal of this section is to establish the short time solvability of the master
equation, as announced in the statement of Theorem 5.10.

First, we prove that the decoupling field is twice differentiable in the space
and measure arguments. The master equation is then derived according to the
sketch provided in Subsection 5.1.4. Throughout the section, assumption Smooth
Coefficients Order 2 is in force and T � 1.

5.3.1 Differentiability of the Linearized System

As we shall see, the main difficulty in the proof is to prove second order
differentiability in the direction of the measure argument. In order to do so,
we shall go back to the linearized systems (5.55) and (5.59) and prove that for
t 2 Œ0;T� and � 2 L1.˝1;F1

t ;P
1IRd/, .@�Xt;
 ; @�Yt;
 / and .@�Xt;x;
 ; @�Yt;x;
 / are

differentiable with respect to 
 and x when regarded as random variables with values
in S

2.Œt;T�IRd/ � S
2.Œt;T�IRm/.

General Strategy
The strategy is to regard the full-fledged tuples:

�
Xt;
 ;Yt;
 ; @�Xt;
 ; @�Yt;


�
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and
�
Xt;x;
 ;Yt;x;
 ; @�Xt;x;
 ; @�Yt;x;


�

as the solutions of a forward-backward system satisfying assumption Smooth
Coefficients Order 1 with two different initials conditions: .Xt;


t ; @�Xt;

t / D .
; �/

for the first and .Xt;x;

t ; @�Xt;x;


t / D .x; 0/ for the second. In this context, we may
consider .Xt;
 ; @�Xt;
 / as a forward component of dimension 2d and .Yt;
 ; @�Yt;
 /

as a backward component of dimension 2m, and similarly for .Xt;x;
 ; @�Xt;x;
 / and
.Yt;x;
 ; @�Yt;x;
 /. If we follow this approach, in contrast with the original system,
the two noise processes W and W0 do not have the same dimension as the
forward component any longer. Obviously, this is not a limitation: we can complete
artificially the forward equation satisfied by @�X with new Brownian motions of
dimension d, by setting the corresponding volatilities to 0.

Once the problem is recast in this way, the whole drift B driving the pair (5.15)–
(5.55) reads as a function with values in .Rd/2, with entries in R

d given by:

B
�
t; .x; @x/; �; .y; @y/

� D


B
�
t; x; �; y/;

DB
�
t; .x; @x/; �; .y; @y/

�
;

(5.73)

with

DB
�
t; .x; @x/; �; .y; @y/

� D @xB.t; x; �; y/@x C @yB.t; x; �; y/@y

C
Z

Rd�Rd
@�B.t; x; �; y/.v/@vd�.v; @v/;

where .x; @x/ 2 R
d �R

d is understood as the forward variable and .y; @y/ 2 R
m �R

m

as the backward variable. Also, � and @� denote the first and second d-dimensional
marginal measures of � 2 P2.Rd � R

d/. Similarly, we may define F and G as the
driver and terminal condition of the system comprising (5.15) and (5.55).

Owing to assumption Smooth Coefficients Order 2, B, F and G have at most
linear growth in .x; @x/, .y; @y/ and �. Moreover, they are differentiable with respect
to x and y, and also in the direction of �. For instance, the derivative of B with
respect to � reads as a function with values in .Rd � R

d/2, with R
d � R

d entries
given by:

@�B
�
t; .x; @x/; �; .y; @y/

�
.v; @v/ D


@�B

�
t; x; �; y/.v/;

@�DB
�
t; .x; @x/; �; .y; @y/

�
.v; @v/;

@@�B
�
t; .x; @x/; �; .y; @y/

�
.v; @v/ D


0;

@@�DB
�
t; .x; @x/; �; .y; @y/

�
.v; @v/;

where
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@�DB
�
t; .x; @x/; �; .y; @y/

�
.v; @v/

D @�@xB.t; x; �; y/.v/@x C @�@yB.t; x; �; y/.v/@y

C
Z

Rd�Rd
@2�B.t; x; �; y/.v0; v/@v0d�.v0; @v0/C @v@�B.t; x; �; y/.v/@v;

@@�DB
�
t; .x; @x/; �; .y; @y/

�
.v; @v/ D @�B.t; x; �; y/.v/:

Differentiability in the direction � may be argued in the following way. Differ-
entiability of @xB and @yB in the direction � follows from a suitable version of
Schwarz’ theorem, as explained in Remark 4.16. Differentiability of .v; @v/ 7!R
Rd @�B.t; x; �; y/.v/@vd�.v; @v/ with respect to � follows from Examples 1 and

3 in Subsection (Vol I)-5.2.2. Continuity of the derivatives follows from assumption
Smooth Coefficients Order 2.

Truncation of the Coefficients
However, it must be stressed that B, F, and G do not satisfy assumption Smooth
Coefficients Order 1. Indeed, because of the linear part in .@x; @y; @v/ in the
definition of the coefficients, the derivatives are not bounded. Fortunately, this
apparent difficulty can easily be circumvented by noticing that the domain on which
B, F and G are computed in (5.15)–(5.55) is actually bounded. Indeed, we know
from Lemmas 5.24 and 5.26 that, for T � c, with c > 0 only depending on L, and
for k�k1 � 1,

�
�
� sup

t�s�T

�
j@�Xt;


s j C j@�Yt;

s j
��
�
�1 � C;

�
�
� sup

t�s�T

�
j@�Xt;x;


s j C j@�Yt;x;

s j

��
�
�1 � C;

(5.74)

for all .t; x; 
/ 2 Œ0;T�� R
d � L2.˝1;F1

t ;P
1IRd/ and C only depending on L. As a

consequence, we can write the drift driving the pair (5.15)–(5.55) as:

B
�

t;
�
x; �d.@x/

�
; � ı .Id; �d/

�1;
�
y; �m.@y/

��
; (5.75)

where �d and �m are smooth cut-off functions on R
d and R

m equal to the identity
on the ball of center 0 and radius C of the space on which they are defined, and
bounded by 2C on the whole space. It is clear that such a B is at most of linear
growth and has bounded derivatives with respect to x, y and �. Proceeding similarly
with F and G, we can assume, without any loss of generality, that the coefficients
.B;F;G/ satisfy assumption Smooth Coefficients Order 1.

By the first-order analysis performed in Subsection 5.2.4, see for instance
Lemmas 5.24 and 5.58, we deduce that, for some � 2 L1.˝1;F1

t ;P
1IRd/

with k�k1 � 1, the mapping L2.˝1;F1
t ;P

1IRd/ 3 
 7! .@�Xt;

s ; @�Yt;


s / 2
S
2.Œ0;T�IRd/ � S.Œ0;T�IRm/ is Gâteaux differentiable. For each random variable
	 in the space L2.˝1;F1

t ;P
1IRd/, we denote by:

@2	;�� t;
 D �
@2	;�Xt;
 ; @2	;�Yt;


� D �
@2	;�Xt;


s ; @
2
	;�Yt;


s

�

t�s�T
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the tangent process in the direction 	. By differentiating (5.56), we see that this
tangent process satisfies the forward-backward system:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@2	;�Xt;

s D

Z s

t

h
@B
�
r; � t;


r ;
QXt;


r

��
@2	;��

t;

r ; @

2
	;�

QXt;

r

�

C@2B�r; � t;

r ;

QXt;

r

��
@��

t;

r ; @	�

t;

r ; @�

QXt;

r ; @	

QXt;

r

�i
dr;

@2	;�Yt;

s D Es

�

@G
�
Xt;


T ;
QXt;


T

��
@2	;�Xt;


T ; @
2
	;�

QXt;

T

�

C@2G�Xt;

T ;

QXt;

T

��
@�Xt;


T ; @	X
t;

T ; @�

QXt;

T ; @	

QXt;

T

�

C
Z T

s

h
@F
�
r; � t;


r ;
QXt;


r

��
@2	;��

t;

r ; @

2
	;�

QXt;

r

�

C@2F�s; � t;

r ;

QXt;

r

��
@��

t;

r ; @	�

t;

r ; @�

QXt;

r ; @	

QXt;

r

�i
dr

	

;

(5.76)

where we use the following convention:

@2h.r;w; QX/.#; # 0; QX ; QX 0/

D @2wh
�
r;w;L.X/

�
# ˝ # 0

C QE1�@w@�h
�
r;w;L.X/

�
. QX/� QX 0 ˝ # C QX ˝ # 0��

C QE1�@v@�h
�
r;w;L.X/

�
. QX/ QX ˝ X 0�

C QE1 QQE1�@2�h
�
r;w;L.X/

�
. QX; QQX/ QX ˝ QQX 0�;

(5.77)

where . QQ̋ 1; QQF1; QQF1; QQP1/ is a new copy of .˝1;F1;F1;P1/, and ˝ is the tensor
product acting under the convention we introduced in Chapter (Vol I)-5, see
(Vol I)-(5.80): the first element of the tensor product acts on the derivative which
is performed first. Namely, for any y; z 2 R

d:

@v@�h.w; �/.v/y ˝ z D
� dX

i;jD1
@vj Œ@�h`.w; �/�i.v/zjyi

�

`D1;��� ;l;

@2�h.w; �/.v; v0/y ˝ z D
� dX

i;jD1

�
@�Œ@�h`.w; �/�i.v/

�

j.v
0/zjyi 2 R

�

`D1;��� ;l;

where, as usual, h W Rq � P2.Rd/ ! R
l. Similarly, for y 2 R

d and w; z 2 R
q,

@w@�h.w; �/.v/y ˝ z D
� dX

i;jD1
@wj Œ@�h`.w; �/�i.v/zjyi

�

`D1;��� ;l: (5.78)
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Notice that, in the second line of the right-hand side of (5.77), we used Schwarz’
theorem to identify the entries of @w@�h and Œ@�@wh��. As a result,

@2B
�
r; � t;


r ;
QXt;


r

��
@��

t;

r ; @	�

t;

r ; @�

QXt;

r ; @	

QXt;

r

�

D @2wB
�
r; � t;


r ;
QXt;


r

�
@��

t;

r ˝ @	�

t;

r

C QE1
h
@w@�B

�
r;Xt;


r ;L.Xt;

r /;Y

t;

r

�
. QXt;


r /

� �@	 QXt;

r ˝ @��

t;

r C @� QXt;


r ˝ @	�
t;

r

�i

C QE1
h
@v@�B

�
r;Xt;


r ;L1.Xt;

r /;Y

t;

r

�
. QXt;


r /@�
QXt;


r ˝ @	 QXt;

s

i

C QE1 QQE1
h
@2�B.r;Xt;


r ;L1.Xt;

r /;Y

t;

r /.

QXt;

r ;

QQXt;

r /@�

QXt;

r ˝ @	

QQXt;

r

i
;

and similarly for F and G.

Freezing the Initial Condition
Following the principle used to associate (5.16) with (5.15), we now freeze the
initial condition of the process .Xt;
 ; @�Xt;
 /. When the frozen initial condition
is .x; 0/ 2 R

d � R
d, the process associated with ..Xt;
 ; @�Xt;
 /; .Yt;
 ; @�Yt;
 // is

..Xt;x;� D Xt;x;
 ; @�Xt;x;
 /; .Yt;x;� D Yt;x;
 ; @�Yt;x;
 //, where � denotes the law of

 . Here the pair .
; �/ reads as the initial condition of the forward component
.Xt;
 ; @�Xt;
 /. In particular, following the statement of Definition 5.2, the two-pair
process ..Xt;x;�; @�Xt;x;
 /; .Yt;x;�; @�Yt;x;
 // only depends on .
; �/ through L1.
; �/.

Then, proceeding as above, we prove a similar result with @�� t;
 replaced by

@�� t;x;
 , showing that the map L2.˝1;F1
t ;P

1IRd/ 3 
 7! .@�Xt;x;

s ; @�Yt;x;


s / 2
S
2.Œ0;T�IRd/ � S.Œ0;T�IRm/ is Gâteaux differentiable. Moreover, for any random

variable 	 2 L2.˝1;F1
t ;P

1IRd/, the tangent process:

@2	;�� t;x;
 D �
@2	;�Xt;x;
 ; @2	;�Yt;x;


� D �
@2	;�Xt;x;


s ; @2	;�Yt;x;

s

�

t�s�T ;

satisfies the forward-backward system:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@2	;�Xt;x;

s D

Z s

t

h
@B
�
r; � t;x;


r ; QXt;

r

��
@2	;��

t;x;

r ; @2	;�

QXt;

r

�

C@2B�r; � t;x;

r ; QXt;


r

��
@��

t;x;

r ; @	�

t;x;

r ; @� QXt;


r ; @	
QXt;


r

�i
dr;

@2	;�Yt;x;

s D Es

�

@G
�
Xt;x;


T ; QXt;

T

��
@2	;�Xt;x;


T ; @2	;�
QXt;


T

�

C@2G�Xt;x;

T ; QXt;


T

��
@�Xt;x;


T ; @	X
t;x;

T ; @� QXt;


T ; @	
QXt;


T

�

C
Z T

s

h
@F
�
r; � t;x;


r ; QXt;

r

��
@2	;��

t;x;

r ; @2	;�

QXt;

r

�

C@2F�r; � t;x;

r ; QXt;


r

��
@��

t;x;

r ; @	�

t;x;

r ; @� QXt;


r ; @	
QXt;


r

�i
dr

	

;

(5.79)
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Statements
Applying Theorem 5.29, we get the following result:

Proposition 5.31 Under assumption Smooth Coefficients Order 2, there exists a
constant c > 0, only depending on L, such that for T � c, for any t 2 Œ0;T� and
� 2 L1.˝1;F1

t ;P
1IRd/ with k�k1 � 1, the map R

d � L2.˝1;F1
t ;P

1IRd/ 3
.x; 
/ 7! @�Yt;x;


t D E
1Œ@�U.t; x; �/. Q
/�� 2 R

d is continuously differentiable.

Below, we denote by @x@�Yt;x;

t the partial derivative with respect to x, and by

D
@�Yt;x;

t the partial derivative with respect to 
 . The quantity @x@�Yt;x;


t takes

values in R
m�d while D
@�Yt;x;


t is an element of L2.˝1;F1
t ;P

1IRm�d/ which

satisfies @2	;�Yt;x;

t D E

1ŒD
@�Yt;x;

t 	�.

In fact, D
@�Yt;x;

t may be represented as follows. We learned from the truncation

procedure (5.75) that @�Yt;x;
 coincides with U.t; .x; 0/; �/, where � D L1.
; �/,
for some mapping U W Œ0;T� � .Rd � R

d/ � P2.Rd � R
d/ ! R

m reading as
the decoupling field of the forward-backward system of the McKean-Vlasov type
driven by .B;F;G/. As already explained, this system satisfies the assumption of
Theorem 5.29 so that, for T small enough, U is L-differentiable with respect to the
measure argument �. Recalling that U takes values in R

m, we notice that @�U takes
values in R

m�.2d/. Denoting by @�U the first block of dimension m � d of @�U, we
have the identification:

D
@�Yt;x;

t D @�U

�
t; .x; 0/;L.
; �/

�
.
; �/: (5.80)

Below, we shall just write U.t; x; �/ for U.t; .x; 0/; �/.
From Lemma 5.27 and Theorem 5.29, we deduce the following result:

Proposition 5.32 Under assumption Smooth Coefficients Order 2, there exist a
constant c > 0 only depending on L, and a constant C only depending on L and
� , such that for T � c, for any t 2 Œ0;T� and any � 2 L1.˝1;F1

t ;P
1IRd/ with

k�k1 � 1, it holds, for all x1; x2 2 R
d and 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/,

ˇ
ˇ@x@�Yt;x1;
1

t � @x@�Yt;x2;
2
t

ˇ
ˇ � C

�jx1 � x2j C k
1 � 
2k1
�
;

and, for all 	 2 L2.˝1;F1
t ;P

1IRd/,

E
1
h�

D
@�Yt;x1;
1
t � D
@�Yt;x2;
2

t

�
	
i

� C
h
k	k1

�jx2 � x2j C k
1 � 
2k1
�C E

1
�j
1 � 
2j j	j�

i
:
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Moreover, for the same C as above, for any t 2 Œ0;T� and 
 2 L2.˝1;F1
t ;P

1IRd/,

�
�D
@�Yt;x;


t

�
�1 � C:

5.3.2 Second-Order Differentiability of the Decoupling Field

Propositions 5.31 and 5.32 are one step forward into the proof of the second order
differentiability of U , but they do not suffice. The goal of this section is to fill part
of the gap and to prove that @�U is differentiable with respect to � and v.

Recall that, throughout the subsection, assumption Smooth Coefficients Order
2 is in force.

Differentiability with Respect to v

We start with:

Proposition 5.33 Under assumption Smooth Coefficients Order 2, there exist a
constant c only depending on L, and a constant C only depending on L and � ,
such that for T � c and any .t; x; �/ 2 Œ0;T� � R

d � P2.Rd/, the function R
d 3

v 7! @�U.t; x; �/.v/ 2 R
d, whose existence is guaranteed by Theorem 5.29, is

continuously differentiable, the function Œ0;T��R
d �P2.Rd/�R

d 3 .t; x; �; v/ 7!
@v@�U.t; x; �/.v/ 2 R

d�d being continuous in all the arguments and satisfying, for
all t 2 Œ0;T�, x1; x2 2 R

d, �1; �2 2 P2.Rd/ and v1; v2 2 R
d,

ˇ
ˇ@v@�U.t; x1; �1/.v1/ � @v@�U.t; x2; �2/.v2/

ˇ
ˇ

� C
�jx1 � x2j C W1.�1; �2/C jv1 � v2j

�
:

The proof is based on Theorem (Vol I)-5.104, the statement of which we recall
right below under the new label 5.34. In order to do so, we recall first the following
assumption:

Assumption (Sufficiency for Partial C2). The function u W P2.Rd/ ! R

is L-continuously differentiable and, on .˝1;F1;P1/, its lifted version Qu W
L2.˝1;F1;P1IRd/ 3 X 7! u.L1.X// 2 R satisfies:

(A1) For any � 2 L2.˝1;F1;P1IRd/ and any continuously differentiable
map R 3 � 7! X� 2 L2.˝1;F1;P1IRd/ with the property that all
the .X�/�2R have the same distribution and that jŒd=d��X�j � 1, the
mapping:

R 3 � 7! DQu.X�/ � � D E
�
@�u.L1.X�//.X�/ � �� 2 R

(continued)
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is continuously differentiable, the derivative at � D 0 only depending
upon the family .X�/�2R through the values of X0 and Œd=d��j�D0X�,
and being denoted by:

@2	;� Qu.X/ D d

d� j�D0
�
DQu.X�/ � ��;

whenever X D X0 and 	 D d

d� j�D0
X�:

(A2) There exists a constant C such that, for any X, X0, � and 	 in
L2.˝1;F1;P1IRd/, with X 	 X0 and j	j � 1 (with probability 1), it
holds:

.i/ jDQu.X/ � �j C j@2	;�u.X/j � Ck�k2;

.ii/ jDQu.X/ � � � DQu.X0/ � �j C j@2	;� Qu.X/ � @2	;� Qu.X0/j
� CkX � X0k2k�k2:

Theorem 5.34 Under assumption Sufficiency for Partial C2, u is partially C2,
which means that:

1. The mapping P2.Rd/ � R
d 3 .�; v/ 7! @�u.�/.v/ is locally bounded (i.e.,

bounded on any compact subset) and is continuous at any .�; v/ such that v 2
Supp.�/.

2. For any � 2 P2.Rd/, the mapping R
d 3 v 7! @�u.�/.v/ 2 R

d is continuously
differentiable and its derivative is locally bounded and is jointly continuous with
respect to .�; v/ at any point .�; v/ such that v 2 Supp.�/, the derivative being
denoted by R

d 3 v 7! @v@�u.�/.v/ 2 R
d�d.

Proof of Proposition 5.33.

First Step. We already know from the statement of Theorem 5.29 that, for T small enough,
for any .t; x; �/ 2 Œ0; T� � R

d � P2.Rd/, there exists a version of the function R
d 3 v 7!

@�U.t; x; �/.v/ 2 R
d such that the function Œ0; T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7!

@�U.t; x; �/.v/ 2 R
d is continuous and is C-Lipschitz continuous with respect to the

variables x, � and v, the Lipschitz property in the direction � holding in the sense of the
W1-Wasserstein distance.

Second Step. We now use Theorem 5.34. We start with the following observation. For a fixed
.t; x/ and for a continuously differentiable mapping R 3 s 7! 
s 2 L2.˝1;F1

t ;P
1IRd/ with

the property that for all s 2 R, jŒd=ds�
sj � 1 P
1-almost surely, and for any other random

variable � 2 L2.˝1;F1
t ;P

1IRd/, we consider the map:

R
2 3 .r; s/ 7! %.r; s/ D U

�
t; x;L1.r�C 
s/

�
:
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Then, by Theorem 5.29, % is jointly differentiable with respect to .r; s/ with:

@r%.r; s/ D E
1
�
@�U

�
t; x;L1.r�C 
s/

�
�
�
;

@s%.r; s/ D E
1
�
@�U

�
t; x;L1.r�C 
s/

� d

ds

s
�
; r; s 2 R:

Letting 	s D Œd=ds�
s, we can write:

@s%.r; s/ D @	s Yt;x;r�+
s

t :

Since k	sk1 � 1, we deduce from Proposition 5.31 that @s% is differentiable with respect to
r, with:

@r
�
@s%.r; s/

� D E
1
�
D
@	s Yt;x;r�+
s

t �
�
; r; s 2 R:

Recalling the identity (5.80), we notice that @rŒ@s%� is jointly continuous. By Schwarz’s
theorem, we deduce that the mapping R 3 s 7! @r%.0; s/ is continuously differentiable
with:

@s
�
@r%

�
.0; s/ D E

1
�
D
@	s Yt;x;
s

t �
�
:

In particular for s D 0, the derivative takes the form:

@s
�
@r%

�
.0; 0/ D E

1
�
D
@	Y

t;x;

t �

�
;

where we let 	 D 	0 and 
 D 
0.
Following assumption Sufficiency for Partial C2, we now let, for a fixed .t; x/ 2 Œ0; T��

R
d:

u.�/ D U.t; x; �/; � 2 P2.Rd/:

The above discussion shows that for any � 2 L2.˝1;F1;P1IRd/ and any continuously
differentiable map R 3 s 7! 
s 2 L2.˝1;F1;PIRd/ with the property that all the .
s/s2R

have the same distribution and that kŒd=ds�
sk1 � 1, the mapping:

R 3 s 7! E
1
�
@�u

�
L1.
s/

�
.
s/�

�

is continuously differentiable with:

@2	;� Qu.
/ D E
1
�
D
@	Y

t;x;

t �

�
; (5.81)

as derivative at s D 0, where Qu denotes the lifting of u and @2	;� Qu is as in assumption

Sufficiency for Partial C2.
By Proposition 5.32, we deduce that (A1) and (A2) in assumption Sufficiency for Partial

C2 hold. We deduce that for any .t; x/ 2 Œ0; T� � R
d and � 2 P2.Rd/, there exists a version

of Rd 3 v 7! @�U.t; x; �/.v/ which is continuously differentiable.

Third Step. In order to complete the proof, we recall from (Vol I)-(5.115) that for Z0 	
N.0; 1/, Z0 being independent of .
; �/, it holds:

@2sign.Z0/e;sign.Z0/� Qu.
/ D E
1
h
@v@�U

�
t; x;L1.
/

�
.
/�˝ e

i
: (5.82)
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Thanks to (5.81) and Proposition 5.32, we deduce that for all t 2 Œ0; T�, x1; x2 2 R
d and


1; 
2 2 L2.˝1;F1
t ;P

1IRd/,

E
1
h�
@v@�U.t; x1;L1.
1/.
1/ � @v@�U.t; x2;L1.
2/.
2/

�
�˝ e

i

� C
h
k�k1

�jx1 � x2j C k
1 � 
2k1
�C E

1
�j
1 � 
2j j�j�

i
:

Moreover, for all 
 2 L2.˝1;F1
t ;P

1IRd/,
�
�@v@�U

�
t; x;L1.
/

�
.
/
�
�

1
� C:

By the auxiliary Lemma 5.30, we deduce that for each .t; x; �/ 2 Œ0; T��R
d �P2.Rd/, there

exists a version of @v@�U.t; x; �/.�/ in L2.Rd; �IRm�.d�d// such that the map @v@�U.t; �; �/.�/
is continuous and satisfies the Lipschitz property in the statement. In order to complete
the proof, it only remains to check that this globally continuous version of @v@�U.t; �; �/.�/
coincides with the partial derivative of @�U.t; �; �/.�/ in the direction v on the whole
space. When � has full support, @v@�U.t; x; �/.�/ has a unique continuous version in
L2.Rd; �IRm�.d�d// and this version must coincide with the one provided by Lemma 5.30.
Obviously, it is the partial derivative of @�U.t; x; �/.�/ with respect to v. Since @�U.t; �; �/.�/
is globally continuous, we deduce by a standard approximation argument that the same holds
when the support of � is strictly included in R

d. This shows that the globally continuous
version of @v@�U.t; �; �/.�/ provided by Lemma 5.30 is the partial derivative of @�U.t; �; �/.�/
in the direction v.

Fourth Step. It remains to prove that the map @v@�U is globally continuous on Œ0; T��R
d �

P2.Rd/ � R
d. To do so, we recall from the identification (5.80) that for any � 2 L1 with

k�k1 � 1, the derivative with respect to 
 of the mapping:

.t; x; 
/ 7! E
1
�
@�U

�
t; x;L1.
/

�
�
�

satisfies the conclusion of Theorem 5.29 and is continuous in time. Choosing the direction
of differentiation 	 of the same form as in (5.82), namely 	 D sign.Z0/e, and � of the form
sign.Z0/�, where Z0 	 N.0; 1/ is independent of .
; �/ and k�k1 � 1, we deduce from
the identities (5.80), (5.81), and (5.82), that for any .x; 
/ 2 R

d � L2.˝1;F1
0 ;P

1IRd/ and
� 2 L1.˝1;F1

0 ;P
1IRd/ with k�k1 � 1, the mapping:

Œ0; T� 3 t 7! E
1
�
@v@�U

�
t; x;L1.
/

�
.
/�˝ e

�

is continuous. Proceeding as in the second step of the proof of Theorem 5.29, time continuity
of the map Œ0; T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7! @v@�U.t; x; �/.v/ follows. ut

Differentiability with Respect to � in Bounded Directions
We now turn to the derivative in the direction �. The analysis is divided into several
lemmas. Part of the argument relies on the analysis of the quantity:

�
@2.1�"/	;"�� t;x;


s

�

t�s�T ;

where 
; 	 2 L2.˝1;F1
t ;P

1IRd/, � 2 L1.˝1;F1
t ;P

1IRd/ with k�k1 � 1, and "
is a symmetric Bernoulli random variable independent of .
; 	; �/.
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The rationale for considering such specific directions in the second-order deriva-
tives may be explained as follows. If U is already known to be twice-differentiable
in the measure argument, then it should hold:

@2	;��
t;x;

t D d

ds jsD0
E
1
�
@�U

�
t; x;L1.
 C s	/

�
.
 C s	/�

�

D E
1
�
@v@�U

�
t; x;L1.
/

�
.
/�˝ 	

�

C E
1 QE1�@2�U

�
t; x;L1.
/

�
.
; Q
/�˝ Q	�:

(5.83)

Whenever .	; �/ is replaced by ..1 � "/	; "�/, the above identity becomes:

@2.1�"/	;"��
t;x;

t D E

1
�
@v@�U

�
t; x;L1.
/

�
.
/
�
"�
�˝ �

.1 � "/	��

C E
1 QE1�@2�U

�
t; x;L1.
/

�
.
; Q
/�"��˝ �

.1 � Q"/ Q	��:

Since the product ".1 � "/ is always equal to 0 in the first term in the above right-
hand side, and since " is assumed to be independent of .
; �; 	/, the above identity
reduces to:

@2.1�"/	;"��
t;x;

t D 1

4
E
1 QE1�@2�U

�
t; x;L1.
/

�
.
; Q
/�˝ Q	�;

which connects @2.1�"/	;"��
t;x;�
t with the sole derivative @2�U instead of the full-fledge

one as in (5.83).
In this perspective, here is the first lemma:

Lemma 5.35 There exist a constant c, only depending on L, and a constant C, only
depending on L and � , such that, for T � c, for all .t; x/ 2 Œ0;T� � R

d, and 
; �; 	
and " as above (in particular, 	 2 L2.˝1;F1

t ;P
1IRd/), with the prescription that

� 2 L1.˝1;F1
t ;P

1IRd/ with k�k1 � 1, it holds, with probability 1 under P1:

sup
t�s�T

j@2.1�"/	;"�� t;x;

s j � Ck�k1k	k1:

Moreover, for all x1; x2 2 R
d and 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/ such that " is

independent of .
1; 
2; �; 	/, with probability 1 under P1,

sup
t�s�T

ˇ
ˇ@2.1�"/	;"�� t;x1;
1

s � @2.1�"/	;"�� t;x2;
2
s

ˇ
ˇ

� C
�
k	k1k�k1

�jx1 � x2j C k
1 � 
2k1
�

C k	k1E1
�j
1 � 
2j j�j�C k�k1E1

�j
1 � 
2j j	j�
�
:
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Proof of Lemma 5.35.

First Step. We start with the analysis of the same quantities as in the statement but with � t;


in lieu of � t;x;
 . Here is the first observation. By Lemma 5.24, we have:

sup
t�s�T

j@"�� t;

s j � C

�
"j�j C k�k1

�
: (5.84)

Therefore, appealing once again to Lemma 5.24, we get, with probability 1 under P,

sup
t�s�T

j@"�� t;

s ˝ @.1�"/	�

t;

s j � C

�k�k1j	j C j�jk	k1 C k�k1k	k1
�
; (5.85)

where we used the fact that ".1 � "/ D 0.
Recalling the form of @2B from (5.77) and taking advantage of the boundedness of the

second order derivatives as stated in assumption Smooth Coefficients Order 2, we deduce
that:

ˇ
ˇ
ˇ@2B

�
s; � t;


s ;
QXt;


s

��
@"��

t;

s ; @.1�"/	�

t;

s ; @"�

QXt;

s ; @.1�"/	

QXt;

s

�ˇˇ
ˇ

� C
�k�k1j	j C j�jk	k1 C k�k1k	k1

�
;

with a similar bound with @2F and @2G in lieu of @2B.
Returning to (5.76) and regarding the system satisfied by @2"�;.1�"/	�

t;
 as a linear system
of the type (5.28) and then appealing to the last inequality in Corollary 5.18, we deduce that,
with probability 1 under P,

sup
t�s�T

j@2.1�"/	;"�� t;

s j � C

�k�k1j	j C j�jk	k1 C k�k1k	k1
�
:

We now consider the difference .@2.1�"/	;"��
t;
1
s �@2.1�"/	;"�� t;
2

s /t�s�T . Lemma 5.25 yields:

sup
t�s�T

j@"�� t;
1
s � @"�� t;
2

s j

� C
h
E
1
�j
1 � 
2j j�j�C �j
1 � 
2j C k
1 � 
2k1

��
"j�j C k�k1

�i
:

(5.86)

Therefore, by (5.84) with .1 � "/	 in lieu of "�, we deduce that:

sup
t�s�T

�j@"�� t;
1
s � @"�� t;
2

s j j@.1�"/	� t;
1
s j�

� C
h
E
1
�j
1 � 
2j j�j�C �j
1 � 
2j C k
1 � 
2k1

��
"j�j C k�k1

�i

� �.1 � "/j	j C k	k1
�
;

from which we get:

E
1
�

sup
t�s�T

�j@"�� t;
1
s � @"�� t;
2

s j j@.1�"/	� t;
1
s j�� (5.87)

� C
�
k
1 � 
2k1k	k1k�k1 C k	k1E1

�j
1 � 
2j j�j�C k�k1E1
�j
1 � 
2j j	j�

�
;

and similarly for .j@.1�"/	� t;
1
s � @.1�"/	� t;
2

s jj@"�� t;
1
s j/t�s�T .
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We now make use of Corollary 5.22. In comparison, with Lemma 5.25, we have to
take into account the fact the remainders R1

a and R2
a are not zero. Fortunately, they can

be estimated by means of (5.85), (5.86), and (5.87). We get:

E
1
�

sup
t�s�T

j@2.1�"/	;"�� t;
1
s � @2.1�"/	;"�� t;
2

s j�

� C
�
k	k1k�k1k
1 � 
2k1 C k	k1E1

�j
1 � 
2j j�j�C k�k1E1
�j
1 � 
2j j	j�

�
:

Second Step. We now complete the proof. In order to do so, we regard (5.79) as a system
of the type (5.28). Recalling the first bound for @�� t;x;
 and @	�

t;x;
 in the statement of
Lemma 5.24 and applying the last inequality in Corollary 5.18, the remainders being given
by the McKean-Vlasov terms and by the first-order terms, we deduce from the first step that:

sup
t�s�T

j@2.1�"/	;"�� t;x;

s j � Ck�k1k	k1:

In order to estimate the difference @2.1�"/	;"�� t;x1;
1 �@2.1�"/	;"�� t;x2;
2 , we proceed as in the
first step, making use of Corollary 5.22. Observe from Lemmas 5.26 and 5.28 that, on the
model of (5.87),

sup
t�s�T

�j@"�� t;x1;
1
s � @"�� t;x2;
2

s j j@.1�"/	� t;x1;
1
s j�

� C
��jx1 � x2j C k
1 � 
2k1

�k	k1k�k1 C k	k1E1
�j
1 � 
2j j�j�

�
;

with a similar bound for supt�s�T.j@.1�"/	� t;x1;
1
s � @.1�"/	� t;x2;
2

s j j@"�� t;x1;
1
s j/. We conclude

as in the first step. ut

We now identify the second-order derivative in the direction �.

Lemma 5.36 For T � c, with c only depending on L, for .t; x/ 2 Œ0;T� � R
d, for


 2 L2.˝1;F1
t ;P

1IRd/ and � 2 L1.˝1;F1
t ;P

1IRd/ with k�k1 � 1, it holds:

lim
s!0

�
�
�
1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
/�@�U

�
t; x;L.
/

�
.
/
�

� �t; x;L1.
; �/�.
/
�
�
�1D0;

where  W Œ0;T� � R
d � P2.R2d/ � R

d ! R
d satisfies, for all t 2 Œ0;T�,

x 2 R
d, 
 2 L2.˝1;F1

t ;P
1IRd/ and � 2 L1.˝1;F1

t ;P
1IRd/ with k�k1 � 1,

 .t; x;L1.
; �//.�/ 2 L1.Rd; �IRd/ and,
�
� 
�
t; x;L1.
; �/

�
.
/
�
�1 � C;

for a constant C only depending on L and � .

Proof.

First Step. We recall that, when k�k1 � 1, @�Yt;x;
 D E
1Œ@�U.t; x;L1.
//.
/�� coincides

with U.t; x; �/, where � D L1.
; �/, U.t; x; �/ being L-differentiable on P2.R2d/ and
satisfying the conclusion of Theorem 5.29 in short time, namely:

k@�U.t; x; �/.
; �/k1 � C; (5.88)
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for .t; x/ 2 Œ0; T� � R
d , 
; � 2 L2.˝1;F1

t ;P
1IRd/ and � D L1.
; �/, and for all 	 2

L1.˝1;F1
t ;P

1IRd/,
ˇ
ˇ
ˇE

1
��
@�U.t; x; �/.
; �/ � @�U.t; x0; �0/.
 0; �0/

�
	
�ˇˇ
ˇ (5.89)

� C
h�jx � x0j C k
 � 
 0k1 C k� � �0k1

�k	k1 C E
1
��j
 � 
 0j C j� � �0j�j	j�

i
;

for all x0 2 R
d, 
 0; �0 2 L2.˝1;F1

t ;P
1IRd/ and �0 D L1.
 0; �0/.

By Lemma 5.30 we can find, for each t 2 Œ0; T�, a C-bounded and C-Lipschitz continuous
version of the mapping R

d � P2.R2d/ � R
2d 3 .x; �; .v;w// 7! @�U.t; x; �/.v;w/. We now

recall that for 
; �; 	 2 L2.˝1;F1
t ;P

1IRd/,

lim
s!0

s�1
h
U
�
t; x;L1.
 C s	; �/

� � U
�
t; x;L1.
; �/

�i D E
1
�
@�U

�
t; x;L1.
; �/

�
.
; �/	

�
:

Second Step. Following the analysis of the derivatives of @�U with respect to v, we shall
apply Schwarz’ theorem once again. For � 2 L1.˝1;F1

t ;P
1IRd/, with k�k1 � 1, and for

	 2 L2.˝1;F1
t ;P

1IRd/, we let:

%.r; s/ D U
�
t; x;L1.
 C r�C s	/

�
; r; s 2 R:

Then,

@r%.r; s/ D E
1
�
@�U

�
t; x;L1.
 C r�C s	/

��

 C r�C s	

�
�
�
;

@s%.r; s/ D E
1
�
@�U

�
t; x;L1.
 C r�C s	/

��

 C r�C s	

�
	
�
:

Then, we know that @r% is differentiable with respect to s, with:

@s@r%.r; s/ D E

h
@�U

�
t; x;L1

�

 C r�C s	; �

���

 C r�C s	; �

�
	
i
; r; s 2 R:

By the first step, @s@r% is continuous. We deduce that @s%.0; �/ is differentiable, with:

E
1
�
@�U.t; x; �/.
; �/	

�

D lim
r!0

r�1
E
1
h�
@�U

�
t; x;L1.
 C r�/

�
.
 C r�/ � @�U

�
t; x;L1.
/

�
.
/
�
	
i

D @r
�
@s%.r; 0/

�

jrD0

D @s
�
@r%.0; s/

�

jsD0

D lim
s!0

s�1
E
1
h�
@�U

�
t; x;L1.
 C s	/

�
.
 C s	/ � @�U

�
t; x;L1.
/

�
.
/
�
�
i
:

(5.90)

By the first step again, we deduce that:

E
1
h�
@�U

�
t; x;L1.
 C s�/

�
.
 C s�/ � @�U

�
t; x;L1.
/

�
.
/
�
	
i

D
Z s

0

E
1
�
@�U

�
t; x;L1.
 C r�; �/

�
.
 C r�; �/	

�
dr

D sE1
�
@�U.t; x; �/.
; �/	

�C o.s/k	k1;

(5.91)
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with lims!0 jo.s/=sj D 0, uniformly in 	 2 L2.˝1;F1
t ;P

1IRd/. Therefore,

E

hn1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
 C s�/ � @�U

�
t; x;L1.
/

�
.
/
�

�@�U.t; x; �/.
; �/
o
	
i

� ˇ
ˇo.s/

s

ˇ
ˇk	k1:

And then, for 
 2 L2.˝1;F1
t ;P

1IRd/ and � 2 L1.˝1;F1
t ;P

1IRd/ with k�k1 � 1, with
P
1-probability 1,

lim
s!0

�
�
�
1

s

�
@�U

�
t; x;L1.
Cs�/

�
.
Cs�/�@�U

�
t; x;L1.
/

�
.
/
�
�@�U.t; x; �/.
;�/

�
�
�

1
D 0:

Third Step. For .t; x; 
; �/ as above and for s 6D 0, we have:

1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
/ � @�U

�
t; x;L1.
/

�
.
/
�

D 1

s

�
@�U

�
t; x;L1.
 C s�/

��

 C s�

� � @�U
�
t; x;L1.
/

�
.
/
�

� 1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
 C s�/ � @�U

�
t; x;L1.
 C s�/

�
.
/
�
:

By continuous differentiability of @�U with respect to v, see Proposition 5.33, this can be
rewritten as:

1

s

�
@�U

�
t; x;L1.
 C s�/

��

 C s�

� � @�U
�
t; x;L1.
/

�
.
/
�

� 1

s

Z s

0

@v@�U
�
t; x;L1.
 C s�/

�
.
 C r�/�dr:

By the second step and by continuity of @v@�U with respect to its last two arguments, see
again Proposition 5.33, we deduce that:

lim
s!0

�
�
�
1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
/ � @�U

�
t; x;L1.
/

�
.
/
�

� �
@�U.t; x; �/.
; �/ � @v@�U.t; x; �/.
/�

���
�

1
D 0;

which proves that the functions



R
d 3 v 7! 1

s

�
@�U

�
t; x;L1.
 C s�/

�
.v/ � @�U

�
t; x;L1.
/

�
.v/
��

s>0

converge in L1.Rd; �IRd/ as s tends to 0, where � D L1.
/. Hence, there exists a function
 .t; x;L1.
; �//.�/ 2 L1.Rd; �IRd/ such that:

lim
s!0

�
�
�
1

s

�
@�U

�
t; x;L1.
Cs�/

�
.
/�@�U

�
t; x;L1.
/

�
.
/
�
� �t; x;L1.
; �/�.
/

�
�
�

1
D0;

which completes the proof. The second part of the statement follows from the identification
 .t; x;L1.
; �//.
/ D @�U.t; x; �/.
; �/ � @v@�U.t; x; �/.
/�. ut

Importantly,  satisfies a useful symmetry property.
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Lemma 5.37 For T � c, with c only depending on L, for .t; x/ 2 Œ0;T� � R
d, for


 2 L2.˝1;F1
t ;P

1IRd/ and �; 	 2 L1.˝1;F1
t ;P

1IRd/, with k�k1; k	k1 � 1, it
holds:

E
1
�
 
�
t; x;L1.
; �/

�
.
/	

� D E
1
�
 
�
t; x;L1.
; 	/

�
.
/�

�
:

Proof. We observe from (5.90) that:

E
1
�
@�U

�
t; x;L1.
; �/

�
.
; �/	

� D E
1
�
@�U

�
t; x;L1.
; 	/

�
.
; 	/�

�
;

implying that:

E
1
�
@v@�U

�
t; x;L1.
/

�
.
/�˝ 	 C  

�
t; x;L1.
; �/

�
.
/	

�

D E
1
�
@v@�U

�
t; x;L1.
/

�
.
/	 ˝ �C  

�
t; x;L1.
; 	/

�
.
/�

�
;

where we used the identification:

 
�
t; x;L.
; �/

�
.
/ D @�U.t; x; �/.
; �/ � @v@�U.t; x; �/.
/�

observed at the end of the proof of Lemma 5.36. The result follows by using the symmetry
of @v@�U , see Remark (Vol I)-5.98. ut

From the above, we deduce the following identification:

Lemma 5.38 For T � c, with c only depending on L, for all .t; x/ 2 Œ0;T� � R
d,


 2 L2.˝1;F1
t ;P

1IRd/, �; 	 2 L1.˝1;F1
t ;P

1IRd/ with k�k1; k	k1 � 1,

@2.1�"/	;"��
t;x;

t D 1

4
E
1
�
 
�
t; x;L1.
; �/

�
.
/	

�
;

for any random variable " constructed on .˝1;F1
t ;P

1/ with a Bernoulli distribution
of parameter 1=2 and independent of .
; �; 	/. Moreover,

ˇ
ˇE1

�
 
�
t; x;L1.
; �/

�
.
/	

�ˇ
ˇ � Ck�k1k	k1;

and, for all x1; x2 2 R
d and 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/,

ˇ
ˇE1

�
 
�
t; x1;L1.
1; �/

�
.
1/	 �  �t; x2;L1.
2; �/

�
.
2/	

�ˇ
ˇ

� C
��jx1 � x2j C k
1 � 
2k1

�k	k1k�k1

C k	k1E1
�j
1 � 
2j j�j�C k�k1E1

�j
1 � 
2j j	j�
�
:

Importantly, observe from the first bound that k .t; x;L1.
; �//.
/k1 � Ck�k1.
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Proof. From Proposition 5.31 and (5.80), we know that:

@2.1�"/	;"�Yt;x;

t D d

ds jsD0
E
1
�
@�U

�
t; x;L1.
 C s.1 � "/	/�.
 C s.1 � "/	/"��;

D E
1
�
@�U

�
t; x;L1.
; "�/

�
.
; "�/.1 � "/	�:

By Lemmas 5.36 and 5.37, we obtain:

@2.1�"/	;"�Yt;x;

t D E

1
�
@v@�U

�
t; x;L1.
/

�
.
/."�/˝ �

.1 � "/	��

C E
1
�
 
�
t; x;L1.
; .1 � "/	/�.
/"��;

where we used the identification:

 
�
t; x;L1.
; �/

�
.
/ D @�U.t; x; �/.
; �/ � @v@�U.t; x; �/.
/�

established at the end of the proof of Lemma 5.36.
Now, the first term in the right-hand side is 0. Regarding the second term, independence

of " and .
; �/ yields:

@2.1�"/	;"�Yt;x;

t D 1

2
E
1
�
 
�
t; x;L1.
; .1 � "/	/�.
/��

D 1

2
E
1
�
 
�
t; x;L1.
; �/

�
.
/
�
.1 � "/	��;

where we used once again Lemma 5.37. Using independence one more time, the first claim
easily follows. The two last claims are direct consequences of Lemma 5.35. ut

Differentiability with Respect to � along Unbounded Directions
As a consequence of Lemma 5.37, we deduce that for all �; 	 in L1.˝1;F1

t ;P
1IRd/

with k�k1; k	k1 � 1,

E
1
�
 
�
t; x;L1.
;��/�.
/	� D �E

1
�
 
�
t; x;L1.
; 	/

�
.
/�

�

D �E
1
�
 
�
t; x;L1.
; �/

�
.
/	

�
;

from which we deduce that:

 
�
t; x;L1.
;��/�.
/ D � �t; x;L1.
; �/�.
/: (5.92)

As another consequence of Lemma 5.37, we get that for all � 2 Œ0; 1� and all �; �0; 	
in L1.˝1;F1

t ;P
1IRd/ with k�k1; k�0k1; k	k1 � 1,

E
1
�
 
�
t; x;L1.
; ��C .1 � �/�0/

�
.
/	

�

D E
1
�
 
�
t; x;L1.
; 	/

�
.
/
�
��C .1 � �/�0��

D �E1
�
 
�
t; x;L1.
; 	/

�
.
/�

�C .1 � �/E1� �t; x;L1.
; 	/�.
/�0�

D �E1
�
 
�
t; x;L1.
; �/

�
.
/	

�C .1 � �/E1� �t; x;L1.
; �0/
�
.
/	

�
;
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that is, for all � 2 Œ0; 1� and �; �0 2 L1.˝1;F1
t ;P

1IRd/, with k�k1; k�0k1 � 1,

 
�
t; x;L1.
; ��C .1 � �/�0/

�
.
/

D � 
�
t; x;L1.
; �/

�
.
/C .1 � �/ �t; x;L1.
; �0/

�
.
/:

(5.93)

We then extend the definition of  as follows. For � 2 L1.˝1;F1
t ;P

1IRd/ and
v 2 R

d, we let:

N �t; x;L1.
; �/�.v/ D
8
<

:

k�k1 
�

t; x;L1
�

;

�

k�k1

��
.v/ if � 6D 0;

0 if � D 0:

Observing from the last claim in Lemma 5.37 that  .t; x;L1.
; �//.
/ D 0 when-
ever � D 0, we deduce from (5.93) that N .t; x;L1.
; �//.
/ and  .t; x;L1.
; �//.
/
coincide whenever k�k1 � 1. Moreover, by definition, N .t; x;L1.
; �//.
/
satisfies:

8� � 0; � 2 L1.˝1;F1
t ;P

1IRd/;

N �t; x;L1.
; ��/�.
/ D � N �t; x;L1.
; �/�.
/:

By (5.92), this is still true when � < 0. Moreover, choosing � D k�k1 C k�0k1
for �; �0 2 L1.˝1;F1;P1IRd/, we get:

N �t; x;L1.
; �C �0/
�
.
/ D �k�k1 C k�0k1

� N 
�

t; x;L1
�

;

�C �0

k�k1 C k�0k1
��
.
/:

Using (5.93) with � D k�k1=.k�k1 C k�0k1/, we deduce:

N �t; x;L1.
; �C �0/
�
.
/ D k�k1 N 

�
t; x;L1

�

;

�

k�k1
��
.
/

C k�0k1 N 
�

t; x;L1
�

;

�0

k�k1
��
.
/

D N �t; x;L1.
; �/�.
/C N �t; x;L1.
; �0/
�
.
/;

while, for all �; 	 2 L1.˝1;F1
t ;P

1IRd/,

E
1
� N �t; x;L1.
; �/�.
/	� D k�k1E

1
�
 
�
t; x;L1.
; �

k�k1
/
�
.
/	

�

D k�k1k	k1E
1
�
 
�
t; x;L1.
; �

k�k1
/
�
.
/

	

k	k1
�

D E
1
� N �t; x;L1.
; 	/�.
/��; (5.94)



5.3 Solutions to the Master Equation in Small Time 393

where we used Lemma 5.37 to pass from the first to the second line. In particular,
choosing 	 such that k	k1 � 1, we easily deduce from the first inequality in
Lemma 5.38 that:

�
� N �t; x;L1.
; �/�.
/��1 � Ck�k1: (5.95)

So for any given 
 2 L2.˝1;F1
t ;P

1IRd/, the linear mapping:

L1.˝1;F1
t ;P

1IRd/ 3 � 7! N �t; x;L1.
; �/�.
/ 2 L1.˝1;F1
t ;P

1IRm�d/

extends by continuity to the whole L1.˝1;F1
t ;P

1IRd/.
By (5.94), (5.95), and the second inequality in Lemma 5.38, we also have, for all

x1; x2 2 R
d, 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/ and �1; �2; 	 2 L1.˝1;F1

t ;P
1IRd/,

ˇ
ˇE1

� N �t; x1;L1.
1; �1/
�
.
1/	 � N �t; x2;L1.
2; �2/

�
.
2/	

�ˇ
ˇ

� C
��jx1 � x2j C k
1 � 
2k1

�k	k1k�1k1 C k	k1k�1 � �2k1

C k	k1E1
�j
1 � 
2j j�1j

�C k�1k1E1
�j
1 � 
2j j	j�

�
:

(5.96)

By Lemma 5.40 below, which reads as a variation of Lemma 5.30, we can find,
for all .t; x/ 2 Œ0;T� � R

d, 
 2 L2.˝1;F1
t ;P

1IRd/ and � 2 L1.˝1;F1
t ;P

1IRd/, a
version of each of N .t; x;L1.
; �//.�/ such that, for all 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/,

�1; �2 2 L2.˝1;F1
t ;P

1IRd/ and x1; x2; v1; v2 2 R
d,

ˇ
ˇ N �t; x1;L1.
1; �1/

�
.v1/ � N �t; x2;L1.
2; �2/

�
.v2/

ˇ
ˇ

� C
�
k�1k1

�jx1 � x2j C jv1 � v2j C k
1 � 
2k1
�C k�1 � �2k1

C E
1
�j
1 � 
2j j�1j

��
: (5.97)

The function N is the right object to identify the second-order derivative of U in the
direction �.

Proposition 5.39 Under assumption Smooth Coefficients Order 2, there exist a
constant c only depending on L, and a constant C only depending on L and � , such
that for T � c and any .t; x; v/ 2 Œ0;T� � R

d � R
d, the function P2.Rd/ 3 � 7!

@�U.t; x; �/.v/ 2 R
d provided by Theorem 5.29 is L-differentiable. Moreover, for

any .t; x; v/ 2 Œ0;T� � R
d � R

d and � 2 P2.Rd/, we can find a version of Rd 3
v0 7! @2�U.t; x; �/.v; v0/ D @�Œ@�U.t; x; �/.v/�.v0/ such that the global function
Œ0;T� � R

d � P2.Rd/ � R
d � R

d 3 .t; x; �; v; v0/ 7! @2�U.t; x; �/.v; v0/ 2 R
d�d is

jointly continuous in all the arguments and satisfy, for all t 2 Œ0;T�, x1; x2 2 R
d,

�1; �2 2 P2.Rd/ and v1; v2; v0
1; v

0
2 2 R

d,
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ˇ
ˇ@2�U.t; x1; �1/.v1; v0

1/ � @2�U.t; x2; �2/.v2; v0
2/
ˇ
ˇ

� C
�jx1 � x2j C W1.�1; �2/C jv1 � v2j C jv0

1 � v0
2j
�
:

Proof.

First Step. Recalling Lemma 5.36 and using in addition the linearity of N with respect to �,
we get for all .t; x/ 2 Œ0; T� � R

d, 
; 	 2 L2.˝1;F1
t ;P

1IRd/ and � 2 L1.˝1;F1
t ;P

1IRd/

with k�k1 possibly larger than 1,

lim
s!0

1

s
E
1
h�
@�U

�
t; x;L1.
 C s�/

�
.
 C s�/ � @�U

�
t; x;L1.
/

�
.
/
�
	
i

D E
1
�
@v@�U.t; x;L1.
//.
/	 ˝ �C N .t; x;L1.
; �//.
/	�;

where again, we used the identity:

 
�
t; x;L.
; �/

�
.
/ D @�U.t; x; �/.
; �/ � @v@�U.t; x; �/.
/�;

established at the end of the proof of Lemma 5.36. Then, for all s 6D 0,

E
1

�
1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
 C s�/ � @�U

�
t; x;L1.
/

�
.
/
�
	

	

D E
1

�
1

s


Z s

0

h N �t; x;L1.
 C r�; �/
�
.
 C r�/

C @v@�U
�
t; x;L1.
 C r�/

�
.
 C r�/�

i
dr

�

	

	

;

so that:

E
1

�

1

s

�
@�U

�
t; x;L1.
Cs�/

�
.
/�@�U

�
t; x;L1.
/

�
.
/
�
� N �t; x;L1.
; �/�.
/

�

	

	

D E
1

�

1

s

Z s

0

h� N �t; x;L1.
 C r�; �/
�
.
 C r�/ � N �t; x;L1.
; �/�.
/

�

C
�
@v@�U

�
t; x;L1.
 C r�/

�
.
 C r�/

� @v@�U
�
t; x;L1.
 C s�/

�
.
 C r�/

�
�
i
dr

�

	

	

:

Thanks to Proposition 5.33 and (5.96), we deduce that:
ˇ
ˇ
ˇ
ˇE

1

�

1

s

�
@�U

�
t; x;L1.
Cs�/

�
.
/�@�U

�
t; x;L1.
/

�
.
/
�
� N �t; x;L1.
; �/�.
/

�

	

	ˇ
ˇ
ˇ
ˇ

� Ck�k21k	k1;
that is, for all s 6D 0, with P-probability 1,

ˇ
ˇ
ˇ
ˇ
1

s

�
@�U

�
t; x;L1.
 C s�/

�
.
/ � @�U

�
t; x;L1.
/

�
.
/
�

� N �t; x;L1.
; �/�.
/
ˇ
ˇ
ˇ
ˇ

� Csk�k21:
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Therefore, when L1.
/ has full support, it holds for all v 2 R
d:

lim
s!0

1

s

�
@�U

�
t; x;L1.
 C s�/

�
.v/ � @�U

�
t; x;L1.
/

�
.v/
�

D N �t; x;L1.
; �/�.v/;

where we used the fact that the above functionals are continuous with respect to v. In
particular, for a Gaussian random vector Z with an invertible covariance, Z being independent
of .
; �/, we have, for all v 2 R

d,

lim
s!0

1

s

�
@�U

�
t; x;L1.
 C Z C s�/

�
.v/ � @�U

�
t; x;L1.
 C Z/

�
.v/
�

D N �t; x;L1.
 C Z; �/
�
.v/;

or, equivalently,

d

ds

h
@�U

�
t; x;L1.
 C Z C s�/

�
.v/
i

D N �t; x;L1.
 C Z C s�; �/
�
.v/;

from which we deduce that:

@�U
�
t; x;L1.
 C Z C s�/

�
.v/ � @�U

�
t; x;L1.
 C Z/

�
.v/

D
Z s

0

N �t; x;L1.
 C Z C r�; �/
�
.v/dr:

(5.98)

Second Step. Recall from (5.97) that for jrj � 1 and for any random variables �1; �2 2
L2.˝1;F1

t ;P
1IRd/,

ˇ
ˇ N �t; x;L1.
 C Z C r�1; �1/

�
.v/ � N �t; x;L1.
 C Z C r�2; �2/

�
.v/
ˇ
ˇ

� C
�
k�1 � �2k1k�1k1 C E

1
�j�1 � �2j j�1j

�C k�1 � �2k1
�
;

which shows, by a density argument, that (5.98) extends to any � 2 L2.˝1;F1
t ;P

1IRd/ in
lieu of � 2 L1.˝1;F1

t ;P
1IRd/.

Observe that the identity (5.98) is generic in the following sense. When � 2 P2.R2d/ is
given first, there is no difficulty for constructing a 3-tuple .
; �; Z/, with .
; �/ 	 � and with
.
; �/ independent of Z. As a result, for all 
; � 2 L2.˝1;F1

t ;P
1IRd/, v 2 R

d and n � 1,

d

ds jsD0

h
@�U

�
t; x;L1.
 C s�/ 
 Nd.0;

1
n Id/

�
.v/
i

D N �t; x;L1.
; �/ 
 .Nd.0;
1
n Id/; ı0/

�
.v/;

where .Nd.0;
1
n Id/; ı0/ is a short notation for the law of .Z; 0/ when Z 	 Nd.0;

1
n Id/. By

linearity of N , the right-hand side is easily shown to be linear with respect to �. Moreover,
by (5.95), it is continuous with respect to �, seen as an element of L2.˝1;F1

t ;P
1IRd/, from

which we deduce that the map L2.˝1;F1
t ;P

1IRd/ 3 
 7! @�U.t; x;L1.
/
Nd.0; n�1Id//.v/

is Gâteaux differentiable.
To prove Fréchet differentiability, we use (5.97). For x1; x2 2 R

d and 
1; 
2 2
L2.˝1;F1

t ;P
1IRd/ and for � 2 L2.˝1;F1

t ;P
1IRd/, we deduce from (5.97) that:
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ˇ
ˇ N �t; x1;L1.
1; �/ 
 .Nd.0;

1
n Id/; ı0/

�
.v/ � N �t; x2;L1.
2; �/ 
 .Nd.0;

1
n Id/; ı0/

�
.v/
ˇ
ˇ

� C
��jx1 � x2j C k
1 � 
2k1

�k�k1 C E
1
�j
1 � 
2j j�j�

�

� C
�
jx1 � x2j C k
1 � 
2k2

�
k�k2;

which suffices to prove that the Gâteaux derivative, regarded as an element of the space
L2.˝1;F1

t ;P
1IRd/, is continuous with respect to the state variable 
. Hence, for any

.t; x; v/ 2 Œ0; T� � R
d � R

d , the map L2.˝1;F1
t ;P

1IRd/ 3 
 7! @�U.t; x;L1.
/ 

Nd.0;

1
n Id//.v/ is Fréchet differentiable.

As a consequence, we may identify N .t; x;L1.
; �/ 
 .Nd.0;
1
n Id/; ı0//.v/ with the L-

derivative of @�U.t; x;L1.�/ 
 Nd.0;
1
n Id//.v/ computed at the point 
 in the direction �.

In particular, there exists a map Œ0; T� � R
d � P2.Rd/ � R

d � R
d 3 .t; x; �; v; v0/ 7!

Vn.t; x; �/.v; v0/ 2 R
m�d such that:

N �t; x;L1.
; �/ 
 .Nd.0;
1
n Id/; ı0/

�
.v/ D E

1
�
Vn
�
t; x;L1.
/

�
.v; 
/�

�
:

By (5.95) and (5.97), and from the fact that L1.
/ 
 Nd.0;
1
n Id/ has full support, we obtain:

�
�Vn

�
t; x;L1.
/

�
.v; 
/

�
�

1
� C;

and, for all x1; x2; v1; v2 2 R
d and 
1; 
2 2 L2.˝1;F1

t ;P
1IRd/,

ˇ
ˇE1

��
Vn
�
t; x1;L1.
1/

�
.v1; 
1/ � Vn

�
t; x2;L1.
2/

�
.v2; 
2/

�
�
�ˇ
ˇ

� C
��jx1 � x2j C jv1 � v2j C k
1 � 
2k1

�k�k1 C E
1
�j
1 � 
2j j�j�

�
:

By the auxiliary Lemma 5.30, we can find, for each .t; x; �; v/ 2 Œ0; T��R
d �P2.Rd/�R

d ,
a version of Rd 3 v0 7! Vn.t; x; �/.v; v0/ 2 L1.Rd; �IRm�.d�d// which satisfies, for all
v0 2 R

d,
ˇ
ˇVn

�
t; x;L1.
/

�
.v; v0/

ˇ
ˇ � C;

and, for all x1; x2; v1; v2; v0
1; v

0
2 2 R

d and 
1; 
2 2 L2.˝1;F1
t ;P

1IRd/,

ˇ
ˇVn

�
t; x1;L1.
1/

�
.v1; v

0
1/ � Vn

�
t; x2;L1.
2/

�
.v2; v

0
2/
ˇ
ˇ

� C
�jx1 � x2j C jv1 � v2j C jv0

1 � v0
2j C k
1 � 
2k1

�
:

In particular, the map Vn
�
t; �; �/.�; �/ extends to R

d � P1.Rd/ � R
d � R

d . Since any bounded
subset of P2.Rd/ is a compact subset of P1.Rd/, we deduce from the Arzelà-Ascoli
theorem that we can extract a subsequence of the family .Vn.t; �; �/.�; �//n�1 which converges
uniformly on any bounded subset of Rd � P2.Rd/ � R

d � R
d. We call V.t; �; �/.�; �/ the limit.

It satisfies the above uniform Lipschitz property. Moreover, passing to the limit in (5.98), we
get:

@�U
�
t; x;L1.
 C s�/

�
.v/ � @�U

�
t; x;L1.
/

�
.v/ D

Z s

0

E
1
�
V
�
t; x;L1.
 C r�/

�
.v; 
/�

�
dr;

from which we easily deduce that for any .t; x; v/ 2 Œ0; T��R
d �R

d, the mapping P2.Rd/ 3
� 7! @�U.t; x; �/.v/ is Fréchet differentiable. Obviously R

d 3 v0 7! @2�U.t; x; �/.v; v0/

identifies with R
d 3 v0 7! V.t; x; �/.v; v0/, which completes the proof.
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Third Step. In order to complete the proof, it remains to prove the regularity of @2�U in the
time variable. We proceed as in the third step of the proof of Proposition 5.33. Indeed, we
recall from Lemma 5.38 and from the above identification of N that, for a Bernoulli random
variable " with parameter 1=2 independent of .
; �; 	/, where 
 2 L2.˝1;F1

0 ;P
1IRd/ and

�; 	 2 L1.˝1;F1
0 ;P

1IRd/ with k�k1; k	k1 � 1,

@2.1�"/	;"�Yt;x;

t D 1

4
E
1 QE1�@2�U

�
t; x;L1.
/

�
.
; Q
/�˝ Q	�: (5.99)

As explained in the fourth step of the proof of Proposition 5.33, the left-hand side is a
continuous function of time. Therefore, so is the right-hand side. We conclude as in the
second step of the proof of Theorem 5.29 or, equivalently, as in the proof of Proposition 5.33.

ut

Auxiliary Regularity Lemma
The following auxiliary lemma is a variant of Lemma 5.30.

Lemma 5.40 Consider a collection .u.x; �/.�//x2Rn;�2P2.R2d/ of real-valued func-
tions satisfying, for all x 2 R

n and � 2 P2.R2d/, u.x; �/.�/ 2 L1.Rd; �IR/, where
� denotes the first marginal of � on R

d, and for which there exists a constant C such
that for all x; x0 2 R

n, 
; 
 0; �; �0 2 L2.˝;F ;PIRd/ and 	 2 L2.˝;F ;PIR/,
ˇ
ˇE
��

u.x;L.
; �//.
/ � u.x0;L.
 0; �0//.
 0/
�
	
�ˇ
ˇ

� C
h
k	k1

�
k�k1

�jx � x0j C k
 � 
 0k1
�C EŒj
 � 
 0j j�j�C k� � �0k1

�

C k�k1E
�j
 � 
 0j j	j�

i
;

for an atomless probability space .˝;F ;P/.
Then, for each .x; �/ 2 R

n � P2.R2d/, we can find a version of u.x; �/.�/ 2
L1.Rd; �IR/ such that, for the same constant C as above, for all x; x0 2 R

n,

; 
 0; �; �0 2 L2.˝;F ;PIRd/ and v; v0 2 R

d,

ˇ
ˇu
�
x;L.
; �/

�
.v/ � u

�
x0;L.
 0; �/

�
.v0/

ˇ
ˇ

� C
h
k�k1

�jx � x0j C k
 � 
 0k1 C jv � v0j�C k� � �0k1 C EŒj
 � 
 0j j�j�
i
:

Proof. As a preliminary remark, we observe that the map R
d � L2.˝;F ;PIRd/ �

L2.˝;F ;PIRd/ 3 .x; 
; �/ 7! u.x;L.
; �//.
/ 2 L2.˝;F ;PIR/ is continuous.

First Step. If x; x0 2 R
n and 
; 
 0; �; �0 2 L2.˝;F ;PIRd/, observe from the regularity

assumption that with P-probability 1,

ˇ
ˇu
�
x;L.
; �/

�
.
/ � u

�
x0;L.
 0; �0/

�
.
 0/

ˇ
ˇ

� C
h
k�k1

�jx � x0j C k
 � 
 0k1 C j
 � 
 0j�C k� � �0k1 C E
�j
 � 
 0j j�j�

i
:

In particular, if p � 1 is an integer and Z a Gaussian random variable Z 	 Nd.0; Id/

independent of .
; 
 0; �; �0/, it holds that:
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ˇ
ˇu
�
x;L.
 C 1

p Z; �/
�
.
 C 1

p Z/ � u
�
x0;L.
 0 C 1

p Z; �0/
�
.
 0 C 1

p Z/
ˇ
ˇ

� C
h
k�k1

�jx � x0j C k
 � 
 0k1 C j
 � 
 0j�C k� � �0k1 C E
�j
 � 
 0j j�j�

i
:

Integrating with respect to Z only, we get, with P-probability 1,
ˇ
ˇ
ˇ
ˇ

Z

Rd
u
�
x;L.
 C 1

p Z; �/
�
.
 C 1

p z/'d.z/dz

�
Z

Rd
u
�
x0;L.
 0 C 1

p Z; �/
�
.
 0 C 1

p z/'d.z/dz

ˇ
ˇ
ˇ
ˇ

� C
h
k�k1

�jx � x0j C j
 � 
 0j C k
 � 
 0k1
�C k� � �0k1 C EŒj
 � 
 0j j�j�

i
:

Observe that the integrals in the above left-hand side are well defined since the two functions
u.x;L.
 C 1

p Z; �//.�/ and u.x;L.
 0 C 1
p Z; �//.�/ belong to L1.Rd;LebdIR/, which follows

from the fact that L.
 C 1
p Z/ and L.
 C 1

p Z/ have positive densities. Setting:

up.x; �/.v/ D
Z

Rd
u
�
x; � 
 .Nd.0;

1
p2

Id/; ı0/
�
.v C 1

n z/'d.z/dz;

for x 2 R
n, � 2 P2.R2d/ and v 2 R

d, where .Nd.0;
1
p2

Id/; ı0/ is a short notation for L. 1p Z; 0/,
we conclude that up.x; �/.�/ is continuous and satisfies with probability 1:
ˇ
ˇup
�
x;L.
; �/

�
.
/ � up

�
x0;L.
 0; �0/

�
.
 0/

ˇ
ˇ

� C
h
k�k1

�jx � x0j C j
 � 
 0j C k
 � 
 0k1
�C k� � �0k1 C EŒj
 � 
 0j j�j�

i
: (5.100)

with P-probability 1.

Second Step. We now denote by � the law of .
; �/, and by �0 the law of .
 0; �0/. Then,
we call ˘.�; �0/ the set of probability measures � on P2.R4d/ such that the image of �
by the mapping R

4d 3 .v; v0;w;w0/ 7! .v;w/ is � and the image of � by the mapping
R
4d 3 .v; v0;w;w0/ 7! .v0;w0/ is �0. We learned from Chapter (Vol I)-5 that ˘.�; �0/ is

compact for the Wasserstein topology on P2.R4d/. Since the function:

P2.R4d/ 3 � 7!
Z

R4d
jwjd�.v; v0;w;w0/

Z

R4d
jv � v0jd�.v; v0;w;w0/

C
Z

R4d
jw � w0jd�.v; v0;w;w0/C

Z

R4d
jv � v0jjwjd�.v; v0;w;w0/

is continuous, we deduce that it has a minimum on ˘.�; �0/. Below, we call �? a minimizer
and .
; 
 0; �; �0/ a 4-tuple with distribution �?.

Third Step. We now consider �; �0 2 P2.Rd/ with strictly positive smooth densities that
decay at most exponentially fast at infinity and whose derivatives also decay exponentially at
infinity.

Following the proof of Proposition (Vol I)-5.36, we can find four continuous mappings
� W .0; 1/d ! R

d, �0 W .0; 1/d ! R
d,  W .0; 1/d � .0; 1/d ! R

d and  0 W .0; 1/d �
.0; 1/d ! R

d such that, for any pair .$; �/ of independent and identically distributed
random variables with uniform distribution on .0; 1/d, it holds that . .�;$/; �.$// 	 �
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and . 0.�0;$/; �0.$// 	 �0. Importantly, for any w 2 .0; 1/d, the mappings  .�;w/ W
.0; 1/d 3 y 7!  .y;w/ 2 R

d and  0.�;w/ W .0; 1/d 3 y 7!  0.y;w/ 2 R
d are one-to-one

from .0; 1/d onto R
d. Moreover, the distribution Leb1 ı  .�;w/�1 is the conditional law of


 given � D �.w/. It has a positive density. Hence, for given values of v; v0 in R
d and

w 2 .0; 1/d, we can find y0; y0
0 2 .0; 1/d such that:

v D  .y0;w/; v0 D  .y0
0;w/:

Fix now$ and � two independent and identically distributed random variables with uniform
distribution on .0; 1/d. For ı > 0 such that B.y0; ı/ � .0; 1/d and B.y0

0; ı/ � .0; 1/d, we let:

�0 D

8
ˆ̂
<

ˆ̂
:

� if � 62 B.y0; ı/ [ B.y0
0; ı/;

�C y0
0 � y0 if � 2 B.y0; ı/;

�C y0 � y0
0 if � 2 B.y0

0; ı/;

where B.y0; ı/ denotes the d-dimensional open ball of center y0 and radius ı. Clearly, �0 is
also uniformly distributed.

We let . N
; N�/ D . .�;$/; �.$// and . N
 0; N�0/ D . 0.�0;$/; �0.$//. Obviously,
. N
; N�/ 	 � and . N
 0; N�0/ 	 �0.

Fourth Step. We now consider a Bernoulli random variable " independent of .
; 
 0; �; �0/

and .�;$/, and we let:

.
"; �"/ D ".
; �/C .1 � "/. N
; N�/;

.
";0; �";0/ D ".
 0; �0/C .1 � "/. N
 0; N�0/:

Clearly, .
"; �"/ and .
";0; �";0/ have � and �0 as distributions. Taking advantage of the
conclusion of the first step, we deduce that, for all x; x0 2 R

d , with P-probability 1,
ˇ
ˇup.x; �/.


"/ � up.x
0; �0/.
";0/

ˇ
ˇ

� C
�
k�k1

�jx � x0jCk
"�
";0k1Cj
"�
";0j�Ck�"��";0k1CE
�j
" � 
";0j j�"j�

�
:

Therefore, almost surely on the event f" D 0g \ f� 2 B.y0; ı/g,
ˇ
ˇup.x; �/

�
 .�;$/

� � up.x
0; �0/

�
 0.�C y0

0 � y0;$/
�ˇ
ˇ

� C
�
k�k1

�jx � x0j C k
" � 
";0k1 C j .�;$/ �  0.�C y0
0 � y0;$/j

�

C k�" � �";0k1 C EŒj
" � 
";0j j�"j�
�
:

Therefore, we can find a sequence .ym;wm/m�1 converging to .y0;w/ such that:

ˇ
ˇup.x; �/

�
 .ym;wm/

� � up.x
0; �0/

�
 0.ym C y0

0 � y0;w
m/
�ˇ
ˇ

� C
�
k�k1

�jx � x0j C k
" � 
";0k1 C j .yn;wm/ �  0.yn C y0
0 � y0;w

m/j�

C k�" � �";0k1 C EŒj
" � 
";0j j�"j�
�
:
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By continuity of up.x; �/.�/ and up.x0; �0/.�/ and of  , and  0, we get by taking the limit
m ! 1:

ˇ
ˇup.x; �/.v/ � up.x

0; �0/.v0/
ˇ
ˇ

� C
�
k�k1

�jx � x0jCk
" � 
";0k1Cjv � v0j�Ck�"��";0k1CEŒj
"�
";0j j�"j�
�
;

where we used the fact that  .y0;w/ D v and  0.y0
0;w/ D v0. Letting the parameter of the

Bernoulli random variable " tend to 1, we deduce that:
ˇ
ˇup.x; �/.v/ � up.x

0; �0/.v0/
ˇ
ˇ (5.101)

� C
�
k�k1

�jx � x0j C k
 � 
 0k1 C jv � v0j�C k� � �0k1 C EŒj
 � 
 0j j�j�
�
:

Thanks to our construction of �? in the second step, this may be rewritten as:
ˇ
ˇup.x; �/.v/ � up.x

0; �0/.v0/
ˇ
ˇ

� C
� Z

R2d
j Nwjd�. Nv; Nw/�jx � x0j C jv � v0j�C W.�; �0/

�
;

(5.102)

where

W.�; �0/ D inf
�2˘.�;�0/

� Z

R4d
j Nwjd�. Nv; Nv0; Nw; Nw0/

Z

R4d
j Nv � Nv0jd�. Nv; Nv0; Nw; Nw0/

C
Z

R4d
j Nw � Nw0jd�. Nv; Nv0; Nw; Nw0/C

Z

R4d
j Nv�Nv0jj Nwjd�. Nv; Nv0; Nw; Nw0/

	

:

In particular, for any 
; 
 0; �; �0 2 L2.˝;F ;PIRd/, whatever the joint distribution of the
4-tuple .
; 
 0; �; �0/, (5.101) holds.

Inequalities (5.101) and (5.102) hold for probability measures �; �0 with strictly positive
smooth densities that together with their derivatives, decay exponentially fast at infinity.
Since the set of such smooth probability measures is dense in P2.R2d/, we deduce that
the restriction of up to smooth probability measures extends by continuity to the whole
R

n �P2.R2d/�R
d . We denote by Nup its continuous extension. It satisfies (5.101) and (5.102).

By (5.100), for any .x; 
; �/ 2 R
n � L2.˝;F ;PIRd/ � L2.˝;F ;PIRd/, it holds that

PŒup.x;L.
; �//.
/ D Nup.x;L.
; �//.
/� D 1. Since up.x;L.
; �//.�/ and Nup.x;L.
; �//.�/
are continuous, we conclude that for any � 2 P2.R2d/, Nup.x; �/.v/ coincides with up.x; �/.v/
when v belongs to the support of �, where again, � is the first marginal law of � on R

d .
Therefore, Nup.x; �/.�/ provides a version of up.x; �/.�/ in L1.Rd; �IR/.
Fifth Step. In order to complete the proof, we observe from (5.101) with .
; �/ � .0; 0/ that
Nup is at most of linear growth:

jNup.x; �/.v/j � jNup.0; ı.0;0//.0/j C CM1.�/:

Since up.0; ı.0;0//.0/ D EŒu.0;L. 1p Z; 0//. 1p Z/� and since the map R
n � L2.˝;F ;PIRd/ �

L2.˝;F ;PIRd/ 3 .x; 
; �/ 7! u.x;L.
; �//.
/ 2 L2.˝;F ;PIRd/ is continuous, the
sequence .Nup.0; ı.0;0//.0//p�1 is bounded, which shows that the functions .Nup/p�1 are
uniformly bounded.
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Recalling that any bounded subset of P4.R2d/ is a compact subset of P2.R2d/, Arzelà-
Ascoli’s theorem implies that there exists a subsequence, still denoted by .Nup/p�1, that
converges uniformly on any bounded subset of Rn � P4.R2d/ � R

d.
We then identify, for each � 2 P4.R2d/, the limit Nu.x; �/.�/ of Nup.x; �/.�/ with a version of

u.x; �/.�/ in L1.Rd; �IR/. This follows from the fact that for any bounded and measurable
function g W Rd ! R,

E
�Nup
�
x;L.
; �/

�
.
/g.
/

� D E
�
u
�
x;L.
 C 1

p Z; �/
�
.
 C 1

p Z/g.
/
�
;

which implies, from the first inequality in the statement of Lemma 5.40, that:

lim
p!1

E
�Nup
�
x;L.
; �/

�
.
/g.
/

� D E
�
u
�
x;L.
; �/

�
.
/g.
/

�
;

so that, passing to the limit in the left-hand side, we get:

EŒNu.x;L.
; �//.
/g.
/� D EŒu.x;L.
; �//.
/g.
/�:

This provides, for each .x; �/ 2 R
n � P4.R2d/, a version Nu.x; �/.�/ of u.x; �/.�/ that satisfies

the conclusion of Lemma 5.40. The map Nu W Rn � P4.R2d/ � R
d ! R constructed in this

way is uniformly continuous (the second factor being equipped with W2) on R
n � K � R

d ,
for any subset K � P4.R2d/ which is bounded in P2.R2d/. Therefore, it extends to the entire
R

n � P2.R2d/ � R
d. By the same argument as the one used for identifying the limit of the

sequence .Nup/p�1, we prove that for all � 2 P2.R2d/, Nu.x; �/.�/ is a version of u.x; �/.�/ in
L1.Rd; �IR/, which completes the proof. ut

5.3.3 Derivation of the Master Equation

We now proceed with the derivation of the master equation. The proof is quite
standard: Once the master field has been proved to be smooth enough, we can
expand it along the forward component of the forward-backward system; by
identifying the absolutely continuous part in the expansion with that in the backward
component of the forward-backward system, we obtain that the master field indeed
satisfies the master equation.

Regularity in the Other Directions
Actually, the first step is to complete the analysis of the smoothness of the
master field. Indeed, it remains to discuss the existence of the other second order
derivatives, namely @2xU and @x@�U .

We claim:

Theorem 5.41 For T � c, with c only depending on L, and t 2 Œ0;T�, the function
R

d � P2.Rd/ 3 .x; �/ 7! @xU.t; x; �/ is continuously differentiable and there exists
a constant C � 0, such that, for all t 2 Œ0;T�, x 2 R

d and � 2 P2.Rd/, j@2xU.t; x; �/j
is bounded by C and, for all x1; x2 2 R

d and �1; �2 2 P2.Rd/,

j@2xU.t; x1; �1/ � @2xU.t; x2; �2/j � C
�jx1 � x2j C W1.�1; �2/

�
;

Moreover, the function Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! @xU.t; x; �/ 2 R

m�d is
continuous.
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Also, for each .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, we can find a version of the map

R
d 3 v 7! @�@xU.t; x; �/.v/ 2 R

m�.d�d/ in L2.Rd; �IRm�.d�d// such that the map
.t; x; �; v/ 7! @�@xU.t; x; �/.v/ is continuous and bounded by C and satisfies, for
all t 2 Œ0;T�, x1; x2 2 R

d, v1; v2 2 R
d and �1; �2 2 P2.Rd/,

ˇ
ˇ@�@xU.t; x1; �1/.v1/ � @�@xU.t; x2; �2/.v2/

ˇ
ˇ

� C
�jx1 � x2j C jv1 � v2j C W1.�1; �2/

�
:

Moreover, the map Œ0;T� � R
d � P2.Rd/ � R

d 3 .t; x; �; v/ 7! @�U.t; x; �/.v/,
as given by Theorem 5.29, is differentiable with respect to x and, for any ` 2
f1; � � � ;mg, @x@�U `.t; x; �/.v/ coincides with Œ@�@xU `.t; x; �/.v/��.

Proof. The strategy is the same as above: We regard the pair .� t;x;�; @x�
t;x;�/ as the solution

of an enlarged forward-backward system. Similar to (5.73), the drift of the enlarged system
should read:

B
�
t; .x; @x/; �; .y; @y/

� D
(

B
�
t; x; �; y/;

DB
�
t; .x; @x/; �; .y; @y/

�
;

where, although it refers to a different object, we use the same notation B as in (5.73) for
denoting the enlarged drift and where DB is now given by:

DB
�
t; .x; @x/; �; .y; @y/

� D @xB.t; x; �; y/@x C @yB.t; x; �; y/@y:

Here, .x; @x/ 2 R
d � R

d�d is understood as the forward variable and .y; @y/ 2 R
m � R

m�d

as the backward variable, and � 2 P2.Rd/ is understood as the marginal law of the first
component of the forward variable on R

d in the corresponding McKean-Vlasov system.
By the same argument as in the proof of Lemma 5.26, we have the analogue of (5.74),

namely:
�
�
� sup

t�s�T

�
j@xXt;x;�

s j C j@xYt;x;�
s j

��
�
�

1
� C;

for a constant C only depending on L (and in particular independent of � ), provided that
T � c, where c > 0 is also a constant that only depends on L. In particular, we may regard
the system satisfied by .� t;x;�; @x�

t;x;�/ as a system driven by Lipschitz coefficients satisfying
assumption Smooth Coefficients Order 1. Hence, the system satisfied by .� t;x;�; @x�

t;x;�/

fulfills the assumption of Theorem 5.29. Therefore, for T � c, for a new value of c, for any t 2
Œ0; T�, the function R

d � P2.Rd/ 3 .x; �/ 7! @xU.t; x; �/ is continuously differentiable and,
for each .x; �/ 2 R

d �P2.Rd/, we can find a version of P2.Rd/ 3 � 7! @�@xU.t; x; �/.v/ 2
L2.Rd; �IRm�d�d/, such that, for all x1; x2; v1; v2 2 R

d and �1; �2 2 P2.Rd/,
ˇ
ˇ@2xU.t; x1; �1/ � @2xU.t; x2; �2/

ˇ
ˇ � C

�jx1 � x2j C W1.�1; �2/
�
;

j@�@xU.t; x1; �1/.v1/ � @�@xU.t; x2; �2/.v2/j
� C

�jx1 � x2j C jv1 � v2j C W1.�1; �2/
�
;

(5.103)

for a constant C only depending on L and � . Moreover, for the same constant C, for any
t 2 Œ0; T�, x; v 2 R

d and � 2 P2.Rd/,

ˇ
ˇ@�@xU

�
t; x; �/.v/

ˇ
ˇ � C:
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Finally, the functions Œ0; T� � R
d � P2.Rd/ 3 .t; x; �/ 7! @2xU.t; x; �/ 2 R

m�.d�d/ and
Œ0; T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7! @�@xU.t; x; �/.v/ 2 R

m�d�d are continuous.
In order to prove the existence of the cross-derivative @x@�U , we may invoke Schwarz’

theorem. Indeed, for .t; x; 
/ 2 Œ0; T� � R
d � L2.˝1;F1

t ;P
1IRd/ and .y; �/ 2 R

d �
L2.˝1;F1

t ;P
1IRd/ with jyj � 1, we may let:

% W R2 3 .r; s/ 7! U
�
t; x C ry;L1.
 C s�/

�
:

Clearly, % is continuously differentiable, with:

@r%.r; s/ D @xU
�
t; x C ry;L1.
 C s�/

�
y;

@s%.r; s/ D E
1
�
@�U

�
t; x C ry;L1.
 C s�/

�
.
 C s�/�

�
;

for r; s 2 R
2. The above analysis shows that @r% is continuously differentiable. Therefore,

by Schwarz’ theorem, for any s 2 R, the mapping R 3 r 7! @s%.r; s/ is differentiable with
respect to r and

@r
�
@s%.�; s/

�

j�Dr D E
1
�
@�@xU

�
t; x C ry;L1.
 C s�/

�
.
 C s�/y ˝ �

�
:

In particular, when s D 0,

E
1
�
@�U

�
t; x C ry;L1.
/

�
.
/�

� � E
1
�
@�U

�
t; x;L1.
/

�
.
/�

�

D
Z r

0

E
1
�
@�@xU

�
t; x C uy;L1.
/

�
.
/y ˝ �

�
du;

and then, for ` 2 f1; � � � ;mg,

E
1
h�
@�U `

�
t; x C ry;L1.
/

�
.
/ � @�U `

�
t; x;L1.
/

�
.
/ � r@�@xU `

�
t; x;L1.
/

�
.
/y

�
�
i

D
Z r

0

E
1
h�
@�@xU `

�
t; x C uy;L1.
/

�
.
/ � @�@xU `

�
t; x;L1.
/

�
.
/
�

y ˝ �
i
du:

Thanks to (5.103), the right-hand side is less than Cr2k�k1. Therefore,

�
�
�@�U `

�
t; x C ry;L1.
/

�
.
/ � @�U `

�
t; x;L1.
/

�
.
/ � r

�
@�@xU `

�
t; x;L1.
/

�
.
/
��

y
�
�
�

1

� Cr2;

where we used the convention @�@xU `.t; x; �/.v/ D .Œ@�@xiU `.t; x; �/.v/�j/1�i;j�d.
When � D L1.
/ has full support, we get, for all v 2 R

d ,
ˇ
ˇ
ˇ@�U `.t; x C ry; �/.v/ � @�U `.t; x; �/.v/ � r

�
@�@xU `.t; x; �/.v/

��
y
ˇ
ˇ
ˇ � Cr2:

Since the left-hand side is continuous with respect to .t; x; �; v/, we deduce that the above
holds true for any � 2 P2.Rd/, whatever the support. This shows that, for any t 2 Œ0; T�,
v 2 R

d and � 2 P2.Rd/, the mapping R
d 3 x 7! @�U.t; x; �/.v/ is differentiable. Then,

@x@�U ` and Œ@�@xU `�� coincide. In particular, @x@�U satisfies (5.103). ut

Derivation of the Master Equation: Proof of Theorem 5.10
We now prove that U solves the master equation, which will complete the proof of
Theorem 5.10.
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Proof. We consider t 2 Œ0; T� and � > 0 such that t C � 2 Œ0; T�. Then, for all .x; �/ 2
R

d � P2.Rd/,

U.t C �; x; �/ � U.t; x; �/ D U.t C �; x; �/ � U
�
t C �;Xt;x;�

tC�
;L1.Xt;


tC�
/
�

C U
�
t C �;Xt;x;�

tC�
;L1.Xt;


tC�
/
� � U

�
t; x; �/;

(5.104)

where 
 	 �, with 
 2 L2.˝1;F1
t ;P

1IRd/.
Observe that the second line in (5.104) coincides with Yt;x;�

tC�
� Yt;x;�

t . In particular,

E
�
U
�
t C �;Xt;x;�

tC�
;L1.Xt;


tC�
/
� � U

�
t; x; �/

�

D E
�
Yt;x;�

tC�
� Yt;x;�

t

� D �E

Z tC�

t
F
�
s;Xt;x;�

s ;L1.Xt;

s /; Y

t;x;�
s

�
ds:

Taking advantage of the regularity property of F and of the time regularity of the processes
Xt;x;� D .Xt;x;�

s /t�s�T , Xt;
 D .Xt;

s /t�s�T and Yt;x;� D .Yt;x;�

s D U.s;Xt;x;�
s ;Xt;


s //t�s�T , we
easily deduce that:

E
�
U
�
t C �;Xt;x;�

tC�
;L1.Xt;


tC�
/
� � U

�
t; x; �/

� D ��F�t; x; �;U.t; x; �/�C o.�/: (5.105)

In order to handle the first line in (5.104), we shall make use of the chain rule
proved in Theorem 4.17, but in the case when the function is time-homogeneous.
Letting Xx D .Xx

s /t�s�T D .Xt;x;�
s /t�s�T , X
 D .X
s /t�s�T D .Xt;


s /t�s�T , � D
.�s/t�s�T D .L1.Xt;


s //t�s�T , Bx D .Bx
s/t�s�T D .B.s;Xt;x;�

s ;L1.Xt;

s /; Y

t;x;�
s //t�s�T

and B
 D .B
s /t�s�T D .B.s;Xt;

s ;L1.Xt;


s /; Y
t;

s //t�s�T , we have:

E
�
U
�
t C �;Xx

tC�; �tC�

�� D U.t; x; �/

C E

Z tC�

t
@xU

�
tC�;Xx

s ; �s
� � Bx

sdsCE

Z tC�

t

QE1
h
@�U

�
tC�;Xx

s ; �s
�� QX
s

� � QB
s
i
ds

C 1

2
E

Z tC�

t
trace

h
@2xxU

�
t C �;Xx

s ; �s
��
��� C �0.�0/�

�i
ds

C 1

2
E

Z tC�

t

QE1
h
trace

n
@v@�U

�
t C �;Xx

s ; �s
�� QX
s

��
��� C �0

�
�0
��
�oi

ds

C 1

2
E

Z tC�

t

QE1 QQE1
h
trace

n
@2�U

�
t C �;Xx

s ; �s
�� QX
s ; QQX
s

�
�0
�
�0
��
oi

ds

C E

Z tC�

t

QE1
h
trace

n
@x@�U

�
t C �;Xx

s ; �s
�� QX
s

�
�0
�
�0
��
oi

ds:

Owing to the regularity of the derivatives of U with respect to the space variable, to the
measure argument, and to the time parameter, we easily deduce that:

E
�
U
�
t C �;Xx

tC�; �tC�

�� D U.t; x; �/

C�
�
@xU.t; x; �/ �B�t; x; �;U.t; x; �/�CE

1
�
@�U.t; x; �/.
/ � B

�
t; 
; �;U.t; 
; �/

��

C 1

2
trace

�
@2xxU.t; x; �/

�
��� C �0.�0/�

�
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C 1

2
E
1
h
trace

˚
@v@�U.t; x; �/.
/

�
��� C �0

�
�0
����

i
(5.106)

C 1

2
E
1 QE1

h
trace

˚
@2�U.t; x; �/.
; Q
/�0��0���

i

C E
1
h
trace

˚
@x@�U.t; x; �/.
/�0

�
�0
���
i�

C �o.�/:

Combining (5.104), (5.105), and (5.106), we deduce that U is right-differentiable in time.
The right-derivative satisfies:

@tU.t; x; �/

D �
�
@xU.t; x; �/ �B�t; x; �;U.t; x; �/�CE

1
�
@�U.t; x; �/.
/ �B�t; 
; �;U.t; 
; �/��

C 1

2
trace

�
@2xxU.t; x; �/

�
��� C �0.�0/�

�

C 1

2
E
1
h
trace

˚
@v@�U.t; x; �/.
/

�
��� C �0

�
�0
����

i

C 1

2
E
1 QE1

h
trace

˚
@2�U.t; x; �/.
; Q
/�0��0���

i

C E
1
h
trace

˚
@x@�U.t; x; �/.
/�0

�
�0
���
i

C F
�
t; x; �;U.t; x; �/

��
:

Since the right-hand side is continuous in all the variables, U is differentiable in time and
@tU is continuous in all the arguments. ut

Uniqueness: Proof of Theorem 5.11
In this last paragraph, we do not assume anymore that the coefficients are
independent of .z; z0/ and that � and �0 are constant. Instead, we assume that
the coefficients satisfy assumption Conditional MKV FBSDE in Small Time and
that � and �0 are bounded.

We prove that uniqueness holds true within the class Sm defined in Definition 5.9.
The proof is based upon the fact that, under the existence of a classical solution

in the class Sm, the McKean-Vlasov forward-backward system (5.1) has a unique
solution.

Proposition 5.42 Under assumption Conditional MKV FBSDE in Small Time,
assume that there exists a solution U in the class Sm to the master equation (5.13).
Assume also that � and �0 are bounded. Then, whatever the size of T, for any
t 2 Œ0;T� and 
 2 L2.˝1;F1

t ;P
1IRd/, there exists a solution .X;Y;Z;Z0/ to (5.2),

satisfying Xt D 
 as initial condition at time t and, for all s 2 Œt;T�,

Ys D U
�
s;Xs;L1.Xs/

�
;

Zs D ��
�
s;Xs;L1.Xs/

�
@xU

�
s;Xs;L1.Xs/

�
;
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Z0s D �
�0
���

s;Xs;L1.Xs/
�
@xU

�
s;Xs;L1.Xs/

�

C QE1���0���s; QXs;L1.Xs/
�
@�U

�
s;Xs;L1.Xs/

�
. QXs/

�
:

The resulting solution to (5.2) is the unique one with the initial condition Xt D 
 .

Proof. We recall the following useful notation:

@�x U.t; x; �/ D ��.t; x; �/@xU.t; x; �/;

@�
0

x U.t; x; �/ D .�0/�.t; x; �/@xU.t; x; �/;

@�
0

� U.t; x; �/ D
Z

Rd
.�0/�.t; v; �/@�U.t; x; �/.v/d�.v/;

@�
0

.x;�/U.t; x; �/ D @�
0

x U.t; x; �/C @�
0

� U.t; x; �/;

for t 2 Œ0; T�, x; v 2 R
d and � 2 P2.Rd/.

First Step. We first prove the existence of a solution to (5.2). To do so, we consider the
McKean-Vlasov SDE:

dXs D B
�

s;Xs;U
�
s;Xs;L1.Xs/

�
; @�x U

�
s;Xs;L1.Xs/

�
; @�

0

.x;�/U
�
s;Xs;L1.Xs/

��
ds

C �
�
s;Xs;L1.Xs/

�
dWs C �0

�
s;Xs;L1.Xs/

�
dW0

s :

Since U is assumed to belong to Sm, the coefficients of the equation are Lipschitz continuous.
Therefore, for a given initial condition 
 2 L2.˝1;F1

t ;P
1IRd/ at time t, the equation has a

unique solution .Xs/t�s�T satisfying Xt D 
. It satisfies EŒsupt�s�T jXsj2� < 1.
Defining .Ys/t�s�T , .Zs/t�s�T and .Z0s /t�s�T as in the statement and observing that Zs D

@�x U.s;Xs;L1.Xs// and Z0s D @�
0

.x;�/U.s;Xs;L1.Xs// for all s 2 Œt; T�, we then deduce from

Itô’s formula in Theorem 4.17 that the 4-tuple .Xs; Ys; Zs; Z0s /t�s�T satisfies (5.2). Observe
that, as required, the martingale integrands .Zs/t�s�T and .Z0s /t�s�T are square-integrable.
This follows from the fact that @xU and @�U are bounded and that � and �0 are also bounded.
This completes the proof.

Second Step. We now prove uniqueness. We call .X0;Y0;Z0;Z0;0/ D .X0
s; Y

0
s ; Z

0
s; Z

0;0
s /t�s�T

another solution to (5.2) with X0
t D 
 as initial condition.

The idea consists in decoupling the forward-backward system satisfied by the 4-tuple
.X0;Y0;Z0;Z0;0/ by letting NY0 D . NY 0

s D U.s;X0
s;L1.X0

s///t�s�T . Then, by applying Itô’s
formula once again and using the form of the PDE satisfied by U , see (5.13), we deduce that:

d NY 0
s D @xU

�
s;X0

s;L1.X0
s/
� �
h
B
�
s;X0

s;L1.X0
s/; Y

0
s ; Z

0
s

� � B
�
s;X0

s;L1.X0
s/;

NY 0
s ;

NZ0
s

�i
ds

C QE1
h
@�U

�
s;X0

s;L1.X0
s/.

QX0
s/

�
�

B
�
s; QX0

s;L1.X0
s/;

QY 0
s ;

QZ0
s

� � B
�
s; QX0

s;L1.X0
s/;

QNY 0
s ;

QNZ0
s

��i
ds

� F
�
s;X0

s;L1.X0
s/;

NY 0
s ;

NZ0
s

�
ds C NZ0

sdWs C NZ0;0s dW0
s ;
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with the terminal condition NY 0
T D G.X0

T ;L.X0
T//, where we let:

NY 0
s D U

�
s;X0

s;L1.X0
s/
�
;

NZ0
s D ��

�
s;X0

s;L1.X0
s/
�
@xU

�
s;X0

s;L1.X0
s/
� D @�x U

�
s;X0

s;L1.X0
s/
�
;

NZ0;0s D �
�0
���

s;X0
s;L1.X0

s/
�
@xU

�
s;X0

s;L1.X0
s/
�

C QE1���0���s; QX0
s;L1.X0

s/
�
@�U

�
s;X0

s;L1.X0
s/
�
. QX0

s/
�

D @�
0

.x;�/U
�
s;X0

s;L1.X0
s/
�
:

Now, we form the difference .Y 0
s � NY 0

s/t�s�T . Using the fact that @xU and @�U are bounded
and that NY 0

T D Y 0
T , and using standard stability arguments from the theory of backward SDEs,

we easily get that:

E

�

sup
t�s�T

jY 0
s � NY 0

s j2 C
Z T

t
jZ0

s � NZ0
sj2ds C

Z T

t
jZ0;0s � NZ0;0s j2

	

D 0;

which completes the proof of uniqueness. ut

Now, the proof of Theorem 5.11 is rather straightforward. Any two solutions
U and U 0 to the master equations induce the same solution to (5.2), when they
are initialized with the same initial condition .t; 
/ with t 2 Œ0;T� and 
 2
L2.˝1;F1

t ;P
1IRd/. Therefore, U.t; 
;L1.
// D U 0.t; 
;L1.
//, which proves that,

when � has full support, U.t; x; �/ D U 0.t; x; �/ for all x 2 R
d. Then, by continuity

of U and U 0, this is true for all .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/.

5.4 Application to Mean Field Games

We now explain how to implement the previous results to the analysis of the master
equation for mean field games. We split the discussion in two steps: The first one is
devoted to the analysis of the master equation for mean field games in small time;
in the second one, we provide explicit conditions under which the master equation
has a classical solution over time intervals of arbitrary lengths.

Throughout the section, we use the same notation as in the general descrip-
tion of mean field games with common noise in the introduction of Chapter 4.
Namely, we are given a complete probability space .˝0;F0;P0/, endowed with
a complete and right-continuous filtration F

0 D .F0
t /0�t�T and a d-dimensional F0-

Brownian motion W0 D .W0
t /0�t�T , and a complete probability space .˝1;F1;P1/

endowed with a complete and right-continuous filtration F
1 D .F1

t /0�t�T and
a d-dimensional F1-Brownian motion W D .Wt/0�t�T . As usual, we denote by
.˝;F ;P/ the completion of the product space .˝;F0˝F1;P0˝P

1/ and we endow
it with the filtration F D .Ft/0�t�T obtained by augmenting the product filtration
F
0 ˝ F

1 in a right-continuous way and by completing it.
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For a drift b from Œ0;T� � R
d � P2.Rd/ � A to R

d, where A is a closed convex
subset of Rk, for two (uncontrolled) diffusion coefficients � and �0 from Œ0;T� �
R

d � P2.Rd/ to R
d�d and for cost functions f and g from Œ0;T� � R

d � P2.Rd/ � A
to R and from R

d �P2.Rd/ to R, the search for an MFG equilibrium goes along the
lines of Definition 2.16:

(i) Given an F0
0 -measurable random variable �0 W ˝0 ! P2.Rd/, with V0 as

distribution, an initial condition X0 W ˝ ! R
d such that L1.X0/ D �0, and an

F0
T -measurable random variable M with values in P2.C.Œ0;T�IR2d// such that

F is compatible with .X0;W0;M;W/ and �0 D M ı .ex
0/

�1, where ex
t is the

mapping evaluating the d first coordinates at time t on C.Œ0;T�IR2d/, solve the
(standard) stochastic control problem (with random coefficients):

inf
.˛s/0�s�T

E

� Z T

0

f .s;Xs; �s; ˛s/ds C g.XT ; �T/

	

; (5.107)

subject to

dXs D b
�
s;Xs; �s; ˛s

�
ds C �

�
s;Xs; �s

�
dWs C �0

�
s;Xs; �s

�
dW0

s ; (5.108)

for s 2 Œ0;T�, with X0 as initial condition and with �s D M ı .ex
s/

�1.
(ii) Determine the input M so that, for one optimal path .Xs/0�s�T , it holds that

M D L1
�
X;W

�
: (5.109)

In order to guarantee the well posedness of the cost functional (5.107) and the
unique solvability of (5.108), we recall the useful condition:

Assumption (Coefficients Growth). There exist two constants �;L � 0 such
that:

(A1) For any t 2 Œ0;T�, the coefficients b.t; �; �; �/ and .�; �0/.t; �; �/ are
respectively continuous on R

d � P2.Rd/ � A and on R
d � P2.Rd/.

The coefficients b.t; �; �; ˛/, �.t; �; �/ and �0.t; �; �/ are L-Lipschitz
continuous in the x variable, uniformly in .t; �; ˛/ 2 Œ0;T��P2.Rd/�A.
Moreover,

jb.t; x; �; ˛/j C j.�; �0/.t; x; �/j � �
�
1C jxj C j˛j C M2.�/

�
;

(A2) The coefficients f and g are Borel-measurable mappings from Œ0;T� �
R

d � P2.Rd/ � A to R and from R
d � P2.Rd/ to R respectively. For

(continued)
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any t 2 Œ0;T�, the coefficients f .t; �; �; �/ and g.�; �/ are continuous on
R

d � P2.Rd/ � A and R
d � P2.Rd/ respectively. Moreover,

jf .t; x; �; ˛/j C jg.x; �/j � �
�
1C jxj2 C j˛j2 C M2.�/

2
�
:

5.4.1 Mean Field Games in Small Time

The purpose of this section is to prove that the master equation has a classical
solution in small time, provided that the optimization problem (5.107) has a unique
optimal path and that the coefficients b, � , �0, f , and g driving the optimization
problem are smooth enough.

In order to do so, we shall make use of the results of the previous section on
the master equation associated with a general FBSDE of the McKean-Vlasov type.
Actually, this strategy makes sense if we are able to characterize the equilibria
of the mean field game through a McKean-Vlasov forward-backward system
driven by coefficients that satisfy assumption Smooth Coefficients Order 2 in
Subsection 5.1.5. A quick glance at the results of Chapters 1 and 2 suggests to use
the representation based upon the stochastic Pontryagin principle.

In order to fit the framework used in the previous sections, we shall assume:

Assumption (MFG Master Pontryagin).

(A1) The coefficients � and �0 are constant; moreover, the coefficients b, f ,
and g are continuous with respect to all the variables, the space P2.Rd/

being equipped with the 2-Wasserstein distance W2.

In order to apply results from Chapter 2, we shall assume that assumptions
FBSDE and Decoupling Master in Subsections 4.1.3 and 4.2.2 are in force, the
latter being especially useful to make the connection between the derivative of the
master field and the Pontryagin adjoint system:

(A2) Assumptions FBSDE and Decoupling Master are in force.

In particular, for any t 2 Œ0;T�, any Xt 2 L2.˝;Ft;PIRd/ and any super-
environment .Ms/t�s�T such that .Xt; .W0

s � W0
t ;Ms;Ws � Wt/t�s�T/ is compatible

with .Fs/t�s�T , the optimization problem (5.107)–(5.108) with Xt as initial condi-
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tion at time t has an optimal path. As assumed in assumption FBSDE, it may be
represented by means of a forward-backward system.

In order to implement the stochastic Pontryagin principle, we also assume:

There exist three constants L; � � 0 and � > 0 such that:

(A3) The drift b is an affine function of ˛ in the sense that it is of the form

b.t; x; �; ˛/ D b1.t; x; �/C b2.t/˛;

where the function Œ0;T� 3 t 7! b2.t/ 2 R
d�k is continuous and

bounded by L, and the function Œ0;T� 3 .t; x; �/ 7! b1.t; x; �/ 2 R
d

is continuous, is L-Lipschitz continuous with respect to .x; �/ and is
differentiable with respect to x, the derivative R

d 3 x 7! @xb1.t; x; �/
being continuous for each .t; �/ 2 Œ0;T� � P2.Rd/.

(A4) For any t 2 Œ0;T� and � 2 P2.Rd/, the function R
d � A 3 .x; ˛/ 7!

f .t; x; �; ˛/ is once continuously differentiable and the function Œ0;T��
R

d � P2.Rd/ � A 3 .t; x; �; ˛/ 7! .@xf ; @˛f /.t; x; ˛; �/ is bounded by
� at .t; 0; ı0; 0A/, for any t 2 Œ0;T� and for some fixed 0A 2 A, and is
L-Lipschitz continuous in .x; �; ˛/. Moreover, f satisfies the convexity
assumption

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ � �j˛0 � ˛j2:

(A5) The function g is differentiable with respect to x and the derivative Rd �
P2.Rd/ 3 .x; �/ 7! @xg.x; �/ is L-Lipschitz continuous.

Obviously, assumption MFG Master Pontryagin subsumes assumption Coef-
ficients Growth provided that f .t; 0; �; 0A/ and g.0; �/ are at most of quadratic
growth in �.

Moreover, following Lemma 1.56, see also Lemma (Vol I)-6.18 for the way
to handle the regularity in the direction �, we know that there exists a unique
minimizer Ǫ .t; x; �; y/ of A 3 ˛ 7! H.t; x; �; y/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/
and that the function Œ0;T� � R

d � P2.Rd/ � A 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/ is
measurable, locally bounded and Lipschitz continuous with respect to .x; �; y/,
uniformly in t 2 Œ0;T�, the Lipschitz constant depending only upon L and �.
Moreover, there exists a constant C > 0, only depending on L, � and �, such that

8t 2 Œ0;T�; x; y 2 R
d; � 2 P2.Rd/;

ˇ
ˇ Ǫ .t; x; �; y/ˇˇ � C

�
1C jxj C M2.�/C jyj�:

Remark 5.43 Since � and �0 are constant, we prefer to denote the reduced
Hamiltonian H.r/ by H.



5.4 Application to Mean Field Games 411

Implementation of the Pontryagin Maximum Principle
By the necessary part of the Pontryagin maximum principle, see Theorem 1.59,
we know that, for a super-environment M satisfying the usual condition of
compatibility, the solution to the optimal control problem (5.107)–(5.108), with Xt

as initial condition, satisfies the forward-backward system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs; �s; Ǫ .s;Xs; �s;Ys/

�
ds C �dWs C �0dW0

s ;

dYs D �@xH
�
s;Xs; �s;Ys; Ǫ .s;Xs; �s;Ys/

�
ds

CZsdWs C Z0s dW0
s C dMs; s 2 Œt;T�;

YT D @xg
�
XT ; �T

�
:

(5.110)

Above M D .Ms/t�s�T is a square-integrable càd-làg martingale starting from 0, of
zero bracket with .W0

s � W0
t ;Ws � Wt/t�s�T . Pay attention that the solution of the

optimal control problem (5.107)–(5.108) is known to exist and to be unique thanks
to assumption FBSDE.

Whenever (5.110) is uniquely solvable for any super-environment M, it provides
a characterization of the solution of the optimal control problem (5.107)–(5.108).
In this framework, MFG equilibria may be characterized as the solutions of the
McKean-Vlasov forward-backward system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs;L1.Xs/; Ǫ .s;Xs;L1.Xs/;Ys/

�
dt C �dWs C �0dW0

s ;

dYs D �@xH
�
s;Xs;L1.Xs/;Ys; Ǫ .s;Xs;L1.Xs/;Ys/

�
ds

CZsdWs C Z0s dW0
s C dMs; s 2 Œt;T�;

YT D @xg
�
XT ;L1.XT/

�
;

(5.111)

with Xt as initial condition, in which case the equilibrium is given by M D
L1.X;W/. This representation reads as the analogue of Proposition 2.18.

We plan to apply the results of the previous section to (5.111), see in par-
ticular Theorem 5.10. However, it must be observed that, due to the structure
of @xH, (5.111) may not fit the Cauchy-Lipschitz assumption Conditional MKV
FBSDE in Small Time in Subsection 5.1.3. This is a serious drawback. However,
it can be easily circumvented in the typical cases under which (A2) in assumption
MFG Master Pontryagin has been proved to hold in Chapter 1: see Theorems 1.57
and 1.60. In the first case, @xb, @xf and @xg are assumed to be bounded; so, the
process Y D .Ys/t�s�T must be bounded as well, by a constant only depending on
the bounds of @xb, @xf and @xg. In the second case, @xb is a matrix depending only
on t; so @xH is Lipschitz continuous in .x; �; y; ˛/ uniformly in time. Therefore, in
both cases, there exists a smooth function � W Rd ! R

d, with bounded derivatives
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of all orders, such that (5.110) holds true with @xH.s;Xs; �s; �.Ys/; Ǫ .s;Xs; �s;Ys//

in lieu of @xH.s;Xs; �s;Ys; Ǫ .s;Xs; �s;Ys// and the function:

Œ0;T� � R
d � P2.Rd/ � R

d � A 3 .t; x; �; y; ˛/ 7! @xH.t; x; �; �.y/; ˛/

is Lipschitz continuous in .x; �; y; ˛/ uniformly in t 2 Œ0;T�. The Lipschitz constant
only depends on the Lipschitz constant of � and on L;T and � in assumption MFG
Master Pontryagin; it is non-decreasing in T .

Therefore, we shall complement assumption MFG Master Pontryagin with:

(A6) There exists a smooth function �, with bounded derivatives of any order,
such that:

– the function � is compactly supported unless @xb is a constant
function; in particular, the function Œ0;T� � R

d � P2.Rd/ � R
d �

A 3 .t; x; �; y; ˛/ 7! @xH.t; x; �; �.y/; ˛/ is Lipschitz continuous in
.x; �; y; ˛/ uniformly in t 2 Œ0;T�,

– for any t 2 Œ0;T�, any Xt 2 L2.˝;Ft;PIRd/ and any super-
environment .Ms/t�s�T such that .Xt; .W0

s � W0
t ;Ms;Ws � Wt/t�s�T/ is

compatible with .Fs/t�s�T , the optimal path .Xs/t�s�T together with the
adjoint process .Ys/t�s�T satisfy PŒ8s 2 Œt;T�; �.Ys/ D Ys� D 1.

Once the function � has been given, we know from Theorem 1.45 that, for T
small enough, the system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs; �s; Ǫ .s;Xs; �s;Ys/

�
ds C �dWs C �0dW0

s ;

dYs D �@xH
�
s;Xs; �s; �.Ys/; Ǫ .s;Xs; �s;Ys/

�
ds

CZsdWs C Z0s dW0 C dMs; s 2 Œt;T�;
YT D @xg.XT ; �T/;

(5.112)

has a unique solution for any initial condition Xt 2 L2.˝;Ft;PIRd/ and any super-
environment M. As explained above, the difference between (5.110) and (5.112)
lies in the additional � in @xH, but, with our choice for �, the unique solution
of (5.112) is also the unique solution of (5.110). This shows that optimal paths of the
optimal control problem (5.107)–(5.108) are characterized as the unique solutions
of (5.112).
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Now, we know from Theorem 5.4 and Remark 5.6 that, in small time, the
McKean-Vlasov forward-backward system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs;L1.Xs/; Ǫ .s;Xs;L1.Xs/;Ys/

�
ds C �dWs C �0dW0

s ;

dYs D �@xH
�
s;Xs;L1.Xs/; �.Ys/; Ǫ .s;Xs;L1.Xs/;Ys/

�
ds

CZsdWs C Z0s dW0
s C dMs; s 2 Œt;T�;

YT D @xg
�
XT ;L1.XT/

�
;

(5.113)

with Xt as initial condition, has a unique solution and it is adapted to the completion
of the filtration generated by .
;L1.
/; .W0

s �W0
t /t�s�T ; .Ws �Wt/t�s�T/. Thanks to

the choice of the function �, this unique solution is the unique solution of (5.111),
which shows that, for any initial condition, the mean field game has a unique
strong solution. Invoking Theorem 5.4 once again, L1..Xs;Ws � W0

s /t�s�T/ forms
a strong equilibrium as it is adapted with respect to the filtration generated by
the initial state and by the common noise W0. In particular, following Defini-
tion 4.1 in Chapter 4, we may associate a master field U with the mean field
game.

Observe that the length c of the interval on which existence and uniqueness
hold true is dictated by the Lipschitz constant of the coefficients in (5.112)
and (5.113), namely the Lipschitz constant of .@xH.s; �; �; �.�/; Ǫ .s; �; �; �///s2Œ0;T� and
the Lipschitz constant of @xg.

Representation of the Master Field
The master field may be represented as follows, provided that T � c, for the
same constant c as above. For any t 2 Œ0;T� and 
 2 L2.˝1;F1

t ;P
1IRd/, the

system:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dXt;

s D b

�
s;Xt;


s ;L1.Xt;

s /; Ǫ .s;Xt;


s ;L1.Xt;

s /;Y

t;

s /
�
ds

C�dWs C �0dW0
s ;

dYt;

s D �@xH

�
s;Xt;


s ;L1.Xt;

s /;Y

t;

s ; Ǫ .s;Xt;


s ;L1.Xt;

s /;Y

t;

s /
�
ds

CZt;

s dWs C Z0It;
s dW0

s ; s 2 Œt;T�;
Xt;


t D 
; Yt;

T D @xg

�
Xt;


T ;L1.X
t;

T /
�
;

(5.114)

has a unique solution.
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Following (5.6), we then consider, for all .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, the

uniquely solvable system:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dXt;x;�
s D b

�
s;Xt;x;�

s ;L1.Xt;

s /; Ǫ .s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s /

�
ds

C �dWs C �0dW0
s ;

dYt;x;�
s D �@xH

�
s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s ; Ǫ .t;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s /

�
ds

C Zt;x;�
s dWs C Z0It;x;�t dW0

s ; s 2 Œt;T�;
Xt;x;�

t D x; Yt;x;�
T D @xg

�
Xt;x;�

T ;L1.Xt;

T /
�
;

(5.115)

with 
 	 �.
Here come two crucial observations. By Theorem 4.10, the master field V of the

pair (5.114)–(5.115) is nothing but @xU , U denoting the master field of the mean
field game. In the statement of Theorem 4.10, the master field is constructed on the
canonical space, but, by strong uniqueness, a similar representation holds true on
any space. Regarding the master field, Definition 4.1 becomes:

U.t; x; �/ D E

� Z T

t
f
�
s;Xt;x;�

s ;L1.Xt;

s /; Ǫ .s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s /

�
ds

C g
�
Xt;x;�

T ;L1.Xt;

T /
�
	

; (5.116)

for any .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, where 
 	 �.

Notice that, if the coefficients of (5.111) are smooth enough, then Theorem 5.10
applies. To make this statement clear, we let:

Assumption (MFG Smooth Coefficients). The set of controls A is the entire
R

k. Moreover, there exist constants L and � such that:

(A1) The function b1 W Œ0;T��R
d �P2.Rd/ 3 .t; x; �/ 7! b1.t; x; �/ 2 R

d�d

satisfies the same assumption as h in assumption Smooth Coefficients
Order 2 in Subsection 5.1.5 with respect to L and � , with w D x 2 R

d

and l D d2. The function @xb1 W Œ0;T� � R
d � P2.Rd/ ! R

.d�d/�d also
satisfies the same assumption as h in assumption Smooth Coefficients
Order 2 with respect to L and � , but with w D x 2 R

d and l D d3.
(A2) For h W Œ0;T� � R

q � P2.Rd/ 3 .t;w; �/ 7! h.t;w; �/ 2 R being f
or g, with q D d C k and w D .x; ˛/ when h D f and with q D d
and w D x when h D g, h being independent of t in the last case,
the function h is differentiable with respect to w and @wh satisfies the

(continued)
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same assumption as h in assumption Smooth Coefficients Order 2 with
respect to L and � , with q D d C k and l D d C k when h D f and
with q D l D d when h D g. Moreover, for any .t;w/ 2 Œ0;T�� R

q, the
mapping P2.Rd/ 3 � 7! h.t;w; �/ is fully C2, and the functions

Œ0;T� � R
q � P2.Rd/ � R

d 3 .t;w; �; v/

7! 1

1CjwjCM1.�/

�
@�h.t;w; �/.v/; @v@�h.t;w; �/.v/

�2R
d �R

d�d;

Œ0;T� � R
q � P2.Rd/ � R

d � R
d 3 .t;w; �; v; v0/

7! 1

1C jwj C M1.�/
@2�h.t;w; �/.v; v0/ 2 R

d�d;

are bounded by � and jointly continuous in .t;w; �; v; v0/ and are � -
Lipschitz continuous with respect to .w; �; v/ and to .w; �; v; v0/.

Importantly, observe from (A2) and Schwarz’ theorem that @�f is differentiable
with respect to x and ˛ and that its derivatives with respect to x and ˛ coincide
respectively with the transposes of the derivatives, with respect to �, of @xf and
@˛f , see Theorem 5.41. Similarly, @�g is differentiable with respect to x and @x@�g
coincides with Œ@�@xg��. Pay also attention that, under assumption MFG Smooth
Coefficients, the functions f and g may not satisfy assumption Smooth Coefficients
Order 2. Indeed, it is pretty clear that @�f and @�g are just assumed to be locally
bounded and locally Lipschitz continuous. Similarly, @xf , @˛f or @xg may not be
bounded as they are just assumed to be of linear growth. Lastly, observe that
assumptions MFG Master Pontryagin and MFG Smooth Coefficients subsume
assumption Coefficients Growth.

The rationale for assumption MFG Smooth Coefficients is as follows. The first
step of the analysis is to investigate the smoothness of the flow of the solutions of the
systems (5.114)–(5.115) with respect to 
 , x, and � by means of Theorem 5.10. The
second step is to return to formula (5.116) in order to deduce the expected properties
of U .

We now claim:

Lemma 5.44 Under assumptions MFG Master Pontryagin and MFG Smooth
Coefficients, the function Ǫ W Œ0;T��R

d �P2.Rd/�R
d 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/

satisfies the same assumption as h in assumption Smooth Coefficients Order 2,
with w D .x; y/ 2 R

d � R
d with respect to constants L0 and � 0 in lieu of L and �

such that L0 only depends on � and L, and � 0 only depends on �, L, and � .

Proof. As already observed above Remark 5.43, the function Ǫ is Lipschitz-continuous with
respect to .x; �; y/, uniformly with respect to t.
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Now, the proof of differentiability follows from a straightforward application of the
implicit function theorem. Indeed, since A D R

k, we know that, for any .t; x; �; y/ 2
Œ0; T� � R

d � P2.Rd/ � R
d, Ǫ .t; x; �; y/ is the unique root of the equation:

�
b2.t/

��
y C @˛f

�
t; x; �; Ǫ .t; x; �; y/� D 0:

In particular, for 
; � 2 L2.˝1;F1;P1IRd/, we have, for any s 2 R,

�
b2.t/

��
y C @˛f

�
t; x;L1.
 C s�/; Ǫ .t; x;L1.
 C s�/; y/

� D 0:

By strict convexity, the matrix @2˛f .t; x; �; Ǫ .t; x; �; y// is invertible, uniformly in .t; x; �; y/.
By the implicit function theorem, we deduce that the function R 3 s 7! Ǫ .t; x;L1.
C s�/; y/
is differentiable, with:

E
1
�
@�@˛f

�
t; x;L1.
/; Ǫ .t;L1.
/; y/�.
/��

C @2˛f
�
t; x;L1.
/; Ǫ .t; x;L1.
/; y/� d

ds jsD0

� Ǫ�t; x;L1.
 C s�/; y
�� D 0;

where we recall the convention @�@˛f D .Œ@�@˛i f �j/1�i;j�d. We easily deduce that the
function L2.˝1;F1;P1IRd/ 3 
 7! Ǫ .t; x;L1.
/; y/ is Gâteaux differentiable. By continuity
of the Gâteaux derivative, differentiability holds in the Fréchet sense. In particular, the
function P2.Rd/ 3 � 7! Ǫ .t; x; �; y/ is L-differentiable and, for all � 2 P2.Rd/, a version
of @� Ǫ .t; x; �; y/.�/ is given by:

@� Ǫ .t; x; �; y/.v/ D �
@2˛f

�
t; x; �; Ǫ .t; x; �; y/���1@�@˛f

�
t; x; �; Ǫ .t; x; �; y/�.v/; v 2 R

d;

from which we deduce that @� Ǫ is bounded and is Lipchitz continuous with respect
to .x; �; y; v/. Thanks to (A2) in assumption MFG Smooth Coefficients, @˛f satisfies
assumption Smooth Coefficients Order 2 and the above equality permits to differentiate
once more with respect to � and v and to prove that the derivatives are also bounded and
Lipschitz continuous with respect to all the variables except time.

The differentiability of @� Ǫ with respect to x; y easily follows once we have established
that Ǫ is differentiable with respect to x and y. The proof of the differentiability in the
directions x and y can be achieved by the same argument as above. ut

Therefore, under assumptions MFG Master Pontryagin and MFG Smooth
Coefficients, the function Œ0;T� � R

d � P2.Rd/ � R
d � R

k 3 .t; x; �; y; ˛/ 7!
@xH.t; x; �; �.y/; ˛/ 2 R

d satisfies the same assumption as h in assumption Smooth
Coefficients Order 2 in Subsection 5.1.5, with w D .x; y; ˛/ 2 R

d � R
d � R

k and
l D d and with respect to constants L0 and � 0 respectively depending on L and
�, and L, � and �. By composition, the function Œ0;T� � R

d � P2.Rd/ � R
d 3

.t; x; �; y/ 7! @xH.t; x; �; �.y/; Ǫ .t; x; �; y// satisfies the same assumption as h in
assumption Smooth Coefficients Order 2 with w D .x; y/ 2 R

d � R
d and l D d

and with respect to constants L0, � 0 respectively depending on L, � and �, and L, � ,
� and �. Hence, Theorem 5.10 says that, for T � c, with c > 0 only depending on
L, � and �, the decoupling field V D @xU of the system (5.111) belongs to the class
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Sd defined in Definition 5.9 with m D d. It satisfies the following master equation,
which reads as a system of partial differential equations:

@t@xiU.t; x; �/C b
�

t; x; �; Ǫ�t; x; �; @xU.t; x; �/
�� � @x@xiU.t; x; �/

C
Z

Rd
b
�

t; v; �; Ǫ�t; v; �; @xU.t; v; �/
�� � @�@xiU.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
@2xx@xiU.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
@v@�@xiU.t; x; �/.v/

i

d�.v/

C 1

2

Z

R2d
trace

h

�0.�0/�@2�@xiU.t; x; �/.v; v0/
i

d�.v/d�.v0/

C
Z

Rd
trace

h

�0
�
�0
��
@x@�@xiU.t; x; �/.v/

i

d�.v/

C @xi H
�

t; x; �; @xU.t; x; �/; Ǫ�t; x; �; @xU.t; x; �/
�� D 0;

(5.117)

for any coordinate i 2 f1; � � � ; dg, with @xU.T; x; �/ D @xg.x; �/ as terminal
condition. Above, @xiU denotes the ith component of the d-dimensional vector
valued function @xU . Of course, the vector @xU.t; x; �/ may be replaced by
�.@xU.t; x; �// in the fourth argument of @xi H since Theorem 4.10 ensures that
@xU.t; x; �/ belongs to the subset of Rd on which � coincides with the identity.

Importantly, we emphasize that, whenever the function � is the identity, the
length c on which Theorem 5.10 applies is determined by the sole parameters L
and �.

Smoothness of the Master Field and Derivation of the Master Equation
We shall deduce from the representation formula (5.116) that for any given .t; x/ 2
Œ0;T� � R

d, U.t; x; �/ is twice differentiable with respect to �, provided that T � c,
for the same c as above.

We start with the case when the functions Œ0;T� � R
d � P2.Rd/ � R

d 3
.t; x; �; y/ 7! f .t; x; �; Ǫ .t; x; �; y// and R

d �P2.Rd/ 3 .x; �/ 7! g.x; �/ satisfy the
same assumption as h in assumption Smooth Coefficients Order 2 with q D 2d
and w D .x; y/ when h D f .�; �; �; Ǫ .�; �; �; �// and with q D d and w D x when h D g.
Then, there is no difficulty repeating the computations performed in Sections 5.2
and 5.3 and to prove that U satisfies the same assumption as h in assumption
Smooth Coefficients Order 2 with q D d and w D x. Indeed, we already know
from the proof of Theorem 5.10 that the processes appearing in the representation
formula (5.116) are twice differentiable with respect to the arguments 
 , x, and �;
so, if f and g satisfy assumption Smooth Coefficients Order 2, we can easily derive
that U has the aforementioned smoothness property. Appealing to the dynamic
programming principle, see Theorem 4.5, we know that, for any � > 0 such that
t C � � T ,
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U.t; x; �/ D E

� Z tC�

t
f
�
s;Xt;x;�

s ;L1.Xt;

s /; Ǫ .s;Xt;x;�

s ;L1.Xt;

s /;Y

t;x;�
s /

�
ds

C U
�
t C �;Xt;x;�

tC� ;L1.X
t;

tC�/

�
	

:

Subtracting U.t C �; x; �/ to both sides and using the smoothness of U in the
directions x and �, we easily deduce that U is continuous in time and then jointly
continuous in all the arguments. Differentiating twice the above formula with
respect to x and � and subtracting the corresponding derivatives of U.t C �; x; �/,
we deduce in the same way that the directional first and second-order derivatives of
U are jointly continuous, including the time variable. Proceeding as in the proof of
Theorem 5.10, we deduce that the first and second order derivatives of U in x and �
satisfy the same continuity properties as in the statement of Theorem 5.10.

Now, expanding U in the second line of the above dynamic programming
principle by means of Itô’s formula, see Theorem 4.17, we deduce that U is right-
differentiable in time and that the right-derivative satisfies:

@tU.t; x; �/C b
�
t; x; �; Ǫ.t; x; �; @xU.t; x; �//

� � @xU.t; x; �/

C
Z

Rd
b
�
t; v; �; Ǫ.t; v; �; @xU.t; v; �//

� � @�U.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
@2xxU.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
@v@�U.t; x; �/.v/

i

d�.v/

C 1

2

Z

R2d
trace

h

�0.�0/�@2�U.s; x; �/.v; v0/
i

d�.v/d�.v0/

C
Z

Rd
trace

h

�0
�
�0
��
@x@�U.t; x; �/.v/

i

d�.v/

C f
�
t; x; �; Ǫ.t; x; �; @xU.t; x; �//

� D 0:

(5.118)

Since all the terms except the first one are known to be jointly continuous in all the
arguments, we deduce that U is time differentiable and that @tU is jointly continuous.
In particular, U is in the class S1 and satisfies the above equation, which is the
master equation for mean field games introduced in Chapter 4, see Section 4.4.

However, under assumption MFG Smooth Coefficients, the functions Œ0;T� �
R

d � P2.Rd/ � R
d 3 .t; x; �; y/ 7! f .t; x; �; Ǫ .t; x; �; y// and R

d � P2.Rd/ 3
.x; �/ 7! g.x; �/ may not satisfy the same assumption as h in assumption Smooth
Coefficients Order 2. Indeed, under assumption MFG Smooth Coefficients, only
the coefficients @xf and @xg are assumed to satisfy assumption Smooth Coefficients
Order 2; in particular, it might happen that neither f nor g are Lipschitz continuous
in the variables x or ˛. However, we still have:
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Theorem 5.45 Under assumptions MFG Master Pontryagin and MFG Smooth
Coefficients, there exists a constant c, only depending on L, �, and �, such that the
following holds true for T � c. The master field U is continuous and differentiable
with respect to t, x and �. The partial derivative @tU is continuous on Œ0;T� �
R

d � P2.Rd/. The partial derivative @xU belongs to the class Sd, as defined in
Definition (5.9), with m D d and with respect to constants L0 and � 0 depending on
L, �, � , and �. For any .t; x/ 2 Œ0;T� � R

d, the map P2.Rd/ 3 � 7! U.t; x; �/ is
fully C2, and the functions:

Œ0;T� � R
d � P2.Rd/ � R

d 3 .t; x; �; v/

7! 1

1C jxj C M1.�/

�
@�U.t; x; �/.v/; @v@�U.t; x; �/.v/

� 2 R
d � R

d�d;

Œ0;T� � R
d � P2.Rd/ � R

d � R
d 3 .t; x; �; v; v0/

7! 1

1C jxj C M1.�/
@2�U.t; x; �/.v; v0/ 2 R

d�d;

are bounded by � 0 and jointly continuous in .t; x; �; v; v0/ and are � 0-Lipschitz
continuous with respect to .x; �; v/ and to .x; �; v; v0/.

Moreover, U satisfies the master equation for mean field games (5.118) and @xU
satisfies (5.117).

Finally, the processes � t;
 D .Xt;
 ;Yt;
 / and � t;x;� D .Xt;x;�;Yt;x;�/ appearing in
the stochastic Pontryagin principle, see (5.114) and (5.115), satisfy the conclusions
of Subsections 5.2 and 5.3, see Lemmas 5.24, 5.25, 5.27, 5.35, and 5.38 and
Propositions 5.31 and 5.32.

Whenever � is the identity, the constant c only depends on � and L.

The statement of Theorem 5.45 gives a new insight into the assumption MFG
Smooth Coefficients. Indeed, the statement shows that the master field U inherits
the smoothness properties of the coefficients when chosen as in assumption MFG
Smooth Coefficients, which sounds as a stability property. The fact that assumption
MFG Smooth Coefficients maps coefficients of the master equation onto a solution
satisfying the same properties will play a key role below when we iterate the small
time result to construct a global solution of the master equation.

Proof. We first observe that the claim regarding the smoothness of @xU is a direct
consequence of Theorem 5.10. Also, the properties of the processes � t;
 D .Xt;
 ;Yt;
 / and
� t;x;� D .Xt;x;�;Yt;x;�/ follow from the proof of Theorem 5.10. Hence, it suffices to prove the
other claims in the statement, the main point being to establish the smoothness of U in the
direction �.

First Step. In order to recover the same framework as in assumption Smooth Coefficients
Order 2, we use a truncation argument. For a smooth function  W Rd ! R

d with compact
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support included in the d-dimensional ball B.0; 2/ of center 0 and of radius 2, such that
 .x/ D x for all x 2 R

d with jxj � 1, we let  n.x/ D n .x=n/ for any integer n � 1. Then,
for t 2 Œ0; T�, x; y 2 R

d and � 2 P2.Rd/, we put:

Fn.t; .x; y/; �/ D f
�
t;  n.x/; � ı  �1

n ; Ǫ .t;  n.x/; � ı  �1
n ;  n.y//

�
;

Gn.x; �/ D g
�
 n.x/; � ı  �1

n

�
:

Following the proof of Lemma 4.15, see also Lemma (Vol I)-5.94, it is easily checked that
Fn and Gn satisfy assumption Smooth Coefficients Order 2 with respect to constants that
may depend on �, L, � , and n. We then let, for all .t; x; �/ 2 Œ0; T� � R

d � P2.Rd/,

Un.t; x; �/ D E

� Z T

t
Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
ds C Gn

�
Xt;x;�

T ;L1.Xt;

T /
�
	

;

where 
 	 � and � t;x;� D .Xt;x;�;Yt;x;�/. Of course, Un converges to U as n tends to 1, the
convergence being uniform on bounded subsets of Œ0; T� � R

d � P2.Rd/.
Moreover, Un may be regarded as the decoupling field of the backward SDE:

NYn;t;x;�
s D Es

�

Gn
�
Xt;x;�

T ;L1.Xt;

T /
�C

Z T

s
Fn
�
r; � t;x;�

r ;L1.Xt;

r /
�
dr

	

; (5.119)

for s 2 Œt; T�. Writing .� t;x;�
s D .Xt;x;�

s ; @xU.s;Xt;x;�
s ;L1.Xt;


s ////t�s�T and recalling that @xU
is in the class Sd with m D d, we deduce that (5.119) together with the equation for Xt;x;�

forms a McKean-Vlasov forward-backward system and that its decoupling field is exactly
Un. Then, by Theorem 5.10, Un is in the class S1 and satisfies the corresponding master
equation:

@tUn.t; x; �/C B
�
t; .x; @xU.t; x; �//; �

� � @xUn.t; x; �/

C
Z

Rd
B
�
t; .v; @xU.t; v; �//; �

� � @�Un.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
@2xxUn.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
@v@�Un.t; x; �/.v/

i
d�.v/

C 1

2

Z

R2d
trace

h
�0.�0/�@2�Un.s; x; �/.v; v

0/
i
d�.v/d�.v0/

C
Z

Rd
trace

h
�0
�
�0
��
@x@�Un.t; x; �/.v/

i
d�.v/

C Fn
�
t; .x; @xU.t; x; �//; �

� D 0;

(5.120)

with Un.T; x; �/ D Gn.x; �/, and where:

B.t; .x; y/; �/ D b
�
t; x; �; Ǫ .t; x; �; y/�:

Second Step. Now, by combining the smoothness of the coefficients with that of the flows
.x; �/ 7! .Xt;x;�;Yt;x;�/ and 
 7! Xt;
 , see Subsection 5.2.4, we get that, for all 
; � 2
L2.˝1;F1

t ;P
1IRd/,
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E
�
@�Un

�
t; x;L1.
/

� � �� D E

� Z T

t

�
@wFn

�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

C QE1�@�Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s

��
ds

C @xGn
�
Xt;x;�

T ;L1.Xt;

T /
� � @�Xt;x;


T

C QE1�@�Gn
�
Xt;x;�

T ;L1.Xt;

T /
�
. QXt;


T / � @� QXt;

T

�
	

;

(5.121)

where we used the letter w for the variable .x; y/. Above, the exchange of the expectation and
derivative symbols may be fully justified by the Lebesgue dominated convergence theorem.

Making use of assumption MFG Smooth Coefficients and following the computation in
Lemma 4.15, see also Lemma (Vol I)-5.94, for the derivative of the mollified coefficients, it
is easy to check that the functions:

Œ0; T� � R
2d � P2.Rd/ 3 .t;w; �/ 7! 1

1C jwj C M1.�/
@wFn.t;w; �/;

Œ0; T� � R
2d � P2.Rd/ � R

d 3 .t;w; �; v/ 7! 1

1C jwj C M1.�/
@�Fn.t;w; �/.v/;

are bounded, uniformly in n � 1, and are also Lipschitz continuous in .w; �/, uniformly in
n � 1 and t 2 Œ0; T�. Therefore, for any s 2 Œt; T�, the quantities:

@wFn
�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

1C j� t;x;�
s j C E1ŒjXt;


s j�
; (5.122)

and

QE1�@�Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s
�

1C j� t;x;�
s j C E1ŒjXt;


s j�
; (5.123)

can be handled as the terms

@wFn
�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

and

QE1�@�Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s

�

would have been handled if assumption Smooth Coefficients Order 2 had been in force. In
particular, by Lemmas 5.24, 5.25, and 5.26 and by Proposition 5.13, both (5.122) and (5.123)
may be estimated in L1.˝;F ;PIR2d/ and L1.˝;F ;PIRd/ respectively. The bounds
are similar to that obtained for @�� t;x;
 in the first line of (5.62). Similarly, increments
of quantities of the form (5.122) or (5.123), when taken at different triples .x; �; 
/ and
.x0; �0; 
 0/, satisfy similar bounds to those obtained for @�� t;x;
 and @�� t;x;
0

in the second
line of (5.62) and for @�� t;x;
 � @�� t;x0;
 in the end of the proof of Lemma 5.28.
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Based on the above observation, we divide both sides in (5.121) by 1C jxj C M1.�/. In
lieu of the two first terms in the right-hand side of (5.121), this prompts us to consider:

@wFn
�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

1C jxj C M1.�/

D 1C j� t;x;�
s j C E

1ŒjXt;

s j�

1C jxj C M1.�/
� @wFn

�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

1C j� t;x;�
s j C E1ŒjXt;


s j�
;

(5.124)

together with:

QE1�@�Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s
�

1C jxj C M1.�/

D 1C j� t;x;�
s j C E

1ŒjXt;

s j�

1C jxj C M1.�/
�

QE1�@�Fn
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s
�

1C j� t;x;�
s j C E1ŒjXt;


s j�
:

(5.125)

Of course, we can perform a similar analysis for @xGn and @�Gn.

Third Step. We now focus on the first factor in (5.124) and (5.125). By Lemma 5.12, we can
find a constant C such that:

E

h1C j� t;x;�
s j C E

1ŒjXt;

s j�

1C jxj C M1.�/

i
� C; (5.126)

for x 2 R
d, � 2 P2.Rd/ and 
 2 L2.˝1;F1

t ;P
1IRd/ with 
 	 �. Owing to Proposition 5.13,

we deduce that:

E

�ˇ
ˇ
ˇ
1C j� t;x;�

s j C E
1ŒjXt;


s j�
1C jxj C M1.�/

� 1C j� t;x0;�0

s j C E
1ŒjXt;
0

s j�
1C jx0j C M1.�0/

ˇ
ˇ
ˇ

	

� C
�jx � x0j C W1.�; �

0/
�
;

(5.127)

for x; x0 2 R
d, �;�0 2 P2.Rd/ and 
; 
 0 2 L2.˝1;F1

t ;P
1IRd/ with 
 	 � and 
 0 	 �0, and

for possibly new value of the constant C.
Returning to (5.121) and recalling the writings (5.124) and (5.125) together with the

conclusion of the second step, we conclude that, in comparison to what happens when
assumption Smooth Coefficients Order 2 is in force, similar bounds for @�Un.t; x; �/.v/
hold true with additional pre-factor .1 C jxj C M1.�//

�1. Put it differently, there exists a
constant C such that, for all n � 1, the function:

Œ0; T� � R
d � P2.Rd/ � R

d 3 .t; x; �; v/ 7! @�Un.t; x; �/.v/

1C jxj C M1.�/

satisfies, for all t 2 Œ0; T�, x; x0; v; v0 2 R
d and �;�0 2 P2.Rd/,

1

1C jxj C M1.�/

ˇ
ˇ@�Un.t; x; �/.v/

ˇ
ˇ � C;

ˇ
ˇ
ˇ

1

1C jxj C M1.�/
@�Un.t; x; �/.v/ � 1

1C jx0j C M1.�0/
@�Un.t; x

0; �0/.v0/
ˇ
ˇ
ˇ

� C
�jx � x0j C jv � v0j C W1.�; �

0/
�
:

(5.128)
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As a consequence, we deduce that, for any t 2 Œ0; T�, the functions .@�Un.t; �; �/.�//n�1 extend
by continuity to R

d � P1.Rd/ � R
d and that they are equicontinuous on bounded subsets of

R
d�P2.Rd/�R

d. Since any bounded subset of Rd�P2.Rd/�R
d is relatively compact in R

d�
P1.Rd/ � R

d, we may extract a subsequence that converges uniformly on bounded subsets
R

d � P2.Rd/ � R
d. Of course, this says that U is L-differentiable and, for any .t; x; �/ 2

Œ0; T��R
d �P2.Rd/, the limit of the subsequence of .@�Un.t; x; �/.�//n�1 provides a version

of @�U.t; x; �/.�/. In particular, @�U.t; �; �/.�/ satisfies (5.128). Passing to the limit in (5.121),
we get the following representation formula for @�U :

E
�
@�U

�
t; x;L1.
/

� � �� D E

� Z T

t

�
@wF

�
s; � t;x;�

s ;L1.Xt;

s /
� � @�� t;x;


s

C QE1�@�F
�
s; � t;x;�

s ;L1.Xt;

s /
�
. QXt;


s / � @� QXt;

s

��
ds

C @xG
�
Xt;x;�

T ;L1.Xt;

T /
� � @�Xt;x;


T

C QE1�@�G
�
Xt;x;�

T ;L1.Xt;

T /
�
. QXt;


T / � @� QXt;

T

�
	

;

(5.129)

where

F.t; .x; y/; �/ D f
�
t; x; �; Ǫ .t; x; �; y/�; G.x; �/ D g.x; �/:

By writing (5.129) from t to t C � with G being replaced by U.t C �; �; �/ and by using
(5.128) and the Lipschitz property of @xU.t C �; �; �/, we can prove that the right-hand side is
continuous in time. We prove that @�U is continuous in time by using the same compactness
argument as in the proof of Theorem 5.29.

Fourth Step. Fortunately, we may proceed in the same way for the second-order derivatives
by differentiating once again (5.121) with respect to 
 in a direction 	 2 L1.˝1;F1

t ;PIRd/.
Recall indeed from Propositions 5.32 and 5.33 and from Lemma 5.35 and Proposition 5.39
that the regularity of @v@�Un and of @2�Un may be investigated through the analysis of

@2	;��t
t;x;
 and @2	;��t

t;
 for suitable choices of 	 and �: @v@�Un may be represented by choosing
."�; "	/ in lieu of .�; 	/where " is independent of .
; �; 	/ and 	 D e is a constant unit vector,
see (5.82), while @2�Un may be represented by choosing ."�; .1�"/	/ in lieu of .�; 	/where "
is a Bernoulli random variable with parameter 1=2 independent of .
; �; 	/, see (5.99). And,
as above, recall that the estimates we have for @2	;��t

t;x;
 hold true in L1.˝;F ;PIRd/ when
� and 	 are chosen as we just explained and k�k1 or k	k1 is bounded by 1.

Proceeding as above, we complete the analysis of the second-order derivatives.
It remains to prove that U satisfies the master equation. To do so, it suffices to recall

that, for each n � 1, Un is differentiable in time and satisfies the master equation (5.120).
Isolating the term @tUn and passing to the limit in the remaining ones, we deduce that U is
differentiable in time and satisfies the master equation for mean field games. ut

5.4.2 Mean Field Games Over Time Intervals of Arbitrary Lengths

The purpose of this section is to extend the short time solvability result proven
above to an interval Œ0;T� of arbitrary length T > 0. As for the stability properties
investigated in Section 1.3, see also Chapter (Vol I)-4, the strategy consists in
applying iteratively the short time result. As usual with forward-backward systems,
the main issue is to bound from below the length of the successive intervals on
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which the short time result is applied. As already noticed in Section 1.3.1, see also
Subsection (Vol I)-4.1.2, the key point is indeed to guarantee that the union of all
these small intervals covers the time interval Œ0;T�. Basically, this requires to bound
from above the Lipschitz constant of the underlying master field @xU of (5.114)–
(5.115), in both directions x and �.

The Lipschitz property in the direction x may be proved by means of standard
arguments:

1. In case when @xf and @xg are bounded and � is invertible, it follows somehow
from the smoothing properties of the heat kernel, as we already alluded to in
Chapter (Vol I)-4, see for instance Theorem (Vol I)-4.12, and in Chapter 1, see
Theorem 1.57. See also the proof of Proposition 5.53 below.

2. When � is not invertible, the Lipschitz property still holds true whenever f
and g are convex in the direction x. We refer for instance to Chapter 1, see
Theorem 1.60.

It is worth noting that this distinction between the invertible and convex cases
is reminiscent of our discussion in Chapters (Vol I)-3 and 1 on the two possible
probabilistic approaches for handling stochastic optimization problems.

Actually, the real challenge is to prove that the decoupling field is Lipschitz
continuous in the measure argument. In short, we need an a priori estimate on the
derivative of the master field in the direction�. Although the idea is quite simple, the
possible implementation raises several questions. First, the reader must remember
that the derivative in the variable � reads as a function and, as a result, is of infinite
dimension. As a consequence, the choice of the norm used to estimate the derivative
really matters: This is a first difficulty. Indeed, the estimate we need on the derivative
of the master field must fit the framework used in the short time analysis. Since the
small time condition in Theorem 5.45 explicitly depends upon the supremum norm
of the �-derivative of the terminal condition @xg, the �-derivative of the decoupling
field must be estimated in supremum norm as well. This is much demanding:
Regarding the tools we have developed so far, see especially Chapter (Vol I)-5, it
would be certainly easier to estimate the derivative in L2 instead of L1. Anyhow,
as we already mentioned, this would require an analogue of the short time result
with just an L2-bound –instead of an L1-bound– on the �-derivative of @xg. We
refer to the Notes & Complements at the end of the chapter for references where
this program is carried out.

Another difficulty is to identify structural conditions under which we can bound
the �-derivative of the master field. Clearly, it seems hopeless to adapt the first
of the two strategies we recalled above for bounding the x-derivative: Except for
very few specific cases like those discussed in Section 3.5.2, we are not aware of
general cases where the finite dimensional common noise W0 permits to mollify
the master field in the direction �. In other words, the only conceivable strategy for
estimating the �-derivative of @x� is to require suitable monotonicity conditions.
Throughout the section, we thus require that the coefficients satisfy the Lasry-Lions
monotonicity condition, as recalled in the statement of Proposition 3.34, see also
assumption MFG Master Classical below.
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5.4.3 Main Statement

Here is now the main statement regarding the existence of a classical solution to the
master equation for mean field games.

We shall need three types of assumptions: First, we need assumptions MFG
Master Pontryagin and MFG Smooth Coefficients, see Subsection 5.4.1, to be
in force in order to apply the short time result; second, we need one of the two
assumptions MFG with a Common Noise HJB or MFG with a Common Noise
SMP Relaxed, see Subsections 3.4.1 and 3.4.3, to be in force in order to guarantee
the existence of equilibria over time intervals of any length and to bound the
derivative of @xU in the direction x; third, we require assumption Lasry-Lions
Monotonicity, as stated in Proposition 3.34, see also Subsection (Vol I)-3.4.1, in
order to guarantee the uniqueness of the equilibria and to bound the derivative of
@xU in the direction �.

This prompts us to let:

Assumption (MFG Master Classical). The set of controls A is the entire Rk.
Moreover, there exist three constants L; � � 0 and � > 0 such that:

(A1) The coefficients � and �0 are constant; moreover, the coefficients f and
g are continuous with respect to all the variables, the space P2.Rd/ being
equipped with the 2-Wasserstein distance W2.

(A2) The drift b is an affine function of ˛ in the sense that it is of the form
b.t; x; �; ˛/ D b.t/˛, where the function Œ0;T� 3 t 7! b.t/ 2 R

d�q

is continuous and bounded by L. Moreover, the running cost f has a
separated structure of the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

for t 2 Œ0;T�, x 2 R
d, ˛ 2 R

k and � 2 P2.Rd/, where f0 is a continuous
function from Œ0;T��R

d �P2.Rd/ into R and f1 is a continuous function
from Œ0;T� � R

d � A into R.
(A3) One of the two assumptions MFG with a Common Noise HJB or

MFG with a Common Noise SMP Relaxed is in force, with respect
to the constants � and �.

(A4) Assumption MFG Smooth Coefficients holds true.
(A5) The functions f0.t; � ; � / for t 2 Œ0;T�, and g are monotone in the

following sense:

Z

Rd
Œh.x; �/ � h.x; �0/� d.� � �0/.x/ � 0;

for all �;�0 2 P2.Rd/ and for h D f0.t; �; �/ or h D g.
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Observe that the Hamiltonian has a separated structure under assumption MFG
Master Classical. In words, the dependence of the Hamiltonian upon the measure
argument can be isolated in a separate function not depending upon the control
variable. In particular, the optimizer Ǫ of the Hamiltonian is a function of .t; x; y/ 2
Œ0;T� � R

d � R
d and does not depend on the measure argument �.

We let the reader check that assumption MFG Master Classical subsumes
assumption MFG Master Pontryagin. See for instance the proofs of Theorems 4.21
and 4.23, where we show that (A3) implies assumptions FBSDE and Decoupling
Master stated in Subsections 4.1.3 and 4.2.2. Importantly, � may be chosen as the
identity matrix in assumption MFG Master Pontryagin; in that case, the constant
c in the statement of Theorem 5.45 only depends on � and L.

We now claim:

Theorem 5.46 Let assumption MFG Master Classical be in force. Then, the
following holds true.

The master field U is continuous and differentiable with respect to t, x and �. The
partial derivative @tU is continuous on Œ0;T��R

d �P2.Rd/. The partial derivative
@xU belongs to the class Sd, as defined in Definition 5.9, with m D d and with
respect to constants L0 and � 0 depending on L, �, T and � . For any .t; x/ 2 Œ0;T��
R

d, the map P2.Rd/ 3 � 7! U.t; x; �/ is fully C2, and the functions:

Œ0;T� � R
d � P2.Rd/ � R

d 3 .t; x; �; v/

7! 1

1C jxj C M1.�/

�
@�U.t; x; �/.v/; @v@�U.t; x; �/.v/

� 2 R
d � R

d�d;

Œ0;T� � R
d � P2.Rd/ � R

d � R
d 3 .t; x; �; v; v0/

7! 1

1C jxj C M1.�/
@2�U.t; x; �/.v; v0/ 2 R

d�d;

are bounded by � 0 and jointly continuous in .t; x; �; v; v0/ and are � 0-Lipschitz
continuous with respect to .x; �; v/ and to .x; �; v; v0/.

Moreover, U satisfies the master equation for mean field games (5.118) and @xU
satisfies (5.117).

Remark 5.47 Following the statement and the proof of Theorem 5.11, there is one
and only function U such that U and @xU satisfy the conclusion of Theorem 5.46.

Remark 5.48 The assumption A D R
k is just used to guarantee that the minimizer

Ǫ is twice continuously differentiable, as stated in Lemma 5.44. Due to boundary
effects, this may not be the case when A is strictly included in R

k. Think for instance
of the following example:
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Ǫ .y/ D inf
˛2Œ�1;1�

�
˛y C 1

2
˛2
� D

8
ˆ̂
<

ˆ̂
:

� 1
2
y2; if jyj � 1;

1
2

� y; if y > 1;
1
2

C y; if y < �1;

in which case the minimizer is not twice differentiable at y D ˙1. This is what we
call a boundary effect.

Importantly, we observe that the statement of Theorem 5.46 can be strengthened
whenever assumption MFG with a Common Noise HJB is in force, see (A3) in
assumption MFG Master Classical. To make this clear, we introduce the following
stronger version of assumption MFG Master Classical:

Assumption (MFG Master Classical HJB). Assumption MFG Master
Classical is in force with the following requirements:

(A1) In condition (A3) of assumption MFG Master Classical, assumption
MFG with a Common Noise HJB is in force.

(A2) In condition (A4) of assumption MFG Master Classical, or equiva-
lently in assumption MFG Smooth Coefficients, the functions:

R
d � P2.Rd/ � R

d 3 .t; x; �; v/ 7! .@�f0.t; x; �/.v/; @v@�f0.t; x; �/.v//;

R
d � P2.Rd/ � R

d � R
d 3 .t; x; �; v; v0/ 7! @2�f0.t;w; �/.v; v

0/;

are bounded by � and are � -Lipschitz continuous with respect to
.w; �; v/ and to .w; �; v; v0/, for any t 2 Œ0;T�, and similarly with g
in lieu of f0.t; �; �/.

We then have the following stronger version of Theorem 5.46:

Theorem 5.49 Under assumption MFG Master Classical HJB, the conclusion of
Theorem 5.46 holds true. In addition, U is bounded and, for a possibly new value of
the constant � 0 used in the statement of Theorem 5.46, the functions:

R
d � P2.Rd/ � R

d 3 .t; x; �; v/ 7! �
@�U.t; x; �/.v/; @v@�U.t; x; �/.v/

�
;

R
d � P2.Rd/ � R

d � R
d 3 .t; x; �; v; v0/ 7! @2�U.t; x; �/.v; v0/;

are bounded by � 0 and are � 0-Lipschitz continuous with respect to .x; �; v/ and to
.x; �; v; v0/, for any t 2 Œ0;T�. In particular, U belongs to S1, see Definition 5.9.
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5.4.4 Proof of the Main Statement

The proof of Theorems 5.46 and 5.49 is divided in several steps.

General Strategy
Generally speaking, the construction of a classical solution to the master equation
is based upon an induction argument, which consists in applying iteratively the
local existence Theorem 5.10. In order to do so, we shall identify general sufficient
conditions under which the length of the interval on which local existence holds true
is uniformly bounded from below along the induction. This strategy is similar to that
explained in Subsection 1.3.3 for solving classical forward-backward systems and in
Subsection 1.3.3 for solving forward-backward systems in a random environment.

By (A3) in assumption MFG Master Classical, we know from Theorems 4.21
and 4.23 that, for any initial condition, the mean field game has a solution. By
Proposition 3.34, this solution is unique and is strong. Therefore, by Definition 4.1,
the master field U is well defined. Since assumption MFG Master Classical
implies assumption MFG Master Pontryagin stated in Subsection 5.4.1, the same
argument as that explained in Subsection 5.4.1 shows that, for a given initial
condition of the mean field game, the unique solution must generate a solution of the
Pontryagin adjoint system (5.114). The goal is thus to prove that, under the standing
assumption, the two systems (5.114) and (5.115) are uniquely solvable and have a
smooth decoupling field. If true, Theorem 4.10 permits to identify the decoupling
field with @xU , which allows to restart the analysis from (5.116). So, the crux of the
proof is to show by induction that @xU , which is known to exist from Theorem 4.10,
is Lipschitz continuous in the variables x and �, uniformly in time. Indeed, by the
same backward induction as in Subsection 1.3.3, this is known to suffice for proving
that (5.114) and (5.115) are uniquely solvable.

Throughout the proof, we shall use the following extension of Definition 5.9: For
a real S 2 Œ0;T�, we denote by Sm.ŒS;T�/ the space of functions V W ŒS;T� � R

d �
P2.Rd/ 3 .t; x; �/ 7! V.t; x; �/ 2 R

m for which we can find a constant C � 0

such that the function Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! V.max.t; S/; x; �/ 2 R

m

belongs to Sm. Equivalently, V belongs to Sm.ŒS;T�/ if it satisfies Definition 5.9
but on ŒS;T� � R

d � P2.Rd/ in lieu of Œ0;T� � R
d � P2.Rd/.

Basically, our goal is to prove by backward induction that @xU belongs to
Sd.ŒS;T�/, for any S 2 Œ0;T�. The short time analysis performed in the previous
paragraph says that this is indeed true when S is close enough to T . The strategy is
thus to decrease the value of S step by step. This prompts us to let:

Hypothesis (H .S/). The conclusion of Theorem 5.46 holds true on ŒS;T� �
R

d � P2.Rd/ with respect to some constants L0 and � 0. In particular, the
function @xU belongs to Sd.ŒS;T�/ and satisfies the master equation (5.117)
on ŒS;T��R

d �P2.Rd/; also, the function U satisfies the master equation for
mean field games (5.13).
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As already emphasized, we know from Theorem 5.45 that, under assumption
MFG Master Classical, there exists a real S 2 Œ0;T/ such that hypothesis H .S/
holds true.

Within this framework, we have the following lemma:

Lemma 5.50 In addition to assumption MFG Master Classical, assume further
that hypothesis H .S/ holds true for some S 2 Œ0;T�. Then, for any .t; 
/ 2
ŒS;T� � L2.˝1;F1

t ;P
1IRd/, the forward-backward system (5.114) has a unique

solution. Moreover, for any .t; x; �/ 2 ŒS;T� � R
d � P2.Rd/, the forward-backward

system (5.115) also has a unique solution.
The function @xU is the master field of the pair (5.114)–(5.115). In particular,

.Xt;

s /t�s�T solves the McKean-Vlasov SDE:

dXt;

s D b.s/ Ǫ�s;Xt;


s ; @xU
�
s;Xt;


s ;L1.Xt;

s /
��

ds C �dWs C �0dW0
s ;

for s 2 Œt;T�.

The proof below shows that the solutions to (5.114) and (5.115) are respectively
adapted to the completions of the filtrations generated by .
; .W0

s � W0
t ;Ws �

Wt/t�s�T/ and .W0
s � W0

t ;Ws � Wt/t�s�T . We recall that we established a similar
property in small time.

Proof. The proof of the first claim on the solvability of (5.114) consists in a mere adaptation
of that of Proposition 5.42, with U D @xU , taking advantage of the master equation (5.117)
for @xU .

Once the first claim has been proved, the second claim on the solvability of (5.115)
follows from the same argument. Indeed, the existence of a solution may be regarded as
a consequence of the necessary part in the stochastic Pontryagin principle, but it can be also
shown by solving first:

dXs D b.s/ Ǫ�s;Xs;L1.Xt;

s /
�
ds C �dWs C �0dW0

s ;

for s 2 Œt; T�, with Xt D x 2 R
d as initial condition, and then by letting:

Ys D @xU
�
s;Xs;L1.Xt;


s /
�
;

Zs D @2xU
�
s;Xs;L1.Xt;


s /
�
�;

Z0s D @2xU
�
s;Xs;L1.Xt;


s /
�
�0 C QE1�@�@xU

�
s;Xs;L1.Xt;


s /
�
. QXt;


s /
�
�0;

where we recall once again the convention @�@xU D .Œ@�Œ@xiU ��j/1�i;j�d. By Itô’s formula,
we obtain a solution of (5.115). Now, if .X0

s; Y
0
s ; Z

0
s; Z

00
s / is another solution of (5.115), we let:

NY 0
s D @xU

�
s;X0

s;L1.Xt;

s /
�
;

NZ0
s D @2xU

�
s;X0

s;L1.Xt;

s /
�
�;

NZ00s D @2xU
�
s;X0

s;L1.Xt;

s /
�
�0 C QE1�@�@xU

�
s;X0

s;L1.Xt;

s /
�
. QXt;


s /
�
�0:
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Expanding . NY 0
s/t�s�T by Itô’s formula and proceeding as in the proof of Proposition 5.42,

we deduce that .Y 0
s ; Z

0
s; Z

00
s /t�s�T D . NY 0

s ;
NZ0

s;
NZ00s /t�s�T , from which the proof is easily

completed. ut

On the same model, we have:

Lemma 5.51 In addition to assumption MFG Master Classical, assume further
that hypothesis H .S/ holds true for some S 2 Œ0;T�. Then, for any .t; 
/ 2
ŒS;T� � L2.˝1;F1

t ;P
1IRd/, the unique solution to the mean field game with 


as initial condition at time t is given by M D L1..Xt;

s ;Ws � Wt/t�s�T/, where

Xt;
 D .Xt;

s /t�s�T is the forward component of the unique solution to (5.114) with


 as initial condition at time t.

Proof. As already explained, we know from Theorems 4.21 and 4.23 that, for a given
.t; 
/ as in the statement, the mean field game has a solution; by Proposition 3.34, this
solution is unique and is strong, namely the equilibrium M generated by the solution is
adapted to the completion of the filtration generated by .W0

s � W0
t /t�s�T . Hence, the optimal

trajectory of the optimal control problem (5.107)–(5.108) in the super-environment M is
adapted with respect to the completion of the filtration generated by 
, .W0

s � W0
t /t�s�T and

.Ws � Wt/t�s�T . Following Proposition 4.7, we may consider the adjoint equation deriving
from the necessary condition in the stochastic Pontryagin principle. By the aforementioned
measurability properties of the equilibrium and of the optimal trajectory, the extra martingale
part therein, which is required to be orthogonal to W0 and W, is null. As a consequence, the
equilibrium induces a solution to (5.114). We conclude by invoking Lemma 5.50, which
ensures that (5.114) is uniquely solvable. ut

Also, the monotonicity property is preserved:

Lemma 5.52 In addition to assumption MFG Master Classical, assume further
that hypothesis H .S/ holds true for some S 2 Œ0;T�, then, for every t 2 ŒS;T�, the
function U.t; �; �/ satisfies the Lasry-Lions monotonicity property.

The proof of Lemma 5.52 is postponed to the end of the section.

Implementing the Induction Argument
The implementation of the induction principle relies on the next two propositions,
whose proofs are also deferred to the end of the section.

Proposition 5.53 Let assumption MFG Master Classical be in force. Then, there
exists a constant K1 � 0 such that for any S 2 Œ0;T/ for which H .S/ is satisfied, it
holds:

8.t; x; �/ 2 ŒS;T� � R
d � P2.Rd/; j@2xU.t; x; �/j � K1:
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Proposition 5.54 Let assumption MFG Master Classical be in force. Then, there
exists a constant K2 � 0 such that for any S 2 Œ0;T/ for which H .S/ is satisfied, it
holds:

8.t; x; �; v/ 2 ŒS;T� � R
d � P2.Rd/ � R

d; j@x@�U.t; x; �/.v/j � K2:

Provided that Propositions 5.53 and 5.54 hold true, Theorem 5.46 easily follows:

Proof of Theorem 5.46. By Theorem 5.45, we know that there exists a real S 2 Œ0; T/ such
that hypothesis H .S/ holds true.

If S D 0, the proof is over. If not, we proceed by induction. Indeed, Propositions 5.53
and 5.54 apply and say that, for the same two constants K1 and K2 as in the statements,

8.t; x; �/ 2 ŒS; T� � R
d � P2.Rd/; j@2xU.t; x; �/j � K1;

8.t; x; �; v/ 2 ŒS; T� � R
d � P2.Rd/ � R

d; j@x@�U.t; x; �/.v/j � K2:

Then, we may consider, on the interval Œ0; S�, the mean field game driven by the same
dynamics as in (5.108), but with the new cost functional:

inf
.˛s/0�s�T

E

� Z S

0

f .s;Xs; �s; ˛s/ds C U.S;XS; �S/

	

: (5.130)

Obviously, the goal is to apply Theorem 5.45 to the new mean field game involving (5.130)
in lieu of (5.107).

In order to do so, we must check that assumptions MFG Master Pontryagin and MFG
Smooth Coefficients from Subsection 5.4.1 are satisfied. Recall indeed that these are the two
sets of assumption under which Theorem 5.45 applies. Basically, this requires to check that
U.S; �; �/ satisfies the same assumption as g. Thanks to H .S/, it is clear that U.S; �; �/ satisfies
the same regularity assumption as g in assumption MFG Smooth Coefficients.

We now turn to assumption MFG Master Pontryagin. In order to guarantee that
assumptions FBSDE and Decoupling Master from Subsections 4.1.3 and 4.2.2 are satisfied,
we shall directly check that, depending upon the framework, one of the two assumptions,
MFG with a Common Noise HJB, or MFG with a Common Noise SMP Relaxed,
holds true, see Subsections 3.4.1 and 3.4.3 for a reminder. When assumption MFG with a
Common Noise HJB is in force, it is pretty clear that U.S; �; �/ satisfies the same assumption
as g in MFG with a Common Noise HJB. Indeed, by Theorem 1.57, we know that @xU
is bounded; plugging the bound into the representation formula of U in Definition 4.1,
we deduce that U is also bounded. When assumption MFG with a Common Noise SMP
Relaxed is in force, it suffices to prove that U.S; �; �/ is convex in the variable x, which
follows from a mere variation of (1.64).

Therefore, Theorem 5.45 guarantees that there exists S0 < S such that the master
field associated with the new cost functional (5.130) is smooth on ŒS0; S� and satisfies
the same conclusion as in H .S/. Of course, the main point is that this new master field
coincides with the restriction of U to ŒS0; S� � R

d � P2.Rd/. This is a consequence of the
dynamic programming principle in Theorem 4.5. This proves that @xU satisfies the master
equation (5.117) on both ŒS0; S� � R

d � P2.Rd/ and on ŒS; T� � R
d � P2.Rd/. By continuity

of @xU and of its derivative, it is pretty clear that @xU is time differentiable and satisfies
the master equation (5.117) on the entire ŒS0; T� � R

d � P2.Rd/. It belongs to Sd.ŒS0; T�/.
Proceeding in the same way for U , we deduce that H .S0/ holds true.
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Importantly, thanks to Propositions 5.53 and 5.54, the length S � S0 is only dictated by the
various constants in the statement of Theorem 5.46, through the values of K1 and K2, and is
independent of S. The proof follows by iterating the argument. ut

Proof of the Bound for @2
xU

We now prove Proposition 5.53.

Proof of Proposition 5.53. There are two cases.

First Case. Within the framework of assumption MFG with a Common Noise SMP
Relaxed, the bound for @2xU is a straightforward consequence of Theorem 1.60.

Second Case. We now focus on the case when assumption MFG with a Common Noise
HJB holds true. Without any loss of generality, we assume that � D Id. The trick is to
define:

NXt;x
s D x C �

Ws � Wt
�C �0

�
W0

s � W0
t

�
;

and to expand:
�
@xU

�
s; NXt;x

s ;L1.Xt;

s /
��

t�s�T
;

by the chain rule and, in the process, to take advantage of the master equation (5.117) satisfied
by @xU . We get:

d
�
@xU

�
s; NXt;x

s ;L1.Xt;

s /
�� D �

h
@2xU

�
s; NXt;x

s ;L1.Xt;

s /
�
b.s/ Ǫ�s; NXt;x

s ; @xU
�
s; NXt;x

s ;L1.Xt;

s /
��

C @xH
�

s; NXt;x
s ;L1.Xt;


s /; @xU
�
s; NXt;x

s ;L1.Xt;

s /
�
;

Ǫ�s; NXt;x
s ; @xU

�
s; NXt;x

s ;L1.Xt;

s /
���i

ds C dMs;

for s 2 Œt; T�, where .Ms/t�s�T is a square-integrable martingale. Thanks to the special form
of b under the standing assumption, @xH coincides with @xf . In particular, by assumption
MFG with a Common Noise HJB, it is bounded. Letting:

NF.s; x; �; z/ D z
�
b.s/ Ǫ�s; x; @xU.s; x; �/

��

C @xf
�
s; x; �; @xU.s; x; �/; Ǫ�s; x; @xU.s; x; �/

��
;

for .s; x; �; z/ 2 Œt; T� � R
d � P2.Rd/ � R

d�d, we have the shorter writing:

d
�
@xU

�
s; NXt;x

s ;L1.Xt;

s /
��

D � NF
�

s; NXt;x
s ;L1.Xt;


s /; @
2
xU
�
s; NXt;x

s ;L1.Xt;

s /
��

ds C dMs; s 2 Œt; T�:

Taking expectation, we deduce that:

@xU.t; x; �/ D E

�

@xg
� NXt;x

T ;L1.X
t;

T /
�

C
Z T

t

NF
�

s; NXt;x
s ;L1.Xt;


s /; @
2
xU
�
s; NXt;x

s ;L1.Xt;

s /
��

ds

	

:
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Taking advantage of the specific form of NXt;x
together with the fact that .L1.Xt;


s //t�s�T is
independent of W, we deduce that:

@xU.t; x; �/ D
Z

Rd
E
�
@xg
�
y C �0.W0

T � W0
t /;L1.X

t;

T /
��

pT�t.x; y/dy

C
Z T

t

Z

Rd
E

h NF
�

s; y C �0.W0
s � W0

t /;L1.Xt;

s /;

@2xU
�
s; y C �0.W0

s � W0
t /;L1.Xt;


s /
��i

ps�t.x; y/dyds;

where .ps.x; y/ D s�d=2'd..x � y/=s//s>0;x;y2Rd denotes the d-dimensional heat kernel, 'd

standing for the d-dimensional standard Gaussian density.
Now, we recall the standard estimate:

sup
x2Rd

ˇ
ˇ
ˇ
ˇ

d

dx

Z

Rd
 .y/ps.x � y/dy

ˇ
ˇ
ˇ
ˇ � cs�1=2 sup

x2Rd

j .x/j;

for any bounded and measurable function  W Rd ! R and for a constant c, independent of
s 2 .0; T� and  .

Therefore, recalling that @xg has a bounded derivative in the direction x and that
NF.s; x; �; z/ is at most of linear growth in z, uniformly in the other variables, we easily deduce
that there exists a constant C, only depending on T and the parameters in the assumptions,
such that, for all t 2 ŒS; T�,

sup
.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.t; x; �/

ˇ
ˇ�CC

Z T

t

Cp
s � t

�
1C sup

.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.s; x; �/

ˇ
ˇ
�

ds:

For a new value of C, we get for any � 2 .0; T�:

sup
.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.t; x; �/

ˇ
ˇ � C C C

p
� sup

t�s�T
sup

.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.s; x; �/

ˇ
ˇ

C Cp
�

Z T

t
sup

s�r�T
sup

.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.r; x; �/

ˇ
ˇds:

Notice that the right-hand side increases as t decreases. Therefore,

sup
t�s�T

sup
.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.s; x; �/

ˇ
ˇ�CCC

p
� sup

t�s�T
sup

.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.s; x; �/

ˇ
ˇ

C Cp
�

Z T

t
sup

s�r�T
sup

.x;�/2Rd�P2.Rd/

ˇ
ˇ@2xU.r; x; �/

ˇ
ˇds:

Choosing � such that C
p
� D 1

2
and applying Gronwall’s lemma, we complete the proof. ut
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Proof of the Bound for @x@�U
We now prove Proposition 5.54. The proof relies on the auxiliary property:

Proposition 5.55 Let assumption MFG Master Classical be in force. Then, there
exists a function K2 W RC ! RC such that for any S 2 Œ0;T/ for which H .S/ is
satisfied, the following holds true:

sup
t2ŒS;T�

sup
.x;v/2Rd�Rd

sup
�2P2.Rd/

j@�@xU.t; x; �/.v/j

� K2
�

sup
t2ŒS;T�

sup
x2Rd

sup
�2P2.Rd/

j@2xU.t; x; �/j
�
:

Proof. The proof starts with a preliminary remark that will be useful in the proof. We observe
that, for any 
; � 2 L2.˝;F ;PIRd/,

8t 2 Œ0; T�; E

h
� �
� QE1�@�@xf0

�
t; 
;L1.
/

�
. Q
/ Q��

�i
� 0;

E

h
� �
� QE1�@�@xg

�

;L1.
/

�
. Q
/ Q��

�i
� 0;

(5.131)

where we recall the useful notation, see (5.78) and (Vol I)-(5.80),

@�@xf0.t; x; �/.v/y D

 dX

jD1

�
@�Œ@xf0.t; x; �/�i.v/

�

j
yj

�

1�i�d

2 R
d;

for y 2 R
d, together with @�@xf0 D Œ@x@�f0��, and similarly for g, see for instance

Subsection 5.1.5.
We only prove the second claim in (5.131), the first one following from the same

argument. By continuity of @x@�g, it suffices to prove the inequality when 
 and � are
bounded. Then, by monotonicity of g, we observe that, for any s 2 R,

E
�
g
�

 C s�;L1.
 C s�/

�� � E
�
g
�

;L1.
 C s�/

��

�
�
E
�
g
�

 C s�;L1.
/

�� � E
�
g
�

;L1.
/

��� � 0:

Taking advantage of the smoothness of g, we write:

E
�
g
�

 C s�;L1.
 C s�/

�� � E
�
g
�

;L1.
 C s�/

��

D
Z s

0

E
�
@xg
�

 C r�;L1.
 C s�/

� � ��dr;

E
�
g
�

 C s�;L1.
/

�� � E
�
g
�

;L1.
/

�� D
Z s

0

E
�
@xg
�

 C r�;L1.
�/

� � ��dr:
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Hence,

E
�
g
�

 C s�;L1.
 C s�/

�� � E
�
g
�

;L1.
 C s�/

��

�
�
E
�
g
�

 C s�;L1.
/

�� � E
�
g
�

;L1.
/

���

D
Z s

0

E

h�
@xg
�

 C r�;L1.
 C s�/

� � @xg
�

 C r�;L1.
/

�� � �
i
dr

D
Z s

0

Z s

0

E

h QE1
�
@�@xg

�

 C r�;L1.
 C r0�/

�
.
 C r0�/ Q�

�
� �
i
drdr0:

Recalling that the left-hand side is nonnegative, dividing by s2 and taking the limit as s tends
to 0, we get:

E

h
� �
� QE1�@�@xg

�

;L1.
/

�
.
/ Q��

�i
� 0;

which is precisely the second-line in (5.131).

First Step. Throughout the proof, we shall use the following convention. For t 2 Œ0; T� and

 2 L2.˝1;F1

t ;P
1IRd/, we let:

Ǫ t;
 D � Ǫ t;

s D Ǫ .s;Xt;


s ; Y
t;

s /
�

t�s�T ;

f t;

0 D �

f t;

0;s D f0.s;X

t;

s ;L1.Xt;


s //
�

t�s�T ;

f t;

1 D �

f t;

1;s D f1.s;X

t;

s ; Ǫ .s;Xt;


s ; Y
t;

s //

�

t�s�T ;

U t;
 D �
U t;


s D U.s;Xt;

s ;L1.Xt;


s //
�

t�s�T ; gt;
 D g
�
Xt;


T ;L1.X
t;

T /
�
;

where .Xt;
 ;Yt;
 / is given by (5.114), with similar notations when Ǫ , f0, f1, U and g are
replaced by their derivatives. We use a similar convention for any .t; x; �/ 2 Œ0; T� � R

d �
P2.Rd/:

Ǫ t;x;� D � Ǫ t;x;�
s D Ǫ .s;Xt;x;�

s ; Yt;x;�
s /

�

t�s�T ;

f t;x;�
0 D �

f t;x;�
0;s D f0.s;X

t;x;�
s ;L1.Xt;


s //
�

t�s�T ;

f t;x;�
1 D �

f t;x;�
1;s D f1.s;X

t;x;�
s ; Ǫ .s;Xt;x;�

s ; Yt;x;�
s //

�

t�s�T ;

U t;x;� D �
U t;x;�

s D U.s;Xt;x;�
s ;L1.Xt;


s //
�

t�s�T ; gt;x;� D g
�
Xt;x;�

T ;L1.Xt;

T /
�
;

where .Xt;x;�;Yt;x;�/ D .Xt;x;
 ;Yt;x;
 / is given by (5.115). With this convention, the dynamics
of .Xt;
 ;Yt;
 / take the form

dXt;

s D b.s/ Ǫ t;


s ds C �dWs C �0dW0
s ;

dYt;

s D �@x f t;


s ds C Zt;

s dWs C Z0It;


s dW0
s ; s 2 Œt; T�;
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with terminal condition Yt;

T D @xgt;
 , where, to make it clear, @x f t;


s D @x f .s;Xt;

s ;L1.Xt;


s /;

Ǫ .s;Xt;

s ; Y

t;

s // and @xgt;
 D @xg.Xt;


T ;L1.X
t;

T //. Similarly, for .t; x; �/ 2 Œ0; T��R

d�P2.Rd/,
the equation for .Xt;x;�;Yt;x;�/ writes:

dXt;x;�
s D b.s/ Ǫ t;x;�

s ds C �dWs C �0dW0
s ;

dYt;x;�
s D �@x f t;x;�

s ds C Zt;x;�
s dWs C Z0It;x;�

s dW0
s ; s 2 Œt; T�;

with terminal condition Yt;x;�
T D @xgt;x;�. Above, 
 is distributed according to �.

We also recall the identities:

Yt;

s D @xU t;


s ; Yt;x;�
s D @xU t;x;�

s ; s 2 Œt; T�:

Since the restriction of @xU to ŒS; T� is known to belong to the class Sd.ŒS; T�/, it is pretty
clear that the differentiability properties of the flows

L2.˝1;F1
t ;P

1IRd/ 3 
 7! .Xt;

s ; Y

t;

s /t�s�T ;

and R
d � P2.Rd/ 3 .x; �/ 7! .Xt;x;�

s ; Yt;x;�
s /t�s�T ;

hold true as in the conclusions of Subsections 5.2 and 5.3, whatever the length T � S
is. Indeed, we may directly regard the forward-backward equations for � t;
 and � t;x;� as
decoupled systems driven by coefficients satisfying assumption MFG Smooth Coefficients.
Therefore, we may use the notations @�� t;
 D .@�Xt;
 ; @�Yt;
 / D .@�Xt;


s ; @�Yt;

s /t�s�T and

@�� t;x;
 D .@�Xt;x;
 ; @�Yt;x;
 / D .@�Xt;x;

s ; @�Yt;x;


s /t�s�T for the respective derivatives of
the flows with respect to 
 in the direction �, for � 2 L2.˝1;F1

t ;P
1IRd/. These tangent

processes satisfy, for s 2 Œt; T�,

d@�Xt;

s D b.s/

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @�Yt;

s

�
ds;

d@�Yt;

s D �

�
@2x f t;


0;s@�Xt;

s C E

1
�
@�@x Qf t;


0;s@�
QXt;


s

�
(5.132)

C @2x f t;

1;s@�Xt;


s C @2˛x f t;

1;s

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @�Yt;

s

��
ds

C @�Zt;

s dWs C @�Z0It;


s dW0
s ;

where .@�Zt;

s /t�s�T and .@�Z0It;


s /t�s�T are the d � d-dimensional martingale integrands

appearing in the semi-martingale representation of .@�Yt;

s /t�s�T , see (5.55)–(5.56). Above,

we used the notations:

@˛x Qf t;

0;s D @˛@x f0

�
s;Xt;


s ;L1.Xt;

s /
�
. QXt;


s /;

@�@x Qf t;

0;s D @�@x f0

�
s;Xt;


s ;L1.Xt;

s /
�
. QXt;


s /; s 2 Œt; T�;

see also (Vol I)-(5.80). In the same way, we consider the dynamics of .@xXt;x;�
s /t�s�T and

.@xYt;x;�
s /t�s�T , which take values in R

d�d. We have:
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d@xXt;x;�
s D

�
@x Ǫ t;x;�

s @xXt;x;�
s C @y Ǫ t;x;�

s @xYt;x;�
s

�
ds;

d@xYt;x;�
s D �

�
@2x f t;x;�

0;s @xXt;x;�
s C @2x f t;x;�

1;s @xXt;x;�
s

C @2˛x f t;x;�
1;s

�
@x Ǫ t;x;�

s @xXt;x;�
s C @y Ǫ t;x;�

s @xYt;x;�
s

��
ds

C @xZt;x;�
s dWs C @xZ0It;x;�

s dW0
s ; s 2 Œt; T�; (5.133)

where .@xZt;x;�
s ; @xZ0It;x;�

s /t�s�T are the .d � d/ � d-dimensional martingale integrands
appearing in the semi-martingale representation of .@xYt;x;�

s /t�s�T , see (5.65).

Second Step. We now assume that the law of 
 has a finite support, namely 
 D PN
iD1 xi1Ai ,

where x1; � � � ; xN are N points in R
d and A1; � � � ;AN are N events in F1

t . In that case,

�
Xt;


s ; Y
t;

s ; Z

t;

s

�

t�s�T D

 NX

iD1

Xt;xi;�
s 1Ai ;

NX

iD1

Yt;xi;�
s 1Ai

�

t�s�T

;

see the proof of Proposition 5.8 for similar arguments. With the current choice of 
, we let:

�
@xXt;
;�

s ; @xYt;
;�
s

�

t�s�T D
 

NX

iD1

@xXt;xi;�
s 1Ai ;

NX

iD1

@xYt;xi;�
s 1Ai

!

t�s�T

;

and similarly for .@xZt;
;�
s ; @xZ0It;
;�

s /t�s�T . Following (5.133), it satisfies:

d@xXt;
;�
s D b.s/

�
@x Ǫ t;


s @xXt;
;�
s C @y Ǫ t;


s @xYt;
;�
s

�
ds;

d@xYt;
;�
s D �

�
@2x f t;


0;s@xXt;
;�
s C @2x f t;


1;s@xXt;
;�
s

C @2˛x f t;

1;s

�
@x Ǫ t;


s @xXt;
;�
s C @y Ǫ t;


s @xYt;
;�
s

��
ds

C @xZt;
;�
s dWs C @xZ0It;
;�

s dW0
s ; s 2 Œt; T�:

(5.134)

Here the initial condition of the forward equation reads @xXt;
;�
t � D � (since @xXt;
;�

t is the
identity matrix) while the terminal condition of the backward equation satisfies @xYt;
;�

T � D
@2xxg.Xt;
;�

T ;L1.Xt;
;�
T //@�Xt;
;�

T , with @�Xt;
;�
T D @xXt;
;�

T �.

Third Step. We observe that @�Yt;
 can be written:

@�Yt;

s D @2xU

�
s;Xt;


s ;L1.Xt;

s /
�
@�Xt;


s C QE1�@�@x QU t;

s @�

QXt;

s

�
;

where, again, we used the notation:

@�@x QU t;

s D @�@xU

�
s;Xt;


s ;L1.Xt;

s /
�
. QXt;


s /; s 2 Œt; T�:
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Letting:

�Yt;

s D @�Yt;


s � @2xU
�
s;Xt;


s ;L1.Xt;

s /
�
@�Xt;


s D QE1�@�@x QU t;

s @�

QXt;

s

�
; (5.135)

we can rewrite (5.132) under the form:

d@�Xt;

s D b.s/

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @
2
xU t;


s @�Xt;

s C @y Ǫ t;


s �Yt;

s

�
ds;

d@�Yt;

s D �

�
@2x f t;


0;s@�Xt;

s C E

1
�
@�@x Qf t;


0;s@�
QXt;


s

�C @2x f t;

1;s@�Xt;


s (5.136)

C @2˛x f t;

1;s

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @
2
xU t;


s @�Xt;

s C @y Ǫ t;


s �Yt;

s

��
ds

C @�Zt;

s dWs C @�Z0It;


s dW0
s :

A key fact is that the solution of the forward equation in (5.136) can be expressed in terms
of the process .@xXt;
;�

s /t�s�T . Indeed, it is easily checked that .@xXt;
;�
s /t�s�T takes values

in the set of invertible matrices. Using the fact that @xYt;
;�
s D @2xU t;
@xXt;
;�

s together with a
standard argument of variation of parameters, we claim:

@�Xt;

s D @xXt;
;�

s

�

�C
Z s

t

�
@xXt;
;�

r

��1
b.r/@y Ǫ t;


r �Yt;

r dr

	

D @xXt;
;�
s � t;


s ;

where we let:

� t;

s D �C

Z s

t

�
@xXt;
;�

r

��1
b.r/@y Ǫ t;


r �Yt;

r dr; s 2 Œt; T�:

Fourth Step. Compute now:

d
�
@xYt;
;�

s � t;

s

� D �
�
@2x f t;


0;s@xXt;
;�
s � t;


s C @2x f t;

1;s@xXt;
;�

s � t;

s

C @2˛x f t;

1;s

�
@x Ǫ t;


s @xXt;
;�
s � t;


s C @y Ǫ t;

s @xYt;
;�

s � t;

s

�

� @xYt;
;�
s

�
@xXt;
;�

s

��1
b.s/@y Ǫ t;


s �Yt;

s

�
ds

C �
@xZt;
;�

s � t;

s

�
dWs C �

@xZ0It;
;�
s � t;


s

�
dW0

s ;

where brackets in the last line indicate that @xZt;
;�
s and @xZ0It;
;�

s , which are R.d�d/�d-valued,
first act on � t;


s , so that @xZt;
;�
s �

t;

s and @xZ0It;
;�

s �
t;


s take values in R
d�d . We obtain:

d
�
@xYt;
;�

s � t;

s

� D �
�
@2x f t;


0;s@�Xt;

s C @2x f t;


1;s@�Xt;

s

C @2˛x f t;

1;s

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @
2
xU t;


s @�Xt;

s

�

� @2xU t;

s b.s/@y Ǫ t;


s �Yt;

s

�
ds

C �
@xZt;
;�

s � t;

s

�
dWs C �

@xZ0It;
;�
s � t;


s

�
dW0

s :

(5.137)
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Letting:

�Zt;

s D @�Zt;


s � �
@xZt;
;�

s � t;

s

�
; �Z0It;


s D @�Z0It;

s � �

@xZ0It;
;�
s � t;


s

�
;

and computing the difference between (5.136) and (5.137), we get:

d�Yt;

s D �

�
E
1
�
@�@x Qf t;


0;s@�
QXt;


s

�C @2˛x f t;

1;s@y Ǫ t;


s �Yt;

s

C @2xU t;

s b.s/@y Ǫ t;


s �Yt;

s

�
ds C�Zt;


s dWs C�Z0It;

s dW0

s ;

(5.138)

for s 2 Œt; T�. With the same convention as above, the terminal condition writes:

t;

� YT D QE1�@�@x Qgt;
@� QXt;


T

�
; (5.139)

see (5.135). We now compute:

d
�
@�Xt;


s ��Yt;

s

�

D b.s/
�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @
2
xU t;


s @�Xt;

s C @y Ǫ t;


s �Yt;

s

�
��Yt;


s

� @�Xt;

s �

�
E
1
�
@�@x Qf t;


0;s@�
QXt;


s

�C @2˛x f t;

1;s@y Ǫ t;


s �Yt;

s C @2xU t;


s b.s/@y Ǫ t;

s �Yt;


s

�
ds

C dMs;

where .Ms/t�s�T is a uniformly integrable martingale.

Fifth Step. Recall the formula:

b.t/�y C @˛ f1
�
t; x; Ǫ .t; x; y/� D 0; (5.140)

from which get:

b.t/� C @2˛ f1
�
t; x; Ǫ .t; x; y/�@y Ǫ .t; x; y/ D 0;

that is,

@y Ǫ .t; x; y/ D ��@2˛ f1.t; x; Ǫ .t; x; y//��1b.t/�;
b.t/@y Ǫ .t; x; y/ D �b.t/

�
@2˛ f1.t; x; Ǫ .t; x; y//��1b.t/�:

(5.141)

In particular, b.t/@y Ǫ .t; x; y/ is symmetric. Therefore, by symmetry of b.s/@y Ǫ t;

s and @2xU

t;

s ,

we obtain:

�
b.s/@y Ǫ t;


s @
2
xU t;


s @�Xt;

s

� ��Yt;

s D @�Xt;


s � �@2xU t;

s b.s/@y Ǫ t;


s �Yt;

s

�
: (5.142)

Moreover, by differentiating (5.140) with respect to x, we get:

@2x˛ f1
�
t; x; Ǫ .t; x; y/�C @2˛ f1

�
t; x; Ǫ .t; x; y/�@x Ǫ .t; x; y/ D 0;

that is,

�
@2˛x f1..t; x; Ǫ .t; x; y//�� C @2˛ f1

�
t; x; Ǫ .t; x; y/�@x Ǫ .t; x; y/ D 0;
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so that, multiplying by b.t/.@2˛ f1.t; x; Ǫ .t; x; y///�1 and using (5.141), we obtain:

b.t/@x Ǫ .t; x; y/ D �
@y Ǫ .t; x; y/���@2˛x f1.t; x; Ǫ .t; x; y//��:

We deduce:
�
b.s/@x Ǫ t;


s @�Xt;

s

� ��Yt;

s D @�Xt;


s � �@2˛x f t;

1;s@y Ǫ t;


s �Yt;

s

�
: (5.143)

Plugging (5.142) and (5.143) in the conclusion of the fourth step and using the second line
in (5.141), we finally have:

d
�
@�Xt;


s ��Yt;

s

�

D �
��
.@2˛f t;


1;s /
�1b.s/��Yt;


s

� � �b.s/��Yt;

s

�C @�Xt;

s � E1�@�@x Qf t;


0;s@�
QXt;


s

��
ds C dMs:

Taking expectations and recalling from (5.131) that:

E

h
@�Xt;


s � QE1�@�@x Qf t;

0;s@�

QXt;

s

�i � 0;

E
�
@�Xt;


T ��Yt;

T

� D E

h
@�Xt;


T � QE1�@�@x Qgt;
@� QXt;

T

�i � 0;

we deduce:

E
�
�Yt;


t � �� � E

Z T

t

�
.@2˛ f t;


1;s /
�1b.s/��Yt;


s

� � �b.s/��Ys
�t;


ds

� ��1
E

Z T

t

ˇ
ˇb.s/��Yt;


s

ˇ
ˇ2ds:

(5.144)

Sixth Step. We now come back to the dynamics of .@�Xt;

s /t�s�T . From (5.136), we have:

d@�Xt;

s D b.s/

�
@x Ǫ t;


s @�Xt;

s C @y Ǫ t;


s @
2
xU t;


s @�Xt;

s C @y Ǫ t;


s �Yt;

s

�
ds:

If there exists a constant K1 such that j@2xU t;

s j � K1, then, applying Gronwall’s lemma, we

get:

E
�

sup
t�s�T

j@�Xt;

s j� � C




k�k1 C E

Z T

t
jb.s/@y Ǫ t;


s �Yt;

s jds

�

;

where C may depend on K1. Recalling from (5.141) that b.t/@y Ǫ .t; x; y/ D �b.t/Œ@2˛ f1.t; x; Ǫ
.t; x; y//��1b.t/� and using the fact that Œ@2˛ f1.t; x; Ǫ .t; x; y//��1 is bounded by ��1, we
deduce that there exists a constant C, depending on �, �;K1 and T , such that:

E
�

sup
t�s�T

j@�Xt;

s j� � C




k�k1 C E

Z T

t
jb.s/��Yt;


s jds

�

� C
�
k�k1 C ˇ

ˇE1
�
� ��Yt;


t

�ˇ
ˇ1=2

�
;

(5.145)
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where we used (5.144) to derive the last line. By (5.138) and (5.139), we also have:

j�Yt;

s j � C




Es
� QE1�j@� QXt;


T j��C Es

Z T

s

� QE1�j@� QXt;

u j�C j�Yt;


u j
�

du

�

:

Taking the conditional expectation given Fr, for r 2 Œt; s�, we deduce that, for all s 2 Œr; T�,

Er
�j�Yt;


s j� � C




Er
� QE1�j@� QXt;


T j��C Er

Z T

s

� QE1�j@� QXt;

u j�C j�Yt;


u j
�

du

�

:

By Gronwall’s lemma, we get, for a new value of the constant C,

Er
�j�Yt;


s j� � C




Er
� QE1�j@� QXt;


T j��C Er

Z T

s

QE1�j@� QXt;

u j�du

�

:

In particular, taking r D s and multiplying by j	j, for 	 2 L2.˝1;F1
t ;P

1IRd/, we obtain:

j�Yt;

s j j	j � Cj	j




Es
� QE1�j@� QXt;


T j��C Es

Z T

s

QE1�j@� QXt;

r j�dr

�

:

By Lemma 5.16, EsŒ QE1.j@� QXt;

r j/� D EsŒE

1.j@�Xt;

r j/� D EsŒj@�Xt;


r j jF0
s �. In particular,

EsŒ QE1.j@� QXt;

r j/� is independent of F1. Therefore, taking expectation in above inequality and

making use of (5.145), we get (allowing the constant C to increase from line to line):

sup
t�s�T

E
�j�Yt;


s j j	j� � Ck	k1
�
k�k1 C ˇ

ˇE1Œ� ��Yt;

t �
ˇ
ˇ1=2

�
:

Specializing the left-hand side at s D t, we deduce:

sup
k	k1�1

E
1
�j�Yt;


t j j	j� � C
�
k�k1 C k�k1=21 sup

k	k1�1

E
1
�j	j j�Yt;


t j�1=2
�
:

By a standard convexity argument, we get:

sup
k	k1�1

E
1
�j�Yt;


t j j	j� � Ck�k1: (5.146)

Last Step. We now complete the proof. We recall from (5.135) that:

�Yt;

t D QE1�@�@xU

�
t; 
;L1.
/

�
. Q
/ Q��;

and that (5.146) holds true for random variables 
 taking a finite number of values only.
By regularity of @x@�U , (5.146) holds true for any 
 2 L2.˝1;F1

t ;P
1IRd/. In particular,

for any 
; � 2 L2.˝1;F1
t ;P

1IRd/, we have, with probability 1 under P1,

ˇ
ˇ QE1�@�@xU

�
t; 
;L1.
/

�
. Q
/ Q��ˇˇ � CE

1
�j�j�:
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Since we assumed that L2.˝1;F1;P1IRd/ was separable, see Subsections 5.1.2 and 4.3.1,
the above holds true, when 
 is given and with probability 1 under P

1, for all � 2
L2.˝1;F1

t ;P
1IRd/. Hence, with probability 1 under P1 ˝ QP1,

ˇ
ˇ@�@xU

�
t; 
;L1.
/

�
. Q
/ˇˇ � C:

We deduce that, whenever 
 has full support,

sup
t2ŒS;T�

sup
x;v2Rd

ˇ
ˇ@�@xU

�
t; x; �

�
.v/
ˇ
ˇ � C;

where � D L1.
/. By an approximation argument, the same holds true for any � 2 P2.Rd/.
ut

Proof of the Lasry-Lions Monotonicity Condition
We now prove Lemma 5.52:

Proof. Given t 2 ŒS; T� and 
; 
 0 2 L2.˝1;F1
t ;P

1IRd/, we consider the forward components

.Xt;

s /s2Œt;T� and .Xt;
0

s /s2Œt;T� of the FBSDE (5.114), when initialized at time t with 
 and 
 0

respectively.
Recalling the representation formulas:

Yt;

s D @xU

�
s;Xt;


s ;L1.Xt;

s /
�
; Yt;
0

s D @xU
�
s;Xt;
0

s ;L1.Xt;
0

s /
�
; s 2 Œt; T�;

we then expand .U.s;Xt;

s ;L1.Xt;


s // � U.s;Xt;
0

s ;L1.Xt;

s ///s2Œt;T� by Itô’s formula. Notice

also that, in both terms, the measure argument is driven by 
.
Notice that the assumption required in the statement of Theorem 4.17 to apply the chain

rule is satisfied thanks to hypothesis H .S/. We get, for s 2 Œt; T�,
d
�
U
�
s;Xt;


s ;L1.Xt;

s /
��

D �f
�

s;Xt;

s ;L1.Xt;


s /; Ǫ�s;Xt;

s ; @xU

�
s;Xt;


s ;L1.Xt;

s /
���

ds

C @xU
�
s;Xt;


s ;L1.Xt;

s /
� � ��dWs

�C @xU
�
s;Xt;


s ;L1.Xt;

s /
� � ��0dW0

s

�

C QE1�@�U
�
s;Xt;


s ;L1.Xt;

s /
�
. QXt;


s /
� � ��0dW0

s

�
; (5.147)

and

d
�
U
�
s;Xt;
0

s ;L1.Xt;

s /
��

D
h

� f
�

s;Xt;
0

s ;L1.Xt;

s /; Ǫ�Xt;
0

s ; @xU
�
s;Xt;
0

s ;L1.Xt;

s /
���

C @xU
�
s;Xt;
0

s ;L1.Xt;
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� �
�

b.s/ Ǫ�s;Xt;
0

s ; @xU
�
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0

s ;L1.Xt;
0

s /
��

� b.s/ Ǫ�s;Xt;
0
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�
s;Xt;
0

s ;L1.Xt;

s /
���i
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C @xU
�
s;Xt;
0

s ;L1.Xt;

s /
� � ��dWs

�C @xU
�
s;Xt;
0

s ;L1.Xt;

s /
� � ��0dW0
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�

C QE1�@�U
�
s;Xt;
0

s ;L1.Xt;

s /
�
. QXt;


s /
� � ��0dW0

s

�
: (5.148)
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Subtracting (5.148) from (5.147), we obtain:

d
�
U
�
s;Xt;


s ;L1.Xt;

s /
� � U

�
s;Xt;
0

s ;L1.Xt;

s /
��

D �
h
f
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s;Xt;
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���

� f
�
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0

s ;L1.Xt;

s /; Ǫ�s;Xt;
0

s ; @xU
�
s;Xt;
0
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0

s /
���i
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�
h
H
�

s;Xt;
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s /; @xU

�
s;Xt;
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s /
�
;

Ǫ�s;Xt;
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�
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���
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�
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�
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�
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0

s ; @xU
�
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0
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s /
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C
h
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�
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0
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h
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C QE1
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. QXt;
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�
:

Therefore, taking expectation and integrating in s from t to T , we deduce from the fact that
H is convex in ˛ and from the fact that Ǫ .t; x; y/ minimizes H.t; x; �; y; �/ that:
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�
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�
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� � U
�
t; 
 0;L1.
/

��

� E

Z T

t

h
f1
�

s;Xt;

s ; Ǫ�s;Xt;
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By exchanging the roles of 
 and 
 0 and then summing up, we get:
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Finally, rearranging the terms, we deduce from the Lasry-Lions condition that:

E

h
U
�
t; 
;L1.
/

� � U
�
t; 
 0;L1.
/

� �
�
U
�
t; 
;L1.
 0/

� � U
�
t; 
 0;L1.
 0/

��i � 0;

which completes the proof. ut

Proof of Theorem 5.49
Proof of Theorem 5.49. We refer to Subsection 3.4.1 for the details of assumption MFG
with a Common Noise HJB, which plays a key role in the proof.

First Step. As opposed to assumption MFG with a Common Noise SMP Relaxed, see
Subsection 3.4.3, assumption MFG with a Common Noise HJB forces the coefficients f and
g to be bounded in .t; x; �/. In fact, g is bounded and f is of quadratic growth in ˛, uniformly
in the other parameters. Moreover, by Theorem 1.57, the optimal control process Ǫ is known
to be bounded, whatever the initial condition is. Inserting all these bounds into (5.116), we
deduce that U is bounded. This proves the first part of Theorem 5.49.

Second Step. We now turn to the second part of the statement in Theorem 5.49. The strategy
is close to that used to prove Theorem 5.45. It is in fact even simpler.

By Theorem 5.46, we know that (5.121) holds true without the subscript n therein. By
assumption MFG with a Common Noise HJB, @x f is bounded and @˛ f is at most of linear
growth in ˛. As already mentioned, the optimal control is known to be bounded, so that
everything works as if @˛f was also bounded. Lastly, (A2) in assumption MFG Master
Classical HJB ensures that @�f is bounded. Hence, using the same notation as in (5.121),
but without the subscript n, the functions:

.t;w; �/ 7!@wF.t;w; �/;

.t;w; �; v/ 7!@�F.t;w; �/.v/;

can be assumed to be bounded, and similarly with G in lieu of F. Also, by (A2) in assumption
MFG Smooth Coefficients, @x f and @˛ f are Lipschitz continuous in .x; �; ˛/, while, by
(A2) in assumption MFG Master Classical HJB, @� f is Lipschitz continuous in .x; �; ˛; v/.
As a consequence, the functions:

.t;w; �/ 7!@wF.t;w; �/;

.t;w; �; v/ 7!@�F.t;w; �/.v/;

are Lipschitz continuous, and similarly with G. Duplicating the second step of the proof of
Theorem 5.45, we deduce that the function:

R
d � P2.Rd/ � R

d 3 .t; x; �; v/ 7! @�U.t; x; �/.v/

is bounded and Lipschitz.

Third Step. The argument is pretty much the same for the second-order derivatives and
consists in a similar adaptation of the fourth step of the proof of Theorem 5.45. ut
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5.5 Notes & Complements

The master equation for mean field games has the special feature to be posed on
the space of probability measures. Because of this, and despite the analysis we
provided in this chapter, it remains a quite fascinating and rather mysterious object.
However, it is fair to say that it is not the first example of an equation set on the
space of measures. For instance Otto [295] gave an interpretation of the porous
medium equation as an evolution equation in the space of measures, and Jordan,
Kinderlehrer, and Otto [220] showed that the heat equation was also a gradient flow
in that framework. Also, the theoretical analysis of Hamilton-Jacobi equations in
metric spaces was developed in no small part to treat specific applications for which
the underlying metric spaces are spaces of measures. See in particular [20,152] and
the references therein. However, the master equation has the additional feature to
combine three challenging features: being nonlocal, nonlinear and of second order.

As we already explained in the Notes & Complements of Chapter 4, the master
equation for mean field games has been introduced by Lasry and Lions in Lions’
lectures at the Collège de France [265], but it is worth emphasizing that it came quite
some time after the original description of mean field games by means of the Fokker-
Planck / Hamilton-Jacobi-Bellman system presented in Chapter (Vol I)-3. Indeed,
it became increasingly clear that the Fokker-Planck / Hamilton-Jacobi-Bellman
formulation was not sufficient to capture the entire complexity of mean field games,
and Lasry and Lions became hard pressed to come up with a single formulation
which could accommodate mean field games with and without common noise.

Beside the analysis provided in [265], the importance of the master equation
was acknowledged by several contributions. In the notes he wrote following Lions’
lectures, Cardaliaguet [83] already discussed a form of master equation in the
particular case of players’ states having deterministic dynamics, the solutions to
the master equation being understood in the viscosity sense. In the same case of
deterministic dynamics, the existence of classical solutions was investigated over
short time horizons by Gangbo and Swiech in [168]. Recently, Bensoussan and
Yam revisited this result in [54]. Meanwhile, several independent contributions
treated stochastic dynamics of various degrees of generality. See for instance
[50–52, 97, 182, 183, 237]. These works use different approaches to derive the
master equation and compute derivatives on the Wasserstein space. Anyway, their
analyses are mostly heuristic in nature.

The road map for a rigorous construction of a classical solution to the master
equation over time intervals of arbitrary length may be found in Lions’ lectures at
the Collège de France. Especially, we refer the reader to the video [266], taken
from a seminar where Lions gave an outline of a possible proof for investigating the
master equation rigorously by means of PDE arguments.

As of the writing of this book, only two preprints appeared with self-contained
and rigorous constructions of classical solutions to the master equation for time
intervals of arbitrary lengths.
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The first one is by Chassagneux, Crisan, and Delarue, [114]. Therein, the authors
implement the same kind of strategy as the one developed in this chapter. Namely,
the master equation is established in two steps: first, in small time, through the
analysis of the flow of the stochastic process solving the corresponding McKean-
Vlasov forward-backward system; second, for arbitrary time intervals, through an
inductive argument which works under conditions very similar to those used in this
chapter. Despite these similarities, there are significant differences between this
work and our presentation. First, [114] only refers to the case without common
noise, while we here tackle both cases, with and without common noise. Second,
the regularity conditions are much weaker in [114]. Indeed, in the present chapter,
we strengthened the smoothness assumptions on the coefficients in order to make the
analysis more transparent, especially the analysis of the case with common noise.
Basically, we require all the derivatives on the Wasserstein space to be bounded
in L1, which is rather restrictive. In comparison, derivatives are only required
to be bounded in L2 in [114]. The gap between these two sets of conditions is
clearly illustrated by the following simple example: the L-derivative of the function
P2.Rd/ 3 � 7! M2.�/ D .

R
Rd jxj2d�.x//1=2 is Rd 3 v 7! v=M2.�/, provided that

� is not the Dirac mass at 0. Obviously, the derivative is uniformly bounded in L2,
but is not in L1. Actually, the standing assumptions in this chapter are close to those
used in another recent work by Buckdahn, Li, Peng, and Rainer [79]. Therein, the
authors implement a similar approach in order to study forward flows, proving that
the semigroup of a standard McKean-Vlasov stochastic differential equation with
smooth coefficients is the classical solution of a linear PDE defined on R

d �P2.Rd/,
very much in the spirit of Subsection (Vol I)-5.7.4.

The other main result on classical solutions of the master equation is due to
Cardaliaguet, Delarue, Lasry, and Lions [86]. The strategy in [86] is somewhat
different. Indeed, the starting point is the representation of mean field games
with common noise by means of the infinite dimensional forward-backward sys-
tem (2.37)–(2.38) consisting of a stochastic Fokker-Planck equation and a stochastic
Hamilton-Jacobi-Bellman equation. However, once the representation is chosen, the
philosophy is pretty much the same as ours. In [86], the goal is also to prove that the
flow formed by the solution of the system (2.37)–(2.38) is smooth, even if, therein,
smoothness is investigated with respect to the linear functional calculus presented
in Subsection (Vol I)-5.4.1 instead of the L-differential calculus used in this chapter.
Also, and even if it is only a minor technical difference, the analysis of [86] is done
on the torus.

As a final remark, we emphasize once more that the analysis developed in this
chapter could be applied to the study of optimal control problems over McKean-
Vlasov diffusion processes, like those presented in Chapter (Vol I)-6. We refer to
[50–52, 54, 97, 114, 168] for references in that direction.



6Convergence and Approximations

Abstract

The goal of this chapter is to quantify the relationships between equilibria for
finite-player games, as they were defined in Chapter (Vol I)-2, and the solutions
of the mean field game problems. We first show that the solution of the limiting
mean field game problem can be used to provide approximate Nash equilibria
for the corresponding finite-player games, and we quantify the nature of the
approximation in terms of the size of the game. Interestingly enough, we prove a
similar result for the solution of the optimal control of McKean-Vlasov stochastic
dynamics. The very notion of equilibrium used for the finite-player games shed
new light on the differences between the two asymptotic problems. Next, we
turn to the problem of the convergence of Nash equilibria for finite-player games
toward solutions of the mean field game problem. We tackle this challenging
problem under more specific assumptions, by means of an analytic approach
based on the properties of the master equation when the latter has classical
solutions.

Throughout the analysis of finite player games, we shall consider two
types of mean field interaction. Indeed, for a given player i interacting
with N � 1 other players, for some N � 2, we may regard the mean
field interaction either as the interaction with the empirical distribution
associated with the other players or as the interaction with the empirical
distribution associated with all the players, including i itself. In short, the
first one reads 1

N�1
P

j6Di ıxj and the second one 1
N

P
j ıxj , where x1; � � � ; xN

denote the states of the N players. Mathematically speaking, there should not
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be any major difference between the two cases and we should expect for the same
asymptotic behavior. However, for notational convenience, it is sometimes easier to work
with either one or the other formulation. So, the reader should not be surprised to see the
two conventions appearing in the text.

6.1 Approximate Equilibria for Finite-Player Games

In this section, we show how the solution to a large N limit problem (the
solution of a mean field game or the optimal control of McKean-Vlasov dynamics)
can be used to construct approximate Nash equilibria for finite-player games.
Generally speaking, the accuracy of the approximate equilibria will be given by
the rate of convergence of empirical measures in the Wasserstein distance, as
stated in Theorem (Vol I)-5.8 proven in Section (Vol I)-5.1.2. In order for this
chapter to be as self-contained as possible, we restate this result in the following
form.

Lemma 6.1 If � 2 Pq.R
d/ for some q > 4, there exists a constant c depending

only upon d, q and Mq.�/ such that:

E
�
W2. N�N ; �/2

� � cN�2=max.d;4/
�
1C ln.N/1fdD4g

�
;

where N�N denotes the empirical measure of any sample of size N from �.

Throughout the section, we use the following notation for the rate of convergence
appearing in the right-hand side of the above inequality:

�N D N�2=max.d;4/
�
1C ln.N/1fdD4g

�
: (6.1)

Estimate in 1-Wasserstein Distance
At some point in this chapter, we shall need the analogue of the result of Lemma 6.1
for the 1-Wasserstein distance W1. The proof goes along the same line as that given
in Chapter (Vol I)-5 and the reader is referred to the Notes & Complements below
for references where the argument can be found.

Lemma 6.2 If � 2 Pq.R
d/ for some q > 2, there exists a constant c depending

only upon d, q and Mq.�/ such that:

E
�
W1. N�N ; �/

� � cN�1=max.d;2/
�
1C ln.N/1fdD2g

�
;

where N�N denotes the empirical measure of any sample of size N from �.
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Actually, using Remark (Vol I)-5.9, one can prove that the way the above constant
c actually depends on � is through the moment Mq.�/, the dependence being linear.
To be more specific,

E
�
W1. N�N ; �/

� � cMq.�/N
�1=max.d;2/

�
1C ln.N/1fdD2g

�
; (6.2)

for a constant c depending only on d and q.
The case q D 2 is of special interest for us since we often work with probability

distributions in the Wasserstein space P2.Rd/. In the references where the proof of
Lemma 6.2 can be found, the bound (6.2) is shown to hold when q D 2 and d � 3.
When d 2 f1; 2g, we can prove the slightly weaker bound given below.

Corollary 6.3 If � 2 P2.Rd/, then, for any � 2 .0; 1�, there exists a constant c�
depending only upon d and � such that:

E
�
W1. N�N ; �/

� � c�M2.�/N
�1=max.d;2C�/:

When d � 3, the above bound holds true with � D 0.

Proof. Thanks to (6.2), it suffices to argue the case d 2 f1; 2g.
We proceed by a truncation argument. For any given a > 0, we call �a the orthogonal

projection from R
d onto the d-dimensional ball of center 0 and of radius a > 0.

By (6.2), we get that, for any � > 0, there exists a constant c� > 0 such that

E
�
W1. N�N ı ��1

a ; � ı ��1
a /

� � c�M2C�.� ı ��1
a /N�1=2

�
1C ln.N/1fdD2g

�
:

Notice indeed, that, for an N-tuple .X1; � � � ;XN/ of independent and identically distributed
random variables with common distribution � and with N�N as empirical distribution, N�N ı
��1

a is the empirical distribution of .�a.X1/; � � � ; �a.XN//. Then, by the triangle inequality,
we get:

E
�
W1. N�N ; �/

� � E
�
W1. N�N ; N�N ı ��1

a /
�C E

�
W1. N�N ı ��1

a ; � ı ��1
a /

�C E
�
W1.� ı ��1

a ; �/
�

� E

h 1

N

NX

iD1

j�a.Xi/� Xij
i

C E
�j�a.X1/� X1j�

C c�E
�j�a.X1/j2C�

�1=.2C�/
N�1=2

�
1C ln.N/1fdD2g

�

� 2E
�j�a.X1/� X1j�C c�E

�j�a.X1/j2C�
�1=.2C�/

N�1=2
�
1C ln.N/1fdD2g

�
:

Now, we have, for X 	 �,

E
�j�a.X1/ � X1j

� D E
�jX � �a.X/j1fjXj�ag

�

� 2E
�jXj1fjXj�ag

�

� 2

a
EŒjXj2� D 2

a
M2.�/

2:
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Therefore,

E
�
W1. N�N ; �/

� � 4

a
M2.�/

2 C c�M2.�/
2=.2C�/a�=.2C�/N�1=2

�
1C ln.N/1fdD2g

�
:

Now we choose a so that:

1

a
D M2.�/

�1
�
N�1=2

�
1C ln.N/1fdD2g

�� 2C�
2C2� ;

and deduce that:

E
�
W1. N�N ; �/

� � c�M2.�/
�
N�1=2

�
1C ln.N/1fdD2g

�� 2C�
2C2� ;

where the constant c� is allowed to increase from line to line. Finally, since N�1=2 ln.N/ �
c�N�1=2N�=.4C2�/ D c�N�1=.2C�/, the proof is complete. ut

6.1.1 The Case of the MFGs Without Common Noise

For pedagogical reasons, we start with the case without common noise.
We follow the same plot as in Chapters (Vol I)-3 and (Vol I)-4. We implement

the two probabilistic approaches presented in the first volume of the book, using
the construction of mean field game equilibria either from the representation of the
value function, or from the stochastic maximum principle. We refer to Section (Vol
I)-3.3 for a general overview of these two approaches, and to Sections (Vol I)-4.4
and (Vol I)-4.5 for more detailed accounts.

General Strategy
In both cases, we shall use the same trick in order to construct approximate Nash
equilibria. This common trick relies on the following key observation. For a mean
field game equilibrium � D .�t/0�t�T 2 C.Œ0;T�IRd/ like those constructed in
Chapter (Vol I)-4, there exists a continuous mapping v W Œ0;T��R

d ! R
d, Lipschitz

continuous in x uniformly in time and at most of linear growth in x uniformly in time,
v depending on �, such that in equilibrium (namely under �), the optimal path of
the state has the form:

dXt D b
�
t;Xt; �t; Ǫ�t;Xt; �t; v.t;Xt/

��
dt C �.t;Xt; �t/dWt; (6.3)

for t 2 Œ0;T�. Here and in what follows, we use freely the notations of Chapters (Vol
I)-3 and (Vol I)-4 for the drift b, the standard deviation or volatility coefficient � ,
and the noise W D .Wt/0�t�T in the underlying mean field game. The reader may
also have a look at the general setting used in Chapter 2, which is basically the same
provided that �0 is null therein. In this framework, . Ǫ .t;Xt; �t; v.t;Xt///0�t�T is the
optimal control, the function Ǫ being the unique minimizer of the corresponding
reduced Hamiltonian:
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H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/:

See for instance Lemma (Vol I)-3.3 or Lemma 1.56. Using also the same notations
f and g as in Chapters (Vol I)-3 and (Vol I)-4 for the running and terminal cost
functions, the optimal cost of the limiting mean field problem can be written as:

J D E

� Z T

0

f
�
t;Xt; �t; Ǫ .t;Xt; �t; v.t;Xt//

�
dt C g.XT ; �T/

	

: (6.4)

To rephrase, (6.3) is the optimal path and J is the optimal cost of the optimal control
problem:

inf
˛2A J�.˛/; with J�.˛/ D E

� Z T

0

f .t;X˛
t ; �t; ˛t/dt C g.X˛

T ; �T/

	

;

subject to

dX˛
t D b.t;X˛

t ; �t; ˛t/dt C �.t;X˛
t ; �t/dWt; t 2 Œ0;T�;

(6.5)

where as usual A is the set of square-integrable and progressively measurable
control processes taking values in A � R

k.
In our approach based upon the stochastic Pontryagin maximum principle, the

existence of the function v is straightforward. Somehow, it is a mere consequence
of Theorem (Vol I)-4.53 or of Lemma (Vol I)-4.56, see also Theorem 1.60 in
Chapter 1 which is somehow the exact analogue of Lemma (Vol I)-4.56 for cases
with a common noise. For instance, the function u in the statement of Theorem (Vol
I)-4.53 exactly fits our requirements for v since the process .Yt D u.t;Xt//0�t�T

therein solves the adjoint system (Vol I)-(4.69) in Chapter 4 of the first volume. The
reader who just has Volume II in hand may easily formulate the same observation
by adapting the results obtained for mean field games with a common noise. For
instance, Theorem 1.60 says pretty much the same thing, although we used therein
the capital letter U instead of u in order to emphasize the fact that U was a random
field, which is a specific feature of mean field games with a common noise.

Unfortunately, things are not so clear when constructing the solution from the
representation of the value function. Indeed, in this approach, the key element is
Theorem (Vol I)-4.45, and therein, the decoupling field u must be interpreted as
the value function of the underlying optimal control problem. For that reason, it
cannot be the function v we are seeking in (6.3). Once again, the reader may
easily reformulate this observation from the sole basis of Theorem 1.57, which
provides a similar FBSDE interpretation of the value function but for mean field
games with a common noise. Basically, we learnt from Lemma (Vol I)-4.47, see also
Theorem 4.10 in the case when the master field exists, that the function v we are
looking for should be the derivative of the value function u identified in the statement
of Theorem (Vol I)-4.45, or equivalently of the decoupling field identified in the
statement of Theorem 1.57. In other words, v should be the gradient of the solution
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of the Hamilton-Jacobi-Bellman equation in the mean field game system (Vol I)-
(3.12) in Chapter 3 of the first volume, the analogue of which in Volume II is (2.37).
So, a possible way to establish (6.3) rigorously would be to prove smoothness of
the solutions of Hamilton-Jacobi-Bellman equations of the type (Vol I)-(3.12) in
Chapter 3 of the first volume. We refer to the Notes & Complements at the end of
the chapter for references to these types of results.

For the sake of consistency, we shall adopt another strategy, although it will
require more restrictive assumptions. Indeed, in analogy with the proof of Theo-
rem (Vol I)-4.53 or with the strategy used in both Chapters 3 and 5, we can represent
the optimal strategy in equilibrium by means of the stochastic Pontryagin maximum
principle, and then deduce from standard results for forward-backward SDEs that
the adjoint system has a Lipschitz continuous decoupling field. We achieve such
an objective in the proof of Theorem 6.4 below. The setting is close to that used
in the statement of Theorem (Vol I)-4.45, the analogue of which is Theorem 3.29
in the presence of a common noise. To avoid repeating ourselves too much, we do
not restate the definitions of the various assumptions and, to make this volume self-
consistent, we shall work under assumption MFG with a Common Noise HJB,
with �0 � 0, introduced in Subsection 3.4.1 to prove Theorem 3.29. Importantly,
assumption MFG with a Common Noise HJB subsumes assumption Necessary
SMP in Random Environment with X D P2.Rd/ as defined in Subsection 1.4.4,
the latter assumption providing what is needed to use the necessary part of
the stochastic Pontryagin maximum principle. Observe that, although assumption
Necessary SMP in Random Environment has been stated within the framework
of mean field games with common noise, it may be used without any restriction in
the current framework of mean field games without common noise.

Theorem 6.4 Let assumption MFG with a Common Noise HJB be in force.
Assume further that @xb, @x� , @xf , and @xg are Lipschitz continuous with respect
to .x; ˛/ and x respectively, uniformly in .t; �/ and �. Then, for any input
� D .�t/0�t�T with values in C.Œ0;T�IRd/, the decoupling field u constructed
in Theorem (Vol I)-4.45 is differentiable in the space variable, and its gradient
v D @xu W Œ0;T� � R

d ! R
d is bounded and is Lipschitz continuous in x

uniformly in t 2 Œ0;T�. Moreover, for any initial condition 
 2 L2.˝;F0;PIRd/,
the optimal strategy in the optimal control problem (6.5) takes the form Ǫ D
. Ǫ .t;X0;
t ; �t; v.t;X

0;

t ///0�t�T , where X0;
 is the forward component of the unique

solution with a bounded martingale integrand of the FBSDE system:

8
ˆ̂
<

ˆ̂
:

dXt D b
�
t;Xt; �t; Ǫ�t;Xt; �t; �.t;Xt; �t/

�1�Zt
��

dt

C�.t;Xt; �t/dWt;

dYt D �f
�
t;Xt; �t; Ǫ�t;Xt; �t; �.t;Xt; �t/

�1�Zt
��

dt C Zt � dWt;

(6.6)

for t 2 Œ0;T�, with the initial condition X0 D 
 2 L2.˝;F0;PIRd/ and the terminal
condition YT D g.XT ; �T/.
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Remark 6.5 In the proof of Theorem 6.4 given below, the assumption that @xb, @x� ,
@xf , and @xg are Lipschitz continuous is only used to prove that v is also Lipschitz
continuous in x. In fact, using standard estimates from the theory of uniformly
parabolic PDEs, we could prove that the result remains true without assuming
that @xb, @x� , @xf and @xg are Lipschitz. Indeed, the proof below shows that v
can be interpreted as the solution of a uniformly parabolic linear equation with
bounded coefficients and with a Lipschitz continuous diffusion coefficient in x, and
this suffices to get the desired bound on @xv. In fact, we used an argument of this type
in the proof of Proposition 5.53. We provide more references where these estimates
can be found in the Notes & Complements at the end of the chapter.

Proof. The present proof is inspired by the proofs of Theorem 4.10 and Corollary 4.11.

First Step. Theorem (Vol I)-4.45 says that, for any .t; x/ 2 Œ0; T� � R
d, in the environment

.�s/t�s�T , there is a unique solution to the optimal control problem (6.5) with x as initial
condition at time t. The optimal path may be identified to the forward component of the
unique solution with a bounded martingale integrand of the FBSDE system (6.6) with Xt D x
as initial condition at time t, whose solution we denote by .Xt;x

s ; Y
t;x
s ; Z

t;x
s /t�s�T .

By the necessary part of the Pontryagin principle, see for instance Theorem 1.59 or
Proposition 4.7, we know that Ǫ t;x D . Ǫ .s;Xt;x

s ; �s; �.s;Xt;x
s ; �t/

�1�Zt;x
s //t�s�T coincides

with . Ǫ .s;Xt;x
s ; �s; �

t;x
s //t�s�T , where .� t;x

s /t�s�T solves the backward equation:

d� t;x
s D �@xH

�
s;Xt;x

s ; �t; �
t;x
s ; 	

t;x
s ; Ǫ t;x

s

�
ds C 	 t;x

s dWs; s 2 Œt; T�; (6.7)

with the terminal condition � t;x
T D @xg.Xt;x

T ; �T/, and where .	 t;x
s /t�s�T is a square-integrable

F-progressively measurable process with values in R
d�d . Above H is the full Hamiltonian:

H.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C �.t; x; �/ � z C f .t; x; �; ˛/:

Second Step. We can repeat the proof of Theorem 4.10 to prove that, for any t 2 Œ0; T�,
u.t; �/ is continuously differentiable and satisfies for all x 2 R

d, @xu.t; x/ D �
t;x
t . In our new

framework, the analogue of (A1) in assumption Decoupling Master in Subsection 4.2.2
follows from the fact that in the proof of Theorem (Vol I)-4.45, we identified solutions
of (Vol I)-(4.54) with solutions of a system satisfying the assumption of Lemma (Vol I)-4.9.
Also, the bound for v follows from the Lipschitz property of u. The reader may also refer to
Theorem 1.57 instead of Theorem (Vol I)-4.45 and to Theorem 1.53 instead of Lemma (Vol
I)-4.9.

The argument used in the proof of Theorem 4.10 only shows that @xu is continuous in
space. In order to prove that it is Lipschitz continuous, we shall use the stability of the solu-
tion .Xt;x

s ; Y
t;x
s ; Z

t;x
s /t�s�T with respect to x. We indeed recall from the proof of Theorem (Vol

I)-4.45 that .Xt;x
s ; Y

t;x
s ; Z

t;x
s /t�s�T may be identified with the solution of a nondegenerate

forward-backward system with bounded and Lipschitz continuous coefficients. In particular,
Lemma (Vol I)-4.9 implies that:

E

h
sup

t�s�T

�jXt;x
s � Xt;x0

s j2 C jYt;x
s � Yt;x0

s j2�C
Z T

t
jZt;x

s � Zt;x0

s j2ds
i

� Cjx � x0j2; (6.8)
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for a constant C independent of .t; x/. Our goal is to inject the above estimate in (6.7).
However, doing so requires a modicum of care. Indeed, in the adjoint system satisfied by
.� t;x

s /t�s�T , the driver @xH is only Lipschitz continuous in the variable x for y and z in
bounded subsets. While the fact that the Lipschitz constant in x depends on y is not really a
problem, the fact that it also depends on z is more difficult to handle. The reason is as follows.
The coefficients of (6.7), including the terminal condition, are bounded in x and at most of
linear growth in y and z. Therefore, the process .� t;x

s /t�s�T can be shown to be bounded,
uniformly in .t; x/ 2 Œ0; T�� R

d, which shows that the relevant values of the adjoint variable
y stay in a bounded subset. However, at this stage of the proof, we do not have a similar a
priori bound for .	 t;x

s /t�s�T . At this stage, the best we can do is to combine (6.7) and (6.8)
and get:

E
�

sup
t�s�T

j� t;x
s � � t;x0

s j2� � C




E
�jXt;x

T � Xt;x0

T j2�

C
Z T

t
E
�jXt;x

s � Xt;x0

s j2.1C j	 t;x
s j2/C j Ǫ t;x

s � Ǫ t;x0

s j2�ds

�

� C




jx � x0j2 C E

Z T

t

�jXt;x
s � Xt;x0

s j2j	 t;x
s j2�ds

�

;

which does not permit to conclude. Above, we used the fact that Ǫ is Lipschitz continuous to
pass from the first to the second inequality together with the fact that the process .Zt;x

s /t�s�T

is bounded independently of t and x. The constant C will be allowed to increase from line to
line as long as it remains independent of .t; x/.

We resolve our quandary as follows. By Cauchy-Schwarz inequality, we get:

E
�

sup
t�s�T

j� t;x
s � � t;x0

s j2�

� Cjx � x0j2 C CE

h
sup

t�s�T
jXt;x

s � Xt;x0

s j4
i1=2

E

�
Z T

t
j	 t;x

s j2ds

�2	1=2

:

In order to complete the proof, we invoke L4 bounds, instead of L2 BSDE estimates. By
expanding the square of �t;x in (6.7) by Itô’s formula and by taking the square again in the
resulting expansion, it is pretty standard to derive:

E

�
Z T

t
j	 t;x

s j2ds

�2	

� C:

Similarly, we claim that the following analogue of (6.8) holds:

E
�

sup
t�s�T

jXt;x
s � Xt;x0

s j4� � Cjx � x0j4;

the proof of which is similar to that of Lemma (Vol I)-4.9, or equivalently of Theorem 1.57.
We refer to the references in the Notes & Complements at the end of the chapter for complete
proofs. From these, the Lipschitz property of v easily follows.
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Third Step. In order to complete the proof, it remains to show that with probability 1, for
all s 2 Œt; T�, � t;x

s D @xu.s;Xt;x
s /. Again, this follows from a suitable adaptation of the proof

of Corollary 4.11. This is easier in the present setting since (4.23), with conditioning with
respect to the � -field Fs, is now a straightforward consequence of (6.6). The rest of the proof
is similar.

In order to go beyond deterministic initial conditions, it remains to check the result with
.0; 
/ in lieu of .t; x/ for 
 2 L2.˝;F0;PIRd/. This can be done by approximating 
 by a
sequence of random variables of the form .
n D Pn

iD1 xi1Ai/n�1, with x1; : : : ; xn 2 R
d and

A1; : : : ;An 2 F0. Observing that, for any n � 1 and for all s 2 Œ0; T�,

Ǫ 0;
n
s D

nX

iD1

1Ai Ǫ 0;xi
s

D
nX

iD1

1Ai Ǫ�s;X0;xi
s ; �s; v.s;X

0;xi
s /

� D Ǫ�s;X0;
n
s ; �s; v.s;X

0;
n
s /

�
;

where we called . Ǫ 0;
s D Ǫ .s;X0;
s ; �s; �
0;

s //0�s�T the optimal control under the initial

condition .0; 
/, and then letting n to 1, the result follows by another stability argument. ut

In order to proceed with the analysis of approximate Nash equilibria, we shall
need more than the assumption of Theorem 6.4. This prompts us to introduce a new
assumption.

Assumption (Approximate Nash HJB). On top of assumption MFG with
a Common Noise HJB, with �0 � 0, assume that @xb, @x� , @xf and @xg are
Lipschitz continuous with respect to .x; ˛/ and x respectively, uniformly in
.t; �/ and �, the functions b and � are Lipschitz continuous in �, uniformly
with respect to the other parameters, and the functions f and g are locally
Lipschitz continuous with respect to �, the Lipschitz constant being bounded
by LR for a constant L � 0 and for any R � 1 whenever f and g are restricted
to:

f.t; x; ˛; �/ 2 Œ0;T� � R
d � A � P2.Rd/ W jxj C j˛j C M2.�/ � Rg;

and to:

f.x; �/ 2 R
d � P2.Rd/ W jxj C M2.�/ � Rg:

Approximate Nash Equilibrium Candidates
As a consequence of Theorem 6.4, we know that, under assumption Approximate
Nash HJB, optimal paths of the control problem (6.5) are of the form (6.3), for
a function v as in the statement of Theorem 6.4. Importantly, the same holds true
under assumption MFG Solvability SMP from Subsection (Vol I)-4.5.1, which we
used to prove the existence Theorem (Vol I)-4.53, or equivalently, under assumption
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MFG with a Common Noise SMP Relaxed from Subsection 3.4.3, which we used
to prove Theorem 3.31, except for the fact that v may no longer be bounded. The
latter is the analogue of Theorem (Vol I)-4.53 for mean field games with a common
noise, provided we choose �0 � 0 therein. The only slight difference between
the two sets of assumptions is that � is required to be constant under assumption
MFG Solvability SMP, while we allowed for a more general form of volatility
coefficient in assumption MFG with a Common Noise SMP Relaxed. Notice
also that we could work under assumption MFG with a Common Noise SMP,
which imposes rather restrictive conditions on the coefficients but allows for any
closed convex subset A � R

k as set of controls. In comparison, we recall that A is
indeed required to fit the whole Rk under assumption MFG with a Common Noise
SMP Relaxed. In any case, it is important to be able to use the formulation (6.3)
provided that the function v therein is Lipschitz continuous in x, uniformly in t, and
locally bounded in .t; x/. In this framework, the systematic strategy described below
suggests a candidate for the role of an approximate Nash equilibrium. To make it
proper, we need to introduce the analogue of assumption Approximate Nash HJB
for assumption MFG with a Common Noise SMP Relaxed:

Assumption (Approximate Nash SMP). On top of assumption MFG with a
Common Noise SMP Relaxed, with �0 � 0, functions b and � are Lipschitz
continuous in �, uniformly with respect to t 2 Œ0;T� and x 2 R

d.

Throughout the exposition, we use the same notation � D .�t/0�t�T as above for
the mean field game equilibrium. As already emphasized, the existence of such an
equilibrium can be guaranteed by Theorem (Vol I)-4.44 or Theorem (Vol I)-4.53, or
equivalently by Theorem 3.29 or Theorem 3.31. On a probability space .˝;F ;P/,
we also fix a sequence .
 i/i�1 of independent Rd-valued random variables with
�0 2 P2.Rd/ as common distribution, and a sequence .Wi/i�1 of independent d-
dimensional Wiener processes .Wi D .Wi

t /0�t�T/i�1. The two sequences .
 i/i�1
and .Wi/i�1 are assumed to be independent of each other. For each integer N, we
consider the solution .XN;1; � � � ;XN;N/ D .XN;1

t ; � � � ;XN;N
t /0�t�T of the system of N

stochastic differential equations:

dXN;i
t D b

�
t;XN;i

t ; N�N
t ; Ǫ�t;XN;i

t ; �t; v.t;X
N;i
t /
��

dt C �.t;XN;i
t ; N�N

t /dWi
t ; (6.9)

for t 2 Œ0;T� and i D 1; � � � N, with initial conditions XN;i
0 D 
 i for i D 1; � � � ;N,

where as usual, N�N
t denotes the empirical distribution N�N

t D 1
N

PN
jD1 ıX

N;j
t

. Equa-
tion (6.9) is well posed since v is Lipschitz continuous in x, uniformly in time, and
.v.t; 0//0�t�T is bounded. Also, recall that the minimizer Ǫ .t; x; �; y/ was proven,
in Lemma (Vol I)-3.3 or in Lemma 1.56, to be Lipschitz continuous in the variables
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x and y, uniformly in t 2 Œ0;T� and � 2 P2.Rd/, and at most of linear growth in
y, uniformly in the other variables. The processes .XN;i/1�i�N give the dynamics of
the states of the N players in the stochastic differential game of interest when the
players use the control strategies:

Ǫ N;i
t D Ǫ�t;XN;i

t ; �t; v.t;X
N;i
t /
�
; 0 � t � T; i 2 f1; � � � ;Ng: (6.10)

Notice that these strategies are not only in closed loop form, they are in fact
distributed since at each time t 2 Œ0;T�, a player only needs to know the value
of its own private state in order to compute the value of the control to apply at that
time; in particular, these strategies are of a very low complexity, which makes them
really convenient for a practical use.

The search for Nash equilibria involves the comparison of the players’ expected
costs for different strategy profiles. In order to do so, we introduce new notations to
describe the states and the costs when the players choose different strategy profiles,
say ˇ.N/ D .ˇN;1; � � � ;ˇN;N/ with ˇN;i D .ˇ

N;i
t /0�t�T for i D 1; � � � ;N. In this

case, we denote by UN;i
t the state of player i 2 f1; � � � ;Ng at time t 2 Œ0;T�. If the

ˇN;is are admissible in the sense that ˇN;i 2 NA.N/, NA.N/ being defined as the set
of square-integrable A-valued processes which are progressively measurable with
respect to the complete and right-continuous filtration generated by .
1; � � � ; 
N/ and
.W1; � � � ;WN/, the dynamics of the state of the i-th player are given by UN;i

0 D 
 i

and

dUN;i
t D b

�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C �

�
t;UN;i

t ; N�N
t

�
dWi

t ; 0 � t � T; (6.11)

with:

N�N
t D 1

N

NX

jD1
ı

U
N;j
t
; 0 � t � T:

For each 1 � i � N, we denote by:

JN;i
�
ˇN;1; � � � ;ˇN;N

� D E

� Z T

0

f
�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C g

�
UN;i

T ; N�N
T

�
	

; (6.12)

the cost to player i.
Our goal is to use the form (6.3) of the optimal path under the limiting mean

field game problem to prove that . Ǫ N;1; � � � ; Ǫ N;N/, as constructed in (6.10), is an
approximate Nash equilibrium for the N-player game. To do so, we first need a
precise definition of the notion of approximate Nash equilibrium.

According to the terminology introduced in Chapter (Vol I)-2, two different
notions are conceivable corresponding to the open loop and closed loop versions
of the problem. We first follow Definition (Vol I)-2.3 of open loop Nash equilibria.
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Definition 6.6 Given � > 0, an admissible strategy ˛.N/ D .˛N;1; � � � ;˛N;N/ is said
to be an �-approximate open loop Nash equilibrium if, for each i 2 f1; � � � ;Ng,

JN;i
�
˛.N/

� � JN;i
�
˛N;1; � � � ;˛N;i�1;ˇi;˛N;iC1; � � � ;˛N;N

�C �:

for all admissible control ˇi 2 NA.N/.

In the framework of Definition 6.6, we have the following statement, which
provides a first rigorous connection between games with finitely many players and
mean field games.

Theorem 6.7 Under either assumption Approximate Nash HJB or assumption
Approximate Nash SMP, there exists a sequence ."N/N�1, converging to 0 as
N tends to 1, such that the strategies . Ǫ N;i/1�i�N defined in (6.10) form an
"N-approximate open loop Nash equilibrium of the N-player game (6.11)–(6.12).
Precisely, for each N � 1, for any player i 2 f1; � � � ;Ng and any admissible control
strategy ˇi 2 NA.N/, it holds:

JN;i. Ǫ N;1; � � � ; Ǫ N;i�1;ˇi; Ǫ N;iC1; � � � ; Ǫ N;N/ � JN;i. Ǫ N;1; � � � ; Ǫ N;N/� "N : (6.13)

If the initial condition �0 of the equilibrium is in Pq.R
d/, for q > 4, then we can

choose "N D c
p
�N, for a constant c > 0 independent of N, �N being defined as

in (6.1).

We shall prove a similar result for closed loop Nash equilibria. It will rely on the
following definition of an approximate closed loop Nash equilibrium.

Definition 6.8 Let

�N;i W Œ0;T� � C.Œ0;T�IRNd/ ! A; i D 1; � � � ;N;

be measurable feedback functions, such that the system of stochastic differential
equations:

(
dXN;i

t D b
�
t;XN;i

t ; N�N
t ; �

N;i
�
t;X.N/Œ0;t�

��
dt C �

�
t;XN;i

t ; N�N
t

�
dWi

t ; t 2 Œ0;T�;
XN;i
0 D 
 i; i 2 f1; � � � ;Ng;

with

N�N
t D 1

N

NX

jD1
ı

X
N;j
t
; t 2 Œ0;T�;
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is uniquely solvable, where X.N/ D .X.N/t D .XN;1
t ; � � � ;XN;N

t //0�t�T . Define the
corresponding strategy profile ˛.N/ D .˛N;1; � � � ;˛N;N/ in closed loop form:

˛N;i D
�
˛N;i

t D �N;i
�
t;XN

Œ0;t�

��

0�t�T
; i D 1; � � � ;N;

and assume that it is admissible.
Then, for a given � > 0, ˛.N/ D .˛N;1; � � � ;˛N;N/ is said to be an �-approximate

closed loop Nash equilibrium if, for each i 2 f1; � � � ;Ng and any other measurable
feedback function  i W Œ0;T� � C.Œ0;T�IRNd/ ! A, it holds:

JN;i
�
˛.N/

� � JN;i
�
ˇ.N/

�C �;

where ˇN;j D .ˇ
N;j
t D �N;j.t;U.N/

Œ0;t�//0�t�T for j 6D i and ˇN;i D .ˇ
N;i
t D

 i.t;U.N/
Œ0;t�//0�t�T , .U.N/

t D .UN;1
t ; � � � ;UN;N

t //0�t�T satisfying (6.11) with

.UN;1
0 ; � � � ;UN;N

0 / D .
1; � � � ; 
N/ as initial condition.

As usual with closed loop Nash equilibria, the definition of ˇ in (6.11) is implicit,
as it depends upon the solution U.N/ D .UN;1; � � � ;UN;N/ itself. Hence, (6.11)
must be understood as a system of stochastic differential equations. It is implicitly
required to be well posed and ˇ.N/ D .ˇN;1; � � � ;ˇN;N/ is implicitly required to be
admissible.

In complete analogy with Theorem 6.7, we have the following result:

Theorem 6.9 Under either assumption Approximate Nash HJB or assumption
Approximate Nash SMP, there exists a sequence ."N/N�1, converging to 0 as N
tends to 1, such that the strategies . Ǫ N;i/1�i�N associated with the Markovian
feedback functions:

�N;i W Œ0;T� � C.Œ0;T�IRNd/ 3 �t; .x1; � � � ; xN/
� 7! Ǫ�t; xi

t; �t; v.t; x
i
t/
�
;

used in (6.10), form an "N-approximate closed loop Nash equilibrium of the N-
player game (6.11)–(6.12).

If the initial condition �0 of the equilibrium is in Pq.R
d/, for q > 4, then we can

choose "N D c
p
�N, for a constant c > 0 independent of N, �N being defined as

in (6.1).

Proofs of Theorems 6.7 and 6.9
We prove Theorems 6.7 and 6.9 simultaneously, and in so doing, we point out the
main differences between the two cases.

Proof. By symmetry, we only need to prove (6.13), or the analog for control strategies in
closed loop form, for i D 1. Throughout the proof, ˇN;1; � � � ;ˇN;N will denote the alternative



460 6 Convergence and Approximations

tuple of strategies that we aim at comparing with Ǫ N;1; � � � ; Ǫ N;N . When working with closed
loop Nash equilibria, the definition of ˇN;1; � � � ;ˇN;N is already clear from Definition 6.8.
When working with open loop Nash equilibria, we just let ˇN;i D Ǫ N;i, for i � 2.

First Step. Recall that, irrespective of which assumption is in force, there exists a constant
C such that jb.t; x; �; ˛/j � C.1 C jxj C j˛j/ and j�.t; x; �/j � C.1 C jxj/. Also,
j@˛f .t; x; �; ˛/j � C.1 C j˛j/. By Lemma (Vol I)-3.3 or Lemma 1.56, we deduce that
j Ǫ .t; x; �; y/j � C.1C jyj/. Recall finally that jv.t; x/j � C.1C jxj/. Since �0 2 Pq.R

d/, for
q D 2 or q > 4, we deduce that, in any case,

E

h
sup
0�t�T

jXN;i
t jq

i
� C; (6.14)

the constant C being allowed to increase from line to line. In particular,

E

h
sup
0�t�T

j Ǫ N;i
t jq

i
� C: (6.15)

Second Step. Using the same bounds as in the first step, we get from Gronwall’s inequality:

E

h
sup
0�t�T

jUN;1
t j2

i
� C




1C E

Z T

0

jˇN;1
t j2dt

�

: (6.16)

Moreover, when working with closed loop Nash equilibria, we have jˇN;i
t j � C.1 C jUN;i

t j/
for i 2 f2; � � � ;Ng, so that, by Gronwall’s lemma again, we get:

E

h
sup
0�t�T

jUN;i
s jq

i
� C; 2 � i � N: (6.17)

When working with open loop Nash equilibria, (6.17) is also true as it follows from (6.15).
After summation, we obtain, in both cases,

1

N

NX

jD1

E

�

sup
0�t�T

jUN;j
t j2

	

� C




1C 1

N
E

Z T

0

jˇN;1
t j2dt

�

: (6.18)

Third Step. In full analogy with the proof of Theorem 2.12, we now introduce, for the
purpose of comparison, the system of decoupled independent and identically distributed
states:

dXi
t D b

�
t;Xi

t; �t; Ǫ .t;Xi
t; �t; v.t;X

i
t//
�
dt C �

�
t;Xi

t; �t
�
dWi

t ;

for 0 � t � T and i 2 f1; � � � ;Ng. By construction, the stochastic processes .Xi/1�i�N are
independent copies of X defined in (6.3) and, in particular, L.Xi

t/ D �t for any t 2 Œ0; T� and
i 2 f1; � � � ;Ng. Throughout the rest of the proof, we shall use the notation:

Ǫ i
t D Ǫ�t;Xi

t; �t; v.t;X
i
t/
�
; t 2 Œ0; T�; i 2 f1; � � � ;Ng:
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Following the proof of (6.14), we have:

E
�

sup
0�t�T

jXi
tjq
� � C: (6.19)

Using the regularity properties of the decoupling field v, we deduce from Theorem 2.12:

max
1�i�N

E
�

sup
0�t�T

jXN;i
t � Xi

tj2
� � "2N ; (6.20)

and

sup
0�t�T

E
�
W2. N�N

t ; �t/
2
� � C"2N ; (6.21)

where the sequence ."N/N�1 tends to 0 as N tends to 1 and satisfies the same prescription
as in the statement when q > 4.

Using the local-Lipschitz regularity of the coefficients f and g together with Cauchy-
Schwarz’ inequality, we get, for each i 2 f1; � � � ;Ng:

ˇ
ˇJ � JN;i. Ǫ N;1

; � � � ; Ǫ N;N
/
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇE

� Z T

0
f
�
t;Xi

t; �t; Ǫ i
t

�
dt C g.Xi

T ; �T /�
Z T

0
f
�
t;XN;i

t ; N�N
t ; ǪN;i

t

�
dt � g.XN;i

T ; N�N
T /

	ˇ
ˇ
ˇ
ˇ

� CE

�

1C jXi
T j2 C jXN;i

T j2 C 1

N

NX

jD1

jXN;j
T j2

	1=2

� E

h

jXi
T � XN;i

T j2 C W2

�
�T ; N�N

T

�2
i1=2

C C

Z T

0



E

�

1C jXi
tj2 C jXN;i

t j2 C j Ǫ i
tj2 C j ǪN;i

t j2 C 1

N

NX

jD1

jXN;j
t j2

	1=2

� E

h

jXi
t � XN;i

t j2 C j Ǫ i
t � ǪN;i

t j2 C W2

�
�t; N�N

t

�2
i1=2

�

dt:

By (6.14), (6.15), and (6.19), we deduce:

ˇ
ˇJ � JN;i. Ǫ N;1; � � � ; Ǫ N;N/

ˇ
ˇ � CE

h
jXi

T � XN;i
T j2 C W2

�
�T ; N�N

T

�2
i1=2

C C


Z T

0

E

h
jXi

t � Xi
t j2 C j Ǫ i

t � Ǫ N;i
t j2 C W2

�
�t; N�N

t

�2
i
dt

�1=2

:

Now, by the Lipschitz property of the minimizer Ǫ proven in Lemma (Vol I)-3.3, see also
Lemma 1.56, and by the Lipschitz property of v, we notice that:

j Ǫ i
t � Ǫ N;i

t j D ˇ
ˇ Ǫ�t;Xi

t; �t; v.t;X
i
t/
� � Ǫ�t;XN;i

t ; �t; v.t;X
N;i
t /
�ˇ
ˇ � cjXi

t � XN;i
t j:

Using (6.20) and (6.21), this proves that, for any 1 � i � N,

JN;i. Ǫ N;1; � � � ; Ǫ N;N/ D J C O."N/: (6.22)
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Fourth Step. This suggests that, in order to prove inequality (6.13) for i D 1, we could
restrict ourselves to the comparison of JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ to J. Using the argument
which led to (6.16), (6.17) and (6.18), together with the definitions of UN;j and XN;j for
j D 1; � � � ;N, we get, for any t 2 Œ0; T�:

E

�

sup
0�s�t

jUN;i
t � XN;i

t j2
	

� C

N

Z t

0

NX

jD1

E

�

sup
0�r�s

jUN;j
r � XN;j

r j2
	

ds C CE

Z t

0

jˇN;i
s � Ǫ N;i

s j2ds;

for i 2 f1; � � � ;Ng. When working with open loop equilibria and for i � 2, the second term
in the right-hand side is null. When working with closed loop equilibria, we deduce from the
form of the strategies that:

E

�

sup
0�s�t

jUN;i
t � XN;i

t j2
	

� C

N

Z t

0

NX

jD1

E

�

sup
0�r�s

jUN;j
r � XN;j

r j2
	

ds C CE

Z t

0

jXN;i
s � UN;i

s j2ds;

for i � 2, which yields, by Gronwall’s lemma,

E

�

sup
0�s�t

jUN;i
t � XN;i

t j2
	

� C

N

Z t

0

NX

jD1

E

�

sup
0�r�s

jUN;j
r � XN;j

r j2
	

ds:

Therefore, we have, in any case,

E

�

sup
0�s�t

jUN;1
t � XN;1

t j2
	

� C

N

Z t

0

NX

jD1

E

�

sup
0�r�s

jUN;j
r � XN;j

r j2
	

ds C CE

Z T

0

jˇN;1
s � Ǫ N;1

s j2ds;

E

�

sup
0�s�t

jUN;i
t � XN;i

t j2
	

� C

N

Z t

0

NX

jD1

E

�

sup
0�r�s

jUN;j
r � XN;j

r j2
	

ds; i 2 f2; � � � ;Ng:

Therefore, using Gronwall’s inequality, we get:

1

N

NX

jD1

E

�

sup
0�t�T

jUN;j
t � XN;j

t j2
	

� C

N
E

Z T

0

jˇN;1
t � Ǫ N;1

t j2dt; (6.23)

so that:

sup
0�t�T

E
�jUN;i

t � XN;i
t j2� � C

N
E

Z T

0

jˇN;1
t � Ǫ N;1

t j2dt; 2 � i � N: (6.24)
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Putting together (6.15), (6.20), and (6.24), we see that, for any ( > 0, there exists a constant
C( depending on ( such that:

E

Z T

0

jˇN;1
t j2dt � ( H) max

2�i�N
sup
0�t�T

E
�jUN;i

t � Xi
tj2
� � C("

2
N : (6.25)

Let us fix ( > 0 for the moment, and let us assume that E
R T
0

jˇN;1
t j2dt � (. Using (6.25) we

see that:

1

N � 1
NX

jD2

sup
0�t�T

E
�jUN;j

t � Xj
tj2
� � C("

2
N ; (6.26)

for a constant C( depending upon (, and whose value can change from line to line as long as
it remains independent of N. Now by the triangle inequality for the Wasserstein distance:

E

h
W2. N�N

t ; �t/
2
i

� 3



E

�

W2



1

N

NX

jD1

ı
U

N;j
t
;

1

N � 1
NX

jD2

ı
U

N;j
t

�2	

C 1

N � 1
NX

jD2

E
�jUN;j

t � Xj
tj2
�C E

�

W2



1

N � 1
NX

jD2

ı
X

j
t
; �t

�2	�

:

(6.27)

Noticing that:

E

�

W2



1

N

NX

jD1

ı
U

N;j
t
;

1

N � 1
NX

jD2

ı
U

N;j
t

�2	

� 1

N.N � 1/
NX

jD2

E
�jUN;1

t � UN;j
t j2�;

which is O.N�1/ because of (6.16) and (6.18), and plugging this inequality into (6.27),
using (6.26) to control the second term, and Theorem 2.12, see also Lemma 6.1, to estimate
the third term therein, we conclude that:

sup
0�t�T

E

h
W2. N�N

t ; �t/
2
i

� C("
2
N : (6.28)

Last Step. For the final step of the proof, we define . NUN;1
t /0�t�T as the solution of the SDE:

d NUN;1
t D b.t; NUN;1

t ; �t; ˇ
N;1
t /dt C �.t; NUN;1

t ; �t/dW1
t ; 0 � t � T I NUN;1

0 D 
1;

so that, from the definition (6.11) of UN;1 together with the bound (6.28), we get, by
Gronwall’s inequality,

sup
0�t�T

E
�jUN;1

t � NUN;1
t j2� � C("

2
N : (6.29)

Going over the computation leading to (6.22) once more and using (6.28) together
with (6.16), (6.17) and (6.18) and the fact that E

R T
0

jˇN;1
t j2dt � (, we obtain:
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JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ � J.ˇN;1/ � C("N ;

where J.ˇN;1/ stands for the mean field cost of ˇN;1:

J.ˇN;1/ D E

� Z T

0

f
�
t; NUN;1

t ; �t; ˇ
N;1
t

�
dt C g. NUN;1

T ; �T/

	

: (6.30)

Since J � J.ˇN;1/, we get:

JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ � J � C("N ; (6.31)

and from (6.22) and (6.31), we easily derive the desired inequality (6.13).
For the proof to be complete, we need to explain how we choose (, and discuss what

happens when E
R T
0

jˇN;1
t j2dt > (. We start with the case when assumption Approximate

Nash SMP holds. Using the convexity in x of g around x D 0, and the convexity of f in .x; ˛/
around x D 0 and ˛ D 0, we get:

JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/

� E

� Z T

0

f .t; 0; N�N
t ; 0/dt C g.0; N�N

T /

	

C �E

Z T

0

jˇN;1
t j2dt

C E

� Z T

0

�
UN;1

t � @xf .t; 0; N�N
t ; 0/C ˇN;1

t � @˛f .t; 0; N�N
t ; 0/

�
dt

C UN;1
T � @xg.0; N�N

T /

	

:

(6.32)

The local-Lipschitz assumption with respect to the Wasserstein distance implies the existence
of a constant C > 0 such that for any t 2 Œ0; T�,

E
�jf .t; 0; N�N

t ; 0/ � f .t; 0; ı0; 0/j
� � CE

�
1C M2. N�N

t /
2
�

D C

�

1C 1

N

NX

iD1

E
�jUN;i

t j2�
	

;

with a similar inequality for g. From this, we conclude that:

JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ �
Z T

0

f .t; 0; ı0; 0/dt C g.0; ı0/

C E

� Z T

0

�
UN;1

t � @xf .t; 0; N�N
t ; 0/C ˇN;1

t � @˛f .t; 0; N�N
t ; 0/

�
dt C UN;1

T � @xg.0; N�N
T /

	

C �E

Z T

0

jˇN;1
t j2dt � C

�

1C 1

N

NX

iD1

sup
0�t�T

E
�jUN;i

t j2�
	

:
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Under the standing assumption, we know that @xg, @xf and @˛f are at most of linear growth
in the second moment of the measure argument, so that for any ı > 0, there exists a constant
Cı such that:

JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/

�
Z T

0

f .t; 0; ı0; 0/dt C g.0; ı0/C �

2
E

Z T

0

jˇN;1
t j2dt

� ı sup
0�t�T

E
�jUN;1

t j2� � Cı




1C 1

N

NX

iD1

sup
0�t�T

E
�jUN;i

t j2�
�

:

(6.33)

Estimates (6.16) and (6.17) show that one can choose ı small enough in (6.33) and find C so
that:

JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ � �C C ��

4
� C

N

�
E

Z T

0

jˇN;1
t j2dt:

This proves that there exists an integer N0 such that for any integer N � N0 and any constant
N( > 0, one can choose ( > 0 such that:

E

Z T

0

jˇN;1
t j2dt � ( H) JN;1.ˇN;1;ˇN;2; � � � ;ˇN;N/ � J C N(; (6.34)

which provides us with the appropriate tool to choose ( and avoid having to consider
.ˇ

N;1
t /0�t�T whose expected square integral is too large.
We now turn to the case when assumption Approximate Nash HJB is in force. In that

case, the convexity argument used in (6.32) does not apply anymore. Still, we can obtain
a similar result by using the fact that f is convex with respect to ˛ and the fact that, for a
given ˛0 2 A, f .t; x; �; ˛0/, @˛f .t; x; �; ˛0/ and g.x; �/ are uniformly bounded in .t; x; �/ 2
Œ0; T�� R

d � P2.Rd/. Inequality (6.33), with inf.t;x;�/ f .t; x; �; ˛0/ in lieu of f .t; 0; ı0; 0/ and
inf.x;�/ g.x; �/ in lieu of g.0; ı0/, follows quite easily. ut

Remark 6.10 A simple inspection of the last part of the above proof shows
that a stronger result actually holds when E

R T
0

jˇN;1
t j2dt � (. Indeed, the

estimates (6.16), (6.25) and (6.28) can be used as in (6.22) to deduce (up to a
modification of C():

JN;i.ˇN;1;ˇN;2; � � � ;ˇN;N/ � J � C("N ; 2 � i � N: (6.35)

6.1.2 The Case of the MFGs with a Common Noise

We now turn to games with a common noise. The objective remains the same:
with the same definitions as above for approximate equilibria, we provide a general
scheme to construct approximate open and closed loop equilibria given the existence
of an MFG equilibrium.
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Although the proof goes along the same lines as in the absence of a common
noise, the random structure of the equilibrium makes the derivation significantly
more intricate. This is especially true when the equilibrium exists in the weak sense
only, recall the terminology introduced in Chapter 2. As made clear in the next
section, the analysis becomes somehow easier when the equilibrium is understood
in the strong sense and uniqueness holds.

To wit, the main difficulty is to provide an analog of (6.3): under the influence of
the common noise, the function v appearing in (6.3) becomes a random field. This
renders its construction much more intricate than in the case without common noise.

In order to construct v in this challenging environment, we appeal to the general
notion of decoupling field introduced in Chapter 1. This step will be the most
technical in the proof. To be more specific, we regard v as the decoupling field
of some forward-backward system. In order to do so, we work with the adjoint
system derived from the stochastic Pontryagin maximum principle for the optimal
control problem under the environment formed by the MFG equilibrium. Thanks to
Proposition 1.50, this permits to represent the optimal strategy in equilibrium, as a
function of the private state of the player, with the subtle provision that this function
is random.

Once the existence of a decoupling field has been demonstrated, we can use
the same control strategy as in (6.10) in order to build the approximate equilibria.
Although it is indeed licit to do so, this does not lead to the same notion of
distributed strategy as in the case without common noise. Indeed, the resulting
strategy is not even in feedback form. In the presence of a common noise, the
player needs much more information. Indeed, the general representation formula
in Proposition 1.50 says that, in order to implement the control strategy (6.10) in
the presence of the common noise, the player needs to observe the realizations of
both the common noise and the collective state up to the present time. We make this
statement more precise below.

Definition of the Set-Up
Throughout this subsection, the set-up is the same as in the part devoted to mean
field games with a common noise, see Chapters 2 and 3. Following the Defini-
tion 2.16 of a weak equilibrium together with the presentation in Subsection 3.1.2,
we are given:

1. a complete probability space .˝0;F0;P0/, endowed with a complete and
right-continuous filtration F

0 D .F0
t /0�t�T , an F0

0 -measurable initial
random probability measure �0 on R

d with V0 as distribution, and a d-
dimensional F0-Brownian motion W0 D .W0

t /0�t�T ,
2. a complete probability space .˝1;F1;P1/ endowed with a complete and

right-continuous filtration F
1 D .F1

t /0�t�T and a d-dimensional F
1-

Brownian motion W D .Wt/0�t�T .

(continued)
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We then denote by .˝;F ;P/ the completion of the product space .˝0 �
˝1;F0˝F1;P0˝P

1/ and endow it with the filtration F D .Ft/0�t�T obtained
by augmenting the product filtration F

0 ˝F
1 to make it right-continuous, and

by completing it.

We recall the useful notation L1.X/.!0/ D L.X.!0; �// for !0 2 ˝0 and a
random variable X constructed on ˝, see Subsection 2.1.3.

For a drift function b from Œ0;T� � R
d � P2.Rd/ � A into R

d, where A is a
closed convex subset of Rk, for two (uncontrolled) volatility coefficients � and �0

from Œ0;T� � R
d � P2.Rd/ into R

d�d, for real valued cost functions f and g from
Œ0;T��R

d �P2.Rd/�A and R
d �P2.Rd/, and for a square-integrable F0-measurable

initial condition X0, we assume that there exists an MFG equilibrium, namely an
F0

T -measurable random variable M with values in P2.C.Œ0;T�IR2d// such that: .i/
F is compatible with .X0;W0;M;W/; .ii/ M ı .ex

0/
�1 D L1.X0/, where ex

t is the
mapping evaluating the first d coordinates at time t on C.Œ0;T�IR2d/; .iii/ and

M D L1
�
X;W

�
; (6.36)

where X is the optimal state process of the random coefficients stochastic control
problem:

inf
˛D.˛t/0�t�T

E

� Z T

0

f .t;X˛
t ; �t; ˛t/dt C g.X˛

T ; �T/

	

; (6.37)

under the dynamic constraint:

dX˛
t D b

�
t;X˛

t ; �t; ˛t
�
dt C �

�
t;X˛

t ; �t
�
dWt C �0

�
t;X˛

t ; �t
�
dW0

t ; (6.38)

for t 2 Œ0;T�, where �t D M ı .ex
t /

�1 for all t 2 Œ0;T�.
Existence of a weak equilibrium is guaranteed by one of the results obtained in

Chapter 3, for instance Theorem 3.29 or Theorem 3.31.

Revisiting the Notion of Decoupling Field
The key point in our analysis is to prove that, under the assumptions of either
Theorem 3.29 or Theorem 3.31, the solution of the optimal control problem (6.37)–
(6.38) may be represented by means of a decoupled SDE of the form (6.3),
namely:

dXt D b
�
t;Xt; �t; Ǫ�t;Xt; �t;Vt.Xt/

��
dt

C �.t;Xt; �t/dWt C �0.t;Xt; �t/dW0
t ; t 2 Œ0;T�;

(6.39)



468 6 Convergence and Approximations

where .Vt.x//0�t�T;x2Rd is an F
0-progressively measurable random field from

˝0 � Œ0;T� � R
d into R

d which is C-Lipschitz in space, for a constant C � 0.
By progressively measurable and C-Lipschitz, we mean that, for any x 2 R

d,
.Vt.x//0�t�T is F

0-progressively measurable and, for any t 2 Œ0;T� and any !0 2
˝0, the realization of Vt is a C-Lipschitz function Vt W Rd 3 x 7! Vt.x/ 2 R

d.
In this regard, we have the following analogue of Theorem 6.4 when � and �0

are independent of x:

Theorem 6.11 Let assumption MFG with a Common Noise HJB be in force for
some constants L � 0 and � > 0. Assume further that the volatility coefficients �
and �0 are independent of x, and that @x.b; f / and @xg are L-Lipschitz continuous
with respect to .x; ˛/ and x respectively, uniformly in .t; �/ and �, for the same
constant L as in assumption MFG with a Common Noise HJB. Then, on the
space .˝;F ;F;P/ equipped with .X0;W0;M;W/, there exists an F

0-progressively
measurable random field V W ˝0� Œ0;T��R

d ! R
d, bounded by C and C-Lipschitz

continuous in space for a constant C only depending on L and �, such that the
optimal strategy in the optimal control problem (6.37)–(6.38) takes the form:

Ǫ t D Ǫ�t;Xt; �t;Vt.Xt/
�
;

for almost every .t; !/ 2 Œ0;T� �˝ under Leb1 ˝ P.

Remark 6.12 The assumption that � and �0 are independent of x is mostly for
convenience. We strongly believe that the result remains true when � and �0 are
smooth functions of x. However, as demonstrated in the proof of Theorem 6.4 for
mean field games without common noise, the presence of x in the coefficients � and
�0 create additional difficulties, which we prefer to avoid here.

We refer to Subsection 3.4.1 for the details of assumption MFG with a Common
Noise HJB. Moreover, we emphasize that, as made clear in the proof below, the
statement of Theorem 6.11 still holds even if M does not satisfy (6.36).

Proof.

First Step. For any t 2 Œ0; T�, we consider the t-initialized set-up .˝;F ; .Fs/t�s�T ;P/

equipped with .Fnat;.X0;W0;M;W/
t ; .W0

s � W0
t ;Ms;Ws � Wt/t�s�T/ as input.

Then, for any x 2 R
d, we consider the control problem (6.37)–(6.38), initialized at time

t, with x as initial condition and .Ms/t�s�T as environment.
By a straightforward extension of Theorem 1.57 to accommodate the fact that the set-

up is here of a generalized form, the optimal control problem has a unique solution. Its state
process is given by the forward component of the unique solution, with a bounded martingale
integrand, of the FBSDE:
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs; �s; Ǫ .s;Xs; �s; �.s; �s/

�1�Zs/
�
ds

C�.s; �s/dWs C �0.s; �s/dW0
s ;

dYs D �f
�
s;Xs; �s; Ǫ .s;Xs; �s; �.s; �s/

�1�Zs/
�
ds

CZs � dWs C Z0s � dW0
s C dMs;

(6.40)

for s 2 Œt; T�, with the terminal condition YT D g.XT ; �T/, M D .Ms/t�s�T being a
square-integrable martingale with respect to the filtration .Fs/t�s�T , with Mt D 0 as initial
condition and of zero bracket with .W0

s � W0
t ;Ws � Wt/t�s�T . The unique solution of (6.40)

is denoted by:

�
Xt;x;Yt;x;Zt;x;Z0It;x;Mt;x

� D �
Xt;x

s ; Y
t;x
s ; Z

t;x
s ; Z

0It;x
s ;Mt;x

s

�

t�s�T :

Following the convention introduced in the absence of a common noise, we let:

Ǫ t;x D
�

Ǫ�s;Xt;x
s ; �s; �.s; �s/

�1�Zt;x
s

��

t�s�T
:

Importantly, the conclusion of Theorem 1.57 and the stability result of Theorem 1.53 imply
the existence of a constant C, only depending on the parameters � and L in assumption MFG
with a Common Noise HJB, such that, for any t 2 Œ0; T� and x; x0 2 R

d,

E

�

sup
t�s�T

�jXt;x
s � Xt;x0

s j2 C jYt;x
s � Yt;x0

s j2�C
Z T

t
jZt;x

s � Zt;x0

s j2ds
ˇ
ˇFt

	

� Cjx � x0j2: (6.41)

Second Step. We now make use of the necessary condition in the Pontryagin principle. Since
� and �0 are independent of x, we can use the reduced Hamiltonian H.r/ in the equation
for the adjoint variables. By adapting the statement of Theorem 1.59 in a suitable way to
accommodate the fact that the set-up is of a generalized form, we learn that Ǫ t;x can be
rewritten in the form:

Ǫ t;x
s D Ǫ�s;Xt;x

s ; �s; �
t;x
s

�
; (6.42)

where .� t;x
s /t�s�T is the solution, on the same t-initialized set-up as above, of the uniquely

solvable backward equation:

d� t;x
s D �@xH.r/

�
s;Xt;x

s ; �s; �
t;x
s ; Ǫ t;x

s

�
ds

C 	 t;x
s dWs C 	0It;x

s ; dW0
s C dmt;x

s ; s 2 Œt; T�;
(6.43)

with the terminal condition �
t;x
T D @xg.Xt;x

T ; �T/, mt;x D .mt;x
s /t�s�T being a square-

integrable martingale with respect to the filtration .Fs/t�s�T , with 0 as initial condition and
of null bracket with .W0

s � W0
t ;Ws � Wt/t�s�T .

Since @xf and @xg are bounded, there is no difficulty proving that the process .� t;x
s /t�s�T

is bounded, uniformly in .t; x/ 2 Œ0; T� � R
d. We denote the common bound by the same

letter C as in the stability estimate (6.41), so that:

P
�

sup
t�s�T

j� t;x
s j � C

� D 1: (6.44)



470 6 Convergence and Approximations

Using the bound (6.44) in (6.43) together with the stability estimate (6.41) and proceeding
as in the analysis of Example 1.20, we deduce that, for all x; x0 2 R

d , with P-probability 1,

j� t;x
t � � t;x0

t j � Cjx � x0j: (6.45)

Moreover, using (6.44) and the identification (6.42), on the same t-initialized set-up as
above, we can regard the pair .Xt;x

s ; �
t;x
s /t�s�T as the solution of the FBSDE with Lipschitz

coefficients:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dXs D b
�
s;Xs; �s; Ǫ .s;Xs; �s; �s/

�
ds

C�.s; �s/dWs C �0.s; �s/dW0
s ;

d�s D �@xH.r/
�
s;Xs; �s;  .�s/; Ǫ .s;Xs; �s; �s/

�
ds

C	s � dWs C 	0s � dW0
s C dms;

(6.46)

for s 2 Œt; T�, with Xt D x as initial condition and with �T D @xg.XT ; �T/ as terminal
condition. In the derivative of the Hamiltonian, the function  is a smooth compactly
supported function from R

d into itself coinciding with the identity on the ball of center 0 and
of radius C. Accordingly, (6.45) together with Proposition 1.52 imply that (6.46) is uniquely
solvable and admits a decoupling field .Ut/0�t�T . With the same notations as in the statement
of Proposition 1.50, it satisfies:

� t;x
t D Ut

�
x;L

�
.W0

s � W0
t ;Ms/t�s�T

ˇ
ˇFnat;.X0;W0;M/

t

�
; .W0

s � W0
t ;Ms/t�s�T

�

with P-probability 1. Proposition 1.50 asserts that the decoupling field is C-Lipschitz in x. In
fact, a careful inspection of the proof of Proposition 1.50, see for instance the third step of
the proof of Proposition 1.46, shows that it is also bounded by C. This should not come as a
surprise since, in the above identity, � t;x

t itself is bounded by C.
For t 2 Œ0; T�, we then let Vt W Rd 3 x 7! Vt.x/ 2 R

d be the random field defined by:

Vt
�
x/ D Ut

�
x;L

�
.W0

s � W0
t ;Ms/t�s�T jFnat;.X0;W0;M/

t

�
; .W0

s � W0
t ;Ms/t�s�T

�
: (6.47)

Third Step. While .Vt/0�t�T is the quantity we were looking for in the statement, we must
still check its measurability in time. In order to do so, we observe that, for x 2 R

d and
0 � t � s � T , with P-probability 1,

Vt.x/ � Vs.x/ D � t;x
t � � t;x

s C Vs.X
t;x
s / � Vs.x/;

where we used, in the right-hand side, the representation property of the decoupling field.
Once more, recall the formula in Proposition 1.50 with s in lieu of t. The right-continuity of
the process .� t;x

s /t�s�T and the Lipschitz property of Vs, imply that for any x 2 R
d:

lim
s&t

E
�jVs.x/ � Vt.x/j2

� D 0; (6.48)

where we used the fact that the decoupling field is bounded by C to take the limit in L2-norm.
Now, we let, for any integer n � 1:
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Vn
t .x/ D Vdtn=Te=.n=T/.x/; .t; x/ 2 Œ0; T� � R

d:

Then, by (6.48) and by dominated convergence theorem,

lim
n!1

sup
p;q�n

E

Z T

0

jVq
t .x/ � Vp

t .x/j2dt D 0:

Since each process .Vn
t .x//0�t�T , for n � 1 and x 2 R

d, is jointly measurable in .t; !/,
we deduce that, for any x 2 Q

d (in other words if x has rational components), we can find
a jointly measurable process which we denote by . QVt.x//0�t�T , and for which it holds for
almost every t 2 Œ0; T�:

P
�
Vt.x/ D QVt.x/

� D 1: (6.49)

In particular, for any x 2 Q
d, the process . QVt.x//0�t�T can be assumed to be F

0-adapted and
jointly measurable; without any loss of generality, we can assume it to be F

0-progressively
measurable. Now, the key point is to observe that we can find a version of QV which is
Lipschitz continuous in space. To do so, we let for any t 2 Œ0; T�:

Dt D
\

x;y2Qd

˚j QVt.x/ � QVt.y/j � Cjx � yj�:

It is clear that the process .1Dt /0�t�T is progressively measurable. Moreover, by the Lipschitz
property in x of Vt, for almost every t 2 Œ0; T�, we have P.Dt/ D 1. Therefore, (6.49) remains
true if, for any x 2 Q

d, we consider .1Dt
QVt.x//0�t�T in lieu of . QVt.x//0�t�T . Equivalently, we

can assume, without any loss of generality, that, for any realization, for all t 2 Œ0; T�, for all
x; y 2 Q

d,

j QVt.x/ � QVt.y/j � Cjx � yj;

which implies that, for any realization and for all t 2 Œ0; T�, QVt extends into a Lipschitz
mapping from R

d into itself. Obviously, for almost every t 2 Œ0; T�, for all x 2 R
d , (6.49)

remains true, which is a crucial fact.
Actually, by continuity, we even have that, for almost every t 2 Œ0; T�, with P-probability

1, Vt.�/ and QVt.�/ coincide.

Fourth Step. In order to complete the proof, we recall that the optimal path of the optimal
control problem (6.37)–(6.38), with X0 as initial condition, is also characterized by the
forward component of the adjoint system (6.46), but with X0 as initial condition at time
0 in lieu of x at time t. Since the latter has been proved to be uniquely solvable on
the set-up .˝;F ; .Ft/0�t�T ;P/ equipped with .X0;W0

s ;Ms;Ws/0�s�T , we know from
Proposition 1.50 that, for any t 2 Œ0; T�, PŒ�t D Vt.Xt/� D 1. Recall indeed that
Proposition 1.50 permits to represent the backward component in terms of the forward one
by means of the decoupling field. Therefore, for almost every t 2 Œ0; T�, PŒ�t D QVt.Xt/� D 1.
The proof is easily completed by means of Fubini’s theorem and Theorem 1.59, the latter
providing a representation similar to (6.42). ut
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In full analogy with assumption Approximate Nash HJB, we introduce the
following assumption:

Assumption (Approximate Nash with a Common Noise HJB). Let
assumption MFG with a Common Noise HJB be in force and assume
that @x.b; f / and @xg are Lipschitz continuous with respect to .x; ˛/ and
x respectively, uniformly in .t; �/ and �, that the functions � and �0 are
independent of x, that the functions b, � and �0 are Lipschitz continuous in �,
uniformly with respect to the other parameters, and that the functions f and
g are locally Lipschitz continuous with respect to �, the Lipschitz constant
being bounded, for a constant L � 0 and for any R � 1, by LR, when f and g
are restricted to:

f.t; x; ˛; �/ 2 Œ0;T� � R
d � A � P2.Rd/ W jxj C j˛j C M2.�/ � Rg

and

f.x; �/ 2 R
d � P2.Rd/ W jxj C M2.�/ � Rg

respectively.

As in the absence of common noise, we can work with the optimal trajectories
constructed by means of the sufficient condition in the Pontryagin stochastic maxi-
mum principle. See for instance Theorem 3.31, which holds true under assumption
MFG with a Common Noise SMP Relaxed from Subsection 3.4.3 (so that �
and �0 may depend on x). The proof is easier in that case since, at each time t 2
Œ0;T�, the decoupling field is directly given by Theorem 1.60, though an additional
argument is needed to construct a version that is time progressively measurable with
respect to the filtration F

0. Generally speaking, this may be achieved by duplicating
the third step in the proof of Theorem 6.11. The only difference comes from the fact
that the decoupling field is no longer bounded by a constant C. As made clear in the
statement of Theorem 1.60, it is at most of linear growth:

jVt.x/j � C
�
1C jxj C E

0
�

sup
0�s�T

M2.�s/
2 jFnat;X0;W0;M

t

�1=2
�
; (6.50)

which comes from (1.67). We then observe that the process:

�
E
0
�

sup
0�s�T

M2.�s/
2 jFnat;X0;W0;M

t

��

0�t�T

in (6.50) is uniformly integrable, which suffices to replicate the third step in the
proof of Theorem 6.11 although Vt is not bounded. Up to this modification regarding
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the growth of .Vt.x//0�t�T;x2Rd , Theorem 6.11 remains valid. This prompts us
to introduce the following assumption, which is the analogue of assumption
Approximate Nash SMP:

Assumption (Approximate Nash with a Common Noise SMP). On top of
assumption MFG with a Common Noise SMP Relaxed, the functions b, �
and �0 are Lipschitz continuous in �, uniformly with respect to t 2 Œ0;T� and
x 2 R

d.

Games with Finitely Many Players
We now consider the analogue of (6.11). Following the construction of the particle
system (2.3) in Chapter 2, we assume that the space .˝1;F1;F1;P1/ carries a
sequence of independent Wiener processes .Wn/n�1. For the sake of simplicity, we
also assume that the common noise reduces to the sole W0, meaning that the initial
states of the players are supported by .˝1;F1;F1;P1/ and that �0 D L1.X0/ 2
P2.Rd/ in (6.38) is deterministic. However, we stress that the analysis below can
be extended to a more general form of common noise, for example as explained in
Remark 2.10 in Chapter 2. We thus assume that .˝1;F1;F1;P1/ carries a family
of identically distributed and independent F1

0 -measurable random variables .
n/n�1
with values in R

d, with the same distribution as X0.
Given the decoupling field constructed in the previous subsection, we consider

the analogue of (6.9):

dXN;i
t D b

�
t;XN;i

t ; N�N
t ; Ǫ�t;XN;i

t ; �t;Vt.X
N;i
t /
��

dt

C �.t;XN;i
t ; N�N

t /dWi
t C �0.t;XN;i

t ; N�N
t /dW0

t ;
(6.51)

for t 2 Œ0;T� and i 2 f1; � � � ;Ng, with .
1; � � � ; 
N/ as initial condition, which means
that the players use the control strategies:

Ǫ N;i
t D Ǫ�t;XN;i

t ; �t;Vt.X
N;i
t /
�
; 0 � t � T; i 2 f1; � � � ;Ng: (6.52)

Up to the fact that Vt is random, the particle system (6.51) is of the same type as
the one investigated in Section 2.1. See (2.3). Fortunately, the fact that Vt is random
should only be a minor inconvenience in applying the results from Subsection 2.1.4
since the randomness of Vt comes only from W0.

As we already noticed in the introduction of Subsection 6.1.2, the strategies
. Ǫ N;i/1�i�N are not distributed; they are even not in closed feedback form! Owing
to the representation formula (6.47) for the decoupling field Vt at time t, the player
needs to observe not only the realization of the common noise but also the realization
of the enlarged environment M up to present time. To emphasize this feature, the
strategies may be said to be in semi-feedback form. What it means exactly may not
be clear:
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• When the equilibrium is strong, M is a function of the environment, see
Theorem 2.29. In that case, it suffices for a player to observe the common noise
(in addition to its own private state) in order to implement the strategy (6.52),
which may be acceptable from a physical or economic point of view.

• When the equilibrium is strictly weak, in the sense that M incorporates an
additional randomness, independent of W0, there is no way for the player to
access the whole realization of M from the sole observation of W0. In that
case, the construction of a solution to (6.51) requires that all the players use
the same realization of the additional randomness entering the definition of Vt,
which makes sense since the information carried by .W0;M/ is understood as the
information common to all the players, see Chapter 2. Then, the identity (6.36)
together with the conditional propagation of chaos property established in
Theorem 2.12 says that the precise value of the realization of M should be
approximated by the empirical distribution of the system ..XN;i

t ;Wi
t /0�t�T/1�i�N ;

hence it should suffice to observe ..XN;i
t ;Wi

t /0�t�T/1�i�N to provide an approx-
imation of the realization of M. Although this sounds quite natural, a modicum
of care is needed from the practical point of view as the required information
is of a high complexity; also, such an empirical estimate would just provide
an approximation of the control strategy in (6.51). To make it proper, stability
properties of the decoupling field would be needed; however, obtaining such
stability properties may be a real issue, which we address at the end of the
subsection.

Similar to (6.51), we now define the analogue of (6.11). To do so, we need
to adapt the definition of an admissible strategy: We call an admissible tuple
of strategies ˇ.N/ D .ˇN;1; � � � ;ˇN;N/ with ˇN;i D .ˇ

N;i
t /0�t�T for i D 1 �

i � N, an N-tuple of square-integrable A-valued processes that are progressively
measurable with respect to F, while, for games without common noise, we required
the strategies to be adapted with respect to the augmentation of the filtration
generated by .
1; � � � ; 
N/ and .W0;W1; � � � ;WN/. The enlargement of the filtration
is especially useful to handle strategies of the same form as . Ǫ N;i/iD1;��� ;N in (6.52),
which are allowed to depend on M and thus which may not be adapted with
respect to the filtration generated by .
1; � � � ; 
N/ and .W0;W1; � � � ;WN/. Recalling
the standard notation A for the set of square-integrable A-valued processes that
are F-progressively measurable, admissible tuples are just tuples of the form
.ˇN;1; � � � ;ˇN;N/ with ˇN;i 2 A for each i 2 f1; � � � ;Ng.

We now provide an analogue to Theorems 6.7 and 6.9. Before we do so, we
make the following crucial observation: while we can still expect that the strategies
. Ǫ N;i/1�i�N form an approximate Nash equilibrium in open loop, we can no longer
expect that they form an approximate equilibrium in closed loop since they are
not in closed loop form! Put differently, Definition 6.6 of an approximate Nash
equilibrium in open loop is still relevant, but Definition 6.8 must be modified
to keep it adapted to the new framework. A natural way to do so is to allow
the functions �N;1; � � � ; �N;N and  i in the definition to be random fields of the
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form of � W ˝0 � Œ0;T� � C.Œ0;T�IRd/ ! A such that, for any S 2 Œ0;T�,
the map � W ˝0 � Œ0; S� � C.Œ0;T�IRd/ 3 .!0; t; x/ 7! �.!0; t; xŒ0;t�/ is
F0

S ˝ B.Œ0; S�/ ˝ B.C.Œ0;T�IRd//-measurable. Such random fields are called F
0-

progressively measurable; as already mentioned, corresponding equilibria are said
to be in generalized closed loop form or in semi-closed loop form.

We first claim:

Theorem 6.13 Under either assumption Approximate Nash with a Common
Noise HJB or assumption Approximate Nash with a Common Noise SMP, there
exists a sequence ."N/N�1, converging to 0 as N tends to 1, such that the strategies
. Ǫ N;i/1�i�N defined in (6.52) form an "N-approximate open loop Nash equilibrium
of the N-player game (6.37)–(6.38). Precisely, for each N � 1, for any player
i 2 f1; � � � ;Ng and any admissible control strategy ˇi 2 A, it holds:

JN;i. Ǫ N;1; � � � ; Ǫ N;i�1;ˇi; Ǫ N;iC1; � � � ; Ǫ N;N/ � JN;i. Ǫ N;1; � � � ; Ǫ N;N/� "N ; (6.53)

with the same definition for JN;i as in (6.12).
If the initial condition X0 has a finite moment of order q, for some q > 4, then

we can choose "N D c
p
�N, for a constant c independent of N, �N being defined as

in (6.1).

Forewarned by the observations made before the above statement, we solve the
problem of approximate closed loop equilibrium in the following way:

Theorem 6.14 Under either assumption Approximate Nash with a Common
Noise HJB or assumption Approximate Nash with a Common Noise SMP, there
exists a sequence ."N/N�1, converging to 0 as N tends to 1, such that the strategies
. Ǫ N;i/1�i�N associated with the feedback random fields

�N;i W Œ0;T� � .Rd/N 3 �t; .x1; � � � ; xN/
� 7! Ǫ�t; xi; �t;Vt.x

i/
�
;

used in (6.51), form a generalized closed loop "N-approximate Nash equilibrium
of the N-player game (6.37)–(6.38). Here, the definition of an approximate Nash
equilibrium in generalized closed loop form is similar to Definition 6.8, except for
the fact that we allow the functions �N;1; � � � ; �N;N and  i in Definition 6.8 to be
F
0-progressively measurable random fields from ˝0 � Œ0;T� � C.Œ0;T�IRd/ into A.

If the initial condition X0 has a finite moment of order q, for some q > 4, then
we can choose "N D c

p
�N, for a constant c independent of N, �N being defined as

in (6.1).

Once again, we stress the fact that equilibria in generalized closed loop form may
not be in closed loop form, since they may depend upon the whole past trajectory of
the common noise.
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Proof. The proofs of Theorems 6.13 and 6.14 go along the same lines as the proofs of
Theorems 6.7 and 6.9.

Here are the main differences. In the first step of the proof, (6.14) and (6.15) are easily
proved when assumption Approximate Nash with a Common Noise HJB is in force,
since, in that case, the decoupling field is bounded. Under assumption Approximate Nash
with a Common Noise SMP, the decoupling field is no longer bounded but satisfies the
bound (6.50). Referring to the proof of Theorem 3.31, see in particular the third step in the
proof of Lemma 3.33, there is no difficulty proving that E0Œsup0�t�T M2.�t/

q� is finite if
�0 2 Pq.R

d/ for q D 2 or q > 4. Plugging into (6.50), we get (6.14) and (6.15).
Due to the random nature of the decoupling field Vt in (6.39), we need, in the third step of

the proof, a generalized version of Theorem 2.12 for particle systems of the same type as (2.3)
but with F

0-progressively measurable random coefficients. The proof of Theorem 2.12 can
be easily adapted to this more general setting.

The rest of the proof is similar. ut

Construction of Approximate Equilibria in True Closed Loop
We now show how to construct true approximated closed loop equilibria when the
MFG equilibrium is unique.

The general strategy is as follows. When the equilibrium is unique, we know
from Definition 4.1 that we can associate a master field with the mean field game.
Provided that the master field is differentiable in space, which is guaranteed by
Theorem 4.10 under appropriate conditions, we know from Proposition 4.7 and
Corollary 4.11 that the decoupling field Vt used in (6.51) satisfies:

Vt.x/ D @xU.t; x; �t/:

This prompts us to use, instead of the control strategies defined in (6.51)–(6.52), the
following ones:

Ǫ N;i
t D Ǫ�t;XN;i

t ; N�N
t ; @xU.t;XN;i

t ; N�N
t /
�
; 0 � t � T; i 2 f1; � � � ;Ng; (6.54)

in which case the dynamics of the players are given by:

dXN;i
t D b

�
t;XN;i

t ; N�N
t ; Ǫ�t;XN;i

t ; N�N
t ; @xU.t;XN;i

t ; N�N
t /
��

dt

C �.t;XN;i
t ; N�N

t /dWi
t C �0.t;XN;i

t ; N�N
t /dW0

t ;
(6.55)

for t 2 Œ0;T� and i 2 f1; � � � ;Ng, with .
1; � � � ; 
N/ as initial condition.
Observe that, in the arguments of the function Ǫ in the right-hand side of (6.54),

we also replaced �t by N�N
t . Then, provided that the SDE (6.55) is solvable, the

strategies defined by (6.54) are in closed loop form. They are even Markovian.
However, they are not distributed.

When the function @xU is Lipschitz continuous in .x; �/, uniformly in time, and
the path .@xU.t; 0; ı0//0�t�T is bounded, the system (6.55) is uniquely solvable.
Moreover, by Theorem 2.12, propagation of chaos holds true and the limit in law is
given by the solution of the SDE:
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dXt D b
�
t;Xt;L1.Xt/; Ǫ�t;Xt;L1.Xt/; @xU.t;Xt;L1.Xt//

��
dt

C �.t;Xt;L1.Xt//dWt C �0.t;Xt;L1.Xt//dW0
t ;

for t 2 Œ0;T�, with X0 	 �0. Thanks to Proposition 4.7 and Corollary 4.11, the
above SDE describes the dynamics of the solution to the mean field game (6.36)–
(6.37)–(6.38).

For instance, all these claims are known to be true under assumption MFG
Master Classical from Subsection 5.4.3, see Theorem 5.46 and Propositions 5.53
and 5.54. We deduce:

Theorem 6.15 Under assumption MFG Master Classical, there exists a sequence
."N/N�1, converging to 0 as N tends to 1, such that the strategies . Ǫ N;i/1�i�N

associated with the feedback functions:

�N;i W Œ0;T� � .Rd/N 3 �t; .x1; � � � ; xN/
�

7! Ǫ
�

t; xi;
1

N

NX

jD1
ıxj ; @xU

�
t; xi;

1

N

NX

jD1
ıxj

��
;

used in (6.54) form an "N-approximate closed loop Nash equilibrium of the N-player
game (6.11)–(6.12) in the sense of Definition 6.8.

If �0 belongs to Pq.R
d/, for some q > 4, then we can choose "N D c

p
�N, for a

constant c independent of N, �N being defined as in (6.1).

Observe that, under assumption MFG Master Classical, either assumption
MFG with a Common Noise HJB or assumption MFG with a Common Noise
SMP Relaxed is in force. Recall also that � and �0 are constant and that b is
independent of .x; �/. In particular, it is pretty obvious that b, � and �0 satisfy
the conditions required in assumptions Approximate Nash with a Common
Noise HJB and Approximate Nash with a Common Noise SMP. Regarding
the cost functionals f and g, we know that @�f .t; x; �; ˛/.�/ and @�g.x; �/.�/ are
bounded by � R if jxj C j˛j C M1.�/ � R, see assumption MFG Smooth
Coefficients in Subsection 5.4.1. Hence, assumption Approximate Nash with a
Common Noise HJB (resp. assumption Approximate Nash with a Common
Noise SMP) is satisfied whenever assumption MFG with a Common Noise HJB
(resp. assumption MFG with a Common Noise SMP) holds true in condition (A3)
of assumption MFG Master Classical.

6.1.3 The Case of the Control of McKean-Vlasov SDEs

In this subsection, we address the same question as above but for the optimal control
of McKean-Vlasov dynamics investigated in Chapter (Vol I)-6: We show how the
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solution of the optimal control of McKean-Vlasov diffusion processes can provide
equilibria for systems of N players optimizing some common wealth when N tends
to 1. To do so, we explain first what kind of finite-player games we are talking
about and we highlight the differences with those arising in mean field games.

As already mentioned several times in the previous chapters, and also in the
previous subsections, a McKean-Vlasov SDE describes the asymptotic behavior of
a mean field interacting particle system as the number of particles tends to infinity,
see in particular Chapter 2. When particles are subject to independent noises, they
become asymptotically independent of each other, and each single one satisfies the
same McKean-Vlasov SDE in the limit. We called such a phenomenon propagation
of chaos. When particle evolutions are controlled, each particle attempting to
minimize an energy functional, it is natural to investigate equilibria for the finite
populations, and study their limits (if any) when the number of particles tends to
infinity. This is very similar to the framework of mean field games. However, we are
about to show that the solution of the optimal control of McKean-Vlasov SDEs
provides strategies leading to approximate equilibria of a nature which is quite
different from the Nash equilibria of the theory of mean field games. Our discussion
of potential mean field games in Subsection (Vol I)-6.7.2 in Chapter (Vol I)-6
emphasizes the reduction of the mean field game problem to a single optimization
problem over an SDE of McKean-Vlasov type. We called this single optimization
problem the central planner or representative agent problem. It suggests that the
agents in the corresponding finite system should use a common control strategy, and
seek a different kind of equilibrium. Below, we provide a precise definition for the
latter.

Throughout this section, assumption Control of MKV Dynamics from Subsec-
tion (Vol I)-6.4.1 is assumed to hold. For the sake of completeness, we recall its
main features.

First, we recall that � is allowed to depend on ˛ and that the drift and volatility
functions b and � are linear in �, x and ˛, in the sense that:

b.t; x; �; ˛/ D b0.t/C b1.t/x C Nb1.t/ N�C b2.t/˛;

�.t; x; �; ˛/ D �0.t/C �1.t/x C N�1.t/ N�C �2.t/˛;

where the various coefficients in the expansions are required to be bounded and
where we used the notation N� D R

x d�.x/.
Also, the cost functionals f and g are required to satisfy the following local

Lipschitz property:

ˇ
ˇf .t; x0; �0; ˛0/ � f .t; x; �; ˛/

ˇ
ˇC ˇ

ˇg.x0; �0/ � g.x; �/
ˇ
ˇ

� L
�
1C jx0j C jxj C j˛0j C j˛j C M2.�/C M2.�

0/
�

� �j.x0; ˛0/ � .x; ˛/j C W2.�
0; �/

�
:

(6.56)
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The functions f and g are also required to be differentiable in .x; ˛; �/ and the
derivatives of f and g with respect to .x; ˛/ and x respectively are L-Lipschitz
continuous with respect to .x; ˛; �/ and .x; �/ respectively, the Lipschitz property
in the variable � being understood in the W2 sense. Moreover,

E
�j@�f .t; x0; �0; ˛0/.X0/ � @�f .t; x; �; ˛/.X/j2�

� L
�j.x0; ˛0/ � .x; ˛/j2 C E

�jX0 � Xj2��;
E
�j@�g.x0; �0/.X0/ � @�g.x; �/.X/j2�

� L
�jx0 � xj2 C E

�jX0 � Xj2��;

(6.57)

where X and X0 have � and �0 as respective distributions. Importantly, Proposition
(Vol I)-5.36 says that the above remains true up to a new value of L if, in the two
left-hand sides, the random variable X0 is replaced by X while the two measure
arguments� and�0 remain unchanged. Finally, the function f satisfies the convexity
property:

f .t; x0; �0; ˛0/ � f .t; x; �; ˛/ � @.x;˛/f .t; x; �; ˛/ � .x0 � x; ˛0 � ˛/
� E

�
@�f .t; x; �; ˛/.X/ � .X0 � X/

� � �j˛0 � ˛j2;
(6.58)

where, as above, X and X0 have � and �0 as respective distributions. Similarly, the
function g is also assumed to be convex in .x; �/ in the sense that:

g.x0; �0/ � g.x; �/ � @xg.x; �/ � .x0 � x/

� E
�
@�g.x; �/.X/ � .X0 � X/

� � 0:
(6.59)

For each integer N � 1, we consider a stochastic system whose time evolution is
given by the system of N coupled stochastic differential equations:

dUN;i
t D b

�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C �

�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dWi

t ; 1 � i � N; (6.60)

with:

N�N
t D 1

N

NX

jD1
ı

U
N;j
t
;

for t 2 Œ0;T� and UN;i
0 D 
 i, 1 � i � N, where .
 i/i�1 is a sequence of

independent and identically distributed random variables with values in R
d, with

�0 2 P2.Rd/ as common distribution, and .Wi D .Wi
t /0�t�T/i�1 is a sequence of

independent d-dimensional Brownian motions on the time interval Œ0;T�. Of course,
the families .
 i/i�1 and .Wi/i�1 are assumed to be independent of each other, and
to be constructed on some complete probability space .˝;F ;P/. Here the control
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strategies .ˇN;1; � � � ;ˇN;N/ are assumed to be, for 1 � i � N, stochastic processes
ˇN;i D .ˇ

N;i
t /0�t�T that are progressively measurable with respect to the filtration

generated by .
1; � � � ; 
N/ and .W1; � � � ;WN/, that take values in A, and that have
finite L2 norms over Œ0;T� �˝:

E

Z T

0

jˇN;i
t j2dt < C1; i D 1; � � � ;N:

One should think of UN;i
t as the (private) state at time t of agent or player i 2

f1; � � � ;Ng, ˇN;i
t being the action taken at time t by player i. In this respect, the

presentation is pretty similar to that of (6.11). For each 1 � i � N, we denote by:

JN;i.ˇN;1; � � � ;ˇN;N/ D E

� Z T

0

f
�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C g

�
UN;i

T ; N�N
T

�
	

(6.61)

the cost to the i-th player, which is the analogue of (6.12).
Obviously, we framed the problem in the same set-up as in the case of the mean

field game models studied earlier in Subsection 6.1.1; the difference comes from
the rule used below for minimizing the cost. Indeed, we now minimize the cost over
exchangeable strategies. With a slight abuse of terminology, we shall say that the
strategy profile ˇN is exchangeable if the family .
 i;ˇN;i;Wi/1�i�N is exchangeable.
If that is the case, the costs to all the players are the same, and we can use the
notation NJN.ˇ.N// D JN;i.ˇ.N// for their common value. From a practical point of
view, restricting the minimization to exchangeable strategy profiles means that the
players agree to use a common policy, which is not the case in the standard mean
field game approach. Our first goal is to compute the limit:

lim
N!C1 inf

ˇ.N/
NJN
�
ˇ.N/

�
;

the infimum being taken over exchangeable strategy profiles. Another one is
to identify, for each integer N, a specific set of "-optimal strategies and the
corresponding state evolutions.

Limit of the Costs and Non-Markovian Approximate Equilibria
For a square-integrable random variable 
 2 L2.˝;F ;PIRd/ and a d-dimensional
Brownian motion W D .Wt/0�t�T , W being independent of 
 , we denote by J the
optimal cost:

J D E

� Z T

0

f
�
t;Xt; �t; Ǫ .t;Xt; �t;Yt;Zt/

�
dt C g.XT ; �T/

	

; (6.62)

where Ǫ .t; x; �; y; z/ is the minimizer over ˛ 2 A of the Hamiltonian:

H.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C �.t; x; �; ˛/ � z C f .t; x; �; ˛/; (6.63)



6.1 Approximate Equilibria for Finite-Player Games 481

for .t; x; �; y; z; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � R

d � R
d�d � A and .X;Y;Z/ D

.Xt;Yt;Zt/0�t�T is the solution of the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dXt D �
b0.t/C b1.t/Xt C Nb1.t/EŒXt�

C b2.t/ Ǫ .t;Xt;L.Xt/;Yt;Zt/
�
dt

C �
�0.t/C �1.t/Xt C N�1.t/EŒXt�

C �2.t/ Ǫ .t;Xt;L.Xt/;Yt;Zt/
�
dWt;

dYt D ��@xf
�
t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/;Yt;Zt/

�

C b1.t/
�Yt C �1.t/

�Zt
�
dt

�
h QE�@�f

�
t; QXt;L.Xt/; Ǫ .t; QXt;L.Xt/; QYt; QZt/

�
.Xt/

�

C Nb1.t/�EŒYt�C N�1.t/�EŒZt�
i
dt

C ZtdWt;

(6.64)

with the initial condition X0 D 
 , and the terminal condition YT D @xg.XT ;L.XT//CQEŒ@�g. QXT ;L.XT//.XT/�. As usual the symbol tilde is used to denote copies of the
random variables on a copy . Q̋ ; QF ; QP/ of .˝;F ;P/. In (6.62), .�t/0�t�T denotes the
flow of marginal probability measures �t D L.Xt/, for 0 � t � T .

For the purpose of comparison, for each i 2 f1; � � � ;Ng, we introduce the
solution .Xi;Yi;Zi/ of the FBSDE (6.64) when the whole FBSDE is driven by
the Wiener process Wi and the initial condition 
 i. Notice that these triples of
processes are independent and identically distributed. In particular, .X1; � � � ;XN/

solves the system (6.60) when the empirical distribution N�N
t providing the interaction

is replaced by �t and ˇN;i
t is given by ˇN;i

t D Ǫ i
t with:

Ǫ i
t D Ǫ .t;Xi

t; �t;Y
i
t;Z

i
t/: (6.65)

Here is the first claim of this subsection:

Theorem 6.16 Under assumption Control of MKV Dynamics,

lim
N!C1 inf

ˇ.N/
NJN
�
ˇ.N/

� D J;

the above infimum being taken over all the square integrable strategy profiles ˇ.N/ D
.ˇN;1; � � � ;ˇN;N/ such that the family .
 i;ˇN;i;Wi/1�i�N is exchangeable. Moreover,
the open loop strategy profile Ǫ .N/ D . Ǫ 1; � � � ; Ǫ N/ is approximately optimal in the
sense that:

lim
N!C1

NJN
� Ǫ .N/� D J:
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Proof. The proof consists in comparing NJN.ˇ.N// to J for a given exchangeable strategy ˇ.N/.
Once again, we rely on a variant of the Pontryagin stochastic maximum principle proven in
Section (Vol I)-6.3, which we spell out below. With the above notation, we have:

NJN.ˇ.N// � J D E

� Z T

0

�
f .s;UN;i

s ; N�N
s ; ˇ

N;i
s / � f .s;Xi

s; �s; Ǫ i
s/
�
ds

	

C E
�
g.UN;i

T ; N�N
T / � g.Xi

T ; �T/
�
;

for i 2 f1; � � � ;Ng. Therefore, we can write:

NJN
�
ˇ.N/

� � J D Ti
1 C Ti

2; (6.66)

with:

Ti
1 D E

�
.UN;i

T � Xi
T/ � Yi

T

�C E

� Z T

0

�
f .s;UN;i

s ; N�N
s ; ˇ

N;i
s / � f .s;Xi

s; �s; Ǫ i
s/
�
ds

	

;

Ti
2 D E

�
g.UN;i

T ; N�N
T / � g.Xi

T ; �T/
� � E

�
.UN;i

T � Xi
T/ � @xg.Xi

T ; �T/
�

� E QE�. QUN;i
T � QXi

T/ � @�g.Xi
T ; �T/. QXi

T/
�

D Ti
2;1 � Ti

2;2 � Ti
2;3;

where the quantities Ti
2;1, Ti

2;2, and Ti
2;3 have obvious definitions which will be stated

explicitly below. Here, the tilde corresponds to the independent copies we routinely use when
dealing with L-derivatives. Notice that we used Fubini’s theorem above in order to handle
the terminal condition of the backward equation in (6.64).

First Step. We start with the analysis of Ti
2. Using the diffusive effect of independence, we

claim:

Ti
2;3 D E QE�. QUN;i

T � QXi
T/ � @�g.Xi

T ; �T/. QXi
T/
�

D 1

N

NX

jD1

QE�. QUN;i
T � QXi

T/ � @�g. QXj
T ; �T/. QXi

T/
�

C O




QE�j QUN;i
T � QXi

T j2�1=2

� QE
�ˇ
ˇ
ˇ
1

N

NX

jD1

@�g. QXj
T ; �T/. QXi

T/ � E
�
@�g.Xi

T ; �T/. QXi
T/
�ˇˇ
ˇ
2
	1=2�

D 1

N

NX

jD1

E
�
.UN;i

T � Xi
T/ � @�g

�
Xj

T ; �T/.X
i
T/
�C E

�jUN;i
T � Xi

T j2�1=2O.N�1=2/;

where O.�/ stands for the Landau notation in the sense that jO.x/j � Cjxj for a constant C
independent of N. Therefore, taking advantage of the exchangeability in order to handle the
remainder, we obtain:
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1

N

NX

iD1

Ti
2;3 D 1

N2

NX

jD1

NX

iD1

E
�
.UN;i

T � Xi
T/ � @�g

�
Xj

T ; �T/.X
i
T/
�

C E
�jUN;1

T � X1T j2�1=2O.N�1=2/:

Introducing a random variable # from . Q̋ ; QF ; QP/ into R with uniform distribution on the set
f1; � � � ;Ng as in the proof of Proposition (Vol I)-5.35, we can write:

1

N

NX

iD1

Ti
2;3 D 1

N

NX

jD1

E QE�.UN;#
T � X#T / � @�g

�
Xj

T ; �T/.X
#
T /
�C E

�jUN;1
T � X1T j2�1=2O.N�1=2/:

Finally, defining the flow of empirical measures:

N�N
t D 1

N

NX

jD1

ı
X

j
t
; t 2 Œ0; T�;

and using (A3) in assumption Control of MKV Dynamics, see also (6.57), the above
estimate gives:

1

N

NX

iD1

Ti
2;3 D 1

N

NX

jD1

E QE��UN;#
T � X#T

� � @�g
�
Xj

T ; N�N
T

�
.X#T /

�C E
�jUN;1

T � X1T j2�1=2O."N/;

where we used the notation "N for any function of N which could be used as an upper bound
for:

max

�

N�1=2;E
�
W2. N�N

T ; �T/
2
�1=2 C


Z T

0

E
�
W2. N�N

t ; �t/
2
�
dt

�1=2	

D O."N/: (6.67)

By (Vol I)-(5.19), see also the proof of Theorem 2.12, and by an obvious application of
the Lebesgue dominated convergence theorem, the left-hand side tends to 0 as N tends to
C1, since the function Œ0; T� 3 t 7! EŒW2. N�N

t ; �t/
2� can be bounded independently of N.

Therefore, ."N/N�1 is always chosen as a sequence that converges to 0 as N tends to C1.
When sup0�t�T jX1t j has a finite moment of order q, for some q > 4, Lemma 6.1 says that "N

can be chosen as
p
�N . Going back to (6.66), we get:

1

N

NX

iD1

Ti
2 D 1

N

NX

iD1



E
�
g.UN;i

T ; N�N
T / � g.Xi

T ; N�N
T /
� � E

�
.UN;i

T � Xi
T/ � @xg.Xi

T ; N�N
T /
�

� E QE�.UN;#
T � X#T / � @�g

�
Xi

T ; N�N
T /.X

#
T /
�
�

C �
1C E

�jUN;1
T � X1T j2�1=2�O."N/;

where we used the local Lipschitz property of g and (6.67) to replace �T by N�N
T .
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Noticing that the conditional law of UN;#
T (respectively X#T ) under QP is the empirical

distribution N�N
T (respectively N�N

T ), we can use the convexity of g, see (6.59), to get:

1

N

NX

iD1

Ti
2 � �

1C E
�jUN;1

T � X1T j2�1=2�O."N/: (6.68)

Second Step. We now turn to the analysis of Ti
1 in (6.66). Using Itô’s formula and Fubini’s

theorem, we obtain:

Ti
1 D E

� Z T

0

�
H.s;UN;i

s ; N�N
s ; Y

i
s; Z

i
s; ˇ

N;i
s / � H.s;Xi

s; �s; Y
i
s; Z

i
s; Ǫ i

s/
�
ds

	

� E

� Z T

0

.UN;i
s � Xi

s/ � @xH.s;Xi
s; �s; Y

i
s; Z

i
s; Ǫ i

s/ds

	

� E QE
� Z T

0

. QUN;i
s � QXi

s/ � @�H.s;Xi
s; �s; Y

i
s; Z

i
s; Ǫ i

s/.
QXi

s/ds

	

D Ti
1;1 � Ti

1;2 � Ti
1;3:

(6.69)

Using the regularity properties of the Hamiltonian given by (A2) and (A3) in assumption
Control of MKV Dynamics, see also (6.56) and (6.57), together with (6.67), and recalling
that the limit processes .Xi;Yi;Zi; Ǫ i/i�1 satisfy the square-integrability property:

sup
i�1

E

�

sup
0�t�T

�jXi
t j2 C jYi

t j2
�C

Z T

0

�jZi
t j2 C j Ǫ i

t j2
�
dt

	

< 1;

we get:

Ti
1;1 D E

� Z T

0

�
H.s;UN;i

s ; N�N
s ; Y

i
s; Z

i
s; ˇ

N;i
s / � H.s;Xi

s; N�N
s ; Y

i
s; Z

i
s; Ǫ i

s/
�
ds

	

C O."N/:

Ti
1;2 D E

� Z T

0

.UN;i
s � Xi

s/ � @xH.s;Xi
s; N�N

s ; Y
i
s; Z

i
s; Ǫ i

s/ds

	

C



E

Z T

0

jUN;1
s � X1s j2ds

�1=2

O."N/:

(6.70)

Finally, using once again the diffusive effect of independence, we have

1

N

NX

iD1

Ti
1;3 D 1

N

NX

iD1

E QE
� Z T

0

.UN;i
s � Xi

s/ � @�H.s; QXi
s; �s; QYi

s;
QZi

s;
QǪ i

s/.X
i
s/ds

	

D 1

N2

NX

jD1

NX

iD1

E

� Z T

0

.UN;i
s � Xi

s/ � @�H.s;Xj
s; �s; Y

j
s; Z

j
s; Ǫ j

s/.X
i
s/ds

	

C



E

Z T

0

jUN;1
s � X1s j2ds

�1=2

O.N�1=2/;
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where we exchanged the copies on the space . Q̋ ; QF ; QP/ in the first line. By (A3) in the
assumption, see also (6.57), we deduce:

1

N

NX

iD1

Ti
1;3 D 1

N

NX

iD1

E QE
� Z T

0

.UN;#
s � X#s / � @�H.s;Xi

s; �s; Y
i
s; Z

i
s; Ǫ i

s/.X
#
s /ds

	

C



E

Z T

0

jUN;1
s � X1s j2ds

�1=2

O.N�1=2/

D 1

N

NX

iD1

E QE
� Z T

0

.UN;#
s � X#s / � @�H.s;Xi

s; N�N
s ; Y

i
s; Z

i
s; Ǫ i

s/.X
#
s /ds

	

C



E

Z T

0

jUN;1
s � X1s j2ds

�1=2

O."N/:

(6.71)

In order to complete the proof, we evaluate the missing term in the Taylor expansion of Ti
1

in (6.69), namely:

1

N

NX

iD1

E

� Z T

0

.ˇN;i
s � Ǫ i

s/ � @˛H.s;Xi
s; N�N

s ; Y
i
s; Z

i
s; Ǫ i

s/ds

	

;

in order to benefit from the convexity of H. We use (6.67) once more:

E

� Z T

0

.ˇN;i
s � Ǫ i

s/ � @˛H.s;Xi
s; N�N

s ; Y
i
s; Z

i
s; Ǫ i

s/ds

	

D E

� Z T

0

.ˇN;i
s � Ǫ i

s/ � @˛H.s;Xi
s; �s; Y

i
s; Z

i
s; Ǫ i

s/ds

	

C



E

Z T

0

jˇN;i
s � Ǫ i

sj2ds

�1=2

O."N/

�



E

Z T

0

jˇN;i
s � Ǫ i

sj2ds

�1=2

O."N/;

(6.72)

since Ǫ is a minimizer for H, see (3.11) in Chapter (Vol I)-3 if needed. Using the convexity of
H and taking advantage of the exchangeability, we finally deduce from (6.69), (6.70), (6.71),
and (6.72) that there exists a constant c > 0 such that:

1

N

NX

iD1

Ti
1 � cE

Z T

0

jˇN;1
s � Ǫ 1s j2ds

C O."N/




1C sup
0�t�T

E
�jUN;1

t � X1t j2�C E

Z T

0

jˇN;1
s � Ǫ 1s j2ds

�1=2

:
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Third Step. By (6.66) and (6.68), we deduce that:

NJN
�
ˇ.N/

� � J C cE
Z T

0

jˇN;1
s � Ǫ 1s j2ds

C O."N/




1C sup
0�t�T

E
�jUN;1

t � X1t j2�C E

Z T

0

jˇN;1
s � Ǫ 1s j2ds

�1=2

:

By exchangeability, we have the inequality:

sup
0�t�T

E
�jUN;1

t � X1t j2� � CE

Z T

0

jˇN;1
s � Ǫ 1s j2ds;

which holds for some constant C independent of N. We deduce that:

NJN
�
ˇ.N/

� � J � C"N ; (6.73)

for a possibly new value of C. This proves that:

lim inf
N!C1

inf
ˇ.N/

NJN
�
ˇ.N/

� � J:

In order to prove Theorem 6.16, it only remains to find a sequence of controls .ˇ.N//N�1

such that:

lim sup
N!C1

NJN
�
ˇ.N/

� � J:

More precisely, we are about to show that:

lim sup
N!C1

NJN. Ǫ .N// � J; (6.74)

thus proving that Ǫ .N/ D .˛1; � � � ; Ǫ N/ is an approximate equilibrium, though non-
Markovian. Denoting by .XN;1; � � � ;XN;N/ the solution of (6.60) with ˇN;i

t D Ǫ i
t and following

the proof of Theorem 2.12, we get:

sup
0�t�T

E
�jXN;i

t � Xi
tj2
� D sup

0�t�T
E
�jXN;1

t � X1t j2� D O
�
."N/

2
�
:

It is then plain to derive (6.74), completing the proof. ut

Approximate Equilibria with Distributed Closed Loop Controls
When � doesn’t not depend upon the control variable ˛, it is possible to provide an
approximate equilibrium using only distributed controls in closed loop form. Indeed,
in this case, the optimizer Ǫ of the Hamiltonian, as defined in (6.63), does not depend
upon the adjoint variable z and reads as Ǫ .t; x; �; y/. Also, we learnt from the results
of Chapter (Vol I)-6, see Lemma (Vol I)-6.25, that, under the standing assumption,
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the process .Yt/0�t�T in (6.64) could be represented as .Yt D U.t;Xt;L.Xt///0�t�T

for a function U , which we called the master field of the FBSDE (6.64) and which is
Lipchitz continuous in the variables x and �, uniformly in time. Hence, the optimal
control Ǫ D . Ǫ t/0�t�T in (6.62) gets the feedback form:

Ǫ t D Ǫ�t;Xt; �t;U.t;Xt; �t/
�
; t 2 Œ0;T�: (6.75)

In this regard, the function v defined by:

v.t; x/ D U.t; x; �t/; .t; x/ 2 Œ0;T� � R
d;

plays the same role as the decoupling field v in (6.9).
Of course, it would be desirable to have a similar representation when � depends

on ˛. However, the result proven in Chapter (Vol I)-6, see Lemma (Vol I)-6.25, does
not suffice to do so: If � depends on ˛, then Ǫ t depends on Zt, while Lemma (Vol I)-
6.25 just provides a representation of Yt and not of Zt. Actually, similar to Yt, we may
expect Zt to be a function of t and Xt. Such a representation is indeed known to hold
in the classical decoupled forward-backward setting. However, this would require a
deeper analysis: First, one would want the feedback function expressing Zt in terms
of Xt to be Lipschitz-continuous at a minimum, as the Lipschitz property ensures
that the stochastic differential equation obtained by plugging (6.75) into the forward
equation in (6.64) is solvable. In the present context, hoping for such a regularity
is mere wishful thinking as it is already very challenging in the standard case,
i.e., without any McKean-Vlasov interaction. Second, in any case, the relationship
between Zt and Xt, if it exists, must be rather intricate as Zt is expected to solve the
equation Zt D @xv.t;Xt/�.t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/;Yt;Zt//, which can be formally
derived by identifying the martingale parts when expanding Yt D v.t;Xt/ by a
formal application of Itô’s formula.

So, assuming the diffusion coefficient � to be independent of ˛, we denote
by .XN;1; � � � ;XN;N/ D .XN;1

t ; � � � ;XN;N
t /0�t�T the solution of the system of N

stochastic differential equations:

dXN;i
t D b

�
t;XN;i

t ; N�N
t ; Ǫ�t;XN;i

t ; �t; v.t;X
N;i
t /
��

dt C �.t;XN;i
t ; N�N

t /dWi
t ; (6.76)

with:

N�N
t D 1

N

NX

jD1
ı

X
N;j
t
;

for t 2 Œ0;T�, where we recall that XN;1
0 D 
1; � � � ;XN;N

0 D 
N are independent and
identically distributed with �0 as common distribution. The system (6.76) is well
posed because of the Lipschitz and linear growth properties of the decoupling field
v, and the fact that the minimizer Ǫ .t; x; �t; y/ is Lipschitz continuous and at most
of linear growth in the variables x, � and y, uniformly in t 2 Œ0;T�. The processes
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.XN;i/1�i�N give the dynamics of the private states of the N players in the stochastic
control problem of interest when the players use the distributed strategies:

Ǫ N;i
t D Ǫ�t;XN;i

t ; �t; v.t;X
N;i
t /
�
; 0 � t � T; i D 1; � � � ;N: (6.77)

By the linear growth of v and of the minimizer Ǫ , it holds, for any q � 2 such that
�0 2 Pq.R

d/,

sup
N�1

max
1�i�N

E
�

sup
0�t�T

jXN;i
t jq� < C1; (6.78)

the expectation being actually independent of i since the particles are obviously
exchangeable. We then have the following approximate equilibrium property:

Theorem 6.17 In addition to assumption Control of MKV Dynamics, assume
further that � does not depend upon ˛ and that �0 2 Pq.R

d/ for some q > 4.
Then, there exists a constant c > 0 such that, for any N � 1,

NJN
�
ˇ.N/

� � NJN
� Ǫ .N/� � c

p
�N ;

for any strategy profile ˇ.N/ D .ˇN;1; � � � ;ˇN;N/ such that .
 i;ˇN;i;Wi/1�i�N is
exchangeable, where NJN.ˇ.N// was defined in equation (6.61) and Ǫ .N/ is given by
. Ǫ N;1; � � � ; Ǫ N;N/, as defined in (6.77).

Proof. We use the same notation as in the proof of Theorem 6.16. In particular, since Ǫ 1t D
Ǫ .t;X1t ; �t; v.t;X1t // for 0 � t � T , see (6.65), the linear growth property of v implies that
EŒsup0�t�T jX1t jq� < C1. Because of Lemma 6.1, (6.67) and (6.73) this implies that:

NJN
�
ˇ.N/

� � J � c
p
�N :

Moreover, since v.t; �/ is Lipschitz continuous uniformly in t 2 Œ0; T�, using once again the
same classical estimates from Theorem 2.12, we also have:

sup
0�t�T

E
�jXN;i

t � Xi
tj2
� D sup

0�t�T
E
�jXN;1

t � X1t j2� D O.�N/;

so that:

sup
0�t�T

E
�j Ǫ N;i

t � ˛i
tj2
� D sup

0�t�T
E
�j˛N;1

t � ˛1t j2� D O.�N/;

for any 1 � i � N. It is then plain to deduce that:

NJN
� Ǫ .N/� � J C c

p
�N :

This completes the proof. ut
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6.2 Limits of Open-Loop N-Player Equilibria

We saw, in the case of some linear quadratic games, that Nash equilibria for N
player games converged in some sense to solutions of mean field game problems.
See for instance Section (Vol I)-2.4 together with Subsection (Vol I)-3.6.1 and
Section (Vol I)-2.5 together with Subsection (Vol I)-3.6.2 in Chapters 2 and 3 of
Volume I, and Subsection 4.5.1 in Chapter 4 in Volume II. Moreover, we saw in
the previous Section 6.1 that solutions to MFG problems could be used to construct
approximate Nash equilibria for finite player games, the larger the game, the better
the approximation. The purpose of the next two sections is to investigate this duality
in a more systematic way.

6.2.1 Possible Strategies for Passing to the Limit in the N-Player
Game

While the statement of the problem is seemingly clear, unfortunately, establishing
the convergence of equilibria of N-player games turns out to be a difficult question.
It requires more effort than for the construction of approximate Nash equilibria
from solutions of the limiting problems. In a way, this should be expected. The
construction of approximate Nash equilibria performed in the preceding section is
mostly based on the properties of the limiting mean field game. Somehow, it requires
little information on the game with finitely many players. Obviously, this cannot be
the case when we investigate equilibria of the N-player games and try to control
their possible limits.

Generally speaking, a crucial issue when passing to the limit in the N-player
game comes from the fact that very few bounds are known to hold uniformly in
N � 1. Basically, the best we can hope for is to prove that equilibria, together with
the corresponding strategies, satisfy uniform Lp estimates, for a suitable value of
p � 2. In particular, when working with equilibria in closed loop form, there is little
hope to establish uniform smoothness of the feedback functions, except possibly
in some specific cases like those addressed in Subsection (Vol I)-7.1.2; recall that,
therein, the players only observe their own state. The lack of uniform estimates on
the smoothness of the feedback functions prevents the systematic use of any strong
compactness method. The situation is slightly better when working with equilibria
in open loop forms. The available bounds on the control strategies permit to prove
tightness (or compactness) criteria which suffice to pass to the limit in the definition
of open loop Nash equilibria. These tightness criteria are similar to those used in
Chapter 3 for constructing weak solutions to mean field games with a common
noise. We implement this first approach in this section.

While compactness arguments turn out to work quite well with open loop
equilibria, they fail, as we just explained, for closed loop equilibria. Another strategy
will be needed. We shall present it in the next section. It is based on the fact that
closed loop equilibria can be described by means of a system of partial differential
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equations which we introduced in Chapter (Vol I)-2 and which we called the Nash
system. The road map for passing to the limit then relies on the following intuition:
as the number N of players tends to 1, the Nash system should get closer and closer
(in a suitable sense) to the master equation introduced in Chapters 4 and 5. Most of
the next section is devoted to the rigorous derivation of this claim. In doing so, we
restrict ourselves to cases for which the master equation has a classical solution. This
allows us to use the smoothness of the limiting solution to establish convergence.

General Setting for the Analysis
In order to simplify the analysis of this section and the next, we assume that the
states of the players have simpler dynamics of the form:

dXN;i
t D b.t/˛N;i

t dt C �dWi
t C �0dW0

t ; t 2 Œ0;T�: (6.79)

As a result, we will be in position to directly apply most of the results from the
previous chapters that are needed in the analysis, while more general dynamics
would have required variations of these results. Also, this simpler form of the
dynamics suffices to explain the general philosophy of the strategies used to pass to
the limit in the N-player games. If needed, the reader can try to adapt our arguments
to handle more complicated models.

In (6.79), .XN;1
0 ; � � � ;XN;N

0 / D .
1; � � � ; 
N/, where .
n/n�1 is a sequence of
independent, identically distributed random variables with values in R

d, with
�0 2 P2.Rd/ as common distribution. Also .Wn/n�0 is a sequence of indepen-
dent d-dimensional Brownian motions, the sequences .Wn/n�0 and .
n/n�1 being
independent. Both are constructed on a probability space .˝;F ;P/.

In contrast with what we did in the previous section, we assume that the
empirical measure appearing in the cost coefficients of the cost functional of player
i 2 f1; � � � ;Ng is computed over the states of all the players j 2 f1; � � � ;Ng except
player i itself, that is:

JN;i
�
˛.N/

� D E

� Z T

0

f
�
t;XN;i

t ; N�N�1
X
.N/�i
t

; ˛N;i
t

�
dt C g

�
XN;i

T ; N�N�1
X
.N/�i
T

�
	

; (6.80)

where X.N/t D .XN;1
t ; � � � ;XN;N

t / and, for any N-tuple x D .x1; � � � ; xN/ 2 .Rd/N ,
N�N�1

x�i stands for:

N�N�1
x�i D 1

N � 1
NX

jD1;j6Di

ıxj ; (6.81)

where N is assumed to be larger than or equal to 2. This form is especially
convenient for the analysis provided below, but as already explained in Chapter (Vol
I)-2, we could also consider cost functionals depending on the full empirical
measure 1

N

PN
jD1 ıxj :
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6.2.2 Weak Limits of Open Loop N-Player Equilibria

As announced, we first address the limiting behavior of open loop equilibria. Our
strategy is based on a weak compactness method close to that used in Chapter 3 to
construct weak solutions for mean field games with a common noise.

The analysis relies on the following assumption:

Assumption (Weak Limits of Open Loop N-Player Equilibria).

(A1) The dynamics and the costs are of the form (6.79) and (6.80), the
function b W Œ0;T� 3 t 7! b.t/ being measurable and bounded.

(A2) Either assumption MFG with a Common Noise HJB or assumption
MFG with a Common Noise SMP Relaxed is in force.

We refer the reader to Subsections 3.4.1 and 3.4.3 for detailed statements of these
assumptions. We recall that, under both assumptions, the limiting mean field game
has a solution, the proof of the existence of an equilibrium being based upon a weak
convergence argument. We shall adapt this argument in order to pass to the limit in
the N-player game.

Also, we shall assume the following:

(A3) For each N � 2, the N-player game has an open loop equilibrium
Ǫ .N/ D . Ǫ N;1; � � � ; Ǫ N;N/ satisfying:

8i 2 f1; � � � ;Ng; E

Z T

0

j Ǫ N;i
s j2ds < 1:

In the definition of a Nash equilibrium, we use implicitly the usual augmentation
of the filtration generated by .
1; � � � ; 
N/ and .W0; � � � ;WN/ as underlying filtration
in the definition of the admissible control strategies. The fact that all the equilibria
are defined on the same probability space has no real importance below since our
approach relies on weak limit arguments.

For any i 2 f1; � � � ;Ng, we let:

d OXN;i
t D b.t/ Ǫ N;i

t dt C �dWi
t C �0dW0

t ; t 2 Œ0;T� I OXN;i
0 D 
 i;

together with:

N�N;i
t D N�N�1

OX.N/�i
t

;

where OX.N/ D . OXN;1
; � � � ; OXN;N

/. See also (6.81).
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Stochastic Maximum Principle
For any given N � 2 and any other A-valued admissible control strategy ˇi, we
have:

JN;i
�
ˇi; . Ǫ .N//�i

� � JN;i
� Ǫ .N/�:

The cost in the left-hand side reads:

JN;i
�
ˇi; . Ǫ .N//�i

� D E

� Z T

0

f .t;UN;i
t ; N�N;i

t ; ˇi
t/dt C g.UN;i

T ; N�N;i
T /

	

;

where:

dUN;i
t D b.t/ˇi

tdt C �dWi
t C �0dW0

t ; t 2 Œ0;T� I UN;i
0 D 
 i:

In particular, the control strategy Ǫ N;i appears as an optimal control strategy
for the minimization of the cost JN;i.ˇi; . Ǫ .N//�i/ over admissible control
strategies ˇi.

Although the setting is slightly different since the environment . N�N;i
t /0�t�T is not

independent of Wi, a mere adaptation of the proof of the Pontryagin principle in
Theorem 1.59 shows that, necessarily,

Ǫ N;i
t D Ǫ .t; OXN;i

t ; N�N;i
t ; OYN;i

t /; (6.82)

where:

d OYN;i
t D �@xH.r/

�
t; OXN;i

t ; N�N;i
t ; OYN;i

t ; Ǫ N;i
t

�
dt C dMN;i

t ; (6.83)

where .MN;i
t /0�t�T is a square-integrable continuous martingale. Continuity here

follows from the fact that the filtration satisfies the martingale representation
property. The function H.r/ stands for the reduced Hamiltonian associated with f
and b, and Ǫ is its minimizer, which is known to exist under condition (A2) in the
standing assumption. Here, we have in fact @xH.r/.t; x; �; y; ˛/ D @xf .t; x; �; ˛/.

Main Statement
For any N � 2, we define the empirical measure:

MN D 1

N

NX

iD1
ı
. OXN;i

;Wi/
;

which reads as a random variable with values in P2.C.Œ0;T�IR2d//. The main result
of this section appears as the analog of Theorem 3.13.
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Theorem 6.18 Under assumption Weak Limits of Open Loop N-Player Equilib-
ria, the sequence of probability measures .Pı.W0;MN/�1/N�2 is tight on the space
C.Œ0;T�IRd/�P2.C.Œ0;T�IR2d//, and any weak limit generates a distribution of an
equilibrium in the sense of Definition 2.24 for the problem driven by the coefficients
.b; �; �0; f ; g/.

Of course, whenever the Lasry-Lions monotonicity condition holds, weak limits
are unique and coincide with the distribution of the unique mean field game
equilibrium with �0 as initial condition.

6.2.3 Proof of the Convergence

Since the proof is similar to that of Theorem 3.13, we only provide a sketch.
Throughout the proof, assumption Weak Limits of Open Loop N-Player

Equilibria is in force. Also, for any N � 2, we call #N a uniform random variable
on f1; � � � ;Ng, independent of ..
n/n�1; .Wn/n�0/. We can always consider such a
random variable by extending the probability space if necessary.

We then consider the trajectories OXN;#N D . OXN;#N
t /0�t�T together with the control

strategies Ǫ N;#N D . Ǫ N;#N
t /0�t�T , as given by (6.82) and (6.83).

Tightness Properties
We start with the following technical lemma:

Lemma 6.19 There exists a constant C such that, for all N � 2,

sup
iD1;��� ;N



E
�

sup
0�t�T

j OXN;i
t j2�C E

� Z T

0

j Ǫ N;i
t j2dt

	�

� C:

Also,

lim
a!1 sup

N�2
E
�

sup
0�t�T

j OXN;#N
t j21fsup0�t�T j OXN;#N

t j2�ag
� D 0;

lim
a!1 sup

N�2
E

�
Z T

0

j Ǫ N;#N
t j2dt

�

1fR T
0 j ǪN;#N

t j2dt�ag

	

D 0:

Proof. There are two cases.
Whenever assumption MFG with a Common Noise HJB is in force, the result is pretty

straightforward. In that case, both @xH and Ǫ are at most of linear growth in y uniformly in

the other variables. Hence, the processes . OYN;i
/1�i�N can be bounded independently of N

and, subsequently, the same holds true for the controls . Ǫ N;i/1�i�N .
The proof is much more involved under assumption MFG with a Common Noise SMP

Relaxed as we must invoke arguments similar to those used in the proof of Lemma 3.33.
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Formally, the computations are the same provided that we replace the symbol E0;nt in the
original proof by EtE, where Et denotes the conditional expectation given .
 i; .Wi

s/0�s�t/i�1.
The notation E is a shorten notation to indicate that we take the expectation over the sole
variable #N . Observe that it makes sense to do so since #N is independent of .
 i;Wi/i�1.

Below, we do not repeat all the arguments of Lemma 3.33. We just point out the
differences.

For a given player, say player 1, we construct a control ˇN;1 in two different ways. For
a given t 2 Œ0; T�, ˇN;1 is required to coincide with Ǫ N;1 on Œ0; t/. On Œt; T�, we shall use
alternatively one of the following two forms:

.i/ ˇN;1
s D E

� Ǫ N;#N
s

�
for t � s � TI .ii/ ˇN;1

s D 0 for t � s � T: (6.84)

Since A D R
k, both choices are admissible. We then let UN;1 denote the resulting state:

dUN;1
s D b.s/ˇN;1

s ds C �dW1
s C �0dW0

s ; s 2 Œ0; T�:

Of course, .UN;1
s /0�s�t and . OXN;1

s /0�s�t are equal. We set ˇ.N/ D .ˇN;1; . Ǫ .N//�1/. Also, the

associated controlled trajectory is denoted by U.N/ D .UN;1; OXN;2
; � � � ; OXN;N

/.
As in the proof of Lemma 3.33, we compare the cost JN;1.ˇ.N// with the equilibrium cost

JN;1. Ǫ .N// by means of Theorem 1.60. Importantly, the reader can check that (1.63) remains
true although the environment . N�N;1

s /0�s�T is correlated with the noise W1. Throughout the
proof, we assume that N � 2, so that 1

N�1
� 2

N .

First Step. We first consider the alternative .i/ in (6.84). Following the first step in the proof
of Lemma 3.33, we deduce that there exists a constant C such that, for all N � 2,

sup
t�s�T

Et
�jUN;1

s � NXN
s j2� � C

�
1C j OXN;1

t � NXN
t j2
�
;

where NXN
s D EŒ OXN;#N

s � D 1
N

PN
iD1

OXN;i
s . Similarly, we shall use the notation N̨ N

s D EŒ Ǫ N;#N
s � D

1
N

PN
iD1 Ǫ N;i

s . Then, by the conditional version of Theorem 1.60,

Et

�

g
� OXN;1

T ; N�N;1
T

�C
Z T

t

h
�
ˇ
ˇ Ǫ N;1

s � N̨ N
s

ˇ
ˇ2 C f

�
s; OXN;1

s ; N�N;1
s ; Ǫ N;1

s

�i
ds

	

� Et

�

g
�
UN;1

T ; N�N;1
T

�C
Z T

t
f
�
s;UN;1

s ; N�N;1
s ; N̨ N

s

�
ds

	

� Et

�

g
� NXN

T ; N�N;1
T

�C
Z T

t
f
�
s; NXN

s ; N�N;1
s ; N̨ N

s

�
ds

	

C C

�

1C
�
Et
�

sup
t�s�T

j OXN;1
s j2 C EŒ sup

t�s�T
j OXN;#N

s j2��
�1=2

C



Et

Z T

t

�
EŒj Ǫ N;#N

s j2��ds

�1=2	�
1C j OXN;1

t � NXN
t j2
�1=2

:
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Observe that:

W2

� N�N;1
s ; N�N

s

�2 � 1

N.N � 1/
X

i 6D1

j OXN;1
s � OXN;i

s j2

� 2

N
j OXN;1

s � NXN
s j2 C 4

N
E
�j OXN;#N

s � NXN
s j2�;

where N�N
s D 1

N

PN
iD1 ıOXN;i

s
. We deduce:

Et

�

g
� OXN;1

T ; N�N
T

�C
Z T

t

h
�
ˇ
ˇ Ǫ N;1

s � N̨ N
s

ˇ
ˇ2 C f

�
s; OXN;1

s ; N�N
s ; Ǫ N;1

s

�i
ds

	

� Et

�

g
� NXN

T ; N�N
T

�C
Z T

t
f
�
s; NXN

s ; N�N
s ; N̨ N

s

�
ds

	

C C

�

1C
�
Et
�

sup
t�s�T

j OXN;1
s j2 C EŒ sup

t�s�T
j OXN;#N

s j2��
�1=2

C



Et

Z T

t

�j Ǫ N;1
s j2 C EŒj Ǫ N;#N

s j2��ds

�1=2	�
1C j OXN;1

t � NXN
t j2

C 1

N
EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�C 1

N
Et
�

sup
t�s�T

j OXN;1
s � NXN

s j2�
�1=2

:

By repeating the same argument for any other player i 6D 1, by averaging over all the indices
in f1; � � � ;Ng, and then by using the same convexity argument as in the proof of Lemma 3.33,
the next step is to prove:

EtE
Z T

t

ˇ
ˇ Ǫ N;#N

s � N̨ N
s

ˇ
ˇ2ds

� C

�

1C
�
EtE

�
sup

t�s�T
j OXN;#N

s j2�
�1=2 C




EtE
Z T

t
j Ǫ N;#N

s j2ds

�1=2	

�
�
1C E

�j OXN;#N
t � NXN

t j2�C 1

N
EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�

�1=2
;

and we end up with:

EtE
�

sup
t�s�T

j OXN;#N
s � NXN

s j2�

� C

�

1C
�
EtE

�
sup

t�s�T
j OXN;#N

s j2�
�1=2 C




EtE
Z T

t
j Ǫ N;#N

s j2ds

�1=2	

�
�
1C E

�j OXN;#N
t � NXN

t j2�C 1

N
EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�

�1=2
:

(6.85)
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Second Step. When ˇN;1 is null after t, we have supN�2 EtŒsupt�s�T jUN;1
s j2� � C.1 C

j OXN;1
t j2/. Proceeding as before, we obtain:

Et

�

g
� OXN;1

T ; N�N
T

�C
Z T

t

h
�j Ǫ N;1

s j2 C f
�
s; OXN;1

s ; N�N
s ; Ǫ N;1

s

�i
ds

	

� Et

�

g
�
UN;1

T ; N�N
T

�C
Z T

t
f
�
s;UN;1

s ; N�N
s ; 0

�
ds

	

C C

�

1C
�
Et
�

sup
t�s�T

j OXN;1
T j2 C EŒ sup

t�s�T
j OXN;#N

s j2��
�1=2

C



Et

Z T

t

�j Ǫ N;1
s j2 C EŒj Ǫ N;#N

s j2��ds

�1=2	

�
� 1

N
EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�C 1

N
Et
�

sup
t�s�T

j OXN;1
s � NXN

s j2�
�1=2

:

As before, we repeat the same argument for any other player i 6D 1. Averaging over all the
indices in f1; � � � ;Ng and using a new convexity argument, we obtain, still by following the
steps of the proof of Lemma 3.33:

Et
�
g
� NXN

T ; ıNXN
T

��C Et

Z T

t

h
�E
�j Ǫ N;#N

s j2�C f
�
s; NXN

s ; ıNXN
s
; 0
�i

ds

� Et

�

g
�
0; ıNXN

T

�C
Z T

t
f
�
s; 0; ıNXN

s
; 0
�
ds

	

C C




1C EtE
�

sup
t�s�T

j OXN;#N
s j2�C EtE

Z T

t
j Ǫ N;#N

s j2ds

�1=2

�
�
1C E

�j OXN;#N
t j2�C EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�

�1=2
:

Hence, following again the second step in the proof of Lemma 3.33, we get:

Et
� NXN

T � @xg
�
0; ıNXN

T

��C EtE
Z T

t

�
�j Ǫ N;#N

s j2 C NXN
s � @xf

�
s; 0; ıNXN

s
; 0
��

ds

� C




1C EtE
�

sup
t�s�T

j OXN;#N
s j2�C EtE

Z T

t
j Ǫ N;#N

s j2ds

�1=2

�
�
1C E

�j OXN;#N
t j2�C EtE

�
sup

t�s�T
j OXN;#N

s � NXN
s j2�

�1=2
:

Using (A3) in assumption MFG with Common Noise SMP Relaxed together with (6.85),
we deduce from Young’s inequality that:
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EtE
�

sup
t�s�T

j OXN;#N
s j2 C

Z T

t
j Ǫ N;#N

s j2ds

	

� C�
�
1C E

�j OXN;#N
t j2�C 1

N
EtE

�
sup

t�s�T
j OXN;#N

s j2�
�

C �




EtE
�

sup
t�s�T

j OXN;#N
s j2�C EtE

� Z T

t
j Ǫ N;#N

s j2ds

	�

;

for any � > 0, the constant C� being allowed to depend on �. Choosing first � small enough
and then N large enough, we get:

EtE
�

sup
t�s�T

j OXN;#N
s j2 C

Z T

t
j Ǫ N;#N

s j2ds

	

� C
�
1C E

�j OXN;#N
t j2�

�
: (6.86)

The rest of the second step differs from that of Lemma 3.33. Indeed, we cannot make use
the notion of decoupling field because each environment . N�N;i

s /0�s�T , for i 2 f1; � � � ;Ng,
depends on the noise Wi. In order to proceed, we must go back to the beginning of the
second step. With the same choice for ˇN;1, we have:

Et

�

g
� OXN;1

T ; N�N;1
T

�C
Z T

t

h
�j Ǫ N;1

s j2 C f
�
s; OXN;1

s ; N�N;1
s ; Ǫ N;1

s

�i
ds

	

� Et

�

g
�
UN;1

T ; N�N;1
T

�C
Z T

t
f
�
s;UN;1

s ; N�N;1
s ; 0

�
ds

	

� C
�
1C j OXN;1

t j2 C EtE
�

sup
t�s�T

j OXN;#N
s j2�

�

� C
�
1C j OXN;1

t j2 C EŒj OXN;#N
t j2��;

where we used (6.86). By convexity of the cost functions, this yields:

Et

�

g
�
0; N�N;1

T

�C OXN;1
T � @xg

�
0; N�N;1

T

�C �

Z T

t
j Ǫ N;1

s j2ds

C
Z T

t

h
f
�
s; 0; N�N;1

s ; 0
�C OXN;1

s � @xf
�
s; 0; N�N;1

s ; 0
�C Ǫ N;1

s � @˛f
�
s; 0; N�N;1

s ; 0
�i

ds

	

� C
�
1C j OXN;1

t j2 C EŒj OXN;#N
t j2��;

from which we get, by using once again (6.86),

Et

� Z T

t
j Ǫ N;1

s j2ds

	

� C
�
1C j OXN;1

t j2 C EŒj OXN;#N
t j2��;

and then,

Et
�

sup
t�s�T

j OXN;1
s j2� � C

�
1C j OXN;1

t j2 C EŒj OXN;#N
t j2��:
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Now, we use the fact that the growths of both @xH and Ǫ are at most linear in all their
arguments. We obtain:

Et
�

sup
t�s�T

j OYN;1
t j2� � CEt

�
sup

t�s�T
j OXN;1

s j2 C sup
t�s�T

EŒj OXN;#N
s j2��

� C
�
1C j OXN;1

t j2 C EŒj OXN;#N
t j2��;

and then,

j Ǫ N;1
t j � C

�
1C j OXN;1

t j C E
�j OXN;#N

t j2�1=2
�
; (6.87)

and similarly for any other player i 6D 1.

Third Step. We now proceed as in the proof of Lemma 3.33. Thanks to (6.87), we get, for
any i 2 f1; � � � ;Ng:

E0

�
sup
0�s�t

j OXN;i
s j4�1=2 � C

�
1C j
 ij2 C E

�j
#N j2�
�
:

Hence, for any event D and any " > 0,

1

N

NX

iD1

E
�

sup
0�t�T

j OXN;i
t j21D

� � 1

N

NX

iD1

E

h
E0

�
sup
0�t�T

j OXN;i
t j4�1=2�P�DjF0

��1=2
i

� C

N

NX

iD1

E

h�
1C j
 ij2 C E

�j
#N j2�
��
P
�
DjF0

��1=2
i

� C
�
"E
�j
1j2 C 1

"
E

h�
1C 1

N

NX

iD1

j
 ij2
�
P
�
DjF0

�i�

D C
�
"E
�j
1j2 C 1

"
E

h�
1C 1

N

NX

iD1

j
 ij2
�

1D
�i�

:

Since the sequence . 1N
PN

iD1 j
 ij2/N�1 is uniformly integrable, this proves that the family

.sup0�s�T j OXN;#N
s j2/N�1 is uniformly square-integrable. Of course, we also have:

sup
N�1

E
�

sup
0�s�T

j OXN;i
s j2� < 1;

and by (6.87), the proof can be easily completed from there. ut
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Lemma 6.20 The sequence .P ı . OXN;#N
/�1/N�2 of probability measures on the

space C.Œ0;T�IR2d/ is tight. Moreover, the sequence .P ı . Ǫ N;#N /�1/N�2 is tight
on M .Œ0;T�IRk/ equipped with the Meyer-Zheng topology, and any weak limit may
be regarded as the law of an A-valued process.

Proof. The proof is a variation on the proof of Lemma 3.14. By Aldous’ criterion and Lemma

6.19, we can prove that the family ..P ı . OXN;i
/�1/iD1;��� ;N/N�2 is tight on C.Œ0; T�IRd/. In

particular, for a given " > 0, we can find a compact subset K � C.Œ0; T�IRd/ such that:

8N � 2; 8i 2 f1; � � � ;Ng; P
� OXN;i 62 K

� � ":

Then, to complete the first step of the proof, it suffices to notice that:

P
� OXN;#N 62 K

� D 1

N

NX

iD1

P
� OXN;i 62 K

� � ":

Similarly, we prove the second claim by adapting the arguments used in the proof of
Lemma 3.14, taking advantage of the stochastic maximum principle (6.82)–(6.83) to prove

the tightness of the sequence . OYN;#N
/N�2 and of the lemma below to get the tightness of the

sequence .. N�N;#N
t /0�t�T/N�2. ut

As a by-product of the first claim in the statement right above, we obtain the
following tightness result:

Lemma 6.21 The sequence .P ı .MN/�1/N�2 is tight on P2.C.Œ0;T�IR2d//.

Proof. The proof is an adaptation of the proof of Lemma 3.16, noticing that, for any positive
function ' on C.Œ0; T�IR2d/,

E

� Z

C.Œ0;T�IR2d/

'.x;w/dMN.x;w/
	

D 1

N

NX

iD1

E
�
'
� OXN;i

;Wi
��

D E
�
'
� OXN;#N

;W#N
��
;

which suffices to duplicate the proof of Lemma 3.16 using in addition Lemma 6.19 in order
to prove uniform square integrability. ut

Converging Subsequence
We now complete the proof of Theorem 6.18. It suffices to consider a probability
space .˝1;F1;P1/ equipped with a process .
1;W0;1;M1;W1; OX1

; Ǫ 1/
whose law under P1 is a weak limit of the sequence:

�
P ı �
#N ;W0;MN ;W#N ; OX#N

; Ǫ #N
��1�

N�2
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on the space:

R
d � C.Œ0;T�IRd/ � P2

�
C.Œ0;T�IR2d/

� � C.Œ0;T�IRd/

� C.Œ0;T�IRd/ � M .Œ0;T�IRk/;

the last component being equipped with the Meyer-Zheng topology.
Without any loss of generality, we shall still index by N the subsequence

converging to P
1 ı .
1;W0;1;M1;W1; OX1

; Ǫ 1/�1.
We start with the obvious preparatory result. Recall that �0 is the common

distribution of the .
 i/0i�1s.

Lemma 6.22 The random variable 
1 has �0 as distribution under P2.Rd/, while
the processes W0;1 and W1 are d-dimensional Brownian motions.

Proof. We just identify the law of 
1. The law of W1 can be identified in the same way,
while the fact that W0;1 is a Brownian motion is obvious. We consider a bounded and
continuous function ' from R

d to R. Then,

E
1
�
'.
1/

� D lim
N!1

E
�
'.
#N /

�

D lim
N!1

1

N

NX

iD1

E
�
'.
 i/

� D lim
N!1

1

N

NX

iD1

E
�
'.
1/

� D E
�
'.
1/

�
;

which suffices to complete the proof. ut

Also, the limit random variables satisfy the required independence property:

Lemma 6.23 The random variables 
1, .W0;1;M1/ and W1 are independent.

Proof. The proof is a consequence of the law of large numbers, from which we deduce that,
for any bounded continuous function '1 from R

d � C.Œ0; T�;Rd/ into R,

lim
N!1

E

�ˇ
ˇ
ˇ
1

N

NX

iD1

'1.

i;Wi/ � E

�
'1.


1;W1/
�ˇˇ
ˇ

	

D 0:

Now, for any bounded and continuous function '0 from C.Œ0; T�IRd/ � P2.C.Œ0; T�IR2d//

into R, we have:

E
1
�
'0.W0;1;M1/'1.


1;W1/
� D lim

N!1
E
�
'0.W0;MN/'1.


#N ;W#N /
�

D lim
N!1

E

�

'0.W0;MN/



1

N

NX

iD1

'1.

i;Wi/

�	

D E
�
'1.


1;W1/
�

lim
N!1

E
�
'0.W0;MN/

�
;
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where we used the law of large numbers to get the last equality. We deduce that:

E
1
�
'0.W0;1;M1/'1.


1;W1/
� D E

�
'1.


1;W1/
�
E
�
'0.W0;1;M1/

�
:

Recalling that 
1 and W1 are independent, we easily complete the proof. ut

Next we check the needed compatibility:

Lemma 6.24 The random variable M1 provides a version of the conditional law
of . OX1

;W1/ given .W0;1;M1/. Moreover, the complete and right-continuous
filtration F

1 generated by the limiting process .
1;W0;1;M1;W1; OX1
/ is

compatible with .
1;W0;1;M1;W1/.

Proof. We start with the first claim. For two real-valued bounded and continuous functions
' on C.Œ0; T�IR2d/ and  on C.Œ0; T�IR2d/, we have:

E
�
'. OXN;#N

;W#N / .W0;MN/
� D 1

N

NX

iD1

E
�
'. OXN;i

;Wi/ .W0;MN/
�

D E

�
Z

C.Œ0;T�IR2d
'.x;w/dMN.x;w/

�

 .W0;MN/

	

:

Passing to the limit, we get:

E
�
'.X1;W1/ .W0;M1/

� D E

�
Z

C.Œ0;T�IR2d/

'.x;w/dM1.x;w/
�

 .W0;1;M1/

	

;

which is enough to complete the proof following the first part of the proof of Proposition 3.12.
The second claim follows from the argument used in the last step of the proof of

Proposition 3.12. ut

By the previous lemmas, the limiting setting is admissible in the sense that it
has the required elements for the optimization problem in the Definition 2.16 of a
weak MFG equilibrium. Letting �1

t D M1 ı .ex
t /

�1 for all t 2 Œ0;T� where ex
t

denotes the mapping evaluating the first d coordinates at time t on C.Œ0;T�IR2d/,
this optimization problem consists in minimizing:

J1.ˇ1/ D E
1
� Z T

0

f .t;U1
t ; �

1
t ; ˇ

1
t /dt C g.U1

T ; �
1
T /

	

;

over the square-integrable F
1-progressively measurable processes ˇ1 with values

in A, where U1 D .U1
t /0�t�T solves:

dU1
t D b.t/ˇ1

t dt C �dW1
t C �0dW0;1

t ; t 2 Œ0;T� I U1
0 D 
1:

Thanks to (A2), this limiting optimization problem has a unique optimal solution,
see Theorems 1.57 and 1.60.
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What we still need to do in order to complete the proof of Theorem 6.18 is to
prove that the optimal solution is in fact OX1

itself. Once this is done, the end of the
proof of Theorem 6.18 goes along the same lines as the conclusion of the proof of
Theorem 3.13, as long as we can transfer the tuple .
1;W0;1;M1;W1/ onto the
corresponding canonical space.

So, here is the last step of the proof of Theorem 6.18.

Lemma 6.25 There exists a square-integrable and F
1-progressively measurable

process Ǫ o;1 D . Ǫ o;1
t /0�t�T with values in A such that:

d OX1
t D b.t/ Ǫ o;1

t dt C �dW1
t C �0dW0;1

t ; t 2 Œ0;T� I OX1
0 D 
1;

and, for any other square-integrable F1-progressively measurable process ˇ1 with
values in A, it holds that:

J1. Ǫ o;1/ � J1.ˇ1/:

Proof. The proof goes along the same lines as Lemma 3.15. We just provide a sketch.

First Step. We first return to the N-player game. For an admissible control strategy ˇ.N/ D
.ˇN;1; � � � ;ˇN;N/, we consider:

dUN;i
t D b.t/ˇN;i

t dt C �dWi
t C �0dW0

t ; t 2 Œ0; T� I Ui
0 D 
 i:

By definition of an open loop Nash equilibrium, we have, for any i 2 f1; � � � ;Ng,

NJN;i
�
ˇN;i; . Ǫ .N//�i

� � JN;i
� Ǫ .N/�;

where:

JN;i
�
ˇN;i; . Ǫ .N//�i

� D E

� Z T

0

f
�
t;UN;i

t ; N�N;i
t ; ˇN;i

t

�
dt

	

:

Letting:

N�N
t D 1

N

NX

jD1

ı
OX

N;j
t
; t 2 Œ0; T�;

observe that, for all t 2 Œ0; T�,

W2

� N�N;i
t ; N�N

t

�2 � 1

N.N � 1/
NX

jD1;j 6Di

E
�j OXN;i

t � OXN;j
t j2� � C

N
;

where we used Lemma 6.19 to derive the last inequality. Next, we fix a constant K � 0, and
using the local Lipschitz property of the cost functions, we derive the following bound. If

sup
1�i�N

E

Z T

0

jˇN;i
t j2dt � K;
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then,

JN;i
�
ˇN;i; . Ǫ .N//�i

� � E

� Z T

0

f
�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C g

�
UN;i

T ; N�N
T

�
	

C CKN�1=2;

where CK is a constant depending on K but not on N. Performing a similar computation when
ˇN;i D Ǫ N;i, we deduce that:

E

� Z T

0

f
�
t;UN;i

t ; N�N
t ; ˇ

N;i
t

�
dt C g

�
UN;i

T ; N�N
T

�
	

� E

� Z T

0

f
�
t; OXN;i

t ; N�N
t ; Ǫ N;i

t

�
dt C g

� OXN;i
T ; N�N

T

�
	

� CKN�1=2;

for a possibly new value of CK . In particular,

E

� Z T

0

f
�
t;UN;#N

t ; N�N
t ; ˇ

N;#N
t

�
dt C g

�
UN;#N

T ; N�N
T

�
	

� E

� Z T

0

f
�
t; OXN;#N

t ; N�N
t ; Ǫ N;#N

t

�
dt C g

� OXN;#N
T ; N�N

T

�
	

� CKN�1=2:

(6.88)

Second Step. We now make explicit the dynamics of OX1
. Noticing that:

OXN;#N
t D 
#N C

Z t

0

b.s/ Ǫ N;#N
s ds C �W#N

t C �0W0
t ; t 2 Œ0; T�;

we easily get that, under P1,

OX1
t D 
1 C

Z t

0

b.s/ Ǫ 1
s ds C �W1

t C �0W0;1
t ; t 2 Œ0; T�:

Following the proof of Lemma 3.15, we call . Ǫ o;1
t /0�t�T the optional projection of

. Ǫ1
t /0�t�T given the filtration F

1. We then have:

OX1
t D 
1 C

Z t

0

b.s/ Ǫ o;1
s ds C �W1

t C �0W0;1
t ; t 2 Œ0; T�:

Third Step. Returning to the first step, we choose, for any N � 2 and any i 2 f1; � � � ;Ng,
ˇN;i of the form:

ˇN;i
t D

n�1X

`D0

1Œtn` ;tn`C1/
.t/˚

�
tn
` ; 


i
0;W

0
�^tn`

;MN
�^tn`

;Wi
�^tn`

; OXN;i
�^tn`

�
; t 2 Œ0; T�;

where .˚.tn
` ; �//`D0;��� ;n�1 is a collection of bounded and continuous functions, defined on an

appropriate domain, and 0 D tn
0 < tn

1 < � � � < tn
n D T is a mesh whose step size tends to 0 as

n tends to 1. For such a choice,
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ˇN;#N
t D

n�1X

`D0

1Œtn` ;tn`C1/
.t/˚

�
tn
` ; 


#N
0 ;W

0
�^tn`

;MN
�^tn`

;W#N
�^tn`

; OXN;#N

�^tn`

�
; t 2 Œ0; T�:

Duplicating the proof of Lemma 3.15 and using (6.88), we deduce that:

J1. Ǫ 1/ � J1.ˇ1/; (6.89)

where:

ˇ1
t D

n�1X

`D0

1Œtn` ;tn`C1/
.t/˚

�
tn
` ;X

1
0 ;W0;1

�^tn`
;M1

�^tn`
;W1

�^tn`
; OX1

�^tn`

�
; t 2 Œ0; T�: (6.90)

Indeed,

E

� Z T

0

f
�
t;U1

t ; N�1
t ; ˇ1

t

�
dt C g.U1

T ; N�1
T /

	

� E

� Z T

0

f
�
t;X1

t ; N�1
t ; ˛1

t

�
dt C g.X1

T ; N�1
T /

	

:

Observe that the notation in (6.89) is slightly abusive since Ǫ 1 may not be F1-measurable.
However, by the same convexity argument as in the proof of Lemma 3.15, we get:

J1. Ǫ o;1/ � J1.ˇ1/:

By approximating any general admissible control strategy ˇ1 by processes of the
form (6.90), we complete the proof. ut

6.3 Limits of Markovian N-Player Equilibria

The purpose of this section is to prove the convergence of Markovian Nash equilibria
when the master equation has a smooth solution.

Requiring that the master equation has a smooth solution in order to pass to
the limit over Markovian equilibria should not come as a surprise. As explained in
Chapter (Vol I)-2, Nash equilibria over Markovian strategies may be characterized
by means of the Nash system of nonlinear partial differential equations introduced
in (Vol I)-(2.17). We shall restate this system whenever needed. Recall that
intuitively, the master equation captures the limiting form of the Nash system when
the number of players tends to infinity, as long as the interactions remain of the
mean field nature used throughout the book. As emphasized in the introduction of
Section 6.2, the main difficulty in handling the asymptotic behavior of the Nash
system is the lack of relevant compactness estimates for its solutions, which are
defined on spaces of increasingly large dimensions as the number of players grows.

As a result, the goal of the strategy we use in this section is to bypass any use
of compactness. In order to do so, we rely on the smoothness properties of the
solution of the master equation. Instead of proving that the solution of the Nash
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system for the N-player game is almost a solution of the master equation, as we
could be tempted to do, we shall prove that the solution of the master equation is
almost a solution of the Nash system. As one can easily imagine, this approach will
require that the solution of the master equation is smooth.

Still, we must keep in mind the sobering counter-example presented in Chap-
ter (Vol I)-7. Indeed, the latter clearly shows that smoothness of the solution of the
master equation cannot suffice to guarantee convergence of the Nash equilibria. As
exemplified in Chapter (Vol I)-7, there are indeed cases in which the master equation
has a smooth solution and still, some Nash equilibria of the N-player games do not
converge to the solution of the mean field game. Basically, the counter example
constructed in Chapter (Vol I)-7 relies heavily on the fact that, in this specific model,
the Nash strategies are of bang-bang type. Obviously, the bang-bang nature of the
equilibrium strategies introduces singularities which disrupt the limiting process
from finite to infinite games. In the analysis provided below, we completely avoid
this kind of phenomenon by making sure that the model is diffusive and the set of
actions is continuous.

6.3.1 Main Statement

Throughout the analysis, we work under assumption MFG Master Classical
HJB introduced in Subsection 5.4.3. As a result, recall Theorem 5.49, the master
equation has a unique smooth solution. Importantly, the master field U and its
derivatives of order one and two are bounded and Lipschitz continuous in the
space and measure arguments. Notice that this fact would not be true under the
conditions of Theorem 5.46. This is part of the rationale for requiring MFG Master
Classical HJB to be in force, and preferring assumption MFG with a Common
Noise HJB over assumption MFG with a Common Noise SMP Relaxed. See
Subsections 3.4.1 and 3.4.3. Another reason for using MFG Master Classical HJB
is the fact that we shall use consequences of the non-degeneracy assumption in the
proof.

Finally, observe that, in contrast with the compactness approach adopted in
the previous section on open loop equilibria, we implicitly require the mean field
equilibria to be unique since we make use of the master field.

Introducing the N-Nash System
Although the analysis below is possible under the sole assumption that the master
equation has a classical solution with bounded derivatives, we found more intuitive
to work in the framework of Chapter 5, and in particular, under assumption MFG
Master Classical HJB. This makes the whole presentation more coherent, and
it streamlines the notation. In particular, � and �0 are assumed to be constant, b
reduces to a linear function of ˛, and f has the separated structure:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;
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f0 and g satisfying the Lasry-Lions monotonicity condition. In this framework, the
minimizer Ǫ .t; x; �; y/ of the Hamiltonian is independent of �; we shall denote it by
Ǫ .t; x; y/.

So the framework is the same as in Subsection 6.1.2 and in particular, the
dynamics of the states of the players are subject to a common noise. Accordingly,
for any N � 2, the N-player game has the form:

dUN;i
t D b.t/ˇN;i

t dt C �dWi
t C �0dW0

t ; 0 � t � T; (6.91)

for any i 2 f1; � � � ;Ng, with UN;i
0 D 
 i as initial condition, where 
1; � � � ; 
N

are independent, identically distributed random variables with common distribution
�0 2 P2.Rd/, and W0;W1; � � � ;WN are .N C1/ independent Wiener processes with
values in R

d. Also, the tuples .
1; � � � ; 
N/ and .W0; � � � ;WN/ are independent. For
each i 2 f1; � � � ;Ng, the cost to player i reads:

JN;i.ˇN;1; � � � ;ˇN;N/

D E

� Z T

0

�
f0.t;U

N;i
t ; N�N;i

t /C f1.t;U
N;i
t ; ˇN;i

t /
�
dt C g

�
UN;i

T ; N�N;i
T

�
	

;
(6.92)

with the notation:

N�N;i
t D 1

N � 1
NX

jD1;j6Di

ı
U

N;j
t
:

The limiting mean field game can be described according to (6.36)–(6.37)–(6.38).
The thrust of the proof is to test the solution U of the master equation (4.41)

deriving from the mean field game (6.36)–(6.37)–(6.38) as an approximate solution
of the aforementioned N-Nash system. Here, the master equation takes the following
form. Recall (5.118) from Chapter 5.

@tU.t; x; �/C �
b.t/ Ǫ .t; x; @xU.t; x; �//

� � @xU.t; x; �/

C
Z

Rd

�
b.t/ Ǫ .t; v; @xU.t; v; �//

� � @�U.t; x; �/.v/d�.v/

C 1

2
trace

h�
��� C �0.�0/�

�
@2xxU.t; x; �/

i

C 1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
@v@�U.t; x; �/.v/

i
d�.v/

C 1

2

Z

R2d
trace

h
�0.�0/�@2�U.t; x; �/.v; v0/

i
d�.v/d�.v0/

C
Z

Rd
trace

h
�0
�
�0
��
@x@�U.t; x; �/.v/

i
d�.v/

C f0.t; x; �/C f1
�
t; x; Ǫ .t; x; @xU.t; x; �//

� D 0;

(6.93)
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for .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, with U.T; �; �/ D g as terminal condition.

Moreover, we know from (Vol I)-(2.17), that the N-player Nash system associated
with (6.91)–(6.92) reads:

@tv
N;i.t; x/C

NX

jD1

�
b.t/ Ǫ�t; xj;DxjvN;j.t; x/

�� � DxjvN;i.t; x/

C 1

2

NX

jD1
trace

�
���D2

xjxjv
N;i.t; x/

�

C 1

2

NX

j;kD1
trace

�
�0.�0/�D2

xjxkv
N;i.t; x/

�

C f0.t; x
i; N�N�1

x�i /C f1
�
t; xi; Ǫ�t; xi;DxivN;i.t; x/

�� D 0;

(6.94)

for .t; x/ 2 Œ0;T� � .Rd/N , with the terminal condition:

vN;i.T; x/ D g.xi; N�N�1
x�i /; x 2 .Rd/N : (6.95)

Recall that for i 2 f1; � � � ;Ng, vN;i denotes the value function of player i, namely the
expected cost to player i when all the players use the equilibrium strategies given by
the feedback functions:

�
Œ0;T� � .Rd/N 3 .t; x/ 7! Ǫ j

�
t; xj;DxjvN;j.t; x/

��

1�j�N
:

Here, we used the boldface notation x D .x1; � � � ; xN/ to denote elements of .Rd/N .
This will allow us to distinguish the generic notation @x for partial derivatives
in .Rd/N from the notation @x for partial derivatives in R

d. For such an x 2
.Rd/N , the empirical measure N�N�1

x�i is the uniform distribution over the finite set
fx1; � � � ; xi; xiC1; � � � ; xNg:

N�N�1
x�i D 1

N � 1
NX

jD1;j6Di

ıxj :

In (6.94), Dxk denotes the d-dimensional partial derivative in the direction xk and
D2

xjxk denotes the d � d-dimensional partial second order derivative in the directions
xk and xj. This notation makes it possible to distinguish the d and d � d-dimensional
partial derivatives Dxk and D2

xjxk from the partial derivatives @xk and @2xjxk
in the one-

dimensional directions xj and xk, when x 2 R
d.

The rationale for the strategy that consists in comparing (6.93) and (6.94) should
be clear. Indeed, we introduced the master field U in Chapter 4 as the optimal
expected cost for a representative player in the mean field game when the population
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is in equilibrium. This sounds like the asymptotic counterpart of the value functions
.vN;i/1�i�N , which appear as we just explained, as the collection of equilibrium costs
to the players 1; � � � ;N in the N-player game.

Solving the N-Nash System
Before proceeding with the comparison of U and vN , we must check that the N-Nash
system (6.94)–(6.95) has a solution and that this solution describes the Markovian
Nash equilibria of the game. Implicitly, this requires to prove that the N-Nash system
is uniquely solvable, that the game has a unique equilibrium for any given initial
condition, and that the unique equilibrium can be characterized through the unique
solution of the Nash system.

We prove below that all these claims stand under assumption MFG Master
Classical HJB. As announced earlier, we rewrite the N-Nash system (6.94)–(6.95)
in the canonical form (Vol I)-(2.17)-(2.18) used in Chapter (Vol I)-2, which we
recall under the new labels (6.96)–(6.97):

@tv
N;i.t; x/C 1

2
trace

�
˙.t; x/˙.t; x/�@2xxv

N;i.t; x/
�

(6.96)

C Hi
�
t; x; @xv

N;i.t; x/; Ǫ .N/.t; x; @xv
N.t; x//

� D 0;

for .t; x/ 2 Œ0;T� � R
Nd and i 2 f1; : : : ;Ng, with the terminal condition:

vN;i.T; x/ D gi.x/; x 2 R
Nd; i 2 f1; : : : ;Ng: (6.97)

In order to go from (6.94)–(6.95) to (6.96)–(6.97), we rewrite (6.91) as a single SDE
driven by a generalized drift B with values in R

Nd and a generalized volatility matrix
˙ taking values in R

Nd � R
.NC1/d:

Bi.t; x;˛/ D b.t/˛i; i 2 f1; � � � ;Ng;

˙i;j.t; x/ D

8
ˆ̂
<

ˆ̂
:

� if i D j 6D N C 1;

�0 if j D N C 1;

0 otherwise;

(6.98)

where Bi denotes the block of index i in the decomposition of B in N blocks of size d,
and˙i;j denotes the block of index .i; j/ in the decomposition of˙ as an N �.N C1/
matrix of blocks of size d � d. Accordingly, the noise in (6.91) is regarded as a
d.N C 1/-dimensional Wiener process W D .Wt/0�t�T D .W1

t ; � � � ;WN
t ;W

0
t /0�t�T .

Above, ˛ D .˛1; � � � ; ˛N/ is an element of AN D .Rk/N . Below, we shall just write
B.t;˛/ for B.t; x;˛/ and ˙ for ˙.t; x/.

Similarly, we can recover the notations used in Chapter (Vol I)-2 for the cost
functionals by letting, for all i 2 f1; � � � ;Ng, x 2 .Rd/N Š R

Nd and ˛ 2 R
k:

f i.t; x; ˛/ D f .t; xi; N�N�1
x�i ; ˛/; gi.x/ D g.xi; N�N�1

x�i /: (6.99)
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Using these definitions for B,˙ , .f i/iD1;��� ;N and .gi/iD1;��� ;N , we can easily pass from
the formulation (6.94)–(6.95) to (6.96)–(6.97) and vice versa by letting:

Hi.t; x; y;˛/ D B.t; x;˛/ � y C f i.t; x; ˛i/; x; y 2 .Rd/N ; ˛ 2 .Rk/N ;

Ǫ .N/.t; x; y/D� Ǫ .t; xi; yi;i/
�

1�i�N ; x 2 .Rd/N ; yD.yi;j/1�i;j�N 2 .Rd/N
2 Š .RNd/N :

In the definition of Hi, the inner product acts on elements of .Rd/N .
Unfortunately, Proposition (Vol I)-2.13, as established in Chapter (Vol I)-2 to

guarantee the existence and uniqueness of a solution to the Nash system do not
apply to (6.96)–(6.97) since A is now assumed to be the entire R

k while A.N/ is
required to be bounded in the statement of Proposition (Vol I)-2.13. Still, we can
prove a similar result.

Proposition 6.26 Under assumption MFG classical HJB, the Nash system (6.94)–
(6.95) has a unique solution vN D .vN;1; � � � ; vN;N/ in the space of R

N-valued
bounded and continuous functions on Œ0;T��R

Nd that are differentiable in x 2 R
Nd

with a bounded and continuous gradient on Œ0;T/�R
Nd, and that have generalized

first-order derivative in t 2 Œ0;T� and second-order derivatives in x 2 R
Nd

belonging to Lp
loc.Œ0;T/ � R

Nd/, for any p � 1.
Moreover, the tuple .��1; � � � ; ��N/ given by:

��i.t; x/ D Ǫ�t; xi;DxivN;i.t; x/
�
; .t; x/ 2 Œ0;T� � .Rd/N ;

is a Markovian Nash equilibrium over bounded Markovian strategy profiles.

As usual, we use the subscript loc to indicate that integrability is only required on
compact subsets of the domain.

Proof. When compared to Proposition (Vol I)-2.13, the new difficulty comes from
the fact that the set A is not assumed to be bounded. As a result, the running cost
f1.t; xi; Ǫ .t; xi;DxivN;i.t; x/// in (6.94) is no longer bounded but has quadratic growth in
DxivN;i.t; x/. Obviously, this makes the existence of a solution much more challenging to
establish. However, if there exists a solution with a bounded gradient, then the cost function
f1 can be assumed to be bounded and, subsequently, we can easily recover the framework of
Proposition (Vol I)-2.13. In other words, provided that there is a solution in the same class
of functions as in the statement, in which case this peculiar solution has a bounded gradient,
the uniqueness of such a solution together with the fact that it induces a Nash equilibrium do
follow from the same arguments as those used in Chapter (Vol I)-2 to prove Proposition (Vol
I)-2.13. Therefore, the only thing we have to prove is the existence of a solution in the
aforementioned class of functions.

In order to proceed, we make use of a truncation argument. We start from the same
system as in (6.94), but with a truncated cost function. Namely, in the last line of the
equation, we replace f1.t; xi; Ǫ .t; xi;DxivN;i.t; x/// by f1.t; xi; �. Ǫ .t; xi;DxivN;i.t; x////, where
� is a smooth function from R

k into itself, equal to the identity on the ball of center 0 and
radius R and vanishing outside the ball of center 0 and of radius 2R, for some R > 0.



510 6 Convergence and Approximations

The Lipschitz constant of � is assumed to be less than 2. For such an R, the resulting
system (6.94) reads as a system of quasilinear uniformly parabolic equations with bounded
coefficients and we can argue as in the proof of Proposition (Vol I)-2.13. See also the Notes
& Complements at the end of the chapter. As a result, the system has a solution, still denoted
by vN D .vN;1; � � � ; vN;N/ within the same class of functions as in the statement. To prove
the existence of a solution to (6.94), it suffices to establish a bound for the gradient of vN

independently of � , and thus of R as well. Choosing R large enough, we then deduce that vN

satisfies the original version of (6.94).
The strategy of proof is reminiscent of the approach used in Chapters (Vol I)-4 and 1

to prove Theorems (Vol I)-4.45 and 1.57, as we shall appeal to the theory of quadratic
BSDEs. See Chapter (Vol I)-4 for a refresher. However, the present argument is more
involved. The reason is that the backward SDEs underpinning the system (6.94) of PDEs
are multidimensional, while the backward SDEs used in the proofs of Theorems (Vol I)-4.45
and 1.57 are merely one-dimensional. The multidimensionality is inherent to the fact that
we are now dealing with a game, while Theorems (Vol I)-4.45 and 1.57 are concerned with
control problems.

The proof is carried out in three steps. The first one is to provide a Hölder estimate of vN ,
independently of the value of R and of the details of � . The second step consists in a refined
L2 estimate for the derivatives of vN . The L1 estimate for the derivatives is established in the
last step. It is important to keep in mind that the value of N is fixed throughout the proof. In
particular, the underlying constants may depend on N. Also, we use the convenient notation
Ǫ� D � ı Ǫ . By Lemma 1.56, j Ǫ�.t; x; z/j � C.1C jzj/ for .t; x; z/ 2 Œ0; T� � R

d � R
d and

for C independent of � and R.

First Step. As a preliminary remark, we observe that there exists a constant C, independent
of � and R, such that:

8.t; x/ 2 Œ0; T� � .Rd/N ; jvN;1.t; x/j � C: (6.100)

The proof is as follows. Recall that, under our standing assumption, the gradient in space of
each vN;i, for i D 1; � � � ;N, is bounded (the constant possibly depending upon the details of
� and R). As a result, we can consider the collection of diffusion processes:

dX1t D
h
b.t/ Ǫ�t;X1t ;Dx1v

N;1.t;Xt/
�C ıf 1

�
t;Xt;Dx1v

N;1.t;Xt/
�i

dt C �dW1
t C �0dW0

t ;

dXi
t D b.t/ Ǫ�t;Xi

t ;DxivN;i.t;Xt/
�
dt C �dWi

t C �0dW0
t ; i 6D 1;

(6.101)

for t 2 Œt0; T�, where t0 2 Œ0; T� is some initial time for the process X D .Xt D
.X1t ; � � � ;XN

t //t0�t�T . Above, ıf 1 W Œ0; T��.Rd/N �R
d ! R

d satisfies the following equality:

f 1
�
t; x; Ǫ�.t; x1; z/� D f 1

�
t; x; Ǫ�.t; x1; 0/�C ıf 1.t; x; z/ � z;

for all .t; x D .x1; � � � ; xN/; z/ 2 Œ0; T�� .Rd/N �R
d. The construction of ıf 1 can be achieved

along the same lines as in the proofs of Theorem (Vol I)-4.45 and 1.57, namely:

�
ıf 1.t; x; z/

�

l

D f 1
�
t; x; Ǫ��t; x1; .0; � � � ; zl � � � ; zd/

�� � f 1
�
t; x; Ǫ��t; x1; .0; � � � ; zlC1; � � � ; zd/

��

zl
;
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if zl 6D 0 and 0 otherwise, for l 2 f1; � � � ; dg. In particular, allowing the constant C to increase
from line to line, as long as it remains independent of � , R and the initial condition of X, we
have the following bound:

ˇ
ˇıf 1.t; x; z/

ˇ
ˇ � C

�
1C jzj�: (6.102)

The unique solvability of the SDE (6.101) follows from an argument that we already used in
Chapter (Vol I)-2. Indeed, we notice that the drift of the SDE is bounded while the noise is
nondegenerate. This suffices to prove the existence and uniqueness of a strong solution, see
if needed the references in the Notes & Complements at the end of the chapter. Letting:

Yi
t D vN;i.t;Xt/; Zi;j

t D DxjvN;i.t;Xt/; t 2 Œt0; T�; .i; j/ 2 f1; � � � ;Ng2;
applying Itô’s formula, and using the system of PDEs satisfied by the tuple of functions
.vN;1; � � � ; vN;N/, we get:

dY1t D �f 1
�
t;Xt; Ǫ�.t;X1t ; 0/

�
dt C

NX

jD1

Z1;jt

�
�dWj

t C �0dW0
t

�
; (6.103)

for t 2 Œt0; T�, with the terminal condition Y1T D g1.XT/: Under the standing assumption, we
know that g1 and f 1.�; �; Ǫ�.�; �; 0// can be bounded independently of � and R, since Ǫ�.�; �; 0/
itself can be bounded independently of � and R. See assumption MFG with a Common
Noise HJB. We easily derive (6.100) by initializing the diffusion process X at any time t in
Œ0; T� and at any position x 2 .Rd/N . Of course, a similar bound holds for vN;i, for i 6D 1.

Actually, we can get more. Taking the square in the backward equation satisfied by Y1,
we can find a constant C, independent of R, of the details of � and of the initial condition of
the process X, such that for any stopping time � with values in Œt0; T�,

E

� Z T

�

jZ1;1s j2ds jF�
	

� C; (6.104)

which says that the martingale .
R t

t0
Z1;1s dW1

s /t0�t�T is of Bounded Mean Oscillation (BMO),
see Definition (Vol I)-4.17 if needed. Importantly, the square of the BMO norm is less than
C and is thus bounded independently of R, � and the initial condition of X.

For i 6D 1, we have:

dYi
t D �f i

�
t;Xt; Ǫ�.t;Xi

t ; Z
i;i
t /
�
dt C Zi;1

t ıf
1
�
t;Xt; Ǫ�.t;X1t ; Z1;1t /

�
dt

C
NX

jD1

Zi;j
t

�
�dWj

t C �0dW0
t

�
:

For � 2 R, we expand .exp.�Yi
t //t0�t�T by Itô’s formula. We get:

d
�

exp.�Yi
t /
� � exp.�Yi

t /

�
�2

2

NX

jD1

j��Zi;j
t j2 � C�

�
1C jZi;i

t j2 C jZi;1
t j2 C jZ1;1t j2

�	

dt

C � exp.�Yi
t /

NX

jD1

Zi;j
t

�
�dWj

t C �0dW0
t

�
:
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Recalling that � is invertible, we can choose � large enough, in terms of C and of the lowest
eigenvalue of ��� only, such that for a new constant c:

d
�

exp.�Yi
t /
� � exp.�Yi

t /
�

c
NX

jD1

jZi;j
t j2 � C� exp.�Yi

t /jZ1;1t j2
�

dt

C � exp.�Yi
t /

NX

jD1

Zi;j
t

�
�dWj

t C �0dW0
t

�
;

where the constant c is independent of R, � and the initial condition of the process X.
Recalling (6.104) together with the fact that .Yi

t D vN;i.t;Xt//t0�t�T is bounded, we deduce
that, for any stopping time � with values in Œt0; T�:

E

� Z T

�

jZi;i
s j2ds jF�

	

� C:

Therefore, all the martingales .
R t

t0
Zi;i

s dWi
s/t0�t�T , for i D 1; � � � ;N, are BMO and, most

importantly, their BMO norms can be bounded independently of R, � and the initial condition
of X.

We now return to (6.101). Letting:

B1t D b.t/ Ǫ�t;X1t ;Dx1v
N;1.t;Xt/

�C ıf 1
�
t;Xt;Dx1v

N;1.t;Xt/
�
;

Bi
t D b.t/ Ǫ�t;Xi

t ;DxivN;i.t;Xt/
�
; i 6D 2;

for t 2 Œt0; T�, we observe from (6.102) that:

jBi
tj � C

�
1C jZi;i

t j�;

from which we deduce that the martingale .
PN

iD1

R t
t0

Bi
s �dWi

s/t0�t�T is also BMO and that its
BMO norm is less than C, the constant C being allowed to increase from line to line as long
as it remains independent of R, � and the initial condition of X. The BMO property implies
that the Girsanov density:

Et D exp




�
NX

iD1

Z t

t0

Bi
s � ���1dWi

s

� � 1

2

NX

iD1

Z t

t0

j��1�Bi
sj2ds

�

; t 2 Œt0; T�;

satisfies:

E
�
.ET/

r
� � C;

for an exponent r > 1 independent of R, � and the initial condition of X. Letting Q D ET �P,
we deduce that, for any event E 2 F ,

Q.E/ � C1=r
P.E/r=.r�1/; that is P.E/ � C�.r�1/=r2

Q.E/.r�1/=r:
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The parameters in the above estimate are independent of � , R and the initial conditions. We
claim that the above estimate together with the representation formula (6.103) for vN;1 and
the fact that g1, f 1 and Ǫ .�; �; 0/ are bounded and smooth in x suffice to conclude that vN;1 is
Hölder continuous on Œ0; T� � .Rd/N , namely:

jvN;1.t; x/ � vN;1.t0; x0/j � C
�jt0 � tj�=2 C jx0 � xj� �; (6.105)

for all .t; x/; .t0; x0/ 2 Œ0; T� � .Rd/N , for some constant C as above and for some exponent
� 2 .0; 1/, � being independent of � and R. Indeed, the above lower bound says that we
can control from below the probability that the process X hits a given Borel subset in R

Nd in
terms of the probability that a Brownian motion in R

Nd hits the same Borel subset. This turns
out to be sufficient to duplicate the so-called Krylov and Safonov estimates for the Hölder
regularity of the solutions of second-order parabolic PDEs with measurable coefficients. The
proof is not completely trivial, but is in fact by now well known in the literature. In the
Notes & Complements at the end of the chapter, we provide several references where the
argument is explained in detail, including one in a similar quadratic setting. Of course, a
similar argument holds for vN;i with i 6D 1.

Second Step. We now change the representation formula of the functions .vN;1; � � � ; vN;N/.
Instead of defining X through (6.101), we just let:

dXi
t D �dWi

t C �0dW0
t ;

for t 2 Œt0; T�, where t0 2 Œ0; T� is treated as an initial time. As above, we let Xt D
.X1t ; � � � ;XN

t / together with:

Yi
t D vN;i.t;Xt/; Zi;j

t D DxjvN;i.t;Xt/; t 2 Œt0; T�; .i; j/ 2 f1; � � � ;Ng2:

Then,

dYi
t D �Fi.t;Xt; Zt/dt C

NX

jD1

Zi;j
t

�
�dWi

t C �0dW0
t

�
;

for t 2 Œt0; T�, with:

Fi.t; x; z/ D f i
�
t; x; Ǫ�.t; xi; zi;i/

�C
NX

jD1

zi;j � �b.t/ Ǫ .t; xj
t; z

j;j/
�
;

for t 2 Œ0; T�, x D .xi/iD1;��� ;N 2 .Rd/N and z D .zi;j/i;jD1;��� ;N 2 .Rd/N�N . The only thing
that really matters for the following arguments is that:

jFi.t; x; z/j � C
�
1C jzj2�;

where, as usual, the constant C is independent of � and R.
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We claim that there exists a constant % > 0, independent of R, � and the initial condition
of X, such that:

E

� Z �

t0

jZsj2
.s � t0/ˇ

ds

	

� C%;

where ˇ D �=4 and � is the first hitting time:

� D inf
˚
t � t0 W jXt � Xt0 j � %

� ^ �t0 C %2/ ^ T; (6.106)

the constant C% being also independent of � , R and the initial condition of the process X. The
proof works as follows. For a given " > 0, we consider the process .jYt � Yt0 j2=." C .t �
t0/ˇ//t0�t�� , where Y D .Y1; � � � ; YN/. By Itô’s formula, we obtain:

E

� Z �

t0

jZsj2
"C .s � t0/ˇ

ds

	

�E

� jY��Yt0 j2
"C .��t0/ˇ

	

C2E
� Z �

t0

.Ys�Yt0 / � F.s;Xs; Zs/

"C .s � t0/ˇ
ds

	

C E

� Z �

t0

jYs � Yt0 j2
.s � t0/1�ˇ."C .s � t0/ˇ/2

ds

	

:

Recalling the Hölder property (6.105) of vN D .vN;1; � � � ; vN;N/, we deduce that for all t 2
Œt0; � �, jYt � Yt0 j � C%� . Hence,

E

� Z �

t0

jZsj2
"C .s � t0/ˇ

ds

	

� C




E

�
.� � t0/� C jX� � Xt0 j2�

"C .� � t0/ˇ

	

C %�E

� Z �

t0

1C jZsj2
"C .s � t0/ˇ

ds

	

C E

� Z �

t0

.s � t0/� C jXs � Xt0 j2�
.s � t0/1�ˇ."C .s � t0/ˇ/2

ds

	�

:

Since ˇ D �=4, we finally have:

E

� Z �

t0

jZsj2
"C .s � t0/ˇ

ds

	

�C




1C E

� jX� � Xt0 j2
"1=� C .� � t0/1=4

	�

C %�E

� Z �

t0

1C jZsj2
"C .s � t0/ˇ

ds

	

CE

� Z t0C%2

t0

1

.s�t0/1��=4
E

h jXs^��Xt0 j2
"2=�C.s ^ ��t0/1=2

i�
ds

	�

:

Choosing % small enough and letting " tend to 0, we complete the proof by noticing from
Itô’s formula that:

E

� jXs^� � Xt0 j2
"2=� C .s ^ � � t0/1=2

	

� C;

with C independent of " and of the initial condition of X.
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Third Step. We fix % as above and we consider a smooth cut-off function � W .Rd/N ! R

equal to 1 on the ball B.x0; %=2/ of center x0 and of radius %=2 and vanishing outside the ball
B.x0; %/ of center x0 and of radius %, for some x0 2 .Rd/N . We then expand .Yi

t�.Xt//t0�t�&

by Itô’s formula, where in analogy with � in (6.106), we let & D infft � t0 W jXt � Xt0 j �
%g ^ T . We get:

Yi
t0�.Xt0 / D E

�

gi.X& /�.X& /C
Z &

t0

� i.s;Xs; Zs/ds jFt0

	

D E

�

gi.X& /�.X& /C
Z T

t0

� i.s;Xs^& ; Zs^& /ds jFt0

	

;

where � i.t; x; z/ D 0 if jx � x0j � % and j� i.t; x; z/j � C.1C jzj2/, for t 2 Œ0; T�, x 2 .Rd/N

and z 2 .Rd/N�N . Above, we used the fact that, if & < T , then jX& � Xt0 j D % and hence
Yi
&�.X& / D gi.X& /�.X& / D 0 and  i.s;X& ; Z& / D 0. Choosing Xt0 D x such that jx � x0j �
%=2, we get:

vN;i.t0; x/ D
Z

B.x0;%/
pT�t0 .x; y/.g

i�/.y/dy

C
Z T

t0

Z

B.x0;%/
ps�t0 .x; y/�

i
�
s; y; @xv

N.s; y/
�
dy ds;

(6.107)

where .pt.x; y/ D PŒX.t0Ct/^& 2 dy j Xt0 D x�/t>0;x;y2B.x0;%/ is the transition kernel of
X.t0C�/^& . Observe by time homogeneity of X that pt.x; y/ is independent of t0. Recalling
the standard estimate:

ˇ
ˇ
ˇ
ˇ

Z

B.x0;%/
@xpt.x0; y/ .y/dy

ˇ
ˇ
ˇ
ˇ � cp

t


Z

B.x0;%/
pt.x0; y/j .y/j2dy

�1=2

D cp
t
E
�j .X.tCt0/^& /j2 j Xt0 D x0

�1=2
;

which holds for any bounded and measurable function  W .Rd/N ! R and for a constant c
independent of t, x0 and  (but depending on %). Observing that:

Z

B.x0;%/
@xpt.x0; y/dy D 0;

we even have, for any constant ( > 0,

ˇ
ˇ
ˇ
ˇ

Z

B.x0;%/
@xpt.x0; y/ .y/dy

ˇ
ˇ
ˇ
ˇ � cp

t

ˇ
ˇ
ˇ
ˇ

Z

B.x0;%/
pt.x0; y/

�
 .y/ � (�2dy

ˇ
ˇ
ˇ
ˇ

1=2

D cp
t
E
�j .X.tCt0/^& / � (j2 j Xt0 D x0

�1=2
:
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Therefore, by differentiating (6.107) with respect to x at x D x0 and by using twice the above
bound, once with t D T � t0 and ( D gi.x0/�.x0/ and once with t D s � t0 and ( D 0, we
deduce:

j@xv
N;i.t0; x0/j � cp

T � t0
E

hˇ
ˇgi.X& /�.X& / � gi.x0/�.x0/

ˇ
ˇ2 j Xt0 D x0

i1=2

C C
Z T

t0

1p
s � t0

�
1C E

h
1s<& jZsj4 j Xt0 D x0

i1=2�
ds;

where, in the second line, we used the equality:

ˇ
ˇ� i.s;Xs^& ; Zs^& /

ˇ
ˇ D ˇ

ˇ� i
�
s;Xs^& ; @xv

N.s ^ &;Xs^& /
�ˇ
ˇ

D 1s<&

ˇ
ˇ� i
�
s;Xs; @xv

N.s;Xs/
�ˇ
ˇ

D 1s<&

ˇ
ˇ� i
�
s;Xs; Zs

�ˇ
ˇ � C1s<&

�
1C jZsj2

�
:

Since EŒsupt0�s�T jXs � Xt0 j2� � C.T � t0/ and gi is Lipschitz, we get:

j@xv
N;i.t0; x0/j

� C

�

1C
Z T

t0

supy2.Rd/N j@xv
N.s; y/jp

s � t0
EŒ1s<& jZsj2 j Xt0 D x0�1=2ds

	

� C

�

1C

Z T

t0

supy2.Rd/N j@xv
N.s; y/j2

.s � t0/1�ˇ
ds

�1=2
Z T

t0

EŒ1s<& jZsj2 j Xt0 D x0�
.s � t0/ˇ

ds

�1=2	

;

where we used the Cauchy Schwarz inequality to derive the last line. Assume for a while
that T � t0 � %2 for the same % as in the conclusion of the second step. Then, the indicator
function 1s<& in the above bound can be replaced by 1s<� . Using the conclusion of the second
step and then taking the square, we finally have:

j@xv
N;i.t0; x0/j2 � C

�

1C
Z T

t0

supy2.Rd/N j@xv
N.s; y/j2

.s � t0/1�ˇ
ds

	

:

Obviously, the same holds without the superscript i in the left-hand side. Recalling that the
constant C is independent of x0 and t0, we then conclude as in the proof of Proposition 5.53.
Indeed, for a new value of C, we get for any � > 0:

sup
x2.Rd/N

j@xv
N.t0; x/j2 � C C C�ˇ sup

t0�t�T
sup

x2.Rd/N
j@xv

N.t; x/j2

C C

�1�ˇ

Z T

t0

sup
t�s�T

sup
y2.Rd/N

j@xv
N.s; y/j2dt:

Notice that the right-hand side increases as t0 decreases in ŒT � %2; T�. Therefore,
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sup
t0�t�T

sup
x2.Rd/N

j@xv
N.t0; x/j2 � C C C�ˇ sup

t0�t�T
sup

x2.Rd/N
j@xv

N.t; x/j2

C C

�1�ˇ

Z T

t0

sup
t�s�T

sup
y2.Rd/N

j@xv
N.s; y/j2dt:

Choosing � such that C�ˇ � 1
2

and applying Gronwall’s lemma, we get the required bound
for @xv

N on ŒT � %2; T� � .Rd/N . Recalling that the value of % has been fixed once for all
according to the conclusion of the second step, we can duplicate the argument on ŒT�2%2; T�
%2� � .Rd/N by letting vN.T � %2; �/ instead of g play the role of the terminal condition. We
complete the proof by iterating the argument a finite number of times. ut

As announced, we deduce that the game has a unique Markovian Nash equilib-
rium with a bounded strategy.

Proposition 6.27 Under assumption MFG Master Classical HJB, the Markovian
Nash equilibrium provided by the N-Nash system (6.94)–(6.95) is the unique
equilibrium over bounded Markovian strategies.

Proof. The proof is rather technical. We refer to Chapter (Vol I)-2 for basic definitions on
Markovian Nash equilibria that will be used below. Throughout the proof, we use extensively
the notations defined in (6.98) and (6.99).

First Step. For a bounded Markovian Nash equilibrium .��1; � � � ; ��N/ and for a given
i 2 f1; � � � ;Ng, we consider the optimization problem consisting in minimizing the cost
functional:

JN;i.� i/ D E

� Z T

0

f
�
t;XN;i

t ; N�N;i
t ; � i.t;X.N/t /

�
dt C g.XN;i

T ; N�N;i
T /

	

;

over measurable functions � i W Œ0; T� � R
Nd ! R

k and stochastic processes X.N/ D
.XN;1

t ; � � � ;XN;N
t /0�t�T solving systems of the form:

dXN;i
t D b.t/� i

�
t;X.N/t

�
dt C �dWi

t C �0dW0
t ;

dXN;j
t D b.t/��j

�
t;X.N/t

�
dt C �dWj

t C �0dW0
t ; j 6D i;

for t 2 Œ0; T�, with x D .x1; � � � ; xN/ 2 .Rd/N as initial condition. As usual, we denote by
N�N;i

t the empirical distribution .N � 1/�1
P

j 6Di ıX
N;j
t

. This optimization problem is similar
to (Vol I)-(2.14) in Chapter (Vol I)-2.

We recall that, under the standing assumption, the above system of SDEs is uniquely
solvable although the feedback functions are not assumed to be Lipschitz continuous.
Basically, it follows from the fact that the strategies are required to be bounded and the fact
that the matrix ˙˙� is invertible. We refer to the Notes & Complements below for precise
references.
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Second Step. Following (Vol I)-(2.16), we may associate with the above optimization
problem the following HJB equation:

@tU
i.t; x/C 1

2
trace

�
˙˙�@2xxUi.t; x/

�

C inf
˛2Rk

Hi
�
t; x; @xUi.t; x/; .˛; �.t; x/��i/

� D 0;

(6.108)

for .t; x/ 2 Œ0; T��R
Nd , with the terminal condition Ui.T; x/ D gi.x/, where we see @xUi.t; x/

as a tuple of N vectors of size d, namely:

@xUi.t; x/ D �
Dx1U

i.t; x/; � � � ;DxN Ui.t; x/
�
;

and we use the standard notation:

.˛; �.t; x/��i/ D �
��1.t; x/; � � � ; ��.i�1/.t; x/; ˛; ��.iC1/.t; x/; � � � ; ��N.t; x/

�
;

together with:

Hi.t; x; y;˛/ D B.t; x;˛/ � y C f i.t; x; ˛i/;

where the inner product acts on elements of .Rd/N . Hence, (6.108) may be rewritten as:

@tU
i.t; x/C 1

2
trace

�
˙˙�@2xxUi.t; x/

�C
X

j 6Di

Dxj Ui.t; x/ � �b.t/��j.t; x/
�

C inf
˛2Rk

�
Dxi Ui.t; x/ � �b.t/˛�C f i.t; x; ˛/

� D 0:

The key fact is that, similar to the Nash system, this equation is known to have a strong
solution Ui in the space of bounded and continuous functions on Œ0; T� � .Rd/N that are
differentiable in space on Œ0; T/ � .Rd/N , with a bounded and continuous gradient on
Œ0; T/� .Rd/N , and that have generalized time first-order and space second-order derivatives
in Lp

loc.Œ0; T/ � R
d/, for any p � 1. Although the solution is not classical, it is regular

enough to apply, as done in the proof of Proposition (Vol I)-2.13, a generalized version of
the chain rule due to Krylov along Itô processes that have a bounded drift and a bounded
and uniformly nondegenerate diffusion coefficient. In particular, it permits to duplicate
the standard verification argument in stochastic control theory, see Lemma (Vol I)-4.47,
whose analogue in Volume II is Proposition 1.55. We deduce that the optimal control
problem (6.108) has a unique optimal strategy, given by the feedback function:

Œ0; T� � R
Nd 3 .t; x/ 7! Ǫ�t; xi;Dxi Ui.t; x/

�
:

Third Step. Now, we recall that, by definition, the optimal strategy is already known. It is
��i. We deduce that, for .X�.N/

t D .X�N;1
t ; � � � ;X�N;N

t //0�t�T solving the system of SDEs:

dX�N;i
t D B

�
t; ��i.t;X�.N/

t /
�
dt C˙dWt; t 2 Œ0; T�; i 2 f1; � � � ;Ng;



6.3 Limits of Markovian N-Player Equilibria 519

with x as initial condition, it holds:

E

Z T

0

ˇ
ˇ��i.t;X�.N/

t / � Ǫ�t;X�N;i
t ;Dxi Ui.t;X�.N/

t /
�ˇ
ˇ2dt D 0: (6.109)

As a consequence, we deduce that, for any i 2 f1; � � � ;Ng,

dX�N;i
t D B

�
t; Ǫ�t;X�N;i

t ;Dxi Ui.t;X�.N/
t /

��
dt C˙dWt; t 2 Œ0; T�;

for i 2 f1; � � � ;Ng. Recalling that B and ˙ are bounded and that .˙˙�/�1 is invertible, we
deduce that, for any t 2 .0; T�, the marginal law of X�

t is absolutely continuous with respect
to the Lebesgue measure and has a positive density. Hence, by (6.109), we also have, for
almost every .t; x/ 2 Œ0; T� � R

Nd, for all i 2 f1; � � � ;Ng,

��i.t; x/ D Ǫ�t; xi;Dxi Ui.t; x/
�
:

Therefore, the N-tuple .U1; � � � ;UN/ is a generalized solution of the system of PDEs:

@tU
i.t; x/C 1

2
trace

�
˙˙�@2xxUi.t; x/

�C
X

j 6Di

Dxj Ui.t; x/ � �b.t/ Ǫ�t; xj;Dxj Uj.t; x/
��

C inf
˛2Rk

�
Dxi Ui.t; x/ � �b.t/˛�C f .t; xi; N�N�1

x�i ; ˛/
� D 0;

which coincides with the system (6.96)–(6.97).
By the uniqueness property in the statement of Proposition 6.26, we deduce that Ui and

vN;i are equal for all i 2 f1; � � � ;Ng, where .vN;i/iD1;��� ;N is the solution of the N-Nash
system (6.94)–(6.95), as given by Proposition 6.26. Hence, the gradients of Ui and vN;i

coincide. Therefore, for almost every .t; x/ 2 Œ0; T� � R
Nd , for all i 2 f1; � � � ;Ng,

��i.t; x/ D Ǫ�t; xi;Dxivi.t; x/
�
;

which completes the proof. ut

Main Statement
Here is the main result regarding the convergence of the solution of the Nash system.

Theorem 6.28 Under assumption MFG Master Classical HJB, there exists a
constant C such that, for any N � 1, any i 2 f1; � � � ;Ng and any .t0; x/ 2
Œ0;T� � R

Nd,

ˇ
ˇU.t0; xi; N�N�1

x�i / � vN;i.t0; x/
ˇ
ˇ � C

N

�
1C jxij2 C 1

N

NX

jD1
jxjj2

�1=2
:
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Moreover, for any � > 0, there exists a constant c� > 0 such that, for any �0 2
P2.Rd/ and any N-tuple .
1; � � � ; 
N/ of independent and identically distributed
random variables with �0 as distribution:

E
�jvN;i.t; �/ � U.t; 
 i; �0/j

� � c�M2.�0/
1=2N�1=max.d;2C�/;

Remark 6.29 Theorem 6.28 has a striking interpretation. Asymptotically, the value
functions of the N-player game may be factorized as a single smooth function of the
private state of the current player and of the empirical distribution of the others. In
particular, the value functions take the same form as the cost coefficients f0 and g.

6.3.2 The Master Equation as an Almost Solution of the N-Nash
System

Throughout the subsection, assumption MFG Master Classical HJB from Subsec-
tion 5.4.3 is in force. In particular, both the master equation (6.93) and the N-Nash
system (6.94) are uniquely solvable. As in the previous subsection, the respective
solutions are denoted by U and vN .

Finite-Dimensional Projection of the Master Field
The main trick in our approach is to regard the tuple of functions

uN;i.t; x/ D U
�
t; xi; N�N�1

x�i

�
; t 2 Œ0;T�; x 2 .Rd/N ; (6.110)

for i 2 f1; � � � ;Ng, as a natural candidate for solving the Nash system (6.94)
approximately.

The goal is indeed to prove that the “proxies” .uN;i/iD1;��� ;N almost solve the
system (6.94) up to a remainder term that vanishes as N tends to 1. As a by-product,
we shall deduce that the .uN;i/iD1;��� ;N get closer and closer to the “true solutions”
.vN;i/iD1;��� ;N when N tends to 1.

Importantly, we recall that U satisfies the conclusion of Theorems 5.46 and 5.49.
In particular, U is in the class S1 and @xU is in the class Sd, see Definition 5.9.
Following Proposition 4.13, see also Proposition (Vol I)-5.91, we get:

Proposition 6.30 For any N � 2, i 2 f1; � � � ;Ng, uN;i is of class C2 in the space
variables and satisfies, for all x 2 R

Nd,

Dxi uN;i.t; x/ D @xU.t; xi; N�N�1
x�i /;

D2
xixi u

N;i.t; x/ D @2xU.t; xi; N�N�1
x�i /;

Dxj uN;i.t; x/ D 1
N�1@�U.t; x

i; N�N�1
x�i /.x

j/ for j ¤ i;

D2
xixj u

N;i.t; x/ D 1
N�1@x@�U.t; xi; N�N�1

x�i /.x
j/ for j ¤ i;
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D2
xjxj u

N;i.t; x/ D 1
N�1@v@�U.t; x

i; N�N�1
x�i /.x

j/

C 1
.N�1/2 @

2
�U.t; xi; N�N�1

x�i /.x
j; xj/ for j ¤ i;

D2
xjxk uN;i.t; x/ D 1

.N�1/2 @
2
�U.t; xi; N�N�1

x�i /.x
k; xj/ for i; j; k distinct:

We now show that .uN;i/i2f1;��� ;Ng is “almost” a solution of the Nash system (6.94).

Proposition 6.31 There exist a constant C � 0 and, for any N � 2, a collection of
functions .rN;i/iD1;��� ;N in C.Œ0;T� � R

NdIR/ such that:

8.t; x/ 2 Œ0;T� � R
Nd; jrN;i.t; x/j � C

N

�
1C 1

N

NX

jD1
jxi � xjj

�
;

and

@tu
N;i.t; x/C

NX

jD1

�
b.t/ Ǫ�t; xj;Dxj uN;j.t; x/

�� � Dxj uN;i.t; x/

C 1

2

NX

jD1
trace

�
���D2

xjxj u
N;i.t; x/

�
(6.111)

C 1

2

NX

j;kD1
trace

�
�0.�0/�D2

xjxk uN;i.t; x/
�

C f0.t; x
i; N�N�1

x�i /C f1
�
t; xi; Ǫ�t; xi;Dxi uN;i.t; x/

�� D rN;i.t; x/;

for .t; x/ 2 Œ0;T� � .Rd/N, with the terminal condition:

uN;i.T; x/ D g.xi; N�N�1
x�i /; x 2 .Rd/N : (6.112)

Proof. We emphasize that, throughout the proof, we use the Lipschitz property in the
measure argument of U and its derivatives with respect to the 1-Wasserstein distance W1.
This is in contrast with most of the arguments developed so far, in which we used the 2-
Wasserstein distance W2.

First Step. Making use of the master equation (6.93) with .t; x; �/ therein of the form
.t; x; �/ D .t; xi; N�N�1

x�i / for some x 2 R
Nd and some i 2 f1; � � � ;Ng, we obtain:
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@tU.t; xi; N�N�1
x�i /C �

b.t/ Ǫ .t; xi; @xU.t; xi; N�N�1
x�i //

� � @xU.t; xi; N�N�1
x�i /

C
Z

Rd

�
b.t/ Ǫ .t; v; @xU.t; v; N�N�1
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� � @�U.t; xi; N�N�1
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trace
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@x@�U.t; xi; N�N�1
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d N�N�1

x�i .v/

C f0.t; x
i; N�N�1

x�i /C f1
�
t; xi; Ǫ�t; xi; @xU.t; xi; N�N�1

x�i /
�� D 0:

Recalling the first two lines in the statement of Proposition 6.30, we deduce that uN;i satisfies:
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C f0.t; x
i; N�N�1

x�i /C f1
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t; xi; Ǫ�t; xi;Dxi uN;i.t; x/

�� D 0:

(6.113)

Observe that we replaced @xU.t; xi; N�N�1
x�i / by Dxi uN;i.t; x/ in the first and last lines, while we

replaced @2xU.t; xi; N�N�1
x�i / by D2

xixi uN;i.t; x/ in the third line.

Second Step. Now,
Z

Rd

�
b.t/ Ǫ�t; v; @xU.t; v; N�N�1

x�i /
�� � @�U.t; xi; N�N�1

x�i /.v/d N�N�1
x�i .v/

D 1

N � 1
NX

jD1;j 6Di

�
b.t/ Ǫ�t; xj; @xU.t; xj; N�N�1

x�i /
�� � @�U.t; xi; N�N�1

x�i /.x
j/:

We now make use of the fact that @xU is Lipschitz continuous with respect to the measure
argument with respect to the 1-Wasserstein distance, see the conclusion of Theorem 5.46.
Observing that, for j 6D i,

W1. N�N�1
x�i ; N�N�1

x�j / � 1

N � 1 jxi � xjj;
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we deduce that:
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x�j /
�� � @�U.t; xi; N�N�1

x�i /.x
j/

C O
� 1

.N � 1/2
NX

jD1;j 6Di

jxi � xjj
�

D
NX

jD1;j 6Di

�
b.t/ Ǫ�t; xj;Dxj uN;j.t; x/

�� � Dxj uN;i.t; x/C O
� 1

N2

NX

jD1

jxi � xjj
�
;

where we used the third equality in the statement of Proposition 6.30 together with the fact
that @xU is Lipschitz with respect to the measure argument to replace N�N�1

x�i by N�N�1
x�j in

the second line. We also used the fact that @�U is bounded, see Theorem 5.49. Here and
below, the Landau symbol is considered as uniform in .t; x/ 2 Œ0; T� � R

Nd: for a sequence
of functions .yN/N�1 of the variables t and x, O.yN.t; x// is a function of .t; x/ such that
jO.yN.t; x//j � CjyN.t; x/j for a constant C independent of N and .t; x/.

In particular, summing with the second term on the first line of (6.113), we get:

�
b.t/ Ǫ�t; xi; N�N�1

x�i ;Dxi uN;i.t; x/
�� � Dxi uN;i.t; x/

C
Z

Rd

�
b.t/ Ǫ�t; v; @xU.t; v; N�N�1

x�i /
�� � @�U.t; xi; N�N�1

x�i /.v/d N�N�1
x�i .v/

D
NX

jD1

�
b.t/ Ǫ�t; xj;Dxj uN;j.t; x/

�� � Dxj uN;i.t; x/C O
� 1

N2

NX

jD1

jxi � xjj
�
:

Third Step. We now return to (6.113) and handle the term on the fourth line therein. It reads:

1

2

Z

Rd
trace

h�
��� C �0.�0/�

�
@v@�U.t; xi; N�N�1

x�i /.v/
i
d N�N�1

x�i .v/

D 1

2.N � 1/
NX

jD1;j 6Di

trace
h�
��� C �0.�0/�

�
@v@�U.t; xi; N�N�1

x�i /.x
j/
i

D 1

2

NX

jD1;j 6Di

trace
h�
��� C �0.�0/�

��
D2

xjxj u
N;i.t; x/

� 1

.N � 1/2 @
2
�U.t; xi; N�N�1

x�i /.x
j; xj/

�i

D 1

2

NX

jD1;j 6Di

trace
h�
��� C �0.�0/�

�
D2

xjxj u
N;i.t; x/

i
C O.

1

N
/;

(6.114)
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where we used the fact that @2�U is bounded, see Theorem 5.49, together with the fifth line in
the statement of Proposition 6.30. We handle the term on the fifth line in (6.113) in the same
way:

1

2

Z

R2d
trace

h
�0.�0/�@2�U.t; xi; N�N�1

x�i /.v; v
0/
i
d N�N�1

x�i .v/ N�N�1
x�i .v

0/

D 1

2.N � 1/2
NX

j;`D1;j;` 6Di

trace
h
�0.�0/�@2�U.t; xi; N�N�1

x�i /.x
j; x`/

i

D 1

2

NX

j;`D1;j;` 6Di;j 6D`

trace
h
�0.�0/�D2

xjx`u
N;i.t; x/

i
C O.

1

N
/;

(6.115)

where we used the sixth line in the statement of Proposition 6.30 together with the fact that
�0.�0/� is symmetric to pass from the second to the third line. Similarly, thanks to the fourth
line in the statement of Proposition 6.30, we get:

Z

Rd
trace

h
�0
�
�0
��
@x@�U.t; xi; N�N�1

x�i /.v/
i
d N�N�1

x�i .v/

D 1

N � 1
NX

jD1;j 6Di

trace
h
�0
�
�0
��
@x@�U.t; xi; N�N�1

x�i /.x
j/
i

D
NX

jD1;j 6Di

trace
h
�0
�
�0
��

D2
xixj u

N;i.t; x/
i
;

(6.116)

while, as we already explained,

1

2
trace

h�
��� C �0.�0/�

�
@2xxU.t; xi; N�N�1

x�i /
i

D 1

2
trace

h�
��� C �0.�0/�

�
D2

xixi uN;i.t; xi; N�N�1
x�i /

i
:

(6.117)

Up to remaining terms, the sum of (6.114), (6.115), (6.116), and (6.117) is equal to:

1

2

NX

jD1;j 6Di

trace
h�
��� C �0.�0/�

�
D2

xjxj uN;i.t; x/
i

C 1

2

NX

j;`D1;j;` 6Di;j 6D`

trace
h
�0.�0/�D2

xjx`u
N;i.t; x/

i

C
NX

jD1;j 6Di

trace
h
�0
�
�0
��

D2
xixj u

N;i.t; x/
i

C 1

2
trace

h�
��� C �0.�0/�

�
D2

xixi u
N;i.t; xi; N�N�1

x�i /
i
;
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which is equal to:

1

2

NX

jD1

trace
h�
���

�
D2

xjxj u
N;i.t; x/

i
C 1

2

NX

j;`D1

trace
h
�0.�0/�D2

xjx`u
N;i.t; x/

i
:

Last Step. Collecting the conclusions of the second and third steps, we easily complete the
proof. ut

6.3.3 Proving the Convergence of the Nash System

We now turn to the proof of Theorem 6.28. For this, we assume that assumption
MFG Master Classical HJB is in force and we consider the solution .vN;i/iD1;��� ;N
of the Nash system (6.94). By uniqueness of the solution, the .vN;i/iD1;��� ;N must be
symmetric. By symmetric, we mean that, for any x D .xl/l2f1;��� ;Ng 2 R

Nd and for
any indices j ¤ `, if Qx D .Qxl/l2f1;��� ;Ng is the N-tuple obtained from x by swapping
the entries with indices j and ` (i.e., Qxl D xl for l 62 fj; `g, Qxj D x`, Qx` D xj), then:

vN;i.t; Qx/ D vN;i.t; x/ if i 62 fj; `g; while vN;i.t; Qx/ D vN;`.t; x/ if i D j;

which may be reformulated as follows. There exists a function VN W Œ0;T� � R
d �

.Rd/N�1 ! R such that, for any .t; x/ 2 Œ0;T� � R
d, the function .Rd/N�1 3

.z1; � � � ; zN�1/ 7! VN.t; x; .z1; � � � ; zN�1// is invariant under permutation, and for
every i 2 f1; � � � ;Ng and x 2 .Rd/N ,

vN;i.t; x/ D VN
�
t; xi; .x1; � � � ; xi�1; xiC1; � � � ; xN/

�
:

The above equality should be compared with the statement of Lemma (Vol I)-
1.2. The latter says that the function VN.t; x; �/ should factorize, for N large, as a
function of a probability measure, provided that it is Lipschitz with respect to the
projection of the Wasserstein distance, the Lipschitz constant being uniform in N.
As we already emphasized several times, the difficulty is precisely to prove the latter
claim as we hardly know how to estimate the regularity of the functions .vN;i/1�i�N

uniformly in N. The best we can prove below is that the functions .vN;i/1�i�N are
bounded, uniformly in N.

Notice also that the functions .uN;i/i2f1;��� ;Ng from (6.110) are also symmetric.
The proof of Theorem 6.28 consists in comparing vN;i and uN;i along the

equilibrium trajectories of the N-player game, for any i 2 f1; � � � ;Ng. For this,
let us fix t0 2 Œ0;T/, �0 2 P2.Rd/ and let .
 i/iD1;��� ;N be a family of N independent
and identically distributed random variables of law �0. We set � D .
 i/iD1;��� ;N .
Let also ..Wi

t /0�t�T/iD0;��� ;N be a family of .N C 1/ independent d-dimensional
Brownian motions, independent of .
 i/iD1;��� ;N . We consider over the interval Œt0;T�,
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the systems of SDEs with variables .X.N/t D .XN;i
t /iD1;��� ;N/t0�t�T and .X�.N/

t D
.X�N;i

t /iD1;��� ;N/t0�t�T :

dXN;i
t D b.t/ Ǫ�t;XN;i

t ;Dxi uN;i.t;X.N/t /
�
dt C �dWi

t C �0dW0
t ;

Xi
t0 D 
 i;

(6.118)

and

dX�N;i
t D b.t/ Ǫ�t;X�N;i

t ;DxivN;i.t;X�.N/
t /

�
dt C �dWi

t C �0dW0
t ;

X�N;i
t0 D 
 i:

(6.119)

By symmetry of the functions .uN;i/iD1;��� ;N , the processes .XN;i/iD1;��� ;N are
exchangeable. The same holds for the processes .X�N;i/iD1;��� ;N and, actually, the N
R
2d-valued processes .XN;i;X�N;i/iD1;��� ;N are also exchangeable.

Theorem 6.32 Under assumption MFG Master Classical HJB, there exists a
constant C such that, for any t0 2 Œ0;T�, �0 2 P2.Rd/ and N � 1, it holds, for
any i 2 f1; � � � ;Ng,

E
�

sup
t0�t�T

jXN;i
t � X�N;i

t j2� � C.1C M2.�0/
2/

N2
; (6.120)

E

�

sup
t0�t�T

ˇ
ˇ
ˇuN;i.t;X�.N/

t / � vN;i.t;X�.N/
t /

ˇ
ˇ
ˇ
2

C
Z T

t0

jDxi uN;i.t;X�.N/
t / � DxivN;i.t;X�.N/

t /j2dt

	

(6.121)

� C.1C M2.�0/
2/

N2
;

and, P almost surely, for all i D 1; � � � ;N,

juN;i.t0; �/ � vN;i.t0; �/j

� C

N

�
1C 1

N

NX

jD1
j
 i � 
 jj2 C 1

N2

NX

`;jD1
j
` � 
 jj2

�1=2
:

(6.122)

Proof. The proof relies on a variant of the Cole-Hopf transformation used to handle the
quadratic nature of the cost functional. As a preliminary remark, we observe, by adapting
the first step in the proof of Proposition 6.26, that the functions .vN;i/1�i�N are bounded,
uniformly in N.

For simplicity, we shall work with t0 D 0. Throughout the proof, we denote by F the
complete and right-continuous augmentation of the filtration generated by .
1; � � � ; 
N/ and
.W0; � � � ;WN/. We shall use the shorten notation E0Œ�� D EŒ�jF0�.
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First Step. We start with the proof of (6.121). Also, we introduce new notations:

UN;i
t D uN;i.t;X�.N/

t /; VN;i
t D vN;i.t;X�.N/

t /;

DUN;i;j
t D Dxj uN;i.t;X�.N/

t /; DVN;i;j
t D DxjvN;i.t;X�.N/

t /; t 2 Œ0; T�:

Using the system of equations (6.94) satisfied by the family .vN;i/iD1;��� ;N , we deduce from
Itô’s formula that, for any i 2 f1; � � � ;Ng,

dVN;i
t D �f

�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DVN;i;i
t /

�
dt

C
NX

jD1

DVN;i;j
t � ��dWj

t C �0dW0
t

�
; t 2 Œ0; T�:

(6.123)

Similarly, since .uN;i/iD1;��� ;N satisfies (6.111), we have:

dUN;i
t D

� NX

jD1

DUN;i;j
t � �b.t/� Ǫ .t;X�N;i

t ;DVN;j;j
t / � Ǫ .t;X�N;i

t ;DUN;j;j
t /

��

� f
�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DUN;i;i
t /

�C rN;i.t;X�.N/
t /

	

dt (6.124)

C
NX

jD1

DUN;i;j
t � ��dWj

t C �0dW0
t

�
; t 2 Œ0; T�:

We compute the difference between (6.123) and (6.124), square it and apply Itô’s formula
again:

d
�
UN;i

t � VN;i
t

�2

D


2

NX

jD1

�
�
UN;i

t � VN;i
t

�

�
�

DUN;i;j
t

�
b.t/

� Ǫ .t;X�N;i
t ;DVN;j;j

t / � Ǫ .t;X�N;i
t ;DUN;j;j

t /
���
	

C 2
�
UN;i

t � VN;i
t

��
f
�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DVN;i;i
t /

�

� f
�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DUN;i;i
t /

��

C 2
�
UN;i

t � VN;i
t

�
rN;i.t;X�.N/

t /

�

dt

C
� NX

jD1

ˇ
ˇ��
�
DUN;i;j

t � DVN;i;j
t

�ˇ
ˇ2 C

ˇ
ˇ
ˇ

NX

jD1

�
.�0/�

�
DUN;i;j

t � DVN;i;j
t

��ˇˇ
ˇ
2
	

dt

C 2

NX

jD1

�
UN;i

t � VN;i
t

�h�
DUN;i;j

t � DVN;i;j
t

� � ��dWj
t C �0dW0

t

�i
:

(6.125)
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Recall now that Ǫ is at most of linear growth and Lipschitz continuous in the third argument,
uniformly in .t; x/, and that f is locally Lipschitz in the last argument. Hence, the term
spanning the fourth and fifth lines can be bounded by:

ˇ
ˇ
ˇ
�
UN;i

t � VN;i
t

��
f
�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DVN;i;i
t /

�

� f
�
t;X�N;i

t ; N�N;i
t ; Ǫ .t;X�N;i

t ;DUN;i;i
t /

��ˇˇ
ˇ

� C
�
1C jDUN;i;i

t j C jDVN;i;i
t j

�
� ˇˇUN;i

t � VN;i
t

ˇ
ˇ � ˇˇDUN;i;i

t � DVN;i;i
t

ˇ
ˇ

� C
�ˇ
ˇUN;i

t � VN;i
t

ˇ
ˇ
ˇ
ˇDUN;i;i

t � DVN;i;i
t

ˇ
ˇC ˇ

ˇDUN;i;i
t � DVN;i;i

t

ˇ
ˇ2
�
;

(6.126)

where we used the fact that UN;i
t , VN;i

t and DUN;i;i
t are bounded, independently of i, N and t.

Regarding the term in the sixth line of (6.125), we notice from Proposition 6.31 that:

E0

�jrN;i.t;X�.N/
t /j2�

� C

N2

�
1C 1

N

NX

jD1

E0

�jX�N;i
t � X�N;j

t j2�
�

� C

N2




1C 1
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NX

jD1

j
 i � 
 jj2 C 1

N

NX
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E0

� Z T

0

jDVN;j;j
t � DVN;i;i

t j2dt

	�
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N2




1C 1

N

NX
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j
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 jj2 C E0
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jDVN;i;i
t � DUN;i;i

t j2dt

	

C 1

N

NX

jD1

E0

� Z T

0

jDVN;j;j
t � DUN;j;j

t j2dt

	�

:

(6.127)

Returning to the other terms in (6.125), recall also that DUN;i;j
t is bounded by C=N when

i 6D j, for C independent of i, j, N, and t. Integrating (6.125) from t to T and taking the
conditional expectation given F0, we deduce that:

E0

�jUN;i
t � VN;i

t j2�

� E0

�jUN;i
T � VN;i

T j2�C C

N2




1C 1

N
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jD1

j
 i � 
 jj2
�

C C
Z T

t
E0

�jUN;i
s � VN;i

s j2�ds C C
Z T

t
E0

�jDUN;i;i
s � DVN;i;i

s j2�ds

C C

N

Z T

t

NX

jD1;j 6Di

E0

�jDUN;j;j
s � DVN;j;j

s j2�ds

C C

N2

Z T

0

E0

�jDUN;i;i
s � DVN;i;i

s j2�ds

C C

N3

Z T

0

NX

jD1;j 6Di

E0

�jDUN;j;j
s � DVN;j;j

s j2�ds:

(6.128)
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Notice that the terminal condition UN;i
T � VN;i

T is zero. Observe also that the two last integrals
run from 0 to T and not from t to T .

Third Step. We now perform a similar computation with .coshŒ�.UN;i
t � VN;i

t /� � 1/0�t�T

in lieu of .jUN;i
t � VN;i

t j2/0�t�T , where � is a free parameter in R, whose value will be fixed
later on.

d
�
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�
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��
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�
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�
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t
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�
�
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f
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t
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dt (6.129)
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:

Similar to (6.126), we have:
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:

To pass from the second to the third line, we used the standard Young inequality together
with the fact that sinh is bounded by cosh.
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Following (6.128), but using in addition the fact that � is uniformly elliptic, we deduce
that there exists a new constant C�, allowed to depend on �, such that:
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(6.130)

where, except in the third line, the constant C is independent of �. Also, we used the fact that
.UN;i

s /0�s�T and .VN;i
s /0�s�T can be bounded independently of N together with the inequality

j sinh.r/j � cosh.M/jrj for r 2 Œ�M;M� and M > 0.

Fourth Step. We add (6.128) and (6.130). Now we choose � large enough so that:
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s � DVN;j;j

s j2�ds;

(6.131)

where, as above, the constant C is independent of �, except in the second term on the third
line. Taking the mean over the index i 2 f1; � � � ;Ng, we get:
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where, once again, the constant C� in the second term of the third line depends on �. As
above, we can get rid of the third term in the right-hand side by choosing � large enough
so that �2 � 2C. Then, by applying Gronwall’s lemma to the quantity . 1N

PN
iD1 E0ŒjUN;i

t �
VN;i

t j2�/0�t�T , we get:
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where, now, the two constants in the right-hand side depend on �. The value of � having been
fixed, we can define N0 as the smallest integer such that �2 � 2C�=N2. Hence, for N � N0,
we have:
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(6.132)
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for a new value of C�. Since the value of � has been fixed, we can easily drop it in the above
inequality. Namely, we can replace �2 and cosh in the second line by 1 and C� in the third
line by C. We now insert the resulting form of (6.132) into (6.131). We get:
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which holds true for N � N0. We used a new constant C0 to distinguish from the preceding
constant C, but, similar to C, C0 is independent of N and i. Hence, we can play the same
game as before. Applying Gronwall’s lemma, we can get rid of the last term in the second
line, provided that C is allowed to increase. Then, calling N0

0 the smallest integer greater than
N0 such that C0=Œ.N0

0/
2� � 1=2 and then applying Gronwall’s lemma, we obtain:
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0�t�T

E0

�jUN;i
t � VN;i

t j2�C E0

� Z T

0

jDUN;i;i
s � DVN;i;i

s j2ds

	

� C0

N2




1C 1

N

NX

jD1

j
 i � 
 jj2 C 1

N2

NX

j;`D1

j
 j � 
`j2
�

:

(6.133)

This completes the proof of (6.121), except for the fact that the above holds true for N �
N0
0 only. Actually, we can easily bypass this constraint by observing that the left-hand side

is bounded, uniformly with respect to the index i, to the initial position of X�.N/ and to
the integer N, as long as N � N0

0. Modifying the constant C0 accordingly, this permits to
conclude.

Last Step. We now derive (6.120) and (6.122). We start with (6.122). Noticing that
UN;i
0 � VN;i

0 D uN;i.0; �/ � vN;i.0; �/, we deduce from the conclusion of the previous step,
see (6.133), that, with probability 1 under P, for all i 2 f1; � � � ;Ng,

juN;i.0; �/ � vN;i.0; �/j � C

N

�
1C 1

N

NX

jD1

j
 i � 
 jj2 C 1

N2

NX

`;jD1

j
` � 
 jj2
�1=2

;

which is exactly (6.122).
We are now ready to estimate the difference XN;i

t �X�N;i
t , for t 2 Œ0; T� and i 2 f1; � � � ;Ng.

In view of the equation satisfied by the processes .XN;i
t /0�t�T and by .X�N;i

t /0�t�T defined
in (6.118) and (6.119), we have:
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(6.134)

where we used:

ˇ
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s /
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ˇ
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ˇ
ˇ
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X
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ˇ
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which yields:
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s j
�

C ˇ
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s � DVN;i;i
s

ˇ
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Taking expectations, by exchangeability, by Gronwall’s inequality, and by (6.133), we
obtain (6.120). ut

Remark 6.33 The reader may observe that, in addition to the existence of a classi-
cal solution U to the master equation satisfying the conclusion of Theorem 5.46, we
only used the fact that Ǫ is bounded and Lipschitz continuous and the fact that f is
locally Lipschitz continuous, see (6.126), (6.128), (6.130), and (6.134).

Proof of Theorem 6.28
Proof. We start with the first claim in the statement. To do so, we choose �0 D Nd.0; Id/

and apply (6.122):

ˇ
ˇ
ˇU.t0; 
 i; N�N�1

��i / � vN;i.t0; �/
ˇ
ˇ
ˇ � C

N

�
1C 1

N

NX

jD1

j
 i � 
 jj2 C 1

N2

NX

`;jD1

j
` � 
 jj2
�1=2

;

for i 2 f1; � � � ;Ng. The support of � being .Rd/N , we deduce from the continuity of U and
of the .vN;i/iD1;��� ;N that the above inequality holds for any x 2 .Rd/N :
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ˇ
ˇU.t0; xi; N�N�1

x�i / � vN;i.t0; x/
ˇ
ˇ � C

N

�
1C 1

N

NX

jD1

jxi � xjj2 C 1

N2

NX

`;jD1

jx` � xjj2
�1=2

;

for all i 2 f1; � � � ;Ng.
We turn to the second part of the statement. We notice that:

E
�juN;i.t; �/ � U.t; 
 i; �0/j

� D E
�jU.t; 
 i; N�N�1

��i / � U.t; 
 i; �0/j
�

� CE
�
W1. N�N�1

��i ; �0/
�
;

where we used the Lipschitz property of U in the measure argument in the second line. The
result follows from Corollary 6.3. ut

6.3.4 Propagation of Chaos for the N-Player Game

As a byproduct of our analysis, we now deduce that the optimal trajectories of the
N-player game converge to the expected limit. In order to state the result, we use
the same set-up as in Chapter 2 for constructing the particle system (2.3), namely
the probability space .˝;F ;F;P/ reads as the product of two probability spaces
.˝0;F0;F0;P0/ and .˝1;F1;F1;P1/. The space .˝0;F0;F0;P0/ carries the d-
dimensional Brownian motion W0, which is assumed to be a Brownian motion
with respect to F

0 and the space .˝1;F1;F1;P1/ carries the N-tuple of independent
and identically distributed F1

0 -measurable random variables .
 i/iD1;��� ;N , which take
values in R

d and have common distribution �0 2 P2.Rd/, together with the tuple of
d-dimensional Brownian motions .Wi/iD1;��� ;N , which are assumed to be Brownian
motions with respect to the filtration F

1.
Here is the main statement:

Theorem 6.34 For any i 2 f1; � � � ;Ng, the McKean-Vlasov SDE

dXi
t D b.t/ Ǫ�t;Xi

t; @xU.t;Xi
t;L1.Xi

t//
�
dt C �dWi

t C �0dW0
t ; t 2 Œ0;T�

Xi
0 D 
 i:

is uniquely solvable.
Moreover, the flow of conditional distributions .�t D L1.Xi

t//0�t�T does not
depend on i and is the solution to the mean field game with �0 as initial condition.
Also, for any � > 0, there exists a constant C�, independent of N, such that, for all
i 2 f1; � � � ;Ng,

E

h
sup
0�t�T

ˇ
ˇX�N;i

t � Xi
t

ˇ
ˇ
i

� C�N
�1=max.d;2C�/:
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Above, ..X�N;i
t /0�t�T/iD1;��� ;N stands for the corresponding “optimal trajectories”

of the N-player game, which are associated with the solution .vN;i/iD1;��� ;N of the
N-Nash system (6.94). Namely ..X�N;i

t /0�t�T/iD1;��� ;N solve (6.119) with X�N;i
0 D 
 i

as initial condition at time 0.

Proof.

First Step. For any i 2 f1; � � � ;Ng, the SDE of McKean-Vlasov type:

dXi
t D b.t/ Ǫ�t;Xi

t; @xU.t;Xi
t;L1.Xi

t//
�
dt C �dWi

t C �0dW0
t ; t 2 Œt0; T�;

Xi
0 D 
 i;

is uniquely solvable since @xU is Lipschitz continuous in the variables x and
�, see Proposition 2.8. We then call .�t/0�t�T the flow of conditional distribu-
tions .L1.X1t //0�t�T . By Proposition 2.11, we also have .�t D L1.Xi

t//0�t�T for
any i 2 f1; � � � ;Ng. Moreover, by Theorem 5.46, .�t/0�t�T is the solution to
the mean field game with �0 as initial condition, uniqueness following from the
fact that the Lasry-Lions monotonicity condition is in force, see Proposition 3.34
and (3.77).

Second Step. We now turn to the second part of the proof. It is a direct application of
Theorem 6.32 combined with the following estimate on the distance between .Xi

t/0�t�T and
the solution .XN;i

t /0�t�T of (6.118):

E

h
sup
0�t�T

ˇ
ˇXN;i

t � Xi
t

ˇ
ˇ
i

� ıN ; (6.135)

for any i 2 f1; � � � ;Ng, where the sequence .ıN/N�1 tends to 0 as N tends to 1 and can be
chosen as C�N�1=max.d;2C�/, for any � 2 .0; 1� and for some constant C� > 0 depending
on �.

Assume for a while that (6.135) is true. Then, by the triangle inequality,
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;

l

where we used (6.120) to pass from the first to the second line.

Third Step. It now remains to check (6.135). For this, we fix i 2 f1; � � � ;Ng. Then, for any
t 2 Œ0; T�, we have:
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where X.N/ D .X1; � � � ;XN/.
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Since @xU is Lipschitz continuous in the space and measure arguments, with respect to
the W1-distance for the latter one, we get:
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Hence,
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(6.136)

where, as usual, the constant C is allowed to increase from line to line. Taking expectations
and recalling that the random variables .XN;j

s � Xj
s/j2f1;��� ;Ng are exchangeable, we deduce

that:
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By Gronwall’s lemma, we get for any i 2 f1; � � � ;Ng:
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Now, returning to (6.136), taking the supremum over t 2 Œ0; T� and using the above
inequality, we deduce that:

8i 2 f1; � � � ;Ng; E
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0�t�T

jXN;i
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tj
i
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Z T

0
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.N/�i
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�i
ds:

In order to complete the proof, it suffices to note that:

sup
0�t�T

E
�jX1t j2� < 1;

which permits to apply Corollary 6.3, using the fact that, for almost every !0 2 ˝0, the
processes .Xi.!0; �//1�i�N are independent under P1. ut
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6.4 Notes & Complements

In the absence of common noise, the construction of approximate Nash-equilibria
for the N-player game from the solution of the limiting mean field game problem
provided in the text is borrowed from the paper [96] of Carmona and Delarue,
where the stochastic maximum principle was used for the first time in the solution of
mean field games. Actually, the existence of �-approximate Nash equilibria for finite
player games already appeared in the original work of Caines, Huang, and Malhamé
on Nash certainty equivalence [211], where reliance on the theory of the propagation
of chaos is already present. The argument used in the text was also used for simpler
models in [53] by Bensoussan, Sung, Yam, and Yung, and in [83] by Cardaliaguet
for first order mean field game models. A similar issue was addressed in [236, 238]
by Kolokoltsov, Li, and Wang, and by Kolokoltsov, Troeva, and Wang, but with
a slightly different twist: there, by means of similar arguments to those used in
Subsection (Vol I)-5.7.4 for revisiting the propagation of chaos strategy, the authors
show that optimal strategies for mean field games form O.1=N/-approximate Nash
equilibria when the coefficients of the game are smooth enough. In comparison,
in the text we only proved that they form O.

p
"N/-approximate Nash equilibria,

with "N as in (6.1). To the best of our knowledge, the construction of approximate
equilibria for mean field games with common noise, as provided in Subsection 6.1.2,
had only been addressed by Kolokoltsov and Troeva in [237]. There, the analysis
requires the master equation to have a classical solution, in which case approximate
Nash equilibria can be constructed, as explained in the text, in closed loop form.
The L4-stability estimate used in the proof of Theorem 6.4 may be found in Delarue
[132].

From the practical point of view, numerical methods are needed to compute
optimal strategies in mean field games and to plug them into finite player games.
We do not address this question in the book and we refer to the following papers
for various approximation, discretization, or numerical methods, including finite
differences or variational approaches: Achdou and Capuzzo-Dolcetta [4], Achdou,
Camili, and Capuzzo-Dolcetta [3], Achdou and Perez [6], Achdou and Porretta [7],
Benamou and Carlier [42], Lachapelle, Salomon, and Turinici [252], Cardaliaguet
and Hadikhanloo [89], and Guéant [187]. In [2], Achdou, Camilli, and Capuzzo-
Dolcetta investigate numerical methods for mean field planning problems in which
both the initial and terminal states of the population are prescribed. We refer to the
PhD dissertation by Alanko [14] for a probabilistic point of view.

The problem of convergence of Nash equilibria of games with finitely many
players towards solutions of mean field games has been known to be more
challenging. For closed loop Nash equilibria, convergence was proved for ergodic
mean field games by Lasry and Lions in [260], and later on revisited by Bardi and
Feleqi in [34], in case when the players only observe the idiosyncratic noise driving
their own dynamics. In the latter situation, the Nash system reduces to a coupled
system of N partial differential equations in R

d instead of N equations in R
Nd as

in (6.94), and a priori estimates for the solutions are available. For linear-quadratic
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models with explicit solutions, convergence was investigated by Bardi in [33]. The
approach based on the master equation used in this chapter is due to Cardaliaguet,
Delarue, Lasry, and Lions [86]. While its potential for applications seems to be quite
large, so far, it has been applied to relatively simple models only. Case in point,
the Hamiltonian is assumed to be Lipschitz continuous in the control variable in
[86]. The result obtained in this chapter goes one step further since it holds true for
quadratic Hamiltonians. Still, the reader should keep in mind the counter-example
provided in Subsection (Vol I)-7.2.5 proving that the argument can fail. In contrast
with the framework used in this chapter, this latter counter-example addresses mean
field games with finite state and control spaces. This makes a subtle difference in
the analysis since the minimizer of the Hamiltonian is de facto discontinuous with
respect to the adjoint variable when the control space is discrete.

The asymptotic analysis of open loop equilibria by means of weak compactness
arguments goes back to the works by Fischer [154] and Lacker [255]. Therein,
the authors overcome the lack of strong estimates on the solutions to the N-player
game by using the notion of relaxed controls for which weak compactness criteria
are readily available. Here, we bypass the use of relaxed controls by relying on the
stochastic maximum principle which allows us to prove tightness of the equilibrium
control strategies for the Meyer-Zheng topology introduced in Chapter 3. In this
regard, our augment is really close to that introduced in Chapter 3 for constructing
weak solutions to MFG with a common noise.

Despite the use of a different topology to handle the control strategies, our
approach remains quite similar to that developed by Fischer and, especially Lacker.
In Lacker’s work, compatibility plays a crucial role to prove that weak limits of Nash
equilibria are minimizers of the optimal control problem under the environment
formed by the limiting empirical distribution, see the Notes and Complements of
Chapter 7 for another insight. In our approach, the use of compatibility is not
so explicit, but manifests through the preliminary analysis of stochastic control
problems in a random environment, as performed in Chapter 1 by means of the
stochastic Pontryagin principle. The restriction we imposed on the form of the
dynamics of the players, see (6.79), is mostly for convenience and it is likely that it
can be dispensed with. After all, such a restriction does not appear in the works of
Fischer and Lacker.

As for mean field control problems, the presentation used in Subsection 6.1.3
is mostly taken from the two papers [98] and [99] by Carmona and Delarue and
by Carmona, Delarue, and Lachapelle; a similar discussion, but focused on the
linear-quadratic setting, may be found in the article [217] by Huang, Caines, and
Malhamé. In complete analogy with the analysis performed in Sections 6.2 and
6.3, another interesting question to address is the convergence of optimizers, in
systems of finitely many players optimizing a common objective function, towards
the solution of a mean field control problem, or equivalently of a control problem of
the McKean-Vlasov type. We chose not to discuss the problem in the book, but we
refer the interested reader to the contributions [160] by Fornasier and Solombrino
and [256] by Lacker.
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We conclude with a few words about the results invoked without proof in this
chapter. The statement of Lemma 6.2 in the introduction of the chapter is taken
from the paper by Fournier and Guillin [161]. Earlier results on the subject may
be found in the papers by Barthes and Bordenave [36] and Dereich, Scheutzow,
and Schottstedt [135]. We also emphasize the fact that the bound in Corollary 6.3
is certainly not optimal, and that the correction in front of the factor N�1=2 should
be logarithmic instead of polynomial. For instance, we refer to the earlier paper by
Atjai, Komlòs, and Tusnàdy [269].

General results on the smoothness of solutions to semi-linear parabolic PDEs,
including Hamilton-Jacobi-Bellman equations, may be found in the monographs
by Friedman [162], Ladyzenskaja et al. [258], and Lieberman [264]. We refer to
Delarue [133] and Delarue and Guatteri [134] for the corresponding probabilistic
approach. However, quadratic systems of the type (6.94)–(6.95) require a specific
treatment as they cannot be handled with the results of these references. We refer
to the article by Bensoussan and Frehse [49] for the case when the system is set
on a bounded domain. In this regard, the proof of Proposition 6.26, which holds
for unbounded domains, is essentially new. The idea of combining BMO estimates
and Krylov-Safonov theory was inspired by [133]. We refer to the monograph by
Bass [38] for a detailed introduction to the results by Krylov and Safonov. The
reader may also have a look at the original article [287]. We also refer to Hu and
Tang [204] and to Xing and Žitković [340] for related recent results on systems of
quadratic backward SDEs. Solvability of the SDE with non-Lipschitz coefficients
in the proof of Proposition 6.27 is taken from Veretennikov [336] and Itô-Krylov
formula can be found in Chapter II of Krylov’s monograph [242].



7Extensions for Volume II

Abstract

The rationale of this chapter is the same as for the last chapter of the first volume
of the book. We leverage the technology developed in the second volume to
revisit some of the examples introduced in Chapter (Vol I)-1, and complete their
mathematical analysis. We use some of the tools introduced for the analysis
of mean field games with a common noise to study important game models
which are not amenable to the theory covered by the first volume. These models
include extensions to games with minor and major players, games of timing, and
some finite state space models. We believe that these mean field game models
have a great potential for the quantitative analysis of very important practical
applications, and we show how the technology developed in the second volume
of the book can be brought to bear on their solutions.

7.1 Mean Field Games with Major and Minor Players

An important requirement of the theory of mean field games is the fact that, when the
number of players is large, the influence of one single player on the system becomes
asymptotically negligible. This is not the case in many practical applications. For
instance, it is in sharp contrast with the reality of the banking system where the
actions of a few Systemically Important Financial Institutions (SIFI) impact the
system no-matter how large the number of small banks is.

7.1.1 Isolating Strong Influential Players

In this section, we study a model with a small number of players which we call
major and a large number of players with mean field interactions which we call
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minor because their influence on the system decreases as their number increases.
In the asymptotic regime of large games, the limiting problem is identified as a
two-player stochastic differential game, in which the optimization problem faced
by the major player is of conditional McKean-Vlasov type, while the optimization
problem faced by the representative minor player is a standard control problem. A
matching procedure then follows the solution of the two-player game, leading to a
characterization of the solution of the limiting problem as an FBSDE of McKean-
Vlasov type. In our new setting, the finite-player game is an .N C 1/-player game
including the major player. The construction of approximate Nash equilibria in
Subsection 7.1.5 below, involves both minor and major players, justifying our choice
for the limiting scheme and the mean field formulation of the problem. It is based
on the conditional propagation of chaos results for stochastic differential equations
of McKean-Vlasov type developed in Section 2.1 of Chapter 2.

The probabilistic approach advocated throughout the book is especially well
suited to the analysis of mean field games with major and minor players. For
starters, it is forced on us when one chooses to use, as we do below, open loop
controls. Also, and in full analogy with the results obtained for mean field games
with a common noise, the persistence of the influence of the major player forces
the controls of the minor players to retain a random component. Moreover, while
it is clear that the limiting conditional McKean-Vlasov control problem faced by
the major player should be amenable to an appropriate version of the Pontryagin
stochastic maximum principle, neither the exact form of the stochastic maximum
principle nor the conditional propagation of chaos result which we need are covered
by the results of Chapter (Vol I)-6, not even the discussion provided in Section 2.1 of
Chapter 2. This is the reason why we offer tailor-made statements of the results we
need, even if we only hint at their proofs. However, the part of the analysis dealing
with the minor players relies on the results on the well posedness of FBSDEs and
their associated decoupling fields developed for the solvability of the limiting mean
field game problems.

The Finite Player Game Set-Up
The finite player version of the game with major and minor players is as follows.
The major player is indexed by 0. It chooses a control strategy ˛N;0 taking values in
a convex set A0 � R

k0 . The minor players are indexed by i 2 f1; � � � ;Ng. Player i
chooses a control strategy ˛N;i taking values in a convex set A � R

k. The state of
the system at time t is given by a vector X.0;N/t D .XN;0

t ;XN;1
t ; � � � ;XN;N

t / 2 R
d0CNd

with dynamics:

8
ˆ̂
<

ˆ̂
:

dXN;0
t D b0.t;X

N;0
t ; N�N

t ; ˛
N;0
t /dt C �0.t;X

N;0
t ; N�N

t ; ˛
N;0
t /dW0

t ;

dXN;i
t D b.t;XN;i

t ; N�N
t ;X

N;0
t ; ˛

N;i
t ; ˛

N;0
t /dt

C�.t;XN;i
t ; N�N

t ;X
N;0
t ; ˛

N;i
t ; ˛

N;0
t /dWi

t ; i D 1; � � � ;N;
(7.1)
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for t 2 Œ0;T�, where W D .Wi/iD0;��� ;N is a family of independent Wiener processes,
and

N�N
t D 1

N

NX

iD1
ıXN;i

t
(7.2)

is the empirical distribution of the states of the minor players. The Wiener process
W0 is assumed to be m0 dimensional while all the other Wiener processes Wi for
i D 1; � � � ;N are assumed to be m-dimensional. The state XN;0

t (and hence b0) is d0-
dimensional while all the other states XN;i

t (and hence b) are d-dimensional. Here,
the set-up is different from what it was in the previous chapters since we allow for
pedagogical reasons, the states and the noises to have different dimensions. Finally,
for consistency reasons, the matrices �0 and � are d0 � m0 and d � m dimensional
respectively. The major player aims at minimizing a cost functional given by:

JN;0.˛N;0;˛.N// D E

�Z T

0

f0.t;X
N;0
t ; N�N

t ; ˛
N;0
t /dt C g0.X

N;0
T ; N�N

T /

	

; (7.3)

and the minor players aim at minimizing the cost functionals defined by:

JN;i
�
˛N;0;˛.N/

�

D E

�Z T

0

f .t;XN;i
t ; N�N

t ;X
N;0
t ; ˛N;i

t ; ˛N;0
t /dt C g.XN;i

T ; N�N
T ;X

N;0
T /

	

;
(7.4)

for i D 1; � � � ;N, where we use the notation ˛.N/ for .˛N;1; � � � ;˛N;N/. Notice the
presence of the state of the major player in the state dynamics and the cost functions
of the minor players. Even when the number of minor players is large, the major
player can still influence significantly the behavior of the system. This is in sharp
contrast with the models considered so far as in all cases, the impact of any given
player was becoming negligible as the size of the population increased without
bound.

7.1.2 Formulation of the Open Loop MFG Problem

We now formulate the open loop version of the mean field game problem based
on the large N behavior of the system. In this limiting regime, the symmetry of
the states of the minor players suggests that their empirical distribution N�N

t should
converge toward a probability measure �t which should still feel the state of the
major player and hence, at least indirectly, the path W0

Œ0;t� up to time t of the Wiener
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process W0. Like in the case of mean field games with a common noise, this limit
should act like a random environment depending upon the common noise. This
prompts us to use the same setting as in Definition 2.16 of a weak equilibrium of a
mean field game with common noise. So, we assume that we are given:

1. a complete probability space .˝0;F0;P0/ endowed with a complete
and right-continuous filtration F

0 D .F0
t /0�t�T generated by an m0-

dimensional Wiener process W0 D .W0
t /0�t�T ,

2. a complete probability space .˝1;F1;P1/ endowed with a complete and
right-continuous filtration F

1 D .F1
t /0�t�T generated by an m-dimensional

Wiener process W D .Wt/0�t�T .

We then denote by .˝;F ;P/ the completion of the product space .˝0 �
˝1;F0 ˝ F1;P0 ˝ P

1/, endow it with the filtration F D .Ft/0�t�T obtained
by augmenting the product filtration F

0 ˝ F
1 to make it right-continuous and

by completing it.

These assumptions are different from those of Chapter 2 since we here force
the filtration F

0 to be generated by W0 and similarly for F
1. According to the

terminology used for mean field games with common noise, this means that we
restrict our analysis to the search of strong solutions. Consequently, there will be
no need for compatibility conditions. As in Subsection 2.1.3, we use the notation
L1.X/ to denote the random variable L1.X/ W ˝0 3 !0 7! L.X.!0; �// whenever X
is a random variable defined on .˝;F ;P/.

Unfortunately, the parallel with games with a common noise cannot be pushed
any further. Indeed, no matter how large N is, the major player’s control influences
the states of all the minor players, and in particular, their empirical distribution.
So when we construct the limiting problem for the major player, it is reasonable
to allow the major player to control the stochastic measure flow, instead of fixing
it exogenously. So in the limit, the control problem of the major player should
be of conditional McKean-Vlasov type with an endogenous measure flow, and the
limiting optimization problem of the representative minor player should be standard,
with a fixed exogenous measure flow. Because of this asymmetry, we formulate the
limiting mean field game problem as a two step procedure as in the classical case,
the first step being now a two-player stochastic differential game between the major
player and a representative minor player. To be more specific, the solution of a mean
field game with major and minor players comprises the two steps:
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1. For each fixed F
0-progressively measurable stochastic measure flow � D

.�t/0�t�T , solve the two-player stochastic differential game for open loop Nash
equilibria with a state .X0t ;Xt; LX0t ; LXt/0�t�T evolving in time according to:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dX0t D b0.t;X0t ;L1.Xt/; ˛
0
t /dt C �0.t;X0t ;L1.Xt/; ˛

0
t /dW0

t ;

dXt D b.t;Xt;L1.Xt/;X0t ; ˛t; ˛
0
t /dt C �.t;Xt;L1.Xt/;X0t ; ˛t; ˛

0
t /dWt;

d LX0t D b0.t; LX0t ; �t; ˛
0
t /dt C �0.t; LX0t ; �t; ˛

0
t /dW0

t ;

d LXt D b.t; LXt; �t; LX0t ; ˛t; ˛
0
t /dt C �.t; LXt; �t; LX0t ; ˛t; ˛

0
t /dWt;

(7.5)

for t 2 Œ0;T�, with initial conditions X00 D LX00 D x00 and X0 D LX0 D x0,
where the control ˛0 D .˛0t /0�t�T of the first player is assumed to be adapted
to the filtration F

0 D .F0
t /t�0, and the control ˛ D .˛t/0�t�T of the second

player is assumed to be adapted to the filtration F D .Ft/t�0, and where the cost
functionals that the two players try to minimize are given by:

J0.˛0;˛/ D E

�Z T

0

f0
�
t;X0t ;L1.Xt/; ˛

0
t

�
dt C g0

�
X0T ;L1.XT/

�
	

;

J.˛0;˛/ D E

�Z T

0

f .t; LXt; �t; LX0t ; ˛t; ˛
0
t /dt C g. LXT ; �T ; LX0T/

	

:

(7.6)

2. Enforce the consistency condition:

�t D L1.Xt/; P � a.s. t 2 Œ0;T�; (7.7)

where .Xt/0�t�T is the second component in the state equation (7.5) driven by a
Nash equilibrium control .˛0;˛/ found in the first step.

Like in the case of mean field games with a common noise, the above consistency
condition requires the solution of a fixed point problem in the space of stochastic
measure flows. We present an alternative in the next subsection. In equilibrium,

namely once the consistency condition (7.7) is met, .X0;X/ and . LX0
; LX/ coincide,

even though they do not ex-ante, since they emerge from different measure flows:

.X0;X/ is defined with the endogenous measure flow .L1.Xt//0�t�T , while . LX0
; LX/

is defined with the exogenous measure flow � D .�t/0�t�T . We emphasize once
more the rationale for this special formulation. When computing its best response
to the major player and the other minor players, the representative minor player
assumes that the stochastic flow � D .�t/0�t�T is fixed, like in the standard
approach to mean field games, the random shocks driving the dynamics of the
state of the major player justifying the randomness of the flow. The fact that it
is responding to a major player who should behave in the environment given by
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� D .�t/0�t�T , is the justification for the introduction of . LX0t /0�t�T in lieu of
.X0t /0�t�T to compute its best response. On the other hand, for reasons already given
earlier, the major player computes its best response assuming that the representative
minor player uses the endogenous stochastic flow .L1.Xt//0�t�T . So it is responding
to the dynamics of .Xt/0�t�T instead of the dynamics given by . LXt/0�t�T . This
explains this apparent doubling of the states which disappears in equilibrium when
the consistency condition is satisfied. Accordingly, the cost functional J0 of the
major player is of the McKean-Vlasov type while the cost functional J of the
representative minor player is of the standard type. As explained earlier, this is the
main feature of our formulation of the problem. We end this subsection with the
precise definition of a solution to the mean field game described above.

Definition 7.1 Given a tuple .˝;F ;P;W0;W/ as above, a solution of the mean
field game with major and minor players is defined as a couple of controls .˛0;˛/,
where ˛0 is F

0-progressively measurable and ˛ is F-progressively measurable,
forming an open loop Nash equilibrium for the two-player game defined in the first
step above, and satisfying the consistency condition.

In the spirit of the results of Section 6.1 of Chapter 6, we shall argue that if
we are able to find a fixed point, i.e., a stochastic measure flow � D .�t/0�t�T

satisfying (7.7), then one can construct approximate Nash equilibria for the finite-
player game when the number of players is sufficiently large. The precise meaning
of this statement will be made clear in Subsection 7.1.5.

Remark 7.2 The requirement that ˛0 is F0-measurable is especially meaningful as
it says that the strategy profile of the major player cannot be based upon the private
state of the minor player. The typical example for such an ˛0 is a strategy profile
in closed loop form depending on the present private state of the major player and
the present conditional distribution of the minor player. By analogy with uniquely
solvable mean field games with common noise, we may expect that an optimal ˛0

is likely to be of this form in equilibrium, although the equilibrium is understood in
the open loop sense.

We close this section with a further emphasis on the importance of the measur-
ability properties of the controls which are permissible in the case of mean field
games with major and minor players. We stress that, in contrast with what happened
in our previous analysis of standard mean field games, the class of strategy profiles
allowed in the limiting formulation really matters now. Indeed, limiting equilibria
should differ when computed over strategy profiles in closed loop form. This should
be clear when we compute the best response of the major player: if the control ˛t of
the representative minor player is of the form ˛t D �.t;Xt;X0t /, then the dynamics
of the state process X D .Xt/0�t�T after a perturbation of ˛0 are not same whether
we freeze the sole feedback function � or the whole path ˛ D .˛t/0�t�T in the
computation of the best response. We come back to this specific question when
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discussing the passage from the game with finitely many players to the limiting
game. In any case, Subsection 7.1.3 below offers an alternative to the open loop
framework introduced above, shedding new light on the McKean-Vlasov nature of
the optimization problem of the major player.

7.1.3 Aside: Alternative Formulations of the Mean Field Game
Problems

The goal of this subsection is to prepare for the extension of the discussion of
Subsection (Vol I)-3.1.3 of Chapter (Vol I)-3 to models of mean field games with
major and minor players. Meanwhile, we introduce the corresponding notions of
equilibria in closed loop and Markovian forms and point out the main differences
between the three forms of equilibria.

Since we already went through the procedure many times throughout the book,
we do not introduce the finite player game (with major and minor players) from
which we usually derive the mean field game formulation by taking the limit
(N ! 1) of a large population of minor players. We directly state the mean field
game problem. However, in contrast with the presentation of Subsection (Vol I)-
3.1.3 where we did not separate the open and closed loop problems, we here treat
them separately, even at the risk of annoying the reader with pedantic repetitions.
Our reason for this duplication is the following. While it turns out that the solutions
to the open and closed loop versions of the standard games often coincide in the
mean field limit, this should not be the case for games with major and minor players,
as we already alluded to in the previous subsection. This is due to the fact that
the finite characteristics of the major player do not disappear in the limit when
the number of minor players tends to infinity. We shall illustrate this fact in our
discussion of the linear quadratic models below.

We first treat the case of open loop equilibria. This part is a plain rewrite of
the previous section introducing the open loop version of the problem. We take
advantage of the fact that the filtrations are assumed to be generated by the Wiener
processes to write the controls as functions of the paths of these Wiener processes.
The benefits of revisiting the open loop set-up are twofold: first it naturally leads to a
formulation of the fixed point step on spaces of functions instead of measure flows,
and second, it extends in a straightforward manner to closed loop formulations of
the problem which we present next.

Open Loop Version of the MFG Problem Revisited
Here, we assume that the controls used by the major player and the representative
minor player are of the form:

˛0t D �0
�
t;W0

Œ0;T�

�
; and ˛t D �

�
t;W0

Œ0;T�;WŒ0;T�
�
; (7.8)
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for deterministic progressively measurable functions �0 W Œ0;T� � C.Œ0;T�IRm0 / !
A0 and � W Œ0;T� � C.Œ0;T�IRm0 / � C.Œ0;T�IRm/ ! A. Progressive measurability
of the function � means in particular that for any t 2 Œ0;T� and .w0;w/ 2
C.Œ0;T�IRm0 / � C.Œ0;T�IRm/, the value of �.t;w0;w/ depends only upon the
restrictions w0Œ0;t� and wŒ0;t� of w0 and w to the interval Œ0; t�. Similarly for �0. Our
choice for the admissibility of the controls is consistent with our earlier discussion
since we assume that the filtrations F0 and F

1 are generated by the Wiener processes
W0 and W respectively. In this framework, the state .X0t /0�t�T of the major player
and the state .Xt/0�t�T of the representative minor player in a field of exchangeable
minor players evolve according to the dynamic equations:

(
dX0t D b0.t;X0t ; �t; ˛

0
t /dt C �0.t;X0t ; �t; ˛

0
t /dW0

t ;

dXt D b.t;Xt; �t;X0t ; ˛t; ˛
0
t /dt C �.t;Xt; �t;X0t ; ˛t; ˛

0
t /dWt:

(7.9)

Accordingly, the costs that the players try to minimize are of the form:

8
ˆ̂
<

ˆ̂
:

J0.˛0;˛/ D E

�Z T

0

f0.t;X
0
t ; �t; ˛

0
t /dt C g0.X0T ; �T/

	

;

J.˛0;˛/ D E

�Z T

0

f .t;Xt; �t;X
0
t ; ˛t; ˛

0
t /dt C g.XT ; �T ;X

0
T/

	

:

(7.10)

In agreement with (7.5), .�t/0�t�T should be understood as a proxy for the flow
of empirical measures . N�N

t /0�t�T in the limit N ! 1 when the minor players
implement exchangeable strategies. As we explained in our introduction to the
mean field game models with a common noise, this limit happens to be .�t D
L.XtjW0

Œ0;t�//0�t�T , the conditional distribution of the state of the representative

minor player given the initial path W0
Œ0;t� of the noise common to all the minor

players. Since we are working on a product probability set-up, we can use the
notation of the previous subsection and write in that case�t D L1.Xt/, for t 2 Œ0;T�.

We shall see below how to account for the remaining two equations in (7.5).

The Major Player Problem. We assume that the representative minor player
uses the open loop control given by the progressively measurable function � W
.t;w0;w/ 7! �.t;w0;w/. Hence the problem of the major player is to minimize
its expected cost:

J�;0.˛0/ D E

�Z T

0

f0.t;X
0
t ; �t; ˛

0
t /dt C g0.X0T ; �T/

	

; (7.11)
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under the dynamical constraints:

8
ˆ̂
<

ˆ̂
:

dX0t D b0.t;X0t ; �t; ˛
0
t /dt C �0.t;X0t ; �t; ˛

0
t /dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;W

0
Œ0;T�;WŒ0;T�/; ˛

0
t

�
dt

C��t;Xt; �t;X0t ; �.t;W
0
Œ0;T�;WŒ0;T�/; ˛

0
t

�
dWi

t ;

where each �t D L1.Xt/ D L.XtjW0
Œ0;t�/, for t 2 Œ0;T�, denotes the conditional

distribution of Xt given W0
Œ0;t�. Since we are considering the open loop version of

the problem, we search for minima in the class of controls ˛0 of the form .˛0t D
�0.t;W0

Œ0;T�//0�t�T for a progressively measurable function �0. So, we frame the
major player problem as the search for:

�0;�.�/ D arg inf
˛0$�0

J�;0.˛0/;

where ˛0 $ �0 means that the infimum is over the set of controls ˛0 given by
progressively measurable functions �0. For the sake of the present discussion, we
assume implicitly that the argument of the minimization is not empty and reduces to
a singleton. The important feature of this formulation is that the optimization of the
major player appears naturally as an optimal control of the McKean-Vlasov type!
In fact, it is an optimal control of the conditional McKean-Vlasov type since the
distribution appearing in the controlled dynamics is the conditional distribution of
the state of the representative minor player.

The Representative Minor Player Problem. To formulate the optimization prob-
lem of the representative minor player, as we accounted for through the combination
of the last two equations in (7.5) and of the fixed point condition (7.7), we first
describe the state of a system comprising a major player and a field of exchangeable
minor players. As above, we assume that the major player uses a strategy ˛0 given by
a progressively measurable function �0 as in .˛0t D �0.t;W0

Œ0;T�//0�t�T , and that the
representative of the field of minor players uses a strategy ˛ given by a progressively
measurable function � in the form .˛t D �.t;W0

Œ0;T�;WŒ0;T�//0�t�T . So, the dynamics
of the state of the system are given by:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dX0t D b0
�
t;X0t ; �t; �

0.t;W0
Œ0;T�/

�
dt

C�0
�
t;X0t ; �t; �

0.t;W0
Œ0;T�/

�
dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;W

0
Œ0;T�;WŒ0;T�/; �

0.t;W0
Œ0;T�/

�
dt

C��t;Xt; �t;X0t ; �.t;W
0
Œ0;T�;WŒ0;T�/; �

0.t;W0
Œ0;T�/

�
dWt;

(7.12)

where, as before, �t D L1.Xt/ D L.XtjW0
Œ0;t�/ is the conditional distribution of Xt

given W0
Œ0;t�, for any t 2 Œ0;T�. Notice once again that, in the present situation, given
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the feedback functions �0 and �, this stochastic differential equation in R
d0 � R

d

giving the dynamics of the state of the system is of (conditional) McKean-Vlasov
type since .�t/0�t�T is the flow of (conditional) distributions of (part of) the state.

As in Subsection (Vol I)-3.1.3, we address the Nash condition for the minor
player through the search for the best response that a virtual minor player should
implement given the above field of exchangeable minor players, and in the present
situation, given the above major player as well. So naturally, we formulate this
search for a best response as the result of the optimization problem of an extra minor
player which chooses a strategy L̨ given by a progressively measurable function L�
in the form . L̨ t D L�.t;W0

Œ0;T�;
LWŒ0;T�//0�t�T in order to minimize its expected cost:

J�
0;�. L̨ / D E

�Z T

0

f
�
t; LXt; �t;X

0
t ; L̨ t; �

0.t;W0
Œ0;T�/

�
dt C g. LXT ; �T ;X

0
T/

	

;

where the dynamics of its state . LXt/0�t�T are given by:

d LXt D b
�
t; LXt; �t;X

0
t ;

L�.t;W0
Œ0;T�;

LWŒ0;T�/; �
0.t;W0

Œ0;T�/
�
dt

C �
�
t; LXt; �t;X

0
t ;

L�.t;W0
Œ0;T�;

LWŒ0;T�/; �
0.t;W0

Œ0;T�/
�
d LWt;

for a Wiener process LW D . LWt/0�t�T independent of the other Wiener processes.
Notice that this optimization problem is not of McKean-Vlasov type. It is merely
a classical optimal control problem, though with random coefficients. In particular,
.�t/0�t�T is still given by .�t D L.XtjW0

Œ0;t�//0�t�T , for the same representative

player .Xt/0�t�T as in (7.12), but LXt may differ from Xt. As stated above, we
search for minima in the class of feedback controls L̨ of the form . L̨ t D
L�.t;W0

Œ0;T�;
LWŒ0;T�//0�t�T . We denote by:

L��
.�0; �/ D arg inf

L̨$ L�
J�

0;�. L̨ /

the result of the optimization. Again, we assume that the optimal control exists,
is given by a progressively measurable function and is unique for the sake of
convenience.

We now formulate the existence of a Nash equilibrium for the mean field game
with major and minor players as a fixed point of the best response maps identified
above. By definition, a couple . Ǫ 0; Ǫ / of controls given by progressively measurable
functions . O�0; O�/ as above is a Nash equilibrium for the mean field game with major
and minor players if it satisfies the fixed point equation:

. O�0; O�/ D �
�0;�. O�/; L��

. O�0; O�/�: (7.13)
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Closed Loop Version of the MFG Problem
The way we rewrote the open loop version of the problem may have been rather
pompous, but it makes it easy to introduce the closed loop and Markovian versions
of the problem. In this subsection, we assume that the controls used by the major
player and the representative minor player (taken in a field of exchangeable minor
players) are of the form:

˛0t D �0.t;X0Œ0;T�; �t/; and ˛t D �.t;XŒ0;T�; �t;X
0
Œ0;T�/; i D 1; � � � ;N:

for deterministic progressively measurable functions �0 W Œ0;T� � C.Œ0;T�IRd0 / �
P2.Rd/ ! A0 and � W Œ0;T��C.Œ0;T�IRd/�P2.Rd/�C.Œ0;T�IRd0 / ! A. The state
.X0t /0�t�T of the major player and the state .Xt/0�t�T of the representative minor
player evolve according to the same dynamic equations (7.9) as before, and the
costs are also given by the same formula (7.10), with �t D L1.Xt/ D L.XtjW0

Œ0;t�/,
for t 2 Œ0;T�.

We follow the same procedure as above to describe equilibria in closed loop
form.

The Major Player Problem. We assume that the representative minor player uses
the progressively measurable feedback function � W .t; x; �; x0/ 7! �.t; x; �; x0/, so
the problem of the major player is to minimize its expected cost (7.11) under the
dynamical constraints:

8
ˆ̂
<

ˆ̂
:

dX0t D b0.t;X0t ; �t; ˛
0
t /dt C �0.t;X0t ; �t; ˛

0
t /dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;XŒ0;T�; �t;X0Œ0;T�/; ˛

0
t

�
dt

C��t;Xt; �t;X0t ; �.t;XŒ0;T�; �t;X0Œ0;T�/; ˛
0
t

�
dWi

t ;

where �t D L1.Xt/ D L.XtjW0
Œ0;t�/ denotes the conditional distribution of Xt given

W0
Œ0;t�, for any t 2 Œ0;T�. As explained earlier, we search for minima in the class of

feedback controls ˛0 of the form .˛0t D �0.t;X0Œ0;T�; �t//0�t�T . So, we frame the
major player problem as:

�0;�.�/ D arg inf
˛0$�0

J�;0.˛0/;

which is an optimal control of the conditional McKean-Vlasov type!

The Representative Minor Player Problem. To formulate the optimization prob-
lem of the minor player in the definition of a Nash equilibrium, we first describe
the system to which it needs to respond optimally. So, we assume that the major
player uses a strategy ˛0 in feedback form given by a feedback function �0 so that
.˛0t D �0.t;X0Œ0;T�; �t//0�t�T , and that the representative of the field of minor players
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uses a strategy ˛ given by a progressively measurable feedback function � in the
form .˛t D �.t;XŒ0;T�; �t;X0Œ0;T�//0�t�T . Hence, the dynamics of the state of this
system are given by:

8
ˆ̂
<

ˆ̂
:

dX0t D b0
�
t;X0t ; �t; �

0.t;X0Œ0;T�; �t/
�
dt C �0

�
t;X0t ; �t; �

0.t;X0Œ0;T�; �t/
�
dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;XŒ0;T�; �t;X0Œ0;T�/; �

0.t;X0Œ0;T�; �t/
�
dt

C��t;Xt; �t;X0t ; �.t;XŒ0;T�; �t;X0Œ0;T�/; �
0.t;X0Œ0;T�; �t/

�
dWt;

where as before, �t D L1.Xt/ D L.XtjW0
Œ0;t�/ is the conditional distribution of Xt

given W0
Œ0;t�, for any t 2 Œ0;T�. Again, given the feedback functions �0 and �, this

stochastic differential equation in R
d0 �R

d is of (conditional) McKean-Vlasov type.
As before, we address the equilibrium condition for the minor player through

the search for the best response of an extra minor player to the major player and
to the field of exchangeable minor players. We formulate this best response as
the result of the optimization problem of a virtual minor player which chooses a
strategy L̨ given by a progressively measurable feedback function L� in the form
. L̨ t D L�.t; LXŒ0;T�; �t;X0Œ0;T�//0�t�T in order to minimize its expected cost:

J�
0;�. L̨ / D E

�Z T

0

f
�
t; LXt; �t;X

0
t ; L̨ t; �

0.t;X0Œ0;T�/
�
dt C g. LXT ; �T ;X

0
T/

	

;

where the dynamics of the virtual state . LXt/0�t�T are given by:

d LXt D b
�
t; LXt; �t;X

0
t ;

L�.t; LXŒ0;T�; �t;X
0
Œ0;T�/; �t; �

0.t;X0Œ0;T�/
�
dt

C �
�
t; LXt; �t;X

0
t ;

L�.t; LXŒ0;T�; �t;X
0
Œ0;T�/; �t; �

0.t;X0Œ0;T�/
�
d LWt;

for a Wiener process LW D . LWt/0�t�T independent of the other Wiener processes.
We stress the fact that .�t/0�t�T is fixed as it is given by .�t D L.XtjW0

Œ0;t�//0�t�T .
We search for minima in the class of feedback controls L̨ of the form . L̨ t D
L�.t; LXŒ0;T�; �t;X0Œ0;T�//0�t�T , and we denote the solution by:

L��
.�0; �/ D arg inf

L̨$ L�
J�

0;�. L̨ /:

Finally, we define the solution of a Nash equilibrium for the closed loop mean
field game with major and minor players as the solution of the same fixed point
equation (7.13), except for the fact that the functions . O�0; O�/ are now progressively
measurable feedback functions of the type considered here.

Markovian Version of the MFG Problem
Here, we assume that the controls used by the major player and the representative
minor player are of the form:
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˛0t D �0.t;X0t ; �t/; and ˛t D �.t;Xt; �t;X
0
t /; i D 1; � � � ;N;

for deterministic feedback functions �0 W Œ0;T� � R
d0 � P2.Rd/ ! A0 and � W

Œ0;T� � R
d � P2.Rd/ � R

d0 ! A. The state .X0t /0�t�T of the major player and
the state .Xt/0�t�T of the representative minor player evolve according to the same
dynamic equations (7.9) as before and the costs are also given by the same formula
(7.10), with �t D L1.Xt/ D L.XtjW0

Œ0;t�/, for any t 2 Œ0;T�.

Remark 7.3 As we already pointed out in the discussion of the mean field game
models with a common noise, the so-called Markovian version of the problem is
not really Markovian since the past of the Wiener process driving the dynamics
of the state of the major player (which plays the role of the common noise in the
current situation) is present in the controls through the proxy �t of the conditional
distribution of the states of the minor players! Still, the terminology may be
fully justified if we consider the whole R

d0 � R
d � P2.Rd/ as state space and

.X0t ;Xt;L1.Xt//0�t�T as state variable.

The Major Player Problem. As for equilibria in closed loop form, we assume
that the representative minor player uses the feedback function � W .t; x; �; x0/ 7!
�.t; x; �; x0/. Hence the problem of the major player is to minimize its expected cost
(7.11) under the dynamical constraints:

8
ˆ̂
<

ˆ̂
:

dX0t D b0.t;X0t ; �t; ˛
0
t /dt C �0.t;X0t ; �t; ˛

0
t /dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;Xt; �t;X0t /; ˛

0
t

�
dt

C��t;Xt; �t;X0t ; �.t;Xt; �t;X0t /; ˛
0
t

�
dWi

t ;

where �t D L1.Xt/ D L.XtjW0
Œ0;t�/ denotes the conditional distribution of Xt given

W0
Œ0;t�, for any t 2 Œ0;T�. We search for minima in the class of feedback controls

˛0 of the form .˛0t D �0.t;X0t ; �t//0�t�T . Accordingly, we frame the major player
problem as:

�0;�.�/ D arg inf
˛0$�0

J�;0.˛0/:

As before, the optimization problem of the major player is of the conditional
McKean-Vlasov type.

The Representative Minor Player Problem. As before, in order to formulate the
optimization problem of the minor player, we need to describe the system to which
it tries to respond optimally. We assume that the major player uses a strategy ˛0
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given by a feedback function �0 so that .˛0t D �0.t;X0t ; �t//0�t�T , and that the
representative of the field of exchangeable minor players uses a strategy ˛ given by
a feedback function � in the form .˛t D �.t;Xt; �t;X0t //0�t�T . Hence, the dynamics
of the state of this system are given by:

8
ˆ̂
<

ˆ̂
:

dX0t D b0
�
t;X0t ; �t; �

0.t;X0t ; �t/
�
dt C �0

�
t;X0t ; �t; �

0.t;X0t ; �t/
�
dW0

t ;

dXt D b
�
t;Xt; �t;X0t ; �.t;Xt; �t;X0t /; �

0.t;X0t ; �t/
�
dt

C��t;Xt; �t;X0t ; �.t;Xt; �t;X0t /; �
0.t;X0t ; �t/

�
dWt;

where as before, �t D L1.Xt/ D L.XtjW0
Œ0;t�/ is the conditional distribution of

Xt given W0
Œ0;t�. Again, given the feedback functions �0 and �, this stochastic

differential equation in R
d0 � R

d is of (conditional) McKean-Vlasov type.
As before, we search for the equilibrium condition for the minor player by

solving the optimization problem of an extra virtual minor player which chooses
a strategy L̨ given by a feedback function L� in the form . L̨ t D L�.t; LXt; �t;X0t //0�t�T

in order to minimize its expected cost:

J�
0;�. L̨ / D E

�Z T

0

f
�
t; LXt; �t;X

0
t ; L̨ t; �

0.t;X0t ; �t/
�
dt C g. LXT ; �T ;X

0
T/

	

;

where the dynamics of the virtual state . LXt/0�t�T are given by:

d LXt D b
�
t; LXt; �t;X

0
t ;

L�.t; LXt; �t;X
0
t /; �

0.t;X0t ; �t/
�
dt

C �
�
t; LXt; �t;X

0
t ;

L�.t; LXt; �t;X
0
t /; �

0.t;X0t ; �t/
�
d LWt;

for a Wiener process LW D . LWt/0�t�T independent of the other Wiener processes.
We search for minima in the class of feedback controls L̨ of the form . L̨ t D
L�.t; LXt; �t;X0t //0�t�T , and we denote the solution by:

L��
.�0; �/ D arg inf

L̨$ L�
J�

0;�. L̨ /:

Finally, we define the solution of a Nash equilibrium for the Markovian mean field
game with major and minor players as the solution of the same fixed point equation
(7.13), except for the fact that the functions . O�0; O�/ are now feedback functions of
the type considered here.

Next we return to the formulation of the open loop problem given in the previous
subsection. We shall use the alternative formulations given in this subsection when
we discuss the linear quadratic models in Subsection 7.1.6 where we compare the
solutions in the open loop and the closed loop cases.
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7.1.4 Back to the General Open Loop Problem

In order to proceed with the analysis of equilibria in open loop form, we introduce
the following assumption.

Assumption (Major Minor MFG). The functions b0, �0 and f0 are defined
on Œ0;T��R

d0 �P2.Rd0 /� A0 with values in R
d0 , Rd0�m0 and R respectively.

The functions b, � and f are defined on Œ0;T� � R
d � P2.Rd/ � R

d0 � A with
values in R

d, Rd�m and R respectively. Also, the real valued functions g0 and
g are defined on R

d0 � P2.Rd0 / and R
d � P2.Rd/ respectively.

Moreover, there exists a constant L � 0 such that:

(A1) For all t 2 Œ0;T�, x0; x0
0 2 R

d0 , x; x0 2 R
d, �;�0 2 P2.Rd/, ˛0; ˛0

0 2 A0
and ˛; ˛0 2 A,

j.b0; �0/.t; x0
0; �

0; ˛0
0/ � .b0; �0/.t; x0; �; ˛0/j

C j.b; �/.t; x0; �0; x0
0; ˛

0/ � .b; �/.t; x; �; x0; ˛/j
� L

�jx0
0 � x0j C jx0 � xj C j˛0

0 � ˛0j C j˛0 � ˛j C W2.�
0; �/

�
:

(A2) For all ˛0 2 A0 and ˛ 2 A, we have:

Z T

0

�
j.b0; �0; f0/.t; 0; ı0; ˛0/j2 C j.b; �; f /.t; 0; ı0; 0; ˛/j2

�
dt < 1:

(A3) For all x0; x0
0 2 R

d0 , ˛0; ˛0
0 2 A0 and �;�0 2 P2.Rd/, we have:

j.f0; g0/.t; x0
0; �

0; ˛0
0/ � .f0; g0/.t; x0; �; ˛0/j

� L
�
1C j.x0

0; ˛
0
0/j C j.x0; ˛0/j C M2.�

0/C M2.�/
�

� �j.x0
0; ˛

0
0/ � .x0; ˛0/j C W2.�

0; �/
�
;

and for all x0 2 R
d0 , x; x0 2 R

d, ˛; ˛0 2 A and �;�0 2 P2.Rd/,

j.f ; g/.t; x0; �0; x0; ˛0/ � .f ; g/.t; x; �; x0; ˛/j
� L

�
1C j.x0; ˛0/j C j.x; ˛/j C jx0j C M2.�

0/C M2.�/
�

� �j.x0; ˛0/ � .x; ˛/j C W2.�; �
0/
�
;

where as usual M2.�/
2 D R

Rd jxj2�.dx/.

(continued)
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(A4) The functions b0, b, f , and g are jointly continuously differentiable in
x0, x, ˛0, ˛ and � (in the L-sense) when the time variable is fixed.

Notice that, in order to lighten the notation which is already heavy enough,
we removed the dependence of b, � and f on the control ˛0 of the major player.
Conditions (A1) and (A2) guarantee that for all admissible controls, the stochastic
differential equations defining the dynamics of the state have unique solutions,
while (A2) and (A3) guarantee that the associated cost functionals are well defined.
Condition (A4) will be used when we define adjoint processes.

In this subsection, A (resp. A0) denotes the space of F (resp. F0) progressively
measurable processes ˛ (resp. ˛0) with values in A (resp. A0) such that:

E

Z T

0

j˛tj2dt < 1;




resp. E
0

Z T

0

j˛0t j2dt < 1
�

:

Optimization Problem for the Major Player
In this subsection we consider the limiting two-player game introduced in Subsec-
tion 7.1.2, and search for the major player’s best response ˛0 2 A0 to a given
control strategy ˛ 2 A of the representative minor player. This amounts to solving
the optimal control problem based on state controlled dynamics given by:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

dX0t D b0
�
t;X0t ;L1.Xt/; ˛

0
t

�
dt C �0

�
t;X0t ;L1.Xt/; ˛

0
t

�
dW0

t ;

X00 D x00;

dXt D b
�
t;Xt;L1.Xt/;X

0
t ; ˛t

�
dt C �

�
t;Xt;L1.Xt/;X

0
t ; ˛t

�
dWt;

X0 D x0;

(7.14)

and the cost functional:

J0.˛0;˛/ D E

�Z T

0

f0
�
t;X0t ;L1.Xt/; ˛

0
t

�
dt C g0

�
X0T ;L1.XT/

�
	

; (7.15)

where it is assumed that the control strategy ˛ 2 A is given, and where the
set of admissible controls is A0. In what follows, this stochastic control problem
will be denoted by (P1). It is of the McKean-Vlasov type. However, it is not
directly amenable to the results of Chapter (Vol I)-6 because of the presence of
the conditional distributions. For this reason, we take a little detour to develop the
tools needed to handle this problem. We do not give detailed proofs because the
arguments are very similar to those used in Chapter (Vol I)-6 and Chapter 1.
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A Maximum Principle for Conditional McKean-Vlasov Control Problems
We provide a convenient version of the stochastic maximum principle for the
optimal control problem that consists in minimizing J0 given in (7.15) over ˛0 2 A0

and state processes of the form (7.14). To do so, we mostly imitate the arguments
introduced in Chapter (Vol I)-6 to handle optimal control problems of the non-
conditional McKean-Vlasov type.

Here, the Hamiltonian is defined as:

H0.t; x0; x; �; y0; y; z00; z11; ˛0; ˛/

D b0.t; x0; �; ˛0/ � y0 C b.t; x; �; x0; ˛/ � y

C �0.t; x0; �; ˛0/ � z00 C �.t; x; �; x0; ˛/ � z11 C f0.t; x0; �; ˛0/;

(7.16)

for t 2 Œ0;T�, x0 2 R
d0 , x 2 R

d, � 2 P2.Rd/, y0 2 R
d0 , y 2 R

d, z00 2 R
d0�m0 ,

z11 2 R
d�m, ˛0 2 A0 and ˛ 2 A.

Adjoint Equations. The adjoint processes comprise two tuples of stochastic pro-
cesses, .P0;P/ and .Q00;Q01;Q10;Q11/: P0 denotes the adjoint process associated
with X0 and Q00 and Q01 its martingale representation terms with respect to W0 and
W; similarly, P denotes the adjoint process associated with X and Q10 and Q11 its
martingale representation terms. To avoid any possible confusion with the notations
used below in the maximum principle for the minor player, we here use the letters
.P;Q/ for the adjoint processes in lieu of .Y;Z/.

The dynamics of P0 and P are given as follows: P0 is intended to account for the
sensitivity of the Hamiltonian under variations of X0, while P is intended to account
for the sensitivity of H0 under variations of X and the conditional law of X given W0.

For a tuple .X0;X;˛0;˛/, we get as backward equation for P0:

dP0t D �@x0H0

�
t;bXt;L1.Xt/;

bPt;
bQt; ˛

0
t ; ˛t

�
dt C Q00

t dW0
t C Q01

t dWt; (7.17)

for t 2 Œ0;T�, with the terminal boundary condition Y0T D @x0g0.X
0
T ;L1.XT//,

where, to lighten the notations, we write bX D .X0;X/, bP D .P0;P/ and bQ D
.Q00;Q01;Q10;Q11/.

The derivation of the backward equation for P obeys the same principle except
that, in addition, it must incorporate the derivatives of H0 and g0 with respect to the
measure argument. The form of the derivative terms is similar to that in the backward
equation (Vol I)-(6.31) in the maximum principle for optimal control problems of
the unconditional McKean-Vlasov type, except that, due to the conditioning, the
expectation on the copy Q̋ appearing in (Vol I)-(6.31) now becomes an expectation
on some copy Q̋ 1 of the sole ˝1 in lieu of the whole ˝. We get as backward
equation for P:

dPt D �@xH0.t;
bXt;L1.Xt/;

bPt;
bQt; ˛

0
t ; ˛t/dt C Q10

t dW0
t C Q11

t dWt

� QE1�@�H0

�
t;bQXt;L1.Xt/;

bQPt;
bQQ

t
; ˛0t ; Q̨ t

�
.Xt/

�
dt;

(7.18)
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for t 2 Œ0;T�, with terminal condition PT D E
1
�
@�g0

�
X0T ;L1.XT/

�
.XT/

�
. We used

the same notation as in Subsection 4.3.3: . Q̋ 1; QF1; QP1/ is a copy of the probability
space .˝1;F1;P1/, the expectation under QP1 being denoted by QE1. Given such a
copy, together with a random variable X defined on ˝ D ˝0 � ˝1, we denote by
QX the random variable defined as a copy of X on the space Q̋ D ˝0 � Q̋ 1. Notice
that, in the second line of (7.18), there is no need to write Q̨ 0t in QE1 since ˛0t is
F0

t -measurable. Similarly for X0T in the terminal condition.
Therefore, we conclude that, for each tuple .X0;X;˛0;˛/, the associated adjoint

process .P0;P;Q00;Q01;Q10;Q11/ is defined as the solution of the backward
stochastic differential equation:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

dP0t D � @x0H0

�
t;bXt;L1.Xt/;

bPt;
bQt; ˛

0
t ; ˛t

�
dt C Q00

t dW0
t C Q01

t dWt;

dPt D � @xH0

�
t;bXt;L1.Xt/;

bPt;
bQt; ˛

0
t ; ˛t

�
dt C Q10

t dW0
t C Q11

t dWt

� QE1�@�H0

�
t;bQXt;L1.Xt/;

bQPt;
bQQ

t
; ˛0t ; Q̨ t

�
.Xt/

�
dt;

P0T D @x0g0.X
0
T ;L1.XT//; PT D E

1
�
@�g0.X

0
T ;L1.XT//.XT/

�
:

(7.19)

Despite the presence of the conditional distributions in the coefficients, the stan-
dard proofs of existence and uniqueness of solutions of BSDEs with Lipschitz
coefficients still apply to (7.19), in full analogy with the discussion following
Definition (Vol I)-6.5. In order to avoid too many detours away from the route to
an equilibrium, we do not state these existence and uniqueness results. The reader
can easily formulate them if he or she feels compelled to do so. We merely note that
their assumptions are satisfied here. Indeed, under assumption Major Minor MFG,
the derivatives of b, b0, � and �0 in .x0; x/ are bounded, and the derivatives in � are
bounded in L2.

In the following we systematically add a bar to denote the expectation under P1.
For example, NP0t stands for E1ŒP0t �.

Necessary Form of the Pontryagin Principle. The necessary form of the max-
imum principle can be derived by duplicating the proof of Theorem (Vol I)-6.14.
Whenever A0 is a convex set and H0 is convex in the parameter ˛0, any control
strategy ˛0 D .˛0t /0�t�T which minimizes J0.˛0;˛/ for a given ˛ 2 A0 should
satisfy:

E
1
�
H0

�
t;bXt;L1.Xt/;

bPt;
bQt; ˛

0
t ; ˛t

�� � E
1
�
H0

�
t;bXt;L1.Xt/;

bPt;
bQt; ˇ; ˛t

��
;

dt ˝ dP almost-everywhere for every ˇ 2 A0. Observe that, in contrast with the
statement of Theorem (Vol I)-6.14, we now take the expectation under P

1 in the
minimization of the Hamiltonian. We must do so to account for the fact that ˛0

is merely F
0-progressively measurable. Equivalently, with the same notation as in

the proof of Theorem (Vol I)-6.14, the process ˇ therein is just F0-progressively
measurable.
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Actually, using the special form of H0, we can get rid of the expectation E
1 in the

minimization of the Hamiltonian. Indeed, the necessary condition may be rewritten

(observe the bars over the process NP0 and NQ00
):

8ˇ 2 A0; H00

�
t;Xt;L1.Xt/; NP0t ; NQ00

t ; ˛
0
t

� � H00

�
t;Xt;L1.Xt/; NP0t ; NQ00

t ; ˇ
�
;

where H00 stands for the reduced Hamiltonian:

H00.t; x0; �; y0; z00; ˛0/ D b0.t; x0; �; ˛0/ � y0

C �0.t; x0; �; ˛0/ � z00 C f0.t; x0; �; ˛0/:

This prompts us to formulate the following assumption:

Assumption (Major Hamiltonian). The set A0 is convex and H00 is convex in
˛0. Moreover, for each fixed .t; x0; �; y0; z00/, there exists a unique minimizer
of the reduced Hamiltonian H00 as a function of ˛0. It is denoted by
Ǫ 0.t; x0; �; y0; z00/.

Then, the necessary part of the Pontryagin stochastic maximum, used as a
principle to guide our intuition, suggests that as long as the control strategy ˛0 D
.˛0t /0�t�T is optimal, it must be of the form .˛0t D Ǫ 0.X0t ;Xt; NP0t ; NQ00

t //0�t�T .

Sufficient Form of the Pontryagin Principle. Under suitable convexity conditions
on the coefficients and for a given ˛ 2 A, . Ǫ 0t D Ǫ 0.t;X0t ;L1.Xt/; NP0t ; NQ00

t //0�t�T is
an optimizer of the problem inf˛02A0 J0.˛0;˛/ given in (7.15) if we can solve the
forward-backward stochastic differential equation:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D b0
�
t;X0t ;L1.Xt/; Ǫ 0t

�
dt C �0

�
t;X0t ;L1.Xt/; Ǫ 0t

�
dW0

t ;

dXt D b
�
t;Xt;L1.Xt/;X

0
t ; ˛t

�
dt C �

�
t;Xt;L1.Xt/;X

0
t ; ˛t

�
dWt;

dP0t D �@x0H0

�
t;bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; ˛t

�
dt C Q00

t dW0
t C Q01

t dWt;

dPt D �@xH0

�
t;bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; ˛t

�
dt C Q10

t dW0
t C Q11

t dWt

� QE1�@�H0

�
t;bQXt;L1.Xt/;

bQPt;
bQQ

t
; Ǫ 0t ; Q̨ t

�
.Xt/

�
dt;

(7.20)

with the prescription that Ǫ 0t D Ǫ 0.t;X0t ;L1.Xt/; NP0t ; NQ00
t / for t 2 Œ0;T� and with the

initial and terminal conditions given by:
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8
ˆ̂
<

ˆ̂
:

X00 D x00; X0 D x0;

P0T D @x0g0
�
X0T ;L1.XT/

�
;

PT D E
1
�
@�g0

�
X0T ;L1.XT/

�
.XT/

�
:

We shall solve this general FBSDE only in a few particular cases. For the sake of
convenience, we give a name to the convexity assumption needed for the sufficient
part of the stochastic maximum principle proved above:

Assumption (Major Convexity). The function R
d0 � P2.Rd/ 3 .x; �/ 7!

g.x; �/ is convex and for each fixed .t; y0; y; z00; z11; ˛/, the function:

R
d0 �R

d �P2.Rd/� A0 3 .x0; x; �; ˛0/ 7! H0.t; x0; x; �; y0; y; z00; z11; ˛0; ˛/

is also convex.

Observe that it does not suffice to require that the reduced Hamiltonian H00 is
convex. We really need the whole Hamiltonian H0 to be jointly convex in .x0; x; �/.

We then have the following result:

Proposition 7.4 Let assumptions Major Minor MFG, Major Hamiltonian and
Major Convexity be in force. If, for a given ˛ 2 A, the process:

�
X0;X;P0;P;Q00;Q01;Q10;Q11

�

is a solution of the FBSDE (7.20) with the constraint:

Ǫ 0t D Ǫ 0�t;X0t ;L1.Xt/; NP0t ; NQ00
t

�
; t 2 Œ0;T�;

then Ǫ 0 is optimal for the problem .P1/ and .X0;X/ is the associated optimally
controlled state process.

Optimization Problem for the Representative Minor Player
For the representative minor player’s best response optimization problem, for each
fixed admissible control ˛0 D .˛0t /0�t�T of the major player, we fix a stochastic
measure flow �, that is a continuous F0-adapted process � D .�t/0�t�T with values
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in P2.Rd/ such that E0Œsup0�t�T M2.�t/
2� < 1 and we solve the control problem

based on the controlled dynamics:

(
d LX0t D b0.t; LX0t ; �t; ˛

0
t /dt C �0.t; LX0t ; �t; ˛

0
t /dW0

t ;
LX00 D x00;

d LXt D b.t; LXt; �t; LX0t ; ˛t/dt C �.t; LXt; �t; LX0t ; ˛t/dWt; LX0 D x0;
(7.21)

and the cost functional:

J.˛0;˛/ D E

� Z T

0

f .t; LXt; �t; LX0t ; ˛t/C g. LXT ; �T ; LX0T/
	

: (7.22)

Note that since ˛0 and � are fixed, the first SDE in (7.21) can be solved separately,
and its solution will appear in the second SDE of (7.21) and the cost functional
only as an exogenous source of randomness. If we choose the set of admissible
controls for the representative minor player to be A, this problem is a standard non-
Markovian stochastic control problem which we denote by (P2). Because of this

special structure, namely the fact that the process LX0
can be determined off line, we

only introduce adjoint processes for LX D . LXt/0�t�T . We denote by bZ D .Z10;Z11/
its martingale representation terms with respect to W0 and W. Also, we use the
reduced Hamiltonian:

H.t; x0; x; �; y; z11; ˛/ D b.t; x; �; x0; ˛/ � y

C �.t; x; �; x0; ˛/ � z11 C f .t; x; �; x0; ˛/:
(7.23)

From Chapter 1 we know that, for each admissible control strategy ˛, the adjoint
process .Y;bZ/ D .Y;Z10;Z11/ associated with ˛ is given as the solution of the
BSDE:

(
dYt D �@xH.t;bLXt; �t;Yt;Z

11
t ; ˛t/dt C Z10t dW0

t C Z11t dWt;

YT D @xg. LXT ; �T ; LX0T/;
(7.24)

wherebLX D . LX0
; LX/. Observe that, in comparison with Chapter 1, there is no need to

discuss any compatibility condition since the filtrations F0 and F are assumed to be
generated by W0 and .W0;W/.

The existence of the adjoint processes associated with a given admissible control
strategy ˛ is a consequence of the standard existence result of solutions of BSDEs
since the partial derivatives of b and � with respect to x0 and x are bounded.

Necessary Form of the Pontryagin Principle. Again, whenever A is convex and
H is convex in ˛, the necessary part of the Pontryagin stochastic maximum principle
suggests that, if the admissible control ˛ D .˛t/0�t�T is optimal, the Hamiltonian
(7.23) should be minimized along the trajectory of .X0;X;Y;bZ/.
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In analogy with our analysis of the major player optimization problem, we
introduce a tailor-made hypothesis for the minimization of this Hamiltonian.

Assumption (Minor Hamiltonian). The set A is convex and H is convex in
˛. Moreover, for each fixed .t; x0; x; �; y; z11/, there exists a unique minimizer
of the above reduced Hamiltonian H as a function of ˛. This minimizer is
denoted by Ǫ .t; x0; x; �; y; z11/.

So given assumption Minor Hamiltonian, any optimal admissible control ˛ D
.˛t/0�t�T 2 A should be of the form .˛t D Ǫ .t; LX0t ; LXt; �t;Yt;Z11t //0�t�T .

Sufficient Form of the Pontryagin principle. The sufficient part of the stochastic
maximum principle may be easily derived. Under suitable convexity conditions
on the coefficients and for a given ˛0 2 A0, . Ǫ t D Ǫ .t; LX0t ; LXt; �t;Yt;Z11t //0�t�T

is an optimizer of the problem inf˛2A J.˛0;˛/ if we can solve the forward-
backward stochastic differential equation obtained by plugging this minimizer into
the controlled dynamics and the adjoint BSDE (7.24):

8
ˆ̂
<̂

ˆ̂
:̂

d LX0t D b.t; LX0t ; �t; ˛
0
t /dt C �.t; LX0t ; �t; ˛

0
t /dW0

t ;

d LXt D b.t; LXt; �t; LX0t ; Ǫ t/dt C �.t; LXt; �t; LX0t ; Ǫ t/dWt;

dYt D �@xH.t;bLXt; �t;Yt;Z
11
t ; Ǫ t/dt C Z10t dW0

t C Z11t dWt;

(7.25)

for t 2 Œ0;T�, with the prescription Ǫ t D Ǫ .t; LX0t ; LXt; �t;Yt;Z11t / for t 2 Œ0;T� and
with the initial and terminal conditions given by:

LX00 D x00; LX0 D x0; YT D @xg. LXT ; �T ; LX0T/:

As before, we shall make use of the following convexity assumption:

Assumption (Minor Convexity). The function R
d 3 x 7! g.x; �; x0/ is

convex for each fixed .x0; �/. Moreover, the function:

R
d � A 3 .x; ˛/ 7! H.t; x0; x; �; y; z11; ˛/

is also convex for each fixed .t; x0; �; y; z11/.
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We have the following proposition:

Proposition 7.5 Let assumptions Major Minor MFG, Minor Hamiltonian and

Minor Convexity be in force. If, for a given ˛0 2 A0 with LX0
as associated

controlled process, the stochastic process . LX;Y;Z10;Z11/ solves the FBSDE (7.25),
then the control:

Ǫ t D Ǫ .t; LX0t ; LXt; �t;Yt;Z
11
t /; t 2 Œ0;T�;

is an optimal control for the problem (P2), and LX is the associated optimally
controlled state process.

Nash Equilibrium for the Limiting Two-Player Game
In order to construct a Nash equilibrium for the two-player game described in the
first step of our formulation of the mean field game with major and minor players,
we assume that assumptions Major Minor MFG, Major Hamiltonian, Major
Convexity, Minor Hamiltonian, and Minor Convexity hold and, for a continuous
F
0-adapted process � with values in P2.Rd/ such that E0Œsup0�t�T M2.�t/

2� < 1,
we consider the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D b0.t;X
0
t ;L1.Xt/; Ǫ 0t /dt C �0.t;X

0
t ;L1.Xt/; Ǫ 0t /dW0

t ;

dXt D b.t;Xt;L1.Xt/;X
0
t ; Ǫ t/dt C �.t;Xt;L1.Xt/;X

0
t ; Ǫ t/dWt;

d LX0t D b0.t; LX0t ; �t; Ǫ 0t /dt C �0.t; LX0t ;L1.Xt/; Ǫ 0t /dW0
t ;

d LXt D b.t; LXt; �t; LX0t ; Ǫ t/dt C �.t; LXt;L1.Xt/; LX0t ; Ǫ t/dWt;

dP0t D � @x0H0.t;
bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; Ǫ t/dt C Q00

t dW0
t C Q01

t dWt;

dPt D � @xH0.t;
bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; Ǫ t/dt C Q10

t dW0
t C Q11

t dWt

� QE1�@�H0.t;
bQXt;L1.Xt/;

bQPt;
bQQ

t
; Ǫ 0t ; QǪ t/.Xt/

�
dt;

dYt D � @xH.t;bLXt; �t;Yt;Z
11
t ; Ǫ t/dt C Z10t dW0

t C Z11t dWt;

(7.26)

with the initial and terminal conditions given by:

8
ˆ̂
<

ˆ̂
:

X00 D x00; X0 D x0; LX00 D x00; LX0 D x0;

P0T D @x0g0.X
0
T ;L1.XT//; PT D E

1
�
@�g0.X0T ;L.XT//.XT/

�
;

YT D @xg. LXT ; �T ; LX0T/;

with:

Ǫ 0t D Ǫ 0.t;X0t ;L1.Xt/; NP0t ; NQ00
t /; Ǫ t D Ǫ .t; LX0t ; LXt; �t;Yt;Z

11
t /; t 2 Œ0;T�:
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If this FBSDE has a solution, then by definition of a Nash equilibrium, . Ǫ 0; Ǫ / is a
Nash equilibrium for the two-player stochastic differential game (7.5)–(7.6).

The Consistency Condition
Now, in the limiting formulation of the major minor problem, the consistency
condition (7.7) imposes the additional mean field constraint:

�t D L1.Xt/; 8t 2 Œ0;T�:

Plugging it into FBSDE (7.26) gives the following ultimate FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D b0.t;X
0
t ;L1.Xt/; Ǫ 0t /dt C �0.t;X

0
t ;L1.Xt/; Ǫ 0t /dW0

t ;

dXt D b.t;Xt;L1.Xt/;X
0
t ; Ǫ t/dt C �.t;Xt;L1.Xt/;X

0
t ; Ǫ t/dWt;

dP0t D �@x0H0.t;
bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; Ǫ t/dt C Q00

t dW0
t C Q01

t dWt;

dPt D �@xH0.t;
bXt;L1.Xt/;

bPt;
bQt; Ǫ 0t ; Ǫ t/dt C Q10

t dW0
t C Q11

t dWt

� QE1�@�H0.t;
bQXt;L1.Xt/;

bQPt;
bQQ

t
; Ǫ 0t ; QǪ t/.Xt/

�
dt;

dYt D �@xH.t;bXt;L1.Xt/;Yt;Z
11
t ; Ǫ t/dt C Z10t dW0

t C Z11t dWt;

(7.27)

with initial and terminal conditions given by:

8
ˆ̂
<

ˆ̂
:

X00 D x00; X0 D x0;

P0T D @x0g0.X
0
T ;L1.XT//; PT D E

1
�
@�g0.X

0
T ;L1.XT//.XT/

�
;

YT D @xg.XT ;L1.XT/;X
0
T/;

(7.28)

where for 0 � t � T , we define:

Ǫ 0t D Ǫ 0�t;X0t ;L1.Xt/; NP0t ; NQ00
t

�
; Ǫ t D Ǫ�t;X0t ;Xt;L1.Xt/;Yt;Z

11
t

�
;

Remark 7.6 In equilibrium, .X0;X/ and . LX0
; LX/ are the same and we could replace

the consistency condition by �t D L1. LXt/ D L1.Xt/, for 0 � t � T.

Proving existence and uniqueness for conditional McKean-Vlasov FBSDEs of
the form of (7.27) is as hard as solving mean field games with common noise and
we shall not attempt to address this question here. We shall only consider it in the
case of linear quadratic models.
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7.1.5 Conditional Propagation of Chaos and -Nash Equilibria

In this subsection we prove that solutions of the limiting mean field game problem
with major and minor players induce approximate Nash equilibria for the finite
player game (7.1)–(7.3)–(7.4). This is very similar to what is done in Section 6.1
of Chapter 6. Our interest in this result is that it justifies the formulation we chose
for the major minor mean field game problem.

Throughout the analysis, assumptions Major Minor MFG, Major Hamilto-
nian, Minor Hamiltonian, Major Convexity and Minor Convexity are in force.
In addition, we also assume for the sake of simplicity that the volatility coefficients
are constant.

Assumption (Major Minor Convergence).

(A1) The diffusion coefficients �0 and � are constant matrices.

A convenient consequence of assumption Major Minor Convergence is that the
minimizer Ǫ .t; x0; x; �; y; z11/ of the Hamiltonian A 3 ˛ 7! H.t; x0; x; �; y; z11; ˛/
in assumption Minor Hamiltonian is independent of z11.

In order to proceed, we use the same set-up as in Chapter 2 for constructing the
particle system (2.3) and in Chapter 6 for constructing �-Nash equilibria to finite
player games associated with standard mean field games. As above, the probability
space .˝;F ;F;P/ is the product of two probability spaces .˝0;F0;F0;P0/ and
.˝1;F1;F1;P1/. The space .˝0;F0;F0;P0/ carries the m0-dimensional Wiener
process W0 and F

0 is the complete filtration generated by W0. The probability
space .˝1;F1;F1;P1/ carries a sequence of m-dimensional independent Wiener
processes .Wi/i�1, which are assumed to be Brownian motions with respect to the
filtration F

1. We then denote by .˝;F ;P/ the completion of the product space
.˝;F0 ˝ F1;P0 ˝ P

1/ and endow it with the filtration F D .Ft/0�t�T obtained
by augmenting the product filtration F

0 ˝ F
1 to make it right-continuous and by

completing it. For any integer N � 1, we then call F
.0;N/ the completed right

continuous filtration generated by .W0; � � � ;WN/.
Below, we use freely the notation introduced at the beginning of this section for

games with one major player and N minor players. We shall say that a strategy
˛N;0 is admissible for the major player if ˛N;0 2 A0. Motivated by the statement of
Theorem 2.12, we say that ˛N;0 is .(; q/-admissible for some ( � 0 and q > 4, and
we write ˛N;0 2 A

(;q
0 if:

E

� Z T

0

j˛N;0
t jqdt

	

� (:
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A strategy ˛N;i is admissible for the i-th minor player if it is F
.0;N/-progressively

measurable, takes its values in A � R
k, and if its energy:

E

� Z T

0

j˛N;i
t j2dt

	

is finite. Then, we write ˛N;i 2 NA.0;N/. The strategy ˛N;i is said to be (-admissible if
this energy is not greater than (, in which case we write ˛N;i 2 NA(.0;N/.

In the present context, the definition of an �-Nash equilibrium introduced in
Chapter 6 takes the following form:

Definition 7.7 A set of admissible strategies ˛.0;N/ D .˛N;0;˛N;1; � � � ;˛N;N/ in
A
(;q
0 � . NA(.0;N//N, for some ( � 0 and q > 4, is called an �-Nash equilibrium in

A
(;q
0 � . NA(.0;N//N for the stochastic differential game with major and minor players

(7.1)–(7.3)–(7.4) if, for each ˇ0 2 A
(;q
0 ,

JN;0
�
˛N;0;˛N;1; � � � ;˛N;N

� � JN;0
�
ˇ0;˛N;1; � � � ;˛N;N

�C �;

and, for each i 2 f1; � � � ;Ng and ˇi 2 NA(.0;N/,

JN;i
�
˛N;0;˛N;1; � � � ;˛N;N

�

� JN;i
�
˛N;0;˛N;1; � � � ;˛N;i�1;ˇi;˛N;iC1; � � � ;˛N;N

�C �:

Before stating and proving the main result of this section, we introduce, in addi-
tion to (A1) in assumption Major Minor Convergence, the following assumptions:

There exist constants q > 4 and ( such that:

(A2) The FBSDE (7.27) with W D W1 and F D F
.0;1/ has a unique

solution. Moreover, there exists a collection of random variables
.Vt.x//0�t�T;x2Rd from˝0 into R

d such that, for any x 2 R
d, the process

.Vt.x//0�t�T is F0-progressively measurable, for any t 2 Œ0;T� and any
!0 2 ˝0, the realization of Vt W Rd 3 x 7! Vt.x/ is a Lipschitz function
whose Lipschitz constant can be bounded uniformly in .t; !0/, and for
almost every .t; !0/ under Leb1 ˝ P

0,

Yt D Vt.Xt/:

(A3) The process Ǫ 0 satisfies:

E
0

Z T

0

j Ǫ 0t jqdt � (:

(continued)
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(A4) The minimizer Ǫ in assumption Minor Hamiltonian is Lipschitz in
.x; y/, uniformly in the other variables. Moreover, the solution to (7.27)
satisfies:

E
0

Z T

0

ˇ
ˇ Ǫ�t;X0t ; 0;L1.Xt/;Vt.0/

�ˇ
ˇqdt � (:

In general, assumption (A2) is merely wishful thinking as it may be difficult
to check in practice. A concrete sufficient condition of well posedness and the
existence of a decoupling field .Vt.x//0�t�T;x2Rd will be given for the linear
quadratic Gaussian (LQG) models which we study next. Of course, the assumption
that W D W1 does not play any role in the analysis of the equation. It is here to
guarantee that the notations are consistent with our new description of .˝;F ;F;P/.
In particular, it is implicitly assumed that the same results hold with Wi, for any
i � 2, in lieu of W1, meaning that the FBSDE would be uniquely solvable as well
with the same decoupling field .Vt.x//0�t�T . We refer to Subsection 6.1.2 for a
detailed review of these facts for mean field games with a common noise.

Below, for t 2 Œ0;T� and x 2 R
d, we use the convenient notation Ǫ .t; x/ for the

F0
t -measurable random variable Ǫ .t;X0t ; x;L1.Xt/;Vt.x//, where .X0;X/ is given by

the FBSDE (7.27).
The following theorem shows that the construction of approximate Nash equilib-

ria from the solution of a mean field game problem is still possible in the presence
of major and minor players.

Theorem 7.8 Let assumptions Major Minor MFG, Major Hamiltonian, Minor
Hamiltonian, Major Convexity, Minor Convexity, and Major Minor Conver-
gence be in force. Then, for any N � 1, there exists a constant C(;q, depending
on ( and q, but not on N, such that the strategy in partial feedback form given by
. Ǫ 0t ; . Ǫ .t;XN;i

t //1�i�N/0�t�T is a .C(;q
p
�N/-Nash equilibrium for the .NC1/-player

game (7.1)–(7.3)–(7.4) in A
(;q
0 � . NA(.0;N//N, where:

�N D N�2=max.d;4/
�
1C ln.N/1fdD4g

�
:

Observe that the definition of the strategy used in the statement is implicit
since it depends on the optimal path itself. Namely, .XN;1; : : : ;XN;N/ is given as
the solution of a stochastic differential equation with random coefficients obtained
by plugging the strategy into (7.1). This equation is uniquely solvable under the
standing assumption. Notice also that the strategy profile is not really in feedback
form because of the dependence upon W0. Obviously, the strategy played by the
major player, namely Ǫ 0, is in open loop. On the other hand, the strategy proposed
for each minor player, namely . Ǫ .t;XN;i

t //0�t�T for i 2 f1; � � � ;Ng, has a mixed
structure. The sole information appearing in feedback form is the private state of the
minor player i itself while, in analogy with the construction of approximate Nash
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equilibria for mean field games with a common noise, the information related to
the major player is encapsulated into the open loop structure of the strategy profile.
According to the terminology introduced in Chapter 6, see Subsection 6.1.2, the
strategy played by the minor player i may be said to be in semi-closed feedback
form.

As for mean field games with a common noise, the construction of a control
strategy in complete feedback form would require a more detailed analysis of the
limiting game, say, for instance, of a relevant version of the master equation.

Proof.

First Step. For a fixed N, we investigate the fluctuations in the system obtained by letting the
players use the strategies defined in the statement. When all the players apply the prescribed
controls, the resulting controlled states, which we denote by . OXN;i/0�i�N , satisfy:

8
ˆ̂
<

ˆ̂
:

d OXN;0
t D b0

�
t; OXN;0

t ; O�N
t ; Ǫ 0t

�
dt C �0dW0

t ;
OXN;0
0 D x00;

d OXN;i
t D b

�
t; OXN;i

t ; O�N
t ;

OXN;0
t ; Ǫ .t; OXN;i

t /
�
dt C �dWi

t ;
OXN;i
0 D x0;

i D 1; � � � ;N;
(7.29)

where we define:

O�N
t D 1

N

NX

iD1

ıOXN;i
t
:

Following the approach presented in Chapter 6, we define the limiting nonlinear processes as
the solution of:

(
dX0t D b0

�
t;X0t ;L1.X1t /; Ǫ 0t

�
dt C �0dW0

t ; X00 D x00;

dXi
t D b

�
t;Xi

t;L1.Xi
t/;X

0
t ; Ǫ .t;Xi

t/
�
dt C �dWi

t ; Xi
0 D x0; i � 1:

(7.30)

Observe from Proposition 2.11 together with the assumption that the decoupling field is
independent of the Wiener process W driving the dynamics of the state of the minor player,
that X0 in (7.30) coincides with X0 in (7.26), which makes licit the use of the same notation.
By the same argument, we have L1.Xi

t/ D L1.X1t /, for all t 2 Œ0; T�. Also, in order to have the
same notation for the major and the minor players in the limiting game, we shall sometimes
write X0 for X0.

Recall also that .Wi/i�0 is an infinite sequence of independent standard Wiener processes.
The stochastic measure flow .L1.X1t //0�t�T will be sometimes denoted by � D .�t/0�t�T

in the following. Standard estimates on the solutions of forward McKean-Vlasov equations
extended to the conditional case as in Theorem 2.12 in Chapter 2 give the existence of a
constant C such that:

max
0�i�N

E

h
sup
0�t�T

j OXN;i
t � Xi

tj2
i

� C�N ; (7.31)
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and by applying the usual upper bound for the 2-Wasserstein distance, we also have:

E

h
sup
0�t�T

W2

�
O�N

t ;
1

N

NX

iD1

ıXi
t

�2i � C�N ; (7.32)

where C is independent of N, but depends upon (, q, and the Lipschitz constants of b0 and
b in the variables x0, �, and x, and of Ǫ and .Vt.�//0�t�T in the variable x. The dependence
upon ( and q comes through the following bound. Thanks to (A3) in assumption Major
Minor Convergence,

E
0

Z T

0

j Ǫ 0t jqdt � (; (7.33)

so that, together with the bound E
0Œsup0�t�T M2.L1.Xt//

2� < 1, we obtain
E
0Œsup0�t�T jX0t jq� � C(;q for a constant C(;q depending on ( and q. Combining with

(A4), we deduce that E0Œsup0�t�T jX1t jq� � C(;q, which is the required bound to let the
machinery of Theorem 2.12 work.

Next, we turn our attention to the cost functionals. We define:

OJN;0 D E

�Z T

0

f0.t; OXN;0
t ; O�N

t ; Ǫ 0t /dt C g0. OXN;0
T ; O�N

T /

	

;

J0 D E

�Z T

0

f0.t;X
0
t ; �t; Ǫ 0t /dt C g0.X

0
T ; �T/

	

;

and we have, by (A3) in assumption Major Minor MFG that:

jOJN;0 � J0j D
ˇ
ˇ
ˇ
ˇE

�Z T

0

f0.t; OXN;0
t ; O�N

t ; Ǫ 0t /dt C g0. OX0;NT ; O�N
T /

	

� E

�Z T

0

f0.t;X
0
t ; �t; Ǫ 0t /dt C g0. OX0T ; �T/

	ˇ
ˇ
ˇ
ˇ

� C

�

E

Z T

0

h�
1C j OXN;0

t j C jX0t j C j Ǫ 0t j C M2. O�N
t /C M2.�t/

�

�
�
j OXN;0

t � X0t j C W2. O�N
t ; �t/

�i
dt

C E

h�
1C j OXN;0

T j C jX0T j C M2. O�N
T /C M2.�T/

�

�
�
j OX0;NT � X0T j C W2. O�N

T ; �T/
�i	

:

Hence, by Cauchy Schwarz inequality,
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jOJN;0 � J0j

� CE

�Z T

0

�
1C j OXN;0

t j2 C jX0t j2 C 1

N

NX

iD1

�j OXN;i
t j2 C jX1t j2�

�
dt

	1=2

� E

�Z T

0

�
j OXN;0

t � X0t j2 C W2. O�N
t ; �t/

2
�

dt

	1=2

C CE

h�
1C j OXN;0

T j C jX0T j C 1

N

NX

iD1

�j OXN;i
T j2 C jX1T j2�

�2i1=2

� E

h�
j OXN;0

T � X0T j C W2. O�N
T ; �T/

�2i1=2
:

(7.34)

By (7.31), we have:

max
0�i�N

E
�

sup
0�t�T

j OXN;i
t j2� � C(;q:

By applying (7.31) and (7.32), we deduce that:

OJN;0 D J0 C O.�1=2N /: (7.35)

Second Step. Assume now that the major player uses a different admissible control
ˇ0 2 A

(;q
0 , and that the minor players still use the strategies in open loop form

. Ǫ .t; OXN;i
t //0�t�T;1�i�N . The resulting perturbed state processes will be denoted by

.UN;i/0�i�N . They solve the system:

8
ˆ̂
<

ˆ̂
:

dUN;0
t D b0.t;U

N;0
t ; N�N

t ; ˇ
0
t /dt C �0dW0

t ; UN;0
0 D x00;

dUN;i
t D b

�
t;UN;i

t ; N�N
t ;U

N;0
t ; Ǫ .t; OXN;i

t /
�
dt C �dWi

t ; UN;i
0 D x0;

i D 1; � � � ;N;
(7.36)

where as usual,

N�N
t D 1

N

NX

iD1

ıUN;i
t
:

Note that .UN;i/1�i�N , and thus . N�N
t /0�t�T , are not F0-progressively measurable in general.

In order to apply Theorem 2.12 of Subsection 2.1.4 in Chapter 2, we combine (7.30) and
(7.36) and consider the limiting nonlinear processes defined as the solution of:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

dX0t D b0.t;X
0
t ;L1.X1t /; Ǫ 0t /dt C �0dW0

t ; X00 D x00;

dXi
t D b

�
t;Xi

t;L1.Xi
t/;X

0
t ; Ǫ .t;Xi

t/
�
dt C �dWi

t ; Xi
0 D x0; i � 1;

dU0
t D b0.t;U

0
t ;L1.U1

t /; ˇ
0
t /dt C �0dW0

t ; U0
0 D x00;

dUi
t D b

�
t;Ui

t;L1.Ui
t/;U

0
t ; Ǫ .t;Xi

t/
�
dt C �dWi

t ; Ui
0 D x0; i � 1:

(7.37)
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Adapting the argument used in Theorem 2.12 to the present situation and using (7.31), we
deduce that there exists a constant C0 such that:

E

h
sup
0�t�T

jUN;i
t � Ui

tj2
i

� C0�N ;

where C0 depends upon T , the Lipschitz constants of b0 and b in the variables x0, �, and x,
and of Ǫ and .Vt.�//0�t�T in the variable x, and upon:

E

Z T

0

jˇ0t jqdt;

for the same q as above. Since the latter is assumed to be less than (, we can replace C0 by
the constant C(;q which we used before, provided that it is allowed to increase from line to
line.

Making use of (A2) and (A4) in assumption Major Minor Convergence, it also holds:

E

Z T

0

jˇ0t jqdt � ( ) E

h
sup
0�t�T

�jU0
t jq C jU1

t jq�
i

� C(;q:

Using the same estimates as in (7.34), we deduce that, for all ˇ0 2 A
(;q
0 ,

ˇ
ˇJN;0

�
ˇ0;

�
. Ǫ .t; OXN;i

t //0�t�T
�

iD1;��� ;N

� � J0
�
ˇ0; . Ǫ .t;X1t //0�t�T

�ˇ
ˇ � C(;q

p
�N ; (7.38)

where J0.ˇ0; . Ǫ .t;X1t //0�t�T/ is defined as in (7.6). Finally, since . Ǫ 0t ; Ǫ .t;X1t //0�t�T solves
the limiting two-player game problem driven by W0 and W1, it is clear that:

J0 � J0
�
ˇ0; . Ǫ .t;X1t //0�t�T

�
; (7.39)

and combining (7.35), (7.38) and (7.39), we get the desired result for the major player.

Third Step. We now consider the case when a minor player changes its strategy unilaterally,
and without loss of generality we consider the case when the minor player with index 1
changes its strategy to ˇ 2 NA(.0;N/. This part of the proof mimics very closely the proofs of
Theorems 6.7 and 6.13 of Sections 6.1.1 and 6.1.2 in Chapter 6, and we will refer to these
proofs for the details which we skip in the present argumentation. The resulting perturbed
controlled dynamics are now given by:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

dUN;0
t D b0.t;U

N;0
t ; N�N

t ; Ǫ 0t /dt C �0dW0
t ; UN;0

0 D x00;

dUN;1
t D b.t;UN;1

t ; N�N
t ;U

N;0
t ; ˇt/dt C �dW1

t ; UN;1
0 D x0;

dUN;i
t D b

�
t;UN;i

t ; N�N
t ;U

N;0
t ; Ǫ .t; OXN;i

t /
�
dt C �dWi

t ; UN;i
0 D x0;

i D 2; � � � ;N:

(7.40)

Using the usual estimates on the difference between UN;i and OXN;i
, and applying Gronwall’s

inequality, we show that there exists a constant C, independent of N, such that:
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E

h
sup
0�t�T

jUN;0
t � OXN;0

t j2
i

C 1

N

NX

iD1

E

h
sup
0�t�T

jUN;i
t � OXN;i

t j2
i

� C

N

Z T

0

jˇt � Ǫ .t; OXN;1
t /j2dt:

(7.41)

Combining the above bound, the growth properties of Ǫ , and (7.31), we see that:

E

Z T

0

jˇtj2dt � ( ) E

h
sup
0�t�T

jUN;0
t � X0t j2

i
C E

h
sup
0�t�T

W2. N�N
t ; �t/

2
i

� C(;q�N :

We hence conclude that, when E
R T
0

jˇtj2dt � (, we have:

E

h
sup
0�t�T

jUN;1
t � U1

t j2
i

� C(;q�N ;

where U1 is the solution of the stochastic differential equation:

dU1
t D b.t;U1

t ; �t;X
0
t ; ˇt/dt C �dW1

t ; U1
0 D x0; (7.42)

where � and X0 are from the solution of the FBSDE (7.27). We then conclude in the same
way as for the major player. ut

Remark 7.9 In the analysis of the best response of player 1, we can allow the
other minor players, namely players with an index i 2 f2; � � � ;Ng, to implement a
strategy in semi-closed feedback form, namely to use . Ǫ .t;UN;i

t //0�t�T instead of
. Ǫ .t; OXN;i

t //0�t�T in (7.40). The analysis would be the same. This is consistent with
the fact that, for mean field games without common noise, limiting equilibria provide
approximate equilibria of the N-player game in both open loop and Markovian
form.

However, in the analysis of the best response of the major player, we cannot do
so. If one modifies the strategy profiles of the minor players in (7.36), one changes
the corresponding limiting equation in (7.37). As a result, the argument used in the
second step of the above proof fails. This is still another instance of the simple fact
that, in the limiting mean field game with major and minor players, open loop and
closed loop equilibria may differ when computing the best response of the major
player.

7.1.6 The Linear Quadratic Case

In this section, we consider the mean field game with major and minor players issued
from a finite player game in which the dynamics of the states of the players are given
by the following linear stochastic differential equations:



7.1 Mean Field Games with Major and Minor Players 573

(
dXN;0

t D .L0X
N;0
t C B0˛

N;0
t C F0 NXN

t /dt C D0dW0
t ;

dXN;i
t D .LXN;i

t C B˛N;i
t C F NXN

t C GX0t /dt C DdWi
t ; 1 � i � N;

for t 2 Œ0;T�, and we choose A0 D R
k0 and A D R

k for the sets of possible
values of the controls. Note that the coefficients are deterministic constant matrices
independent of time. The real matrices L0, B0, F0, and D0 are of dimensions d0� d0,
d0 � k0, d0 � d, and d0 � m0 respectively. Similarly, the real matrices L, B, F, G, and
D are of dimensions d � d, d � k, d � d, d � d0, and d � m0 respectively. The cost
functionals for the major and minor players are given by:

JN;0
�
˛N;0; � � � ;˛N;N

�

D E

� Z T

0

h�
XN;0

t �  0. NXN
t /
��
�0
�
XN;0

t �  0. NXN
t /
�C .˛N;0

t /�R0˛
N;0
t

i
dt

	

;

JN;i
�
˛N;0; � � � ;˛N;N

�

D E

� Z T

0

h�
XN;i

t �  .XN;0
t ; NXN

t /
��
�
�
XN;i

t �  .XN;0
t ; NXN

t /
�

C .˛N;i
t /�R˛N;i

t

i
dt

	

;

in which �0, � are nonnegative semi-definite symmetric matrices of dimensions
d0 � d0, d � d and R0 and R are (strictly) positive definite symmetric matrices of
dimensions k0 � k0 and k � k, and where the functions  0 and  are defined by:

 0.x/ D K0x C �0;  .x0; x/ D Kx0 C K1x C �; x0 2 R
d0 ; x 2 R

d;

for some fixed d0�d, d�d0 and d�d matrices K0, K and K1, and some fixed �0 2 R
d0

and � 2 R
d. Here, NXN

t stands for the empirical mean .XN;1
t C � � � C XN;N

t /=N.
We propose to study this linear quadratic model with the different approaches

introduced earlier, starting with the open loop formulation of Subsection 7.1.2 based
on a limiting two-player game and a fixed point on measure flows.

Solution in the Original Open-Loop Formulation
Formulating the limiting game accordingly, we observe that all the aforementioned
assumptions Major Minor MFG, Major Hamiltonian, Minor Hamiltonian,
Major Convexity, and Minor Convexity hold in the present linear quadratic
setting. Also, the non-Markovian conditional McKean-Vlasov FBSDE (7.27),
with:

Ǫ 0t D � 1
2
R�1
0 B�0E

1ŒP0t �; Ǫ t D � 1
2
R�1B�Yt; t 2 Œ0;T�;
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can be rewritten as:
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D �
L0X

0
t � 1

2
B0R

�1
0 B�0E

1ŒP0t �C F0E
1ŒXt�

�
dt C D0dW0

t ;

dXt D �
LXt � 1

2
BR�1B�Yt C FE1ŒXt�C GX0t

�
dt C DdWt;

dP0t D��L�0P
0
t � G�Pt � 2�0

�
X0t �  0.E1ŒXt�/

��
dt

C Q00
t dW0

t C Q01
t dWt;

dPt D � L�Ptdt C Q10
t dW0

t C Q11
t dWt

�
�

F�0E
1ŒP0t �C F�E1ŒPt� � 2K�

0�0
�
X0t �  0.E1ŒXt�/

��
dt;

dYt D��L�Yt � 2� �Xt �  .X0t ;E1ŒXt�/
��

dt C Z0t dW0
t C ZtdWt;

for t 2 Œ0;T�, with the initial and terminal conditions given by:

X00 D x00; X0 D x0; P0T D PT D YT D 0:

As before, we use a bar to denote the conditional expectation in order to simplify
the notation. Doing so, we arrive at the following FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D �
L0X

0
t � 1

2
B0R

�1
0 B�0 NP0t C F0 NXt

�
dt C D0dW0

t ;

dXt D �
LXt � 1

2
BR�1B�Yt C F NXt C GX0t

�
dt C DdWt;

dP0t D
�
�L�0P

0
t � G�Pt � 2�0

�
X0t � K0 NXt � �0

��
dt

C Q00
t dW0

t C Q01
t dWt;

dPt D � L�Ptdt C Q10
t dW0

t C Q11
t dWt

�
�

F�0 NP0t C F� NPt � 2K�
0�0

�
X0t � K0 NXt � �0

��
dt;

dYt D��L�Yt � 2� Xt C 2� KX0t C 2� K1 NXt C 2� �
�
dt

C Z0t dW0
t C ZtdWt:

(7.43)

We rewrite this FBSDE one more time by taking the expectation under P1. Notice
that since X0

t is already F
0-progressively measurable, it will not get a bar, and its

notation will remain unchanged.



7.1 Mean Field Games with Major and Minor Players 575

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D �
L0X

0
t � 1

2
B0R

�1
0 B�0 NP0t C F0 NXt

�
dt C D0dW0

t ;

d NXt D �
L NXt � 1

2
BR�1B� NYt C F NXt C GX0t

�
dt;

d NP0t D
�
�L�0 NP0t � G� NPt � 2�0

�
X0t � K0 NXt � �0

��
dt

C NQ00
t dW0

t ;

d NPt D � L� NPtdt C NQ10
t dW0

t

�
�

F�0 NP0t C F� NPt � 2K�
0�0

�
X0t � K0 NXt � �0

��
dt

d NYt D��L� NYt � 2� NXt C 2� KX0t C 2� K1 NXt C 2� �
�
dt

C NZ0t dW0
t ;

(7.44)

for t 2 Œ0;T�. If we use X and Y to denote .X0; NX/ and . NP0; NP; NY/, we can write the
above FBSDE in the following standard form:

(
dXt D .LXt C BYt/dt C DdW0

t ;

dYt D �. OLXt C OBYt C OC/dt C ZtdW0
t ;

(7.45)

for t 2 Œ0;T�, with initial and terminal conditions given by:

X0 D
�

x00

x0

	

; YT D
2

4
0

0

0

3

5 ;

and the coefficients given by:

L D
�

L0 F0
G L C F

	

; B D
"

� 1
2
B0R�1

0 B�0 0 0

0 0 � 1
2
BR�1B�

#

; D D
�

D0

0

	

;

OL D
2

4
2�0 � 2�0K0

�2K�
0�0 2K�

0�0K0
�2� K 2� � 2� K1

3

5 ; OB D

2

6
4

L�0 G� 0

F�0 L� C F� 0

0 0 L�

3

7
5 ; OC D

2

4
�2�0�0
2K�

0�0�0
�2� �

3

5 :

Riccati Equation
We look for solutions with an affine decoupling field, namely for solutions in
the form Yt D StXt C st, for t 2 Œ0;T�, where .St/0�t�T and .st/0�t�T are two
deterministic functions defined on Œ0;T� with values in R

.d0C2d/�.d0Cd/ and R
d0C2d

respectively.
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In order to proceed, we thus consider the following matrix Riccati equation on
Œ0;T� with terminal condition at time T:

PSt C StL C OBSt C StBSt C OL D 0; t 2 Œ0;T� I ST D 0; (7.46)

and the linear ordinary differential equation:

Pst D �. OB C StB/st � OC; t 2 Œ0;T� I sT D 0: (7.47)

We observe that, when .St/0�t�T is well defined, the backward equation (7.47) is
always uniquely solvable. We state the following proposition without proof since
we went through the same argument several times already in the book.

Proposition 7.10 If the matrix Riccati equation (7.46) and the backward ODE
(7.47) are well posed, i.e., admit unique solutions denoted by:

St D
2

4
S1;1t S1;2t

S2;1t S2;2t

S3;1t S3;2t

3

5 ; and st D
2

4
s1t
s2t
s3t

3

5 ; t 2 Œ0;T�;

then the FBSDE (7.44) is uniquely solvable. The first two components in the
solution, namely X D .X0; NX/, are given by the solution of the linear SDE:

(
dX0t D �

L0X
0
t � 1

2
B0R

�1
0 B�0

�
S1;1t X0t C S1;2t

NXt C s1t
�C F0 NXt

�
dt C D0dW0

t ;

d NXt D �
L NXt � 1

2
BR�1B�

�
S3;1t X0t C S3;2t

NXt C s3t
�C F NXt C GX0t

�
dt;

with initial conditions given by:

X00 D x00; NX0 D x0;

and the process Y D . NP0; NP; NY/ is given by:

8
ˆ̂
<

ˆ̂
:

NP0t D S1;1t X0t C S1;2t
NXt C s1t ;

NPt D S2;1t X0t C S2;2t
NXt C s2t ;

NYt D S3;1t X0t C S3;2t
NXt C s3t :

We now turn to the original conditional FBSDE (7.43). Now that X0, NX, NP0 and
NP are identified, we plug their values into the FBSDE which in turn, becomes a

standard linear FBSDE with random coefficients. Using the fact that X0, NX, NP0 and
NP are actually solutions of linear SDEs with deterministic coefficients, we have the
following result.
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Proposition 7.11 Under the assumption of Proposition 7.10, the FBSDE (7.43)
has a unique solution. Moreover, there exist a deterministic R

.d0C2d/�.d0Cd/-matrix
valued function .�t/0�t�T and an F

0-progressively measurable process .(t/0�t�T

with values in R
d such that:

Yt D �tXt C (t; t 2 Œ0;T�; (7.48)

with E
0Œsup0�t�T j(tjq� < 1, for all q � 1.

Proof. We plug X0, NX, NY, NP0 and NP into (7.43). We readily observe that the second and last
equations form a standard FBSDE with random coefficients. The structure of this FBSDE is
standard in the sense that it can be derived from the stochastic optimal control problem based
on state controlled dynamics given by:

d LXt D �
L LXt C B L̨ t C L�t

�
dt C DdWt; t 2 Œ0; T� I LX0 D x0;

and the cost functional:

LJ. L̨ / D E

�Z T

0

h� LXt � .KX0t C K1 NXt C �/
��
�
� LXt � .KX0t C K1 NXt C �/

�C L̨ �t R L̨ t

i
dt

	

;

where . L�t D FXt C GX0t /0�t�T . Taking advantage of the fact that � is nonnegative semi-
definite and that R is positive definite, we may tackle this problem by standard arguments.
This yields (7.48). Meanwhile, we observe that the third and fourth equations in (7.43) form
a standard BSDE whose well posedness is well known. The identification of the processes
P0 and P then follows. ut

In order to solve the Riccati equation (7.46) we introduce the .2d0C3d/�.2d0C
3d/-matrix T defined as:

T D
�
L B

� OL � OB
	

;

where we recall that L is of size .d0Cd/�.d0Cd/, B is of size .d0Cd/�.d0C2d/,
OL is of size .d0 C 2d/ � .d0 C d/ and OB is of size .d0 C 2d/ � .d0 C 2d/. We then
denote by .�.t//t2R the .2d0 C 3d/ � .d0 C d/-matrix valued solution to the ODE:

8
ˆ̂
<̂

ˆ̂
:̂

d

dt
�.t/ D T�.t/; t 2 Œ0;T�;

�.T/ D
�

Id0Cd

0.d0C2d/�.d0Cd/

	

;
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where Id0Cd is the identity matrix of size d0Cd and 0.d0C2d/�.d0Cd/ is the zero matrix
of size .d0 C 2d/ � .d0 C d/. Obviously, �.t/ can be decomposed in block form:

�.t/ D
�
� 1

t

� 2
t

	

; t 2 Œ0;T�;

where � 1
t is of size .d0 C d/ � .d0 C d/ and � 2

t is of size .d0 C 2d/ � .d0 C d/.
We state without proof a standard sufficient condition for the unique solvability

of (7.46), known as Radon’s lemma. See the Notes & Complements at the end of
the chapter for references.

Lemma 7.12 If the .d0 C d/ � .d0 C d/-matrix � 1
t is invertible for each t 2 Œ0;T�,

then,

St D � 2
t

�
� 1

t

��1
; t 2 Œ0;T�;

is the unique solution of the Riccati equation (7.46).

Under the assumption of Lemma 7.12, the above two propositions say that
assumption Major Minor Convergence is satisfied with:

Vt.x/ D �tx C (t; .t; x/ 2 Œ0;T� � R
d;

and

Ǫ 0t D � 1
2
R�1
0 B�0 NP0t ; t 2 Œ0;T�;

Ǫ .t; x/ D � 1
2
RB�.�tx C (t/; .t; x/ 2 Œ0;T� � R

d:

Therefore, Theorem 7.8 applies.

7.1.7 An Enlightening Example

As explained in the Notes & Complements at the end of the chapter, our formulation
of the mean field game with major and minor players is more involved than what one
usually finds in the existing literature. There, the control problem faced by the major
player is not of conditional McKean-Vlasov type, and in particular, the measure flow
is not endogenous to the controller. The goal of this section is to provide another
justification of the choice for our earlier major minor game formulation. We argue
that it is necessary for the limiting problem to be a bona fide two-player game instead
of two consecutive control problems, even if it is at the cost of adding a second fixed
point problem, coming from the Nash equilibrium for the two-player game, on top
of the mean field fixed point problem.
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Our argument is based on the analysis of a concrete model of a .N C 1/-player
game with one major and N minor players for which we can show that, in the limit
N ! 1, the equilibrium problem converges toward our formulation of the mean
field game.

For the sake of simplicity, we set the model in one dimension, so we assume
d D d0 D m D m0 D k D k0 D 1. Also, we choose A0 D A D R. We then consider
the .N C 1/-player game whose state dynamics are given by:

8
ˆ̂
<

ˆ̂
:

dXN;0
t D

� a

N

NX

iD1
XN;i

t C b˛N;0
t

�
dt C D0dW0

t ; XN;0
0 D x00;

dXN;i
t D cXN;0

t dt C DdWi
t ; XN;i

0 D x0; i D 1; 2; � � � ;N;

D and D0 now standing for scalars, and the objective function of the major player
being given by:

JN;0
�
˛N;0; � � � ;˛N;N

� D E

�Z T

0

�
qjXN;0

t j2 C j˛N;0
t j2

�
dt

	

;

with q � 0, and the objective functions of the minor players by:

JN;i
�
˛N;0; � � � ;˛N;N

� D E

�Z T

0

j˛N;i
t j2dt

	

;

and we search for an open loop Nash equilibrium. Obviously, the minor players’ best
responses are always identically 0, regardless of other players’ control processes.
Therefore, the only remaining problem is to determine the major player’s best
response, which amounts to solving a stochastic control problem, before taking care
of the fixed point step.

Finite-Player Game Nash Equilibrium
We use the same framework as in Subsection 7.1.5, except for the following fact. We
allow the admissible controls for the major player to be general square-integrable
F
.0;N/-progressively measurable processes with values in A0 D R. In particular,

they may not be adapted with respect to the sole noise W0. Although it does not
seem consistent with the analysis provided in Subsection 7.1.5, we emphasize
the fact that the equilibria constructed right below fit asymptotically the setting
used in Subsection 7.1.5, in the sense that the controls for the major player are
asymptotically independent of the private noises .Wi/i�1. This suffices for our
illustration.

As we shall apply the stochastic maximum principle, we introduce the Hamilto-
nian of the major player. It is given by:
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H0
�
t; .x0; � � � ; xN/; .y0; � � � ; yN/; ˛

�

D � a

N

NX

iD1
xi C b˛0

�
y0 C cx0

NX

iD1
yi C qx20 C ˛20;

for .x0; � � � ; xN/; .y0; � � � ; yN/ 2 R
NC1 and ˛0 2 R.

Its minimization as a function of ˛0 is straightforward. The minimizer is
Ǫ0 D �by0=2. Applying the game version of the Pontryagin stochastic maximum
principle leads to the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dXN;0
t D

� a

N

NX

iD1
XN;i

t � 1

2
b2YN;0

t

�
dt C D0dW0

t ;

dXN;i
t D cXN;0

t dt C DdWi
t ; 1 � i � N;

dYN;0
t D �

�
c

NX

iD1
YN;i

t C 2qXN;0
t

�
dt C

NX

jD0
ZN;0;j

t dWj
t ;

dYN;i
t D � a

N
YN;0

t dt C
NX

jD0
ZN;i;j

t dWj
t ; 1 � i � N;

for t 2 Œ0;T�, with XN;0
0 D x00 and XN;i

0 D x0, for i D 1; � � � ;N, as initial conditions,
and YN;0

T D YN;1
T D � � � D YN;N

T D 0 as terminal conditions. The fact that the
optimal control identified by the Pontryagin stochastic maximum principle is Ǫ N;0

t D
�bYN;0

t =2 implies that the state variables and the adjoint variables of the minor
players only enter the above equations through their aggregate empirical averages.
So we rewrite the problem in terms of the processes:

NXN
t D 1

N

NX

iD1
XN;i

t ; NWN
t D 1

N

NX

iD1
WN;i

t ; YN
t D

NX

iD1
YN;i

t ; t 2 Œ0;T�;

where we put a bar on both NXN
t and NWN

t since they are averages, while we do not do
the same for the last term, since it is not an average. With these notations, the above
FBSDE can be rewritten as:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

dXN;0
t D �

a NXN
t � 1

2
b2YN;0

t

�
dt C D0dW0

t ;

d NXN
t D cXN;0

t dt C Dd NWN
t ;

dYN;0
t D ��cYN

t C 2qXN;0
t

�
dt C

NX

jD1
ZN;0;j

t dWj
t ;

dYN
t D �aYN;0

t dt C
NX

iD1

NX

jD0
ZN;i;j

t dWj
t :
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According to the scheme used so far for solving affine FBSDEs, we make the ansatz
that the decoupling field is affine, namely that it is of the form:

�
YN;0

t

YN
t

	

D St

�
XN;0

tNXN
t

	

; t 2 Œ0;T�;

for a suitable deterministic 2 � 2-matrix valued function .St/0�t�T . We deduce that
the solvability of the above FBSDE reduces to the solvability of:

PSt C StL C OBSt C StBSt C OL D 0; t 2 Œ0;T� I ST D 0; (7.49)

with:

L D
�
0 a
c 0

	

; B D
�� 1

2
b2 0

0 0

	

; OL D
�
2q 0

0 0

	

; OB D
�
0 c
a 0

	

:

For the same reasons as before, we write the 2 � 2 matrix St in the form:

St D
�

S0;0t S0;1t

S1;0t S1;1t

	

; t 2 Œ0;T�:

If the Riccati equation (7.49) is well posed, we derive the equilibrium dynamics
of the state of the major player (as well as the dynamics of the average state of
the minor players) by solving the following linear forward stochastic differential
system:

(
dXN;0

t D �
a NXN

t � 1
2
b2
�
S0;0t XN;0

t C S0;1t
NXN

t

��
dt C D0dW0

t ;

d NXN
t D cXN;0

t dt C Dd NWN
t ;

(7.50)

for t 2 Œ0;T� with x00 and x0 as respective initial conditions.
Once this is done, the optimal control strategy of the major player is given

by . Ǫ N;0
t D � 1

2
bYN;0

t /0�t�T where .YN;0
t /0�t�T is obtained by using the affine

decoupling field.

The Limiting Mean Field Game
Using the same notation as before for the limiting game, see Subsection 7.1.2,
our formulation of the mean field game problem with major and minor players
here requires the solution of the McKean-Vlasov control problem consisting of the
controlled dynamics:

(
dX0t D �

aE1ŒXt�C b˛0t
�
dt C D0dW0

t ;

dXt D cX0t dt C DdWt;
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for t 2 Œ0;T�, with x00 and x0 as respective initial conditions, the objective function
being given by:

J0.˛0/ D E

�Z T

0

�
q.X0t /

2 C .˛0t /
2
�
dt

	

;

where ˛0 is asked to be F
0-progressively measurable.

The minimizer Ǫ 0 of the Hamiltonian being the same as before, the stochastic
maximum principle (7.27) leads to the FBSDE:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D �
a NXt � 1

2
b2 NP0t

�
dt C D0dW0

t ;

dXt D cX0t dt C DdWt;

dP0t D ��2qX0t C cPt
�
dt C Q00

t dW0
t C Q01

t dWt;

dPt D �a NP0t dt C Q10
t dW0

t C Q11
t dWt;

for t 2 Œ0;T�, with P0T D PT D 0, where we added a bar to denote the expectation
under P1. Taking expectations under P1 in the third line, we get:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

dX0t D �
a NXt � 1

2
b2 NP0t

�
dt C D0dW0

t ;

d NXt D cX0t dt;

d NP0t D ��2qX0t C c NPt
�
dt C NQ00

t dW0
t ;

d NPt D �a NP0t dt C NQ10
t dW0

t ;

(7.51)

for t 2 Œ0;T�. Searching for an affine decoupling field, we see that the associated
Riccati equation is again (7.49). Once it is solved, we then solve the forward SDE:

8

<̂

:̂

dX0t D �
a NXt � 1

2
b2
�
S0;0t X0t C S0;1t

NXt
��

dt C D0dW0
t ;

d NXt D cX0t dt;

(7.52)

for t 2 Œ0;T�, in order to obtain the solution of our problem. For the same reasons
as before, the optimal control Ǫ 0 is given by . Ǫ 0t D � 1

2
b NP0t /0�t�T .

The following proposition supports our formulation of the mean field game
problem in the presence of major and minor players, at least under the assumptions
of this section:

Proposition 7.13 If the games with finitely many players and the mean field game
with major and minor players are based on the same W0, and .˝1;F1;P1/

carries both W and an infinite sequence of independent Brownian motions .Wn/n�1
accounting for the noises driving the minor players’ states, we have:
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lim
N!1E

h
sup
0�t�T

�
jXN;0

t � X0t j2 C j NXN
t � NXtj2 C jYN;0

t � NP0t j2 C jYN
t � NPtj2

�i
D 0:

In particular,

lim
N!1E

h
sup
0�t�T

j Ǫ N;0
t � Ǫ 0t j2

i
D 0:

Proof. We use the expressions of XN;0, X0, NXN
and NX given by solving the SDEs (7.50) and

(7.52) together with the fact:

lim
N!1

E

h
sup
0�t�T

j NWN
t j2
i

D 0:

Forming the difference between XN;0 and X0 on the one hand, and NXN
and NX on the other

hand, we easily deduce that:

lim
N!1

E

h
sup
0�t�T

�
jXN;0

t � X0t j2 C j NXN
t � NXtj2

�i
D 0:

The other claims follow from the representation of the involved processes by means of the
solution .St/0�t�T to the Riccati equation. ut

Comparison with Still a Different Formulation
Simpler formulations of the limiting mean field game problems are possible. One of
them could be to first fix an F

0-progressively measurable process m D .mt/0�t�T as
a proxy for the conditional expectation of the states of the minor players, and then
minimize the objective functional:

J0.˛0/ D E

�Z T

0

�
q.X0t /

2 C .˛0t /
2
�
dt

	

;

under the dynamical constraint:

dX0t D .amt C b˛0t /dt C D0dW0
t ; t 2 Œ0;T� I X00 D x00:

This is a standard control problem, though non-Markovian because m may depend
upon the past. It can be solved using standard methods without worrying about
possible McKean-Vlasov features. By applying the classical Pontryagin maximum
principle and by noticing that the minimizer of the Hamiltonian is still the same, we
arrive at the following FBSDE characterizing the optimally controlled system:

8

<̂

:̂

dX0t D .amt � 1

2
b2Y0t /dt C D0dW0

t ;

dY0t D �2qX0t dt C Z0t dW0
t ;
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with the initial condition X00 D x00 and the terminal condition Y0T D 0. We then
impose the consistency condition:

mt D E
1ŒXt�; t 2 Œ0;T�;

where X D .Xt/0�t�T is the state of the representative minor player:

dXt D cX0t dt C DdWt; t 2 Œ0;T� I X0 D x0:

Letting . NXt D E
1ŒXt�/0�t�T we end up with the following FBSDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dX0t D �
a NXt � 1

2
b2Y0t

�
dt C D0dW0

t ;

d NXt D cX0t dt;

dY0t D �2qX0t dt C Z0t dW0
t ;

(7.53)

for t 2 Œ0;T�, with X00 D x00, NX0 D x0 and Y0T D 0.
The comparison between (7.53) and (7.51) will be based on the following

proposition.

Proposition 7.14 Assume that a; c; q; x00 6D 0. Then, the set of time instants t 2
Œ0;T� for which PŒ NP0t ¤ Y0t � > 0 has a positive Lebesgue measure.

Proof. We prove the result by contradiction. Assume that, for almost every t 2 Œ0; T�, PŒ NP0t D
Y0t � D 1. This implies that the first two (forward) equations in the systems (7.51) and (7.53)
are identical. By uniqueness of solutions of SDEs, we conclude that each of the two processes
X0 and NX is the same whatever the formulation used to describe the limiting mean field game.
Computing the difference between the third equations of (7.51) and (7.53) and using the fact

that c 6D 0, we deduce that NP is 0 by uniqueness of the Itô decomposition of NP0 � Y0. Since

a 6D 0, we deduce in the same way that NP0 is 0 by uniqueness of the Itô decomposition in
the fourth equation in (7.51). By the same argument, we see from the third equation in (7.51)
that X0 is also 0. This is a contradiction since x00 6D 0. ut

Since the optimal control of the major player identified by the present scheme is
still given by . Ǫ 0t D �bY0t =2/0�t�T , Propositions 7.13 and 7.14 imply that the two
formulations lead to different optimal control strategies for the major player. Still,
notice the Nash equilibria for the finite-player games converge towards the strategy
produced by the original formulation touted earlier in this section, and not toward
the strategy of the alternative formulation considered in this subsection.

7.1.8 Alternative Approaches to the Linear Quadratic Models

We now implement the alternative approaches introduced in Subsection 7.1.3 in the
particular case of the Linear Quadratic (LQ) Mean Field Games (MFGs) with major
and minor players.
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Existence of Open-Loop Equilibria
We first consider the alternative approach to the open loop problem. Recall that the
dynamics of the state .X0t /0�t�T of the major player and the state .Xt/0�t�T of the
representative player of the field of exchangeable minor players are given by:

(
dX0t D .L0X

0
t C B0˛

0
t C F0 NXt/dt C D0dW0

t ;

dXt D .LXt C B˛t C F NXt C GX0t /dt C DdWt;
(7.54)

where . NXt D E
1ŒXt�/0�t�T is the conditional expectation of .Xt/0�t�T with respect

to the history of the Wiener process W0 up to time t. The cost functionals for the
major and minor players are given by:

J0.˛0;˛/ D E

�Z T

0

�
.X0t � K0 NXt � �0/��0.X0t � K0 NXt � �0/C ˛

0�
t R0˛

0
t

�
dt

	

;

J.˛0;˛/ D E

�Z T

0

�
.Xt � KX0t � K1 NXt � �/�� .Xt � KX0t � K1 NXt � �/

C ˛
�
t R˛t

�
dt

	

;

where we recall that � , �0, R, and R0 are symmetric matrices, � and �0 being
assumed to be nonnegative semi-definite, and R and R0 being assumed to be
positive definite. Taking conditional expectations in the equation for the state of
the representative minor player we get:

d NXt D �
.L C F/ NXt C B N̨ t C GX0t

�
dt; (7.55)

with N̨ t D E
1Œ˛t�, for any t 2 Œ0;T�. The idea is now to express the optimization

problem of the major player over the dynamics of the couple . NXt;X0t /0�t�T which,
in contrast with the dynamics of the original couple .Xt;X0t /0�t�T , are not of the
McKean-Vlasov type. In order to do so, we introduce the following notation:

Xt D
�

X0tNXt

	

; L D
�

L0 F0
G L C F

	

; B00 D
�

B0
0

	

; B0 D
�
0

B

	

; D D
�

D0

0

	

;

OL0 D
"

�0 � �0K0
�K�

0�0 K�
0�0K0

#

; OC0 D
"

��0�0
K�
0�0�0

#

:

Notice also that, the fact that the matrix �0 is symmetric nonnegative definite implies
that OL0 is also symmetric nonnegative definite. This will play a crucial role when
we address the solvability of certain matrix Riccati equations. The optimization
problem of the major player becomes:
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inf
˛02A0

E

�Z T

0

ŒX �
t

OL0Xt C 2X �
t

OC0 C �
�
0�0�0 C ˛

0�
t R0˛

0
t �dt

	

;

where the controlled dynamics are given by:

dXt D .LXt C B00˛
0
t C B0 N̨ t/dt C DdW0

t : (7.56)

The reduced Hamiltonian is given by:

H.r/;˛.t; x; y; ˛0/

D y�.Lx C B00˛
0 C B0 N̨ t/C x� OL0x C 2x� OC0 C �

�
0�0�0 C ˛0�R0˛

0;

where x; y 2 R
d0Cd. Here we added the superscript ˛ for the Hamiltonian in

order to emphasize the fact that the optimization of the major player is performed
assuming that the representative minor player is using the strategy ˛ 2 A. As
usual, . N̨ t D E

1Œ˛t�/0�t�T and, obviously, H.r/;˛ is a random function, in which
the randomness comes from the realization of the minor player’s control. However
we see that almost surely R

d0Cd �A0 3 .x; ˛0/ ! H.r/;˛.t; x; y; ˛0/ is jointly convex,
and we can use the sufficient condition of the stochastic maximum principle, see for
instance Subsection 1.4.4. Therefore the minimizer of the reduced Hamiltonian and
the optimal control are given by:

Ǫ 0.t; x; y/ D � 1
2
R�1
0 B

�
00y; and Ǫ 0t D � 1

2
R�1
0 B

�
00Y0

t ; t 2 Œ0;T�;

respectively, where .Xt;Y0
t /0�t�T solves the forward-backward stochastic differen-

tial equation:

8
<

:

dXt D �
LXt � 1

2
B00R

�1
0 B

�
00Y0

t C B0 N̨ t
�
dt C DdW0

t ;

dY0
t D ��L�Y0

t C 2 OL0Xt C 2 OC0
�
dt C Z0

t dW0
t ; Y0

T D 0:
(7.57)

We now address the equilibrium condition for the minor player through the
search for the best response of an extra minor player to the major player and to
the field of exchangeable minor players. We fix an admissible strategy ˛0 2 A0

for the major player and an admissible strategy ˛ 2 A for the representative of the
field of exchangeable minor players. We let . N̨ t D E

1Œ˛t�/0�t�T . This prescription
leads to the time evolution of the state of a system given by (7.54), equation (7.55)
after taking conditional expectations, and finally the dynamic equation (7.56). Given
this background state evolution, the extra virtual minor player needs to solve the
optimization problem:

inf
L̨ 2A

E

�Z T

0

�� LXt �  .Xt/
��
�
� LXt �  .Xt/

�C L̨ �t R L̨ t
�
dt

	

;
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where the dynamics of the controlled state . LXt/0�t�T are given by:

d LXt D �
L LXt C B L̨ t C F NXt C GX0t

�
dt C DdWt:

Note that the process .Xt/0�t�T is merely part of the random coefficients of the
optimization problem. We introduce the reduced Hamiltonian:

H.r/;˛0;˛.t; Lx; Ly; L̨ / D Ly��LLx C B L̨ C F NXt C GX0t
�

C �Lx �  .Xt/
��
�
�Lx �  .Xt/

�C L̨ �R L̨ ;

where Lx; Ly 2 R
d and L̨ 2 R

k. Once again, we use the superscript .˛0;˛/ to
emphasize the fact that the optimization is performed under the environment created
by the major player using strategy ˛0 and the population of exchangeable minor
players using ˛, leading to the use of its conditional mean N̨ . The Hamiltonian
H.r/;˛0;˛ depends on the random realization of the environment, and is almost surely
jointly convex in .Lx; L̨ /. Applying the stochastic maximum principle, the optimal
control exists and is given by . L̨ t D � 1

2
R�1B� LYt/0�t�T , where . LX; LY/ solves the

following FBSDE:

(
d LXt D �

L LXt � 1
2
BR�1B� LYt C F NXt C GX0t

�
dt C DdWt;

d LYt D ��L� LYt C 2�
� LXt �  .Xt/

��
dt C ZtdWt C Z0t dW0

t ;
(7.58)

with terminal condition LYT D 0. Recall that in this FBSDE, the process .Xt/0�t�T

only plays the part of a random coefficient. It is determined off line by solving the
standard stochastic differential equation (7.56) for the given values of ˛0 and ˛,
which at this stage of the proof (i.e., before considering the fixed point step) may
differ from the controls used in the forward equation of (7.57).

Now that we are done characterizing the solutions of both optimization problems,
we identify the fixed point constraint in the framework given by the charac-
terizations of the two optimization problems. The fixed point condition (7.13)
characterizing Nash equilibria in the current set-up says that:

Ǫ 0t D � 1
2
R�1
0 B

�
00Y0

t ; t 2 Œ0;T�;

where .Y0
t /0�t�T is the backward component of the solution of (7.57) with . N̨ t D

E
1Œ L̨ t�/0�t�T , where:

Ǫ t D � 1
2
R�1B� LYt; t 2 Œ0;T�;

where . LYt/0�t�T is the backward component of the solution of (7.58) in which the
random coefficient .Xt/0�t�T solves (7.56) with the processes ˛0 D . Ǫ 0t /0�t�T and
N̨ D .E1Œ Ǫ t�/0�t�T just defined.
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The optimal controls for the major and representative minor players are functions
of the solution of the following FBSDE which we obtain by putting together the
FBSDEs (7.57) and (7.58) characterizing the major and virtual minor players’
optimization problems:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

dXt D �
LXt � 1

2
B00R

�1
0 B

�
00Y0

t � 1
2
B0R

�1B�E1Œ LYt�
�
dt C DdW0

t ;

d LXt D �
L LXt � 1

2
BR�1B� LYt C FX 2

t C GX 1
t

�
dt C DdWt;

dY0
t D ��L�Y0

t C 2 OL0Xt C 2 OC0
�
dt C Z0

t dW0
t ;

d LYt D ��L� LYt C 2�
� LXt �  .Xt/

��
dt C ZtdWt C Z0t dW0

t ;

X0 D
�

x00

x0

	

; LX0 D x0; Y0
T D 0; LYT D 0;

(7.59)

where we denoted by X 1
t and X 2

t the two blocks of dimension d0 and d of Xt.
We summarize the above discussion in the form of a verification theorem for

open loop Nash equilibria.

Proposition 7.15 If the system (7.59) admits a solution, then the linear quadratic
mean field game problem with major and minor players admits an open loop Nash
equilibrium.

The equilibrium strategy . Ǫ 0; Ǫ / is given by . Ǫ 0t D � 1
2
R�1
0 B

�
00Y0

t /0�t�T for the

major player and . Ǫ t D � 1
2
R�1B LYt/0�t�T for the minor player.

The way the system (7.59) is stated is a natural conclusion of the search for
equilibrium as formulated by the fixed point step following the two optimization
problems. However, as convenient as can be, simple remarks can help the solution
of this system. First we notice that one could solve for .Xt;Y0

t /0�t�T by solving
the FBSDE formed by the first and the third equations if we knew the values of
. NYt D E

1Œ LYt�/0�t�T . By taking expectation with respect to P
1 in the second equation,

and subtracting the result from the equation satisfied by the second component of
the first equation, we identify .E1Œ LXt�/0�t�T with .X 2

t /0�t�T because they have the
same initial conditions. Next, by taking expectation with respect to P

1 in the fourth
equation, we see that . NYt/0�t�T should satisfy:

d NYt D ��L� NYt C 2�
�
X 2

t �  .Xt/
��

dt C NZ0t dW0
t ;

NYT D 0:

Consequently, the solution of (7.59) also satisfies:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

dXt D �
LXt � 1

2
B00R

�1
0 B

�
00Y0

t � 1
2
B0R

�1B� NYt
�
dt C DdW0

t ;

dY0
t D ��L�Y0

t C 2 OL0Xt C 2 OC0
�
dt C Z0

t dW0
t ;

d NYt D ��L� NYt C 2�
�
X 2

t �  .Xt/
��

dt C NZ0t dW0
t ;

Y0
T D 0; NYT D 0:

(7.60)
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Our final remark is that the solution of system (7.60) is not only necessary, but also
sufficient. Indeed, once it is solved, one can solve for . LXt; LYt/0�t�T by solving the
affine FBSDE with random coefficients formed by the second and fourth equations
of (7.59) and check that .E1Œ LYt�/0�t�T is indeed the solution of the third equation of
(7.60).

Identifying .Xt/0�t�T with


� NX0tNXt

	�

0�t�T

and .Y0
t /0�t�T with


� NP0tNPt

	�

0�t�T

,

we recognize the FBSDE (7.60) as the original (7.44), showing that the alternative
approach to the search of a Nash equilibrium leads to the solution found in
Subsection 7.1.6.

Existence of Closed Loop Equilibria
In this section we implement the closed loop alternative formulation of the
equilibrium problem. Since we expect that the optimal controls will be in feedback
form, we search directly for Markovian controls. In other words, we assume that
the controls used by the major player and the representative minor players are
respectively of the form:

˛0t D �0.t;X0t ; NXt/; and ˛t D �.t;Xt;X
0
t ;

NXt/; t 2 Œ0;T�;

for some R
k0 and R

k valued deterministic functions �0 and � defined on Œ0;T� �
R

d0�R
d and Œ0;T��R

d �R
d0�R

d respectively. As before, we assume that A0 D R
k0

and A D R
k for the sake of simplicity. In this way, the major player can only observe

its own state and the mean of the states in the field of minor players, while the
representative minor player can observe its own state, the state of the major player,
as well as the mean of the exchangeable minor players’ states. Several times already,
we hinted at the fact that this version of the equilibrium problem is more difficult
than in the open loop case. As a result, we shall not try to compute the best response
map everywhere before we search for some of its fixed points. Instead, we identify
a special set of controls ˛0 and ˛ which is left stable by the best response map, and
we search for fixed points in this set only. To be more specific, we compute the best
responses to controls ˛0 and ˛ given by feedback functions �0 and � assumed to be
affine in their arguments. In other words, we assume that the controls ˛0 and ˛ are
of the form:

˛0t D �0.t;X0t ; NXt/ D �00.t/C �01.t/X
0
t C �02.t/ NXt; (7.61)

˛t D �.t;Xt;X
0
t ;

NXt/ D �0.t/C �1.t/Xt C �2.t/X
0
t C �3.t/ NXt; (7.62)

for t 2 Œ0;T�, where the functions Œ0;T� 3 t 7! �0i .t/ for i D 0; 1; 2 and Œ0;T� 3
t 7! �i.t/ for i D 0; 1; 2; 3 are matrix-valued deterministic continuous functions
with the appropriate dimensions. To be more specific, �00.t/ 2 R

k0 , �01.t/ 2 R
k0�d0 ,

�02.t/ 2 R
k0�d, �0.t/ 2 R

k, �1.t/ 2 R
k�d, �2.t/ 2 R

k�d0 and �3.t/ 2 R
k�d.

We first consider the major player’s optimization problem. We assume that the
representative minor player uses strategy .˛t D �.t;Xt;X0t ; NXt//0�t�T as specified in
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(7.62). Next we look for the controls ˛0 which could be used by the major player
to minimize its expected cost. Note that for this optimization problem, we do not
assume that the controls ˛0 are of the form (7.61). Indeed, as we shall make it clear
below, the optimal control will be automatically of this form, which will suffice to
render our approach consistent. The dynamics of the system are then given by:

8
ˆ̂
<

ˆ̂
:

dX0t D �
L0X0t C B0˛0t C F0 NXt

�
dt C D0dW0

t ;

dXt D �
B�0.t/C �

L C B�1.t/
�
Xt

C�B�2.t/C G
�
X0t C �

B�3.t/C F/ NXt
��

dt C DdWt;

(7.63)

where as before, for each t 2 Œ0;T�, NXt D E
1ŒXt� is the conditional expectation

of Xt with respect to the filtration generated by the history of the Wiener process
W0 up to time t. Like in the case of the search for open loop equilibria, we replace
the optimization over the above dynamics of a conditional McKean-Vlasov type by
an optimization over standard dynamics by taking conditional expectations in the
equation for the state of the representative minor player. Doing so, we get:

d NXt D �
B�0.t/C �

L C F C BŒ�1.t/C �3.t/�
� NXt C �

G C B�2.t/
�
X0t
�
dt: (7.64)

As in the case of the open loop version of the equilibrium problem, we express the
optimization problem of the major player over the dynamics of the couple .Xt D
.X0t ; NXt//0�t�T . In order to do so, we use the same notations L, OL0, B0, B00, OC0 and
D as in the case of our analysis of the open loop problem, and we introduce the
following new ones:

L
�

0 .t/ D
�

L0 F0
G C B�2.t/ L C F C BŒ�1.t/C �3.t/�

	

; A
�

0 .t/ D
�

0

B�0.t/

	

;

where we wrote � for the tuple of functions .�i/iD0;��� ;3. Then, the optimization
problem of the major player can be formulated exactly as in the open loop case as
the minimization:

inf
˛02A0

E

�Z T

0

ŒX �
t

OL0Xt C 2X �
t

OC0 C �
�
0�0�0 C ˛

0�
t R0˛

0
t �dt

	

;

where the controlled dynamics are given by:

dXt D �
L

�

0 .t/Xt C B00˛
0
t C A

�

0 .t/
�
dt C DdW0

t : (7.65)

The reduced Hamiltonian (minus the term �
�
0�0�0 which is irrelevant) is given by:

H.r/;�.t; x; y; ˛0/

D y�
�
L

�

0 .t/x C B00˛
0 C A

�

0 .t/
�C x� OL0x C 2x� OC0 C ˛0�R0˛

0;
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where x; y 2 R
d0Cd and ˛0 2 R

k0 . Applying the stochastic maximum principle,
we find that the optimal control is given as before by . Ǫ 0t D � 1

2
R�1
0 B

�
00Y0

t /0�t�T ,
where .Xt;Y0

t ;Z0
t /0�t�T solves the linear FBSDE:

(
dXt D �

L
�

0 .t/Xt � 1
2
B00R�1

0 B
�
00Y0

t C A
�

0 .t/
�
dt C DdW0

t

dY0
t D ��L�

0 .t/
�Y0

t C 2 OL0Xt C 2 OC0
�
dt C Z0

t dW0
t ; Y0

T D 0:
(7.66)

This FBSDE being affine, we expect the decoupling field to be affine as well, so
we search for a solution of the form .Y0

t D �tXt C (t/0�t�T for two deterministic
functions Œ0;T� 3 t 7! �t 2 R

.d0Cd/�.d0Cd/ and Œ0;T� 3 t 7! (t 2 R
d0Cd. We

compute dY0
t applying Itô’s formula to this ansatz, and using the expression for dXt

given by the forward equation. Identifying term by term the result with the right-
hand side of the backward component of the above FBSDE, we obtain the following
system of ordinary differential equations:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

P�t � 1
2
�tB00R�1

0 B
�
00�t C �tL

�

0 .t/C �
L

�

0 .t/
��
�t C 2 OL0 D 0;

�T D 0;

P(t C ��
L

�

0 .t/
�� � 1

2
�tB00R�1

0 B
�
00

�
(t C �tA

�

0 .t/C 2 OC0 D 0;

(T D 0:

(7.67)

For any choice of a continuous strategy t 7! .�0.t/; �1.t/; �2.t/; �3.t//, the first
equation is a standard matrix Riccati differential equation. Since the coefficients
are continuous and OL0 is nonnegative definite, the equation admits a unique global
solution over Œ0;T� for any T > 0. Recall that R0 is symmetric and positive definite.
Injecting the solution Œ0;T� 3 t 7! �t into the second equation yields a linear
ordinary differential equation with continuous coefficients for which the global
unique solvability also holds. Therefore the FBSDE (7.66) is uniquely solvable and
the optimal control exists and is given by:

˛0�t D � 1
2
R�1
0 B

�
00�tXt � 1

2
R�1
0 B

�
00(t; t 2 Œ0;T�; (7.68)

which is an affine function of X0t and NXt.
As before, we address the equilibrium condition for the minor player through the

search for the best response of an extra minor player to the major player and to the
field of exchangeable minor players. According to the strategy outlined earlier, we
compute its best response to controls of a specific form. So we assume that the major
player uses the feedback strategy .˛0t D �0.t;X0t ; NXt//0�t�T and the representative
of the other minor players uses the feedback strategy .˛t D �.t;Xt;X0t ; NXt//0�t�T of
the forms (7.61) and (7.62) respectively. These choices lead to the dynamics of the

state




Xt D
�

X0tNXt

	�

0�t�T

given by:

dXt D �
L.�;�

0/.t/Xt C A.�;�
0/.t/

�
dt C DdW0

t ;
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with:

L.�;�
0/.t/ D

�
L0 C B0�01.t/ F0 C B0�02.t/
G C B�2.t/ L C F C B.�1.t/C �3.t//

	

;

A.�;�
0/.t/ D

�
B0�00.t/
B�0.t/

	

;

where �0 D .�00 ; �
0
1 ; �

0
2/. In this environment, we search for the best response of a

virtual minor player trying to minimize as earlier,

inf
L̨ 2A

E

�Z T

0

�� LXt �  .Xt/
��
�
� LXt �  .Xt/

�C L̨ �t R L̨ t
�
dt

	

;

where the dynamics of the controlled state . LXt/0�t�T are given as before by:

d LXt D �
L LXt C B L̨ t C F NXt C GX0t

�
dt C DdWt:

Again the process .Xt/0�t�T is merely part of the random coefficients of the
optimization problem. We introduce the reduced Hamiltonian:

H.r/;�0;�.t; Lx; Ly; L̨ / D Ly��LLx C B L̨ C F NXt C GX0t
�

C �Lx �  .Xt/
��
�
�Lx �  .Xt/

�C L̨ �R L̨ ;
for .Lx; Ly; L̨ / 2 R

d � R
d � R

k. We find that the optimal control is given by . L̨�
t D

� 1
2
R�1B� LYt/0�t�T , where . LXt;Xt; LYt; LZt; LZ0t /0�t�T solves the linear FBSDE:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

d LXt D �
L LXt � 1

2
BR�1B� LYt C F NXt C GX0t

�
dt C DdWt;

dXt D �
L.�;�

0/.t/Xt C A.�;�
0/.t/

�
dt C DdW0

t ;

d LYt D ��L� LYt C 2� LXt � 2�  .Xt/
�
dt C LZtdWt C LZ0t dW0

t ;

LYT D 0:

Again we search for a solution of the form . LYt D StXt C St LXt C st/0�t�T for
continuous deterministic functions Œ0;T� 3 t 7! St 2 R

d�.d0Cd/, Œ0;T� 3 t 7!
St 2 R

d�d and Œ0;T� 3 t 7! st 2 R
d. Proceeding as before, we see that these

functions provide a solution to the above FBSDE if and only if they solve the system
of ordinary differential equations:
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

PSt C StL C L�St � 1
2
StBR�1B�St C 2� D 0; ST D 0;

PSt C StL
.�;�0/.t/C L�St � 1

2
StBR�1B�St

CStŒG;F� � 2� ŒK;K1� D 0; ST D 0;

Pst C �
L� � 1

2
StBR�1B�

�
st C StA

.�;�0/.t/ � 2� � D 0; sT D 0:

(7.69)
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The first equation is a standard symmetric matrix Riccati equation. As before, the
fact that � is symmetric and nonnegative definite and R is symmetric and positive
definite implies that this Riccati equation has a unique solution on Œ0;T�. Note that
its solution .St/0�t�T is symmetric and independent of the input feedback functions
�0 and � giving the controls chosen by the major player and the exchangeable minor
players. Injecting the solution .St/0�t�T into the second and third equations, leads
to a linear system of ordinary differential equations which can be readily solved.
Given such a solution, we find that the optimal control can be expressed as:

L̨�
t D � 1

2
R�1B�

�
StXt C St LXt C st

�
; t 2 Œ0;T�; (7.70)

which is indeed an affine function of LXt, X0t and NXt.
Now that the two optimization problems are solved and that we showed that

the family of affine feedback controls .˛0t D �0.t;X0t ; NXt//0�t�T and .˛t D
�.t;Xt;X0t ; NXt//0�t�T of the forms (7.61) and (7.62) is left invariant by the best
response maps, we tackle the fixed point step in this subset of feedback controls.
For such a fixed point, we must have:

LXt D Xt; t 2 Œ0;T�;

together with:

˛0;�t D �0.t;X0t ; NXt/ D �00.t/C �01.t/X
0
t C �02.t/ NXt; t 2 Œ0;T�;

and

L̨�
t D �.t;Xt;X

0
t ;

NXt/ D �0.t/C �1.t/Xt C �2.t/X
0
t C �3.t/ NXt; t 2 Œ0;T�;

which translates into the following equations:

�
�01.t/; �

0
2.t/

� D � 1
2
R�1
0 B

�
00�t; �

0
0.t/ D � 1

2
R�1
0 B

�
00(t;

�
�2.t/; �3.t/

� D � 1
2
R�1B�St; �1.t/ D � 1

2
R�1B�St; �0.t/ D � 1

2
R�1B�st:

To complete the construction of the equilibrium, it thus remains to determine the
quantities .�t/0�t�T , .(t/0�t�T , .St/0�t�T , .St/0�t�T and .st/0�t�T from the systems
(7.67) and (7.69). Notice that .St/0�t�T can be obtained by solving the first equation
of (7.69) on its own. As for .�t/0�t�T , .(t/0�t�T , .St/0�t�T and .st/0�t�T , they solve
a coupled system obtained by replacing �00 , �01 , �02 , �0, �1, �2 and �3 by their explicit
expressions in (7.67) and (7.69). In other words, we can solve for .St/0�t�T by
solving first the first equation of (7.69), and then group the remaining four equations
into two systems of ordinary differential equations as follows:
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

P�t C �t
�
L.t/ � 1

2
B0R�1B�St

�C �
L.t/ � 1

2
B0R�1B�St

��
�t

� 1
2
�tB00R�1

0 B
�
00�t C 2 OL0 D 0;

PS.t/C StL.t/C �
L� � 1

2
StBR�1B�

�
St � 1

2
StB0R�1B�St

� 1
2
StB00R�1

0 B
�
00�t C �

StG � 2� K; StF � 2� K1
� D 0;

(7.71)

and

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

P(t C �
L.t/ � 1

2
B0R�1B�St

��
(t � 1

2
�tB00R�1

0 B
�
00(t

� 1
2
�tB0R�1B�st C 2 OC0 D 0;

Pst C �
L� � 1

2
StBR�1B�

�
st � 1

2
StB00R�1

0 B
�
00(t

� 1
2
StB0R�1B�st � 2� � D 0;

(7.72)

with 0 as terminal condition, where we used the notation:

L.t/ D L � 1

2

�
0 0

0 BR�1B�St

	

:

The first system (7.71) comprises two mildly coupled matrix Riccati equations,
while the system (7.72), once the solutions of the first system are identified and
substituted for, is a plain linear system whose solution is standard. In other words,
the functions Œ0;T� 3 t 7! (t and Œ0;T� 3 t 7! st can easily be determined once a
solution Œ0;T 3 t 7! .�t;St/ of system (7.71) is found. In essence, we proved the
following verification theorem.

Proposition 7.16 If the system (7.71) of matrix Riccati equations is well posed,
then there exists a Nash equilibrium in the family of linear closed loop feedback
controls, the optimal controls for the major and minor players being given by the
strategies (7.68) and (7.70).

Numerical Application
In this subsection, we present the results of the implementation of the above results
to a simple linear quadratic model inspired by the Cucker-Smale flocking model
described in Chapter 1 of Volume I. For the purpose of graphical illustrations, we
formulate the model in terms of the velocity only. This would correspond to the case
ˇ D 0 in the model of Chapter (Vol I)-1.

We propose a simplistic model for a bee swarm relocating to a new nest site.
According to the prevalent theory of the streaker bee hypothesis , only a very small
number of bees, typically less than 5% of the swarm, know the new location and
their role is to lead the swarm by flying at high speed through the swarm to lead by
inviting the other bees to adopt the same velocity. In our model, the (small number
of) streaker bees will be modeled as the major player. The other bees in the swarm
will be modeled as the minor player.



7.1 Mean Field Games with Major and Minor Players 595

We denote by VN;0
t the velocity of the streaker bee at time t, and by VN;i

t

for i D 1; � � � ;N the velocity of the ith bee in the swarm. The leader bee
and the follower bees control their velocities through their drifts .˛N;0

t /0�t�T and
..˛

N;i
t /0�t�T/iD1;��� ;N . In other words, we assume that their velocities .VN;0

t /0�t�T

and ..VN;i
t /0�t�T/iD1;��� ;N satisfy:

(
dVN;0

t D ˛
N;0
t dt C˙0dW0

t ;

dVN;i
t D ˛

N;i
t dt C˙dWi

t ; i D 1; � � � ;N; (7.73)

where W0 and .Wi/iD1;��� ;N are independent standard Wiener processes of dimension
m � 1, and where ˙0 and ˙ are constant volatility matrices of dimension d � m,
for some d � 1 (we should think of d0 D d D 3). We also consider a deterministic
function Œ0;T� 3 t 7! �t 2 R

d representing the ideal velocity which the streaker
bee would like to have in order to get to the location of the new nest. The objective
of the major player is to make sure that its velocity is as close as possible to the
target velocity .�t/0�t�T , while at the same time keeping a reasonable distance from
the bulk of the other bees not to lose its influence on them. We denote by . NVN

t D
1
N

PN
iD1 VN;i

t /0�t�T the average velocity of the bees in the swarm. To capture the
main stylized facts of the streaker bee theory, we assume that the streaker bee tries
to minimize its cost over the time horizon T as given by:

JN;0
�
˛N;0; .˛N;i/iD1;��� ;N

�

D E

�Z T

0

�
k0jVN;0

t � �tj2 C k1jVN;0
t � NVN

t j2 C .1 � k0 � k1/j˛0t j2
�

dt

	

;

where k0 and k1 are positive real numbers satisfying k0Ck1 � 1. Similarly, each bee
in the swarm faces a tradeoff between keeping up with the streaker and staying close
to its peers. We capture this dilemma in the minimization of the objective function
defined as:

JN;i
�
˛N;0; .˛N;i/iD1;��� ;N

�

D E

�Z T

0

�
l0jVi;N

t � V0;N
t j2 C l1jVi;N

t � NVN
t j2 C .1 � l0 � l1/j˛i

t j2
�

dt

	

;

where l0 and l1 are positive real numbers satisfying l0 C l1 � 1. It is plain to check
that in the mean field game limit, we can fit this swarming model into the framework
of linear quadratic models studied earlier, by simply doubling the state variable.
More precisely, we define:

X0t D
�

V0
t

V0
t

	

; Xt D
�

Vt

Vt

	

; NXt D
� NVt

NVt

	

; t 2 Œ0;T�;
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and we can use the results of the mean field games with major and minor players
studied in this section as long as we set:

L0 D L D F0 D F D G D
�
0 0

0 0

	

; R0 D .1 � k0 � k1/I; R D .1 � l0 � l1/I;

K D
�

I 0
0 0

	

; K0 D K1 D
�
0 0

0 I

	

; �0 D
�

k0I 0

0 k1I

	

; � D
�

l0I 0

0 l1I

	

;

�0.t/ D
�
�t

0

	

; � D
�
0

0

	

; B0 D B D
�

I
I

	

; D0 D
�
˙0

˙0

	

; D D
�
˙

˙

	

:

For the purpose of the numerical simulations which we demonstrate below, we
consider a 2-dimensional swarm, and use two different target velocities Œ0;T� 3 t 7!
�t 2 R

2 to illustrate clearly the impact of the relative values of the constants .kj/jD0;1
and .lj/jD0;1 on the behavior of the different bees. Figures 7.1 and 7.2 confirm the

Fig. 7.1 Equilibrium velocities and trajectories of the major player (streaker bee) and the minor
players (swarm bees) for two different sets of parameters and a circular target velocity.
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Fig. 7.2 Equilibrium velocities and trajectories of the major player (streaker bee) and the minor
players (swarm bees) for two sets of parameters when the target velocity is constant and equal to
Œ1; 1��.

natural intuition: the larger the constant k0 the closer the equilibrium velocity of
the streaker to the target velocity, and the bees in the swarm will follow suit if
the constant l0 is relatively large. In both cases, we choose ˙0 D ˙ D 0:5I2,
and for each choice of coefficients k0; k1; l0; l1, we use a simple Euler scheme to
solve numerically the system of matrix Riccati equations (7.71) over the horizon
Œ0;T� D Œ0; 5�. Then we simulate the dynamics of the leader and the N followers
defined in (7.73), where we assign the equilibrium strategy of the mean field game
to the major and the minor players. In both figures, the velocity and the trajectory of
the streaker bee are given in black and the velocities and the trajectories of a small
sample of bees in the swarm are plotted in color. Their initial positions were chosen
uniformly over the interval Œ0; 1� � f0g.

For the experiment reported in Figure 7.1, we use the target velocity .�t D
Œ�2� sin.2� t/; 2� cos.2� t/��/0�t�T . We clearly see that the major player tries very
hard to mimic the target velocity because the coefficient k0 is relatively large
compared to k1 and 1 � k0 � k1. In the top plot, the bees in the swarm try to have
the same velocities because the coefficient l0 is dominant. However, in the bottom
plot, the bees in the swarm pay more attention to the remaining ones because the
coefficient l1 is now dominant.

Figure 7.2 was produced with a constant target velocity .�t D Œ1; 1��/0�t�T and
similar values of the coefficients .kj/jD0;1 and .lj/jD0;1 and the rationale for what they
demonstrate is exactly the same as in the case of Figure 7.1.

We conclude with a numerical experiment to illustrate the conditional propaga-
tion of chaos discussed in Subsection 7.1.5. Our results are reproduced in Figure 7.3.
We expose the phenomenon in the following way. For a given number of worker
bees, say N, we fix a realization of the Wiener process driving the dynamics of the
streaker. Given the fixed realization of the common Wiener process, we simulate
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Fig. 7.3 Conditional correlation of the states of 10 minor players given the common noise, as the
total number of minor players increases from N D 10 to N D 100.

M copies of the optimal path of the velocity of the streaker, say .VN;0
t /0�t�T , and

of the optimal paths of the velocities of the N worker bees, say .VN;i
t /0�t�T , for

i D 1; : : : ;N, using the same fixed Wiener process for the streaker, but independent
copies of Wiener processes for each of the N worker bees. Then, for a given time
t, we compute the sample correlation matrix of the first components Vi;N;.1/

t , for
the first 10 worker bees, namely for i D 1; : : : ; 10. Obviously, the result would be
exactly the same if we chose the second component instead. Finally, we compute the
average of the correlation matrix across time t � T . Figure 7.3 displays the average
correlation matrices of the first component of the velocities of the first 10 worker
bees in a hive of size N D 10; 25; 50; 100. Conditional propagation of chaos says
that, conditional on the trajectory of the common Wiener process, the velocities of
the first 10 worker bees should become independent when the total number N of
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worker bees goes to 1. So we expect that the conditional correlation matrix of the
velocities of the first 10 worker bees converge toward the 10 � 10 identity matrix.
This is confirmed by the plots produced in Figure 7.3.

7.1.9 An Example with Finitely Many States

We end our analysis of mean field games with major and minor players with a
discussion of game models with finite state spaces. Even though a detailed analysis
of the finite player games would provide a clear justification for the state dynamics
chosen for the limiting mean field game problem, in the interest of time and space,
we skip the description of the finite player games and formulate directly the mean
field game problem.

We assume that the state of the system is given by a generic point .x0; x/ in the
product E0 � E of two finite sets. Here x0 (resp. x) represents the state of the major
(resp. representative minor) player. Also, we assume that the time evolution of the
state of the major (resp. representative minor) player is given by a continuous time
stochastic process X0 D .X0t /0�t�T (resp. X D .Xt/0�t�T ) in E0 (resp. E) whose
jump rates are given by a function of the form:

Œ0;T� � E0 � E0 � P.E/ � A0 3 .t; x0; x0
0; �; ˛0/ 7! �0t .x0; x

0
0; �; ˛0/

�
resp: Œ0;T� � E � E � P.E/ � E0 � A0 � A 3 .t; x; x0; �; x0; ˛0; ˛/

7! �t.x; x
0; �; x0; ˛0; ˛/

�
;

which emphasizes the fact that the dynamics of the state of the major player depend
upon the statistical distribution � of the states of the minor players while the
dynamics of the states of the minor players depend upon the same distribution � and
the state x0 of the major player, which is consistent with the stochastic differential
game model stated in (7.1). Notice that we also allow the dynamics of the state of the
representative minor player to depend upon the control ˛0 used by the major player.
We want to keep the present discussion at a rather informal level, and for this reason,
we do not state precise definitions for the spaces of admissible control strategies A0
and A. However, we shall limit ourselves to control strategies in feedback form. As
usual, the spaces of controls A0 and A are closed subsets of Euclidean spaces R

k0

and R
k.

In full analogy with the previous discussions in this section, the running and
terminal cost functions of the major and the minor players are denoted by f0, g0, f
and g, so that when the major player and the representative minor player choose the
strategy profiles ˛0 and ˛ respectively, the expected costs to the major and minor
players are given by:

J0.˛0;˛/ D E

�Z T

0

f0.t;X
0
t ; �t; ˛

0
t /dt C g0.X

0
T ; �T/

	

;
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and

J.˛0;˛/ D E

�Z T

0

f .t;Xt; �t;X
0
t ; ˛

0
t ; ˛t/dt C g.XT ; �T ;X

0
T/

	

:

7.1.10 The Search for Nash Equilibria

Without going into the gory details of the analysis, we describe the steps of the
alternative formulation outlined in Subsection 7.1.3 to construct the best response
map and identify Nash equilibria in Markovian feedback form as its fixed points.

Major Player’s Problem. We fix an admissible strategy ˛ 2 A in feedback
form .˛t D �.t;Xt; �t;X0t //0�t�T for the representative minor player, and solve
the optimal control problem of the major player given that all the minor players
use the feedback function �. Assuming that it exists and is unique, we denote by
O�0 D �0;�.�/ the feedback function giving the optimal strategy of this optimization
problem. So, given that all the minor players use control strategies based on the same
feedback function �, the best response of the major player is to use the strategy ˛0;�
given by the feedback function O�0 solving the optimal control problem:

inf
˛0$�02A0

E

�Z T

0

f0.t;X
0
t ; �t; �

0.t;X0t ; �t//dt C g0.X0T ; �T/

	

;

where .X0t ; �t/0�t�T is the continuous time Markov process which we now describe.
In the above formula, the (random) measure�t is the distribution at time t of the state
of a representative minor player. We rely on the fact that the process .X0t ; �t/0�t�T

is sufficient (in the sense of sufficiency in mathematical statistics) for the dynamics
and the expected costs of the major player. Also, it is Markovian. The infinitesimal
generator G0

�0;�
of this Markov process is given by:

�
G0
�0;�

F
�
.t; x0; �/

D @F

@t
.t; x0; �/C

X

y02E0

F.t; y0; �/�0t
�
x0; y0; �; �0.t; x0; �/

�

C
X

x02E

@F

@�.fx0g/ .t; x
0; �/

X

x2E

�.fxg/�t
�
x; x0; �; x0; �0.t; x0; �/; �.t; x; �; x0/

�
;

for a smooth function F W Œ0;T� � E0 � P.E/ ! R, which we regard rather
abusively as a smooth function of t, x0 and .�.fxg//x2E. Recalling that
the families .�0t .x

0; y0; �; �0.t; x0; �///x0;y02E and .�t.x0; x00; �; x0; �0.t; x0; �/;
�.t; x0; x0; �///x0;x002E are Q-matrices, we get:
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�
G0
�0;�

F
�
.t; x0; �/

D @F

@t
.t; x0; �/C

X

y0 6Dx0

�
F.t; y0; �/ � F.t; x0; �/

�
�0t
�
x0; y0; �; �0.t; x0; �/

�

C
X

x02E

@F

@�.fx0g/ .t; x
0; �/

X

x 6Dx0

�.fxg/�t
�
x; x0; �; x0; �0.t; x0; �/; �.t; x; �; x0/

�

�
X

x02E

h @F

@�.fx0g/ .t; x
0; �/�.fx0g/

�
X

x 6Dx0

�t
�
x0; x; �; x0; �0.t; x0; �/; �.t; x0; �; x0/

�i

D @F

@t
.t; x0; �/C

X

y0 6Dx0

�
F.t; y0; �/ � F.t; x0; �/

�
�0t
�
x0; y0; �; �0.t; x0; �/

�

C
X

x02E

X

x 6Dx0

h� @F

@�.fx0g/ .t; x
0; �/ � @F

@�.fxg/ .t; x
0; �/

�

� �.fxg/�t
�
x; x0; �; x0; �0.t; x0; �/; �.t; x; �; x0/

�i
;

where we exchanged x and x0 on the fourth and fifth lines to derive the final
expression. The definition of this infinitesimal generator can be understood in the
following way. The partial derivative with respect to the time variable is present
because we are using space time Markov processes as the transition rates depend
upon time. The next term corresponds to transitions from state x0 to y0 in the state
X0t of the major player when the feedback function at time t is �0.t; �; �/. The last two
summations correspond to transitions in the probability �t, which may be derived
from the Fokker-Planck equation satisfied by the marginal law of the representative
player, see for instance Subsection (Vol I)-7.2.2.

We refer to Subsection (Vol I)-5.4.4 for a complete overview on the differen-
tiability properties of a real-valued function defined on P.E/. If we denote by e1,
e2, � � � , ed the elements of E, we may identify probability measures � 2 P.E/
with elements of the simplex Sd D f.p1; � � � ; pd�1; pd/ 2 Œ0; 1�d W Pd

iD1 pi D 1g.
Since Sd is in one-to-one correspondence with the set Sd�1;� D f.p1; � � � ; pd�1/ 2
Œ0; 1�d�1 W Pd�1

iD1 pi � 1g, smooth functions on P.E/ can be viewed as smooth
functions on Sd�1;�, the latter having a nonempty interior in R

d�1. In this regard,
Proposition (Vol I)-5.66 and Corollary (Vol I)-5.67 make the connection between
the derivatives of a function defined on the simplex and the linear functional
derivative of a function defined on P.E/. Importantly, it permits to rewrite the
above formula in terms of both the functional linear derivative of F and the
derivatives on the .d �1/-dimensional domain Sd�1;�, as .Œ@F=@�.fx0g/�.t; x0; �/�
Œ@F=@�.fxg/�.t; x0; �//x02Enfxg may be regarded as the derivatives of F with respect
to .�.fx0g//x02Enfxg seen as an element of Sd�1;�.
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Representative Minor Player’s Problem. We first single out a minor player,
which we also called before a virtual player, and we search for its best response to
the rest of the other players when all the remaining minor players are exchangeable.
So we fix an admissible strategy ˛0 2 A

0 of the form .˛0t D �0.t;X0t ; �t//0�t�T

for the major player, and an admissible strategy ˛ 2 A of the form .˛t D
�.t;Xt; �t;X0t //0�t�T for the representative of the exchangeable minor players. We
then assume that the minor player which we singled out responds to the other players
by choosing an admissible strategy L̨ 2 A of the form . L̨ t D L�.t; LXt; �t;X0t //0�t�T

minimizing the expected cost:

inf
L̨$ L�2A

E

�Z T

0

f
�
t; LXt; �t;X

0
t ;

L�.t; LXt; �t;X
0
t /; �

0.t;X0t ; �t/
�
dt

C g. LXT ; �T ;X
0
T/

	

;

where the process . LXt; �t;X0t /0�t�T is a Markov process with infinitesimal generator
G�0;�; L� given by:

�
G�0;�; L�F

�
.t; x; �; x0/

D @F

@t
.t; x; �; x0/C

X

y02E0

F.t; x; �; y0/�0t
�
t; x0; y0; �; �0.t; x0; �/

�

C
X

x02E

F.t; x0; �; x0/�t
�
x; x0; �; x0; �0.t; x0; �/; L�.t; x; �; x0/�

C
X

x02E

X

x002E

h @F

@�.fx0g/ .t; x; �; x
0/�.fx00g/

� �t
�
x00; x0; �; x0; �0.t; x0; �/; �.t; x00; �; x0/

�i
:

The various terms appearing in the above definition of the infinitesimal generator
can be understood as before. The only new term is the summation on the third
line, which corresponds to transitions in which the state of the representative minor
player jumps from x00 to x0.

We shall assume that the minimizer of the above optimal control problem exists
and that it is unique and we shall denote by O� D ��.�0; �/ the optimal feedback
function providing the solution of this optimal control problem.

Search for a Fixed Point of the Best Response Map. A Nash equilibrium for
the mean field game with major and minor players is a fixed point Œ O�0; O�� D
Œ�0;�. O�/;��. O�0; O�/�.

We shall not pursue the construction of Nash equilibria for the system at this
level of generality. See the Notes & Complements at the end of the chapter for a
reference to the construction of equilibria in small time. Instead, we concentrate on
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the extension to the major/minor set-up of the cyber security model introduced in
Chapter (Vol I)-1, and studied in Chapter (Vol I)-7.

A Form of the Cyber Security Model with Major and Minor Players
We now revisit the cyber-security mean field game model studied in Subsec-
tion (Vol I)-7.2.3 of Chapter (Vol I)-7, with the firm intention to extend it to a
full-fledged model with major and minor players. This form of the game was
already touted in the introduction to the model we gave in Subsection (Vol I)-
1.6.2 of Chapter (Vol I)-1. The major player is a botnet herder or a hacker,
who put machines into his or her control by installing malicious software. Minor
players are computer owners who are susceptible to the hacker’s attacks. The
dynamics of the states of the computers of the minor players are the same as
the dynamics already described in Subsection (Vol I)-7.2.3 where we discuss a
simplified version of the model in which the attacker did not control the intensity
of the attacks. In order to avoid referring too often to Volume I, and for the current
presentation to be self-contained, we repeat some of the definitions already given
in Chapter (Vol I)-7. The vulnerable network computers can be in one of d D 4

states:

• DI: defended infected;
• DS: defended and susceptible to infection;
• UI: unprotected infected;
• US: unprotected and susceptible to infection;

so the state space of the minor players is E D fDI;DS;UI;USg. In this simplistic
model, the rate �t is independent of t and each network computer owner can choose
one of two actions, that is A D f0; 1g. Action ˛ D 0means that the computer owner
is happy with its level of protection (Defended or Unprotected) and does not try to
change its own state. On the other hand, action ˛ D 1 means that the computer
owner is willing to update the level of protection of its computer and switch to
the other state (Unprotected or Defended). In the latter case, updating occurs after
an exponential time with parameter � > 0, which accounts for the speed of the
response of the defense system.

When infected, a computer may recover at a rate depending on its protection
level: the recovery rate is denoted by qD

rec for a protected computer and by qU
rec for

an unprotected one.
Conversely, a computer may become infected in two ways, either directly from

the attacks of the hacker or indirectly from infected computers that spread out the
infection. The rate of direct infection depends upon the intensity of the attacks, as
fixed by the botnet herder. This intensity is denoted by ˛0 2 A0 with A0 D Œ0;1/,
and the rate of direct infection of a protected computer is ˛0qD

inf while the rate of
direct infection of an unprotected computer is ˛0qU

inf. Also, the rates of infection
spreading from infected to susceptible computers depend upon the distribution � of
the states within the population of computers. The rate of infection of an unprotected
susceptible computer by other unprotected infected computers is ˇUU�.fUIg/, the



604 7 Extensions for Volume II

rate of infection of a protected susceptible computer by other unprotected infected
computers is ˇUD�.fUIg/, the rate of infection of an unprotected susceptible
computer by other protected infected computers is ˇDU�.fDIg/, and the rate of
infection of a protected susceptible computer by other protected infected computers
is ˇDD�fDIg.

As a result of these assumptions, the infinitesimal rates of transition of the state
of a typical minor player are given by the Q-matrix �t.x; x0; �; ˛0; ˛/ (recall that
˛ D 0 or ˛ D 1):

�t.�; �; �; ˛0; ˛/ D

2

6
6
4

DI DS UI US

DI � � � qD
rec ˛� 0

DS ˛0qD
inf C ˇDD�.fDIg/C ˇUD�.fUIg/ � � � 0 ˛�

UI ˛� 0 � � � qU
rec

US 0 ˛� ˛0qU
inf C ˇUU�.fUIg/C ˇDU�.fDIg/ � � �

3

7
7
5

where all the instances of � � � should be replaced by the negative of the sum of the
entries of the row in which the dots � � � appear on the diagonal.

In contrast with what we did for the minor players, we do not specify the
dynamics nor the state space of the major player. In order to proceed, it suffices
to know the value of its control, which is here given by ˛0. Notice in particular that,
in this model, the rate �t depends not only on the action of the minor player, but
also on the control of the major player. The first models of stochastic differential
games with major and minor players we introduced in Subsection 7.1.1, where we
described the finite player games, included this type of interaction. We dropped this
dependence upon the control of the major player for the sake of simplicity, but in
the particular example at hand, one may view ˛0 as the state as well as the control
of the major player.

We now specify the costs incurred by each of the players. Each computer owner
(minor player), with Xt as state at time t, pays a fee kD per unit of time for the
defense of its system, and incurs a loss kI per unit of time for losses resulting from
infection. Recalling the standard notations ˛0 and ˛ for the strategies of the major
and minor players, the expected cost to the minor player is given by:

J.˛0;˛/ D E

� Z T

0

�
kD1D C kI1I

�
.Xt/dt

	

;

where we use the notation D D fDI;DSg and I D fDI;UIg. If the attacker
(major player) chooses at time t the attack strategy ˛0t as given by a deterministic
function �0 of time and the statistical distribution �t D L.Xt/ of the states of
the computers, its instantaneous cost is kH�

0.t; �t/
2=2. Notice that in the more

general examples considered earlier, �t was random since it was the conditional
distribution of the state Xt given the noise driving the dynamics of the state of the
major player. However, since the major player only enters the model through ˛0,
which is deterministic, the measure �t is deterministic here. We also assume that if
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the computer network is in state �t, its reward is given by a function f0 defined on
P.E/ so that the total expected cost the attacker tries to minimize is given by:

J0.˛0;˛/

D E

� Z T

0

�
�f0.�t/C kH

2
.˛0t /

2
�

dt

	

D
Z T

0

�
�f0.�t/C kH

2
.˛0t /

2
�

dt;
(7.74)

because the quantity appearing in the expectation is deterministic.

Search for Nash Equilibria
We now describe what the three steps of the search for Nash equilibria reduce to in
the particular case of the model at hand. We emphasize once more the fact that the
state of the major player does not enter the model.

Optimization Problem of the Major Player. This optimization problem is rather
straightforward. Indeed, the cost (7.74) to the major player is a deterministic
function of the deterministic flow � D .�t/0�t�T of probability measures and we
can capture the dynamics of this flow � by an ODE; recall that at each time t, the
measure �t can be viewed as an element of P.E/, which can be identified to the
probability simplex in R

4.
Following the prescriptions for the optimization problem of the major player

which we outlined earlier, we fix a distributed Markovian strategy ˛ D .˛t/0�t�T

given by a feedback function � in the sense that ˛t D �.t;Xt/, and we try to identify
the best response of the hacker when all the computer owners use the same feedback
function �. Observe that, the flow � D .�t/0�t�T being deterministic, it is implicitly
hidden in � through the time argument t. As explained earlier, since the model does
not involve the state X0t of the hacker, we look for strategies in the form ˛0t D
�0.t; �t/ to minimize the cost to the hacker given in (7.74). As emphasized several
times already, this optimization problem should be of the McKean-Vlasov type.
However, since the dynamics of the state of the major player are not present in
the current model, the dynamics over which the optimization is performed can be
expressed directly in terms of the time evolution of the probability distribution �t.
To be more specific, the optimization problem of the major player becomes the
minimization:

inf
˛0

Z T

0

�kH

2
.˛0t /

2 � f0.�t/
�

dt;

under the dynamic constraint:

@t�t.fxg/ D
X

x02E

qt.x
0; x/�t.fx0g/ (7.75)
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where the Q-matrix qt is given by:

qt.x; x
0/ D �t.x; x

0; �t; ˛
0
t ; �.t; x//; 0 � t � T; x; x0 2 E:

Equation (7.75) is an ordinary (vector) differential equation in 4 dimensions. Even
though the form (7.75) suggests that this equation is linear, the fact that the measure
�t appears in the definition of the Q-matrix makes it a nonlinear equation. To be
specific, we can use the two possible values of the matrix �t recalled above to write
completely the system giving the time evolution of the measure �t.

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@t�t.DI/ D qD
inf˛

0
t �t.DS/� qD

rec�t.DI/C ˇDD�t.DI/�t.DS/

CˇUD�t.UI/�t.DS/C �Œ�.t;UI/�t.UI/� �.t;DI/�t.DI/�

@t�t.DS/ D �qUD
inf ˛

0
t �t.DS/C qD

rec�t.DI/� ˇDD�t.DI/�t.DS/

�ˇUD�t.UI/�t.DS/C �Œ�.t;US/�t.US/� �.t;DS/�t.DS/�

@t�t.UI/ D qU
inf˛

0
t �t.US/� qU

rec�t.UI/C ˇDU�t.DI/�t.US/

CˇUU�t.UI/�t.US/C �Œ�.t;DI/�t.DI/� �.t;UI/�t.UI/�

@t�t.US/ D �qU
inf˛

0
t �t.US/C qU

rec�t.UI/� ˇDU�t.DI/�t.US/

�ˇUU�t.UI/�t.US/C �Œ�.t;DS/�t.DS/� �.t;US/�t.US/�:

(7.76)

For the sake of notation, we write �t.XX/ for �t.fXXg/ for XX D DI;DS;UI;US.
For further convenience, we rewrite the system (7.76) in shorter form:

d�t

dt
D ˛0t B0.�t/C B.t; �t/;

where �t and B0.�/ are the 4-dimensional vectors:

�t D

2

6
6
4

�t.DI/
�t.DS/
�t.UI/
�t.US/

3

7
7
5 ; B0.�/ D

2

6
6
4

qD
inf�.DS/

�qD
inf�.DS/

qU
inf�.US/

�qU
inf�.US/

3

7
7
5 ;

and B.t; �/ is given by:

B.t; �/ D

2

6
6
6
6
6
6
6
6
6
6
6
4

�qD
rec�.DI/C ˇDD�.DI/�.DS/C ˇUD�.UI/�.DS/

C�Œ�.t;UI/�.UI/� �.t;DI/�.DI/�
qD

rec�.DI/� ˇDD�.DI/�.DS/� ˇUD�.UI/�.DS/
C�Œ�.t;US/�.US/� �.t;DS/�.DS/�

�qU
rec�.UI/C ˇDU�.DI/�.US/C ˇUU�.UI/�.US/

C�Œ�.t;DI/�.DI/� �.t;UI/�.UI/�
qU

rec�.UI/� ˇDU�.DI/�.US/� ˇUU�.UI/�.US/
C�Œ�.t;DS/�.DS/� �.t;US/�.US/�

3

7
7
7
7
7
7
7
7
7
7
7
5

;

and for consistency, we label the components of these vectors by DI, DS, UI, and
US respectively. The dynamic equation (7.76) is linear in ˛0t and B.�/ is Lipschitz
in � as the coordinates of � live in Œ0; 1�. Hence, existence of solutions is pretty
straightforward.
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This being said, the optimization problem of the attacker appears as a standard
(deterministic) optimal control problem. Its value function can be obtained by
solving the HJB equation:

@tV.t; �/C H�



t; �;
ı

ı�
V.t; �/

�

D 0; (7.77)

with terminal condition V.T; �/ D 0, where the function H� is defined as:

H�.t; �; h/ D
(

B.t; �/ � h � 1
2kH
ŒB0.�/ � h�2 � f0.�/ if B0.�/ � h � 0

B.t; �/ � h � f0.�/ if B0.�/ � h > 0:
(7.78)

We need to consider two cases to define the Hamiltonian appearing in the HJB
equation (7.77) because of the constraint on the control of the major player: the
control ˛0 needs to be nonnegative (i.e., A0 D Œ0;1/) because of its interpretation
as an intensity. Under these conditions, the value of the optimal control Ǫ 0 is given
by the feedback function O�0.t; �/ defined by:

O�0.t; �/ D
(

� 1
kH

B0.�/ � ı
ı�

V.t; �/ if B0.�/ � ı
ı�

V.t; �/ � 0

0 if B0.�/ � ı
ı�

V.t; �/ > 0:
(7.79)

As usual, Œı=ı��V is regarded as the gradient of V with respect to the four inputs
�.fDIg/, �.fDSg/, �.fUIg/, �.fUSg/, see Proposition (Vol I)-5.66.

Assuming that this deterministic control problem is well posed, and restoring
the dependence of the optimization on the feedback function � used by the minor
players, we denote by �0;�.�/ the optimal feedback function O�0.t; �/ D 1

kH
ŒB0.�/ �

@�V.t; �/�� where as usual, we denote by x� the negative part of the real number x.

Optimization Problem of the Minor Players. We now turn to the optimization
problem of the individual computer owners. We single out a computer owner
(minor player), and according to the strategy introduced earlier, we assume that
the major player (hacker) and the other minor players (all the other computer
owners) chose their respective strategies, and we search for the best response of the
singled out minor player. So we assume that the hacker chose an attack intensity
˛0 D .˛0t /0�t�T given by a deterministic function ˛0t D �0.t; �t/, that all the
other minor players are using the same distributed feedback function �, and we look
for the feedback function L� which produces the best response of the representative
computer owner. In other words, we look for L� to minimize the expected cost:

J�
0;�. L�/ D E

� Z T

0

�
kD1D C kI1I

�
. LXt/dt

	

; (7.80)
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under the dynamic constraint that the state LX D . LXt/0�t�T evolves as a Markov
process having the Q-matrix:

Lqt.x; x
0/ D �t

�
x; x0; �t; �

0.t; �t/; L�.t; x/�; 0 � t � T; x; x0 2 E; (7.81)

where �t is the distribution of the (other) minor players when they all use the
feedback function � and the major player uses the strategy given by the feedback
function �0. Recall that the state of the hacker is not involved in the model. Put in a
different way, once �0 and � are chosen, the flow � D .�t/0�t�T of probability
measures on E is nothing but the flow of marginal distributions of the Markov
process X D .Xt/0�t�T having Q-matrix:

qt.x; x
0/ D �t

�
x; x0; �t; �

0.t; �t/; �.t; x/
�
; 0 � t � T; x; x0 2 E:

Since the measure �t appears in the Q-matrix, this flow of measures solves a
nonlinear Kolmogorov equation of the McKean-Vlasov type. This equation is
exactly equation (7.76) with ˛0t replaced by �0.t; �t/.

So given the choices of �0 and �, the minor player looks for the probability flow
� D .�t/0�t�T solving the nonlinear Kolmogorov equation (7.76), and uses this
flow to compute and minimize the expected cost (7.80) over the controls L� under
the dynamic constraint that the controlled process LX D . LXt/0�t�T should have the
Q-matrix (7.81). We denote the optimal control by O� D ��.�0; �/.

Nash Equilibrium as a Fixed Point of the Best Response Map. According to
what we learned in this chapter, we have a Nash equilibrium for the system when
we can solve the two optimization problems described above in such a way that
the solutions give a fixed point of the best response map. In other words, a couple
.�0; �/ representing the attack intensity of the hacker and the defense strategy of a
typical computer owner form a Nash equilibrium for the system if:

�0 D �0;�.�/; and � D ��.�0; �/:

Clearly, this fixed point can be rewritten in terms of � only:

� D ����0;�.�/; �
�
: (7.82)

This last formula can be used as the basis for an iterative procedure to find a Nash
equilibrium:

1. start with a feedback function �;
2. compute O�0 D �0;�.�/ by solving the major player optimization problem

as described above, namely by solving the HJB equation (7.77) and setting
O�0.t; �/ D 1

kH
ŒB0.�/ � ı

ı�
V.t; �/��;



7.1 Mean Field Games with Major and Minor Players 609

3. still with the starting � and the �0 given by O�0 just found, compute O� D
��.�0;�.�/; �/ by solving the minor player optimization problem as described
above;

4. if O� coincides with the feedback function � we started from, i.e., if O� D �, we
are done, otherwise we substitute O� for � and we iterate.

This iteration may not converge, even if a fixed point (and hence a Nash equilibrium)
exists. We just mention it as a natural first attempt to find numerically Nash
equilibria for the system.

In full analogy with the numerical implementations reported in Subsection (Vol
I)-7.2.3, we implemented numerically the search strategy described in the above
bullet points. For the purpose of illustration, we used the following parameters:
ˇfUUg D ˇfDUg D 0:3, ˇfUDg D ˇfDDg D 0:4, for the rates of contamination;
qD

rec D qU
rec D 0:4, for the rates of recovery; qD

inf D 0:3 and qU
inf D 0:4 for the rates

of infection; T D 10 for the time horizon; kI D 0:5 for the cost of being infected,
kD D 0:3 for the cost of being defended and � D 0:2 for the speed of response.
As for the major player, we first chose kH D 1 and f0.�/ � 0. In this case, the
major player does not get rewarded for his attacks, while still paying a quadratic
penalty for the intensity of its attacks. As a result, its optimal strategy is to choose
Ǫ 0 � 0. The left plot on the top row of Figure 7.4 shows the time evolution of
the distribution .�t/0�t�T of the states of the minor players (target computers) as
computed from the implementation of the above numerical scheme. For comparison
purposes, the right plot on the top row shows the result of the computation of
the distribution .�t/0�t�T of the states of the minor players as computed from
the algorithm described in Chapter (Vol I)-7 in the absence of a major player by
setting the parameter vH therein to 0 (or equivalently by setting qU

inf and qD
inf to 0)

and solving the master equation. Despite the oscillations visible in the left plot,
the results are consistent, demonstrating the potential of the above iteration scheme.
However, numerical results are not always as nice. For the purpose of illustration, we
added in the bottom pane, a plot of the time evolution of the distribution .�t/0�t�T as
computed from the implementation of the above numerical scheme with kH D 0:02

and f0.�/ D k0.�.fUIg/C�.fDIg//with k0 D 0:05 rewarding the attacker when the
proportion of infected computers is high. Clearly the resulting dynamic equilibrium
picked up by the numerical computations is different. The proportion of unprotected
computers susceptible to infection does not grow as much, while at the same time,
the proportion of infected computers which were unprotected is much higher. Both
facts should be expected given the fact that the attacker is now rewarded for his
attacks.

Despite the annoying oscillations due to insufficient resolution in the compu-
tations, one can see a significant change in the relative proportion of defended
computers (in anticipation of the aggressive behavior of the attacker), even if the
proportion of infected while protected computers decreases toward the end of the
period. The same anticipation of the aggressive behavior of the attacker can also
explain the smaller proportion of unprotected computers susceptible to be victims
of the attacks.
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Fig. 7.4 Time evolution in equilibrium, of the distribution �t of the states of the computers in the
network for the initial condition �0: �0 D .0:25; 0:25; 0:25; 0:25/ when the major player is not
rewarded for its attacks, i.e., when f0.�/ � 0 (left pane on the top row), in the absence of major
player and v D 0 (right pane on the top row), and with f0.�/ D k0.�.fUIg/ C �.fDIg// with
k0 D 0:05 (bottom pane).

7.2 Mean Field Games of Timing

This section builds on the discussion of economic models of bank runs introduced
in Section (Vol I)-1.2 of Chapter (Vol I)-1, and especially the diffusion version
presented there. As a follow up, we introduce a more general continuous time set-up
for mean field games of timing, and we propose solutions in the spirit of the games
models studied in the book. We do not aim at the greatest generality. The subject is
relatively young (and presumably immature) and as a result, we err on the side of a
proof of concept rather than to attempt an exposé of a general theory.
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7.2.1 Revisiting the Bank Run Diffusion Model of Chapter 1 (First
Volume)

We use the diffusion model of bank run introduced in Chapter (Vol I)-1 as a
motivation for the abstract set-up we propose for mean field games of timing. In
that particular model, the states (observations / private signals) .Xi

t/iD1;��� ;N at time t
of the N players are assumed to satisfy:

dXi
t D dYt C �dWi

t ; 0 � t � T; (7.83)

for a fixed time horizon T and for a common unobserved signal Y D .Yt/0�t�T given
by an Itô process:

dYt D btdt C �tdW0
t ; 0 � t � T; (7.84)

where .Wi D .Wi
t /0�t�T/iD0;��� ;N are N C 1 independent Wiener processes with

values in R and .bt/0�t�T and .�t/0�t�T are square integrable processes that are
progressively measurable with respect to the filtration generated by W0. All these
processes are constructed on a complete probability space .˝;F ;P/. Obviously,
and as we did throughout the book, we use the notation W0 for the common source
of noise, and the notation Wi for the idiosyncratic source of noise to player i.

For each i 2 f1; � � � ;Ng, player i chooses a time � i 2 Œ0;T� on the basis of its
available information at that time, trying to maximize a quantity of the form:

Ji.�1; � � � ; �N/ D EŒF.W0;Wi; N�N
� ; �

i/�; (7.85)

where as usual, we denote by:

N�N
� D 1

N

NX

iD1
ı� i (7.86)

the empirical distribution of � D .�1; � � � ; �N/. In the model introduced in
Section (Vol I)-1.2, the functional F.W0;W; �; t/ was given by:

F.W0;W; �; t/ D exp
�
.Nr � r/t

�h
1 ^

�
L.Yt/ � ��Œ0; t/�

�Ci
; (7.87)

as long as L.Ys/ � �.Œ0; s// is positive for all s < t, and by 0 otherwise, for any
t 2 Œ0;T� and any probability distribution � 2 P.Œ0;T�/, where Nr and r are two rates
such that Nr > r and L W y 7! L.y/ is some deterministic function.

Each � i should be a stopping time with respect to the right-continuous filtration
F

Xi
generated by the process Xi and augmented with P-null sets of F . Indeed,

this filtration represents the information available to player i, and the choice of the
stopping time � i is the actual decision made by that player.
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General Formulation
We generalize the set-up of Chapter (Vol I)-1 by assuming that the reward function
F may take a more general form than (7.87) and that, in lieu of (7.83)–(7.84),
the private states .Xi D .Xi

t/0�t�T/iD1;��� ;N of the players are given by general
measurable functions of the sample paths of the common noise W0 and of the
idiosyncratic ones .Wi/iD1;��� ;N . In order to do so, we shall regard the function F as
a general measurable map on the canonical space C.Œ0;T�/� C.Œ0;T�/�P.Œ0;T�/�
Œ0;T�, where we use the short notation C.Œ0;T�/ for C.Œ0;T�IR/. The canonical
process on the path space C.Œ0;T�/ � C.Œ0;T�/ will be denoted by .w0;w/, while
the canonical random variable on P.Œ0;T�/ will be denoted by �. We recall from
Proposition (Vol I)-5.7 that the Borel � -field on P.Œ0;T�/ coincides with the � -field
generated by .�.Œ0; t�//0�t�T .

Given these notations, our basic assumption reads as follows.

Assumption (MFG of Timing Set-Up)

(A1) For i 2 f1; � � � ;Ng and t 2 Œ0;T�, the private state Xi
t of player i at time t is

given in the form Xi
t D ŒX.W0;Wi/�t for a single measurable function:

X W C.Œ0;T�/ � C.Œ0;T�/ ! C.Œ0;T�IRd/;

which is adapted, in the sense that for each fixed t 2 Œ0;T�, ŒX.w0;w/�t is
measurable with respect to the product � -field �fw0�^tg˝�fw�^tg generated
by the stopped processes w0�^t and w�^t.

(A2) The reward function F is a real valued bounded measurable function on the
product space C.Œ0;T�/�C.Œ0;T�/�P.Œ0;T�/�Œ0;T�which is progressively
measurable in the sense that for each fixed t 2 Œ0;T�, the restriction of F to
C.Œ0;T�/ � C.Œ0;T�/ � P.Œ0;T�/ � Œ0; t� is measurable with respect to the
� -field �fw0�^tg ˝ �fw�^tg ˝ �f�.Œ0; s�/I 0 � s � tg ˝ B.Œ0; t�/.

In the bank run model, the quantity F.w0;w; �; t/ represents the reward to a player
for exercising its timing option at time t in a scenario where the sample trajectories
of the common and idiosyncratic noises are given by the realizations of w0 and w,
and the distribution of the times of withdrawal in the population is given by the
realization of �.

It is important to keep in mind that FXi
may be strictly smaller than the complete

filtration F
.W0;Wi/ generated by .W0;Wi/, which is automatically right-continuous.

Denoting by SXi the set of Œ0;T�-valued stopping times for the filtration F
Xi

, we
shall write � i 2 SXi . More generally, for a real-valued process X, we shall denote
by SX the set of Œ0;T�-valued stopping times for the complete and right-continuous
filtration F

X generated by the process X.



7.2 Mean Field Games of Timing 613

Our goal is to identify the right notion of Nash equilibrium for these models, find
reasonable sufficient conditions for their existence, and study their structure when
they do exist. We start with the following definition:

Definition 7.17 If � > 0, a tuple of stopping times .�1;�; � � � ; �N;�/, with � i;� 2
SXi for each i 2 f1; � � � ;Ng, is said to be an �-Nash equilibrium if, for every i 2
f1; � � � ;Ng and � 2 SXi , we have:

EŒF.W0;Wi; N�N;�i; � i;�/� � EŒF.W0;Wi; N�N;�i; �/� � �;

N�N;�i denoting the empirical distribution of .�1;�; � � � ; � i�1;�; � iC1;�; � � � ; �N;�/.

This definition is reminiscent of the definition of an approximate Nash equilibrium
over open loop strategies which we used for stochastic differential games. Recall
for example Definition 6.6. However, there are major differences between these
definitions. Indeed, not only the players cannot observe the states of the other
players, which is a typical feature of open loop equilibria, but also they cannot even
observe their private noises, since the stopping time chosen by player i, for each
i 2 f1; � � � ;Ng, is required to be in SXi . This makes a subtle, though significant,
difference in the analysis. Anyhow, since the players interact through the empirical
distributions of the stopping times they choose, it is reasonable to expect that an
asymptotic description of the game will take the form of a mean field game, which
we shall call a mean field game of timing. In full analogy with the results of
Section 6.2, we shall prove that any weak limit point as N ! 1 of .�N/N�1-Nash
equilibria, for any sequence .�N/N�1 converging to 0, is a solution to the asymptotic
mean field game, provided this notion of solution is defined in a weak sense which
we spell out in Definition 7.37 below.

7.2.2 Formulation of the MFG of Timing Problem

In this subsection, we only deal with two independent Wiener processes, W0 and
W, constructed on the same probability space .˝;F ;P/ as before, and we consider
the corresponding state process X D .ŒX.W0;W/�t/0�t�T given by the mapping
X introduced in the statement of assumption MFG of Timing Set-Up. As in the
case of stochastic differential games, the presence of the common noise W0 will
force the introduction of strong and weak notions of equilibrium. We postpone the
technicalities of the analysis of weak solutions to the next subsection and we first
concentrate on the notion of strong solution. For each random measure � on Œ0;T�
and each Œ0;T�-valued random variable � , we denote by:

J.�; �/ D EŒF.W0;W; �; �/� (7.88)

the corresponding expected reward.
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In full analogy with the definition of a strong solution to a mean field stochastic
differential game given in Subsection 2.2.1, we introduce the following definition
of a strong equilibrium for a mean field game of timing:

Definition 7.18 A stopping time �� 2 SX is said to be a strong MFG equilibrium
if, for every � 2 SX, we have:

J.�; ��/ � J.�; �/;

with � D L.��jW0/.

It is worth mentioning that, in contrast with mean field stochastic differential games,
the state process X is here insensitive to the mean field interaction.

Coming back to the motivating example of the bank run model for inspiration,
we realize that the problem of the depositor is to choose a stopping time in SX

which is as large as possible to maximize the interests earned by the deposit, but
not too large to miss its chance to get back as much of its investment as possible.
Clearly, its reward depends upon the sample distribution of the times at which the
other depositors withdraw their deposits. So in the mean field game formulation,
a typical depositor will choose a withdrawal time to maximize his/her response
to the distribution of the times of withdrawal of the other depositors (this is a
rather standard optimal stopping problem), and in equilibrium, one expects that
the distribution of the optimal time of withdrawal chosen by the specific depositor
coincides with the statistical distribution of the times of withdrawals of all the
depositors (this is the usual fixed point step). This formulation of the fixed point step
would be appropriate in the absence of the common noise W0, namely if the value of
the assets of the bank was deterministic. In the presence of W0, the fixed point step
needs to be taken with conditional distributions, and this makes the problem much
more difficult as we saw in the chapters devoted to mean field games with a common
noise.

In preparation for the solution of the problem in the presence of W0, we
emphasize the relevance of the notion of random environment introduced in
Section 1.1.1 of Chapter 1 in the present context of games of timing. As in Chapter 1,
we may assume that the probability space .˝;F ;P/ is the completion of the product
.˝0 � ˝1;F0 ˝ F1;P0 ˝ P

1/ of two complete probability spaces .˝0;F0;P0/

and .˝1;F1;P1/, and that W0 and W are independent Wiener processes originally
defined on ˝0 and ˝1 respectively, and naturally extended to ˝. Of course, we
could assume that W0 and W are more general processes, but we shall not consider
such a higher level of generality.

We then say that � is a random environment if it is a random measure on
Œ0;T� defined on the probability space .˝0;F0;P0/. In other words, it is an F0-
measurable function ˝0 3 !0 7! �.!0; � / 2 P.Œ0;T�/ which can be used as
a proxy for the conditional distribution of the time at which the generic player
decides to stop the game if the trajectory of the common noise is W0.!0/. In
this context, we can define an MFG of timing problem as the set of the following
two steps:
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(i) For each random environment �, solve:

O� 2 arg sup
�2SX

J.�; �/:

(ii) Find � so that, for P0-almost every !0 2 ˝0,

8t 2 Œ0;T�; �.!0; Œ0; t�/ D PŒ O� � t j W0�.!0/:

The above formulation is pretty similar to that used for mean field stochastic
differential games with a common noise, see for instance (2.18)–(2.19)–(2.20). Step
(i) is to find the best response under the random environment �, while step (ii) is
the fixed point step. Also notice that the fixed point condition in this latter step
(ii) forces the solution of the mean field game to be adapted with respect to the
common noise W0, which is precisely what we called a strong solution in Chapter 2.
Alternatively, we could reformulate step (ii) by choosing ˝0 as the canonical space
C.Œ0;T�/ and W0 as the canonical process w0 and then, by requiring that, with
P
0-probability 1,

8t 2 Œ0;T�; �.Œ0; t�/ D P
1Œ O� � t�:

Actually, step (ii) says more regarding the measurability properties of �. Indeed,

since the event f O� � tg belongs to FX
t � F .W0;W/

t , �.Œ0; t�/ must coincide with
PŒ O� � t jFW0

t � if � is a solution of the mean field game. This proves that, in order
for � to be a solution, it must be adapted in the sense that for each t 2 Œ0;T�,
�.Œ0; t�/must be FW0

t -measurable. Equivalently, the process .�.Œ0; t�//0�t�T , which
is càd-làg, must be F

W0
-progressively measurable.

Order Structures and Supermodularity
In this section, we study strong equilibria by taking advantage of the order structure
of the set of controls, the set of stopping times in the present situation. This is in
sharp contrast with most of the analyses performed in the book, which are most
often based on fixed point theorems for continuous maps on topological spaces. The
efficiency of these order-based arguments was demonstrated in the original works on
unimodular games, or games with strategic complementarities, in the static case with
no timing decision. We refer the reader to the Notes & Complements of Chapter (Vol
I)-1 for references.

Obviously, we use the standard order structure on Œ0;T�. On P.Œ0;T�/ however,
we use the dominance order, also called stochastic order, according to which
� � �0 if �.Œ0; s�/ � �0.Œ0; s�/ for all s 2 Œ0;T�. With this notion in hand, we
articulate the main assumptions under which we shall prove existence of strong
equilibria:
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Assumption (MFG of Timing Regularity).

(A1) For each fixed .w0;w/ 2 C.Œ0;T�/ � C.Œ0;T�/, the function .�; t/ 7!
F.w0;w; �; t/ is continuous.

(A2) For each fixed .w0;w; �/ 2 C.Œ0;T�/ � C.Œ0;T�/ � P.Œ0;T�/, the function
t 7! F.w0;w; �; t/ is upper semicontinuous.

(A3) For each pair of measurable and W1-almost surely adapted functions
�;�0 W C.Œ0;T�/ ! P.Œ0;T�/ satisfying W1Œw0 W �.w0/ � �0.w0/� D 1,
the process .Mt/0�t�T defined by:

Mt D F
�
w0;w; �0.w0/; t

� � F
�
w0;w; �.w0/; t

�

is a right-continuous sub-martingale on C.Œ0;T�/�C.Œ0;T�/ equipped with
W1 ˝W1, where W1 is the one-dimensional Wiener measure on C.Œ0;T�/.

Obviously, assumption (A1) implies (A2), so that, when using assumption MFG
of Timing Regularity, we shall specify if we mean it with either (A1) or (A2).

In (A3), we say that � is W1-almost surely adapted if, for all t 2 Œ0;T�, �.Œ0; t�/
is measurable with respect to the completion of the � -field �fw0�^tg, where w0

is the canonical process on C.Œ0;T�/. Condition (A3) is obviously satisfied when
the function F has itself increasing differences in the sense that, for each fixed
.w0;w/ 2 C.Œ0;T�/2, the inequalities t � t0 and � � �0, with t; t0 2 Œ0;T� and
�;�0 2 P.Œ0;T�/, imply:

F.w0;w; �0; t0/ � F.w0;w; �0; t/ � F.w0;w; �; t0/ � F.w0;w; �; t/:

Condition (A3) is rather natural in bank run models. It means that for larger �, F
increases more in time than for smaller �, which may be justified as follows. If
� � �0, at any given time, more people have already withdrawn under �, so the
reward for an agent waiting from t to t0 > t should not exceed the reward under �0.
Put in other words, as people run to the bank earlier under �, the cost of waiting
from t to t0 > t should be greater under � since � � �0. An interesting consequence
of condition (A3) as stated is the fact that if it holds, the expected reward J, recall
Definition (7.88), has also increasing differences in the sense that if � � �0 almost
surely in the sense of stochastic order (i.e., if �0.Œ0; t�/ � �.Œ0; t�/ a.s. for each
t 2 Œ0;T�), and if � � � 0 are stopping times, taking expectations in the submartingale
property of .Mt/0�t�T posited in condition (A3) yields:

J.�0; � 0/ � J.�0; �/ � J.�; � 0/ � J.�; �/: (7.89)

In this form, condition (A3) says that for larger �, the expected reward increases
more rapidly in time than it does for smaller �. These hypotheses introduce
strategic complementarities in the game and recast the game of timing model as
a supermodular game.
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It is worth mentioning that unfortunately, condition (A3) does not hold for the
specific form of reward functional (7.87), even if we close the interval in the quantity
�.Œ0; t�/ to make the whole right-continuous. Indeed, for given s; t 2 Œ0;T�, with
s < t, a 2 .0; 1/ and " > 0 such that a � " � 0, it is pretty straightforward
to construct two probability measures � and �0 in P.Œ0;T�/ such that � � �0,
�.Œ0; s// D �.Œ0; t// D �0.Œ0; t// D a and �0.Œ0; s// D a � ". Therefore, under
(A3), we would get by comparing the two values at time t and at time s:

0 � E

h
e.Nr�r/.s^%/�1 ^ �L.Ys^%/C " � a

�C�i

� E

h
e.Nr�r/.s^%/�1 ^ �L.Ys^%/ � a

�C�i
;

where % D inffr � 0 W L.Yr/ � ag. Obviously, the above is not possible in full
generality.

However, we can provide a general class of reward functionals F for which (A3)
in assumption MFG of Timing Regularity holds.

Proposition 7.19 Assume that the reward functional F is of the form:

F.w0;w; �; t/ D f
�
w0t ;wt; � 
 �.t/; t�; t 2 Œ0;T�;

for w0;w 2 C.Œ0;T�/ and � 2 P.Œ0;T�/, some real valued functions f and � on
R�R�R� Œ0;T� and R respectively, both functions being bounded and continuous,
the support of � being included in Œ0;C1/, and with the notation:

� 
 �.t/ D
Z

Œ0;T�
�.t � s/d�.s/; t 2 Œ0;T�:

If the function .x0; x; y; t/ 7! f .x0; x; y; t/ is twice differentiable in .x0; x/ 2
R � R, with bounded and continuous derivatives on the whole space, and is once
continuously differentiable in y and t, with bounded and continuous derivatives on
the whole space, and if � is nondecreasing, continuously differentiable and convex
and f , @yf and 1

2
.@2

x0
C @2x/f C @tf are nonincreasing in y, then the reward functional

F satisfies (A1) and (A3) in assumption MFG of timing regularity.

Proof. Continuity of F in the last two arguments is easily checked since f itself is continuous.
This proves (A1).

In order to prove (A3), we consider two measurable and almost surely adapted functions
� and �0, as in the statement of assumption MFG of Timing Regularity, with � � �0.
Recalling that .w0;w/ D .w0t ;wt/0�t�T denotes the canonical process on the space C.Œ0; T�/2
equipped with the Wiener measure W1 ˝ W1, Itô’s formula yields:
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df
�
w0t ;wt; � 
 �.t/; t�

D
h�1

2

�
@2x0 C @2x

�
f C@tf

��
w0t ;wt; � 
 �.t/; t�C @yf

�
w0t ;wt; % 
 �.t/; t�%0 
 �.t/

i
dt

C @x0 f
�
w0t ;wt; � 
 �.t/; t�dw0t C @xf

�
w0t ;wt; � 
 �.t/; t�dwt;

where we used the fact that the process .� 
 �.t//0�t�T is adapted to the completion of the
filtration generated by w0 since � is supported by Œ0;C1/. In order to prove (A3), it then
suffices to compare the dt-terms corresponding to � and �0. Their difference writes:

�1

2

�
@2x0 C @2x

�
f C @tf

��
w0t ;wt; � 
 �0.t/; t

�

�
�1

2

�
@2x0 C @2x

�
f C @tf

��
w0t ;wt; � 
 �.t/; t�

C @yf
�
w0t ;wt; � 
 �0.t/; t

�
�0 
 �0.t/ � @yf

�
w0t ;wt; � 
 �.t/; t��0 
 �.t/:

Now note that, if m � m0, with m;m0 2 P.Œ0; T�/, then
R T
0

gdm � R T
0

gdm0 for every
nonincreasing function g on Œ0; T�. In particular, since � and �0 are nondecreasing, we have:

� 
 �.t/ � � 
 �0.t/; �0 
 �.t/ � �0 
 �0.t/;

where we used the fact that �.t � �/ and �0.t � �/ are nonincreasing. We complete the proof
by noticing that @yf is non-positive and �0 is nonnegative. ut

7.2.3 Existence of Strong Equilibria for MFGs of Timing

In this section, we prove existence of strong mean field game of timing equilibria.
For the sake of completeness, we first recall several definitions and classical results
from lattice theory which we use throughout. See the Notes & Complements at the
end of the chapter for precise references to papers and textbooks where proofs and
further material can be found.

Definition 7.20 A partially ordered set .S;�/ is said to be a lattice if, for any
x; y 2 S , the set fx; yg has a least upper bound x _ y and a greatest lower bound
x ^ y:

x _ y D minfz 2 S W z � x; z � yg 2 S;
and

x ^ y D maxfz 2 S W z � x; z � yg 2 S:
(7.90)

A lattice .S;�/ is said to be complete if every subset S � S has a greatest lower
bound inf S and a least upper bound sup S, with the convention that inf ; D supS
and sup ; D infS .



7.2 Mean Field Games of Timing 619

Example 7.21. Let F D .Ft/t�0 be a filtration on a probability space .˝;F ;P/
and let us denote by S the set of F-stopping times. We equip S with the partial order
� � � if �.!/ � �.!/ for P - almost every ! 2 ˝. In this example, unless we make
an explicit mention to the contrary, all the stopping times are with respect to the
same filtration F. The set S is a lattice because if �; � 2 S then � _ � and � ^ � are
also stopping times, i.e., elements of S . If .�)/)2I � S is a (possibly uncountable)
family of stopping times, we define:

�� D ess sup)2I�); and �� D ess inf)2I�);

and notice that �� appears as the P-almost sure limit of an increasing sequence
of stopping times (recall that we already know that S is a lattice). Consequently,
�� is itself a stopping time for the filtration F. The situation is not as clean for the
infimum. Indeed, because of the lattice property, the essential infimum �� appears
as the almost sure limit of a decreasing sequence of stopping times, but this only
guarantees the fact that �� is a stopping time for the filtration FC D .FtC/t�0.
The conclusion is that the partially ordered set S of F-stopping times is a complete
lattice whenever the filtration F is right continuous.

The above definitions and the preceding example have been chosen for the sole
purpose of using Tarski’s fixed point theorem, which we now state without proof.

Theorem 7.22 If S is a complete lattice and ˚ W S 3 x 7! ˚.x/ 2 S is order
preserving in the sense that ˚.x/ � ˚.y/ whenever x; y 2 S are such that x � y,
then the set of fixed points of ˚ is a nonempty complete lattice.

We shall also use the form of Topkis monotonicity theorem stated in Theo-
rem 7.24 below for a special class of supermodular functions whose definition we
recall first.

Definition 7.23 A real valued function f on a lattice .S;�/ is said to be supermod-
ular if, for all x; y 2 S ,

f .x _ y/C f .x ^ y/ � f .x/C f .y/: (7.91)

Theorem 7.24 Let .S1;�1/ be a lattice and .S2;�2/ be a partially ordered set.
Suppose that f W S1 � S2 3 .x; y/ 7! f .x; y/ 2 R is super-modular in x for any given
y 2 S2 and satisfies:

8x; x0 2 S1; y; y0 2 S2;
.x �1 x0; y �2 y0/ ) f .x0; y0/ � f .x; y0/ � f .x0; y/ � f .x; y/;

in which case f is said to have increasing differences in x and y. Then, for x; x0 2 S1
and y; y0 2 S2 such that y �2 y0, x 2 arg max.f .�; y// and x0 2 arg max.f .�; y0//,
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it holds that x ^ x0 2 arg max.f .�; y// and x _ x0 2 arg max.f .�; y0//. In particular,
for any y 2 S2, the set of maximizers of f .�; y/ is a sub-lattice, in the sense that it is
closed under ^ and _.

Finally, we recall a useful optimization result for order upper semi-continuous
function over a complete lattice S .

Definition 7.25 Let .S;�/ be a complete lattice. A function f W S ! R [ f�1g is
said to be order upper semi-continuous if, for any totally ordered subset T � S ,

inf
x2T sup

y2T Wy�x
f .y/ � f

�
sup T

�
; and inf

x2T sup
y2T Wy�x

f .y/ � f
�
inf T

�
:

Theorem 7.26 If .S;�/ is a complete lattice and f W S ! R [ f�1g is super-
modular and order upper semi-continuous, the set argmax.f / of maximizers of f is
a (non-empty) complete sub-lattice of S . In particular, the supremum and infimum
of every subset of arg max.f / are in arg max.f /.

We can now state and prove the main result of this section.

Theorem 7.27 Let .˝0;F0;P0/ and .˝1;F1;P1/ both denote the completion of
the Wiener space C.Œ0;T�/ equipped with the Wiener measure and call w0 and w1

the canonical processes on ˝0 and on ˝1 respectively. As usual, call .˝;F ;P/ the
completion of the product of the two probability spaces and set X D X.w0;w/.

Under assumption MFG of Timing Set-Up and under conditions (A2) and (A3)
of MFG of Timing Regularity, there exists a strong equilibrium on .˝;F ;P/.
Moreover, if the continuity condition (A1) of MFG of Timing Regularity is
assumed instead of the semicontinuity condition (A2), then there exist strong
equilibria �� and �� such that, for any other strong equilibrium � , we have
�� � � � �� almost-surely.

Proof. As above, the complete (and necessarily right-continuous) augmentation of the
filtration generated by w0 on .˝0;F0;P0/ is denoted by F

0 and the complete and right-
continuous augmentation of the filtration generated by X on .˝;F ;P/ is denoted by F

X .
Let us denote by M0

T the space of admissible random environments, namely the set of
random measures � W ˝0 3 w0 7! �.w0/ 2 P.Œ0; T�/ which are adapted in the sense
that, for each t 2 Œ0; T�, the random variable �.Œ0; t�/ is F0

t -measurable. We then view the
expected reward J defined in (7.88) as a real valued function on M0

T �SX . Notice that, for any
� 2 M0

T , J.�; �/ is supermodular in the sense of Definition 7.23 when SX is equipped with
the order defined in Example 7.21. Indeed, taking expectations on both sides of the equality:

F.w0;w; �; � _ � 0/C F.w0;w; �; � ^ � 0/ D F.w0;w; �; �/C F.w0;w; �; � 0/;

for any �; � 0 2 SX , we find that:

J.�; � _ � 0/C J.�; � ^ � 0/ D J.�; �/C J.�; � 0/:
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Equipping M0
T with the partial order � � �0 if P0Œw0 2 ˝0I�.w0/ � �0.w0/� D 1, where �

is the stochastic order on P.Œ0; T�/, we observe from (7.89) that J has increasing differences
in � and � . Hence, Topkis Theorem 7.24 implies that the set-valued map:

M0
T 3 � 7! ˚.�/ D arg max

�2SX
J.�; �/

is nondecreasing in the strong set order in the sense that, whenever �;�0 2 M0
T satisfy

� � �0, and whenever � 2 ˚.�/ and � 0 2 ˚.�0/, we have � _ � 0 2 ˚.�0/ and � ^ � 0 2
˚.�/. Also, by Fatou’s lemma and by Example 7.21, and since F is bounded and upper
semicontinuous, J is order upper semicontinuous in � , as defined in Definition 7.25. By
Theorem 7.26, this implies that for every �, ˚.�/ is a nonempty complete sub-lattice of
SX. Recall indeed that SX is a complete lattice since we work with the right-continuous
completion of the natural filtration generated by X. In particular, ˚.�/ has a maximum,
which we denote by ��.�/ and a minimum which we denote by ��.�/. Note that �� W
M0

T ! SX is nondecreasing in the sense that � � �0 implies ��.�/ � ��.�0/. Moreover,
it is plain to check that the function  W SX ! M0

T defined by  .�/ D L.� jw0/ D L1.�/
is monotone. Thus �� ı  is a monotone map from SX to itself, and since SX is a complete
lattice, we conclude from Tarski’s fixed point Theorem 7.22 that there exists � such that
� D ��. .�//. It is readily verified that any such fixed point � is a strong equilibrium for
the mean field game of timing in the sense of Definition 7.18.

We now assume that F is not only upper semicontinuous, but also lower semicontinuous,
and we complete the proof. Starting from �0 � T , we define �i D �� ı  .�i�1/ for
i � 1 by induction. Clearly, �1 � �0, and if we assume �i � �i�1, the monotonicity
of �� ı  proved earlier implies �iC1 D �� ı  .�i/ � �� ı  .�i�1/ D �i. If we
define �� as the a.s. limit of the nonincreasing sequence of stopping times .�i/i�1, then
�� 2 SX since we are working with a right continuous filtration. Under these conditions,
. .�i//i�1 converges almost surely to  .��/. Recalling that, for any � 2 SX and any i � 1,
J. .�i/; �iC1/ � J. .�i/; �/, we deduce from dominated convergence and by continuity of
F that J. .��/; ��/ � J. .��/; �/. That is, �� is a mean field game of timing equilibrium
in the strong sense.

Similarly, define �0 � 0, and by induction �i D �� ı  .�i�1/ for i � 1. Clearly, �0 � �1,
and as above, we prove by induction that �i�1 � �i. Next, we define �� as the a.s. limit of
the nondecreasing sequence of stopping times .�i/i�1. Then we argue as before that �� 2 SX

is a fixed point of the map �� ı  and thus a strong equilibrium.
Finally, it is plain to check that if � is any equilibrium in the strong sense, it is a fixed point

of the set-valued map ˚ ı , in the sense that � 2 ˚. .�//. Trivially, �0 D 0 � � � T D �0.
Applying �� ı and �� ı repeatedly to the left and right sides, respectively, we conclude
that �n � � � �n for each n, and thus �� � � � ��. ut

The above proof shows that, under the full continuity assumption, there is no
need to use Tarski’s theorem to prove existence of a solution to the mean field game
since �� and �� are constructed inductively.
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7.2.4 Randomized Measures and Stopping Times

As an alternative to the notion of strong solutions defined in Subsection 7.2.2, and
as we did for stochastic differential mean field games, we introduce a notion of
weak solution for mean field games of timing. The rationale for doing so is pretty
much the same as for stochastic differential mean field games. The construction
of strong solutions successfully achieved in the previous subsection was based upon
rather constraining order preserving conditions, engineered in no small part to apply
Tarski’s fixed point theorem for mappings on a complete lattice. However, based
on our experience with our first successes with the construction of equilibria for
mean field games, we may think of an alternative approach based upon a fixed
point theorem on a topological space. This is precisely the strategy we used in
Chapter (Vol I)-4, and Chapter 3 of this volume for solving stochastic differential
games by means of Schauder’s fixed point theorem.

However, we learnt from the first part of this volume that, in the presence of a
common noise, the space carrying the equilibria, or equivalently the space carrying
the fixed points, becomes much too large to identify compact subsets for topologies
which could be used for the search of such fixed points. This observation was the
basis for the procedure implemented in Chapter 3, which consisted in discretizing
first the common noise in order to reduce the size of the ambient space for the fixed
points and then in passing to the limit in the weak sense along the discretization. As
we saw in the analysis, the use of weak convergence arguments inherently carries
losses of measurability and the limiting objects appear as externally randomized
in the sense that they involve an external signal that comes in addition to the
original noises W0 and W. This shortcoming is clearly illustrated by the following
classical fact about weak convergence and measurability. If .Xn/n�1 is a sequence of
random variables converging in distribution toward X and if, for each n � 1, Xn is
measurable with respect to the � -field �fYg generated by another random element
Y (in other words, if Xn is a function of Y), then there is no guarantee that the
weak limit X will be a function of Y and be �fYg-measurable. For this reason, we
shall reformulate the problem in a way which is analogous to the weak formulation
of stochastic differential mean field games introduced in Chapter 2. Namely, we
shall allow the random measure � to be measurable with respect to a larger � -field
than the one generated by the sole common noise W0. Put it differently, we shall
extend the space ˝0 and use a larger space instead of the Wiener space C.Œ0;T�/,
as we did in the statement of Theorem 7.27. Also, similar to the strategy used
throughout the first part of this volume, we shall regard the random measure � as the
conditional law of both the stopping time and the idiosyncratic noise W. Actually,
we shall even ask for a relaxed version of the weak formulation. In words, we shall
consider solutions that are doubly weak. In contrast with the solutions to stochastic
differential mean field games constructed in Chapters 2 and 3, we shall allow the
control itself to carry its own external randomization, which leads to something
analog to the notion of relaxed control introduced in Chapter (Vol I)-6 for handling
stochastic mean field control problems. This directs us to the notion of randomized
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stopping times, which is the counterpart of the notion of relaxed control. In the
present discussion, we emphasize two very important properties which make the
use of randomized stopping times quite attractive: i) their space is compact for
natural topologies, and ii) in many instances, randomized stopping times can be
approximated by regular stopping times.

For the sake of simplicity and tractability, we limit our analysis to the case of full
observation when the completion of the � -field generated by X coincides with the
completion of the � -field generated by .W0;W/, the completions being taken under
the law of .W0;W/. For instance, this is the case if X is the identity on C.Œ0;T�/ �
C.Œ0;T�/.

In order to construct our externally randomized solutions, we need to extend the
canonical space C.Œ0;T�/ � C.Œ0;T�/ used for the construction of strong equilibria
in the proof of Theorem 7.27. To be specific, we let:

˝canon D C.Œ0;T�/2 � P1
�
Œ0;T� � C.Œ0;T�/

� � Œ0;T�:

In other words, we choose˝0 D C.Œ0;T�/�P1.Œ0;T��C.Œ0;T�// and we shall regard
the environment as the canonical variable on P1.Œ0;T� � C.Œ0;T�//, by which we
mean its identity map. The rationale for regarding the environment as a probability
measure on the enlarged Œ0;T�� C.Œ0;T�/, and not merely a probability measure on
Œ0;T�, is exactly the same as for stochastic differential mean field games. Basically,
we shall regard the environment as the joint law of the stopping time and of the
idiosyncratic noise. This will guarantee for free that all the external randomizations
underpinning our notion of weak solutions are compatible.

Below, we always equip P1.Œ0;T� � C.Œ0;T�// with the 1-Wasserstein distance.
We then endow˝canon with its Borel � -field B.˝canon/ and we denote the canonical
or identity mapping by .w0;w; �; %/. At some point, it will be useful to regard each
of the functions w0, w, � and % as the identity on the corresponding factor of the
product C.Œ0;T�/2 � P1.Œ0;T� � C.Œ0;T�// � Œ0;T�. For instance, % will be regarded
as the identity on Œ0;T�.

For any given probability measure P on .˝canon;B.˝canon//, we denote (with
a slight abuse of notation as we keep the same symbol for the probability P)
by .˝canon;F ;P/ the corresponding complete probability space. Obviously, we
shall only consider probability measures P under which .w0;w/ is a 2-dimensional
Brownian motion with respect to the filtration generated by .w0;w; �; %/, namely
the filtration .�fw0�^t;w�^t; � ı E�1

t ; % ^ tg/0�t�T , where:

Et W Œ0;T� � C.Œ0;T�/ 3 .s;w/ 7! .s ^ t;w�^t/:

The marginal law of P on C.Œ0;T�/2 will be denoted by W . It will be fixed throughout
the subsequent analysis.

Throughout the rest of this subsection, we shall automatically include the
following condition in assumption MFG of Timing Set-Up.
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Assumption (MFG of Timing Set-Up).

(A3) Under the probability measure W on C.Œ0;T�/2, w0 and w are two
independent Brownian motions. Moreover, the completion of the filtration
generated by X D X.w0;w/ under W coincides with the completion of the
filtration generated by .w0;w/.

Undoubtedly, the most typical instance of such a probability measure W is W D
W1 ˝ W1 D W˝2

1 where W1 is the standard Wiener measure. However, the use of
this notation makes it possible to cover cases when the initial condition of .w0;w/
is random and different from .0; 0/.

This subsection is a fact gathering intended to introduce the necessary measure
theoretic notions and the topological properties of the spaces of randomized
stopping times.

Randomized Measures
We shall define randomized measures and randomized stopping times in two
consecutive steps, the first one being to define a randomized measure properly,
independently of what a randomized stopping time should be. To do so, we shall
restrict ourselves to the space:

˝input D C.Œ0;T�/2 � P1
�
Œ0;T� � C.Œ0;T�/

�
;

which is obviously smaller than˝canon. As above, the canonical random variable on
˝input is denoted by .w0;w; �/.

Definition 7.28 A probability measure Q on .˝input;B.˝input// is said to induce
a randomized measure if the first marginal of Q on C.Œ0;T�/2 matches W and if
.w0;w/ is a Brownian motion with respect to the filtration generated by .w0;w; �/
under Q, and thus with respect to its right-filtration as well, or equivalently if, for

every t 2 Œ0;T�, the � -field Fnat;�
t is conditionally independent of Fnat;.w0;w/

T given

Fnat;.w0;w/
t , where we set:

Fnat;�
t D �

˚
�
�
C/I C 2 Fnat;.%;w/

t

�
;

F
nat;.%;w/ D .�f.% ^ t;w�^t/g/0�t�T denoting the canonical filtration on Œ0;T� �

C.Œ0;T�/. We call M the set of such randomized measures.

Using the fact that the � -field generated by % ^ t on Œ0;T� or equivalently by the
function Œ0;T� 3 s 7! s ^ t is the same as the sub-� -field of Œ0;T� generated by
B.Œ0; t//, we can rewrite Fnat;�

t as �f��C/I C 2 B.Œ0; t//˝ Fnat;w
t g.
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Definition 7.28 is obviously satisfied whenever � is progressively measurable
with respect to the Q-completion of the filtration generated by w0, in the sense
that Fnat;�

t is included in the completion of �fw0�^tg, for all t 2 Œ0;T�. As we shall
see next, so is the case when dealing with strong solutions of mean field games
of timing. Whenever � is no longer adapted with respect to the common noise,
we require some compatibility condition to make the solution admissible. Such a
compatibility condition is consistent with that used in the first part of this volume
for solving stochastic differential mean field games. In short, we require that the
additional external randomization used in the definition of � does not induce any
bias in the future realizations of the two noises w0 and w.

Throughout the analysis below, we shall use the following result:

Theorem 7.29 The set M is convex and closed for the weak topology on P.˝input/.

Proof.

First Step. We first check that M is convex. To do so, we observe that the constraint
requiring the marginal on C.Œ0; T�/2 of any Q 2 M to match W is obviously convex.
Regarding the compatibility condition, we proceed as follows. For any t 2 Œ0; T�, the � -field

Fnat;�
t is conditionally independent of Fnat;.w0;w/

T given Fnat;.w0;w/
t if and only if:

E
Q
�
�t.�/ .w0;w/ t.w0;w/

� D E
Q
�
E
QŒ�t.�/ jFnat;.w0;w/

t � .w0;w/ t.w0;w/
�
;

for every triple of bounded functions �t,  and  t that are measurable with respect to Fnat;�
t ,

Fnat;.w0;w/
T and Fnat;.w0;w/

t respectively. Above, we put a superscript in the expectation in order
to emphasize the dependence of the expectation upon the probability measure Q. Regarding
w0 and w as random variables on C.Œ0; T�/2, we then notice that the right-hand side above
can be rewritten in the form:

E
W�

E
QŒ�t.�/ jFnat;.w0;w/

t � .w0;w/ t.w0;w/
�
;

since E
QŒ�t.�/ jFnat;.w0;w/

t � is �f.w0;w/g-measurable. Convexity easily follows.

Second Step. We consider a sequence .Qn/n�1 of elements of M converging to some Q. We
will show that Q also belongs to M. Obviously, it holds that Q ı .w0;w/�1 D W .

We now prove that .w0;w/ is a Brownian motion with respect to the filtration generated
by .w0;w; �/ under Q. To do so, we define the process .�t D � ıE�1

t /0�t�T , where we recall
that Et W Œ0; T� � C.Œ0; T�/ 3 .s;w/ 7! .s ^ t;w�^t/. Hence, we can write F

nat;.w0;w;�/ as the
natural filtration generated by the process .w0t ;wt; �t/0�t�T , which takes values in the space
˝input and is continuous. Since .w0;w/ is a Brownian motion with respect to F

nat;.w0;w;�/ under
Qn for each n � 1, it is pretty standard to prove that the same holds true under the limiting
probability Q. ut

Randomized Stopping Times
As explained earlier, we need to randomize not only externally the environment �
modeling the distribution of the stopping time chosen by the agent, but also the
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stopping time itself. This requires to work on the extended canonical space ˝canon,
which we defined as:

˝canon D C.Œ0;T�/2 � P1
�
Œ0;T� � C.Œ0;T�/

� � Œ0;T� D ˝input � Œ0;T�:

In order to define properly a randomized stopping time, we shall need to freeze the
marginal law of any element of P.˝canon/ on ˝input.

Definition 7.30 Let Fnat;% D .Fnat;%
t /0�t�T be the filtration generated by �. For

a given Q in M, a probability measure P on .˝canon;B.˝canon//, admitting Q as
marginal law on ˝input, is said to generate a randomized stopping time if, for every

t 2 Œ0;T�, the � -field Fnat;%
t is conditionally independent of the � -field Fnat;.w0;w;�/

T

given Fnat;.w0;w;�/
t . We denote by R.Q/ the set of such probability measures.

Definition 7.30 has the following interpretation. We shall regard a weak equi-
librium as a probability measure P on ˝canon, under which the random variables �
and % form an externally randomized pair of environment and stopping time. As we
already explained, we shall work with the completion of .˝canon;B.˝canon/;P/ and,
to ease notations, we shall still denote by P the completed measure. Observe that
the external randomization is trivially admissible when � is adapted with respect to
the completion F

.w0;w/ of the filtration generated by .w0;w/, and % is a stopping time
with respect to F

.w0;w/, recall (A3) in Assumption MFG of Timing Set-Up. This is
the framework used for handling strong equilibria. In the general case, the external
randomization is required to satisfy a compatibility condition, which is reminiscent
of that introduced in Chapter 2 to handle stochastic differential mean field games
with a common noise. In analogy with Definition 7.28, this compatibility condition
takes the form of a conditional independence property. It says that, conditional on
the information supplied by the observation of the signal X and of the environment �
up until time t, the additional information used by the representative player to decide
whether it stops strictly before t is independent of the future of the two noises w0

and w and of the environment �. Observe that we say strictly before t since all the
events f% � sg, for s < t, belong to Fnat;%

t , while the event f% � tg belongs to Fnat;%
tC

but not to Fnat;%
t . All these requirements are obviously true when % is a stopping

time with respect to F
.w0;w;�/. In that case, conditional on Fnat;.w0;w;�/

t , Fnat;%
tC is P -

almost surely trivial. Actually, the key point is that this situation is somehow typical
under the compatibility condition.

Theorem 7.31 For a given probability measure Q 2 M, the set R.Q/ is a
convex subset of P.˝canon/. Moreover, for any P 2 R.Q/, there exists a sequence
of continuous functions . Q�n/n�1 from ˝input to Œ0;T� such that each Q�n.w0;w; �/
is a stopping time with respect to the filtration F

nat;.w0;w;�/ and the sequence
.Q ı .w0;w; �; Q�n.w0;w; �//�1/n�1 converges to P. If furthermore the completion
of the filtration generated by .w0;w; �/ is right-continuous, then R.Q/ is closed.
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We shall use the notation R0.Q/ for the set of elements P of R.Q/ under which
the random variable % is a stopping time with respect to the completion of the
filtration F

nat;.w0;w;�/ under P. Among other things, the above result implies that
R0.Q/ is dense in R.Q/.

The proof of Theorem 7.31 relies on several technical results, so we postpone it
to a later subsection in order to state and prove (most of) these technical results.

7.2.5 Approximation of Adapted Processes Under Compatibility

The first lemma concerns the approximation of �f%g-measurable functionals by
continuous functionals.

Lemma 7.32 For any � 2 P.Œ0;T�/, t 2 Œ0;T�, and any bounded Fnat;%
tC -

measurable function g W Œ0;T� ! R, there exists a sequence of uniformly bounded
Fnat;%

tC -measurable functions .gn/n�1 such that gn ! g in L1.�/ and each gn is
continuous at every point but t.

Proof. First notice that, being Fnat;%
tC -measurable, g is necessarily of the form:

g.s/ D h.s/1Œ0;t�.s/C c1.t;T�.s/;

for some bounded measurable function h W Œ0; t� ! R and some constant c 2 R. Now
let .hn/n�1 be a sequence of real valued continuous functions on Œ0; t� approximating h in
L1.�jŒ0;t�/. For each n � 1, define:

gn.s/ D hn.s/1Œ0;t�.s/C c1.t;T�.s/; s 2 Œ0; T�:

This sequence of functions has the desired properties. ut

The next lemma will be quite useful to investigate stopping times in terms of
càd-làg processes.

Lemma 7.33 LeteT W D.Œ0;T�I Œ0; 1�/ ! Œ0; 1� be defined by:

eT.h/ D inf
˚
t 2 Œ0;T� W h.t/ � 1

2

�
; h 2 D.Œ0;T�I Œ0; 1�/;

with inf ; D T. Then,eT is continuous at each point h 2 D.Œ0;T�I Œ0; 1�/ that is càd-
làg and nondecreasing and satisfies h.0/ D 0, h.T/ D 1 together with the following
property for any t 2 Œ0;T�:

�
h.t/ � 1

2
and h.t�/ � 1

2

�
) t D eT.h/: (7.92)

Above, D.Œ0;T�I Œ0; 1�/ is equipped with the J1-Skorohod topology.
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Before we prove Lemma 7.33, we make the following observations. Notice that
if h is càd-làg and nondecreasing and satisfies h.0/ D 0 and h.T/ D 1, then it
always satisfies h.eT.h// � 1=2 and h.eT.h/�/ � 1=2, but eT.h/ may not be the
unique point satisfying such a property. It is the unique point in the following two
cases. First, if h is of the form 1Œs;T�, for some s 2 Œ0;T�, theneT.h/ D s and for any
other point t 2 Œ0;T� n fsg, fh.t/; h.t�/g is either equal to f0g or f1g. Second, if h is
strictly increasing, then for any t > eT.h/, it holds h.t�/ > h.eT.h// � 1=2, and for
any t < eT.h/, it holds h.t/ < 1=2.

Proof of Lemma 7.33. To prove the claimed continuity, we let .hn/n�1 be a sequence of
functions in the space D.Œ0; T�I Œ0; 1�/ converging to h, where h is as in the statement. Since
h.0/ D 0 and h.T/ D 1, we know that hn.0/ < 1=2 and hn.T/ > 1=2, for n large enough;
to simplify, we can assume it to be true for all n � 1. It is straightforward to check that the
sequence .eT.hn//n�1 is bounded. Suppose that, along a subsequence .n.p//p�1,eT.hn.p// ! t,
for some t 2 Œ0; T�. We recall from the properties of the J1 topology, see the Notes &
Complements below, that the sole fact that .hn/n�1 converges to h and that .eT.hn.p///p�1

converges to t suffices to show that .hn.p/.eT.hn.p////p�1 has at least one limit point and at
most two, which are h.t�/ and h.t/. As h.t/ � h.t�/ and hn.p/.eT.hn.p/// � 1=2 for all
p � 1, we must have h.t/ � 1=2. In particular, t > 0. Similarly, for � > 0 small enough,
the sequence .hn.p/.eT.hn.p// � �//p�1 has at least one limit point and at most two which are
h..t � �/�/ and h.t � �/. Since hn.p/.eT.hn.p// � �/ < 1=2 for all p � 1, we conclude that
h..t � �/�/ � 1=2 and then h.t�/ � 1=2. Hence, by assumption, t DeT.h/ and .eT.hn//n�1

has a unique limit, which iseT.h/. ut

The proof of Theorem 7.31 relies on still another technical result, which we shall
use rather intensively below. This result is a general lemma on stable convergence.
We already appealed to it in a very particular setting in Chapter (Vol I)-6. We refer
to the Notes & Complements below for references where the proof of the statement
can be found.

Lemma 7.34 Let E and E0 be Polish spaces. Suppose that a sequence .Pn/n�1 of
probability measures on E�E0 converges weakly toward P 2 P.E�E0/, and suppose
that all the .Pn/n�1’s have the same E-marginal, say m.�/ D Pn.� � E0/ for all
n � 1. Then, P has also m as E-marginal. Moreover, for every bounded measurable
function � W E � E0 ! R such that �.x; �/ is continuous on E0 for m-almost every
x 2 E, we have:

Z

E�E0

� dPn !
Z

E�E0

� dP; as n ! 1:

The reader will easily convince herself / himself of the interest of Lemma 7.34 for
our purpose. We shall make use of it with E D C.Œ0;T�/2 and m D W . In this
respect, our use of Lemma 7.34 for proving Theorem 7.31 is reminiscent of the
definition of the Baxter-Chacon topology on the set of randomized stopping times,
see again the Notes & Complements below.
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The last ingredient we need to prove Theorem 7.31 is the following special
approximation result for processes on Polish spaces.

Theorem 7.35 Let Z be a Polish space and Y be a convex subset of a normed
vector space. On a common probability space, consider an n-tuple .Y1; � � � ;Yn/ of
Y-valued random variables and a continuous Z-valued process Z D .Zt/0�t�T .
Denoting by Fnat;Z D .Fnat;Z

t /0�t�T the filtration generated by the process Z, assume
that for any i 2 f1; � � � ; ng, �fY1; � � � ;Yig is conditionally independent of Fnat;Z

T

given Fnat;Z
ti , where 0 � t1 < � � � < tn � T is a fixed subdivision of Œ0;T�.

If the law of Z�^t1 is atomless (that is singletons have zero probability measure
under the law of Z�^t1 ), then there exists a sequence of functions .hN

1 ; � � � ; hN
n /N�1,

each hN
i being a continuous and Fnat;Z

ti -measurable function from C.Œ0;T�IZ/ into
Y , where F

nat;Z is the natural filtration on C.Œ0;T�IZ/, such that the sequence
.Z; hN

1 .Z/; � � � ; hN
n .Z//N�1 converges in law to .Z;Y1; � � � ;Yn/ as N ! 1.

The proof relies on the following lemma. We refer the reader to the Notes &
Complements at the end of the chapter for a reference to its proof.

Lemma 7.36 Let E be a Polish space and E0 be a convex subset of a normed vector
space. For a given � 2 P.E/, call S� D fP 2 P.E � E0/I P. �� E0/ D �g the set of
probability measures on E � E0 with first marginal �. If � is atomless, then the set:

˚
�.dx/ı�.x/.dx0/ 2 P.E � E0/I � W E ! E0 is continuous

�

is dense in S� for the weak convergence.

Proof of Theorem 7.35. The proof relies on repeated applications of Lemma 7.36. We shall
use the result of this lemma with E successively given by E D C.Œ0; T�IZ/, E D
C.Œ0; T�IZ/ � Y , E D C.Œ0; T�IZ/ � Y2, . . . , the first factor being always equipped with
the uniform topology, and E0 being given by Y .

First Step. Since L.Z�^t1 / is atomless, we deduce from Lemma 7.36 with � D L.Z�^t1 / that
there exists a sequence of continuous functions .hN

1 /N�1 from C.Œ0; T�IZ/ into Y such that
.Z�^t1 ; h

N
1 .Z�^t1 //N�1 converges in law to .Z�^t1 ; Y1/ as N ! 1. Using the compatibility

assumption, we now show that in fact, .Z; hN
1 .Z�^t1 //N�1 converges in law toward .Z; Y1/.

To do so, we let � W C.Œ0; T�IZ/ ! R and  W Y ! R be two bounded continuous functions.
Denoting by P the underlying probability measure and by E the corresponding expectation,
we have:

lim
N!1

E
�
�.Z/ 

�
hN
1 .Z�^t1 /

�� D lim
N!1

E
h
E
�
�.Z/ jFnat;Z

t1

�
 
�
hN
1 .Z�^t1 /

�i

D E
h
E
�
�.Z/ jFnat;Z

t1

�
 .Y1/

i
;

where we used Lemma 7.34 and the fact that EŒ�.Z/ jFnat;Z
t1 � could be written as a measurable

function of Z�^t1 . We now use the fact that Z and Y1 are conditionally independent given
Fnat;Z

t1 .
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We get:

lim
N!1

E
�
�.Z/ 

�
hN
1 .Z�^t1 /

�� D E
h
E
�
�.Z/ jFnat;Z

t1

�
E
�
 .Y1/ jFnat;Z

t1

�i

D E
h
E
�
�.Z/ .Y1/ jFnat;Z

t1

�i

D E
�
�.Z/ .Y1/

�
:

Since the class of functions of the form C.Œ0; T�IZ/�Y 3 .z; y/ 7! �.z/ .y/, with � and  
as above, is convergence determining, see the references in the Notes & Complements below,
we conclude that .Z; hN

1 .Z�^t1 //N�1 converges in law to .Z; Y1/. Replacing hN
1 by hN

1 ı Et1 ,
where Et1 W C.Œ0; T�IZ/ 3 z ! z�^t1 2 C.Œ0; T�IZ/, we have that .Z; hN

1 .Z//N�1 converges
to .Z; Y1/, where hN

1 is Fnat;Z
t1 measurable.

Second Step. We proceed inductively as follows. We assume that, for a given 1 � i < n, we
constructed functions hN

1 ; � � � ; hN
i as in the statement in such a way that:

lim
N!1

P ı �Z; hN
1 .Z/; � � � ; hN

i .Z/
��1 D P ı .Z; Y1; � � � ; Yi/

�1; (7.93)

where P is the underlying probability measure. Next, we construct hN
iC1

. To do so, we observe
that .L.Z�^tiC1

/; Y1; � � � ; Yi/ is necessarily atomless as otherwise L.Z�^t1 / itself would have
an atom. Hence, using again Lemma 7.36, we can find a sequence of continuous functions
.OhN/N�1 from C.Œ0; T�IZ/ � Y i into Y such that:

lim
N!1

P ı
�

Z�^tiC1
; Y1; � � � ; Yi; OhN

�
Z�^tiC1

; Y1; � � � ; Yi
���1

D P ı �Z�^tiC1
; Y1; � � � ; Yi; YiC1

��1
:

Note that Z and .Y1; � � � ; YiC1/ are conditionally independent given Z�^tiC1
. Using the same

argument as above, it follows that in fact:

lim
N!1

P ı
�

Z; Y1; � � � ; Yi; OhN
�
Z�^tiC1

; Y1; � � � ; Yi
���1

D P ı �Z; Y1; � � � ; Yi; YiC1

��1
:

(7.94)

By continuity of OhN , the limit (7.93) implies that, for each N,

lim
k!1

P ı
�

Z; hk
1.Z/; � � � ; hk

i .Z/; OhN
�
Z�^tiC1

; hk
1.Z/; � � � ; hk

i .Z/
���1

D P ı
�

Z; Y1; � � � ; Yi; OhN
�
Z�^tiC1

; Y1; � � � ; Yi
���1

:

(7.95)

Combining the two limits (7.94) and (7.95), we can find a subsequence .kN/N�1 such that:
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lim
N!1

P ı
�

Z; hkN
1 .Z/; � � � ; hkN

i .Z/; OhN
�
Z�^tiC1

; hkN
1 .Z/; � � � ; hkN

i .Z/
���1

D P ı �Z; Y1; � � � ; Yi; YiC1

��1
:

Relabeling hkN
1 ; � � � ; hkN

i by hN
1 ; � � � ; hN

i and letting hN
iC1
.�/ D OhN.EtiC1

.�/; hN
1 .�/; � � � ; hN

i .�//,
this proves that we can iterate the construction. ut

We now have all the required ingredients to prove Theorem 7.31.

Proof of Theorem 7.31
Proof of Theorem 7.31. Throughout the proof, we use the convenient notation � D
.w0;w; �/.

First Step. We first check that R.Q/ is convex. The proof is analogous to that of the first
step of the proof of Theorem 7.29. Indeed, the constraint requiring the marginal law on˝input

to match Q is clearly convex. In order to handle the compatibility condition, we notice that,
for any t 2 Œ0; T�, the � -field Fnat;%

t is conditionally independent of � given the � -field Fnat;�
t

if and only if:

E
P
�
	t.%/ .�/ t.�/

� D E
P
�
E
PŒ	t.%/ jFnat;�

t � .�/ t.�/
�
; (7.96)

for every triple of bounded functions 	t,  and  t that are measurable with respect to Fnat;%
t ,

�f�g and Fnat;�
t respectively. Above, we put a superscript in the expectation in order to

emphasize the dependence of the expectation upon the probability measure P.
Recalling that Q in Definition 7.30 is fixed throughout the proof, we notice that the right-

hand side in (7.96) can be rewritten in the form:

E
Q
�
E
PŒ	t.%/ jFnat;�

t � .�/ t.�/
�
;

since E
PŒ	t.%/ jFnat;�

t � is �.f�g/-measurable. Of course, to do so, we must regard � as a
random variable on ˝input. Convexity follows as in the proof of Theorem 7.29.

Second Step. We now prove that R.Q/ is included in the closure of R0.Q/. For any given
n � 1, we let:

%n D
(

T
2n d2n %

T e C T
2n if % � T � T

2n ;

T if % 2 �T � T
2n ; T

�
:

Obviously, .%n/n�1 converges pointwise to %. It thus suffices to approximate each P ı
.w0;w; �; %n/�1 by a sequence in R0.Q/. To do so, we observe that, for any i 2 f1; � � � ;
2n � 1g, the event f%n � tig coincides with f% � ti�1g and thus belongs to Fnat;%

ti�1C
� Fnat;%

ti ,
where ti D iT=2n. We also notice that the process .Hn

t /0�t�T defined by Hn
t D 1f%n�tg may

be rewritten as:

Hn
t D

2n�1X

iD1

1f%n�tig1Œti;tiC1/.t/C 1fTg.t/; t 2 Œ0; T�; (7.97)

where we used the fact that f%n D 0g D ;. Next, we use Theorem 7.35 on the probability
space ˝canon with Y D Œ0; 1� and Yi D 1f%n�tig for i D 1; � � � ; 2n � 1, Z D R � R � P1
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.Œ0; T� � C.Œ0; T�// and Z D .w0t ;wt; �t/0�t�T where �t D � ı E�1
t for Et defined by Et W

Œ0; T�� C.Œ0; T�/ 3 .s;w/ 7! .s ^ t;w�^t/. Notice that as required, L.Z�^t1 / is atomless since
the law of .w0t1 ;wt1 / is diffuse as t1 > 0. Theorem 7.35 says that there exists, for each N � 1,
a family of continuous functions .hN

i /1�i�2n�1 from C.Œ0; T�IZ/ into Y D Œ0; 1�, each hN
i

being Fnat;Z
ti -measurable, such that:

lim
N!1

P ı
�

Z;
�
hN

i .Z/
�

1�i�2n�1

��1 D P ı
�

Z;
�
1f%n�tig

�

1�i�2n�1

��1

:

For each i 2 f1; � � � ; 2n �1g, we introduce the function QhN
i defined on C.Œ0; T�/2�P1.Œ0; T��

C.Œ0; T�// by:

QhN
i .w

0;w;m/ D hN
i

�
.w0t ;wt;m ı E�1

t /0�t�T
�
;

for .w0;w;m/ 2 C.Œ0; T�/2 � P1.Œ0; T� � C.Œ0; T�//. The function QhN
i will be easier to

manipulate than hN
i mostly because hN

i is defined on the larger space C.Œ0; T�IZ/. Observe
that, for a sequence .w0;p;wp;mp/p�1 converging to .w0;w;m/ in the space C.Œ0; T�/2 �
P1.Œ0; T� � C.Œ0; T�//, we have for any p � 1:

sup
0�t�T

W1

�
mp ı E�1

t ;m ı E�1
t

� � W1.m
p;m/;

and thus ..w0;pt ;wp
t ;m

p ıE�1
t /0�t�T/p�1 converges to .w0t ;wt;mıE�1

t /0�t�T in C.Œ0; T�IZ/.
This shows that QhN

i is continuous. Similarly, we can check that QhN
i is Fnat;�

ti -measurable.
Indeed, by definition, we have Fnat;�

ti D �f.w0�^ti ;w�^ti ; � ı E�1
ti /g. So, the random variable

C.Œ0; T�/2 � P1.Œ0; T� � C.Œ0; T�// 3 .w0;w; �/ 7! .w0t ;wt; � ı E�1
t /0�t�T 2 C.Œ0; T�IZ/ is

Fnat;�
ti =Fnat;Z

ti measurable.
Now for t 2 Œ0; T�, we define:

Hn;N
t .w0;w;m/ D

2n�1X

iD1

QhN
i .w

0;w;m/1Œti;tiC1/.t/C 1fTg.t/; (7.98)

for all w0;w 2 C.Œ0; T�/ and m 2 P1.Œ0; T� � C.Œ0; T�//. We deduce that:

lim
N!1

P ı �Z;Hn;N
� .�/

��1 D P ı �Z;Hn
�

��1
;

where we used the formula (7.97) for Hn D .Hn
t /0�t�T together with the fact that QhN

i .�/ D
hN

i .Z/. Here the second component is regarded as an element of the space D.Œ0; T�I Œ0; 1�/.
As usual it denotes the space of càd-làg functions from Œ0; T� into Œ0; 1� equipped with the
Skorohod topology J1. Observing that the mapping C.Œ0; T�IZ/ 3 .w0s ;ws;ms/0�s�T 7!
..w0s /0�s�T ; .ws/0�s�T ;mT/ 2 C.Œ0; T�/2�P1.Œ0; T��C.Œ0; T�// is continuous and maps the
random variable Z onto � , we also have:

lim
N!1

P ı ��;Hn;N
� .�/

��1 D P ı ��;Hn
�

��1
;

the convergence taking place in the space of probability measures on C.Œ0; T�/2 �P1.Œ0; T��
C.Œ0; T�// � D.Œ0; T�I Œ0; 1�/.
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Using the function QT identified in Lemma 7.33, we deduce that:

lim
N!1

P ı
�
�; QT�Hn;N

� .�/
���1 D P ı ��; QT.Hn

� /
��1

D P ı ��; %n
��1

:

(7.99)

A crucial fact to complete the proof is to show that, without any loss of generality, the func-
tion C.Œ0; T�/2 � P1.Œ0; T� � C.Œ0; T�// 3 .w0;w;m/ 7! QT.Hn;N

� .w0;w;m// can be assumed
to be continuous. To do so, notice that replacing QhN

i .w
0;w;m/ by max1�j�i QhN

j .w
0;w;m/ in

the definition (7.98) of Hn;N
t does not change the value of QT.Hn;N

� .�// while making Hn;N
� .�/

nondecreasing in time. Still, condition (7.92) of Lemma 7.33 may not be satisfied. So we
redefine each Hn;N

t for t 2 Œ0; T� by:

Hn;N
t .w0;w;m/

D N � 1
N


2n�1X

iD1

�
max
1�j�i

QhN
j .w

0;w;m/
�
1Œti;tiC1/.t/C 1fTg.t/

�

C t

TN
;

to preserve the limit (7.99), to force strict monotonicity (notice that the above form of Hn;N
�

is now strictly increasing in time) and thus to satisfy (7.92). Since Hn;N
0 .w0;w;m/ D 0 and

Hn;N
T .w0;w;m/ D 1, we can now apply Lemma 7.33 for fixed values of n and N, as .w0;w;m/

varies. In particular, with this choice, the function C.Œ0; T�/2 � P1.Œ0; T� � C.Œ0; T�// 3
.w0;w;m/ 7!eT.Hn;N

� .w0;w;m// is continuous.
It is easily checked that, for any t 2 Œ0; T�, eT.Hn;N

� .w0;w; �// � t if and only if

Hn;N
t .w0;w; �/ � 1=2. Since Hn;N

t .w0;w; �/ is Fnat;.w0;w;�/
t -measurable, this shows that

eT.Hn;N
� .w0;w; �// is a stopping time with respect to F

nat;.w0;w;�/.

Third Step. We conclude the proof by showing that R.Q/ is closed if the completion of Fnat;�

is right-continuous. Then, in order to check the compatibility constraint in Definition 7.30,
we need to prove that, for any t 2 Œ0; T�, Fnat;%

tC and Fnat;�
T are conditionally independent

given Fnat;�
t . Let .Pn/n�1 be a sequence in R.Q/ weakly converging toward P 2 P.˝canon/.

Clearly, P ı ��1 D limn!1 Pn ı ��1 D Q. Now, we consider t 2 Œ0; T� such that PŒ% D
t� D 0, and we use Lemma 7.32 to identify a function g W Œ0; T� ! R which is Fnat;%

tC -
measurable and continuous P ı %�1-almost everywhere. We then let  t;  W ˝input ! R be
bounded and measurable functions with respect to Fnat;�

t and Fnat;�
T respectively, and �t be a

Fnat;�
t -measurable function from C.˝input/ into R such that:

�t.�/ D E
P
h
 .�/ jFnat;�

t

i
:

Notice that �t.�/ D E
Pn Œ .�/ jFnat;�

t � for each n � 1 since Pn ı ��1 D P ı ��1 D Q. Also,
owing to the fact that Pn belongs to R.Q/ for each n � 1, we know that:

E
Pn

h
 .�/g.%/ t.�/

i
D E

Pn

h
E
Pn
�
 .�/g.%/ jFnat;�

t

�
 t.�/

i

D E
Pn

h
�t.�/E

Pn
�
g.%/ jFnat;�

t

�
 t.�/

i

D E
Pn

h
�t.�/g.%/ t.�/

i
;
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where we used the fact that �t.�/ is Fnat;�
t -measurable. Thus, by Lemma 7.34,

E
P
h
 .�/g.%/ t.�/

i
D lim

n!1
E
Pn

h
 .�/g.%/ t.�/

i

D lim
n!1

E
Pn

h
�t.�/g.%/ t.�/

i

D E
P
�
�t.�/g.%/ t.�/

i

D E
P
h
E
P
�
 .�/ jFnat;�

t

�
g.%/ t.�/

i
:

Consequently, we can use Lemma 7.32 to conclude that:

E
P
h
 .�/g.%/ t.�/

i
D E

P
h
E
P
�
 .�/ jFnat;�

t

�
g.%/ t.�/

i
;

for every bounded Fnat;%
tC -measurable g, not just those which are almost everywhere contin-

uous. This shows that Fnat;%
tC is conditionally independent of Fnat;�

T given Fnat;�
t for every

t 2 Œ0; T� satisfying PŒ% D t� D 0.

Last Step. In order to complete the proof, it remains to show that this conditional indepen-
dence property is valid, not only for the time indices t 2 Œ0; T� for which PŒ% D t� D 0, but
in fact for all the time indices t 2 Œ0; T�. To do so, we fix t 2 Œ0; T� and we pick a decreasing
sequence .tn/n�1 converging to t, such that PŒ% D tn� D 0 for all n � 1. As above, we let
g W Œ0; T� ! R and  t;  W ˝input ! R be three bounded measurable functions with respect
to Fnat;%

tC , Fnat;�
t and Fnat;�

T respectively. Since Fnat;%
tC � Fnat;%

tn and Fnat;�
t � Fnat;�

tn for all
n � 1, we deduce from the third step that:

E
P
h
 .�/g.%/ t.�/

i
D E

P
h
E
P
�
 .�/ jFnat;�

tn

�
g.%/ t.�/

i
:

We then conclude by letting n tend to 1, and by using the fact that Fnat;�
tC is included in the

completion of Fnat;�
t . ut

7.2.6 Equilibria in the Weak Sense for MFGs of Timing

Building upon the analogy with the classical treatment of strong and weak solutions
of stochastic differential equations, but also of strong and weak solutions of
stochastic differential mean field games as investigated in the first part of this
volume, we are prompted to associate with each equilibrium in the strong sense a
canonical candidate for being an equilibrium in the weak sense. Namely, if �� is an
equilibrium in the strong sense on C.Œ0;T�/2, it is natural to consider the probability
measure:

P
� D W ı �w0;w;L�.��;w/jw0�; ����1 (7.100)
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on the canonical space ˝canon and expect this law to be the epitome of a solution
to the problem in the weak sense. In fact, with the definition we are about to
state, this guesstimate becomes a theorem. See Theorem 7.39 below. Obviously,
the conditional law L..��;w/jw0/ appearing in the right-hand side of (7.100) is the
conditional law under W .

To make this intuition clear, we need first a proper definition of what a weak
solution is. Recalling that w0, w, � and % denotes the canonical variables on ˝canon

and denoting by e be the canonical projection from Œ0;T�� C.Œ0;T�/ onto Œ0;T�, we
introduce the following definition:

Definition 7.37 A probability measure P on the canonical space ˝canon is said to
be a weak equilibrium for the MFG of timing if

1. Under P, the process .w0;w/ has distribution W and is a two-dimensional
Brownian motion process with respect to the natural filtration of .w0;w; �; %/;

2. The pair .w0; �/ is independent of w under P;
3. The process .w0;w; �/ is compatible with the filtration generated by the process
.w0;w; �; %/ in the sense that, under P, Fnat;%

t is conditionally independent of

.w0;w; �/ given Fnat;.w0;w;�/
t , for every t 2 Œ0;T�.

4. The probability measure P belongs to arg supP0 E
P0

ŒF.w0;w; � ı e�1; %/�, where
the supremum is taken over all the probability measures P

0 on ˝input satisfying
1–3 as well as P0 ı .w0;w; �/�1 D P ı .w0;w; �/�1;

5. The weak fixed point condition holds:

PŒ.%;w/ 2 � j w0; �� D �.�/; P � a:s: :

Of course, the notion of compatibility used in condition 3 is reminiscent of
that introduced in Definition 2.16. As explained earlier, the rationale for such a
compatibility constraint is that we cannot expect � to remain �fw0g-measurable or
% to be �fw0;wg-measurable after taking weak limits. Somehow, condition 3 is here
to capture an important structure we do retain in these limits. Also, the rationale
for enlarging the support of the probability measure in the fixed point condition is
the same as in stochastic differential mean field games. Somehow, it renders the
compatibility condition 3 stable under weak convergence of weak equilibria. This is
illustrated by the following lemma.

Lemma 7.38 A probability measure P 2 P.˝canon/ satisfying condition 5 in
Definition 7.37 also satisfies condition 3 if the � -fields:

�fws � wtI t � s � Tg and Fnat;.w0;�/
T _ Fnat;.w0;w;�;%/

t

are independent under P, for every t 2 Œ0;T�.
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In short, Lemma 7.38 says that it suffices to check an independence instead of a
conditional independence property in order to prove compatibility. Of course, this
sounds much easier since independence is, generally speaking, stable under weak
convergence.

Proof of Lemma 7.38. Let P 2 P.˝canon/ satisfy condition 5. For a given t 2 Œ0; T�, we
then consider five bounded test functions g,  t,  , 	t and 	, g W Œ0; T� ! R being Fnat;%

t -
measurable,  t;  W C.Œ0; T�/�P1.Œ0; T�� C.Œ0; T�// ! R being measurable with respect to

Fnat;.w0;�/
t and Fnat;.w0;�/

T , and 	t; 	 W C.Œ0; T�/ ! R being measurable with respect to Fnat;w
t

and �fws � wtI t � s � Tg respectively.

Then, if �fws � wtI t � s � Tg and Fnat;.w0;�/
T _ Fnat;.w0;w;�;%/

t are independent, condition
5 yields:

E
P
h
g.%/ t.w0; �/ .w0; �/	t.w/	.w/

i

D E
P
h
g.%/ t.w0; �/ .w0; �/	t.w/

i
E
P
�
	.w/

�

D E
P

�
Z

Œ0;T��C.Œ0;T�/
g.s/	t.w/d�.s;w/

�

 t.w0; �/ .w0; �/
	

E
P
�
	.w/

�
:

Since
R
Œ0;T��C.Œ0;T�/ g.s/	t.w/d�.s;w/ is Fnat;�

t -measurable, we can take the conditional

expectation given Fnat;.w0;�/
t in the first expectation on the right-hand side and then proceed

backward. We deduce:

E
P
h
g.%/ t.w0; �/ .w0; �/	t.w/	.w/

i

D E
P

�
Z

Œ0;T��C.Œ0;T�/
g.s/	t.w/d�.s;w/

�

 t.w0; �/EP
�
 .w0; �/ jFnat;.w0;�/

t

�
	

E
P
�
	.w/

�

D E
P
h
g.%/	t.w/ t.w0; �/EP

�
 .w0; �/ jFnat;.w0;�/

t

�i
E
P
�
	.w/

�

D E
P
h
g.%/	t.w/ t.w0; �/EP

�
 .w0; �/	.w/ jFnat;.w0;�/

t

�i
;

which suffices to complete the proof. ut

The following result shows that our definition of a weak equilibrium is consistent
with that of a strong equilibrium.

Theorem 7.39 Assume that assumption MFG of Timing Set-Up (including (A3))
and condition (A1) in assumption MFG of Timing Regularity are in force. If
�� is a strong equilibrium in the sense of Definition 7.18 on the canonical space
C.Œ0;T�/2, then the probability measure P� defined by (7.100) is a weak equilibrium
in the sense of Definition 7.37.

Proof. We first observe that P� satisfies property 2 of Definition 7.37 of a weak equilibrium.
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First Step. Next, we prove conditions 1 and 3. To do so, we prove that, for every t 2 Œ0; T�,
Fnat;%

t is included in F .w0;w/
t and Fnat;�

t is included in Fw0
t , where F

.w0;w/ and F
w0 are the

P
�-completions of the filtrations generated by .w0;w/ and w0 respectively.

The first claim is pretty clear. Indeed, since �� is an F
.w0;w/-stopping time, we deduce that

Fnat;%
t is contained in F .w0;w/

t for any t 2 Œ0; T�.
To prove the second claim, we start with the following observation. For any given t 2

Œ0; T� and any bounded Fnat;.w0;w/
t -measurable function gt W C.Œ0; T�/2 ! R, we have:

E
W�gt.w0;w/ j w0

� D E
W�gt.w0;w/ jFnat;w0

t

�
;

almost surely, where E
W denotes the expectation on C.Œ0; T�/2 under W . Therefore, for any

s 2 Œ0; t/ and any C 2 Fnat;w
t , WŒ�� � s; w 2 C j w0� D WŒ�� � s; w 2 C jFnat;w0

t �

with probability 1 under W . Therefore, letting �.�/ D WŒ.��;w/ 2 � j w0�, we deduce that
�.Œ0; s� � C/ 2 Fw0

t . This shows that Fnat;�
t is included in Fw0

t .
Properties 1 and 3 easily follow. Also, observe that the weak fixed point condition 5 holds

because � is �fw0g-measurable.

Second Step. It remains to check the optimality condition 4. First, we observe from the
equilibrium property of �� that:

E
P��

F
�
w0;w; � ı e�1; %

�� D E
P��

F
�
w0;w; � ı e�1; ��

��

� E
P��

F
�
w0;w; � ı e�1; �

��
;

(7.101)

for every F
.w0;w/-stopping time � defined on the canonical probability space C.Œ0; T�/2. Also,

since � is �fw0g-measurable, there exists a measurable map Q� W C.Œ0; T�/ ! P1.Œ0; T� �
C.Œ0; T�// such that � D Q�.w0/ and the function C.Œ0; T�/ 3 w0 7! Œ Q�.w0/�.C/ is measurable

with respect to the completion of Fnat;w0
t under the Wiener measure for any t 2 Œ0; T� and

any C 2 Fnat;�
t . Hence, for P0 2 P.˝canon/ satisfying properties 1–3 of Definition 7.37 as

well as P0 ı .w0;w; �/�1 D P
� ı .w0;w; �/�1 D W ı .w0;w; Q�.w0//�1, Theorem 7.31 with

Q D W ı .w0;w; Q�.w0//�1 implies that there exists a sequence of F.w
0;w/-stopping times

.�n/n�1, of the form �n D Q�n.w0;w; Q�.w0// for each n � 1, such that:

P
0 D lim

n!1
P

0 ı �w0;w; Q�.w0/; �n
��1

:

The above identity may be rewritten:

P
0 D lim

n!1
W ı �w0;w; Q�.w0/; Q�n.w0;w; Q�.w0//��1:

Using (7.101) we get:

E
P��

F
�
w0;w; � ı e�1; %

�� � lim
n!1

E
W�F

�
w0;w; Q�.w0/ ı e�1; Q�n.w0;w; Q�.w0//��

D E
P0�

F
�
w0;w; � ı e�1; %

��
;

where the last equality follows from the continuity of F in the last argument and Lemma 7.34.
ut
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7.2.7 Weak Equilibria as Limits of Finite Player Games Equilibria

In this subsection, we show that Cesaro limits of approximate equilibria of finite
player games are weak equilibria. This is the analogue of Theorem 6.18 for mean
field games of timing.

Theorem 7.40 Let assumption MFG of Timing Set-Up (including (A3)) and
condition (A1) in assumption MFG of Timing Regularity be in force, and consider
a complete probability space .�;G;P/ equipped with a sequence .Wi/i�0 of
independent Brownian motions, each pair .W0;Wi/, for i � 1, being distributed
according to W . Assume further that .�N/N�1 is a sequence of positive numbers
converging to 0, and that on .�;G;P/, for each N � 1, .�1;N;�; � � � ; �N;N;�/ is an �N

- Nash equilibrium of the N-player game associated with (7.85) and (7.86). If, for
each N � 1, we define the measure P

N by the Cesaro mean:

P
N D 1

N

NX

iD1
P ı �W0;Wi; NmN

.� �;N;�;W�/
; � i;N;���1; (7.102)

with:

NmN
.� �;N;�;W�/

D 1

N

NX

iD1
ı.� i;N;�;Wi/; (7.103)

then the sequence .PN/N�1 is tight on ˝canon and any limit point of this sequence is
a weak MFG of timing equilibrium.

In the proof of Theorem 7.40, one of the important consequences of the com-
patibility assumption will come into play by allowing to approximate randomized
stopping times with nonrandomized stopping times.

Proof. Throughout the proof, we denote by EP. the expectation associated with P. Also,
for any N � 1, we let NmN be the empirical distribution (7.103), i.e., we drop the subscript
.� �;N;�;W�/. We notice that, for each N � 1 and any i 2 f1; � � � ;Ng, P ı .W0;Wi; NmN/�1 has
W as marginal law on C.Œ0; T�/2. Proceeding as in the proof of Theorem 7.31, this constraint
is convex. Hence, QN D P

N ı .w0;w; �/�1 also has W as marginal law on C.Œ0; T�/2.
Tightness of .PN ı .w0;w/�1/N�1 is straightforward. Tightness of .PN ı %�1/N�1 is an

immediate consequence of the fact that Œ0; T� is compact. Tightness of .PN ı ��1/N�1 may
be proved as follows. For any compact subset K � C.Œ0; T�/ and for every N � 1, .PN ı
��1/.Œ0; T� � K{/ is equal to:

NmN.Œ0; T� � K{/ D 1

N

NX

iD1

1
fWi2K{g

;
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from which we deduce that:

E
PN �
�
�
Œ0; T� � K{

�� D EP� NmN.Œ0; T� � K{/
� D P

�
W1 2 K{

�
:

Proceeding as in the proof of Lemma 3.16, we deduce that the sequence .PN ı ��1/N�1 is
tight on P.Œ0; T� � C.Œ0; T�// equipped with the topology of weak convergence. To prove
tightness on P1.Œ0; T� � C.Œ0; T�//, we compute:

E
PN
�Z

Œ0;T��C.Œ0;T�/
sup
0�t�T

jwtj2d�.t;w/
	

D EP
�Z

Œ0;T��C.Œ0;T�/
sup
0�t�T

jwtj2d NmN.t;w/

	

D EP� sup
0�t�T

jW1
t j2�;

and we conclude as in the proof of Lemma 3.16.
We deduce that the sequence .PN/N�1 is tight on ˝canon. We denote by P any limit point

of .PN/N�1. Working with a subsequence if necessary, we shall assume without any loss of
generality that .PN/N�1 converges to P. Clearly, Q D P ı .w0;w; �/�1 has W as marginal
law on C.Œ0; T�/2. We now check step by step that P is weak solution of the mean field game.

First Step. To prove the fixed point condition 5 of the definition of a weak equilibrium, take
a bounded and continuous real-valued function f on C.Œ0; T�/ � P1.Œ0; T� � C.Œ0; T�// and a
bounded and continuous real-valued function g on Œ0; T� � C.Œ0; T�/. Notice that:

E
P
�
f .w0; �/g.%;w/

� D lim
N!1

1

N

NX

iD1

EP�f .W0; NmN/g.� i;N;�;Wi/
�

D lim
N!1

EP
�

f .W0; NmN/

Z

g d NmN

	

D E
P

�

f .w0; �/
Z

g d�

	

;

which is sufficient to conclude.

Second Step. We now check condition 1. We first notice that, for each N � 1 and any
i 2 f1; � � � ;Ng, the stopping time � i;N;� is a stopping time with respect to the completion
F
.W0;Wi/ of the filtration generated by .W0;Wi/ under P. Hence, the filtration generated by

the process .t ^ � i;N;�/0�t�T is included in F
.W0;Wi/. Also, we deduce that, for any t 2 Œ0; T�,

any C 2 Fnat;.%;w/
t , NmN.C/ belongs to F .W0;��� ;WN /

t , where F
.W0;��� ;WN / is the completion of the

filtration generated by .W0;W1; � � � ;WN/.
As a result, for each N � 1 and any i 2 f1; � � � ;Ng, .w0;w/ is a Brownian motion

with respect to the natural filtration generated by .w0;w; �; %/ under the probability measure
P

i;N D P ı .W0;Wi; NmN ; � i;N;�/�1. By convexity, .w0;w/ is also a Brownian motion with
respect to .w0;w; �; %/ under each P

N , N � 1. Proceeding as in the proof of Theorem 7.29,
it is plain to deduce that the same holds under the limiting probability P. This proves
condition 1.

Third Step. We now prove conditions 2 and 3. Since condition 5 has already been proved, it
suffices to verify the criterion established in Lemma 7.38.

We start with the following observation. For each N � 1 and any i 2 f1; � � � ;Ng, and
for all t 2 Œ0; T�, the � -field �fWig is independent of �fW0; � � � ;Wi�1;WiC1; � � � ;WNg
and the � -field �fWi

s � Wi
t I t � s � Tg is also independent of the � -field F .W0;��� ;WN /

t _
F .W0;��� ;Wi�1;WiC1;WN /

T .



640 7 Extensions for Volume II

Letting:

Nm�i;N D 1

N � 1
NX

jD1;j 6Di

ı.� j;N;�;Wj/;

we deduce that, under P, the � -fields �fWig and �fW0; Nm�i;Ng are independent, and
similarly, the � -fields �fWi

s � Wi
t I t � s � Tg and �fWi

�^t; �
i;N;� ^ tg _ �fW0; Nm�i;Ng

are also independent. Hence, on the canonical space, the � -fields �fwg and �fw0; �g on the

one hand, and the � -fields �fws � wtI t � s � Tg and Fnat;.w0;�/
T _ Fnat;.w0;w;�;%/

t on the other
hand, are independent under the probability measure P

�i;N given by:

P
�i;N D P ı �W0;Wi; Nm�i;N ; � i;N;�

��1
:

Following the convexity argument used above, we deduce that the � -fields �fwg and �fw0; �g
on the one hand, and the � -fields �fws � wtI t � s � Tg and Fnat;.w0;�/

T _Fnat;.w0;w;�;%/
t on the

other hand, are independent under the probability measure NPN defined by:

NPN D 1

N

NX

iD1

P
�i;N :

The next step in the proof of condition 3 is to observe that:

W1

� NPN ;PN
� � 1

N

NX

iD1

W1

�
P

�i;N ;Pi;N
�
;

for all N � 1, where W1 here denotes the 1-Wasserstein distance on ˝canon, ˝canon itself
being equipped with the `1-distance induced by the distances of each of its components.
Notice now that, for each i 2 f1; � � � ;Ng,

W1

�
P

�i;N ;Pi;N
� � E

�
W1

� Nm�i;N ; NmN
��
;

where we denoted by the same symbol W1 the Wasserstein distance on P1.Œ0; T�� C.Œ0; T�//
in the right-hand side. It is then pretty straightforward to bound the last term in the above
inequality by c=N, for a constant c independent of N. We end up with:

W1

�
P

�i;N ;Pi;N
� � c

N
: which implies W1

� NPN ;PN
� � c

N
:

Therefore, . NPN/N�1 weakly converges to P.
Since the � -fields �fwg and �fw0; �g on the one hand, and the � -fields �fws �wtI t � s �

Tg and Fnat;.w0;�/
T _ Fnat;.w0;w;�;%/

t on the other hand, are independent under the probability
measure NPN , for each N � 1, the same holds under the limiting measure P. This proves
condition 2 and, by Lemma 7.38, this proves condition 3 as well.

Fourth Step. Finally, we show that P satisfies the optimality condition 4 in Definition 7.37.
We let Q D P ı .w0;w; �/�1. By the conclusion of the third step, we know that P 2 R.Q/.
By Theorem 7.31, we can approximate any P

0 2 R.Q/ by a sequence of the form
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.Q ı .w0;w; �; Q�n.w0;w; �//�1/n�1 where, for each n � 1, Q�n is a continuous function
from ˝input to Œ0; T�, and Q�n.w0;w; �/ is a stopping time with respect to the completion of

the filtration F
nat;.w0;w;�/ under Q. Therefore, by continuity of F in the last argument and by

Lemma 7.34, see for instance the end of the proof of Theorem 7.39, it suffices to show:

E
P
�
F
�
w0;w; � ı e�1; %

�� � E
Q
�
F
�
w0;w; � ı e�1; Q�.w0;w; �/��

for every continuous function Q� from ˝input to Œ0; T� such that Q�.w0;w; �/ is a stopping time

respect to the Q-completion of the filtration F
nat;.w0;w;�/.

Now fix such a mapping Q� . The difficulty we face below is that, under PN , Q�.w0;w; �/
is not a stopping time with respect to F

.w0;w/. So, in order to proceed, we use the following
fact, which we prove in the fifth step below. Since Œ0; T� � C.Œ0; T�/ is a Polish space, its
Borel � -field is generated by a countable field; hence, by Carathéodory’s theorem, we can
define EPŒ NmN j W0� as the random probability measure determined by EPŒ NmN j W0�.C/ D
EPŒ NmN.C/ j W0� for C 2 Œ0; T� � C.Œ0; T�/. We claim that, with P-probability 1, it holds:

lim
N!1

W1

� NmN ;EPŒ NmN j W0�
� D 0; (7.104)

the proof of which is deferred to the fifth step below. Importantly, for any t 2 Œ0; T� and any
C 2 Fnat;.%;w/

t , EPŒ NmN j W0�.C/ is FW0

t -measurable. We deduce that, for each N � 1, there
exists a measurable function QmN from C.Œ0; T�/ into P1.Œ0; T� � C.Œ0; T�// such that, for all
C 2 Fnat;.%;w/

t , Œ QmN.W0/�.C/ is FW0

t -measurable and, with P-probability 1,

lim
N!1

W1

� NmN ; QmN.W0/
� D 0: (7.105)

For each N � 1 and any i 2 f1; � � � ;Ng, we then let � i;N D Q�.W0;Wi; QmN.W0// for any
i 2 f1; � � � ;Ng. By construction, � i;N is an F

.W0;Wi/-stopping time. In particular, the Nash
property implies:

E
P
�
F
�
w0;w; � ı e�1; %

�� D lim
N!1

1

N

NX

iD1

EP�F
�
W0;Wi; N�N ; � i;N;�

��

� lim sup
N!1

1

N

NX

iD1

EP�F
�
W0;Wi; N�N

.� i;N ;��i;N;�/
; � i;N

��
;

where we used the notations:

N�N D 1

N

NX

jD1

ı� j;N;� ; N�N
.� i;N ;��i;N;�/

D 1

N

NX

jD1;j 6Di

ı� j;N;� C 1

N
ı� i;N :

Now, we notice that:

W1

� N�N
.� i;N ;��i;N;�/

; N�N
� � T

N
;

where, here, W1 is the Wasserstein distance on P.Œ0; T�/. Combining the above inequality
and (7.105), and recalling that F is continuous in its last two arguments and that the random
variables . NmN/N�1 are tight on P1.Œ0; T� � C.Œ0; T�//, we deduce that
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lim
N!0

1

N

NX

iD1

ˇ
ˇ
ˇEP�F

�
W0;Wi; N�N

.� i;N ;��i;N;�/
; � i;N

�

� F
�
W0;Wi; N�N ; Q�.W0;Wi; NmN/

��ˇˇ
ˇ D 0:

Thus,

E
P
�
F
�
w0;w; � ı e�1; %

�� � lim sup
N!1

1

N

NX

iD1

EP�F
�
W0;Wi; N�N ; Q�.W0;Wi; NmN/

��

D E
P
�
F
�
w0;w; � ı e�1; Q�.w0;w; �/��;

which gives the desired bound.

Fifth Step. We now prove (7.104). First, we notice that for any bounded and measurable
function f from Œ0; T� � C.Œ0; T�/ into R:

EP
�
Z

f .t;w/d NmN.t;w/ � EP
�Z

f .t;w/d NmN.t;w/ j W0

	�4	

D EP
�


1

N

NX

jD1

h
f .� i;N;�;Wi/ � EP�f

�
� i;N;�;Wi/ j W0

�i
�4	

:

Since the variables .� i;N;�;Wi/i�1 are conditionally independent given W0, we deduce, by
duplicating the proof of the strong law of large numbers for independent and identically
distributed variables with a finite fourth moment, that:

EP
�
Z

f .t;w/d NmN.t;w/ � EP
�Z

f .t;w/d NmN.t;w/ j W0

	�4	

� Cf

N2
;

for a constant Cf only depending on f . Hence, for any bounded measurable function f from
Œ0; T� � C.Œ0; T�/ into R, with probability 1 under P,

lim
N!1


Z

Œ0;T��C.Œ0;T�/
f .t;w/d

� NmN � EPŒ NmN j W0�
�
.t;w/

�

D 0: (7.106)

For any integer n � 1, call �n the projection from Œ0; T��C.Œ0; T�/ onto Œ0; T��R
nC1 defined

by �n.t;w/ D .t; .wkT=n/0�k�n/, for any .t;w/ 2 Œ0; T� � C.Œ0; T�/. Using the fact that the
set of continuous functions with compact support from Œ0; T��R

nC1 into R is separable, we
deduce from (7.106) that, with P-probability 1, for every continuous function with compact
support from Œ0; T� � R

nC1 into R,

lim
N!0


Z

Œ0;T��RnC1

f .t; x/d
� NmN ı ��1

n

�
.t; x/

�
Z

Œ0;T��RnC1

f .t; x/d
�
EPŒ NmN j W0� ı ��1

n

�
.t; x/

�

D 0:

(7.107)
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We then observe that there exists a compact subset K of P.Œ0; T�� C.Œ0; T�// such that, with
P-probability 1, the sequence .EPŒ NmN j W0�/N�1 is included in K. Indeed, with probability 1
under P, for any compact subset K � C.Œ0; T�/,

EPŒ NmN j W0�
�
Œ0; T� � K{

� D P
�
W1 2 K{

�
:

Hence, with probability 1, for any n � 1, the sequence .EPŒ NmN j W0� ı ��1
n /N�1 is tight on

Œ0; T��R
nC1. By (7.107), so is . NmN ı ��1

n /N�1. As a result, (7.107) says that, for any n � 1

and almost surely, the Lévy-Prokhorov distance between NmN ı ��1
n and EPŒ NmN j W0� ı ��1

n
tends to 0 as N tends to 1.

For any integer n � 1, we call in the injection from Œ0; T��R
nC1 into Œ0; T��C.Œ0; T�/ that

maps a tuple .t; .x0; x1; � � � ; xn// to the pair .t;w/ where w is the linearly interpolated path
satisfying wiT=n D xi, for all i 2 f0; : : : ; ng. Obviously, the Lévy-Prokhorov distance between
NmN ı ��1

n ı i�1n D NmN ı E�1
n and EPŒ NmN j W0� ı ��1

n ı i�1n D EPŒ NmN j W0� ı E�1
n tends to 0

as N tends to 1, where En D in ı �n W Œ0; T�� C.Œ0; T�/ ! Œ0; T�� C.Œ0; T�/ may be written
in the form En D .E

.1/
n ;E

.2/
n /, E.1/n matching the identity on Œ0; T� and E

.2/
n mapping a path w

to its linear interpolation at times .iT=n/0�i�n. We claim that the convergence also holds in
1-Wasserstein distance. Indeed, we have the following uniform integrability property:

Z

Œ0;T��C.Œ0;T�/
sup
0�t�T

jwtj2d
� NmN ı E�1

n

�
.t;w/ � 1

N

NX

iD1

sup
0�t�T

jWi
tj2;

which is uniformly bounded in N, with P-probability 1, by the law of large numbers. Hence,
with P-probability 1, the sequence . NmN ı E�1

n /N�1 is uniformly square integrable. We have
a similar argument for .EPŒ NmN j W0� ı E�1

n /N�1. We finally obtain, for every n � 1,

lim
N!1

W1

� NmN ı E�1
n ;EPŒ NmN j W0� ı E�1

n

� D 0:

Hence, for every n � 1,

lim sup
N!1

W1

� NmN ;EPŒ NmN j W0�
� � lim sup

N!1

W1

� NmN ; NmN ı E�1
n

�

C lim sup
N!1

W1

�
EPŒ NmN j W0�;EPŒ NmN j W0� ı E�1

n

�
:

It remains to prove that the two terms in the right-hand side tend to 0 as n tends to 1.
We proceed as follows. For any 1-Lipschitz continuous function f from Œ0; T�� C.Œ0; T�/,

we have:

ˇ
ˇ
ˇ
ˇ

Z

f .t;w/d
� NmN � NmN ı E�1

n

�
.t;w/

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z �
f .t;w/ � f

�
t;E.2/n .w/

��
d NmN.t;w/

ˇ
ˇ
ˇ
ˇ

�
Z

sup
0�t�T

ˇ
ˇwt � �

E.2/n .w/
�

t

ˇ
ˇd NmN.t;w/

D 1

N

NX

iD1

sup
0�t�T

ˇ
ˇWi

t � �
E.2/n .Wi/

�

t

ˇ
ˇ:
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Taking the supremum over f , we deduce from the Kantorovich-Rubinstein duality theorem,
see for instance Corollary (Vol I)-5.4, and from the law of large numbers that, with P-
probability 1,

lim
n!1

lim sup
N!1

W1

� NmN ı E�1
n ; NmN

� D 0:

Similarly, with P-probability 1,

lim
n!1

sup
N�1

W1

�
EPŒ NmN j W0� ı E�1

n ;EPŒ NmN j W0�
� D 0;

which completes the proof of (7.104). ut

7.2.8 Existence of Weak Equilibria Under Continuity Assumptions

This subsection is devoted to the proof of the following general existence result for
equilibria in the weak sense.

Theorem 7.41 Assume that assumption MFG of Timing Set-Up (including (A3))
and condition (A1) in assumption MFG of Timing Regularity hold. Then there
exists a weak equilibrium to the mean field game of timing.

Discretization of the Conditioning
In order to prove Theorem 7.41, we shall use the strategy which proved to be
successful in the analysis of mean field games with a common noise. See for
example the introduction of Chapter 3 for a description of this approach based on the
construction of strong equilibria when the common random shocks are restricted to a
finite number of possible values. As a first step, we prove existence of an equilibrium
when the conditioning in the matching problem is restricted to a finitely discretized
version of the common noise. To make the framework and the notations consistent
with the material from Chapter 3, we shall assume that W0

0 D 0, or equivalently that
w00 D 0 under W1; we let the reader adapt the arguments to the general case.

In order to construct the discrete conditioning, we proceed as in Subsection 3.3.1.
We choose two integers `; n � 1, ` referring to the step size of the space grid and n
to the step size of the time grid. For � D 2`, we then let ˘� be the mapping from
R into itself defined by:

˘� W R 3 x 7!

��1b�xc if jxj � �;

� sign.x/ if jxj > �:

For any integer j � 1, we also consider the projection ˘�;j from R
j into itself

defined iteratively by:
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˘�;1 � ˘�;

˘�;jC1.x1; � � � ; xjC1/ D .y1; � � � ; yj; yjC1/; .x1; � � � ; xjC1/ 2 R
jC1;

where:

.y1; � � � ; yj/ D ˘�;j.x
1; � � � ; xj/ 2 R

j; yjC1 D ˘�

�
yj C xjC1 � xj

� 2 R:

For the sake of convenience, we restate the already proven result of Lemma 3.17.

Lemma 7.42 With the above notation, for .x1; � � � ; xj/ 2 R
j such that, for any i 2

f1; � � � ; jg, jxij � � � 1, let:

.y1; � � � ; yj/ D ˘�;j.x
1; � � � ; xj/:

If j � �, then, for each i 2 f1; � � � ; jg, jxi � yij � i=�.

Given an integer n, we let N D 2n, and we consider the dyadic time mesh:

tN
i D iT

N
; i 2 f0; 1; � � � ;Ng; (7.108)

and, given the canonical process w0 D .w0t /0�t�T , we define the random variables
Vi.w0/, for i D 1; � � � ;N, by:

.V1.w0/; � � � ;VN.w0// D ˘�;N
�
w0

tN1
; � � � ;w0

tNN

�
; (7.109)

and we often rewrite the left-hand side as ��;N.w0/. Similarly, we restate the result
of the already proven Lemma 3.18, where we use the same notation as before:

J D f��;��C 1=�;��C 2=�; � � � ; � � 1=�;�g:

Lemma 7.43 When viewed as random variables on C.Œ0;T�/, the Vj’s have the
following property: given i D 1; � � � ;N, the random vector .V1; � � � ;Vi/ has the
whole J

i as support.

The random variables V1; � � � ;VN must be understood as a discretization of the
common noise w0. Following (3.34), we call a discretized environment a mapping
# W JN 3 .v1; � � � ; vN/ 7! #.v1; � � � ; vN ; �/ 2 P.TN/, where TN D ftN

0 ; t
N
1 ; � � � ; tN

Ng,
such that, for all i 2 f0; � � � ;N � 1g, the function:

J
N 3 .v1; � � � ; vN/ 7! #

�
v1; � � � ; vN ; ftN

0 ; � � � ; tN
i g�

is just a function of .v1; � � � ; vi/, or equivalently the function:
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J
N 3 .v1; � � � ; vN/ 7! #

�
v1; � � � ; vN ; ftN

i g�

is just a function of .v1; � � � ; vi/. In particular, the function J
N 3 .v1; � � � ; vN/ 7!

#.v1; � � � ; vN ; ftN
0 g/ is required to be constant. We denote by FN;adapt the set of such

discretized environments. For each # 2 FN;adapt and for all .v1; � � � ; vN/ 2 J
N ,

we may regard #.v1; � � � ; vN ; �/ as an element of P.Œ0;T�/. We then notice that for
# 2 FN;adapt, the process .#.��;N.w0/; Œ0; t�//0�t�T is adapted with respect to the
filtration F

nat;w0 .
Throughout the analysis, we equip FN;adapt with the topology of pointwise conver-

gence. In other words, a sequence .#n/n�1 converges to # if, for all .v1; � � � ; vN/ 2
J

N and i 2 f0; � � � ;Ng,

lim
n!1#n

�
v1; � � � ; vN ; ftN

i g� D #
�
v1; � � � ; vN ; ftN

i g�:

It is easily checked that FN;adapt is then a compact metric space. Moreover, it
is also clear that .#n/n�1 converges to # if and only if for all .v1; � � � ; vN/ 2
J

N , the sequence of probability measures .#n.v1; � � � ; vN ; �//n�1 converges to
#.v1; � � � ; vN ; �/ in P.Œ0;T�/.

On the space C.Œ0;T�/2 equipped with the measure W , see (A3) in assumption
MFG of Timing Set-Up, we define the following discretized mean field game of
timing.

(i) For each discretized environment # 2 FN;adapt, solve:

O� 2 arg sup
�2S.w0;w/

J
�
#.��;N.w0/; �/; �

�
:

(ii) Find # 2 FN;adapt so that, for all v1; � � � ; vN 2 J, for all i 2 f0; � � � ;Ng,

#
�
v1; � � � ; vN ; ftN

i g� D P
�
tN
i�1 < O� � tN

i j��;N.w0/ D .v1; � � � ; vN/
�
;

with the convention that t�1 D �1.

Except for the fact that the stopping times are from the set S.w0;w/ instead of SX

and that the environment is discretized, the above definition could be understood
as the definition of a strong equilibrium. However, even though the environment
is discretized, we need to appeal to the notion of randomized stopping time and
compactify the set of stopping times. This leaves us with the following notion of
semi-strong equilibrium.

Definition 7.44 A discretized environment # 2 FN;adapt is said to be a semi-strong
discretized equilibrium if there exists a probability measure P on the canonical
space ˝canon such that P ı .w0;w/ D W , PŒ� ı e�1 D #.��;N.w0/; �/� D 1, where e
is the first coordinate projection from Œ0;T� � C.Œ0;T�/ onto Œ0;T�, and:
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1. The process .w0;w/ is a Brownian motion with respect to the natural filtration
generated by .w0;w; %/ under P;

2. The process � is adapted with respect to the completion of the filtration generated
by w0 under P in the sense that, for all t 2 Œ0;T�, Fnat;�

t � Fnat;�
tC � Fw0

t ;
3. The probability measure P belongs to arg supP0 E

P0

ŒF.w0;w; � ı e�1; %/�, where
the supremum is taken over all the probability measures P0 on ˝canon satisfying
1, P0 ı .w0;w/�1 D W and P

0Œ� ı e�1 D #.��;N.w0/; �/� D 1;
4. The weak fixed point condition holds:

P
�
% 2 .ti�1; ti� j��;N.w0/

� D � ı e�1.ftig/; i 2 f0; � � � ;Ng; P � a:s:

Of course, the reader will observe that, except for the fixed point condition,
the other conditions in Definition 7.44 are consistent with that ones required in
Definition 7.37. The fact that the fixed point condition is formulated in terms of
the conditional law of the sole % should not come as a surprise. We do so because
the environment is required to be F

w0-adapted. Basically, only the marginal law of
� on Œ0;T� matters. Given the conditional law of the randomized stopping time %,
the form of the full-fledged lift � in P1.Œ0;T� � C.Œ0;T�// does not really matter
in the construction of a semi-strong equilibrium. If needed, we can choose it to
make it consistent with the fixed point condition used in Definition 7.37, but,
in fact, we can also choose it in a purely arbitrary way, as long as condition
2 is satisfied. For instance, if # is a semi-strong discretized equilibrium under
some probability P, then it is also a semi-strong discretized equilibrium under
QP D Pı.w0;w; #.��;N.w0/; �/˝W1; %/

�1, where W1 is the one-dimensional Wiener
measure on Œ0;T�. Then, if we let Q D W ı .w0;w; #.��;N.w0/; �/˝ W1/

�1, then
Q 2 M and QP 2 R.Q/, with M and R.Q/ as in Definition 7.28 and Definition 7.30.

The following lemma is the analogue of the results proven in Subsection 3.3.1.

Lemma 7.45 For any `; n � 1, there exists a semi-strong discretized equilibrium.

In preparation for the proof of Lemma 7.45, we state without proof two classical
results from the theory of set-valued functions. See the Notes & Complements at
the end of the chapter for references. We shall need the following definition.

Definition 7.46 If X and Y are metric spaces, a set-valued map  from X to Y ,
or alternatively a function  from X to the power set 2Y of Y , is said to be upper
hemicontinuous if, for any x 2 X and any sequence .xk; yk/k�1 in X � Y such that
.xk/k�1 converges to x and yk 2  .xk/ for all k � 1, the sequence .yk/k�1 has a limit
point in  .x/.

The set-valued map  is said to be lower hemicontinuous if, for any x 2 X , any
sequence .xk/k�1 in X converging to x and any y 2  .x/, there exist an increasing
sequence of positive integers .k.p//p�1 and a sequence .yp/p�1 in Y such that yp 2
 .xk.p// for p � 1 and .yp/p�1 converges to y.
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The set-valued map  is said to be continuous if it is both lower and upper
hemicontinuous.

The advised reader will notice that our sequential definition of upper hemicontinuity
is in fact stronger than the usual one since we implicitly require  .x/ to be compact
for any x 2 X .

The following statement is known as Berge’s maximum theorem.

Theorem 7.47 If X and Y are metric spaces, and W X ! 2Y and f W X �Y ! R

are continuous functions such that  .x/ is a nonempty compact subset of Y for any
x 2 X , then the set-valued map:

X 3 x 7! ˚
y 2 Y W f .x; y/ D max

z2 .x/ f .x; z/
� D ˚

y 2 Y W y 2 arg max
z2 .x/ f .x; z/

�

has nonempty compact values and is upper hemicontinuous.

We now recall a very useful fixed point existence result known as Kakutani-
Fan-Glickbserg’s theorem. It plays in the subsequent analysis, the same role as
Schauder’s theorem in the analysis of stochastic differential mean field games.

Theorem 7.48 Let K be a nonempty compact convex subset of a normed vector
space X . If  W K ! 2K is a set-valued map such that the graph f.x; y/ 2 K � K W
y 2  .x/g is closed and  .x/ is a convex subset of K for all x 2 K, then  admits
a fixed point x� in the sense that x� 2  .x�/.

Proof of Lemma 7.45. Throughout the proof, the values of ` and n are fixed.

First Step. For a discretized environment # , we let Q# D W ı .w0;w; #.��;N.w0/; �/ ˝
W1/

�1. Recall that from Theorem 7.31, we know that R.Q#/ is a convex closed subset of
P.˝canon/. Also, it is compact. Indeed, the first two marginal projections of any probability
measure in R.Q#/ are fixed, and the third marginal is a random measure which belongs to a
fixed compact subset of P.Œ0; T� � C.Œ0; T�IR// since the first component is bounded while
the second one is fixed. We also notice that any P 2 R.Q#/ automatically satisfies condition
1 in Definition 7.44. We recast the present setting in the framework of Theorem 7.47. We
set X D FN;adapt and we choose Y as the subset of P.˝canon/ formed by all the probability
measures P having W as marginal on C.Œ0; T�/2. Next we define:

 .#/ D R
�
W ı .w0;w; #.��;N.w0/; �/˝ W1/

�1
� D R.Q#/;

for # 2 X D FN;adapt, and:

f .#;P/ D E
P
�
F
�
w0;w; � ı e�1; %

��
;

for .#;P/ 2 X �Y . The function f is continuous because of Lemma 7.34. We now check that
 is continuous in the sense of Definition 7.46 so we can use Berge’s theorem and conclude
that the map:
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# 7! ˚.#/ D arg max
P2R.Q# /

E
P
�
F
�
w0;w; � ı e�1; %

��
:

has nonempty compact values and is upper hemicontinuous.
We start with the proof of the upper hemicontinuity. To do so, we consider a sequence

.#k;Pk/k�1 in X�Y , such that Pk 2  .#k/, for all k � 1, and .#k/k�1 converges to some # . It
is easily checked that the 1-Wasserstein distance between Pk and Pkı.w0;w; #.��;N.w0/; �/˝
W1; %/

�1 tends to 0 as k tends to 1. Moreover, for all k � 1, Pk ı .w0;w; #.��;N.w0/; �/˝
W1; %/

�1 belongs to R.Q/ D  .#/ where Q D W ı .w0;w; #.��;N.w0/; �/ ˝ W1/
�1.

Since R.Q/ is closed, see Theorem 7.31, we deduce that P 2 R.Q/. Lower hemicontinuity
is proved in the same way. Namely, if .#k/k�1 converges to some # in X , then, for any
P 2  .#/, we let Pk D Pı.w0;w; #k.��;N.w0/; �/˝W1; %/

�1. Once again, the 1-Wasserstein
distance between Pk and P tends to 0 as k tends to 1 and, for all k � 1, Pk 2  .#k/.

Hence, Berge’s theorem implies that ˚.#/ is nonempty compact convex for each # and,
most importantly, the set-valued function ˚ is upper hemicontinuous on FN;adapt.

Second Step. Finally, we define a mapping � from FN;adapt into 2F
N;adapt

as follows. For # 2
FN;adapt and P 2 ˚.#/, we define the map  .#;P/ from J

N into P.TN/ by:

 .#;P/
�
v1; � � � ; vN ; ftig

� D P
�
% 2 .ti�1; ti� j��;N.w0/ D .v1; � � � ; vN/

�
;

for i 2 f0; � � � ;Ng, and v1; � � � ; vN 2 J
N . Since P 2 R.Q#/, we know that, for any i 2

f0; � � � ;Ng, Fnat;%
tiC

is independent of �f.w0s � w0ti ;ws � wti/I ti � s � Tg under P. Observing
that the event f��;N.w0/ D .v1; � � � ; vN/g may be rewritten as f.V1.w0/; � � � ;Vi.w0// D
.v1; � � � ; vi/g \ C, for an event C 2 �fw0s � w0ti I ti � s � Tg, we deduce that:

 .#;P/
�
v1; � � � ; vN ; ftig

� D P
�
% 2 .ti�1; ti� j .V1.w0/; � � � ;Vi.w0// D .v1; � � � ; vi/

�
;

which proves that  .#;P/ belongs to FN;adapt. Hence, we define the set valued map � by
�.#/ D f .#;P/I P 2 ˚.#/g as a subset of FN;adapt. Writing:

 .#;P/
�
v1; � � � ; vN ; ftig

�

D P
�
% 2 .ti�1; ti�; .V1.w0/; � � � ;Vi.w0// D .v1; � � � ; vi/

�

W
�
.V1.w0/; � � � ;Vi.w0// D .v1; � � � ; vi/

� ;
(7.110)

we see that  .#; �/ is a convex function, since ˚.#/ is a convex subset of Y . Hence, �.#/ is
a convex subset of FN;adapt.

We finally check that the graph of � is closed. For a sequence .#k; �k/n�1 converging to
some .#; �/ such that �k 2 �.#k/ for all k � 1, we know, that for each k � 1, there exists
Pk 2 ˚.#k/ such that �k D  .#k;Pk/. From the upper hemicontinuity of ˚ , we get that
.Pk/k�1 has a limit point P in ˚.#/. Passing to the limit in (7.110), we get that � D  .#;P/,
which proves that � 2 �.#/.

By Kakutani-Fan-Glicksberg’s theorem, � admits a fixed point, which produces the
desired equilibrium. ut
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Proof of Existence in the General Setting
Proof of Theorem 7.41. We follow step by step the proof of Theorem 7.40.

For any integer n � 1, we consider a semi-strong discretized equilibrium, say #n, for
the mean field game of timing, as constructed in the proof of Lemma 7.45 with N D 2n and
� D �N , with�N D 4n D N2. Following Definition 7.44, we associate with #n a probability
measure P

n on ˝canon. We let �.N/ � ��N ;N and then:

NPn D P
n ı �w0;w;L.%;w j�.N/.w0//; %

��1
;

where L is used to denote the conditional law under Pn. So, in contrast with the proof of
Lemma 7.45, we now force the environment to satisfy the fixed point condition. Following the
second step in the proof of Lemma 7.45, we can prove that, under NPn, �ti is Fw0

ti -measurable.
Also, with NPn-probability 1, for all i 2 f0; � � � ;Ng,

�
� ı e�1

��
.tN

i�1; t
N
i �
� D P

n
�
% 2 .tN

i�1; t
N
i � j�.N/.w0/

� D #n
�
�.N/.w0/; ftN

i g�;

Consequently, for any 1-Lipschitz function f from Œ0; T� to R,

ˇ
ˇ
ˇ
ˇ

Z T

0

f .t/d
��
� ı e�1

� � #n
�
�.N/.w0/; �

��
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

NX

iD0

Z

.tNi�1;t
N
i �

f .t/d
��
� ı e�1

� � #n
�
�.N/.w0/; �

��
.t/

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

NX

iD0

f .tN
i /
��
� ı e�1

��
.tN

i�1; t
N
i �
� � #n

�
�.N/.w0/; ftN

i g��
ˇ
ˇ
ˇ
ˇC T

N
D T

N
;

from which we deduce that W1.� ı e�1; #n.�.N/.w0/; �// � T=N with probability 1 under NPn.
In preparation for the proof, we also make the following observation in order to get rid of

�.N/ in the conditioning. By Lemma 7.42, we have supt2TN
jw0t � Œi.2/N .�.N/.w0//�tj � 1=2n on

the event fsup0�t�T jw0t j � 4n � 1g, where i.2/N W RN ! C.Œ0; T�/ maps a tuple .x1; � � � ; xN/

to the piecewise linear path interpolating the points 0; x1; � � � ; xN at times .ti
N/iD0;��� ;N . As a

byproduct, we easily deduce that:

8" > 0; lim
n!1

NPn
�

sup
t2Œ0;T�

jw0t � �
i.2/N .�.N/.w0//

�

tj > "
� D 0:

As another preliminary step, we notice that the sequence . NPn/n�1 is tight on ˝canon. The
argument is similar to that used in the proof of Theorem 7.40. We call P a limit point. Working
with a subsequence if necessary, we shall assume without any loss of generality that . NPn/n�1

converges to P.

First Step. We first prove condition 5 in Definition 7.37. To do so, we consider two real
valued bounded and continuous functions f and g on C.Œ0; T�/ � P1.Œ0; T� � C.Œ0; T�// and
Œ0; T� � C.Œ0; T�/ respectively, and we notice that the preliminary steps taken above imply:

lim
n!1

E
NPn
hˇ
ˇf .w0; �/ � f

�
i.2/N .�.N/.w0//; �

�ˇ
ˇ
i

D 0:
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Therefore,

E
P
�
f .w0; �/g.%;w/

� D lim
n!1

E
NPn�

f .w0; �/g.%;w/
�

D lim
n!1

E
NPn
h
f
�
i.2/N .�.N/.w0//; �

�
g.%;w/

i

D lim
n!1

E
NPn
�

f
�
i.2/N .�.N/.w0//; �

�
Z

Œ0;T��C.Œ0;T�/
g.t;w/d�.t;w/

	

;

where we used the fact that, under NPn, � is measurable with respect to the completion of
�f�.N/.w0/g, which implies that, with NPn-probability 1, � D L..%;w/ j�.N/.w0/; �/. Hence,

E
P
�
f .w0; �/g.%;w/

� D lim
n!1

E
NPn
�

f .w0; �/
Z

Œ0;T��C.Œ0;T�/
g.t;w/d�.t;w/

i
;

D E
P

�

f .w0; �/
Z

Œ0;T��C.Œ0;T�/
g.t;w/d�.t;w/

	

;

which proves condition 5.

Second Step. We now prove conditions 1 and 2 in Definition 7.37. Condition 2 is easily
checked. Indeed, for each n � 1, the processes .w0; �/ and w are independent under NPn. This
remains true under the limiting probability P.

In order to check condition 1, we recall that .w0;w/ is a Brownian motion with respect
to the natural filtration generated by .w0;w; %/ under NPn, for each n � 1. We also recall
that, for any n � 1, any i 2 f1; � � � ;Ng and any t 2 .tN

i�1; t
N
i �, �t is Fw0

tNi
-measurable. Hence,

�f.w0s �w0
tNi
;ws �wtNi

/I s 2 ŒtN
i ; T�g is independent of .w0s ;ws; �s; %s/0�s�tNi

under NPn. Passing

to the limit, we deduce that for any dyadic t 2 Œ0; T�, �f.w0s � w0t ;ws � wt/I s 2 Œt; T�g is
independent of .w0s ;ws; �s; %s/0�s�t under the limiting probability P. By a density argument,
the same is true for any t 2 Œ0; T�.
Third Step. We now check that condition 3 holds. Since condition 5 has been verified, we
may invoke Lemma 7.38. Namely, it suffices to prove that the � -fields �fws �wt; t � s � Tg
and Fnat;.w0;�/

T _Fnat;.w0;w;�;%/
t are independent under P, for every t 2 Œ0; T�. Again, it is enough

to notice that this holds true under NPn, for each n � 1 and each t 2 ftN
0 ; � � � ; tN

N g, which is

quite obvious since, for each n � 1 and each i 2 f0; � � � ;Ng, �tNi
is Fw0

tNi
-measurable under NPn

and .w0;w/ is a Brownian motion with respect to the filtration generated by .w0;w; %/.

Fourth Step. The last step is to prove the optimality condition 4 under P. The strategy
is similar to that used in the fourth step of the proof of Theorem 7.40. We let Q D
Pı.w0;w; �/�1. By the conclusion of the third step, P 2 R.Q/ and, by Theorem 7.31, we can
approximate any P

0 2 R.Q/ by a sequence of the form .Q ı .w0;w; �; Q�n.w0;w; �//�1/n�1

where, for each n � 1, Q�n is a continuous function from ˝input to Œ0; T� and Q�n.w0;w; �/ is a

stopping time with respect to the completion of the filtration F
nat;.w0;w;�/ under Q. Therefore,

by continuity of F in the last argument and by Lemma 7.34, see for instance the end of the
proof of Theorem 7.39, it suffices to show:
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E
P
�
F
�
w0;w; � ı e�1; %

�� � E
Q
�
F
�
w0;w; � ı e�1; Q�.w0;w; �/��; (7.111)

for every continuous function Q� from ˝input to Œ0; T� such that Q�.w0;w; �/ is a stopping time

with respect to the Q-completion of the filtration F
nat;.w0;w;�/.

Now fix such a mapping Q� . Since it is continuous,

E
Q
�
F
�
w0;w; � ı e�1; Q�.w0;w; �/�� D lim

n!1
E

NPn�
F
�
w0;w; � ı e�1; Q�.w0;w; �/��:

Recalling from the preliminary step that W1.� ı e�1; #n..�.N/.w0/; �/// � 1=N under each
NPn, n � 1, we deduce that:

E
P
�
F
�
w0;w; � ı e�1; Q�.w0;w; �/��

D lim
n!1

E
NPn�

F
�
w0;w; #n..�.N/.w0/; �/; Q�.w0;w; �/��:

(7.112)

Under NPn, � D L..%;w/ j�.N/.w0//, where L is used to denote the conditional law under Pn

or under NPn, the two of them being the same in that case. Hence, there exists a measurable
function Q�n W C.Œ0; T�/ ! P1.Œ0; T� � C.Œ0; T�// such that � D Q�n.w0/ and the random

variable Œ Q�n.w0/�.C/ is measurable with respect to the completion of Fnat;w0
t under the

Wiener measure, for any t 2 Œ0; T� and any C 2 Fnat;�
t . Therefore, under each NPn, Q�.w0;w; �/

may be rewritten as Q�.w0;w; Q�n.w0//, which is a stopping time with respect to the filtration
F
.w0;w/. Hence, for each n � 1,

E
NPn�

F
�
w0;w; #n..�N.w0/; �/; Q�.w0;w; �/��

D E
Pn�

F
�
w0;w; � ı e�1; Q�.w0;w; Q�n.w0//

��
;

where P
n is the probability measure we associated with the semi-strong equilibrium #n by

means of Definition 7.44. Hence, by condition 3 in Definition 7.44, we have:

E
NPn�

F
�
w0;w; #n.�N.w0/; �/; Q�.w0;w; �/��

D E
Pn�

F
�
w0;w; � ı e�1; Q�.w0;w; Q�n.w0//

��

� E
Pn�

F
�
w0;w; � ı e�1; %

��

D E
NPn�

F
�
w0;w; #n..�N.w0/; �/; %

��
:

The limit of the first term in the left-hand side is given by (7.112). We proceed in a similar
way to get the limit of the right-hand side. We obtain:

lim
n!1

E
NPn�

F
�
w0;w; #n.�N.w0/; �/; %

�� D lim
n!1

E
NPn�

F
�
w0;w; � ı e�1; %

��

D E
P
�
F
�
w0;w; � ı e�1; %

��
;

from which we get (7.111). ut
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7.2.9 Mean Field Games of Timing with Major and Minor Players

We conclude this second chapter of extensions with the description of a practical
application of importance in the financial industry. We frame the model as a mean
field game of timing with major and minor players. Given the technical difficulties
already existing in the solution of mean field games of timing, we shall not attempt
to solve it mathematically. However, the blow-by-blow account of the features of
the situation fit the framework of this section like a glove and we could not resist
the temptation to present it.

Callable Convertible Bonds
Convertible bonds are debts issued by companies looking for external funds to
finance long-term investments. As such, they are subject to default of the issuer.
For this reason they should offer a unique set of incentives in order to be attractive
and competitive with the Treasury (essentially default free) bonds with comparable
lengths.

To make them attractive to investors, even with interest rates lower than the
default free interest rates, issuing companies often embed in the indenture of the
bond an option to exchange the security for a given number of shares. This number
is determined by a conversion ratio whose value at time t we denote by ct. So
convertible bonds are hybrid derivatives with a fixed income component (the interest
coupon payments) and an equity component (stock shares). They are very attractive
to investors interested in the upside (in case the stock price appreciates significantly)
with little or no downside (except possibly for the occurrence of default) due to the
bond protection. Convertible bonds were extremely popular and their market volume
increased very fast until the credit crunch of May 2005 due to the credit downgrade
of GM and Ford and, later on, the financial crisis of 2007.

Recall that in a typical corporate bond scenario, the seller 1) collects the nominal
(i.e., the loan amount) at inception, 2) pays coupons (interest) at regular time
intervals, 3) returns the nominal at maturity of the bond, while the buyer (bond
holder) 1) pays the nominal upfront, 2) receives coupon payments (interest) at
regular time intervals, 3) retrieves the nominal amount at maturity if no default
occurred, 4) gets the recovery pay-out (proportion of nominal) in case of default
before maturity.

When the bond is callable, the seller can at a time of his/her choosing (which we
shall model mathematically by a stopping time) 1) return the nominal (loan amount)
to the investors, 2) stop paying interest coupons. To be specific, a call provision
allows the issuer to force the holders to redeem their certificates for an agreed upon
cash amount C. If recall takes place at time t, the actual amount received by the
holder of the bond is C _ .ctSt/ C At where At represents the accrued interests
defined by:

At D r
t � Ti

TiC1 � Ti
; Ti � t < TiC1; (7.113)

where the Ti’s are the dates of the planned coupon payments.
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When the bond is convertible, the buyer can at a time of his/her choosing (which
we shall model mathematically by a stopping time) 1) request his/her original
investment and walk away (game over), 2) or convert the amount originally invested
into company shares. The number of shares per dollar invested is specified in the
indenture of the bond as the conversion ratio ct. The contract ends the first time one
of the two counterparties exercises its right.

To shed some light on the definition given above, a convertible bond should be
viewed as a corporate (hence defaultable) issue for which the investors have the
option to exchange each of their certificates for the given number ct of shares in the
company stock if they choose to exercise their exchange option at time t. This simple
description of the conversion option justifies the terminology convertible bond, but
it does not do justice to the high complexity of most issue indentures. For the sake of
completeness, we list a few of the commonly clauses included in convertible bond
prospectuses.

• A Put or Redemption provision allows the holder to redeem the bond for an
agreed upon amount of cash P.

• Special clauses specify what is to be expected at maturity, e.g., the holder is often
allowed to convert at maturity T if default or call did not occur before.

• A Put / Redemption protection specifies a period of time (most often in the form
Œ0;TP�) during which the bond cannot be put or redeemed.

• Similarly, a Call protection specifies a period of time (most often in the form
Œ0;TC�) during which the bond cannot be called.

• To cite another example of the many perls we can find in corporate bond
indentures, we mention that if a call notice of length ı is included in the
indenture, upon call of the bond at time �c by the issuer, each holder can choose to
convert the bond into ct shares of stock on any day of the interval Œ�c; .�c Cı/^T�
as long as the investor gives one day notice to the issuer.

• The definition of default varies from one bond issue to the next, and the credit
events accepted as triggers for the special liquidation of a convertible bond are
not limited to bond issuers seeking bankruptcy protection such as Chapter 7
or Chapter 11. Obviously, these are not references to earlier chapters of this
book. These chapters are from the lawyers’ parlance and they refer to the US
bankruptcy code. Indeed, missed payments, credit downgrades, mergers, and
acquisitions or other forms of restructuring are often accepted as triggers.

• The procedure used to determine the recovery payment in case of default is
clearly articulated in the prospectus of a convertible bond, and it does not always
involve auctions or lawyers. For the purpose of this introductory discussion, we
assume that it is given by a random variable Rt if default occurs at time t, in such
a way that the process R D fRtgt�0 is adapted.

Most of these intricate clauses are rarely discussed in the academic literature, and
since our goal is to give an example of mean field game of timing with major and
minor players, we shall also ignore most of them, and keep only the features relevant
to the mean field models we want to motivate.
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Set-Up of the Model
The first thing we need is a stochastic process S D .St/0�t�T giving the price of the
stock of the company. We shall specify the dynamics of this process later on in the
discussion. The next element of the model is the time of default � which we shall
take as the time of the first arrival of a Cox process with intensity � D .�t/0�t�T

which we shall also specify later on.
We now introduce for each investor, a couple of processes which play an

important role in the analysis of the bond.

• For each investor i, the process Ui D .Ui
t/0�t�T gives the present value at time

t D 0 of the cumulative cash flows to investor i from the issuer before and
including time t � T , should the issuer decide to call the bond at time t while
investor i has not exercised any option yet.

• For each investor i, the process Li D .Li
t/0�t�T gives the present value at time

t D 0 of the cumulative cash flows to investor i, before-and-including time t,
should he/she decide to convert at time t, while the issuer has not exercised any
option yet.

With these notation in hand, a typical convertible bond scenario can be described
as follows.

• Bond holder i chooses a strategy in the form of a stopping time � i with respect to
the filtration F

i D .F i
t /t�0 comprising his/her information.

• In parallel, the bond seller chooses a strategy �0, a stopping time with respect to
his/her filtration F

0 D .F0
t /t�0

With these choices, the present value of all the payments to the bond holder i from
the seller is given by the quantity:

Ri.�0;�/ D

8
ˆ̂
<

ˆ̂
:

L� i ; whenever � i � �0 or � i D �0 < T


; whenever � i D �0 D T

U�0 ; whenever �0 < � i

where � D .� i/1�i�N is the set and strategies of the bond investors. The random
variable 
 represents the payment to the bond holder at maturity when neither party
exercises its right before maturity.

So the mathematical problem is for the bond holders to maximize:

Ji.�0;�/ D EŒRi.�0;�/�

while the issuer of the bond tries to minimize:

J0.�0;�/ D E

h 1

N

NX

iD1
Ri.�0;�/

i

in the form of a zero sum game.
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The above description does not highlight the interaction between the investors,
and does not explain how their individual decisions affect the system. The answer
is captured by the word dilution. Since holding stocks from a company is a form
of partial ownership of the business, if the value of the assets of the company do
not change and new shares are issued, the value of each share decreases. There are
many reason for a company to issue new shares. We describe a simple example to
explain why we claim that the interaction between the bond investors is of a mean
field nature. Without any loss of generality, we may assume that all the bond holders
invested the same nominal amount in the bond, and we normalize this amount to 1
for the sake of the present discussion. The conversion option states that, if bond
investor i decides to convert at time t , namely if � i D t, he/she is entitled to receive
cr shares of the company to redeem his/her bond certificate. As a result, the company
needs to issue new shares in the amount crNt where:

Nt D
NX

iD1
1� iDt

is the number of investors converting at time t. So if the value of one share of stock
is St� at time t just before the issuance of new shares, the new (theoretical) value of
one share after the new issuance becomes:

StC D Nt�St� C crNtIS

Nt� CNt
;

where Nt� is the number of outstanding shares just before the new issuance, St� is
the value of one share price, again, just before the new issuance, and IS is the price at
which the new shares are issued (which is usually stipulated in the indenture of the
convertible bond). Our point here is to emphasize that the proportion of bond holders
converting their bond holding is affecting the value held by the shareholders.

7.2.10 An Explicitly Solvable Toy Model

This last subsection is devoted to the discussion of a simple toy model of a mean
field game of timing which can be solved as explicitly as one can hope for. However,
it is fair to say that some of the assumptions we need to make for the solution to be
possible are highly unrealistic. They preclude many practical applications, including
those to bank runs.

We start with two real-valued processes X D .Xt/t�0 and Y D .Yt/t�0 with
right-continuous and left-limited paths. Both are defined on a common probability
space .˝;F ;P/, and both are assumed to be adapted to a filtration F D .Ft/t�0.
In what follows, the filtration F is understood as the information available to a
representative agent. The information contained in the process Y is assumed to be
public. In this regard, Y will be seen as an observable common noise. This model
is thus a model of full information as opposed to the diffusion model of bank run
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discussed in the introduction of this section, for which the common signal Y was
not observed. The process X should be interpreted as a private signal only available
to the representative agent.

In order to distinguish the common information from the private one, we
introduce another filtration, denoted by G. It represents the common knowledge of
the players involved in the game. Subsequently, it is assumed to be a sub-filtration
of F.

We now add two extra ingredients needed to finalize the set-up of this game of
timing. We assume that:

• r D .rt/t�0 is a real valued right-continuous locally integrable and G-
progressively measurable process;

• � D .�t/t�0 is a nonnegative right-continuous locally integrable and F-
progressively measurable process.

The quantity rt plays the role of an interest rate at time t. As a Gt-measurable random
variable, it is observed by all the players. On the other hand, the value �t of � at time
t appears as the instantaneous intensity of occurrence of a failure (say a default on
some financial market for example), as perceived by the representative player. To be
more precise, we define the stopping time:

� D inf
n
t � 0 W

Z t

0

�sds D 

o
; (7.114)

where 
 is an exponentially distributed random variable with mean 1 which is
independent of F. The variable � is the time of the first jump of a Cox process
with intensity � . It will be understood as a failure or default time whose perception
is subjective to the representative agent.

The game of timing which we propose is based on an idea very similar to the
model resulting from our discussion of bank runs. Each player chooses a stopping
time for the filtration of its own available information with the goal to maximize
an expected reward. The reward comprises two components. An interest component
driven by the process r D .rt/t�0 suggests that the player should stop the game as
late as possible in order to accumulate interest payments. However, the longer the
player stays in the game, the more likely default becomes. This default, as perceived
by the player, occurs with intensity � D .�t/t�0, and if default occurs before the
decision to stop, all is lost. Under some technical conditions, this optimization
problem can be solved using standard techniques. See Lemma 7.50 below.

Because of possible interactions between the various players, the solutions of
the individual optimization problems can only lead to an equilibrium if some form
of consistency condition is satisfied. Since we are interested in mean field games,
we assume that the players interact through the empirical proportion of players
which are still in the game or, equivalently, through the theoretical conditional
probability that the representative player is still in the game. We shall denote by �t
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the cumulative distribution function of this conditional law at time t. In other words,
we shall assume that the default intensity �t at time t depends upon �t, creating the
need for a consistency condition.

In this context, a solution to the mean field game of timing problem can be
defined in the following way.

1. Individual optimal stopping problem. For each G-progressively measurable
Œ0; 1�-valued process � D .�t/t�0 with nondecreasing sample paths, solve the
optimal stopping problem:

�� 2 arg sup
�2S

E

h
e
R �
0 rsds1f�>�g[f�D1g

i
; (7.115)

where S denotes the set of stopping times with respect to the filtration F.
2. Fixed point condition. Find a process � D .�t/t�0 and a solution �� of the above

optimal stopping problem such that:

P
�
�� � t jGt

� D �t; P � a:s:; for all t � 0: (7.116)

Definition 7.49 A process � D .�t/t�0 and a a stopping time �� are said to form
an equilibrium for the mean field game of timing if they satisfy the two properties 1.
and 2. above.

We first consider the optimal stopping problem for each individual player.

Lemma 7.50 Let us assume that the function Œ0;1/ 3 t 7! .rt/C D max.rt; 0/

is P-almost surely integrable on Œ0;1/, or that infft � 0 W �t � rt � 0g < 1
P-almost surely. Furthermore, we assume that the function Œ0;1/ 3 t 7! �t � rt is
nondecreasing P-almost surely. Then, the F-stopping time:

�� D infft � 0 W �t � rt � 0g (7.117)

solves the optimal stopping problem (7.115). In fact, �� is the minimal solution if
the supremum in (7.115) is finite, and it is the unique solution if Œ0;1/ 3 t 7! �t �rt

has strictly increasing paths.

Proof. Let � 2 S be such that
R �
0
.rs/Cds < 1 P-a.s., and compute:

E

h
e
R �
0 rsds1f�>�g[f�D1g

i
D E

h
E

h
e
R �
0 rsds1f�>�g[f�D1g

ˇ
ˇF�

ii

D E

h
E

h
e
R �
0 .rs��s/ds

ˇ
ˇF�

ii
;

where we used the fact that:

P

h˚
� > �

� [ f� D 1g ˇˇF�
i

D exp
�
�
Z �

0

�sds
�
:
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Hence,

E

h
e
R �
0 rsds1f�>�g[f�D1g

i
D E

h
e
R �
0 .rs��s/ds

i

D E

h
e
R �^��

0 .rs��s/dse
R �
�^�� .rs��s/ds

i
:

This last equality allows to conclude when .r/C is integrable because .rt � �t/t�0 is
nonincreasing. If .r/C is not integrable but infft � 0 W �t � rt � 0g < 1 P-as., we can
go over the same argument with � replaced by � ^ N and control the limit N ! 1 with
Fatou’s lemma. The remainder of the proof (minimality and uniqueness) follows easily. ut

Existence of equilibria will be proven in the following framework. We assume
that there exists a deterministic continuous function r W Œ0;1/ � R 3 .t; y/ 7!
r.t; y/ 2 R such that the interest rate process r given by r D .rt D r.t;Yt//t�0 has
nonincreasing sample paths and the positive part of r is P-almost surely integrable
on Œ0;1/, as in the assumption of Lemma 7.50. Also, the intensity process � D
.�t/t�0 is given by a formula of the form �t D g.t;Xt;Yt; �t/ for t � 0 where g W
Œ0;1/�R�R� Œ0; 1� 3 .t; x; y; �/ 7! g.t; x; y; �/ 2 Œ0;1/ is a continuous function
such that, for each fixed .t; y; �/, the function R 3 x 7! gt;y;�.x/ D g.t; x; y; �/ maps
R onto itself, is strictly increasing and thus invertible, and its inverse, which we
denote by g�1

t;y;�, is a continuous function.
Also, we assume that G coincides with the filtration generated by Y and, for each

t � 0 and each y 2 D.Œ0;T�IR/, we let Ft;y be the cumulative distribution function
of the regular conditional distribution of Xt given Y�^t, namely:

8x 2 R; Ft;y.x/ D P
�
Xt � x j Y�^t D y

�
:

We assume that Ft;y is a continuous function of its variable x.

Proposition 7.51 Assume that for each t 2 Œ0;1/, there exists a measurable
function �.t; �; �/ W D.Œ0; t�IR/ � R 3 .y; r/ 7! �.t; y; r/ 2 Œ0; 1� such that
u D �.t; y; r/ solves the equation:

1 � u D Ft;y

�
g�1

t;yt ;u.r/
�
;

and the processes � D .�t/t�0 and � D .�t/t�0 defined by:

�t D �
�
t;Y�^t; r.t;Yt/

�
; and �t D g.t;Xt;Yt; �t/; t � 0; (7.118)

are nondecreasing and right-continuous.
Call �� the stopping time �� D infft � 0 W �t � rt D 0g as in (7.117). Then

� D .�t/t�0 and �� form an equilibrium for the mean field game of timing.

Proof. We define the processes � D .�t/t�0 and � D .�t/t�0 as in (7.118). Observe that
� is progressively measurable with respect to the filtration generated by Y and that � is
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progressively measurable with respect to F. Since r is nonincreasing, it is clear that � � r
is nondecreasing. Hence, the assumptions of Lemma 7.50 are satisfied and �� is an optimal
stopping time under the environment �.

It then remains to check the consistency condition. For any t � 0,

P
�
�� � t jGt

� D P
�
�t � rt jGt

�

D P
�
g.t;Xt; Yt; �t/ � r.t; Yt/ jGt

�
:

Since Gt D �fY�^tg and �t is �fY�^tg-measurable, we get:

P
�
�� � t jGt

� D P
�
g.t;Xt; Yt; �t/ � r.t; Yt/ j �fY�^tg

�

D P
�
Xt � g�1

t;Yt ;�t

�
r.t; Yt/

� j �fY�^tg
�

D 1 � Ft;Y�^t

�
g�1

t;Yt ;�t
.r.t; Yt/

� D �t;

which completes the proof, where we used the fact that Ft;y is continuous in x. ut

Example. A simple example of intensity process satisfying the above conditions is
given by the additive model:

�t D Xt C Yt C c�t; t � 0;

where c > 0 is a deterministic constant.
Let us assume for instance that r D .rt D r/t�0 for a fixed constant r � 1, that

.Xt D X/t�0 where X is a random variable uniformly distributed on Œr � 1; r�, and
that Y D .Yt/t�0 is a process with Y0 D 0 and right-continuous strictly increasing
sample paths independent of X. Then,

Ft;y.x/ D P
�
X � x

� D 1 ^ .x C 1 � r/C:

Also,

g.t; x; y; �/ D x C y C c�;

and, for r as above,

g�1
t;y;�.r/ D r � y � c�:

Since Y takes nonnegative values, the equation defining �.t; y; r/ reads:

1 � u D Ft;y
�
g�1

t;yt ;u.r/
� , 1 � u D 1 ^ .1 � yt � cu/C

, 1 � u D .1 � yt � cu/C , u D 1 ^ � yt

1 � c

�
:

We find �t D 1 ^ Œ.1 � c/�1Yt�.
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7.3 Notes & Complements

In [207], Huang introduced a linear-quadratic infinite-horizon model with a major
player, whose influence does not fade away when the number of players tends to
infinity. In a joint work with Nguyen [291], he then considered the finite-horizon
counterpart of the model, and Nourian and Caines generalized this model to the
nonlinear case in [293]. These models are usually called “mean field games with
major and minor players”. Unfortunately, the scheme proposed in [291, 293] fails
to accommodate the case where the state of the major player enters the dynamics of
the minor players. To be more specific, in [291,293], the major player influences the
minor players solely via their cost functionals. Subsequently, Nguyen and Huang
proposed in [292] a new scheme to solve the general case for linear-quadratic-
Gaussian (LQG for short) games in which the major player’s state enters the
dynamics of the minor players. The limiting control problem for the major player
is solved by what the authors call “anticipative variational calculation”. In [44],
Bensoussan, Chau, and Yam take, as in [293], a stochastic Hamilton-Jacobi-Bellman
approach to tackle a type of general mean field games with major and minor players.
The limiting problem is characterized by a set of stochastic PDEs and the asymmetry
between the major and minor players is pointed out. However, the formulation of
the limiting mean field game problem used in [44] is different from ours. Indeed,
instead of looking for a global Nash equilibrium of the whole system, including the
major and minor players, the authors propose to tackle the problem as a Stackelberg
game where the major player goes first. Then, the minor players solve a mean field
game problem in the random environment created by the random process of the
state of the major player. In this set-up, the major player chooses its own control to
minimize its expected cost, assuming that the response of the minor players to the
choice of its control will be to put themselves in the unique mean field equilibrium
in the random environment induced by the control of the major player.

The contents of Section 7.1 are borrowed from the paper [110] by Carmona
and Zhu, and the recent technical report [106] by Carmona and Wang. Differently
from [44], we use a probabilistic approach based on an appropriate version
of the Pontryagin stochastic maximum principle for conditional McKean-Vlasov
dynamics in order to solve the embedded stochastic control problems. Also, we
define the limiting problem as a two-player game as opposed to the sequential
optimization problems of the Stackelberg formulation of [44]. We believe that this
is the right formulation of Nash equilibrium for mean field games with major and
minor players. To wit, we stress that the finite-player game in [44] is a N-player
game including only the minor players, the major player being treated as exogenous,
with no active participation in the game. The associated propagation of chaos is then
just a randomized version of the usual propagation of chaos associated with the usual
mean field games, and the limiting scheme cannot be completely justified as a Nash
equilibrium for the whole system. In contrast, we define the finite-player game as an
.N C 1/-player game including the major player. The construction of approximate
Nash equilibria is proved for the minor players and, most importantly, for the major
player as well.
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The linear-quadratic-Gaussian (LQG) stochastic control problems are among the
best-understood models in stochastic control theory. It is thus natural to look for
more explicit results of the major-minor mean field games under the LQG setting.
As explained above, this special class of models was first considered by Huang,
Nguyen, Caines, and Nourian. The extended mean field game model of optimal
execution introduced in Chapter (Vol I)-1 and solved in Subsection (Vol I)-4.7.1
of Chapter (Vol I)-4 was extended by Huang, Jaimungal, and Nourian in [218] to
include a major trader. In the absence of idiosyncratic noise, and when the initial
conditions of the minor player states are independent and identically distributed,
these two authors formulate a fixed point equilibrium problem when the rate of
trading of the major player is restricted to be a linear function of the average rate
of trading of the minor players; they solve this fixed point problem in the infinite
horizon stationary case.

Our discussion of the cyber security model as a mean field game model with
major and minor players is borrowed from the paper [106] of Carmona and Wang.
It is a straightforward extension of the four state model for the behavior of computer
owners facing cyber attacks by hackers proposed by Kolokoltsov and Bensoussan
in [235] and discussed in Chapter (Vol I)-7.

Games of timing similar to those considered in this chapter were considered in an
abstract setting by Huang and Li in [206]. The presentation of Section 7.2 is mostly
inspired by the recent paper [104] by Carmona, Delarue, and Lacker, The toy model
presented in Subsection 7.2.10 is borrowed from Nutz’ recent technical report [294].

Regarding the construction of a strong equilibrium, the interested reader can
find a proof of Tarski’s fixed point theorem in [330] and of Topkis’ theorem in
the fundamental paper [284] of Milgrom and Roberts, both theorems being used
in the proof of Theorem 7.27. The compatibility conditions used in our analysis
of weak equilibria were introduced and used in Chapter 1. However, the way
we use them for constructing solutions of mean field games, and for identifying
the asymptotic behavior of a sequence of finite player game approximate Nash
equilibria, is somewhat different from what is done in the first part of this volume.
This should shed a new light on the meaning of compatibility. In Chapters 1, 2 and
3, compatibility provides a framework that guarantees the fairness of the underlying
stochastic control problem, in the sense that the information used by the player to
choose its own control strategy must not introduce any bias in the future realizations
of the environment. From a mathematical point of view, we made an intensive use of
this property when we investigated the FBSDE formulation of the optimal stochastic
control problem. Here, our approach is somewhat different and the crux of the
proof is the density property stated in Theorem 7.31. It is entirely based upon the
notion of compatibility. This density argument is the cornerstone of both the proof
of the existence of a solution and the asymptotic analysis of finite player games.
For a similar use of compatibility in the analysis of stochastic differential mean
field games, we refer to the papers of Lacker [255] and of Carmona, Delarue, and
Lacker [100].

Our notion of randomized stopping times is inspired by the work of Baxter and
Chacon in [40] where the authors prove compactness of the space of randomized
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stopping times. While they assume that the filtration is right-continuous, we do
not require this assumption in our analysis. The reason is as follows. As made
clear by the statement of Theorem 7.31, right-continuity of the filtration is a
sufficient condition for the set of randomized stopping times to be closed under
weak convergence, and this is all we need in the proof of Lemma 7.45. However, it
is worth mentioning that we do not invoke any closeness property of the randomized
stopping times for taking limits in the proofs of Theorems 7.40 and 7.41. The key
point in our approach is to make use of the fixed point condition in the definition
of a weak equilibrium in order to guarantee that the limiting set-up is admissible,
in the sense that it satisfies the required compatibility condition. Notice also that,
in contrast with [40], we no longer pay any attention to the definition of a specific
topology on the set of randomized stopping times. Instead, we make an intensive
use of Lemma 7.34, the proof of which may be found in the original article of Jacod
and Mémin [216] or in the monograph [196] by Häusler and Luschgy.

Other tools or materials used in the proof may be found in various textbooks.
For instance, we refer to the monograph by Ethier and Kurtz [149] for details on
the Skorohod topology J1 and on convergence in law on Polish spaces. See for
instance Proposition 3.6.5 therein, which we applied in the proof of Lemma 7.33,
and Proposition 3.4.6 for classes of convergence determining functions, as used in
the proof of Theorem 7.35. We also refer to Aliprantis and Border’s monograph
[17] for general results on set valued functions, including the statement and proof
of Kakutani-Fan-Glicksberg’s theorem. The proof of Lemma 7.36 stated in the last
Subsection 7.2.5 may be found in [100].

We believe that our discussion of callable-convertible bonds is original in the
sense that we do not know of any instance of published model framed as a game
between the issuer and a large population of investors. In the mid 2000’s, stylized
forms of zero-sum two-player games, typically Dynkin games of timing, were
proposed for pricing purposes. This was initiated by Kifer in [229], who introduced
game options, and this culminated in the works of Kallsen and Kühn [222,223], who
proved that a no-arbitrage price was given by the value function of a Dynkin game.
These results set the stage for further theoretical developments. See for example the
works by Bielecki, Crepey, Jeanblanc, and Rutkowski [326, 327].
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Žitković, G., 539
Zvonkin, A.K., 235, 616



Subject Index

Note: Page numbers in italics refer to Volume I and those in Roman refer to Volume II

A
accrued interest, 653
adjoint

equation, 96, 143, 162, 276, 524, 525,
530–532

process, 96, 85, 90, 143, 276, 517, 531
system, 161
variable, 143, 524, 525, 531, 532

admissibility for FBSDEs in random
environment

admissible lifting, 132
admissible probability, 23, 30
admissible set-up, 11
admissible set-up with initial information,

43
t-initialized admissible set-up, 46

admissibility for Weak Formulation of MKV,
admissible triple, 581

approximate Nash equilibrium
closed loop, 459, 475, 476
for mean field game of timing, 613
open loop, 458, 475
semi-closed loop, 473

Arzela Ascoli Theorem, 260
atomless probability space, 629, 352
attacker in security model, 603, 54
attraction-repulsion model, 50

B
bang-bang control, 505, 657, 677
bank run, 611, 614, 656, 20, 62
bankruptcy code, 654
bee swarm, 594
Benamou and Brenier’s theorem, 427, 511
Berge’s maximum theorem, 647, 648

Bertrand game, 46
best response

in the alternative description of MFG, 133
example, 26, 41, 45, 59
function or map, 5, 6, 76, 80, 89
in MFG, 132, 140, 144, 212
in MFG with major and minor players, 586,

591, 600
for strategies in open loop, 86

Blackwell and Dubins’ theorem, 397
BMO, see bounded mean oscillation (BMO)
bond

callable, 653
convertible, 654

Borel �-field, 350
botnet (model with), 603, 656
bounded mean oscillation (BMO)

condition, 342
martingale, 511, 234
norm, 511, 234

bounded set in P2.Rd/, 388
Brenier’s theorem, 377, 511
Brownian motion

as a common noise, 109
killed, 325
reflected, 324

C
càd-làg process

Meyer-Zheng topology, 168, 235
Skorohod topology, 21, 105

callable bond, 653
canonical process (or variable)

for FBSDEs in a random environment, 23
for MFG of timing, 623

© Springer International Publishing AG 2018
R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games
with Applications II, Probability Theory and Stochastic Modelling 84,
DOI 10.1007/978-3-319-56436-4

691



692 Subject Index

canonical process (or variable) (cont.)
for strong equilibria, 141
for weak equilibria, 142

canonical space
for FBSDEs in a random environment, 22
for MFG of timing, 622
for strong equilibria, 140
for weak equilibria, 141

capital rent, 39
central planner, 478, 101, 603, 606, 618

informed, 15
chain rule

for a deterministic flow of measures, 461,
472

joint version for a deterministic flow of
measures, 485

joint version for a stochastic flow of
measures, 281

for a random flow of measures, 269
characteristics of a PDE, 320, 149
characteristics of a point process, 643
closed loop control for MKV, 520
closed loop equilibrium, 31, 74

approximate, 459, 475, 476
in feedback form, 75
generalized, 475
for MFG with major and minor players,

551
semi-closed, 475

Cobb-Douglas function, 39
Cole-Hopf transformation, 526, 334, 338
common input (for FBSDEs in a random

environment), 69
common noise, 108, 614, 20, 31, 35, 70, 96,

115, 130
commutative diagram

MFG vs. MKV, 516
comparison principle (for BSDEs), 210
compatibility, 5, 7, 132, 626, 662
compatible set-up, 9, 132
complementarity, 20, 24
complete lattice, 619
conditional probability, 4, 113
conditional variation, 168
congestion, 52, 628
Constant Relative Risk Aversion, 40
constant speed geodesic, 429
continuation method, 234, 555, 559, 615
continuum of players, 201
conversion ratio, 654
convertible bond, 654
convexity

convex displacement, 459
L-convexity, 450, 556

cost
coupling, 352
discounted, 631
functional, 126, 71, 131

cost of trading, 34
coupling, 350, 353

cost, 352
deterministic, 353

Cournot game, 46
covariables, 75, 77, 263, 267, 525, 529,

547
Cox process, 655, 657
Cucker-Smale model, 594, 47, 631
cumulative distribution function, 375
cyber-security, 603, 680
cyclic monotone, 375

D
decision Markov processes, 678
decoupling field, 239, 324, xi, 94, 150, 184,

186, 264, 278, 343default
endogenous, 28
exogenous, 28

default intensity, 655, 657
defender in security model, 54
De Finetti’s theorem, 110, 152
demand function, 44
density, 38

mollification, 174
deterministic coupling, 353
deterministic equilibrium in a finite game, 73
deterministic transport plan, 353
dilution, 656
Dirichlet

boundary condition, 325
problem, 325

discounted running cost, 631
discount factor, 40, 631
discretized input or environment, 193, 645
disintegration of an FBSDE, 46
distance

Kantorovich-Rubinstein, 10, 354
Lévy-Prokhorov, 350
total variation, 352
Wasserstein, 340, 448, 352

distributed strategy, 457, 71
distribution of an equilibrium, 143
Doléans-Dade exponential, 84, 90, 154, 231,

268, 272
dominance order, 615, 616
driver (of a BSDE), 94, 85, 142, 232
dual predictable projection, 643, 646
dual variables, 75, 77, 263, 267, 525, 529, 547



Subject Index 693

dynamic programming principle
for the master field, 248
for MKV, 568

E
empirical distribution, 447, 543, 611, 7, 96, 97,

130, 351, 408, 644
for a continuum of players, 202

empirical projection, 462, 471
endogenous default, 28
equilibrium

deterministic (in a finite game), 73
strong, 140, 613
weak, 141, 613

essentially pairwise independent, 202
essentially pairwise uncorrelated, 202
exchangeability, 110, 480
exchangeable

random variables, 110
strategy profile, 480

exhaustible resources, 44
exit distribution, 325
exogenous default, 28
extended mean field games, 33, 36, 63, 96,

130, 294
extension

Fubini, 202

F
FBSDE, see forward backward stochastic

differential equation (FBSDE)
feedback function, 79, 458, 477, 71, 79, 132,

134, 140, 515, 521
filtration, 19, 28

augmentation, 7
immersion and compatibility, 5
natural filtration, 7

fire-sale, 22
first exit time, 325
first order interaction, 385, 554
fixed point

for games, 6, 76, 80
MFG formulation, 614, 132, 133, 626
MFG with a common noise, 127, 194

fixed point theorem
Kakutani-Fan-Glickbserg, 648
Picard, 116, 237
Schauder, 155, 150, 247
Tarski, 619

flocking, 594, 340
Fokker-Planck equation, 37, 45, 139, 140, 147

for finite state processes, 649

for MKV, 522, 533
stochastic, 112, 150

forward backward stochastic differential
equation (FBSDE)

as characteristics of a PDE, 320, 149
decoupling field, 278
disintegration, 42
infinite dimensional, 150
Kunita-Watanabe decomposition, 14, 80
McKean-Vlasov type, 138, 324, 146, 240
overview, 141
with random coefficients, 3
in a random environment, 13
in a random environment, canonical

process, 23
in a random environment, canonical space,

22
strong uniqueness, 16
weak uniqueness, 21
Yamada-Watanabe theorem, 34

Fréchet differential, 527
friction model, 50
Fubini extension, 202

rich, 203
Fubini, theorem and completion, 114
full C2-regularity, 267, 415, 419, 464
functional derivative, 415, 527, 566, 654

G
game

complementarities, 615
with a finite state space, 644, 670
linear quadratic, 308, 104
with major and minor players, 542
potential, 15, 99, 602
supermodular, 616
of timing, 19
unimodular, 615
zero-sum, 54

Gateaux differential, 527
generalized closed loop equilibrium, 475
general set-up, 141, 156, 241, 466
geodesic, 429

constant speed, 429
Girsanov theorem, 90, 512, 154, 231
Glivenko-Cantelli theorem, 201, 361

H
Hamiltonian

for control in random environment, 75
for a finite state space, 649
for games, 76



694 Subject Index

Hamiltonian (cont.)
for games with major and minor players,

557, 559, 561
for MKV, 523–525
reduced, for control, 136
reduced, for games, 76, 77

Hamilton-Jacobi-Bellman (HJB) equation,
308; 45, 80, 123, 139, 140, 264

for MKV, 527
stationary, 636
stochastic, 77, 150

hemicontinuous set-valued map, 647
herder (model with), 603, 656
HJB equation, see Hamilton-Jacobi-Bellman

(HJB) equation
hypoellipticity, 223, 334
hypothesis

(H), 5, 105
streaker bee, 594

(H)-hypothesis, 5, 105

I
idiosyncratic noise, 108, 70, 96, 130
immersion, 5, 105
increasing differences, 616
independent, essentially pairwise, 202
informed central planner, 15
initial information, 42, 43
insignificant player, 201
insolvent, 27
instantaneous market impact, 34
intensity, default, 655
interest, accrued, 653
inventory, 33
invisible hand, 15, 101
irreducible semi-group, 637
Isaacs condition, 77, 83, 126
isoelastic utility function, 43
Itô’s formula, see chain rule

K
Kakutani-Fan-Glickbserg’s theorem, 648, 663
Kantorovich duality, 354
Kantorovich-Rubinstein

distance, 354
norm, 249, 250, 258, 281
theorem, 510

kernel, 4, 5
killed Brownian motion, 325
Kolmogorov equation, see Fokker-Planck

equation

Kolmogorov-Fokker-Planck equation, see
Fokker-Planck equation

Kunita-Watanabe decomposition, 13, 80, 268

L
Landau notation, 482, 365, 380
Lasry-Lions monotonicity condition, 221, 424,

168
lattice, 619

complete, 619
law of large numbers, 642, 65

conditional, 110
exact, 206

L-convexity, 450
L-differentiability, 378, 435, 511
L-differentiable function, 379
Lebesgue’s decomposition, 38
lender of last resort, 20, 62
Lévy-Prokhorov distance, 350, 510
lifting

for an environment, 130
admissible, 132

for a function of a measure argument, 378
limit order book, 53, 64
linear functional derivative, see functional

derivative
linear quadratic

game, 308, 32, 104
MFG, 166, 179
MFG with major and minor players, 572
MKV optimal control, 596

Lions L-differentiability, see L-differentiability
liquidation constraint, 35
liquidity premium, 22
liquidity problems, 27
liquidity ratio, 21
L-monotonicity, 175
local characteristics of a point process, 643
logarithmic utility, 40

M
major player, 541, 54
Malliavin calculus, 615
marked point process, 646, 679
market impact

instantaneous, 34
temporary, 34

Markovian control for MKV, 520
Markovian equilibrium, 31, 75

convergence, 519
existence and uniqueness, 517
for games with a finite state space, 645



Subject Index 695

Markovian strategy profile, 79
martingale method, 153
master equation, 153, 264, 490, 243, 502, 534,

571
example, 312, 317, 663
existence and uniqueness of a classical

solution, 426
existence of a viscosity solution, 295, 306
heuristic derivation, 285
viscosity solutions, 289

master field, 239, 240, 244, 329, 243, 242
continuity, 295, 307
control of McKean-Vlasov dynamics,

563
derivative and optimal feedback, 260
dynamic programming principle, 248
example, 311

matching problem, 135, 139
McCann’s interpolation, 429
McKean-Vlasov dynamics, 210

control, 518
McKean-Vlasov equation, 61, 234

of conditional type, 114
mean field game (MFG), 4, 126

with a common noise, 127
continuum of players, 207
with a continuum of players, 207
extended, 33, 36, 96, 130, 294
finite state space, 646
infinite horizon, 630
local coupling, 209
major and minor players, 541
several populations, 622
of timing, 610

mean field interaction, 120, 447, 12, 42, 44, 99,
130, 514

measure
continuous, 201
non-atomic, 201

Meyer-Zheng topology, 162, 163, 235
MFG equilibrium, strong uniqueness, 145
MFG of timing, 613

strong solution, 613
weak solution, 635

MFG problem, 12
alternative formulation, 133
formulation, 132
PDE interpretation, 150, 139
solvability, 208, 263, 278
strong solution, 135
uniqueness, 222, 224, 169, 176
weak solution, 141

MFG weak equilibrium, 141
for MFG timing, 635

MFG weak solution, 141
mid-price, 33
minor player, 542, 54
model with exit time, 316
model with reflection, 316
monotonicity

on a Hilbert space, 456
Lasry-Lions, 221, 424, 506, 13, 168
L-monotonicity, 175
Topkis’ theorem, 619

Morse potential, 50

N
Nash Certainty Equivalence, 209
Nash equilibrium, 4, 5, 72

approximate, 458, 459, 475
closed loop, 74
closed loop in feedback form, 75
for a continuum of players, 207
Markovian, 79
open loop, 613, 73
between two populations, 625

Nash system, 490, 505, 82, 675
solvability, 517

natural extension, 105. See also compatibility
Neumann boundary condition, 324
noise

common, 108, 130
idiosyncratic, 108, 130
space-time, 151

non-degeneracy, 453, 505, 150, 168, 244
non-negative semi-definite, 573, 106, 180, 597
numerical methods for MFG, 537

O
objective function, 71
oil production, 44
open loop control for MKV, 520
open loop equilibrium, 31, 73

approximate, 458, 475
for MFG with major and minor, 546, 547

optimal coupling, 353
order

dominance, 615, 616
stochastic, 615, 616
upper semi-continuity, 620

Ornstein-Uhlenbeck, 308
Ornstein-Uhlenbeck process, 31, 115



696 Subject Index

P
Pareto distribution, 36, 37
Pareto optimality, 72
partial C2 regularity, 476
partial differential equation, 37. See also

Fokker-Planck equation
perfect observation, 75
permanent price impact, 34
player

insignificant, 201
major, 541, 54
minor, 541, 54
multi-type, 622
representative, 542, 211

point process, 646
marked, 679

Polish space, 350
Pontryagin maximum principle, 258, 143

for games, 85
for MKV optimal control, 529
with a random environment, 96

population model
attraction-repulsion, 50
friction, 50
self-propelling, 50

potential function, 99
potential game, 15, 99, 173, 516, 602, 606
power utility function, 40, 43
predictable process, 644
price impact, 33, 34

permanent, 34
private monitoring, 29
private signal, 611, 657, 24, 28
production function, 39, 42
propagation of chaos, 110, 478, 514

conditional, 110, 152
public monitoring, 28, 29
push-forward, 353, 393
p-Wasserstein distance, 145, 352

Q
Q-matrix, 642
quadratic BSDE, 510, 231, 342

R
Radon-Nykodym derivative, 14
Radon’s lemma, 578
random coefficient, FBSDE, 13, 144
random environment, 13, 614

FBSDE, 13, 144
randomized stopping time, 622, 625
rate of trading, 33

reduced Hamiltonian
for control, 136
for games, 76, 77

reflected Brownian motion, 324
regular conditional probability, 4
regularity

full C2, 267, 415, 419, 464
partial C2, 476

relaxed controls, 152, 622, 212, 517, 582, 583,
617

representative agent, 478, 15, 101
Riccati equation, 575, 104, 109, 183, 185, 188,

599, 600
Radon’s lemma, 578

rich Fubini extension, 203
risk aversion, 43
risk neutral, 35
running cost, 75, 50, 71, 520, 521

S
scalar interaction, 552
Schauder’s theorem, 151, 167, 247
scrap function, 40, 99
self-propelling model, 50
semi-closed equilibrium, 568
semi-closed loop equilibrium, 475
set-up

compatible, 9
for MFG with a common noise, 132

set-valued map, 647
hemicontinuity, 647

shocks (for hyperbolic PDEs), 226
Skorohod theorem, 358

Blackwell and Dubins’ extension, 397
Skorohod topology, 21, 105
solvency ratio, 21
Souslin-Kuratowski theorem, 31, 105
species, 52
stability of weak equilibria, 161
stable convergence, 628, 583
stochastic exponential, 154
stochastic maximum principle, 258

for games, 85
with infinite horizon, 635
for MKV optimal control, 529
with a random environment, 96

stochastic order, 615, 616
stochastic partial differential equation, see

stochastic PDE
stochastic PDE, 77, 112, 150, 38

backward, 77, 150
stopping time, 19

randomized, 622



Subject Index 697

strategic complementarities, 616, 62
strategy

closed loop, 71
distributed, 457, 71
Markovian, 71
semi-closed feedback form, 475, 568
semi-feedback form, 473

strategy profile, 68, 96, 131
exchangeable, 480
Markovian, 79

streaker bee hypothesis, 594
strictly positive definite, 573, 106, 180, 597
strong equilibrium, 140, 614
strong Feller semi-group, 637
strong solution, 135
strong uniqueness, 16, 145, 222, 223
sub-differentiable, 435
subdifferential, 373, 375
sufficient statistic, 55
super-differentiable, 435
super environment, 69
supermodular, 619
supermodular game, 616, 20, 24
support of a measure, 373, 398, 603
support of a transport plan, 376
systemic noise, 118, 323
systemic risk, 307, 32

T
tail �–field, 110
Tarski’s theorem, 619
terminal cost, 75, 71, 521
Topkis’ theorem, 619
topology

Meyer-Zheng, 163, 235
Skorohod, 21, 105
space of probability measures, 350

total variation distance, 352
transport map, 353, 373
transport plan, 350, 353, 373

deterministic, 353

U
uncorrelated, essentially pairwise, 202
uniform ellipticity, 510, 154
uniform integrability of a sequence of

measures, 173, 187, 472, 358
unimodular game, 615
uniqueness

pathwise, 16, 145, 222, 223, 220
strong, 16, 145, 222, 223, 220

uniqueness in law, 16, 145
utility function, 40, 42

isoelastic, 43
power, 43

V
value function, 308

connection with master field, 243
finite state space, 650
game, 80
MKV control problem, 520
optimal control problem, 139
probabilistic representation, 160, 260
random, 77
stationary, 636

very good extension, 105. See also
compatibility

W
wage rate, 39
Wasserstein distance, 340, 448, 144, 236, 244,

250, 352, 519
Wasserstein gradient, 436
Wasserstein space, 144, 424
Wasserstein W-differentiability, 435
W-differentiable, 435
weak equilibrium

games of timing, 614
MFG, 141, 143

weak formulation, 62, 153, 210
games of timing, 622
MKV optimal control, 578

weak solution
BSDE, 104
MFG, 141
SDE, 4, 22

weak uniqueness
FBSDE, 21
MFG, 145

withdrawal, 612, 21

Y
Yamada-Watanabe theorem, 109

FBSDE, 34
MFG equilibrium, 145
SDE, 503

Z
zero-sum game, 54


	Foreword
	Preface of Volume II
	Organization of the Book: Volume II Organigram

	Contents
	Contents of Volume I
	Part I MFGs with a Common Noise
	1 Optimization in a Random Environment
	1.1 FBSDEs in a Random Environment
	1.1.1 Immersion and Compatibility
	1.1.2 Compatible Probabilistic Set-Up
	More on the Compatibility Condition

	1.1.3 Kunita-Watanabe Decomposition and Definition of a Solution
	New Formulation of the Forward-Backward System
	Definition of a Solution


	1.2 Strong Versus Weak Solution of an FBSDE
	1.2.1 Notions of Uniqueness
	1.2.2 Canonical Spaces
	Transfer of Solutions to the Canonical Space

	1.2.3 Yamada-Watanabe Theorem for FBSDEs
	Measurability of the Law of the Output with Respect to the Law of the Input
	Main Statement
	Compatible Product Probabilistic Set-Up


	1.3 Initial Information, Small Time Solvability, and Decoupling Field 
	1.3.1 Disintegration of FBSDEs 
	Initial Information
	Disintegration of FBSDEs

	1.3.2 Small Time Solvability and Decoupling Field
	Small Time Solvability
	Decoupling Field

	1.3.3 Induction Procedure
	General Mechanism
	Stability Property


	1.4 Optimization with Random Coefficients
	1.4.1 Optimization Problem
	Description of the Dynamics
	Cost Functionals
	Standing Assumptions

	1.4.2 Value Function and Stochastic HJB Equation
	1.4.3 Revisiting the Connection Between the HJB Equations and BSDEs
	Main Statement
	An Intermediate Result
	End of the Proof of Theorem 1.57 

	1.4.4 Revisiting the Pontryagin Stochastic Maximum Principle
	Necessary Condition
	Sufficiency


	1.5 Notes & Complements

	2 MFGs with a Common Noise: Strong and Weak Solutions
	2.1 Conditional Propagation of Chaos
	2.1.1 N-Player Games with a Common Noise
	2.1.2 Set-Up for a Conditional McKean-Vlasov Theory
	Exchangeable Sequences of Random Variables
	Nonlinear Stochastic Fokker-Planck Equation

	2.1.3 Formulation of the Limit Problem
	Conditional Distributions Given F0
	Solving the Conditional McKean-Vlasov SDE
	More About the Flow of Conditional Marginal Distributions μ

	2.1.4 Conditional Propagation of Chaos

	2.2 Strong Solutions to MFGs with Common Noise
	2.2.1 Solution Strategy for Mean Field Games
	2.2.2 Revisiting the Probabilistic Set-Up
	Specification of the Initial Condition
	Compatibility Condition in the Optimal Control Problem
	Summary

	2.2.3 FBSDE Formulation of the First Step in the Search for a Solution
	2.2.4 Strong MFG Matching Problem: Solutions and Strong Solvability
	Equilibrium on an Arbitrary Space
	Strong Solvability and Strong Solutions


	2.3 Weak Solutions for MFGs with Common Noise
	2.3.1 Weak MFG Matching Problem
	Canonical Space and Distribution of an Equilibrium

	2.3.2 Yamada-Watanabe Theorem for MFG Equilibria
	2.3.3 Infinite Dimensional Stochastic FBSDEs

	2.4 Notes & Complements

	3 Solving MFGs with a Common Noise
	3.1 Introduction
	3.1.1 Road Map to Weak Solutions
	3.1.2 Statement of the Problem
	3.1.3 Overview of the Strategy
	3.1.4 Assumption and Main Statement

	3.2 Stability of Weak Equilibria
	3.2.1 Passing to the Limit in a Sequence of Weak Equilibria
	3.2.2 Meyer-Zheng Topology
	Description of the Topology
	Stochastic Processes and M([0,T];Rm)-Valued Random Variables
	Weak Convergence

	3.2.3 Back to MFGs with Common Noise and Main Result
	Sequence of Stochastic Optimal Control Problems
	Application to MFGs

	3.2.4 Proof of the Weak Stability of Optimal Paths
	3.2.5 Proof of the Solvability Theorem
	Proof of Proposition 3.12
	Conclusion


	3.3 Solving MFGs by Constructing Approximate Equilibria
	3.3.1 Approximate Problem
	Discretization of the Common Noise
	Discretization of the Initial Distribution
	Discretized Input

	3.3.2 Solvability of the Approximate Fixed Point Problem
	Preliminary Lemmas
	Final Step

	3.3.3 Tightness of the Approximating Solutions
	Tightness of (to. X,n )to.,n ≥1
	Tightness of (to. μ,n )to.,n ≥1

	3.3.4 Extraction of a Subsequence
	Conclusion


	3.4 Explicit Solvability Results
	3.4.1 Using the Representation of the Value Function
	3.4.2 Using the Stochastic Pontryagin Principle
	3.4.3 Allowing for Quadratic Cost Functionals
	3.4.4 Proof of the Approximation Lemma
	Compactness of the Approximating MFG Equilibria
	End of the Proof of Lemma 3.32


	3.5 Uniqueness of Strong Solutions
	3.5.1 Lasry-Lions Monotonicity Condition
	3.5.2 Common Noise and Restoration of Uniqueness
	3.5.3 Auxiliary Results for the Restoration of Uniqueness
	3.5.4 Proof of the Restoration of Uniqueness
	Case with a Common Noise
	The Case Without Common Noise

	3.5.5 Further Developments on Weak Solutions
	Weak Solutions That Are Not Strong
	More About the Compatibility Condition


	3.6 Notes & Complements


	Part II The Master Equation, Convergence, and Approximation Problems
	4 The Master Field and the Master Equation
	4.1 Introduction and Construction of the Master Field
	4.1.1 General Objective
	4.1.2 General Set-Up
	A Primer on the Master Field

	4.1.3 Construction of the Master Field
	4.1.4 Dynamic Programming Principle

	4.2 Master Field and Optimal Feedback
	4.2.1 Master Field and Pontryagin Stochastic MaximumPrinciple
	4.2.2 Space Derivative of the Master Field

	4.3 Itô's Formula Along a Flow of Conditional Measures
	4.3.1 Conditional Measures of an Itô Process Subject to Two Noises
	Progressively Measurable Versions of Conditional Expectations

	4.3.2 Refresher on C2-Regularity
	Full C2-Regularity
	Simple C2-Regularity

	4.3.3 Chain Rule Under C2-Regularity
	4.3.4 Chain Rule in Both the State and the Measure Variables

	4.4 The Master Equation
	4.4.1 General Principle for Deriving the Equation
	4.4.2 Formal Derivation of the Master Equation
	First-Order Master Equation

	4.4.3 The Master Field as a Viscosity Solution
	4.4.4 Revisiting the Existence and Uniqueness Results of Chapter 3
	Using Assumptions MFG with a Common Noise HJB and Lasry-Lions Monotonicity
	Using Assumption MFG with a Common Noise SMP Relaxed and Lasry-Lions Monotonicity Condition


	4.5 Revisiting the Examples of Chapter 1 of the First Volume
	4.5.1 Revisiting the Coupled OUs Game
	The Limit N →∞ of the N-Player Game
	Search for an Asymptotic Equilibrium
	Search for the Master Field

	4.5.2 Revisiting the First Macro-Economic Growth Model
	Form of the Master Equation
	Master Equation Along Pareto Distributions
	Equilibrium Given by Pareto Distributions


	4.6 Notes & Complements

	5 Classical Solutions to the Master Equation
	5.1 Master Field of a McKean-Vlasov FBSDE
	5.1.1 General Prospect
	5.1.2 Definition of the Master Field
	Forward-Backward System of the Conditional McKean-Vlasov Type
	Master Field of a Conditional McKean-Vlasov FBSDE

	5.1.3 Short Time Analysis
	5.1.4 Solution of a Master PDE
	5.1.5 Statement of the Main Results
	Smoothness Conditions on the Coefficients
	Statements


	5.2 First-Order Smoothness for Small Time Horizons
	5.2.1 Warm-Up: Linearization
	Revisiting the Stability Estimates for the Original FBSDE System
	Linearized System
	Conditioning on the Product Space

	5.2.2 Estimate of the Solution to the Linearized System
	5.2.3 Stability Estimates
	5.2.4 Analysis of the First-Order Derivatives
	First-Order Derivatives of the McKean-Vlasov System
	First-Order Derivatives of the Non-McKean-Vlasov System with Respect to μ
	Derivatives with Respect to the Space Argument
	Final Statement


	5.3 Solutions to the Master Equation in Small Time
	5.3.1 Differentiability of the Linearized System
	General Strategy
	Truncation of the Coefficients
	Freezing the Initial Condition
	Statements

	5.3.2 Second-Order Differentiability of the Decoupling Field
	Differentiability with Respect to v
	Differentiability with Respect to μ in Bounded Directions
	Differentiability with Respect to μ along Unbounded Directions
	Auxiliary Regularity Lemma

	5.3.3 Derivation of the Master Equation
	Regularity in the Other Directions
	Derivation of the Master Equation: Proof of Theorem 5.10
	Uniqueness: Proof of Theorem 5.11


	5.4 Application to Mean Field Games
	5.4.1 Mean Field Games in Small Time
	Implementation of the Pontryagin Maximum Principle
	Representation of the Master Field
	Smoothness of the Master Field and Derivation of the Master Equation

	5.4.2 Mean Field Games Over Time Intervals of ArbitraryLengths
	5.4.3 Main Statement
	5.4.4 Proof of the Main Statement
	General Strategy
	Implementing the Induction Argument
	Proof of the Bound for ∂2x U
	Proof of the Bound for ∂x ∂μ U
	Proof of the Lasry-Lions Monotonicity Condition
	Proof of Theorem 5.49


	5.5 Notes & Complements

	6 Convergence and Approximations
	6.1 Approximate Equilibria for Finite-Player Games
	Estimate in 1-Wasserstein Distance
	6.1.1 The Case of the MFGs Without Common Noise
	General Strategy
	Approximate Nash Equilibrium Candidates
	Proofs of Theorems 6.7 and 6.9

	6.1.2 The Case of the MFGs with a Common Noise
	Definition of the Set-Up
	Revisiting the Notion of Decoupling Field
	Games with Finitely Many Players
	Construction of Approximate Equilibria in True Closed Loop

	6.1.3 The Case of the Control of McKean-Vlasov SDEs
	Limit of the Costs and Non-Markovian Approximate Equilibria
	Approximate Equilibria with Distributed Closed Loop Controls


	6.2 Limits of Open-Loop N-Player Equilibria
	6.2.1 Possible Strategies for Passing to the Limit in the N-Player Game
	General Setting for the Analysis

	6.2.2 Weak Limits of Open Loop N-Player Equilibria
	Stochastic Maximum Principle
	Main Statement

	6.2.3 Proof of the Convergence
	Tightness Properties
	Converging Subsequence


	6.3 Limits of Markovian N-Player Equilibria
	6.3.1 Main Statement
	Introducing the N-Nash System
	Solving the N-Nash System
	Main Statement

	6.3.2 The Master Equation as an Almost Solution of the N-Nash System
	Finite-Dimensional Projection of the Master Field

	6.3.3 Proving the Convergence of the Nash System
	Proof of Theorem 6.28

	6.3.4 Propagation of Chaos for the N-Player Game

	6.4 Notes & Complements

	7 Extensions for Volume II
	7.1 Mean Field Games with Major and Minor Players
	7.1.1 Isolating Strong Influential Players
	The Finite Player Game Set-Up

	7.1.2 Formulation of the Open Loop MFG Problem
	7.1.3 Aside: Alternative Formulations of the Mean Field Game Problems
	Open Loop Version of the MFG Problem Revisited
	Closed Loop Version of the MFG Problem
	Markovian Version of the MFG Problem

	7.1.4 Back to the General Open Loop Problem
	Optimization Problem for the Major Player
	A Maximum Principle for Conditional McKean-Vlasov Control Problems
	Optimization Problem for the Representative Minor Player
	Nash Equilibrium for the Limiting Two-Player Game
	The Consistency Condition

	7.1.5 Conditional Propagation of Chaos and ε-Nash Equilibria
	7.1.6 The Linear Quadratic Case
	Solution in the Original Open-Loop Formulation
	Riccati Equation

	7.1.7 An Enlightening Example
	Finite-Player Game Nash Equilibrium
	The Limiting Mean Field Game
	Comparison with Still a Different Formulation

	7.1.8 Alternative Approaches to the Linear Quadratic Models
	Existence of Open-Loop Equilibria
	Existence of Closed Loop Equilibria
	Numerical Application

	7.1.9 An Example with Finitely Many States
	7.1.10 The Search for Nash Equilibria
	A Form of the Cyber Security Model with Major and Minor Players
	Search for Nash Equilibria


	7.2 Mean Field Games of Timing
	7.2.1 Revisiting the Bank Run Diffusion Model of Chapter 1 (First Volume)
	General Formulation

	7.2.2 Formulation of the MFG of Timing Problem
	Order Structures and Supermodularity

	7.2.3 Existence of Strong Equilibria for MFGs of Timing
	7.2.4 Randomized Measures and Stopping Times
	Randomized Measures
	Randomized Stopping Times

	7.2.5 Approximation of Adapted Processes UnderCompatibility
	Proof of Theorem 7.31

	7.2.6 Equilibria in the Weak Sense for MFGs of Timing
	7.2.7 Weak Equilibria as Limits of Finite Player Games Equilibria
	7.2.8 Existence of Weak Equilibria Under Continuity Assumptions
	Discretization of the Conditioning
	Proof of Existence in the General Setting

	7.2.9 Mean Field Games of Timing with Major and Minor Players
	Callable Convertible Bonds
	Set-Up of the Model

	7.2.10 An Explicitly Solvable Toy Model

	7.3 Notes & Complements


	References
	Assumption Index
	Notation Index
	Author Index
	Subject Index

