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Foreword

Since its inception about a decade ago, the theory of Mean Field Games has rapidly
developed into one of the most significant and exciting sources of progress in the
study of the dynamical and equilibrium behavior of large systems. The introduction
of ideas from statistical physics to identify approximate equilibria for sizeable
dynamic games created a new wave of interest in the study of large populations
of competitive individuals with “mean field” interactions. This two-volume book
grew out of series of lectures and short courses given by the authors over the last
few years on the mathematical theory of Mean Field Games and their applications
in social sciences, economics, engineering and finance. While this is indeed the
object of the book, by taste, background, and expertise, we chose to focus on the
probabilistic approach to these game models.

In a trailblazing contribution, Lasry and Lions proposed in 2006 a methodology
to produce approximate Nash equilibria for stochastic differential games with
symmetric interactions and a large number of players. In their models, a given
player feels the presence and the behavior of the other players through the empirical
distribution of their private states. This type of interaction was extensively studied
in the statistical physics literature under the name of mean field interaction, hence
the terminology Mean Field Game coined by Lasry and Lions. The theory of these
new game models was developed in lectures given by Pierre-Louis Lions at the
Collège de France which were video-taped and made available on the internet.
Simultaneously, Caines, Huang, and Malhamé proposed a similar approach to large
games under the name of Nash Certainty Equivalence principle. This terminology
fell from grace and the standard reference to these game models is now Mean Field
Games.

While slow to pick up momentum, the subject has seen a renewed wave of
interest over the last seven years. The mean field game paradigm has evolved
from its seminal principles into a full-fledged field attracting theoretically inclined
investigators as well as applied mathematicians, engineers, and social scientists.
The number of lectures, workshops, conferences, and publications devoted to the
subject has grown exponentially, and we thought it was time to provide the applied
mathematics community interested in the subject with a textbook presenting the
state of the art, as we see it. Because of our personal taste, we chose to focus on what
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vi Foreword

we like to call the probabilistic approach to mean field games. While a significant
portion of the text is based on original research by the authors, great care was taken
to include models and results contributed by others, whether or not they were aware
of the fact they were working with mean field games. So the book should feel and
read like a textbook, not a research monograph.

Most of the material and examples found in the text appear for the first time in
book form. In fact, a good part of the presentation is original, and the lion’s share
of the arguments used in the text have been designed especially for the purpose of
the book. Our concern for pedagogy justifies (or at least explains) why we chose to
divide the material in two volumes and present mean field games without a common
noise first. We ease the introduction of the technicalities needed to treat models with
a common noise in a crescendo of sophistication in the complexity of the models.
Also, we included at the end of each volume four extensive indexes (author index,
notation index, subject index, and assumption index) to make navigation throughout
the book seamless.
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Preface to Volume I

This first volume of the book is entirely devoted to the theory of mean field games in
the absence of a source of random shocks common to all the players. We call these
models games without a common noise. This volume is divided into two main parts.
Part I is a self-contained introduction to mean field games, starting from practical
applications and concrete illustrations, and ending with ready-for-use solvability
results for mean field games without a common noise. While Chapters 1 and 2
are mostly dedicated to games with a finite number of players, the asymptotic
formulation which constitutes the core of the book is introduced in Chapter 3.
For the exposition to be as pedagogical as possible, we chose to defer some of
the technical aspects of this asymptotic formulation to Chapter 4 which provides a
complete toolbox for solving forward-backward stochastic differential equations of
the McKean-Vlasov type. Part II has a somewhat different scope and focuses on the
main principles of analysis on the Wasserstein space of probability measures with
a finite second moment, which plays a key role in the study of mean field games
and which will be intensively used in the second volume of the book. We present
the mathematical theory in Chapter 5, and we implement its results in Chapter 6
with the analysis of stochastic mean field control problems, which are built upon a
notion of equilibrium different from the search for Nash equilibria at the root of the
definition of mean field games. Extensions, including infinite time horizon models
and games with finite state spaces, are discussed in the epilogue of this first volume.

The remainder of this preface expands, chapter by chapter, the short content
summary given above. A diagram summarizing the connections between the
different components of the book is provided on page xix.

The first chapter sets the stage for the introduction of mean field games with a
litany of examples of increasing complexity. Starting with one-period deterministic
games with a large number of players, we introduce the mean field game paradigm.
We use examples from domains as diverse as finance, macroeconomics, population
biology, and social science to motivate the introduction of mean field games
in different mathematical settings. Some of these examples were studied in the
literature before the introduction of, and without any reference to, mean field games.
We chose them because of their powerful illustrative power and the motivation they
offer for the introduction of new mathematical models. The examples of bank runs

ix



x Preface to Volume I

modeled as mean field games of timing are a case in point. For pedagogical reasons,
we highlight practical applications where the interaction between the players does
not necessarily enter the model through the empirical distributions of the states of
the players, but via the empirical distributions of the actions of the players, or even
the joint empirical distributions of the states and the controls of the players. Most of
these examples will be revisited and solved throughout the book.

Chapter 2 offers a crash course on the mathematical theory of stochastic
differential games with a finite number of players. The material of this chapter is
not often found in book form, and since we make extensive use of its notations and
results throughout the book, we thought it was important to present them early for
the sake of completeness and future references. We concentrate on what we call the
probabilistic approach to the search for Nash equilibria, and we introduce games
with mean field interactions as they are the main object of the book. Explicitly
solvable models are few and far between. Among them, linear quadratic (LQ for
short) models play a very special role because their solutions, when they exist,
can be obtained by solving matrix Riccati equations. The last part of the chapter
is devoted to a detailed analysis of a couple of linear quadratic models already
introduced in Chapter 1, and for which explicit solutions can be derived. To wit,
these models do not require the theory of mean field games since their finite player
versions can be solved explicitly. However, they provide a testbed for the analysis
of the limit of finite player equilibria when the number of players grows without
bound, offering an invaluable opportunity to introduce the concept of mean field
game and discover some of its essential features.

The probabilistic approach to mean field games is the main thrust of the
book. The underpinnings of this approach are presented in Chapter 3. Stochastic
control problems and the search for equilibria for stochastic differential games
can be tackled by reformulating the optimization and equilibrium problems in
terms of backward stochastic differential equations (BSDEs throughout the book)
and forward-backward stochastic differential equations (FBSDEs for short). In this
chapter, we review the major forms of FBSDEs that may be used to represent
the optimal trajectories of a standard optimization problem: the first one is based
on a probabilistic representation of the value function, and the second one on
the stochastic Pontryagin maximum principle. Combined with the consistency
condition issued from the search for Nash equilibria as fixed points of the best
response function, this prompts us to introduce a new class of FBSDEs with a
distinctive McKean-Vlasov character. This chapter presents a basic existence result
for McKean-Vlasov FBSDEs. This result will be extended in Chapter 4. As a by-
product, we obtain early solvability results for mean field games by straightforward
implementations of the two forms of the probabilistic approach just mentioned.
However, since our primary aim in this chapter is to make the presentation as
pedagogical as possible, we postpone the most general versions of the existence
results for mean field games to Chapter 4, as some of the proofs are rather technical.
Instead, we highlight the role of monotonicity, as captured by the so-called Lasry-
Lions monotonicity conditions, in the analysis of uniqueness of equilibria. Finally,
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we specialize the results of this chapter to the case of linear-quadratic mean field
games, which can be handled directly via the analysis of Riccati equations. Most
of the results of this chapter will be revisited and extended in the second volume
to accommodate a common noise which is found in many economic and physical
applications.

Chapter 4 starts with a stochastic analysis primer on the theory of FBSDEs.
As explained above, in the mean field limit of large games, the fixed point step of
the search for Nash equilibria turns the standard FBSDEs derived from optimization
problems into equations of the McKean-Vlasov type by introducing the distribution
of the solution into the coefficients. These FBSDEs characterize the equilibria. Since
this new class of FBSDEs was not studied before the advent of mean field games,
one of the main objectives of Chapter 4 is to provide a systematic approach to their
solution. We show how to use Schauder’s fixed point theorem to prove existence of
a solution. The chapter closes with the analysis of the so-called extended mean field
games, in which the players are interacting not only through the distribution of their
states but also through the distribution of their controls. Finally, we demonstrate
how the methodology developed in the chapter applies to some of the examples
presented in the opening chapter.

Although it contains very few results on mean field games, Chapter 5 plays a
pivotal role in the book. It contains all the results on spaces of probability measures
which we use throughout the book, including the definitions and properties of the
Wasserstein distances, the convergence of the empirical measures of a sequence of
independent and identically distributed random variables . . . and most importantly, a
detailed presentation of the differential calculus on the Wasserstein space introduced
by Lions in his unpublished lectures at the Collège de France, and by Cardaliaguet
in the notes he wrote from Lions’ lectures. Even though the use of this differential
calculus in the first volume is limited to the ensuing Chapter 6, the differential
calculus on the Wasserstein space plays a fundamental role in the study of the master
equation for mean field games, whose presentation and analysis will be provided in
detail in the second volume. Still, a foretaste of the master equation is given at the
end of this chapter. Its derivation is based on an original form of Itô’s formula for
functionals of the marginal laws of an Itô process, the proof of which is given in full
detail. For the sake of completeness, we also provide a thorough and enlightening
discussion of the connections between Lions’ differential calculus, which we call
L-differential calculus throughout the book, and other forms of differential calculus
on the space of probability measures, among which the differential calculus used in
optimal transportation theory.

One of the remarkable features of the construction of solutions to mean field
game problems is the similarity with a natural problem which did not get much
attention from analysts and probabilists: the optimal control of (stochastic) differ-
ential equations of the McKean-Vlasov type, which could also be called mean field
optimal control. The latter is studied in Chapter 6. Both problems can be interpreted
as searches of equilibria for large populations, claim which will be substantiated
in Chapter 6 in the second volume of the book. Interestingly, the optimal control
of McKean-Vlasov stochastic dynamics is intrinsically a stochastic optimization
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problem while the search for Nash equilibria in mean field games is more of a
fixed point problem than an optimization problem. So despite the strong similarities
between the two problems, differences do exist, and we highlight them starting with
Chapter 6. There, we show that since the problem at hand is a stochastic control
problem, the optimal control of McKean-Vlasov stochastic dynamics can be tackled
by means of an appropriate version of the Pontryagin stochastic maximum principle.
Following this strategy leads to FBSDEs for which the backward part involves the
derivative of the Hamiltonian with respect to a measure argument. This novel feature
is handled with the tools provided in Chapter 5. We close the chapter with the
discussion of an alternative strategy for solving mean field optimal control problems,
based on the notion of relaxed controls. Also, we review several crucial examples,
among them potential games. These latter models are mean field games for which
the solutions can be reduced to the solutions of mean field optimal control problems,
and optimal transportation problems.

Chapter 7 is a capstone which we use to revisit some of the examples introduced
in Chapter 1, especially those which are not exactly covered by the probabilistic
theory of stochastic differential mean field games developed in the first volume.
Indeed, Chapter 1 included a considerable amount of applications hinting at
mathematical models with distinctive features which are not accommodated by
the models and results of the first part of this first volume. We devote this
chapter to presentations, even if only informal, of extensions of the Mean Field
Game paradigm to these models. They include extensions to several homogenous
populations, infinite horizon optimization, and models with finite state spaces. These
mean field game models have a great potential for the quantitative analysis of very
important practical applications, and we show how the technology developed in the
first volume of the book can be brought to bear on their solutions.

Princeton, NJ, USA René Carmona
Nice, France François Delarue
July 29, 2016
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Organization of the Book: Volume I Organigram

Chapters 1 & 2
Finite Games

Chapter 3 & 4
Mean Field Games

Chapter 5
Analysis on

Wasserstein Space

Chapter 6
Mean Field Control

Epilogue I

Part II
Master Equation and
Convergence Problem

Extensions

Part I
Mean Field Games

with a Common Noise

Epilogue II:
more Extensions

Part II

Volume II

Part I

Volume I

Thick lines indicate the logical order of the chapters. The dotted line between
Chapters 3–4 and 6 emphasizes the fact that—in some cases like potential games—
mean field games and mean field control problems share the same solutions. Finally,
the dashed lines starting from Part II (second volume) point toward the games and
the optimization problems for which we can solve approximately the finite-player
versions or for which the finite-player equilibria are shown to converge.

References to the second volume appear in the text in the following forms:
Chapter (Vol II)-X, Section (Vol II)-X:x, Theorem (Vol II)-X:x, Proposition (Vol
II)-X:x, Equation (Vol II)-.X:x/, . . . , where X denotes the corresponding chapter in
the second volume and x the corresponding label.
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Part I

The Probabilistic Approach toMean Field
Games



1Learning by Examples: What Is a Mean
Field Game?

Abstract

The goal of this first chapter is to introduce a diverse collection of examples of
games whose descriptions help us introduce the notation and terminology as well
as some preliminary results at the core of the theory of mean field games. This
compendium of models illustrates the great variety of applications which can
potentially be studied rigorously by means of this concept. These introductory
examples are chosen for their simplicity, and for pedagogical reasons, we take
shortcuts and ignore some of their key features. As a consequence, they will
need to be revisited before we can subject them to the treatment provided by
the theoretical results developed later on in the book. Moreover, some of the
examples may not fit well with the typical models analyzed mathematically in
this text as the latter are most often in continuous time, and of the stochastic
differential variety. For this reason, we believe that the best way to think about
this litany of models is to remember a quote by Box and Draper “All models are
wrong, but some are useful”.

1.1 Introduction of the Key Ingredients

The analysis of a N-player game involves the simultaneous minimization of N
functions J1, J2, � � � , JN , the argument of which, say .˛1; ˛2; � � � ; ˛N/, represents the
actions taken by the N players in the game. One should think of Ji.˛1; ˛2; � � � ; ˛N/

as the cost/reward to player i when the first player takes the action ˛1, : : :, and the
last player takes the action ˛N . Since the mathematical treatments of games where
players minimize or maximize are perfectly equivalent, we discuss only the first
alternative. An obvious question which will need to be addressed concerns the kind
of actions the players are allowed to take, and also, the kind of information they
can use to choose their actions. Moreover, since the minimization of R

N-valued
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4 1 Learning by Examples: What Is a Mean Field Game?

functions can be a touchy business, we also need to be clear on what we mean by
simultaneous minimization of the individual functions Ji. This is not too bad of a
question and we can settle it from the get-go: we shall consider that the goal of
such a simultaneous minimization is achieved when the system of the N players
is in a Nash equilibrium, concept which we shall define later on. See for example
Definition 1.1 below.

By the simultaneous nature of the optimization involved in the search for Nash
equilibria when N is a finite integer, this problem is typically very challenging, both
at the theoretical as well as at the numerical level. So like mathematicians often do,
we shall search for simplifications by taking the limit N ! 1, hoping that in such
a large game limit, some equations could simplify, providing a form of asymptotic
analysis of the model. The rationale of the so-called Mean Field Games (MFGs
for short) studied in this text is to consider the asymptotic behavior when N !
1 of games involving a large number of players. The analysis of the asymptotic
regime N ! 1 will be our point of contact with Aumann’s theory of games with
a continuum of players. Motivated by the discussions of this chapter, we show in
Chapter (Vol II)-6 how Nash equilibria of N-player games converge in a certain
sense as N ! 1 to solutions of MFGs, and conversely, we show how solutions of
MFGs can provide approximate Nash equilibria for finite player games.

1.1.1 First Example: A One-Period Deterministic Game

Our first example is mostly intended to motivate the terminology and explain the
notation used throughout. We consider a population of N individuals which we
denote by i 2 f1; � � � ;Ng, individual i having the choice of a point ˛i in a space
Ai which is assumed to be a compact metric space for the sake of simplicity. This is
a simple mathematical model for a game discussed frequently by P.L. Lions in his
lectures [265] under the name of “Where do I put my towel on the beach?”, all the
Ai being equal to the same set A representing the beach, and ˛ the location where
the player is setting his or her towel.

We are interested in large games, claim which is translated mathematically by the
assumption N ! 1. The game nature of the problem comes from the fact that each
individual is an optimizer (a minimizer for the sake of definiteness) in the sense that
player i tries to minimize a quantity Ji.˛1; � � � ; ˛N/. In order for simplifications to
occur in the limit N ! 1, regularity and symmetry assumptions will be needed.
For example, we shall assume that all the spaces Ai are in fact the same compact
metric space A. Next, we shall also assume that each function Ji is symmetric in the
choices ˛j of the players j ¤ i. For instance, the following cost functions could be
used in the description of the example “Where do I put my towel on the beach?”:

Ji.˛1; � � � ; ˛N/ D ˛d.˛i; ˛0/ � ˇ 1

N � 1
X

16j¤i6N

d.˛i; ˛j/: (1.1)
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Here, ˛ and ˇ are two real numbers, d denotes the distance of the metric space A,
and ˛0 2 A is a special point of interest (say a food stand on the beach). So if the
constants ˛ and ˇ are positive, the fact that the players try to minimize this cost
function means that the players want to be closer to the point of interest ˛0, but
at the same time, as far away from each other as possible. Clearly, the above cost
functions are of the form:

Ji.˛1; � � � ; ˛N/ D QJ
�
˛i;

1

N � 1
X

16j¤i6N

ı˛j

�
: (1.2)

where here and throughout the book, we use the notation ıx for the unit mass at
the point x, for the function QJ of ˛ 2 A and � 2 P.A/ defined by QJ.˛; �/ D
˛d.˛; ˛0/ � ˇ

R
E d.˛; ˛0/�.d˛0/. Also, we use the notation P.A/ for the space of

probability measures on A. The special form (1.2) is the epitome of the type of
interaction we shall encounter throughout the text. The fact that it involves a function
of a measure, an empirical measure in this instance, will be justified by Lemma 1.2
below which gives a rigorous foundation to the rationale for the main assumption
of mean field game models. When the cost Ji to player i is a function of ˛i and a
symmetric function of the other ˛j with j ¤ i, and the dependence of Ji upon each
individual ˛j is minor, then the function Ji can be viewed as a function of ˛i and the
empirical distribution of the remaining ˛j. In other words, in the limit N ! 1 of
large games, the costs Ji can be viewed as functions of ˛i and a probability measure.
See Lemma 1.2 below for details.

It is customary to use the notation ˛ to denote the actions taken by, or controls
used by the players. In this way, the cost to each player appears as a function of
the values of the various ˛i chosen by the players. This is the notation system used
above. On the other hand, it is also customary to use the notation x to denote the state
of a system influenced by the actions of the players. Most often in the applications
we shall consider, the state of the system comprises individual states xi attached to
each player i, and a few other factors, all of them entering the computation of the
costs Ji. Notice that in the above example, xi D ˛i since the controls ˛i describe the
choice made by the players as well as the states they put themselves in.

Frequently Used Notation
Given an N-tuple .x1; � � � ; xN/ and the choice of an index i 2 f1; � � � ;Ng, we denote
by x�i the .N � 1/-tuple of the xj with j ¤ i and j 2 f1; � � � ;Ng. Moreover, with
a slight abuse of notation, we will identify .xi; x�i/ with .x1; � � � ; xN/, and more
generally .x; x�i/ with the N-tuple .x1; � � � ; xi�1; x; xiC1; � � � ; xN/ which is nothing
but the original .x1; � � � ; xN/ with the i-th entry xi replaced by x.
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1.1.2 Nash Equilibria and Best Response Functions

The lexicographical order, which is often considered as the most natural notion of
order in R

N , is not complete and as a result, the simultaneous minimization of the
N scalar functions Ji can be a touchy business. The standard way to resolve the
possible ambiguities associated with this simultaneous minimization is to appeal to
the notion of Nash equilibrium.

Definition 1.1 A point . Ǫ 1; � � � ; Ǫ N/ 2 AN is said to be a Nash equilibrium if for
every i 2 f1; � � � ;Ng and ˛ 2 A,

Ji. Ǫ 1; � � � ; Ǫ i; � � � ; Ǫ N/ 6 Ji. Ǫ 1; � � � ; Ǫ i�1; ˛; Ǫ iC1; � � � ; Ǫ N/:

Note that the above inequality is easier to write and read if one uses the special
notation introduced earlier. Indeed, it reads:

Ji. Ǫ i; Ǫ�i/ D Ji. Ǫ 1; � � � ; Ǫ i; � � � ; Ǫ N/ 6 Ji.˛; Ǫ�i/:

The notion of Nash equilibrium is best understood in terms of the so-called best
response function B W AN ! AN defined by:

B.˛1; � � � ; ˛N/ D .ˇ1; � � � ; ˇN/ if 8i 2 f1; � � � ;Ng; ˇi D arg min
˛

Ji.˛; ˛�i/

which is obviously well defined if we assume that there exists a unique minimum
of the function in the right of this expression, but which can also be defined in more
general situations. With the intuitive concept of best response formalized in this
way, a Nash equilibrium appears as a fixed point of the best response function B.

1.1.3 Large Games Asymptotics

Solving N player games for Nash equilibria is often difficult, even for one period
deterministic games, and the strategy behind the theory of mean field games is
to search for simplifications in the limit N ! 1 of large games. Since such
simplifications cannot be expected in full generality, we shall need to restrict our
attention to games with specific properties. We shall assume:

• a strong symmetry property of the model: typically, we shall assume that each
cost function Ji is a symmetric function of the N � 1 variables ˛j for j ¤ i;

• the influence of each single player on the whole system is diminishing as N gets
larger.

We formalize these two properties in precise mathematical terms below in a simple
lemma. Its result will be the genesis for many informal arguments used throughout
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to justify the set-ups of mean field games. But first, we introduce a special notation
for empirical distributions. If n > 1 is an integer, given a point X D .x1; � � � ; xn/ 2
En we shall denote by N�n

X the probability measure defined by:

N�n
X D 1

n

nX

iD1
ıxi (1.3)

where we use the notation ıx to denote the unit mass at the point x 2 E. Notice that
N�n

X belongs to P.E/, the space of probability measures on E. For the purpose of the
present discussion, E is assumed to be a compact metric space. Later on in the book,
we shall consider more general topological spaces. Accordingly, we assume that the
space P.E/ is equipped with the topology of the weak convergence of measures
according to which a sequence .�k/k>1 of probability measures in P.E/ converges
to � 2 P.E/ if and only if

R
E fd�k ! R

E fd� when k ! 1 for every real valued
continuous function f on E. The space P.E/ is a compact metric space for this
topology and we denote by � a distance compatible with this topology. We shall
see several examples of such metrics in Chapter 5 where we provide an in-depth
analysis of several forms of calculus on spaces of measures.

The following simple result is the basis for our formulation of the limiting
problems for games with a large number of players. Its assumptions formalize what
we mean when we informally talk about symmetric function weakly dependent on
each of its arguments.

Lemma 1.2 For each n 2 N, let un W En ! R be a symmetric function of its n
variables. Let us further assume that we have:

1. Uniform boundedness: supn>1 supX2En jun.X/j < 1;
2. Uniform Lipschitz continuity: there exists a finite constant c > 0 such that for all

n > 1 and all X;Y 2 En, we have:

jun.X/ � un.Y/j 6 c�. N�n
X; N�n

Y/:

Then, there exists a subsequence .unk/k>1 and a Lipschitz continuous map U W
P.E/ ! R such that:

lim
k!1 sup

X2Enk

junk.X/ � U. N�nk
X /j D 0:

Remark 1.3 The adjective “symmetric” in the statement of the lemma is redun-
dant. It was included as a matter of emphasis. Indeed, assumption 2 implies that,
for each n > 1, un is necessarily symmetric and continuous. Choosing Y as a
permutation of the entries of X, we get un.X/ D un.Y/ by observing that N�n

X D N�n
Y .

Moreover, for any sequence .Xnp/p>1 with values in En converging (for the product
topology on En) toward some Xn, the sequence . N�n

Xnp /p>1 converges toward N�n
Xn

implying the continuity of un.
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Proof. For each integer n > 1, define the function Un on P.E/ by:

Un.�/ D inf
X2En

�
un.X/C c�. N�n

X ; �/

�
; � 2 P.E/: (1.4)

These functions are uniformly bounded since the functions .un/n>1 are uniformly bounded,
see 1 in the statement, while the function P.E/2 3 .�; �/ 7! �.�; �/ is bounded since P.E/
is compact. Also, the functions .Un/n>1 extend the original functions .un/n>1 to P.E/ in
the sense that un.Y/ D Un. N�n

Y/ for Y 2 En and n > 1. Indeed, by choosing X D Y in
the infimum appearing in definition (1.4) we get Un. N�n

Y/ 6 un.Y/. Equality then holds true
because, if not, there would exist an X 2 En such that un.X/ C c�. N�n

X ; N�n
Y/ < un.Y/ which

would contradict assumption 2. Furthermore, these extensions are c-Lipschitz continuous on
P.E/ in the sense that:

jUn.�/ � Un.�/j 6 c�.�; �/

for all �; � 2 P.E/. To prove this, let X 2 En and Y 2 En be such that Un.�/ D un.X/ C
c�. N�n

X ; �/ and Un.�/ D un.Y/ C c�. N�n
Y ; �/. The infimum in the definition (1.4) is attained

because the space En is compact and, for each fixed � 2 P.E/, the function En 3 X 7!
un.X/C c�. N�n

X ; �/ is continuous. Now:

Un.�/ � Un.�/ 6 un.Y/C c�. N�n
Y ; �/ � un.Y/ � c�. N�n

Y ; �/

D cŒ�. N�n
Y ; �/ � �. N�n

Y ; �/�

6 c�.�; �/:

Similarly, we prove that Un.�/ � Un.�/ 6 c�.�; �/ by using X in the infimum defining
Un.�/. This completes the proof of the c-Lipschitz continuity.

Now since P.E/ is a compact metric space, Arzelà-Ascoli theorem gives the existence of a
subsequence .nk/k>1 for which Unk converges uniformly toward a limit U and consequently:

lim sup
k!1

sup
X2Enk

junk .X/ � U. N�nk
X /j 6 lim

k!1

sup
�2P.E/

jUnk .�/ � U.�/j D 0;

which follows from the fact that unk .X/ D Unk . N�nk
X / and which concludes the proof. ut

The way we wrote formula (1.1) was in anticipation of the result of the above
lemma. Indeed given this result, the take home message is that symmetric functions
of many variables weakly depending on each of its arguments will be conveniently
approximated (up to a subsequence) by regular functions of measures evaluated at
the empirical distributions of its original arguments.
Returning to the game set-up of the previous subsection, we assume that the cost
functions, which we denote by .JN;i/iD1;��� ;N to emphasize the fact that they depend
on N variables in A, satisfy:
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Assumption (Large Symmetric Cost Functional).For each N > 1, there
exists a function JN W AN ! R such that:

(A1) For all N > 1 and .˛1; � � � ; ˛N/ 2 AN ,

JN;i.˛1; � � � ; ˛N/ D JN.˛i; ˛�i/:

(A2) supN>1 sup.˛1;��� ;˛N /2AN jJN.˛1; � � � ; ˛N/j < 1:

(A3) There exists a finite constant c > 0 such that for all N > 1, and all
.˛1; � � � ; ˛N/; .ˇ1; � � � ; ˇN/ 2 AN ,

ˇ̌
JN.˛1; � � � ; ˛N/ � JN.ˇ1; � � � ; ˇN/

ˇ̌
6 c

�
dA.˛

1; ˇ1/C �
� N�N�1

˛�1 ; N�N�1
ˇ�1

�	
;

where dA is the distance on A and � is a distance on P.A/ consistent
with the weak convergence of probability measures.

According to the above conventions, the notation N�N�1
˛�i in (A3) stands for:

N�N�1
˛�i D 1

N � 1
X

16j¤i6N

ı˛j :

Following Lemma 1.2, for each N > 1, ˛ 2 A and � 2 P.A/, we let:

J.N/.˛; �/

D inf
.˛2;��� ;˛N /2AN�1

�
J.N/

�
˛; ˛2; � � � ; ˛N

� C c�
� N�N�1

.˛2;��� ;˛N /
; �

�	
:

(1.5)

Clearly J.N/ is c-Lipschitz in ˛. By Lemma 1.2, it is also c-Lipschitz in � with
respect to �. By (A2) in assumption Large Symmetric Cost Functional, the
sequence .J.N//N>1 is uniformly bounded. Repeating the proof of Lemma 1.2,
we deduce that there exist a continuous function J from A � P.A/ into R and a
subsequence .Nk/k>1 such that .J.Nk//k>1 converges to J uniformly. Then,

lim
k!1 sup

˛Nk 2ANk

ˇ̌
JNk

�
˛Nk ;1; : : : ; ˛Nk ;Nk

� � J
�
˛Nk ;1; N�Nk�1

˛Nk ;�1

�ˇ̌ D 0;

where we used the notation ˛N D .˛N;1; � � � ; ˛N;N/ to denote N-tuples of elements
in A in order to emphasize the dependence over N. As usual, ˛N;�i is a short notation
for .˛N;1; � � � ; ˛N;i�1; ˛N;iC1; � � � ; ˛N;N/.

In order to finalize the formulation of the mean field game problem as an
asymptote of finite player games, we now prove the following proposition.
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Proposition 1.4 We assume that for each integer N > 1, Ǫ N D . Ǫ N;1; � � � ; Ǫ N;N/ is
a Nash equilibrium for the game defined by the cost functions JN;1; � � � ; JN;N which
are assumed to satisfy assumption Large Symmetric Cost Functional. Also, we
assume that the metric � in Large Symmetric Cost Functional satisfies, for all
N > 1, ˛ 2 A and � 2 P.A/:

�


�;

N � 1
N

�C 1

N
ı˛

�
6 c

N
; (1.6)

for a constant c > 0. Then there exist a subsequence .Nk/k>1 and a continuous
function J W A � P.A/ ! R such that the sequence . N�Nk

ǪNk
/k>1 converges as k ! 1

toward a probability measure O� 2 P.A/, and

lim
k!1 sup

˛Nk 2ANk

ˇ̌
JNk

�
˛Nk ;1; � � � ; ˛Nk ;Nk

� � J
�
˛Nk ;1; N�Nk�1

˛Nk ;�1

�ˇ̌ D 0; (1.7)

and
Z

A
J.˛; O�/ O�.d˛/ D inf

�2P.A/

Z

A
J.˛; O�/�.d˛/: (1.8)

Remark 1.5 Notice that property (1.8) is equivalent to the fact that the topological
support of the measure O� is contained in the set of minima of the function ˛ 7!
J.˛; O�/, or in other words that:

O��f˛ 2 A W J.˛; O�/ 6 J.˛0; O�/; for all ˛0 2 Ag� D 1: (1.9)

To go from (1.8) to (1.9), it suffices to choose � D ı˛0 in (1.8) where ˛0 is a
minimizer of the function A 3 ˛ 7! J.˛; O�/. The converse is obvious.

Property (1.9) can be interpreted as a necessary condition for a Nash equilibrium
in the limit N ! 1. Obviously, it is tempting to expect it to be a sufficient condition
as well, and consequently to be a characterization of a Nash equilibrium in the limit
N ! 1.

Remark 1.6 The bound (1.6) is easily checked in the case of the Kantorovich-
Rubinstein distance � D dKR introduced in Chapter 5, but it can also be checked
directly for other metrics consistent with the weak convergence of measures.

Remark 1.7 In (1.8), we used the notation �.d˛/ in the integral, but throughout
the text, we use indistinguishably the two notations �.d˛/ and d�.˛/.

Proof. Since A is compact, we can find a subsequence .Nk/k>1 such that . N�Nk

Ǫ
Nk
/k>1 converges

toward a probability measure O�. Also, by Lemma 1.2, we can assume that (1.7) holds. We
just check that O� and J satisfy (1.8). By definition of a Nash equilibrium and by assumption
Large Symmetric Cost Functional, we have:
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ı
Ǫ

N;i 2 arg inf
�2P.A/

Z

A
J.N/

�
˛;

1

N � 1
X

j¤i

ı
Ǫ

N;j

�
�.d˛/;

for any i 2 f1; � � � ;Ng, where we used the fact that:

J.N/
�
˛;

1

N � 1
X

j¤i

ı
Ǫ

N;j

�
D JN

�
˛; Ǫ N;�i

�
;

see (1.5). We now use the fact that:

�

�
�;

N � 1
N

�C 1

N
ı˛

�
6 c

N
;

for all � 2 P.A/ and ˛ 2 A. Since the functions .J.N//N>1 are uniformly Lipschitz
continuous, we can find a constant c0, independent of N, such that:

J.N/
� Ǫ N;i; N�N

Ǫ
N

�
6 inf

�2P.A/

Z

A
J.N/

�
˛; N�N

Ǫ
N

�
�.d˛/C c0

N
;

where Ǫ N D . Ǫ N;1; � � � ; Ǫ N;N/.
Summing over i D 1; � � � ;N and dividing by N, we get:

Z

A
J.N/

�
˛; N�N

Ǫ
N

� N�N
Ǫ

N .d˛/ 6 inf
�2P.A/

Z

A
J.N/

�
˛; N�N

Ǫ
N

�
�.d˛/C c0

N
:

Choosing N D Nk and using the fact that the sequence .J.Nk//k>1 converges to J uniformly,
we deduce that there exists a sequence of positive reals .�k/k>1, converging to 0 as k tends to
1, such that:

Z

A
J
�
˛; N�Nk

Ǫ
Nk

� N�Nk

Ǫ
Nk
.d˛/ 6 inf

�2P.A/

Z

A
J
�
˛; N�Nk

Ǫ
Nk

�
�.d˛/C �k:

Letting k tend to 1 and using the fact that J is Lipschitz continuous on A � P.A/, we get:

Z

A
J.˛; O�/ O�.d˛/ D inf

�2P.A/

Z

A
J.˛; O�/�.d˛/;

which completes the proof. ut

Remark 1.8 Below, we shall use a special form of Proposition 1.4. Starting from a
limiting cost functional J W A � P.A/ ! R, we shall reconstruct the N-player cost
functionals JN;i by letting:

JN;i.˛1; � � � ; ˛N/ D J.˛i; N�N�1
˛�i /:

In other words, we assume that not only (1.7) holds in the limit k ! 1, but also for
any k > 1.
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Summary of theMFG Strategy
As suggested by the definition of a Nash equilibrium, in order to solve the
equilibrium problem in the large game limit, we consider a generic player who tries
to minimize its objective function given the choices of the other players. We mimic
the construction of the best response function by fixing a probability distribution �
(as a proxy for the choices of the other players assumed to be in large numbers), and
solving the minimization problem:

inf
˛2A

J.˛; �/:

In this context, the last step of the search for equilibrium, namely the fixed point
argument, amounts to making sure that the support of the measure � is included in
the set of minimizers. So the definition of a Nash point can be rewritten in the form:

Supp.�/ � arg inf
˛2A

J.˛; �/;

where Supp.�/ denotes the support of �. Summarizing the above discussion, the
search for Nash equilibria via the search for fixed points of the best response
function can be recast as the two steps procedure:

• Fix a probability distribution � 2 P.A/ and solve the minimization problem
inf˛2A J.˛; �/;

• Solve the fixed point step by finding a measure O� concentrated on the arguments
of the minimization, or equivalently, satisfying (1.8) of the above proposition.

The above two step problem is what we call the MFG problem. This formulation
captures the information of ALL the Nash points as N ! 1. In particular, the
aberrations with the weird Nash points which are expected when N is finite should
disappear in the limit N ! 1. Clearly, the goal of the analysis of an MFG problem
is to find the equilibrium distribution O� for the population, not so much the optimal
positions of the individuals.

One of the objectives of the book is to generalize Proposition 1.4 to stochastic
differential games. Indeed, the theory of mean field games is grounded in the
premise of the convergence of Nash equilibria of large stochastic differential games
with a mean field interaction. This is the object of Chapter (Vol II)-6. Interestingly
enough, we shall provide in Chapter 7 at the end of this first volume, a counter-
example showing that the limiting MFG problem may not capture all the limits of
the finite-game equilibria.

Uniqueness
Existence will not be much of a problem when the cost function J is jointly
continuous, which we denote by J 2 C.A � P.A//, as long as we still assume that
A is compact. Indeed, in this case, a plethora of fixed point theorems for continuous
functions on compact spaces can be brought to bear on the model to prove existence.



1.1 Introduction of the Key Ingredients 13

Uniqueness is typically more difficult. In fact uniqueness is not even true in general.
The main sufficient condition used to derive uniqueness (whether we consider the
simple case at hand or the more sophisticated stochastic differential games which
we study later) will be a monotonicity property identified by Lasry and Lions. We
illustrate its workings in the present framework of static deterministic games. It will
be studied in a more general context in Section 3.4 of Chapter 3.

Theorem 1.9 Uniqueness holds if J is strictly monotone in the sense that:

Z

A
ŒJ.˛; �1/ � J.˛; �2/�dŒ�1 � �2�.˛/ > 0; (1.10)

whenever �1 ¤ �2.

Proof. If �1 and �2 are two solutions of the MFG problem, then:

Z
J.˛; �1/d�1.˛/ 6

Z
J.˛; �1/d�2.˛/;

because �1 is an optimum, and similarly,

Z
J.˛; �2/d�2.˛/ 6

Z
J.˛; �2/d�1.˛/;

because �2 is an optimum. Summing the two last inequalities and computing the left-hand
side of (1.10), we find a contradiction unless the two solutions �1 and �2 are the same. ut

Remark on Local Interactions. Earlier in this section, we saw conditions under
which the cost functions JN;i W EN ! R of symmetric N player games converge as
N ! 1 toward a continuous function J W A � P.A/ ! R in the sense that:

sup
˛2AN

ˇ̌
ˇ̌JN;i.˛1; � � � ; ˛N/ � J

�
˛i;

1

N � 1
X

16j¤i6N

ı˛j

�ˇ̌
ˇ̌ ! 0

through a fixed subsequence. Typically, the requirement of a weak dependence upon
each of the variables could be formalized as the existence of a modulus of continuity
uniform in the value of N. The fact that the limiting function J is necessarily
continuous with respect to the weak topology restricts greatly the possible choices
for such a function. In particular, it cannot be expected to be local. In other words,
except for obvious situations with discrete state spaces, J.˛; �/ cannot be a function
of the form J.˛; �/ D g.˛; p.˛// for some real valued function g on A � Œ0;1/

where p.˛/ denotes the density of � with respect to a fixed measure, computed at
the point ˛ 2 A.

Coming back to the example of the game “Where do I put my towel on the
beach?” considered earlier in this section, as we already pointed out, a natural choice
for the function .˛; �/ 7! J.˛; �/ could be a function of the form:
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J.˛; �/ D J0.˛/C J1.˛; �/

where J0 is a function on A (independent of �) which any given player would
want to minimize if he or she was alone, and J1 is a scalar function on A and
the space of probability measures on A trying to capture the concentration of the
measure � around ˛. A natural way to choose such a function would be to use a
monotone function of the density of � at ˛. But since we cannot use functions of
the values of Radon-Nykodym densities at ˛, smoothing by local averaging can
offer an alternative. When A is a subset of a Euclidean space, a typical way-out of
this dilemma is to use a function of the form:

J1.˛; �/ D f

�
1

Leb.B�/
� � 1B� .˛/

�
;

for some real valued function f on the real line. We used the notation Leb for the
Lebesgue measure, and for � > 0, we denoted by B� the Euclidean ball of radius �
around the origin. Consequently, � � 1B� .˛/ D R

B�
�.˛ � d˛0/. So back to the N

player game, the argument of f is the proportion of individuals in the ball of radius
� around ˛, so that the cost to player i is given by:

JN;i.˛1; � � � ; ˛N/ D J0.˛
i/C f

�
#fjI d.˛i; ˛j/ < �g

NLeb.B�/

�
;

and is a function of the fraction of the population inside the neighborhood in which
player i would like to choose ˛i. This is a particular case of a smoothing of the
measure � to guarantee the existence of a density: if ' is a positive function with
integral 1 which vanishes outside a ball around the origin, one replaces the density
p.˛/, which may not exist, by the quantity Œ� � '�.˛/. The closer to the delta
function ' is, the better the approximation of the density. Notice that the function
� 7! Œ��'�.˛/ is continuous with respect to the topology of the weak convergence
of measures whenever ' is continuous. As we already explained, this may play a
crucial role in the analysis.

An example which we will use several times in the sequel corresponds to the
choice of the function f .t/ D cta for some positive exponent a and a real constant
c. The case c > 0 corresponds to aversion to crowds while c < 0 indicates the
desire to mingle with the crowd. This example offers instances of models for which
uniqueness does not hold for some of the values of the parameters.

1.1.4 Potential Games and Informed Central Planner

At the risk of indulging in anticipation of the differentiability concepts introduced
later in Chapter 5, we cannot resist the temptation to describe the connection
between the theory of MFG problems as outlined above and the general theory of
equilibrium in economics (whose applications most often reduce to the solutions of
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large linear programs). We shall recall the precise definition of potential games in
Chapter 2. For the purpose of the present discussion, we identify a specific class of
games in the limit N ! 1. We shall say that the large game is a potential game if
the cost function J W A � P.A/ ! R is of the form:

J.˛; �/ D ıF.�/.˛/; (1.11)

for some function F W P.A/ ! R which is differentiable in the following sense: for
every �; � 2 P.A/,

lim
�&0

F..1 � �/�C ��/ � F.�/

�
D

Z

A
ıF.�/.˛/.� � �/.d˛/;

for some continuous function ıF.�/ on A. We shall provide a complete account of
the various notions of derivative for functions of measures in Chapter 5. For the
time being, it suffices to observe that .1 � �/� C �� belongs to P.A/, and thus
F..1 � �/� C ��/ is well defined, when � 2 Œ0; 1�. Also, the right-hand side is
consistent with (1.11) when J is continuous in ˛ and A is compact, which is one of
the typical assumptions we used so far.

In this case we have the following simple result.

Proposition 1.10 Every minimum of the potential function F on P.A/ is a solution
of the MFG problem. If J is strictly monotone then the solution of the MFG is the
unique minimum of F on P.A/.

Proof. If � is a minimum of F, the Euler first order condition for the minimization of F reads

Z
ıF.�/.˛/dŒ� � ��.˛/ > 0

for all � 2 P.A/, which is the definition of a solution of the MFG problem. Uniqueness when
J is strictly monotone was argued earlier. ut

Equilibria obtained in this way by minimization of a global criterion provide a
form of decentralization of the problem. This is typical of the economic equilibrium
arguments based on the invisible hand or the mysterious informed central planner
also known as the representative agent.

1.1.5 A Simple One-Period Stochastic Game

The discussion of the previous section was mostly introductory. Its purpose was to
introduce important notation and definitions, and to highlight, already in the case of
a simple static deterministic game, the philosophy of the mean field game approach,
by finding a more tractable problem than the N-player game when N is large.
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The first stochastic game model we present was called “When does the meeting
start?” when it was first introduced. A meeting is scheduled to start at a time t0
known from everyone, and participant i 2 f1; � � � ;Ng tries to get to the meeting at
time ti (which is a number completely under the control of player i), except for the
fact that despite this desire to get to the meeting at time ti, due to uncertainties in
traffic conditions and public transportations, individual i arrives at the meeting at
time Xi which is the realization of a Gaussian random variable with mean ti and
variance �2i > 0 which is also random. So in this game model, the control of player
i is the time ti which we shall denote by ˛i from now on in order to conform with
the notation used throughout the book.

The random variables Xi may not have the same variances because the players
may be coming from different locations and facing different traffic conditions.
To be specific, we shall assume that for i 2 f1; � � � ;Ng, Xi D ˛i C � i�i for a
sequence .�i/16i6N of independent identically distributed (i.i.d. for short) N.0; 1/
random variables, and the .� i/16i6N form an i.i.d. sequence of their own which is
assumed to be independent of the sequence .�i/16i6N . We denote by � the common
distribution of the .� i/16i6N’s; � is assumed to be a probability measure on Œ0;1/

whose topological support does not contain 0.
If a meeting scheduled to start at time t0 actually starts at time t, and if agent i

arrives at the meeting at time Xi controlled as defined above, the expected overall
cost to participant i is defined as:

Ji.˛1; � � � ; ˛N/ D EŒa.Xi � t0/
C C b.Xi � t/C C c.t � Xi/C�; (1.12)

for three positive constants a, b and c, where we use the notation xC to denote the
positive part max.0; x/ of a real number x 2 R. The interpretations of the three terms
appearing in the total cost to agent i are as follows:

• the first term a.Xi � t0/C represents a reputation cost for arriving late (as
compared to the announced starting time t0);

• the term b.Xi � t/C quantifies the inconvenience for missing the beginning of the
meeting;

• c.t � Xi/C represents the cost of the time wasted for being early and having to
wait.

We assume that the actual start time of the meeting is decided algorithmically by
computing an agreed upon function of the empirical distribution N�N

X of the arrival
times X D .X1; � � � ;XN/. In other words, we assume that t D �. N�N

X / for some
function � W P.RC/ ! R. For the sake of illustration, we can think of the case
where �.�/ is chosen to be the 100p-percentile of �, for some fixed number p 2
Œ0; 1�. In other words, the meeting starts when 100p-percent of the agents already
joined the meeting. This is a form of quorum rule. Notice that the fact that the choice
of the start time t is a function of the empirical distribution t D �. N�N

X / is the source
of the interactions between the agents who need to take into account the decisions
of the other agents in order to make their own decision on how to minimize (1.12).
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As expected, the search for a Nash equilibrium starts with the computation of the
best response function of each player given the decisions of the other players. So
we need, for each agent i 2 f1; � � � ;Ng, to assume that the other players have made
their choices ˛�i, and then solve the minimization problem:

inf
˛i

EŒa.Xi � t0/
C C b.Xi � t/C C c.t � Xi/C�; (1.13)

with t D t.X1; � � � ;XN/ D �. N�N
X /. Observe that, in contrast with the type of cost

functional used in Remark 1.8, the empirical measure is here computed over the
states instead of the controls, and the computation is performed over all the players
as opposed to over the players different from i.

The problem (1.13) is not easy to solve, especially given the fact that the
computation of the best response function needs to be followed by the computation
of its fixed points in order to identify Nash equilibria. So instead of searching
for exact Nash equilibria for the finite player game, we settle for an approximate
solution and try to solve the limiting MFG problem. The rationale for the MFG
strategy explained earlier was partly based on the convergence of the empirical
distributions toward a probability measure �. Now, because of the randomness of
the arrival times and the independence assumption, the intuition behind the MFG
strategy is reinforced when N is relatively large, since a form of the law of large
numbers should kick in, and the empirical measures N�N

X (which are random) should
converge toward a deterministic probability measure �. Moreover, the sensitivity
of N�N

X with respect to perturbations of ˛i for a single individual should not affect
the limit, and it seems reasonable to consider the alternate optimization problem
obtained by replacing t D �. N�N

X / in (1.13) by t D �.�/. In other words, we
assume that the times of arrival of the agents have a statistical distribution �, and we
compute for a representative individual, the best response to this distribution. Since
we choose a rule given by a predetermined function � of the arrival time distribution
we, de facto, compute the best response, say Ǫ , to t D �.�/. The fixed point step
required to determine Nash equilibria in the classical case, could be now mimicked
by searching for a starting value of t which would lead to a best response Ǫ D t.
This is exactly the MFG program outlined in the previous section. We now give the
details of its implementation in the present set-up.

Proposition 1.11 If t 2 Œt0;1/ is given and X D ˛ C �� where � � � and
� � N.0; 1/ are independent random variables, then for any set of strictly positive
constants a, b, and c, there exists a unique minimizer Ǫ :

Ǫ D arg inf
˛
EŒa.X � t0/

C C b.X � t/C C c.t � X/C�;

which can be identified as the unique solution ˛ of the implicit equation:

aF.˛ � t0/C .b C c/F.˛ � t/ D c; (1.14)

where F denotes the distribution function of the random variable Z D ��.
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Proof. Notice that F.z/ D R
˚.z=s/�.ds/, and that F is a strictly positive, strictly increasing

continuous function satisfying limz&�1 F.z/ D 0, limz%1 F.z/ D 1, and 1 � F.z/ D
F.�z/. Here and throughout, ˚ denotes the cumulative distribution function of the standard
Gaussian distribution N.0; 1/. Moreover the fact that the topological support of � does not
contain 0 implies that F is differentiable and that its derivative is uniformly bounded over R.
The quantity to minimize reads:

EŒa.X � t0/
C C b.X � t/C C c.t � X/C�

D EŒa.X � t0/
C C .b C c/.X � t/C C c.t � X/�

D aEŒ.˛ � t0 C Z/C�C .b C c/EŒ.˛ � t C Z/C� � c.˛ � t/;

so that, taking the derivative of the above expression with respect to ˛ we get the first order
condition of optimality:

aPŒ˛ � t0 C Z > 0�C .b C c/PŒ˛ � t C Z > 0� D c; (1.15)

which is exactly (1.14). Given the properties of F identified earlier, this equation has a unique
solution Ǫ . ut

We take care of the fixed point step in the following proposition.

Theorem 1.12 Assume that the function � W P.RC/ ! R satisfies the following
three properties.

1. 8� 2 P.RC/; �.�/ > t0, in other words, the meeting never starts before t0;
2. Monotonicity: if �;�0 2 P.RC/ and if �.Œ0; ˛�/ 6 �0.Œ0; ˛�/ for all ˛ > 0, then
�.�/ > �.�0/;

3. Sub-additivity: if � 2 P.RC/, then for all ˛ > 0, �.�. � � ˛// 6 �.�/C ˛;

If the constants a, b, and c are strictly positive, there exists a unique fixed point for
the map ˛ 7! Ǫ , as defined in the previous proposition with t D �.F. � � ˛//.

In the statement of the theorem as well as in the subsequent proof, when we use
the notation �.F. � � ˛//, we identify the cumulative distribution function F. � � ˛/
with the distribution of the random variable ˛ C ��.

Proof. We are looking for a fixed point of the map ˛ 7! G.˛/ D Ǫ defined by:

˛ 7! F. � � ˛/ 7! t D �

�
F. � � ˛/

�
7! Ǫ D Ǫ .t/;

the last step being given by the solution of equation (1.14). Assuming that x < y, the
monotonicity assumption on � gives that:

�

�
F. � � x/

�
6 �

�
F. � � y/

�
;
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and the sub-additivity assumption implies that:

�

�
F. � � y/

�
� �

�
F. � � x/

�
6 y � x:

Using the special form of equation (1.14), the implicit function theorem implies that when
viewing Ǫ as a function of t, we have:

d Ǫ
dt

D .b C c/F0. Ǫ .t/ � t/

aF0. Ǫ .t/ � t0/C .b C c/F0. Ǫ .t/ � t/

which is bounded from above by a constant strictly smaller than 1 because F0 is nonnegative.
This implies that G is a strict contraction, and that it admits a unique fixed point. ut

Remark 1.13 Notice that the quorum rule given by a 100p-percentile of the
distribution of the arrival times satisfies the three assumptions stated in the above
theorem. As a natural extension of the models considered above, one could envision
cases where the cost to each agent depends on more general functionals of the
distribution of individual arrival times. In such a case, the optimization problem
should be solved for each fixed distribution �, and the fixed point part of the proof
should concern � instead of t. This is much more involved mathematically as the
space of measures � is infinite dimensional.

1.2 Games of Timing

In the first stochastic game model just presented, the interventions of the players
were choices affecting random times. As such, this game could have been called
a game of timing. However, we simplified the model by allowing the actions of
the players to be limited to the choices of the means of these random times. The
standard terminology for game of timing seems to be restricted to situations when
as time evolves, the information available to each player increases with time, and
the choices of random times are made in a non-anticipative way vis-à-vis the
information available at the time of the decision. Mathematically, this means that
the random times are in fact stopping times for the filtrations representing the
information available to the players.

In this section, we present two important examples of games of this type. We call
them games of timing. As expected, we concentrate on models for which the players
interact in a mean field fashion. We choose to motivate the mathematical framework
with an application to a very important issue in the stability theory of the financial
system: liquidity and bank runs. The first model below is intended to present
the fundamental economic equilibrium principles which underpin the analysis of
liquidity and bank runs in the financial system. It is static in nature, and as such, it
may not fully capture the mathematical challenges we want the games of timing to
address. Indeed, it reduces the choice of the time of the run on the bank to a binary
decision: whether or not to withdraw a deposit, at a predetermined time. Despite the
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shortcomings of this oversimplification, we describe the model in extensive details
to highlight the relevance of the important economic issues which are addressed.
The reader is referred to the Notes & Complements at the end of the chapter for
references and a simple historical perspective on early works on game models for
bank runs.

The second model is fully dynamic. It is set in continuous time. It ports the
important stylized facts identified in the static model to a dynamic framework in
which the timing decision becomes the major technical difficulty. Since it involves
diffusion processes, it is more in line with the theoretical developments presented
throughout the book. We argue that if all the investors have the same information,
they decide to withdraw their funds at the same time, and will collect their initial
deposits just in time, before being hurt. This consequence of the full information
assumption is highly unrealistic as large losses are always part of bank runs.
Anticipating on the terminology used later in the book, this means that for the model
to be relevant to the understanding of actual bank runs, it has to include what we call
a common noise. For this reason, mean field games of timing will only be studied
in Chapter (Vol II)-7 at the end of the second volume after the presentation of mean
field games with a common noise.

Still, it is important to emphasize that early models of bank runs have emphasized
the complementarity property of these game models which have often been called
supermodular games. Intuitively speaking, these models formalize mathematically
the following feature: if other customers of the bank in which you deposited your
savings withdraw their money, it might be good for you to also withdraw your
money from the bank.

1.2.1 A Static Model of Bank Run

Our first model is set in a three dates/two periods framework often used in the early
economic literature on bank runs. While some of the assumptions are common to
many studies, the gory details of the specific model presented below are borrowed
from a study of banking liquidity, attempting to derive policy implications of the
models, highlighting among other things, the role of the lender of last resort. See
the Notes & Complements at the end of the chapter for references.
We first summarize the state of a bank ex ante (at time t D 0) by its balance sheet:

• D0 is the amount of uninsured deposits, typically Certificates of Deposits (CDs),
which will be repaid as D D .1 C r/D0 upon withdrawal, independently of the
withdrawal date, unless the bank fails before;

• E represents the bank’s own funds (equity capital).

These funds are used to finance an investment of size I in risky assets like loans, the
remaining funds, say M, being held in cash reserves. In particular, D0 C E D I C M.
For the sake of convenience, we shall eventually normalize D0 to 1, that is D0 D 1,
in which case 1C E D I C M.
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The horizon is t D 2, at which time the returns on the risky investments are
collected, the CDs are repaid, and the stockholders of the bank get the remaining
funds whenever there are any left. The returns on the bank’s investments are given
by the value of a Gaussian random variable R � N.R; �2R/ with mean NR and variance
�2R, the value of R being revealed at time t D 2. The bank regulator lets the bank
operate based on:

• the solvency threshold RS D .D � M/=I; observe that it may be rewritten as:

RS D D � .D0 C E � I/

I
D 1 � D0 C E � D

I
;

which becomes RS D 1 � .1C E � D/=I when D0 D 1;
• the liquidity ratio m D M=D.

The liquidity ratio m should be thought of as the maximum number of CDs which
could be redeemed without the bank being forced to seek cash by changing its
investment portfolio. We assume that the number N of investors is large and that
they handed their investment decisions to fund managers.

At time t D 1 early withdrawals are possible. At that time, the N investors/fund
managers i 2 f1; � � � ;Ng have access to a private signal Xi D R C �i where the �i’s
are independent identically distributed Gaussian variables with mean 0 and inverse
variance ˇ, i.e., �i � N.0; ˇ�1/, independent of R. On the basis of the private signal
Xi, each investor/fund manager makes a binary decision ˛i which will be his or her
control: to withdraw and collect D=N in case ˛i D 1, or do nothing if ˛i D 0.
We denote by n (resp. N̨ N) the number (resp. proportion) of investors who decide
to withdraw their deposits at time t D 1. So n D PN

iD1 ˛i and N̨ N is the mean
of the empirical distribution N	N of the controls ˛i. We model a bank run by the
refusal of investors to renew their CDs at time t D 1. We assume that the investors
cannot coordinate their investment strategies: if they could pool their information,
they would gain near perfect knowledge of the return R which could then be treated
as a deterministic constant instead of a random variable whose outcome is only
revealed at time t D 2.

• If N̨ ND 6 M or equivalently N̨ N 6 m, the bank remains liquid and can sustain
the withdrawals;

• On the other hand, if N̨ N > m, the bank is forced to sell some of its assets, for
example on the repo market, in order to meet the depositors’ withdrawal requests.
Let us denote by y the volume of the loans which need to be sold in order to meet
the withdrawal demands.
– If y > I, i.e., the bank needs to sell more than it actually owns, the bank fails

at time t D 1.
– Otherwise, the bank continues until t D 2, and failure occurs at t D 2

whenever R.I�y/ < .1� N̨ N/D, i.e., if the return collected from the remaining
investment is not sufficient to pay back the depositors remaining invested at
time t D 2.
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We now explain how to compute y. When forced to sell, banks cannot get full price
for their assets, they can only get a fraction, say 1=.1 C 
/ for some 
 > 0, of
their value. We assume that the market aggregates efficiently all the private signals,
gaining perfect knowledge of the return R. Accordingly, the price at which the loan
portfolio can be sold is P D R=.1 C 
/. Since the number of withdrawals is n, the
volume of fire-sales needed to compensate for the withdrawals is given by:

y D . N̨ ND � M/C

P
D .1C 
/

. N̨ ND � M/C

R
;

where we use the notation xC to denote the positive part max.0; x/ of a real number
x 2 R.

The bank is close to insolvency when the return R is small or when there is a
liquidity shortage and 
 is large (the interbank markets are not enough to prevent
failure). If the bank needs to close at time t D 1, we assume that the liquidation
value of its assets is �R for some constant � much smaller than 1=.1C 
/ modeling
the liquidity premium.

Runs and Solvency
Let us summarize, and reorganize the various contingencies, first in a few bullet
points.

• if N̨ ND 6 M: every run is covered without the need to sell assets at t D 1.
– Failure occurs at t D 2 if and only if RI C M < D ” R < RS, where as

above RS D D�M
I D 1 � 1CE�D

I if we normalize D0 D 1 and use the fact that
I C M D 1C E;

• if M < N̨ ND 6 M C RI=.1 C 
/ D M C IP: partial sale of assets at t D 1 to
recover the N̨ ND � M missing;
– Failure occurs at t D 2 if and only if RI � .1 C 
/. N̨ ND � M/ <

.1 � N̨ N/D ” R < RS C 
 N̨N D�M
I D RS

�
1 C 
 N̨N D�M

D�M

	
, because the

quantity RI � .1C
/. N̨ ND � M/ appearing on the left is the cash reserves left
in the bank after the partial fire sales at time t D 1 and failure occurs at time
t D 2 if this quantity is smaller than what needs to be given to the remaining
depositors;

• finally, when N̨ ND > M C PI the bank is closed at t D 1 (early closure).

The quantity RS was defined earlier as the solvency threshold of the bank because if
there are no withdrawals at t D 1, namely if N̨ N D 0, the bank fails at t D 2 if and
only if R < RS. The threshold RS is a decreasing function of the solvency ratio E=I.

The second bullet point shows that solvent banks can fail when the number
of early withdrawals is too large. Notice however that when the returns are high
enough, the bank is supersolvent by which we mean R > .1C 
/RS, in which case
it can never fail, even if everybody withdraws at t D 1, i.e., N̨ N D 1.

While the �i appear as idiosyncratic sources of noise, R is a source of randomness
common to all the participants. As a result, we expect the behavior of the investors
and the failure/non-failure of the bank to depend upon the outcome of this common
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Fig. 1.1 Diagram of the possible outcomes.

noise. For this reason, we express the critical values of R as functions of the natural
parameters of the model. Recall that, from the above discussion, we learned that:

• the bank is closed early if R < REC. N̨ N/ where the function REC is defined on
Œ0; 1� by:

REC.˛/ D .1C 
/
.˛D � M/C

I
D RS.1C 
/

.˛ � m/C

1 � m
I

• the bank fails if R < RF. N̨ N/ where the function RF is defined on Œ0; 1� by:

RF.˛/ D RS C 

.˛D � M/C

I
D RS

�
1C 


.˛ � m/C

1 � m

�
:

Notice that REC.˛/ < RF.˛/. Our findings are further illustrated in Figure 1.1.

Investor Behavior and Equilibria
Given the parameters of the model, i.e., D, M, I, 
, it is important to realize that
we were able to describe all the possible outcomes as functions of the proportion
N̨ N of investors attempting to withdraw their funds at time t D 1, and the actual
value of the return on the risky investment at time t D 2. We now switch to the
cost/reward analysis driving the behavior of the individual depositors and their fund
managers in charge of their investments. Typically, fund managers prefer to renew
their investments, and not withdraw early, but they are penalized if they are still
invested when the bank fails. So we assume that:
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• each fund manager gets a benefit B > 0 if they get their money back at time
t D 2, or if the bank fails and they withdraw their funds at time t D 1, nothing
otherwise;

• fund managers’ compensations are based on the size of their funds more than on
their returns, so each withdrawal at time t D 1 has a reputation cost C > 0.

Recall the information on the basis of which the fund managers make their
decisions. At time t D 1, fund manager i observes the private signal Xi D R C �i,
and decides on the basis of the value of the observation, say Xi D x, whether or not
to withdraw. In other words, the strategy of player i is a function x 7! ˛i.x/ 2 f0; 1g,
with ˛i.x/ D 1 if the decision is to withdraw the funds, and ˛i.x/ D 0 if the decision
is to remain invested. Since ˛i is a binary function on the range of the signal Xi, it is
the indicator function of a set of outcomes of Xi. So given strategies ˛1; � � � ; ˛N , for
each player i 2 f1; � � � ;Ng, one can define the expected reward Ji.˛1; � � � ; ˛N/ to
player i given the rules and scenarios stated and reviewed in the above bullet points
and Figure 1.1. We refrain from writing such an expectation in detail, but notice that
it should only depend upon ˛i and the average N̨ N . Rather than risking to drown in
the gory details of the search for equilibria with a finite number of investors, we
switch to the mean field game formulation obtained in the limit N ! 1.

Finally, notice that because of the monotonicity properties alluded to in the
remark below, we can restrict ourselves to strategies writing as indicator functions
of intervals of the form .�1; `i�, so that ˛i.x/ D 1 if and only if x 6 `i.

Remark 1.14 In the case of full information, i.e., when R is common knowledge at
time t D 1, everybody runs at time t D 1 on the event fR < RSg in which case N̨ N D
1, while nobody runs on the bank, i.e., N̨ N D 0 on the event fR > .1C
/RSg. These
two extreme equilibria co-exist in the intermediate regime fRS 6 R 6 .1C 
/RSg.
See the Notes & Complements at the end of the chapter and Section (Vol II)-7.2 of
Chapter (Vol II)-7 for further discussion and references.

Remark 1.15 If more managers withdraw at time t D 1, then the probability of
failure conditional on receiving a signal Xi D x increases. This just means that
the payoff to a fund manager displays increasing differences with respect to the
actions of the other fund managers. This property is known as complementarity, and
games with this property are called supermodular games. The equilibrium theory of
these games is based on their order structure more than their analytic properties.
We shall revisit these issues in Section (Vol II)-7.2 of Chapter (Vol II)-7. For the
time being we mention that these games have a largest and a smallest equilibria.
Fund managers withdraw in the largest number of scenarios they can in the largest
equilibrium, while they withdraw in the smallest number of occasions in the smallest
equilibrium. These extremal equilibria act as bounds for the set of equilibria, and
the most natural approach to proving uniqueness is to prove that these extremal
equilibria coincide.
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Mean Field Game Formulation
To guarantee symmetry, we shall assume that the investors are statistically identical,
and in particular, that their initial deposits are the same, say C0. For the limit N ! 1
of a large number of depositors to make sense, we assume that C0 D 1=N to be
consistent with the previous normalization D0 D 1. So each individual depositor
should expect to be repaid .1C r/C0, and in the previous notation, D D 1C r.

The idiosyncratic noise terms �i being independent and identically distributed,
we expect N̨ N to converge as N ! 1 to a limit which we denote N̨ . However, since
the randomness of the return R is common to all the observations Xi, it may not be
averaged out in the limit, and the value of N̨ is likely to depend upon R. Still, the
description of the model given above for a finite number of investors can be used
to describe all the possible outcomes to the individual investor and to the bank, as
functions of the values of the couple .R; N̨ / 2 R � Œ0; 1�. We restate the conclusions
given in the above bullet points in terms of the variables of the mean field limit, and
we summarize these outcomes in Figure 1.1.

• if N̨ 6 M=D,
– at t D 1, the runs on the bank can be covered without the need to sell assets;
– at t D 2, failure occurs if and only if R < RS with RS;

• if M=D < N̨ ,
– at t D 1 the bank needs to sell . N̨D�M/.1C
/=R worth of its loan investments

in order to return N̨D � M to the requests for withdrawal;
� if N̨D > MCPI, i.e., if N̨ > p1.R/with p1.R/ D R I=ŒD.1C
/�CM=D, the

bank needs to sell more than what it owns, so it is liquidated (early closure);
– at t D 2

� failure occurs if and only if RI � .1 C 
/. N̨D � M/ < .1 � N̨ /D, i.e.,
N̨ > p2.R/ with p2.R/ D .R � RS/.D � M/=.
DRS/C .M=D/.

Recall that all these scenarios are visualized in the Figure 1.1.

Remark 1.16 Notice that, independently of the investors’ behaviors:

• the bank fails if the returns are too small, specifically, if R < RS;
• the bank does not fail if the returns are sufficiently large, specifically, if R >

.1C 
/RS;

and in the intermediate regime:

• if RS 6 R < .1 C 
/RS, the outcome depends upon how N̨ and R relate,
specifically, the position of N̨ relative to the liquidity ratio m D M=D, and the
position of the point .R; N̨ / relative to the lines of equations N̨ D p1.R/ and
N̨ D p2.R/.
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Characterization of the Equilibrium
The limiting formulation of the game model may go as follows. We assume the
existence of two independent random variables R � N. NR; �2R/ and � � N.0; �2� /
standing for the return at time t D 2 on the risky investment of the bank, and the
noise in the private signal X D R C � of a representative investor. We model the
investor’s decision whether to run on the bank at time t D 1 by a binary function
˛ W R 3 x 7! ˛.x/ 2 f0; 1g, ˛.x/ D 1 if the investor decides to withdraw the deposit
after observing the signal x, and ˛.x/ D 0 if the decision is to keep the investment
until time t D 2. As already explained, a simple monotonicity argument can be
invoked to prove that we can restrict ourselves to withdrawal strategies ˛ for which
the set fx 2 R W ˛.x/ D 1g is an interval, and moreover that the decision functions
˛ can be chosen of the form ˛ D 1.�1;`� for some ` 2 R. The level ` can be thought
of as the comfort level beyond which the funds may remain invested.

So given the probability distribution 	 of the decision function taken by the other
investors, the first step of the search for an equilibrium is to solve the optimization
problem of a representative investor and find his or her best response to 	 . Notice
that 	 is a probability on the finite set f0; 1g, so it is characterized by the number
p D 	.f1g/ giving the probability that any one of the other investors withdraws the
funds at time t D 1. However, because of the remark made earlier on the existence
of the common noise coming from the randomness of the return R, we expect that
	 is in fact a conditional probability, and that p should in fact be a function of R,
namely p D p.R/.

Let us assume that for each choice of a function p of the form R 3 r 7! p.r/ 2
Œ0; 1�, one can solve the optimization problem of the individual investor. In other
words, we assume that for each possible function p, we can find a strategy Ǫ in
the form of a binary function of the signal value x 2 R, say Ǫ .x/ D 1

.�1; Òp�
.x/

for which the expected return is maximal. Given this optimal threshold `p (which
obviously depends upon the function r 7! p.r/ we started from), we can compute
the conditional probability that the investor runs on the bank at time t D 1, namely
the probability Opp.r/ D PŒX 6 ÒpjR D r�. We use an exponent p to emphasize
the fact that this probability depends upon the choice of the original conditional
probability function p. In these conditions, a Nash equilibrium for the mean field
game corresponds to a conditional distribution (equivalently a function r 7! p.r/)
such that the resulting probability at the optimum, namely r 7! Opp.r/, is the
probability function p we started from.

Notice that when the return R is deterministic or when it is known to all the
investors at time t D 1, the function p is in fact a constant p.r/ � Np for some Np 2
Œ0; 1�. Indeed, being a conditional probability, it only makes sense on the range of
R, namely for the possible values R D r of the random variable R. This is consistent
with Remark 1.14.

Remark 1.17 Once an equilibrium Op is found, it is possible, at least in principle,
to find the probability that the point .R; Op.R// falls into each single region of the
diagram of Figure 1.1 giving the probability that the bank needs to be liquidated
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at time t D 1, or fails at time t D 2, and if it does, why it fails (e.g., because
of a run on the bank from the fund managers, or the poor performance of the
risky investments, or the losses due to the fire sales, : : : ). The values of these
probabilities have important policy implications, and depending upon the values
of the parameters of the model, regulator intervention can be proposed to alleviate
some of the consequences of undesirable scenarios.

1.2.2 A DiffusionModel of Bank Runs

We now try to capture the most important stylized facts of the above static model in
a dynamic setting. We simplify the description of the balance sheet of the bank, as
well as the impact of the fire sales, in order to still be able to identify the optimal
timing decisions of the investors who decide to run on the bank.

We assume that the market value of the assets of a bank are given at time t by an
Itô process:

Yt D Y0 C
Z t

0

bsds C
Z t

0

�sdW0
s ;

where the value Y0 > 0 is known to everyone, and in particular to the N depositors.
We assume that the assets generate a dividend cash flow at rate Nr strictly greater than
the risk free rate r. These dividends are not reinvested in the sense that their values
are not included in Yt. The depositors are promised the same interest rate Nr on their
deposits. The bank collapses if Yt reaches 0.

As we did in the treatment of the static model considered above, without any loss
of generality, we normalize the aggregate initial deposits to 1. Moreover, since we
shall eventually cast the problem as a mean field game, we shall require a strong
symmetry in the model, and as a result we shall assume that each initial deposit is
in the amount Di

0 D 1=N. At any given time t, the liquidation value of the assets
of the bank is given by L.Yt/ where L W y 7! L.y/ is a deterministic continuously
differentiable function satisfying:

L.0/ D 0; L0.y/ 2 .0; 1/; lim inf
y!1 L.y/ > 1:

Given that the depositors can withdraw their funds at any time, the bank can tap
a credit line at interest rate Nr > r to pay off the running depositors. At any given
time t, the credit line limit is equal to the liquidation value L.Yt/ of the bank’s assets.

The bank is said to be safe if all depositors can be paid in full, even in case of
a run. The bank is said to have liquidity problems if the current market value of its
assets is sufficient to pay depositors, but the liquidation value is not. Finally, it is
said to be insolvent if the current market value of its assets is less than its obligation
to depositors. We shall confirm below that in the case of complete information about
the solvency of the bank, depositors start to run as soon as the bank starts having
liquidity problems, long before the bank is insolvent.
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We now introduce an exponential random variable with parameter 
, say � ,
independent of the driving Wiener process W0 D .W0

t /t>0 (throughout the book,
we often denote processes in boldface type). At time � , the bank’s assets mature
and generate a single payoff Y� which can be used to pay the credit line and the
depositors. Cash flows stop after time � .

• if Y� > 1; the bank is safe and everybody is paid in full;
• if Y� < 1; we talk about an endogenous default since the bank cannot pay

everybody in full.

The endogenous default is not the only way the bank can default. Indeed there is the
possibility of an exogenous default at time t < � if the mass of running depositors
reaches L.Yt/. Let us denote by � i the time at which depositor i tries to withdraw his
or her deposit and let us denote by N�N the empirical distribution of these times, i.e.,

N�N D 1

N

NX

iD1
ı� i :

Notice that N�N.Œ0; t// represents the proportion of depositors who tried to withdraw
before time t, and that the time of endogenous default is given by:

� endo D infft 2 .0; �/ W N�N.Œ0; t// > L.Yt/g:

For the sake of simplicity we assume that once a depositor runs, he or she cannot
get back in the game, in other words, his or her decision is irreversible.

Depositor Strategic Behavior
We now explain the strategic behavior of the N depositors. We denote by F

i D
.F i

t /t>0 the information available to player i 2 f1; � � � ;Ng. This is a filtration,
F i

t representing the information available to player i at time t. In the first model
we consider, these filtrations are all identical and based on a perfect (though
non-anticipative) observation of the signal Y D .Yt/06t6T . We call that public
monitoring. In a more realistic form of the model, the filtration F

i will be given
by the filtration F

Xi;N D .FXi;N

t /t>0 generated by the process Xi;N , the life time � and
the process . N�N.Œ0; t�//t>0. Here Xi;N

t is the private signal of depositor i at time t,
namely the value of the observation of Yt he or she can secure at time t. We shall
assume that it is of the form:

Xi;N
t D Xi;N

0 C Yt C �XWi
t ;

where �X > 0 and for i 2 f1; � � � ;Ng, the processes Wi D .Wi
t /t>0 are independent

Wiener processes (also independent of W0 and � ) representing idiosyncratic noise
terms blurring the observations of the exact value Yt of the assets of the bank. When
F

i D F
Xi;N

we talk about private monitoring of the asset value of the bank. However,
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for a more realistic form of the model, we shall require that the filtration F
Xi;N

does
not include the information provided by the process . N�N.Œ0; t�//t>0 which involves
the private signals of the other depositors. This model will be more challenging
mathematically as the individual depositors will have to choose their withdrawal
strategies in a distributed manner, using only the information contained in their
private signals.

In any case, the filtrations F
i will be specified in each particular application.

Clearly � i should be a F
i-stopping time in order to be admissible. In other words,

depositors do not have a crystal ball to decide if and when to run.
Given that all the other players j ¤ i have chosen their times � j to try to withdraw

their deposits, the payoff Pi
t.�

�i/ at time t to depositor i for trying to run on the bank
at time t (i.e., for � i D t) can be written as:

Pi
t.�

�i/ D Di
0 ^

�
L.Yt/ � N�N.Œ0; t//

�C
1Œ0;�/.t/;

if L.Ys/ � 1
N

PN
jD1 1Œ0;s/.� j/ > 0 for all s < t, and Pi

t.�
�i/ D 0 otherwise. The

problem of depositor i is then to choose for � i, the F
i-stopping time 	 solving the

maximization problem:

Ji.��i/ D max
06	6�

E

�
e.Nr�r/	Pi

	 .�
�i/

�

which is an optimal stopping problem. Finding a set of stopping times � i for i D
1; : : : ;N satisfactory to all the players simultaneously will be achieved by finding a
Nash equilibrium for this game.

Solution in the Case of Public Monitoring Through Perfect Observation
In this subsection we assume that �X D 0, and that the filtration F

i giving the
information available to depositor i is given by the filtration F

Y D .FY
t /t>0

generated by the asset value process and the random time � . If all the depositors
have access to this information, in other words if at time t each depositor knows
the past up to time t of the asset value Ys for s 6 t, as well as whether or not �
occurred before time t, and if all the depositor decisions (to run or not to run) are
based only on this information, then for each i 2 f1; � � � ;Ng, N�N.Œ0; t�/ 2 FY

t since
this information is known by depositor i at time t.

Proposition 1.18 In the case of public information, if we define the stopping
time O	 by:

O	 D
�
� ^ inf

n
t 	 0 W L.Yt/ D N � 1

N

o�
;

then a Nash equilibrium is when all the depositors decide to run at time O	 .
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So a bank run occurs as soon as the bank has liquidity problems, even if this is long
before it is insolvent. Notice also that according to this proposition, all the depositors
experience full recovery of their deposits, which is in flagrant contrast with typical
bank runs in which depositors usually experience significant losses.

Proof. We argue that we have indeed identified a Nash equilibrium. If all other depositors
but i choose the strategy given by the running time O	 , we show that player i cannot do better
than choosing to also run at time O	 . If L.Y0/ < .N � 1/=N, all the others depositors run
immediately, and his or her only hope to get something out of his or her deposit is to run at
time 0 as well. Similarly, if L.Y0/ D .N � 1/=N and all the other depositors run, depositor i
needs to run at that time as well. Now if L.Y0/ > .N �1/=N, no depositor has a reason to run
while L.Yt/ > .N � 1/=N since, by not running for a small time interval while L.Yt/ is still
strictly greater than .N � 1/=N, he or she can earn the superior interest Nr > r without facing
any risk. This proves that every depositor using O	 as time to run is a Nash equilibrium. ut

TheMean Field Game Formulation
We now consider an asymptotic regime corresponding to a large number of
depositors, and we track the behavior of a representative depositor after normalizing
his or her deposit to 1 (while it was 1=N before). When N is large, we expect N�N to
approach a probability measure �. If the Itô process Y giving the asset value of the
bank is not deterministic, this probability measure � is likely to be random through
its dependence upon the time evolution of .Yt/t>0 and the value of the terminal time
� . If such a probability measure � is fixed, one defines the individual payoff P�.t; y/
of a withdrawal attempt at time t when the value of the assets of the bank is y and
the terminal time is � :

P�.t; y/ D 1 ^
�

L.y/ � �.Œ0; t//
�C

1Œ0;�/.t/;

as long as L.Ys/��Œ0; s/ is positive for all s < t; otherwise the payoff is null. Then,
the optimal time for a representative depositor to claim his or her deposit back is
given by the stopping time (for his or her own information filtration) solving the
optimal stopping problem:

O	 D arg max
06	6�

E

�
e.Nr�r/	P�.	;Y	 /

�
;

where the argument 	 is required to be a stopping time with respect to the filtration
describing the available information to the typical player and where for the sake
of definiteness we choose O	 to be the smallest of the optimal stopping times when
uniqueness of the maximizer does not hold. As explained before, the representative
player bases his/her own decision on the observation of a private signal of the form:

Xt D X0 C Yt C �XWt; t 	 0;

where W D .Wt/t�0 is independent of .W0; �/, �X being now non-zero. As Y and
� are common to all the players, the aggregate withdrawal may be captured through
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the conditional law L. O	 jY; �/. Hence this creates a map � 7! L. O	 jY; �/, and the
final step of the mean field game approach is to find a fixed point � for this map.

We shall continue the discussion of this model in Section (Vol II)-7.2 of Chapter
(Vol II)-7.

1.3 Financial Applications

1.3.1 An Explicitly Solvable ToyModel of Systemic Risk

This example will stay with us throughout. We solve the finite player game explicitly
in Chapter 2, both for open and Markovian closed loop equilibria, see Chapter 2 for
precise definitions. In the following Chapter 3, we identify the limits as N ! 1 of
the solutions to the finite player games and solve the corresponding limiting problem
as a mean field game. Finally, in Chapter (Vol II)-4 we revisit this example one more
time to check the so-called master equation by explicit computations.

We describe the model as a network of N banks and we denote by X.i/t the
logarithm of the cash reserves of bank i 2 f1; � � � ;Ng at time t. The following
simple model for borrowing and lending between banks through the drifts of their
log-cash reserves, while unrealistic, will serve perfectly our pedagogical objectives.
For independent Wiener processes Wi D .Wi

t /06t6T for i D 0; 1; : : : ;N and a
positive constant � > 0 we assume that:

dXi
t D a

N

NX

jD1
.Xj

t � Xi
t/ dt C �dBi

t

D a. NXt � Xi
t/ dt C �dBi

t ; i D 1; : : : ;N; (1.16)

where:

dBi
t D

p
1 � �2dWi

t C �dW0
t ;

for some � 2 Œ�1; 1�. In other words, we assume that the log-cash reserves are
Ornstein-Uhlenbeck (OU) processes reverting to their sample mean NXt at a rate a >
0. This sample mean represents the interaction between the various banks. We also
consider a negative constant D < 0 which represents a critical liability threshold
under which a bank is considered in a state of default.

A remarkable feature of this model is the presence of the Wiener process W0 in
the dynamics of all the log-cash reserve processes Xi. While these state processes
are usually correlated through their empirical distribution, when � ¤ 0, the presence
of this common noise W0 creates an extra source of dependence which makes the
solution of mean field games much more challenging. Models with a common noise
will only be studied in the second volume because of their high level of technicality.
However, we shall see that the present model can be solved explicitly whether or
not � D 0!
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The following are easy consequences of the above assumptions. Summing up
equations (1.16) shows that the sample mean . NXt/06t6T is a Wiener process with
volatility �=

p
N. Simple Monte Carlo simulations or simple computations show

that stability of the system is easily achieved by increasing the rate a of borrowing
and lending given by the parameter a. Moreover, it is plain to compute analytically
the loss distribution, i.e., the distribution of the number of firms whose log-cash
reserves cross the level D, and large deviations estimates (which are mere Gaussian
tail probability estimates in the present situation) show that increasing a increases
systemic risk understood as the simultaneous default of a large number of banks.

While attractive, these conclusions depend strongly on the choice of the model
and its specificities. We now consider a modification of the model which will
hopefully lead to an equilibrium in which we expect the same conclusions to hold.
We consider the new dynamics:

dXi
t D �

a. NXt � Xi
t/C ˛i

t

	
dt C �dBi

t; i D 1; � � � ;N;

where ˛i is understood as the control of bank i, say the amount of lending and
borrowing outside of the N bank network (e.g., issuing debt, borrowing at the Fed
window, etc). In this modified model, firm i tries to minimize:

Ji.˛1; � � � ;˛N/

D E

� Z T

0

�
1

2
j˛i

t j2 � q˛i
t.

NXt � Xi
t/C �

2
. NXt � Xi

t/
2

�
dt C c

2
. NXT � Xi

T/
2

�
;

for some positive constants � and c which balance the individual costs of borrowing
and lending with the average behavior of the other banks in the network. The
parameter q > 0 weighs the contributions of the relative sizes of these components
imposing the choice of the sign of ˛i

t and the decision whether to borrow or lend.
The choice of q is likely to be the regulator’s prerogative. Notice that:

• If Xi
t is small relative to the empirical mean NXt, bank i will want to borrow and

choose ˛i
t > 0;

• If Xi
t is large, then bank i will want to lend and set ˛i

t < 0.

Throughout the analysis, we shall assume that:

q2 6 � (1.17)

to guarantee the convexity of the running cost functions. In this way, the problem
is an instance of a linear-quadratic game (LQ for short). We shall solve explicitly
several forms of this model in Chapter 2.

Remark 1.19 We used the notation Nx D .x1 C � � � C xN/=N for the empirical mean
of all the xjs. So in the above specification of the model, each bank interacts with the
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empirical mean of the states of all the banks, including its own state. As we often
do when we discuss games with mean field interactions (see for example Section 2.3
of Chapter 2), it may be more natural to formalize the interactions as taking place
between the state of a given bank with the empirical mean of the states of the other
banks. Doing so would require to replace . NXt � Xi

t/ by:

X�i
t � Xi

t D 1

N � 1
X

16j¤i6N

�
Xj

t � Xi
t

	

D 1

N � 1
X

16j6N

�
Xj

t � Xi
t

	

D N

N � 1.
NXt � Xi

t/:

This shows that the model would be exactly the same as long as we multiply the
constants a and q by .N � 1/=N and the constants � and c by .N � 1/2=N2. So for N
fixed, the qualitative properties of the models should be the same, and in any case,
the quantitative differences should disappear in the limit N ! 1.

1.3.2 A Price Impact Model

The model presented in this section is of great importance in modern financial
engineering because it is used as input to many optimal execution engines in the high
frequency electronic markets. Our interest in the model is that it presents an instance
of stochastic differential game in which individuals interact through the empirical
distribution of their controls instead of the empirical distributions of their private
states, which is in stark contrast with what we will find in most of the examples
studied in this book. These models are sometime called extended mean field games.
We devote Section 4.6 of Chapter 4 to their analysis, and we shall revisit the present
example of price impact in Subsection 4.7.1.

TheMarket Model
We analyze the interaction between N traders. Trader i controls its inventory Xi

t , i.e.,
the number of shares owned at time t by its rate of trading ˛i

t through a stochastic
differential equation of the form:

dXi
t D ˛i

t dt C � idWi
t ; t 2 Œ0;T�;

where the Wi D .Wi
t /t>0 are independent standard Wiener processes and the

volatilities � i > 0 are assumed to be constant for the sake of simplicity, and all
equal to the same positive number � > 0 for symmetry reasons. All the agents trade
the same stock whose mid-price at time t is denoted by St. The amount of cash held
by trader i at time t is denoted by Ki

t . It evolves according to:
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dKi
t D �Œ˛i

tSt C c.˛i
t/� dt;

where the function ˛ 7! c.˛/ is a nonnegative convex function satisfying c.0/ D
0, representing the cost for trading at rate ˛. For example, using for trading cost
function c.˛/ D c˛2 for some constant c > 0 would correspond to a flat order book.

The actual price impact is encapsulated in the following formula:

dSt D 1

N

NX

iD1
h.˛i

t/ dt C �0dW0
t ; t 2 Œ0;T�;

for the changes over time of the mid-price. Here we assume that ˛ 7! h.˛/ is a
deterministic function known to everyone, �0 > 0 is a constant, and W0 D .W0

t /t>0
is a standard Wiener process independent of the family .Wi/16i6N . This is a
particular case of the classical model of Almgren and Chriss for permanent price
impact. Since the drift of the mid-price is the integral of the function h with respect
to the empirical measure N�N

˛t
of the controls ˛i

t , we see that in this model, each
participant interacts with the empirical distribution of the controls of the other
participants. In order to avoid unruly notation, we shall denote by hh; N�N

˛t
i this

integral.
Note that St follows an arithmetic Brownian motion with a drift which depends on

the accumulated impacts of previous trades. The function h is sometimes called the
instantaneous market impact function. Since a buy is expected to increase the price
of the stock and a sell will tend to decrease the stock price, the function h should
satisfy h.˛/˛ > 0. Linear, power-law and logarithmic functions are often used in
practice for that reason. Price impact models are most of the time used in optimal
execution problems for high frequency trading. Therefore the fact that .St/06t6T can
become negative is not a real issue in practice since the model is most often used on
a time scale too short for the mid-price to become negative.

The Trader’s Optimization Problem
The wealth Vi

t of trader i is defined as the sum of the cash held by the trader and the
value of the inventory as marked to the mid-price:

Vi
t D Ki

t C Xi
tSt:

If we use the standard self-financing condition of Black-Scholes’ theory (see the
Notes & Complements at the end of the chapter for references to alternatives), the
changes over time of the wealth Vi

t are given by the equation:

dVi
t D dKi

t C Xi
t dSt C St dXi

t

D
�

� c.˛i
t/C Xi

t

1

N

NX

jD1
h.˛j

t/

�
dt C �StdWi

t C �0X
i
tdW0

t : (1.18)
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When the controls are square integrable and the instantaneous market impact
function h has at most linear growth, the processes Xi

t and St are square integrable
and the stochastic integrals in the wealth’s dynamic are martingales. We assume
that the traders are subject to a running liquidation constraint modeled by a function
cX of the shares they hold, and to a terminal liquidation constraint at maturity
T represented by a scalar function g. Usually cX and g are convex nonnegative
quadratic functions in order to penalize unwanted inventories. If as usual we denote
by Ji the expected costs of trader i as a function of the controls of all the traders we
have:

Ji.˛1; � � � ;˛N/ D E

� Z T

0

cX.X
i
t/dt C g.Xi

T/ � Vi
T

�
: (1.19)

By (1.18), we can write the expected cost to trader i as:

Ji.˛1; � � � ;˛N/ D E

� Z T

0

f .t;Xi
t ; N�N

˛t
; ˛i

t/dt C g.Xi
T/

�
; (1.20)

where as before, we use the notation N�N
˛t

for the empirical distribution of the N
components of ˛t, which is a probability measure on the space A in which the
controls take their values. Here, the running cost function f is defined by:

f .t; x; 	; ˛/ D c.˛/C cX.x/ � xhh; 	i; (1.21)

for 0 6 t 6 T , x 2 R
d, 	 2 P.A/, and ˛ 2 A. This model is a perfect archetype

of a N-player stochastic differential game with interactions through the empirical
distribution of the controls. We shall not be able to solve the finite player game
problem. We shall approach its solution via the analysis of the mean field game
formulation based on the intuition (and the results proved earlier) of the limit N !
1 of a large number of players.

Remark 1.20 It is important to emphasize the crucial role played by the innocent
looking assumption that the traders are risk neutral as they choose to minimize the
expectation of their cost (as opposed to a nonlinear function of the costs). Indeed,
the quadratic variation terms disappear in the computation of the expected cost,
and so doing, the common noise W0 as well as the mid-price S disappear from the
expression of the individual expected costs. The game would be much more difficult
to solve it they didn’t.

Since the common noise disappeared from the model, if we restrict the rates
of trading to functions of the inventories, or in the case of open loop models, if
we assume that they are adapted to the filtrations generated by the Wi and are
independent of the common noise, the independence of the random shocks dWi

t
suggest that in the limit N ! 1 the empirical measures N�N

˛t
converge, provided

that the rates are sufficiently symmetric, toward a deterministic measure 	t which,
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in equilibrium, should be the distribution of the optimal rate of trading of a generic
trader. We switched from the notation �t to 	t in order to emphasize the fact that
the interaction between the players is now through the empirical distribution of
the controls, hence a probability measure in P.A/ instead of a probability measure
in P.Rd/. Consequently, the MFG approach to this game is to fix a deterministic
flow � D .	t/t>0 of measures on the space A of controls, solve the optimal control
problem:

8
<̂

:̂
inf
˛
E

� Z T

0

f .t;Xt; 	t; ˛t/dt C g.XT/

�

dXt D ˛tdt C �dWt; t 2 Œ0;T�;
(1.22)

for a given Wiener process W and then, try to find a flow of measures � D .	t/t>0 so
that 	t D L. Ǫ t/ where Ǫ D . Ǫ t/06t6T is an optimal control for the above problem.

As a general rule, this form of mean field game is more difficult to solve than
a standard MFG problem where the interaction between the players is through the
empirical distribution of their states. As already explained at the beginning of this
subsection, we shall call these models extended mean field games. We study them
in Section 4.6 of Chapter 4, and we solve this particular model of price impact in
Subsection 4.7.1.

1.4 Economic Applications

In this section, we introduce several general equilibrium economic growth models.
While the first is structured in the spirit of Aghion and Howitt’s model, the next
two examples can be regarded as variations on the theme of incomplete markets and
uninsured idiosyncratic labor income risk as proposed by Aiyagari.

1.4.1 Pareto Distributions and aMacro-Economic GrowthModel

Our first instance of economic application was originally introduced as an example
of mean field game with a common noise. Here, we review its main features as we
plan to use it as an example for which the so-called master equation can be stated
and solved. See Chapter (Vol II)-4 for details.

Background
As for many models in the economic literature, the problem was set for an infinite
time horizon (T D 1) with a positive discount rate r > 0, but to be consistent
with the rest of the text, we shall frame it with a finite horizon T . In this model,
the private states of the individual agents are not subject to idiosyncratic shocks.
They react to a common source of noise given by a one-dimensional Wiener process
W0 D .W0

t /06t6T . We denote by F
0 D .F0

t /06t6T its filtration. We also assume that
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the volatilities of these states are linear as given by a function x 7! �x for some
positive constant � , and that each player controls the drift of his or her own state so
that the dynamics of the state of player i read:

dXi
t D ˛i

tdt C �Xi
tdW0

t ; t 2 Œ0;T�: (1.23)

We shall restrict ourselves to Markovian controls of the form ˛i
t D ˛.t;Xi

t/ for a
deterministic function .t; x/ 7! ˛.t; x/, which will be assumed to be nonnegative
and Lipschitz in the variable x. See Chapter 2 for a detailed discussion of the use of
these special controls. Under these conditions, for any player, say player i, Xi

t > 0

at all times t > 0 if Xi
0 > 0, and for any two players, say players i and j, the

homeomorphism property of Lipschitz stochastic differential equations (SDE for
short) implies that Xi

t 6 Xj
t at all times t > 0 if Xi

0 6 Xj
0.

For later purposes we notice that when the Markovian control is of the form:

˛.t; x/ D �tx; (1.24)

then,

Xj
t D Xi

t C .Xj
0 � Xi

0/e
R t
0 �sds�.�2=2/tC�W0

t : (1.25)

We assume that k > 0 is a fixed parameter, and we introduce a special notation
for the family of scaled Pareto distributions with decay parameter k. For any real
number q > 0, we denote by �.q/ the Pareto distribution:

�.q/.dx/ D k
qk

xkC1 1Œq;1/.x/dx: (1.26)

Notice that for any random variable X, X � �.1/ is equivalent to qX � �.q/. We
shall use the notation �t for the conditional distribution of the state Xt of a generic
player at time t > 0 conditioned by the knowledge of the past up to time t as
given by F0

t . Under the prescription (1.24), we claim that, if �0 D �.1/, then

�t D �.qt/ where qt D e
R t
0 �sds�.�2=2/tC�W0

t . In other words, conditioned on the
history of the common noise, the distribution of the states of the players remains
Pareto with parameter k if it starts that way, and the left most point of the support of
the distribution, say qt, can be understood as a sufficient statistic characterizing the
distribution �t. This remark is an immediate consequence of formula (1.25) applied
to Xi

t D qt, in which case q0 D 1, and Xj
t D Xt, implying that Xt D X0qt. So if

X0 � �.1/, then �t � �.qt/. This simple remark provides an explicit formula for
the time evolution of the (conditional) marginal distributions of the states. As we
shall see, this time evolution is generally difficult to come by, and requires the
solution of a forward Partial Differential Equation (PDE for short) known as forward
Kolmogorov equation or forward Fokker-Planck equation, which in the particular
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case at hand should be a Stochastic Partial Differential Equation because of the
presence of the common noise. More details will be given in Chapters 2 and 4
(second volume).

Optimization Problems
We now introduce the reward functions of the individual agents and define their
optimization problems. The technicalities required to describe the interactions
between the agents at a rigorous mathematical level are a hindrance to the intuitive
understanding of the nature of these interactions. Indeed, the reward functions would
have to be defined in such a way to accommodate empirical distributions for the
fact that the latter do not have densities with respect to the Lebesgue measure.
Overcoming this technical difficulty would force us to jump through hoops, which
we consider as an unnecessary distraction at this stage of our introduction to mean
field games. For the time being, we define the running reward function f by:

f .x; �; ˛/ D c
xa

Œ.d�=dx/.x/�b
� E

p

˛p

Œ�.Œx;1//�b
;

for x; ˛ > 0 and � 2 P.RC/ and for some positive constants a, b, c, E and p > 1

whose economic meanings are discussed in the references provided in the Notes &
Complements at the end of the chapter. We use the convention that the density is
the density of the absolutely continuous part of the Lebesgue’s decomposition of
the measure �, and that in the above sum, the first term is set to 0 when this density
is not defined or is itself 0. Similarly, the second term is set to 0 when � does not
charge the interval Œx;1/.

Solutions of the MFG problem as formulated in this section will be given in
Section 4.5.2 of Chapter (Vol II)-4.

1.4.2 Variation on Krusell-Smith’s Macro-Economic GrowthModel

We first consider a version of a stochastic growth model originally proposed by
Aiyagari and later extended by Krusell and Smith. Our presentation follows the
lines of the paper of Krusell and Smith whose contribution is twofold. First they
added an aggregate source of random shocks (what we shall call common noise
throughout the book) to the idiosyncratic shocks originally considered by Aiyagari,
and second, they proposed an original algorithm leading to actual computations of
equilibrium statics. While we shall not comment on the reliability and/or merits of
the numerical algorithm, we notice and we find quite remarkable that the description
of its components clearly outlines, step by step, the mean field game strategy
articulated in this chapter. The version we present here differs from the original
contributions of Aiyagari and Krusell Smith in two respects: we consider the finite
horizon case, and we set up the model in continuous time. Also, we formulate the
problem for a finite number of agents instead of directly modeling the economy as
a continuum using a nonatomic measure space with measure one for the space of
agents.
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One major difference with the growth model discussed in the previous subsection
is the fact that, on the top of the common noise affecting all the states, we also con-
sider idiosyncratic random shocks specific to each individual agent in the economy.
While the random shocks are assumed to be independent and identically distributed
with a common distribution in Aiyagari’s model, for the sake of definiteness, we first
discuss the approach of Krusell and Smith in which the shocks are kept discrete and
finite in nature for the purpose of numerical implementation. In the next subsection,
we change the nature of the random shocks by introducing Wiener process to recast
the model in the framework of stochastic differential games.

Modeling the Uncertainty in the Economy
As usual, we denote by N the number of agents in the economy. For the purpose
of the present discussion, we can think that they are consumers. The randomness in
the model is given by a set of N continuous time Markov chains .zt; �

i
t/t>0 which, at

any time t, can take four possible values .1 � z; 0/, .1 � z; 1/, .1 C z; 0/, and
.1Cz; 1/ for some constantz > 0. We shall assume that, given the knowledge of
the z D .zt/t�0-component, the �i are independent for i D 1; � � � ;N. The economic
interpretation of these random sources is the following. The shocks z D .zt/t�0
capture the health of the overall economy, like an aggregate productivity measure,
so zt D 1Cz in good times, and zt D 1�z in bad times. Clearly the casez D 0

corresponds to the absence of common random shocks. The second component �i

is specific to the consumer, �i
t D 1 when consumer i is employed, and �i

t D 0

whenever he or she is unemployed.

Remark 1.21 In the absence of the common noise z, the model was originally
proposed by Aiyagari. It consists of a more traditional game with independent
idiosyncratic noise terms given by the individual changes in employment.

The production technology is modeled by a Cobb-Douglas production function
in the sense that the per-capita output is given by:

Yt D ztK
˛
t .

ǸLt/
1�˛ (1.27)

where Kt and Lt stand for per-capita capital and employment rates respectively.
Here the constant Ǹ can be interpreted as the number of units of labor produced
by an employed individual. In such a model, two quantities play an important role:
the capital rent rt and the wage rate wt. In equilibrium, these marginal rates are
defined as the partial derivatives of the per-capita output Yt with respect to capital
and employment rate respectively. So,

rt D r.Kt;Lt; zt/ D ˛zt

�
Kt

ǸLt

�˛�1
; (1.28)
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and

wt D w.Kt;Lt; zt/ D Ǹ.1 � ˛/zt

�
Kt

ǸLt

�˛
: (1.29)

Individual Agent’s Optimization Problem
Each agent i controls his or her consumption ci

t at time t, and maximizes his or her
expected utility of overall consumption:

E

� Z T

0

ˇtU.ci
t/dt C QU.ci

T/

�
;

for some utility function U and scrap function QU. The discount factor ˇ 2 .0; 1�

does not play any significant role in the finite horizon version of the model so we
take it equal to 1 in this case. However, it is of crucial importance in the infinite
horizon version for which the optimization is to maximize:

E

� Z 1

0

ˇtU.ci
t/dt

�
;

in which case ˇ 2 .0; 1/. To conform with most of the economic literature on the
subject, we use the power utility function:

U.c/ D c1�� � 1
1 � � ; (1.30)

also known as CRRA (short for Constant Relative Risk Aversion) utility function
and its limit as � ! 1 given by the logarithmic utility function.

The constraints on the individual consumption choices are given by the values
of the individual capitals ki

t at time t which need to remain nonnegative at all times.
The changes in capital over time are given by the equation:

dki
t D �

.rt � ı/ki
t C Œ.1 � �t/ Ǹ�i

t C Nı.1 � �i
t/�wt

	
dt � ci

tdt: (1.31)

Here, the constant ı > 0 represents a depreciation rate. The second term in the
above right-hand side represents the wages earned by the consumer. It is equal to
Nıwt when the consumer is unemployed, a quantity which should be understood as
an unemployment benefit rate. On the other hand, it is equal to .1 � �t/ Ǹwt after
adjustment for taxes, when he or she is employed. Here,

�t D
Nıut

ǸLt

;

where ut D 1 � Lt is the unemployment rate.
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The above form (1.31) of the dynamics of the state variables ki
t is rather deceiving

as they partially hide the coupling between the equations. The main source of
coupling comes from the quantities rt and wt which not only depend upon the
common noise zt, but also depend upon the aggregate capital Kt which is in some
sense the average of the individuals .ki

t/16i6N!

Mean Field Game Formulations
Let us denote by N�N

k and for each i 2 f1; � � � ;Ng by N��i;N
k the empirical distributions

of the capital and of the capitals endowments of all the consumers other than i:

N�N
k D 1

N

NX

iD1
ıki

t
: and N��i;N

k D 1

N � 1
NX

jD1;j¤i

ı
k

j
t
; i D 1; � � � ;N:

Because of de Finetti’s law of large numbers, we expect that these empirical
measures converge when the size N of the economy tends to 1. It is clear that
if these limits exist, they have to be the same. Let us denote by �z

t the common
limit as N ! 1. This limit will give the conditional distribution of capital kt given
the history of the states .zs/0�s�t of the economy, hence our notation. Clearly, �z

t
is independent of z in the case z D 0 of no common noise. If one searches for
Nash equilibria in the limit N ! 1, assuming the knowledge of the empirical
distribution of the (other) individual capitals is reduced to assuming the knowledge
of the flow .�z

t /06t6T of probability measures. In the case z > 0, since z can only
take two values 1�z and 1Cz, the same assumption amounts to the knowledge
of deterministic flows of measures .��

t /�0 parameterized by paths � with values
in fd; ug, where d and u are the possible values of z, say down and up, namely
d D 1 �z and u D 1Cz.

Once the flow of conditional measures is assumed to be known, the computation
of the best response of a representative agent reduces to the solution of the optimal
control problem:

max
c

E

� Z T

0

ˇtU.ct/dt C QU.cT/

�
;

under the constraints kt > 0 and:

dkt D �
.r.Kt;Lt; zt/ � ı/kt C Œ.1 � �t/ Ǹ�t C Nı.1 � �t/�w.Kt;Lt; zt/

	
dt � ctdt:

Here, .zt; �t/06t6T is a continuous time Markov chain with the same law as any
of the .zt; �

i
t/06t6T introduced earlier, the rental rate function r and the wage level

function w are as in (1.28) and (1.29), and Kt D Nkz
t is the mean of the conditional

measure �z
t , namely:
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Kt D
Z

Œ0;1/

k�z
t .dk/;

and where Lt is as above. This is the source of the mean field interaction in the
model.

1.4.3 A Diffusion Form of Aiyagari’s GrowthModel

In this form of the model, the private state at time t of agent i is a two-dimensional
vector Xi

t D .Zi
t ;A

i
t/. As before, the agents i 2 f1; � � � ;Ng can be viewed as the

workers comprising the economy: Zi
t gives the labor productivity of worker i, and Ai

t
his or her wealth at time t. The time evolutions of the states are given by stochastic
differential equations:

(
dZi

t D �Z.Zi
t/dt C �Z.Zi

t/dWi
t ;

dAi
t D Œwi

tZ
i
t C rtAi

t � ci
t�dt;

(1.32)

for some functions �Z ; �Z W R ! R. Here, the random shocks are given by N
independent Wiener processes Wi D .Wi

t /t>0, for i D 1; � � � ;N, rt is the interest rate
at time t, wi

t represents the wages of worker i at time t, and the consumption ci D
.ci

t/t>0 is the control of player i. Notice that in this form of the model, the random
shocks are idiosyncratic, in other words, the model does not include a common
noise.

Remark 1.22 In many economic applications, a borrowing limit Ai
t > a is

imposed with a 6 0. Moreover, the processes Zi D .Zi
t/t>0 are also restricted by

requiring that they are ergodic, or even restricted to an interval Œz; Nz� for some finite
constants 0 6 z < Nz < 1.

In this model, given processes r D .rt/t>0 and wi D .wi
t/t>0 for i D 1; � � � ;N,

each worker tries to maximize:

Ji.c1; � � � ; cN/ D E

Z 1

0

e��tU.ci
t/dt: (1.33)

As usual in economic applications, the model is set up in infinite horizon, and U is
an increasing concave utility function common to all the workers. We now explain
how the workers interact in the economy, and how the interest rate and the wage
processes are determined in equilibrium. As before, the aggregate production in
the economy is given by a production function Y D F.K;L/, the total capital Kt

supplied in the economy at time t being given by the aggregate wealth:

Kt D
Z

a N�N
Xt
.dz; da/ D 1

N

NX

iD1
Ai

t; (1.34)
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while the total amount of labor Lt supplied in the economy at time t is normalized
to 1. In a competitive equilibrium the interest rate and the wages are given by the
partial derivatives of the production function:

(
rt D Œ@KF�.Kt;Lt/jLtD1 � ı;
wt D Œ@LF�.Kt;Lt/jLtD1;

where ı > 0 is the rate of capital depreciation, so that rt C ı can be viewed as
the user cost of capital. So in equilibrium, the interaction between the agents in the
economy is through the mean Kt of the empirical distribution N�N

At
of the workers’

wealth .Ai
t/16i6N . More generally, we capture the state of the economy at time t by

the empirical measure:

N�N
Xt

D 1

N

NX

iD1
ıXi

t
:

Practical Application
We shall revisit this diffusion model several times in the sequel. It will be one of the
testbeds we use to apply the tools developed in the book. We first solve the model in
Subsection 3.6.3 of Chapter 3 as an example of Mean Field Game (MFG) without
common noise. We revisit this solution in Subsection 6.7.4 of Chapter 6 in light of
our analysis of the optimal control of McKean-Vlasov dynamics. In order to check
the assumptions under which our results are proven, we use a specific model for
the mean reverting labor productivity process Z D .Zt/t>0. We choose an Ornstein-
Uhlenbeck process for the sake of definiteness. As already mentioned, we use the
CRRA isoelastic utility function with constant relative risk aversion:

U.c/ D c1�� � 1
1 � � ; (1.35)

for some � > 0, with U.c/ D ln.c/ if � D 1, in which case:

U0.c/ D c�� and .U0/�1.y/ D y�1=� : (1.36)

As before, we use the Cobb-Douglas production function:

F.K;L/ D Na K˛ L1�˛;

for some constants Na > 0 and ˛ 2 .0; 1/. With this choice, in equilibrium, we have:

rt D ˛ NaK˛�1
t L1�˛t � ı; and wt D .1 � ˛/NaK˛

t L�˛
t ;

and since we normalized the aggregate supply of labor to 1,
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rt D ˛ Na
K1�˛

t

� ı; and wt D .1 � ˛/NaK˛
t ; (1.37)

where Kt is given by (1.34) and provides the mean field interaction.
The unconstrained version (i.e., without any sign constraint on Z or A) of this

model will be solved as a mean field game in Subsection 3.6.3 in Chapter 3 where
we provide numerical illustrations of some of the properties of the solution.

1.4.4 Production of Exhaustible Resources

In the first part of this section, we present a macro-economic model for exhaustible
resources. We consider N oil producers in a competitive economy. We denote by
x10; � � � ; xN

0 the initial oil reserves of the N producers. Each producer tries to control
his or her own rate of production so that, if we denote by Xi

t the oil reserves of
producer i at time t, the changes in reserves are given by equations of the forms:

dXi
t D �˛i

tdt C �Xi
tdWi

t ; t > 0; (1.38)

where � > 0 is a volatility level common to all the producers, the nonnegative
adapted and square integrable processes .˛i D .˛i

t/t�0/iD1;��� ;N are the controls
exerted by the producers, and the .Wi D .Wi

t /t�0/iD1;��� ;N are independent standard
Wiener processes. The interpretation of Xi

t as an oil reserve requires that it remains
nonnegative. However, we shall not say that much on this sign constraint for the
purpose of the present discussion. If we denote by Pt the price of one barrel of oil
at time t, and if we denote by C.˛/ D b

2
˛2 C a˛ the cost of producing ˛ barrels of

oil, then producer i tries to maximize:

Ji.˛1; � � � ;˛N/ D sup
˛W˛t�0;Xt�0

E

� Z 1

0

Œ˛i
tPt � C.˛i

t/�e
�rtdt

�
: (1.39)

The price Pt is the source of coupling between the producer strategies. The model
is set up over an infinite horizon with a discount factor r > 0. In this competitive
economy model, the price is given by a simple equilibrium argument forcing supply
to match demand. The demand at time t, when the price is p, is given as D.t; p/ by a
demand function D.

Mean Field Formalization
We follow the approach of Guéant, Lasry and Lions who suggest to consider the
mean field game problem, short-circuiting in this way the difficulties of the finite
player games. They work with the demand function D.t; p/ D we�tp�� where we�t

gives the total wealth in the economy, and � represents the elasticity of substitution
between oil and other goods. We shall also use the inverse demand function D�1
characterized by the fact that q D D.t; p/ ” p D D�1.t; q/.
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In the mean field limit, we fix a deterministic flow � D .�t/t>0 of probability
measures, interpreting �t as the distribution of the oil reserves of a generic producer
at time t. Notice that the knowledge of .�t/t>0 determines the price .Pt/t>0 since:

Pt D p.t;�/ D D�1
�

t;� d

dt

Z
x�t.dx/

�
; t > 0; (1.40)

which is a mere statement that the quantity produced is given by the negative of the
change in reserves. The optimization problem which needs to be solved to determine
the best response to this flow of distributions is based on the running reward function
of a representative producer. It is given by:

f .t; x;�; ˛/ D Œ˛p.t;�/ � C.˛/�e�rt;

where the quantity p.t;�/ is given by (1.40). Accordingly, the value function of the
representative producer is defined by:

u�.t; x/ D sup
.˛s/s�tW˛s�0;Xs�0

E

� Z 1

t
Œ˛sPs � C.˛s/�e

�r.s�t/

�
ds;

the supremum being computed under the dynamical constraint:

dXs D �˛sds C �XsdWs; Xt D x: (1.41)

As usual, once the best response is found by solving this optimization problem for a
given initial condition x0 at time 0, the fixed point argument amounts to finding
a measure flow � D .�t/t>0 so that the marginal distributions of the optimal
paths .Xt/t>0 are exactly the distributions .�t/t>0 we started from. In particular,
�0 must be equal to ıx0 . This model was originally treated in a Partial Differential
Equation (PDE for short) formalism which we shall call the analytic approach in
this book: the optimization problem is solved by computing the value function
u� of the problem as the solution of the corresponding Hamilton-Jacobi-Bellman
(HJB for short) equation, and the fixed point property is enforced by requiring
.�t/t>0 to satisfy a forward Kolmogorov (or Fokker-Planck) PDE to guarantee that
.�t/t>0 is indeed the distribution of the optimal paths. Kolmogorov’s equation is
linear and forward in time while the HJB equation is nonlinear and backward in
time. These two equations are highly coupled and, more than the nonlinearities, the
opposite directions of the time are the major source of difficulty in solving these
equations. The authors did not solve them analytically. Numerical approximations
were provided as illustration. As we shall see, the occurrence of a forward-backward
system is a characteristic feature of the analysis of mean field games. It will be a
mainstay of our probabilistic approach as we start emphasizing in Chapter 3.
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Remark 1.23 The reader will notice that the dependence of Pt upon � in (1.40)
is not of the form Pt D p.t; �t/ but of the more complicated form Pt D p.t;�/
where p.t; �/ is a functional of the path � D .�s/s>0 (at least when regarded in a
neighborhood of t).

In order to fit the formulation we have used so far, we may notice by taking the
expectation in (1.41) that:

d

dt
EŒXt� D �EŒ˛t�; t > 0;

which shows that:

d

dt

Z
x�t.dx/ D �EŒ˛t�; t > 0;

when � is an equilibrium. Therefore, we can recast the search for an equilibrium
as the search for a fixed point on the marginal distributions of the controls (and not
of the states). Precisely, a deterministic flow of probability measures � D .	t/t�0
forms an equilibrium if each 	t, for t > 0, coincides with the marginal distribution
at time t of an optimal control process in the optimization problem:

sup
˛W˛t�0;Xt�0

E

� Z 1

0

Œ˛tP
�
t � C.˛t/�e

�rt

�
dt;

the supremum being computed under the dynamical constraint:

dXt D �˛tdt C �XtdWt; t > 0; (1.42)

and .P�
t /t>0 being given by:

P�
t D D�1

�
t;

Z
x	t.dx/

�
; t > 0:

Remark 1.24 It is not too much of a stretch to imagine that the above mean field
formulation can be tweaked to include terms in the maximization which incentivize
producers to avoid being the last to produce, the effects of externalities, the impact
of new entrants producing from alternative energy sources, : : :

Cournot and Bertrand Variations on the SameModel
In a subsequent study (see the Notes & Complements at the end of the chapter for
references), it was suggested to look at dynamics:

dXi
t D �˛i

tdt C �dWi
t ; t 	 0; (1.43)

with absorption at 0 to guarantee that the reserves of a generic oil producer do not
become negative, and to assume that, as in most models for Cournot games, the
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price Pi
t experienced by each producer, is given by a linear inverse demand function

of the rates of productions of all the other players in the form:

Pi
t D 1 � ˛i

t � �

N � 1
X

16j¤i6N

˛
j
t ;

so that if we denote by 	 the distribution of the rate of extraction ˛, the running
reward function in the mean field game regime becomes:

f .t; x; 	; ˛/ D �
˛Œ1 � ˛ � � N	� � C.˛/

�
e�rt1x>0:

1.5 Large Population Behavior Models

Biologists, social scientists, and engineers have a keen interest in understanding the
behavior of schools of fish, flocks of birds, animal herds, and human crowds. Under-
standing collective behavior resulting from the aggregation of individual decisions
and actions is a time honored intellectual challenge which has only received partial
answers. In this section, we introduce a small sample of mathematical models which
have been proposed for the analysis and simulation of the behavior of large crowds
from individual rules of conduct.

1.5.1 The Cucker-Smale Model of Flocking

In a groundbreaking contribution, Cucker and Smale gave a complete mathematical
analysis of a form of Vicsek model which they propose for the behavior of flocks of
birds. Their model is now known as the Cucker Smale model of flocking. According
to these authors, the collective motion of the birds can be captured mathematically
by a high dimensional deterministic dynamical system, namely a system of Ordinary
Differential Equations (ODEs for short) where the state at time t of each bird i in
a flock of N birds is described by a 6-dimensional vector Xi

t D Œxi
t; v

i
t � where xi

t
represents its position and vi

t its velocity at time t. As per their model, the time
evolution of the states is given by the system:

(
dxi

t D vi
tdt;

dvi
t D PN

jD1 wi;j.t/Œv
j
t � vi

t �dt; t > 0;

for a family of weights defined as:

wi;j.t/ D w.jxi
t � xj

tj/ D Q�
.1C jxi

t � xj
tj2/ˇ

; (1.44)
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for some constants Q� > 0 and ˇ > 0. The first equation is a mere consistency
condition since it states that the velocity is the time derivative of the position.
The second equation says that the changes in the velocity of a bird are given by
a weighted average of the differences between its velocity and the velocities of the
other birds in the flock, a form of mean reversion toward the mean velocity. Given
the form of the weights posited in (1.44), the further apart are the birds, the smaller
the weights. Notice that the exact value of the mean reversion constant Q� does not
play much role when N is fixed. However, when the size of the flock increases,
namely when N grows, it is natural to expect that � should be of order 1=N for the
system to remain stable. More on that later on.

The fundamental result of Cucker and Smale’s original mathematical analysis is
that if N is fixed and 0 6 ˇ < 1=2, then:

(
limt!1 vi

t D vN
0 ; for i D 1; � � � ;N;

supt>0 maxi;jD1;��� ;N jxi
t � xj

tj < 1;
(1.45)

irrespective of the initial configuration. The first bullet point states that for large
times, all the birds in the flock eventually align their velocities, while the second
bullet point implies that the birds remain bunched, hence the relevance of the
analysis of this system of ODEs to the biological theory of flocking phenomena.
When ˇ > 1=2, flocking can still occur depending upon the initial configuration.
Since the publication of the original paper of Cucker and Smale, many extensions
and refinements appeared, including a treatment of the case ˇ D 1=2. See the Notes
& Complements at the end of the Chapter for details and references.

The extension which teased our curiosity was proposed by Nourian, Caines,
and Malhamé in the form of an equilibrium problem. Instead of positing a
phenomenological description of the behavior of the birds in the flock, the idea
is to let the birds decide of the macroscopic behavior of the flock by making rational
decisions at the microscopic level. By rational decision, we mean resulting from a
careful risk-reward optimization. So in this new formulation, the behavior of the
flock of N birds will still be captured by their individual states Xi

t D Œxi
t; v

i
t � which

have the same meanings as before, but whose dynamics are now given by Stochastic
Differential Equations (SDEs):

(
dxi

t D vi
tdt;

dvi
t D ˛i

tdt C �dWi
t ; t > 0:

While the first equation has the same obvious interpretation, the second just says
that except for random shocks given by the increments of a Wiener process �dWi

t
proper to the specific bird, each bird can control the changes in its velocity through
the term ˛i

tdt. However, this control comes at a cost which each bird will try to
minimize. To be specific, for a given strategy profile ˛ D .˛1; � � � ;˛N/ giving the
control choices of all the birds over time, the cost to bird i is given by:
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Ji.˛/ D lim
T!1

1

T

Z T

0

�
1

2
j˛i

t j2 C 1

2

ˇ̌
ˇ̌

NX

jD1
wi;j.t/Œv

j
t � vi

t �

ˇ̌
ˇ̌
2�

dt: (1.46)

The special form of these cost functionals is very intuitive and can be justified in
the following way: by trying to minimize this cost, each bird tries to save energy
(minimization of the contribution from the first term) in order to be able to go far,
and tries to align its velocity with those close to him in order to remain in the pack
and avoid becoming an easy prey to aggressive predators. While introducing the
infinite horizon model stated in (1.46), the authors noticed that in the case ˇ D 0,
the nonlinear weights wi;j.t/ are independent of i, j, and t, and the model reduces to a
Linear Quadratic (LQ) game which can be solved. They also suggest to approach the
case ˇ > 0 by perturbation techniques for ˇ 
 1 (i.e., ˇ small), but fall short of the
derivation of asymptotic expansions which could be used to analyze the qualitative
properties of the model.

For the purpose of illustration, we recast their model in the finite horizon set-up,
even though this will presumably prevent us from feeling the conclusions (1.45) of
the deterministic model which account for large time properties of the dynamical
system. Our reason to work on a finite time interval is to conform with the notation
and the analyses which the reader will find throughout the book. So the dynamics
of the velocity become:

dvi
t D ˛i

tdt C �dWi
t ; t 2 Œ0;T�;

and we rewrite the individual costs in the form:

Ji.˛/ D E

� Z T

0

f .t;Xi
t ; N�N

t ; ˛
i
t/dt

�
; (1.47)

with:

f .t;X; �; ˛/ D 1

2
j˛j2 C �2

2

ˇ̌
ˇ̌
Z

R6

v0 � v
.1C jx � x0j2/ˇ �.dx0; dv0/

ˇ̌
ˇ̌
2

(1.48)

where t 2 Œ0;T�, X D Œx; v�, � 2 P.R6/ and ˛ 2 R
3.

Remark 1.25 We explain how the constant � should relate to the constant Q�
introduced earlier in (1.44). If we want the probability measure N�N

t appearing in
formula (1.47) to be the empirical measure of the states of the other birds, namely
the Xj

t D Œxj
t; v

j
t � for j ¤ i, then we need to choose �2 D .N � 1/2 Q�2. On the other

hand, if we want this probability measure to be the empirical measure of all the
bird states, namely the Xj

t D Œxj
t; v

j
t � for j D 1; � � � ;N including j D i, then we need

to choose �2 D N2 Q�2.In any case, since we already noticed that in the large flock
limit, the constant Q� should be of order 1=N, � should be viewed as a dimensionless
constant independent of the size of the flock.
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One of the main challenges of this model is the fact that the running cost function
f is not convex for ˇ > 0. This complicates significantly the solution of the
optimization problem. In particular, such a running cost function will not satisfy
the typical assumptions under which we provide solutions for this type of models.
Moreover, many population biologists have argued that more general interactions
(e.g., involving quantiles of the empirical distribution) are needed for the model to
have any biological significance. Finally, restricting the random shocks affecting
the system to idiosyncratic shocks attached to individual birds is highly unrealistic,
as an ambient source of noise common to all individuals should be present in the
physical environment in which the birds are evolving.

Remark 1.26 In this example, like in many other examples, each individual
interacts, inside the running cost, with the empirical distribution of the states of
the other individuals involved in the game.

The particular case ˇ D 0 will be solved explicitly in Section 2.4 of Chapter 2
for a finite number of birds, and in Section 3.6.1 of Chapter 3 in the mean field
game limit when the number of birds is infinite. The general case will be analyzed
with the tools developed for the probabilistic approach to the solution of mean field
games in Subsection 4.7.3 of Chapter 4. There, we propose a solution to a slightly
modified model, and we provide numerical illustrations.

1.5.2 An Attraction-RepulsionModel

Another popular model of large population behavior is the self-propelling friction
and attraction-repulsion model defined by the time evolution:

8
ˆ̂<

ˆ̂:

dxi
t D vi

tdt;

dvi
t D

h
.a � bjvi

t j2/vi
t � 1

N

NX

jD1
rU.xi

t � xj
t/

i
dt; t > 0;

where a and b are nonnegative parameters and U W R
3 ! R is a given potential

function modeling the short range repulsion and long range attraction between
the individual members of the population. One often uses the Morse potential
defined by:

U.x/ D �CAe�jxj=`A C CRe�jxj=`R ; (1.49)

where CA, CR, and `A, `R are the strengths and the typical lengths of attraction and
repulsion respectively. As in the case of the Cucker-Smale model of flocking, we
turn this deterministic descriptive model into a stochastic differential game with
mean field interactions by defining the same controlled dynamics as before:
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(
dxi

t D vi
tdt;

dvi
t D ˛i

tdt C �dWi
t ; t > 0;

each individual trying to minimize the cost:

Ji.˛/ D E

� Z T

0

f .t;Xt; N�N
t ; ˛

i
t/dt

�
;

with:

f .t;X; �; ˛/ D 1

2
j˛j2 C 1

2

ˇ̌
ˇ̌
Z

R6

U.x � x0/�.dx0; dv0/
ˇ̌
ˇ̌
2

;

where X D Œx; v� as before. Notice that the value of the running cost function does
not depend upon the v-component of the state X, and that it only depends upon the
x-marginal of the probability distribution of the state.

1.5.3 CongestionModels for Crowd Behavior

This subsection is an attempt to introduce, in the spirit and with the notation of
this chapter, several models of crowd behavior. Part of our motivation is to consider
models with different groups of individuals for which the mean field limit and the
mean field game strategy apply separately to each group. But first, as a motivation,
we start with a single group as we did so far.

CongestionModel for a Single Group of Individuals
For the sake of simplicity, we do not model position and velocity separately as
before. We assume that the changes in position of individual i 2 f1; � � � ;Ng are
given by an equation of the form:

dXi
t D ˛i

tdt C �dWi
t ; t > 0; (1.50)

where the .Wi/16i6N are N independent standard Wiener processes, � > 0, and ˛i

is a square integrable process giving individual i a form of control on the evolution
of its position over time. In other words, each individual chooses its own velocity,
at least up to the idiosyncratic noise shocks �dWi

t . If individual i is at x at time t,
its velocity is ˛, and the empirical distribution of the other individuals is �, then it
faces a running cost given by the value of the function:

f .t; x; �; ˛/ D 1

2
j˛j2

�Z

R3

�.x � x0/d�.x0/
�a

C e�rtk.t; x/: (1.51)
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Here � is a smooth density with a support concentrated around 0, and the function k
models the effect of panic which frightens individuals depending on where they are,
though this effect is dampened with time through the actualization factor e�rt for
which we assume that r > 0. The power a > 0 is intended to penalize congestion
since large positive values of a penalize the kinetic energy, and make it difficult to
move where the highest density of population can be found.

We shall generalize the model to the case of two subpopulations (which are often
called species in biological applications) in Chapter 7.

Forced Exit from a Room
In this example, we assume that the individuals need to leave a room in a rush for
the exit. We model the geometry of the room by a bounded domain D in R

d, and
we assume that the exit is only possible through a subset � of the boundary @D of
the domain. Individuals hitting the boundary @D away from the exit � will bounce
back inside the room in a motion of panic. Inside the room, we assume that the
individuals control their motion according to the same law as above in (1.50).

From a mathematical point of view, this example poses a certain number of
new challenges which were not present in the models discussed so far. While
the boundedness of the domain D could make our search for compactness easier,
especially when we seek out Nash fixed points, this assumption requires us to
confine the stochastic dynamics of the state to D forcing us to specify the boundary
behavior of the state processes controlled by the individual players. Typically, we
shall impose reflecting boundary conditions on @D n � , and Dirichlet boundary
condition on � to model the fact that the individuals disappear when they hit the
door.

These technicalities can be overwhelming mathematically, so we spend a sig-
nificant amount of time in Subsection 4.7.2 of Chapter 4 to explain how they can
be handled with appropriate stochastic analysis tools. There, we provide theoretical
solutions and numerical illustrations showing the impact of the congestion parame-
ter on the time a typical individual takes to exit the room.

1.6 Discrete State GameModels

The purpose of this section is to introduce a special class of models which, while
not central to the subject matter of the book, still play a crucial role in many
practical applications of great importance. For these models, although the time
variable varies continuously like with all the subsequent developments in the book,
the states controlled (or at least influenced) by the players are restricted to a discrete
set which we shall assume to be finite in some cases. These models cannot be cast as
stochastic differential games, and they require a special treatment which we provide
in Section 7.2 of Chapter 7 and extend to games with major and minor players in
Subsection 7.1.9 of Chapter 7 in Volume II.
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1.6.1 A Queuing-Like Limit Order BookModel

In this model, we assimilate the Limit Order Book (LOB for short) of an electronic
trading exchange, to a set of M different queues, so that at each time t, the state
of the limit order book is given by the lengths of these queues. When one of the
N agents, typically a trading program, arrives and is ready to trade, the value Xi

t
of its private state is kept to 0 if it decides to leave and not enter any queue, or to
j 2 f1; � � � ;Mg if it decides to enter the j-th queue. So, in this particular instance,
the space in which the states of the players evolve is the finite set E D f0; 1; � � � ;Mg
instead of the Euclidean space R

d in most of the examples treated in this book.
While Xt D .X1t ; � � � ;XN

t / gives the states of the N market participants at time t,
the empirical distribution:

N�N
Xt

D 1

N

NX

iD1
ıXi

t
D 1

N

MX

kD0

� X

iW Xi
tDk

ık

�
D

MX

kD0

#fi W Xi
t D kg

N
ık;

contains the histogram of the relative lengths of the individual queues. For the sake
of convenience, we shall denote by mt D .m1

t ; � � � ;mM
t / the relative lengths of these

queues, namely mk
t D #fi W Xi

t D kg=N. So because the private states of the
individual agents can only take finitely many values at any given time, 0, 1, � � � ,
M in this instance, the marginal distribution of the system can be identified to an
element of RMC1, or an element of the M-dimensional probability simplex in this
Euclidean space if we wanted to be more specific.

So if we want to capture a property of the game via a real valued function
U.t; x;m/ of time t, of the state x of an individual player at time t, and of the
statistical distribution of this state at time t, say m, such a function can be viewed as
a function u W Œ0;T� � R

MC1 ! R
MC1 with the convention Œu.t;m/�x D ux.t;m/ D

U.t; x;m/, the value of the individual state determining which component of the
vector u we use. So if the function U were to appear as the solution of a complex
equation in its three variables, or even an infinite dimensional Partial Differential
Equation (PDE), such an equation could be rewritten as an equation for the function
u which would appear as the solution of a simpler system (say a system of
scalar ordinary differential equations, ODEs for short). Such a function U will be
introduced in Chapter 7 as a solution of what we shall call the master equation,
equation which will be studied in full detail in Chapter 4 of Volume II.

1.6.2 A Simple Cyber Security Model

We now discuss a second instance of departure from the great majority of models
treated in the book which happen to have a continuum state space. In this example,
not only do we consider a finite state space, but we also break the symmetry among
the players as we single out one of them. Note that this special player could also
be a small number of players which we would bundle together into what we often
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call a major player. This special player faces a large number of opponents which
will be assumed to be statistically similar, restoring the framework of mean field
game models in this large group. We shall use the terminology minor player to
refer to each element of this homogeneous group. Stochastic differential mean field
games with major and minor players will be studied in Section 7.1 of Chapter 7
in Volume II, the special case of games with finite state spaces being discussed in
Subsection 7.1.9 at the end of that same section.

The example we choose to illustrate these two new features is inspired by
academic works on cyber security, to which an extensive literature on two-player
games has been devoted. Typically, the first player, characterized as the attacker,
tries to infect, or take control of, the computers of a network administered and
protected by a defender. The connectivity of the network and the relative importance
of the nodes dictate the defensive measures implemented by the administrator of
the network. The costs incurred as a result of the attacks and the implementation
of defensive measures, cast the model as a zero-sum game since the cost to the
network parallels the reward to the attacker. Zero-sum games are very popular in
the mathematical literature. This stems mostly from the fact that, since the analysis
reduces to the study of one single value function (as opposed to one value function
per player), the techniques of stochastic control can be extended with a minimal
overhead.

In the model which we study in detail in Chapter (Vol II)-7, we consider an
interconnected network of N computers labeled by i 2 f1; � � � ;Ng, which we
identify to their owners or users, and whose levels of security depend upon the
levels of security of the other computers in the same network. For the sake of
definiteness, we shall assume that each computer can be in one of four possible
states: DI for “defended infected”; DS for “defended and susceptible to infection”;
UI for “unprotected and infected”; and finally US for “unprotected and susceptible
to infection.” Each computer user makes an investment trying to keep its machine
secure by installing anti-virus filters, setting up firewalls, : : : and pays a cost for
this investment. On the other hand, the attacker will be rewarded for taking control
of computers in the network, and pay a cost for the implementation of attacks on
the network, the intensity of its attack and the associated cost depending upon the
proportion of computers in the network already infected. This last feature is what
guarantees the mean field nature of the model.

1.6.3 Searching for Knowledge

The purpose of this subsection is to present a model inspired by the works of
Duffie and collaborators on information percolation as an illustration of a game
model for which the state space is countable. These authors model how individuals
improve their own knowledge of an unknown random quantity by meeting with
other individuals and exchanging information. One of the main features of these
models is to involve a continuum of participants so that, when two of them meet,
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to be sure, neither one previously met any of the persons the other one met in
the past. This assumption guarantees enough independence to provide sufficient
statistics reducing the complexity of the game. For example, when agents try to
guess the value of a random variable (say a Gaussian N.0; 1/ random variable) by
sharing information when they meet, the number of past encounters happens to be a
sufficient statistic whenever the information of each agent is in the form of a private
signal which is also a Gaussian random variable.

In Chapter 3 Section 3.7, we provide the mathematical setting needed to make
rigorous sense of the continuum of independent random variables without losing
measurability requirements, and we prove a weak form of the exact law of large
numbers at the core of this modeling assumption.

Our stylized version of the model also assumes that each single one of N agents
can improve the level of his or her information only by meeting other agents and
sharing information. It would be easy to add a few bells and whistles to allow each
individual to increase his or her information on his or her own, but this would add
significantly to the complexity of the notation without adding to the crux of the
matter, or to its relevance to the theory of mean field games. So we shall assume
that, in order to improve his or her knowledge of an unknown random quantity, each
agent tries to meet other agents, that the private information of agent i at time t can
be represented by an integer Xi

t , and that the sharing of information can be modeled
by the fact that if agent i meets agent j at time t, we have Xi

t D Xj
t D Xi

t� C Xj
t�. In

other words, the state Xi
t is an integer representing the precision at time t of the best

guess player i has of the value of a random variable of common interest.
Each agent controls his or her own search intensity as follows. For each i 2

f1; � � � ;Ng, there exists a (measurable) function Œ0;T� � N 3 .t; n/ 7! ci
t.n/ 2 RC,

for a finite time horizon T > 0, so that ci
t.n/ represents the intensity with which

agent i searches when his or her state is n at time t (i.e., when Xi
t D n). Typically,

each ci takes values in a bounded subinterval ŒcL; cU� of Œ0;1/. We then model the
dynamics of the state .Xt D .X1t ; � � � ;XN

t //06t6T of the information of the set of N
agents in the following way:

Xt D X0 C
X

16i¤j6N

Z

Œ0;t�

Z

Œ0;1/

'i;j.s;Xs�; v/Mi;j.ds; dv/; (1.52)

where the .Mi;j/16i6Dj6N are independent homogeneous Poisson random measures
on RC � RC with mean measures proportional to the 2-dimensional Lebesgue
measure Leb2. More precisely,

E
�
Mi;j.A � B/

	 D 1

2.N � 1/Leb2.A � B/;

for i 6D j and A;B two Borel subsets of RC. The functions .'i;j/16i6Dj6N are given by:
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'i;j.t; x; v/ D
(
.0; � � � ; 0/ if �i;j.t; x/ < v

y otherwise,

where y D .y1; � � � ; yN/ is defined by yk D 0 if k ¤ i and k ¤ j, and yi D xj, and
yj D xi, and the function �i;j is defined by:

�i;j.t; x/ D �i;j.t; x
1; � � � ; xN/ D ci

t.x
i/cj

t.x
j/:

As before, ci and cj are the respective search intensities of agents i and j.
The goal of player k is to minimize the quantity:

Jk.˛1; � � � ; ˛N/ D E

� Z T

0

K.˛k
t /dt C g.Xk

T/

�
;

where the controls are given by the feedback functions ..˛i
t D ci

t.X
i
t//0�t�T/iD1;��� ;N

and K W ŒcL; cU� 3 c 7! K.c/ is a bounded measurable function representing the
cost for an individual searching with intensity c. It is natural to assume that this
latter function is increasing and convex. The terminal cost function g represents the
penalty for ending the game with a given level of information. Typically, g.n/ will
be chosen to be inversely proportional to .1Cn/, but any convex function decreasing
with n would do as well.

To understand the behavior the system, we describe the dynamics of the state
.Xk

t /06t6T of the information of agent k by extracting the k-th component of both
sides of (1.52).

In order to proceed, we fix a coordinate k 2 f1; � � � ;Ng and we provide an
alternative representation of Xk, obtained by choosing .Mi;k/i6Dk and .Mk;j/j6Dk in
a relevant way. For any time t 2 Œ0;T�, our construction of .Mi;k.dt; � //i6Dk and
.Mk;j.dt; � //j6Dk, is based on a suitable coupling with the past of the whole system up

until time t. For two independent homogeneous Poisson random measures QM1
and

QM2
on RC � RC � .0; 1� with 1

2
Leb3 as intensity, where Leb3 is the 3-dimensional

Lebesgue measure, we choose Mi;k.dt; dv/ and Mk;j.dt; dv/ as:

Mi;k.dt; dv/ D
Z

Œ0;1�

1 �t.i/�1
N�1 <w6 �t.i/

N�1

QM1.dt; dv; dw/; i 6D k;

Mk;j.dt; dv/ D
Z

Œ0;1�

1 �t.j/�1
N�1 <w6 �t.j/

N�1

QM2.dt; dv; dw/; j 6D k;

where .�t/06t6T is a predictable process with values in the set of one-to-one
mappings from f1; � � � ;Ng n fkg onto f1; � � � ;N � 1g. The precise form of .�t/06t6T

will be specified later on.
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Recall that:

Xk
t D Xk

0 C
X

16i6Dj6N

Z

Œ0;t�

Z

Œ0;1/

'k
i;j.Xs�; v/Mi;j.ds; dv/:

Since 'k
i;j.x; v/ D 0 if k 62 fi; jg, we get:

Xk
t D Xk

0

C
NX

iD1;i6Dk

Z

Œ0;t�

Z

Œ0;1/

Z

Œ0;1�

'k
i;k.s;Xs�; v/1 �s.i/�1

N�1 <w6 �s.i/
N�1

QM1.ds; dv; dw/

C
NX

jD1;j6Dk

Z

Œ0;t�

Z

Œ0;1/

Z

Œ0;1�

'k
k;j.s;Xs�; v/1 �s.j/�1

N�1 <w6 �s.j/
N�1

QM2.ds; dv; dw/:

Using the fact that 'k
i;k.x; v/ D 'k

k;i.x; v/, we obtain:

Xk
t D Xk

0 (1.53)

C
Z

Œ0;t�

Z

Œ0;1/

Z

Œ0;1�

� NX

iD1;i6Dk

'k
i;k.s;Xs�; v/1 �s.i/�1

N�1 <w6 �s.i/
N�1

�
QM.ds; dv; dw/;

where QM D QM1C QM2
is a homogeneous Poisson measure on RC �RC � .0; 1� with

Leb3 as intensity.
We now recall the form of 'k

i;k.s;Xs�; v/:

'k
i;k.s;Xs�; v/ D Xi

s�1Œv;1/

�
ci

s.X
i
s�/ck

s.X
k
s�/

�
;

which shows that the integrand appearing in (1.53) is equal to:

NX

iD1;i6Dk

'k
i;k.s;Xs�; v/1 �s.i/�1

N�1 <w6 �s.i/
N�1

D
NX

iD1;i6Dk

Xi
s�1Œv;1/

�
ci

s.X
i
s�/ck

s.X
k
s�/

�
1 �s.i/�1

N�1 <w6 �s.i/
N�1

:

(1.54)

If we now restrict ourselves to symmetric Nash equilibria, in the sense that the
control profiles .˛1; � � � ;˛N/ are exchangeable at equilibrium, we can assume that
the search intensities of all the other agents are given by the same feedback function,
say Œ0;T� � N 3 .t; xi/ 7! ci

t.x
i/ D Qck

t .x
i/ 2 RC for i 6D k, for some function

Qck W Œ0;T� � N ! RC. In such a case, the above sum becomes:
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NX

iD1;i6Dk

'k
i;k.s;Xs�; v/1 �s.i/�1

N�1 <w6 �s.i/
N�1

D
NX

iD1;i6Dk

Xi
s�1Œv;1/

�Qck
s.X

i
s�/ck

s.X
k
s�/

�
1 �s.i/�1

N�1 <w6 �s.i/
N�1

:

(1.55)

Now here is the thrust of our formulation. We choose �s as a one-to-one mapping

from f1; � � � ;Ng n fkg onto f1; � � � ;N � 1g, such that .X
��1

s .i/
s� /1�i�N�1 coincides

with the order statistics of .Xi
s�/1�i6Dk�N . The order statistics are denoted by

.X.i/;�k
s� /1�i�N�1. This is especially convenient since for any function f W N ! R,

NX

iD1;i6Dk

f .Xi
s�/1 �s.i/�1

N�1 <w6 �s.i/
N�1

D
N�1X

iD1
f
�
X.i/;�k

s�
�
1 i�1

N�1<w6 i
N�1
:

We now call N��k
s� the empirical measure of X�k

s� and NF�k
s� .�/ the associated empirical

distribution function and we denote by NQ�k
s�.�/ its pseudo-inverse. We recall that for

any w 2 .0; 1� and i 2 f1; � � � ;N � 1g:

i � 1
N � 1 < w 6 i

N � 1 H) NQ�k
s�.w/ D X.i/;�k

s� :

We finally get:

NX

iD1;i6Dk

f .Xi
s�/1 �s.i/�1

N�1 <w6 �s.i/
N�1

D f
� NQ�k

s�.w/
�
; w 2 .0; 1�:

Returning to (1.55), we deduce:

NX

iD1;i6Dk

'k
i;k.s;Xs�; v/1 �s.i/�1

N�1 <w6 �s.i/
N�1

D NQ�k
s�.w/1Œv;1/

�Qck
s.

NQ�k
s�.w//ck

s.X
k
s�/

�
:

Inserting in (1.53), we finally get the following representation for Xk
t :

Xk
t D Xk

0

C
Z

Œ0;t�

Z

Œ0;1/

Z

Œ0;1�

NQ�k
s�.w/1Œv;1/

�Qck
s.

NQ�k
s�.w//ck

s.X
k
s�/

� QM.ds; dv; dw/:

This writing will serve as a starting point for the formulation of the game with a
large number of agents as a mean field game.
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TheMean Field Game Formalization
The mean field game formulation of the problem is to first fix a flow Œ0;T� 3 t 7!
.ct; �t/. Here ct is a function ct W N 3 n 7! ct.n/ representing the search intensity
of a representative participant at time t 2 Œ0;T�. As before, we shall assume that
this function takes values in ŒcL; cU�. On the other hand, �t is a probability measure
on N giving the distribution at time t of the state (which it sometimes called the
precision) of a generic participant. Once such a flow is fixed, we fix an individual,
and find the best response to the population behavior whose evolution over time is
captured by .ct; �t/06t6T . This best response will be obtained by solving the optimal
control problem:

inf
˛2AE

� Z T

0

K.˛t/dt C g.XT/

�
; (1.56)

under the constraint that:

Xt D X0 C
Z

Œ0;t�

Z

Œ0;1/

Z

Œ0;1�

'.s; ˛s; v;w/ QM.ds; dv; dw/: (1.57)

where:

'.t; ˛; v;w/ D 1Œv;1/

�
˛ct.Qt.w//

�
Qt.w/;

QM denoting a Poisson random measure on RC �RC � Œ0; 1� with intensity given by
the Lebesgue measure Leb3 and Qt denoting the quantile function of �t. The set A
of admissible controls is chosen to be the set of feedback controls of the form ˛t D
�t.Xt�/ for some deterministic function � W Œ0;T� � N 3 .t; x/ 7! �t.x/ 2 ŒcL; cU�.

When .˛t D �t.Xt�//06t6T , the instantaneous jump rate at time t 2 Œ0;T� is,
conditional on the event fXt� D ng, equal to:

Z 1

0

Z 1

0

1Œv;1/

�
�t.n/ct.Qt.w//

�
dvdw D �t.n/

Z

N

ctd�t D �t.n/Nct;

with:

Nct D
Z

N

ctd�t D
X

n02N
ct.n

0/�t.fn0g/:

In other words, .Xt/t>0 is a pure-jump process whose jump-arrival intensity at time t
is given by the function Nct�t. � /. The jump-size distribution at time t is then given by:

N 3 n 7! ct.n/�t.fng/
Nct

:
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Also, if we denote by .Lt.n; y//n2N;y2N� the jump rate kernel at time t of the state
process X, that is PŒXtCdt D n C y j Xt� D n� D Lt.n; y/dt C o.dt/, then,

Lt.n; y/ D �t.n/ct.y/�t.fyg/; y 2 N
�: (1.58)

Now, the last step of the mean field game approach is to find a flow � D .�t/0�t�T

of distributions on N and a function c W Œ0;T� � N 3 .t; n/ 7! ct.n/ 2 ŒcL; cU� such
that the stochastic control problem (1.56)–(1.57) has an optimizer, given by a family
.�t/0�t�T of feedback functions from N to ŒcL; cU� and admitting � D .�t/0�t�T as
flow of marginal distributions of the optimal states, such that the following fixed
point condition holds true: �t D ct and �t D �t, for t 2 Œ0;T�.

We can characterize the equilibria as the solutions of a nonlinear Fokker-Planck-
Kolmogorov equation. To do so, the following notation will be useful. If 	 W N ! R

is a bounded function and � D .�t/0�t�T is a flow of probability measures on N,
we denote by �	t the measure with density 	 with respect to the measure �t, for any
t 2 Œ0;T�. In other words:

�	t .fng/ D 	.n/�t.fng/; n D 0; 1; 2; � � � :

Now, for a given flow � D .�t/0�t�T of probability measures, we write the
Fokker-Planck-Kolmogorov equation satisfied by the flow of marginal distributions
� D .�t/t>0 of the pure jump process admitting .Lt/0�t�T in (1.58) as jump rate
kernel. We find this equation by computing:

d

dt
EŒf .Xt/� D d

dt
hf ; �ti; t 2 Œ0;T�;

for a bounded function f W N ! R, with .Xt/0�t�T as in (1.57). This gives:

d

dt
h�t; f i D

X

n2N
�t.fng/

X

m>1
Œf .n C m/ � f .n/�Lt.n;m/

D
X

n2N
�t.fng/

X

m2N
Œf .n C m/ � f .n/��t.n/ct.m/�t.fmg/

D
X

n;m2N
�t.n/�t.fng/ ct.m/�t.fmg/ f .n C m/

�
X

n;m2N
f .n/�t.n/�t.fng/ ct.m/�t.fmg/

D h��t
t � �ct

t ; f i � h�ct
t ; 1i h��t

t ; f i;

where for two probability measures � and � on N, the convolution ��� is given by:

�
� � ��

.fng/ D
nX

kD0
�.fkg/�.fn � kg/; n 2 N:
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This shows that the (linear) Fokker-Planck-Kolmogorov equation reads:

d

dt
�t D �ct

t � ��t
t � h�ct

t ; 1i ��t
t ; t 2 Œ0;T�:

Notice that, if the last step of the mean field game approach can be performed, in
other words, if the fixed point problem can be solved, then �t D ct and �t D �t and
the (linear) Fokker-Planck-Kolmogorov equation for the state distribution becomes
the nonlinear McKean-Vlasov equation:

d

dt
�t D �ct

t � �ct
t � h�ct

t ; 1i�ct
t ; t 2 Œ0;T�; (1.59)

which is exactly the finite horizon analog of the equation obtained in the literature
(see the Notes and Complements below) since we do not have entrance and exit of
agents at exponential random times.

1.7 Notes & Complements

The notion of Nash equilibrium in game theory goes back to the seminal works
by Nash [288] and [289]. Throughout the book, we consider game models with
finitely many players, and mathematical objects capturing the limits of features of
these models when the number of players grows without bound. In some sense,
the mean field game models we formulate and solve pertain to an infinite, though
countable, population of players. For a long time, economists have used alternative
models for which the set of players is a measurable space equipped with a nonatomic
probability measure. Even though we chose not to use this framework, we recognize
that it is an attempt to abstract stylized facts from the same finite player game
models which we study. The reader interested in Aumann’s theory of games with a
continuum of players is referred to [27, 28] and to Section 3.7 of Chapter 3.

We borrowed the idea of grounding the formulation of a mean field game problem
on the elementary Lemma 1.2 and Proposition 1.4 from P.L. Lions’ lectures [265]
as explained in Cardaliaguet’s presentation [83]. These simple results provide a
rigorous foundation for the fundamental assumptions we make on the coefficients
of a mean field game. These sources also prompted us to introduce early the notion
of potential game and its connections to centralized decision making in lieu of Nash
equilibrium. This idea will be revisited several times in Chapter 2 and Chapter 6 for
example, with increasingly more sophisticated models and analysis tools.

The discussion of the model “When does the meeting start?” given in the text is
borrowed from [189]. In fact, the deterministic and stochastic one period examples,
as well as the stochastic differential game models used to illustrate the management
of exhaustible resources and the economic growth model are all borrowed from the
survey [189] by Guéant, Lasry and Lions. We chose not to include a discussion of
the Mexican wave (fixture of most crowd behaviors at soccer games all over the
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world) even though it is one of P.L. Lions’ favorite examples of mean field games.
It is explained in detail in [189].

Early game theoretic models for the banking system are due to Bryant [73] and
Diamond and Dybvig whose fundamental paper [136] initiated a wave of interest
leading to a series of papers with increasing realism. In their original analysis,
Diamond and Dybvig proposed a banking model in the form of a game played
by depositors. A distinctive feature of the model is that there always exist at least
a good equilibrium and a bad equilibrium. Many generalizations were proposed,
for example to model random returns. The first of the two models discussed in
the text is in this line of research, analyzing a static model of the inter-banking
system. It is borrowed from the paper [319] of Rochet and Vives. There, the authors
use the methodology of global games proposed by Morris and Shin in [286], and
the differences in opinions among investors to prove existence and uniqueness of a
Nash equilibrium. They go on to analyze the economic and financial underpinnings
of bank runs and propose a benchmark for the role of lenders of last resort. We gave
a detailed account of their set-up because of the mean field game nature of their
approach, despite the fact that their model is de facto static. The theory of games
with strategic complementarities goes back to the original works [339] of Vives and
[284] of Milgrom and Roberts. An application to games with mean field interactions
can be found in the paper [8] by Adlakha and Johari.

The second model of bank run presented in the text ports the most important
stylized facts of the first model to a dynamic set-up in continuous time. It is based on
a diffusion model for the value of the assets of a bank, and for that reason, it is more
in line with the theoretical developments presented later in the text. It was inspired
by a lecture given by Olivier Gossner at a PIMS Workshop on Systemic Risk in
July 2014. This model builds on an earlier paper [197] by He and Xiong modeling
staggered debt maturities in continuous time. Section (Vol II)-7.2 of Chapter (Vol
II)-7 is devoted to the discussion and the solution of more general games of timing.

The toy model of systemic risk introduced in Subsection 1.3.1 is borrowed from
the paper [102] of Carmona, Fouque, and Sun to which we refer the interested reader
for the interpretation of the results in terms of systemic risk.This simple model is
remarkable because it can be used as a testbed for all the theoretical tools developed
in the text. It is solved explicitly in Chapter 2 to illustrate the differences between
open loop and closed loop equilibria for finite player games. It is used in Chapter 3
as an example for which the limit N ! 1 of large games can be performed leading
to a solvable mean field game in the limit. It will also be revisited in Chapter (Vol
II)-4 to illustrate how the master equation can appear in the limit of finite player
games with a common noise. The model was recently extended in [101] to include
delay in the control in order to make the model more realistic and more in line with
the way interbank borrowing and lending actually occur.

Price impact models as mean field games have been considered by Gomes and
Saude in [182] where the problem is approached from a PDE perspective, and
by Carmona and Lacker in [103] where it is treated within the framework of the
weak formulation. The model presented in Subsection 1.3.2 is borrowed from a
technical report by Aghbal and Carmona where it is treated by adapting the tools
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developed later on in the text. The model of price impact used in the text is due
to Almgren and Chriss. See for example [18]. It is relatively easy to calibrate it to
high frequency data, hence its popularity among practitioners. As we see in the
solution proposed in Subsection 4.7.1 of Chapter 4, this model of price impact
can lead to tractable solutions, hence its popularity in the financial engineering
literature. Carmona and Webster proved in [107] that the self-financing condition of
the classical Black-Scholes theory is not always appropriate to account for frictions
in high frequency trading data. They propose an alternative including price impact
and adverse selection and it would be interesting to solve the global equilibrium
problem in the mean field set-up they propose in [108].

Games for which the interaction between the players occurs through the distri-
bution of the controls of the players have been called extended mean field games by
Gomes and Saude in [182]. They will be studied in Section 4.6 of Chapter 4.

The first macro-economic growth model presented in Subsection 1.4.1 is bor-
rowed from [189]. The discussion of the second growth model of Subsection 1.4.2
is patterned after the original paper [241] by Krusell and Smith where the authors
propose a formulation which leads to approximations and computational algorithms
for approximate solutions. We learned about the version of Aiyagari’s model
presented in Subsection 1.4.3 from a talk by B. Moll at the Institute of Mathematics
and its Applications, Minneapolis MA in November 2012. This continuous time
version of the original discrete time model proposed by Aiyagari is also discussed
in the review [1] by Achdou, Buera, Lasry, Lions, and Moll of partial differential
equation models in macroeconomics. There, it is stated that a mathematical solution
of such a model is not known. We shall provide such a mathematical solution in
Subsection 3.6.3 of Chapter 3 together with numerical illustrations of the properties
of the solution.

The mean field game model for exhaustible resources presented in Subsection
1.4.4 is borrowed from [189]. The last subsection is adapted from a recent technical
report [113] by Chan and Sircar.

Our presentation of the deterministic model of flocking is based on the original
paper [126] of Cucker and Smale. Soon after the publication of the original
treatment [126], Cucker and Mordecki proposed in [125] a generalization in which
the dynamics of the velocities are perturbed by a mean zero stationary Gaussian
process. In [125], the authors compute a lower bound for the probability that the
velocities eventually align in terms of the various parameters of the model. The idea
of using a mean field game model to formulate the flocking problem as the search
for equilibrium in a stochastic game model with mean field interactions is due
to Nourian, Caines, and Malhamé in [285]. In this paper, the authors recognize
that the case ˇ D 0 leads to a linear quadratic mean field game which could be
solved, and they suggest that an asymptotic expansion for ˇ small could provide a
reasonable approximation to the solution. In this book, we solve the particular case
ˇ D 0 in Section 2.4 of Chapter 2 explicitly for a finite number of birds, and in
Section 3.6.1 of Chapter 3 in the mean field game limit when the number of birds
increases without bound. Furthermore, we give a theoretical solution and numerical
illustrations for the general case ˇ ¤ 0 in Section 4.7.3 of Chapter 4.
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The models of crowds behaviors mentioned briefly in Subsection 1.5.3 will be
used to show how versatile the mean field game models can be in the analysis
of large populations. They provide a rigorous mathematical framework to try to
understand complex phenomena like schooling, flocking, hurdling, etc. on the
basis of the rational behavior of individuals optimizing their own interest within
a large population. Our models of pedestrian dynamics with congestion effects were
inspired by the paper [253] of Lachapelle and Wolfram who provided numerical
evidence of the explanatory power of these models.

The idea of using a mean field game model for the analysis of the exit from
a room in the presence of congestion is borrowed from the paper [5] by Achdou
and Laurière who provided numerical illustrations of the expected properties of the
model at the end of a paper actually devoted to the optimal control of McKean-
Vlasov dynamics which we study in Chapter 6. We propose a theoretical solution as
well as numerical illustrations of the properties of the solutions in Subsection 4.7.2
of Chapter 4.

In an effort to model trading on a limit order book, Lachapelle, Lasry, Lehalle,
and Lions introduced in [251] a simple model for the trade-off between trading as
slow as possible to avoid being detected and becoming a prey, and trading too fast
and moving the price in an unfavorable direction, a form of adverse selection. In
[251], the authors propose two different models. The most sophisticated of these
models involves a mix of heterogenous agents: on one hand, they consider insti-
tutional investors trading large quantities, and on the other hand, High Frequency
Traders (HFTs) faster than the institutional investors, using smaller orders, showing
patience if needed, and relying on Smart Order Routing (SOR) algorithms. For the
sake of simplicity, we only discussed the simpler of their models, dealing only
with a homogenous class of agents interested in selling only, the other class of
market participants, characterized as impatient buyers, being modeled exogenously.
More recently, Gayduk and Nadtochiy proposed in [172] a mean field game model
encapsulating some of the features of the set-up proposed by Lachapelle, Lasry,
Lehalle, and Lions, while deriving an endogenous construction of the limit order
book in the spirit of Carmona and Webster in [108].

We chose a model of cyber-security introduced recently by Kolokoltsov and
Bensoussan in [235] to motivate the analysis of games for which the state of the
system can only take finitely many values. While the book is almost exclusively
devoted to stochastic differential games, the last couple of examples of this chapter
provide the motivation for the analysis of stochastic games with a discrete state
space. The mathematical analysis of these models will be presented in Section 7.2 of
Chapter 7 where we show how to adapt the results and tools developed in the book,
including the master equation, to the special class of continuous-time dynamic-game
models exhibiting mean field interactions. The extension to mean field games with
major and minor players will be featured in Subsection (Vol II)-7.1.9 of Chapter (Vol
II)-7. An early model of computer network security can be found in the work of Lye
and Wing [268]. The interested reader may also want to look at a more abstract
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network model in the conference proceedings [290] by Nguyen, Alpcan, and Basar
where the authors frame the problem as a zero-sum game between an attacker and
the defender of the network.

Our discussion of the propagation of knowledge in Subsection 1.6.3 was inspired
by the work of Duffie, Giroux, Malamud, and Manso, see for example [144–147]
which are based on a form of continuous law of large numbers proven in [148]. In
keeping with the spirit of this first chapter, we used slightly different assumptions
to formulate a finite player game with mean field interactions. However, in order
to remain faithful to the original works of Duffie et al. we use N as the state space
of the system and as a result, model the idiosyncratic sources of random shocks by
Poisson processes, which will prevent us from applying directly the main existence
results of the book to these models.

In a couple of interesting papers, [199] and [200], Horst discusses stochastic
games with a form of weak interaction between players. There, the author includes
peer and neighborhood effects in a dynamic analysis of equilibrium, very much
in the spirit of an earlier work of Bisin, Horst, and Özgür of 2002 [59] eventually
published in 2006, in which the authors proved the existence of rational expectations
equilibria of random economies with locally interacting agents under the assumption
that the interaction between different players is weak. The weak interaction
approach suggested in this paper provides a unified framework for integrating
strategic behavior into dynamic models of social interactions. However, the weak
interactions of the models considered in this book are of a different nature. They
are defined in an asymptotic sense when the number of players tends to 1. This
is different from Horst’s notion of weak interaction for which the weakness of
the interaction is localized to the neighbors of the given agent. Other examples
of application may be found in the survey by Djehiche, Tcheukam Siwe and
Tembine [137].



2Probabilistic Approach to Stochastic
Differential Games

Abstract

This chapter offers a crash course on the theory of nonzero sum stochastic
differential games. Its goal is to introduce the jargon and the notation of this
class of game models. As the main focus of the text is the probabilistic approach
to the solution of stochastic games, we review the strategy based on the stochastic
Pontryagin maximum principle and show how BSDEs and FBSDEs can be
brought to bear in the search for Nash equilibria. We emphasize the differences
between open loop and closed loop or Markov equilibria and we illustrate the
results of the chapter with detailed analyses of some of the models introduced in
Chapter 1.

2.1 Introduction and First Definitions

Despite the fact that we discussed in Chapter 1 a couple of examples of one and
two period games, the book is devoted to continuous time models. As before, we
consider N players, and we label them by the integers 1; � � � ;N. They act at time
t on a system whose state Xt they influence through their actions. As the title of
the chapter suggests, the dynamics of the state of the system are given by an Itô
stochastic differential equation. As can be seen from the examples introduced in
Chapter 1, some of the state dynamics appearing naturally in these examples are not
easily amenable to stochastic differential equations. For this reason, we devote an
entire section to games with finite state spaces in Chapter 7. Moreover, we shall
add remarks when appropriate, to indicate how to handle more general Markov
dynamics, possibly including jumps, and we shall give precise references in the
Notes & Complements sections at the end of all the chapters.
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As explained in Remark 2.1 below, in order to avoid alternating between he, his, : : :
and she, her, : : :, we decided to make the players genderless and use the pronouns
it, its, : : : throughout the book. This will sound strange at times but in the end, the
discussions of players’ behaviors will be consistent.

We assume that the Itô process used to specify the state dynamics is driven by
an M-dimensional Wiener process W D .Wt/06t6T defined on a probability space
.˝;F ;P/, F D .Ft/06t6T being the completion of the natural filtration of the
Wiener process.

We denote by A1; � � � ;AN the sets of actions that players 1; � � � ;N can take
at any point in time. The sets Ai are typically compact metric spaces or subsets
of an Euclidean space, say Ai � R

ki , and we denote by Ai D B.Ai/ their
Borel � -fields, where, throughout the book B.E/ denotes the Borel � -field on any
metric space .E; d/. We use the notation A

.N/ for the set of admissible strategy
profiles. The elements ˛ of A

.N/ are N-tuples ˛ D .˛1; � � � ;˛N/ where each
˛i D .˛i

t/06t6T is a progressively measurable Ai-valued process. Most often, these
individual strategies will have to satisfy extra conditions (e.g., measurability and
integrability constraints). These conditions change with the application. In most of
the cases considered in this book, we assume that these constraints can be defined
player by player, independently of each other. To be more specific, we often assume
that A.N/ D A1 � � � � � AN where, for each i 2 f1; � � � ;Ng, Ai is the space of
control strategies which are deemed admissible to player i, irrespective of what the
other players do. In most applications, Ai will be a space of Ai-valued progressively
measurable processes ˛i D .˛i

t/06t6T , either bounded, or satisfying an integrability
condition such as E

R T
0

j˛i
t j2dt < 1. We will also add measurability conditions

specifying the kind of information each player can use in order to choose its course
of action at any given time. Finally, we shall use the notation A.N/ D A1 � � � � � AN

for the set of actions ˛ D .˛1; � � � ; ˛N/ available to all the players at any given time.
For each choice of strategy profile ˛ D .˛t/06t6T 2 A

.N/, it is assumed that the
time evolution of the state X D X˛ of the system satisfies:

(
dXt D B.t;Xt; ˛t/dt C˙.t;Xt; ˛t/dWt 0 6 t 6 T;

X0 D x0;
(2.1)

for some x0 2 R
D, where .B; ˙/ W Œ0;T��˝ � R

D � A.N/ ! R
D � R

D�M satisfies:

Assumption (Games).

(A1) For all S 2 Œ0;T�, the function Œ0; S� �˝ � R
D � A.N/ 3 .t; !; x; ˛/ 7!�

B; ˙
�
.t; !; x; ˛/ is B.Œ0; S�/ ˝ FS ˝ B.RD/ ˝ B.A.N//=B.RD/ ˝

B.RD�M/-measurable.
(A2) There exists a constant c > 0 such that, for all t 2 Œ0;T�, ! 2 ˝,

x; x0 2 R
D and ˛; ˛0 2 A.N/,

(continued)
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jB.t; !; x; ˛/ � B.t; !; x0; ˛0/j C j˙.t; !; x; ˛/ �˙.t; !; x0; ˛0/j
6 c

�jx � x0j C j˛ � ˛0j�:

(A3) For any ˛ 2 A
.N/, it holds E

Z T

0

�jB.t; 0; ˛t/j2 C j˙.t; 0; ˛t/j2
�
dt < 1.

As usual, we omit ! from the notation whenever possible. Nevertheless, notice
that in many cases, the coefficients B and ˙ will be independent of !, and as a
result, be deterministic functions on Œ0;T��R

D �A.N/. Notice also that, in (2.1), the
initial condition X0 may be assumed to be random, in which case the filtration F has
to be enlarged accordingly: Of course, X0 is F0-measurable and is thus independent
of W; most of the time, it is assumed to be square-integrable. Hence (2.1) is uniquely
solvable and its solution satisfies EŒsup06t6T jXtj2� < 1.

Remark 2.1 Gender of the Players. This book is about mathematical models,
their theories and solutions. Practical applications are used as motivations for the
introduction of models, and numerical results are given as illustrations of the power
and the limitations of the methods developed in the book. Given this emphasis, we do
not feel that political correctness should be an issue forcing us to choose the way we
address the individual players, as he or she. Clearly, their biological genders have
no bearing on what we are interested in, and keeping track of grammatical genders
can only be a hindrance and a distraction. So as already stated in the warning at the
beginning of this introductory section, we decided that, for the sake of definiteness,
we shall refer to the individuals involved in the game models we study as neutral
from a grammatical standpoint. As a result, we shall treat the players as genderless.

Remark 2.2 Frequently Used Notation. Given a complete filtered probability
space .˝;F ;F D .Ft/06t6T ;P/, for each integer n > 1, we denote by H

2;n the
space:

H
2;n D

n
Z 2 H

0;n W E

Z T

0

jZsj2ds < 1
o
;

where H
0;n stands for the collection of all R

n-valued progressively measurable
processes on Œ0;T�. The set H2;n is a Hilbert space for the inner product obtained by
polarization of the double integral appearing in the definition. We shall also denote
by S

2;n the space of all the continuous processes S D .St/06t6T in H
0;n such that

EŒsup06t6T jStj2� < C1, the square root of this quantity providing S
2;n with a norm

which we shall use repeatedly in the sequel.
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Information Structures and Admissible Actions and Strategies
As we already saw in Chapter 1, the information structure of a stochastic game
can be very complex as each player may have its own filtration F

i D .F i
t /06t6T

formalizing the information it has access to at time t in order to choose its action
˛i

t 2 Ai. In general, there is no reason why different players should have access to
the same information. The search for solutions and the analytical tools which can
be brought to bear in this search depend strongly upon the kind of information each
player has access to at any given time, and which subset of this information it is
allowed to use to take action.

The subtleties introduced by the interaction and competition between players
make game theory much more intricate than the theory of stochastic control. Instead
of aiming at the greatest generality, we shall limit ourselves to the definitions needed
for the models we treat in the book.

2.1.1 A Typical Set-Up for Stochastic Differential Games

Quite often, the state of the system is the mere aggregation of private states of
individual players, so that Xt D .X1t ; � � � ;XN

t / where Xi
t 2 R

di can be interpreted as
the private state of player i 2 f1; � � � ;Ng. Here D D d1C� � �CdN and, consequently,
R

D D R
d1 �� � ��R

dN . Moreover, the dynamics of the private states will be assumed
to be given by stochastic differential equations driven by separate Wiener processes
Wi D .Wi

t /06t6T which are most often assumed to be independent of each other,
even though we already saw many examples in Chapter 1 for which this assumption
failed to hold. For us, the typical example for which this assumption fails will be
given by models with random shocks which are common to all the players. We shall
identify these examples as games with a common noise. We focus on these models
in Chapters (Vol II)-2 and (Vol II)-3. Typically for these models, we assume that the
state dynamics are of the form:

dXi
t D bi.t;Xt; ˛t/dt C � i.t;Xt; ˛t/dWi

t C �0.t;Xt; ˛t/dW0
t ;

for 0 6 t 6 T and i D 1; � � � ;N, where for i D 0; � � � ;N, the .NC1/ processes Wi D
.Wi

t /06t6T are mi-dimensional independent Wiener processes giving the components
of W D .Wt/06t6T , and where:

.bi; � i/ W Œ0;T� �˝ � R
D � A.N/ ! R

di � R
di�mi ;

for i 2 f1; � � � ;Ng, satisfy the same assumptions as before, and �0 satisfies the
same assumptions as the .� i/16i6N’s. The Wiener processes Wi with i D 1; : : : ;N
represent idiosyncratic random shocks while W0 is used to model what we call the
common noise. It is important to notice that, even in the absence of a common noise
(i.e., when �0 � 0), these N dynamical equations are coupled by the fact that all the
private states and all the actions enter into the coefficients of these N equations.
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The common noise models described above are not the most general (see the
discussion in the Notes & Complements at the end of Chapter 2 in Volume II).
They are the ones we introduce in Chapter (Vol II)-2 and solve in Chapter (Vol II)-3
despite the fact that, as we saw in Chapter 1, and especially in the section on macro-
economic models, some of the instances of common noise are not covered by this
additive intervention of the common noise term.

The popularity of the formulation described in this subsection is due to the ease
with which we can define the information structures and admissible strategy profiles
of some specific games of interest. For example, in a game where each player
can only use the information of the state of the system at time t when making a
strategic decision at that time, the admissible strategy profiles will be of the form
˛i

t D � i.t;Xt/ for some deterministic function � i which we often call a feedback
function. These strategies are said to be closed loop in feedback form, or Markovian.
Moreover, if the information which can be used by player i at time t can only depend
upon the state of player i at time t, then the admissible strategy profiles will be of
the form ˛i

t D � i.t;Xi
t/. Such strategies are usually called distributed.

2.1.2 Cost Functionals and Notions of Optimality

Under assumption Games, we assume further that each player faces instantaneous
and running costs. So for each i 2 f1; � � � ;Ng, player i has cost coefficients:

(A4) A running cost function f i W Œ0;T� � ˝ � R
D � A.N/ ! R such that,

for all S 2 Œ0;T�, the function Œ0; S� �˝ � R
D � A.N/ 3 .t; !; x; ˛/ 7!

f i.t; !; x; ˛/ is B.Œ0; S�/˝ FS ˝ B.RD/˝ B.A.N//=B.R/-measurable.
(A5) A terminal cost function gi W ˝ � R

D ! R which is assumed to be
FT ˝ B.RD/=B.R/-measurable

Both (A4) and (A5) will be regarded as part of assumption Games.
From this, we define its overall expected cost as given by a cost functional Ji

defined for all admissible strategy profiles ˛ D .˛1; � � � ;˛N/ 2 A
.N/ by:

Ji.˛/ D E

� Z T

0

f i.s;Xs; ˛s/ds C gi.XT/

�
; (2.2)

where we implicitly assume that the expectation in the above right-hand side is well
defined. For instance so is the case if the cost coefficients are at most of quadratic
growth in x, uniformly in the other variables, and, for any ˛ 2 A

.N/,

E

� Z T

0

jf i.t; 0; ˛t/jdt

�
< 1:
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Notice that, in the general situation considered here, the cost to a given player
depends upon the strategies used by the other players indirectly through the values
of the state Xt over time, but also directly as the specific actions ˛j

t taken by the other
players may appear explicitly in the expression of the running cost f i of player i.

While the notion of Pareto optimality is natural in problems of optimal allocation
of resources and, as a result, very popular in the economic literature and in
operations research applications, as explained in Chapter 1, we shall use the notion
of optimality associated with the concept of Nash equilibrium. For the sake of
convenience, we repeat a definition already stated in Chapter 1.

Definition 2.3 A set of admissible strategy profiles Ǫ D . Ǫ 1; � � � ; Ǫ N/ 2 A
.N/ is

said to be a Nash equilibrium for the game if:

8i 2 f1; � � � ;Ng; 8˛i 2 Ai; Ji. Ǫ / 6 Ji.˛i; Ǫ �i/; (2.3)

where .˛i; Ǫ �i/ stands for the strategy profile . Ǫ 1; � � � ; Ǫ i�1;˛i; Ǫ iC1/, in which the
player i chooses the strategy ˛i while the others, indexed by j 2 f1; � � � ;Ng n fig,
keep the original ones Ǫ j.

The existence and uniqueness (or lack thereof) of Nash equilibria, as well as
the properties of the corresponding optimal strategy profiles, strongly depend upon
the information structures available to the players, and the types of actions they are
allowed to take. In particular, the above definition of a Nash equilibrium can only
make sense once we have properly defined the nature of the frozen strategies Ǫ �i

in the Nash condition: it is indeed necessary to specify how the players compute
(we could even say “update”) their strategies when one of them uses ˛i instead of
Ǫ i. So rather than referring to a single game with several information structures and
admissible strategy profiles for the players, we shall often talk about models, e.g.,
the open loop model for the game or the closed loop model, or even the Markovian
model for the game. We give precise definitions below.

Open Loop Nash Equilibria
Definition 2.4 If the strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ 2 A

.N/ satisfies the
conditions of Definition 2.3, without further restriction on the strategy ˛i and under
the prescription that Ǫ �i is the process with the same trajectories as the strategy
profile . Ǫ 1; : : : ; Ǫ i�1; Ǫ iC1; : : : ; Ǫ N/, even after player i changes strategy from Ǫ i

to ˛i, then we say that Ǫ is an open loop Nash equilibrium for the game, or
equivalently, a Nash equilibrium for the open loop game model.

This arcane definition is best understood when the filtration F is generated by the
Wiener process W, except possibly for the presence of independent events in F0.
In this case, the strategy profiles used in an open loop game model are given by
controls of the form:
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˛i
t D � i.t;X0;WŒ0;t�/; (2.4)

for some deterministic (measurable) functions �1; � � � ; �N , where we use the
notation WŒ0;t� for the path of the Wiener process between time 0 and time t, regarded
as a random variable with values in the space C.Œ0; t�IRM/ of continuous functions
from Œ0; t� to R

M , and it is enlightening to express the above definition in terms of the
functions �` instead of the actual strategies ˛`. Indeed, the content of the definition
of an open loop Nash equilibrium given above can be restated in the following way:

The strategy profile Ǫ D .. Ǫ 1t /06t6T ; � � � ; . Ǫ N
t /06t6T / where each strategy Ǫ ` is of

the form Ǫ `t D O�`.t;X0;WŒ0;t�/ for some measurable function O�` as above, is an open
loop Nash equilibrium if each time a player i 2 f1; � � � ;Ng uses a different strategy
˛i given by a function �i possibly different from O�i while the other players keep using
the same functions O�j for j 6D i, then this player i is not better off in the sense that
Ji. Ǫ / 6 Ji.˛i; Ǫ �i/.

A similar definition can be used when the functions O�` and � i fail to depend upon
the Wiener process W. This leads to the notion of deterministic open loop Nash
equilibrium. In some sense, this merely amounts to redefining the sets Ai and A

.N/

of admissible controls and strategy profiles as sets of deterministic processes, i.e.,
functions which do not dependent upon W.

Definition 2.5 If the strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ 2 A
.N/ satisfies the

conditions of Definition 2.3 with the restriction that the strategies Ǫ j, for j D
1; � � � ;N, and ˛i are deterministic functions of time and the initial state, then we
say that Ǫ is a deterministic open loop Nash equilibrium for the game.

To be more specific, in the search for a deterministic equilibrium, the strategy
profiles are given by controls of the form:

˛i
t D � i.t;X0/;

for deterministic measurable functions �1; � � � ; �N . In other words, in this defini-
tion, the tuple Ǫ D . Ǫ 1; � � � ; Ǫ N/ in (2.3) reads as . O�1.t;X0/; � � � ; O�N.t;X0//, while
.˛i; Ǫ �i/ has the form:

�
� i.t;X0/; O��i.t;X0/

�

D � O�1.t;X0/; � � � ; O� i�1.t;X0/; � i.t;X0/; O� iC1.t;X0/; � � � ; O�N.t;X0/
�
:

Definitions 2.4 and 2.5 are consistent with the definitions of open loop equilibria
used in the standard literature on deterministic games. They accommodate models
with and without sources of randomness.
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Closed Loop Nash Equilibria
In contrast with (2.4), the strategy profiles used in the search for a closed loop
equilibrium are given by controls of the form:

˛i
t D � i.t;XŒ0;t�/; (2.5)

for some deterministic (measurable) functions �1; � � � ; �N , X D .Xt/06t6T denoting
the solution of (2.1) and XŒ0;t� being regarded as a random variable with values in
C.Œ0; t�IRD/.

So, the expression ˛i
t D � i.t;XŒ0;t�/ is merely an implicit equation for ˛i

t , as
X then depends upon ˛i itself. In that case, X has to be found as the solution of
a stochastic differential equation with random and path-dependent coefficients. If
one restricts oneself to functions � i that are Lipschitz in the path argument with
respect to the uniform topology, uniformly in t, and that are locally bounded, then
the stochastic differential equation for X is well posed under assumption Games.

This leads to the following definition of a Nash equilibrium.

Definition 2.6 A strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ of the form Ǫ `t D O�`.t; OXŒ0;t�/
for measurable functions O�` for ` D 1; � � � ;N is said to be a closed loop Nash
equilibrium for the game if, for every i 2 f1; � � � ;Ng and any feedback function � i,
one has Ji. Ǫ / 6 Ji.˛/ whenever:

• Ǫ D . Ǫ 1; � � � ; Ǫ N/ with Ǫ i
t D O� i.t; OXŒ0;t�/ where OX D . OXt/06t6T is the

solution of the state equation (2.1) in which we use the controls ˛t D
. O�1.t; OXŒ0;t�/; � � � ; O�N.t; OXŒ0;t�//;

• ˛ D .˛1; � � � ;˛N/ with ˛i
t D � i.t;XŒ0;t�/ and ˛j

t D O� j.t;XŒ0;t�/ for j ¤ i, where
X D .Xt/06t6T is now the solution of the same state equation (2.1) in which we
use the control ˛t given by:


 O�1.t;XŒ0;t�/; � � � ; O� i�1.t;XŒ0;t�/;� i.t;XŒ0;t�/;

O� iC1.t;XŒ0;t�/; � � � ; O�N.t;XŒ0;t�//:

This definition may seem rather cumbersome and pedantic, but we chose to spell
out the details needed to understand the subtle differences between open and closed
loop equilibria.

Important Differences.
It is crucial to realize the major differences between the notions of open and closed
loop Nash equilibria. When checking that a strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ is
an open loop equilibrium, the fact that a given player i changes its strategy from
Ǫ i to ˛i does not affect the strategies Ǫ j for j ¤ i of the other players. This comes
from the fact that the open loop controls Ǫ j

t are functions of the trajectories of the
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Wiener process and, as long as j ¤ i, they do not change when player i changes its
own function � i of the Wiener process. Even if this change affects the state of the
system, it does not change the strategies Ǫ j of the other players.

However, things are different in the case of closed loop equilibria. Indeed, if
player i changes its strategy from Ǫ i D . O� i.t;XŒ0;t�//06t6T to a new control strategy
˛i D .� i.t;XŒ0;t�//06t6T , this change is likely to affect the trajectory of the state of
the system, and even if the other players j ¤ i still use the same feedback functions
O� j, their controls Ǫ j D . O� j.t;XŒ0;t�//06t6T will change because of the changes in the
value of the state!

To put it another way, the prescription that the players other than i keep using the
same feedback functions O��i to compute their controls allows their controls to take
into account the new state of the system if player i changes its strategy.

Also, notice that writing ˛i
t D � i.t;XŒ0;t�/ supposes that player i has perfect

observation of the state of the whole system. In many practical applications, it
has only partial observation, meaning that player i can only observe (possibly
indirectly) the states of some of the players in the system.

Finally, we give the definition of closed loop Nash equilibria in feedback form.
In the search for a closed loop equilibrium in feedback form, the strategy profiles
are given by controls of the form:

˛i
t D � i.t;X0;Xt/; (2.6)

for some deterministic (measurable) functions �1; � � � ; �N . Similar to Definition 2.6,
we thus have the following definition.

Definition 2.7 A strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ of the form Ǫ `t D O�`.t;X0; OXt/

for measurable feedback functions O�` for ` D 1; � � � ;N is said to be a closed loop
Nash equilibrium in feedback form for the game if, for every i 2 f1; � � � ;Ng and any
feedback function � i, one has Ji. Ǫ / 6 Ji.˛/ if

• Ǫ D . Ǫ 1; � � � ; Ǫ N/ with Ǫ i
t D O� i.t;X0; OXt/ where OX D . OXt/06t6T is the solution of

the state equation (2.1) in which we use ˛t D . O�1.t;X0; OXt/; � � � ; O�N.t;X0; OXt//;
• ˛ D .˛1; � � � ;˛N/ with ˛i

t D � i.t;X0;Xt/ and ˛j
t D O� j.t;X0;Xt/ for j ¤ i, where

X D .Xt/06t6T is the solution of the same state equation (2.1) in which we use:

˛t D � O�1.t;X0;Xt/; � � � ; O� i�1.t;X0;Xt/;

� i.t;X0;Xt/; O� iC1.t;X0;Xt/; � � � ; O�N.t;X0;Xt/
�
:

The most important example of application of this notion of equilibrium concerns
the case of deterministic drift and volatility coefficients B and˙ , and cost functions
f i and gi. This case will be discussed in Subsection 2.1.4 treating Markovian
diffusions and we shall strengthen the notion of closed loop equilibrium in feedback
form into the notion of Markovian equilibrium.
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Remark 2.8 It is important to emphasize that in open loop models, when a player
makes its decisions, it may not be able to take into account the plays of its opponents
since its decision can only be a function of the history of the random shocks. On the
other hand, in closed loop models, past plays impact the values of the state, and
in that way, become part of the common knowledge of the players. Though less
realistic, open loop equilibria are more mathematically tractable than closed loop
equilibria. Indeed, players need not consider how their opponents would react to
deviations from the equilibrium path. With this in mind, one should expect that when
the impact of players on their opponents’ costs/rewards is small, open loop and
closed loop equilibria should be the same. It is often conjectured that this should
be the case for large games. We shall see instances of this claim at the end of the
chapter in the large N limit of the Linear Quadratic (LQ) models for flocking with
ˇ D 0, and for systemic risk introduced in Subsections 1.5.1 and 1.3.1 of Chapter 1.
More generally, we shall address this question in a more systematic way in Chapter
(Vol II)-6.

As a final remark on the definitions of Nash equilibria, we insist that the
interpretation stressed in Chapter 1 in terms of 1) a sequence of individual optimal
control problems to construct the best response function; 2) the search for fixed
points of this best response map, still holds in any of the cases discussed above.

2.1.3 Players’ Hamiltonians

For each player i 2 f1; � � � ;Ng, we define its Hamiltonian as the function Hi:

Œ0;T� �˝ � R
D � R

D � R
D�M � A.N/ 3.t; x; y; z; ˛/

7! Hi.t; x; y; z; ˛/ 2 R

(2.7)

defined by:

Hi.t; x; y; z; ˛/ D B.t; x; ˛/ � y„ ƒ‚ …
inner product of

state drift B
and covariable y

C trace Œ˙.t; x; ˛/�z�„ ƒ‚ …
inner product of
state volatility ˙
and covariable z

C f i.t; x; ˛/:„ ƒ‚ …
running cost
of player i

(2.8)

Pay attention that, at some point below, the inner product traceŒ˙.t; x; ˛/�z� in the
space of matrices is just denoted by ˙.t; x; ˛/ � z.

When the volatility is uncontrolled, namely when ˙ is independent of ˛, we
usually do not include the second term in the above right-hand side, and talk about
reduced Hamiltonian instead.
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The following definition is motivated by the generalization to stochastic differ-
ential games of the Hamilton-Jacobi-Bellman equation and the stochastic maximum
principle which we give below.

Definition 2.9 We say that the generalized Isaacs (minmax) condition holds if there
exists a function:

Ǫ W Œ0;T� � R
D � .RD/N � .RD�M/N 3 .t; x; y; z/ 7! Ǫ .t; x; y; z/ 2 A.N/

satisfying for every i 2 f1; � � � ;Ng, and for all t 2 Œ0;T�, x 2 R
D, y D .y1; � � � ; yN/ 2

.RD/N, and z D .z1; � � � ; zN/ 2 .RD�M/N:

Hi.t; x; yi; zi; Ǫ .t; x; y; z// 6 Hi
�
t; x; yi; zi; .˛i; Ǫ .t; x; y; z/�i/

�
; (2.9)

for all ˛i 2 Ai.

Notice that in this definition, the function Ǫ could be allowed to depend upon the
random scenario ! 2 ˝ if the Hamiltonians Hi did. In words, this definition says
that for each set of dual variables y D .y1; � � � ; yN/ and z D .z1; � � � ; zN/, for each
time t and state x at time t, and possibly random scenario !, one can find a set of
actions Ǫ D . Ǫ 1; � � � ; Ǫ N/ depending on these quantities, such that, if we fix N � 1

of these actions, say Ǫ�i, then the remaining one Ǫ i minimizes the i-th Hamiltonian
in the sense that:

Ǫ i 2 arg inf
˛i2Ai

Hi
�
t; x; yi; zi; .˛i; Ǫ�i/

�
; for all i 2 f1; � � � ;Ng: (2.10)

Once again, the notation can be lightened slightly when the volatility is not
controlled. Indeed, minimizing the Hamiltonian gives the same Ǫ as minimizing
the reduced Hamiltonian. In this case, the argument Ǫ of the minimization is
independent of z. So when the volatility is not controlled we say that the generalized
Isaacs (minmax) condition holds if there exists a function:

Ǫ W Œ0;T� � R
D � .RD/N 3 .t; x; y/ 7! Ǫ .t; x; y/ 2 A.N/

satisfying:

8i 2 f1; � � � ;Ng; t 2 Œ0;T�; x 2 R
D; y D .y1; � � � ; yN/ 2 .RD/N ; (2.11)

Hi.t; x; yi; Ǫ .t; x; y// 6 Hi.t; x; yi; .˛i; Ǫ .t; x; y/�i// for all ˛i 2 Ai;

where Hi stands for the reduced Hamiltonian of player i. Notice that we use the same
letter H for the full-fledged and for the reduced Hamiltonians. We are confident
that, at least at this stage, there is no possible confusion between the two because of
the context and the variables appearing as arguments. In particular, if there is only
one adjoint variable in H, then H should be the reduced Hamiltonian. Alternatively
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if there are more than one adjoint variable, then H should be understood as the
full-fledged Hamiltonian. Still, in the second volume, we shall make the distinction
between the two forms of Hamiltonians by writing H.r/ for the reduced Hamiltonian.

2.1.4 The Case of Markovian Diffusion Dynamics

In many applications of interest, the coefficients of the state dynamics (2.1) depend
only upon the present value Xt of the state instead of the entire past XŒ0;t� of the state
of the system, or of the Wiener process driving the evolution of the state. In this
case, the dynamics of the state are given by a diffusion-like equation:

dXt D B.t;Xt; ˛t/dt C˙.t;Xt; ˛t/dWt; 0 6 t 6 T; (2.12)

with initial condition X0 D x, and drift and volatility coefficients given by
deterministic functions:

.B; ˙/ W Œ0;T� � R
D � A.N/ 3 .t; x; ˛/ 7! .B.t; x; ˛/;˙.t; x; ˛// 2 R

D � R
D�M:

In this setting, it is natural to use strategy profiles which are deterministic functions
of time and the current value of the state to force the controlled state process to be a
Markov diffusion. Furthermore, we also assume that the running and terminal cost
functions f i and gi are Markovian in the sense that, like B and ˙ , f i and gi do not
depend upon the random scenario ! 2 ˝, but only upon the current values of the
state and the actions taken by the players, so that f i W Œ0;T��R

D �A.N/ 3 .t; x; ˛/ 7!
f i.t; x; ˛/ 2 R, and gi W RD 3 x 7! gi.x/ 2 R with (at most) quadratic growth. So in
the case of Markovian diffusion dynamics, the cost functional is of the form:

Ji.˛/ D E

� Z T

0

f i.t;Xt; ˛t/dt C gi.XT/

�
; ˛ 2 A

.N/; (2.13)

and we tailor the notion of equilibrium to this situation by considering closed loop
strategy profiles in feedback forms which provide simultaneously Nash equilibria
for all the games starting at times t 2 Œ0;T� (i.e., over the time periods Œt;T�) and all
the possible initial conditions Xt D x as long as they share the same state drift and
volatility coefficients B and ˙ , and cost functions f i and gi. More precisely:

Definition 2.10 A set �� D .��1; � � � ; ��N/ of N deterministic (measurable)
functions ��i W Œ0;T� � R

D ! Ai for i D 1; � � � ;N is said to be a Markovian
Nash equilibrium, or a Nash equilibrium for the Markovian game model, if for each
.t; x/ 2 Œ0;T� � R

D, the strategy profile ˛� D .˛�1; � � � ;˛�N/ 2 A
.N/ defined for

s 2 Œt;T� by ˛�i
s D ��i.s;Xt;x

s / where Xt;x D .Xt;x
s /t�s�T is the unique solution of the

stochastic differential equation (which is implicitly required to be well-posed):

dXs D B
�
s;Xs; �

�.s;Xs/
�
ds C˙

�
s;Xs; �

�.s;Xs/
�
dWs; t � s � T;
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with initial condition Xt D x, satisfies the conditions of Definition 2.3 with:

• the restriction that the strategy ˛i is also given by a deterministic function � i on
Œt;T� � R

D,
• the prescription that .˛i; Ǫ �i/ in (2.3) uses the functions � i and .��j/16j6Di6N.

The strategy profiles used in the above definition are called Markovian strategy
profiles and the deterministic functions �� and � i feedback functions. Extra
regularity assumptions on the functions �� and � i may be needed for the stochastic
differential equations giving the dynamics of the controlled state to have a unique
strong solution. Under assumption Games, the coefficients B and ˙ are Lipschitz
in .x; ˛/ uniformly in t 2 Œ0;T�, so that, assuming that the feedback function
�� is locally bounded and Lipschitz in x uniformly in t is enough. However in
some cases, requiring that the feedback functions are Lipschitz continuous may
be an overkill somehow. Indeed, using the Markovian nature of the dynamics, the
stochastic differential equation for X is known to be well posed, regardless of the
smoothness of ��, when coefficients are bounded and the volatility is Lipschitz-
continuous, uniformly nondegenerate and uncontrolled. We shall use this fact in
Chapter (Vol II)-6 in order to identify an instance of uniqueness for Markovian
Nash equilibria in Proposition (Vol II)-6.27.

We shall still use the same notation (2.8) for the players’ Hamiltonians. However,
their roles and their interpretations will be slightly different than in the search
for open loop Nash equilibria. Indeed, using Markovian strategy profiles instead
of merely state-insensitive adapted processes for controls will dramatically affect
the dependence upon the state variable x. In order to illustrate this last point, we
abandon momentarily the notation ˛ for the control processes, and we use the
notation � D .�1; � � � ; �N/ for deterministic functions � i W Œ0:T� � R

D ! Ai to
emphasize the Markovian nature of the strategy profiles. The controlled dynamics
of the state X D X˛ solve the Markovian stochastic differential equation:

dXt D B.t;Xt; �.t;Xt// dt C˙.t;Xt; �.t;Xt// dWt:

Hence, the state of the system is a Markov process with infinitesimal generator L�
defined by:

L�t D 1

2

DX

p;qD1
A�pq.t; x/

@2

@xp@xq
C

DX

pD1
B�p .t; x/

@

@xp
;

with, at least when the components of the Wiener processes W are independent,

B�p .t; x/ D Bp.t; x; �.t; x//;
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and

A�pq.t; x/ D
mX

`D1
˙p`.t; x; �.t; x//˙q`.t; x; �.t; x//:

Let us assume momentarily that the Markovian strategy profile �� D .��i/iD1;��� ;N
is a Markovian Nash equilibrium. Being a fixed point of the best response function,
the Markovian control ��i of player i, for each fixed i 2 f1; � � � ;Ng, minimizes
Ji.� i; ���i/ over Markovian controls � i. So if we assume that the Markovian
strategy profiles ���i are frozen, we can think of ��i as the solution of a standard
stochastic control problem. We discuss the consequences of this fact in light of the
stochastic maximum principle in Subsection 2.2.2 below, but for the time being, we
review its implications in terms of the standard analytic approach to the control of
Markovian diffusions based on the solution of Partial Differential Equations (PDEs).

The value function Vi of player i is defined as:

Vi.t; x/ D inf
˛i2Ai

E

� Z T

t
f i

�
s;Xs; .˛

i
s; �

��i.s;Xs//
�
ds C gi.XT/

ˇ̌
Xt D x

�
: (2.14)

It depends upon the feedback functions ���i of the other players. It is expected to
satisfy the Hamilton-Jacobi-Bellman (HJB) equation:

@tV
i C Li��

t; x; @xVi.t; x/; @2xxVi.t; x/
� D 0; (2.15)

where the operator symbol L�i is defined by:

Li�.t; x; y; z/ D inf
˛2Ai

Li.t; x; y; z; ˛/

and the function Li by:

Li.t; x; y; z; ˛/ D f i
�
t; x; .˛; ���i.t; x//

� C y � B
�
t; x; .˛; ���i.t; x//

�

C 1

2
trace

�
z˙

�
t; x; .˛; ���i.t; x//

�
˙

�
t; x; .˛; ���i.t; x//

��	
:

The HJB equation (2.15) does not stand on its own since the N � 1 feedback
functions ���i enter the definition of the operator symbol L�i. Indeed, the fact
that a Nash equilibrium is a fixed point of the best response map is the source
of intricate dependencies between the optimal controls of the individual players,
creating strong couplings between these HJB equations. In many applications of
interest, the equilibrium feedback functions ��i are given in terms of the gradients
@xVj.t; x/ and possibly of the Hessians @2xxVj.t; x/ of the individual players’ value
functions. In particular, we shall study examples for which ��j.t; x/ D �@xVj.t; x/,
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or a simple function of the gradient of V . In these cases, the value functions
.Vi/iD1;��� ;N appear as the solution of a system of N strongly coupled HJB equations,
though very difficult to solve in most cases.

Notations. Throughout the book, gradients of scalar valued functions will be
regarded, when needed, as column vectors. Derivatives of vector valued functions
will be regarded as matrices, the number of lines being given by the dimension of
the arrival vector space and the number of columns being given by the number of
directions in the differentiation. Hence, if v W R

d ! R, @xv D .@xiv.x//16i6d is
regarded as d-dimensional column vector, while, if v D .v1; � � � ; vn/ W Rd ! R

n,
n > 2, @xv D .@xjv

i.x//16i6n;16j6d is regarded as a matrix of dimension n � d.

Uncontrolled Volatilities
We now argue that the fact that the feedback function ��i is a function of @xV
happens often when the volatility ˙ is not controlled, in which case the operator
symbol Li is, up to the second order term, identical to the reduced Hamiltonian
Hi of player i. So when the second order term is independent of the controls, it
is equivalent to search for a minimizer of Li or of Hi. Consequently in this case,
the HJB equation (2.15) can be equivalently written using the minimized reduced
Hamiltonian H�i:

@tV
i.t; x/C 1

2
trace

�
˙.t; x/˙.t; x/�@2xxVi.t; x/

	CH�i
�
t; x; @xVi.t; x/

� D 0; (2.16)

where the minimized reduced Hamiltonian H�i of player i is defined by:

H�i.t; x; y/ D inf
˛2Ai

Hi
�
t; x; y; .˛; ���i.t; x//

�
:

We shall often write the HJB equation using the minimized reduced Hamiltonian as
in (2.16) above.

The form of the system (2.16) can be made more explicit when Isaacs condition
is in force, see Definition 2.9. In that case, the minimizer Ǫ only depends on t, x,
and y and is independent of z since the volatility is not controlled. Then, the guess
is that ��j should be given by ��j.t; x/ D Ǫ j.t; x; @xV.t; x//, in which case (2.16)
would take the form:

@tV
i.t; x/C 1

2
trace

�
˙.t; x/˙.t; x/�@2xxVi.t; x/

	
(2.17)

C Hi
�
t; x; @xVi.t; x/; Ǫ .t; x; @xV.t; x//

� D 0; .t; x/ 2 Œ0;T� � R
D;

for all i 2 f1; : : : ;Ng, with the terminal condition:

Vi.T; x/ D gi.x/; x 2 R
D; i 2 f1; : : : ;Ng: (2.18)
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System (2.17) is called the Nash system associated with the game. It is especially
useful as a verification tool for the existence of Markovian Nash equilibria.

Proposition 2.11 Assume that A.N/ � H
2;K, with K D k1C� � �C kN, and that there

exists a classical solution of the Nash system (2.17) with the property that, for any
given initial condition x0 2 R

D, the stochastic differential equation:

dX�
t D B

�
t;X�

t ; Ǫ .t;X�
t ; @xV.t;X�

t //
�
dt C˙.t;X�

t /dWt; t 2 Œ0;T�;

is uniquely solvable, with . Ǫ .t;X�
t ; @xV.t;X�

t ///06t6T belonging to A
.N/, and with

the property that for any other controlled dynamics:

dXt D B.t;Xt; ˛t/dt C˙.t;Xt/dWt; t 2 Œ0;T�;

with the same initial condition and with ˛ 2 A
.N/, the expectation:

E

Z T

0

ˇ̌
˙�.t;Xt/@xV.t;Xt/

ˇ̌2
dt

is finite. Then, provided that the costs to . Ǫ .t;X�
t ; @xV.t;X�

t ///06t6T are well defined,
the tuple .��1; � � � ; ��N/ D . Ǫ 1.�; �; @xV.�; �//; � � � ; Ǫ N.�; �; @xV.�; �/// is a Markovian
Nash equilibrium over strategy profiles � i, for i 2 f1; � � � ;Ng, for which the SDE:

dXt D B
�
t;Xt; .�

i.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//
�i/

�
dt C˙.t;Xt/dWt;

for t 2 Œ0;T� and with X0 D x0, is uniquely solvable and its solution satisfies
.� i.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//

�i/0�t�T 2 A
.N/ and has finite costs.

Remark 2.12 In fact, the proof shows that Vi.0; x0/ is the cost to player i under the
Markovian Nash equilibrium

.��1; : : : ; ��N/ D . Ǫ 1.�; �; @xV.�; �//; � � � ; Ǫ N.�; �; @xV.�; �///:

In particular, the tuple .V1; : : : ;VN/ reads as the value function of the game under
the equilibrium .��1; � � � ; ��N/.

Proof. The proof is a mere application of Itô’s formula. For a given i 2 f1; : : : ;Ng and a
given � i such that the SDE:

dXt D B
�
t;Xt; .�

i.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//
�i/

�
dt C˙.t;Xt/dWt; t 2 Œ0; T�;

with X0 D x0, is uniquely solvable, its solution satisfying .� i.t;Xt/; Ǫ .t;Xt;

@xV.t;Xt//
�i/0�t�T 2 A

.N/ and having finite costs, we expand .Vi.t;Xt//06t6T by Itô’s
formula. Thanks to with the system (2.17), we get:
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d

�
Vi.t;Xt/C

Z t

0

f i
�
s;Xs; .�

i.s;Xs/; Ǫ .s;Xs; @xV.s;Xs//
�i/

�
ds

�

D
h
Hi

�
t;Xt; @xVi.t;Xt/; .�

i.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//
�i/

�

� Hi
�
t;Xt; @xVi.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//

�i
dt

C @xVi.t;Xt/˙.t;Xt/dWt; 0 6 t 6 T;

Taking the expectation and implementing Isaacs’ condition (2.9), we deduce that:

E

�
Vi.T;XT/C

Z T

0

f i
�
t;Xt; .�

i.t;Xt/; Ǫ .t;Xt; @xV.t;Xt//
�i/

�
dt

�
> Vi.0; x0/;

with equality when � i.t; x/ D Ǫ i.t; x; @xV.t; x//. ut

Here is a specific set of assumptions under which the conclusion of the above
proposition holds true.

Assumption (N-Nash System). The set A.N/ is bounded. Moreover,

(A1) The function B is bounded on Œ0;T� � R
D � A.N/ and is Lipschitz

continuous in ˛ 2 A.N/, uniformly in .t; x/ 2 Œ0;T� � R
D.

(A2) The function ˙ is bounded and continuous on Œ0;T� � R
D and is

Lipschitz continuous in x 2 R
D, uniformly in time t 2 Œ0;T�. Moreover

the matrix-valued function ˙˙� is uniformly nondegenerate, that is
the lowest eigenvalue is bounded from below by a positive constant,
uniformly on Œ0;T� � R

D.
(A3) For each i 2 f1; : : : ;Ng, the function f i is bounded on Œ0;T��R

D �A.N/

and is Lipschitz continuous in ˛ 2 A.N/, uniformly in .t; x/ 2 Œ0;T� �
R

D. The function gi is bounded and Lipschitz continuous.
(A4) The minimizer in the Isaacs condition is Lipschitz continuous in y 2

R
D�M , uniformly in .t; x/ 2 Œ0;T� � R

D.

The following result is taken from the Partial Differential Equation (PDE)
literature:

Proposition 2.13 Under assumption N-Nash System, the Nash system (2.17)–
(2.18) has a unique solution V in the space of RN-valued bounded and continuous
functions on Œ0;T� � R

D that are differentiable in space on Œ0;T/ � R
D, with a

bounded and continuous gradient on Œ0;T/ � R
D, and that have generalized time

first-order and space second-order derivatives in Lp
loc.Œ0;T/ � R

D/, for any p > 1,
where the index loc is used to indicate that integrability holds true on compact
subsets only.
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Moreover, for any bounded and measurable function � from Œ0;T��R
D into A.N/

and for any initial condition x0 2 R
D, the stochastic differential equation:

dXt D B.t;Xt; �.t;Xt//dt C˙.t;Xt/dWt; t 2 Œ0;T�;
with X0 D x0 is uniquely solvable, and the conclusion of Proposition 2.11 holds
true without any further restriction on the profile strategies used in the definition of
a Markovian Nash equilibrium.

Pay attention that, although the conclusion of Proposition 2.11 is claimed to
hold under assumption N-Nash System, the Nash system is not claimed to have
a classical solution. The solution V provided by Proposition 2.13 is usually said to
be strong.

Proof. The first part of the statement is a standard result from the PDE literature; references
are given in the Notes & Complements at the end of the chapter. What really matters is the
fact that the volatility coefficient is uniformly nondegenerate.

The second part of the statement is also standard in stochastic analysis. Again, references
are provided in the Notes & Complements below.

The third part of the statement follows from the same argument as that used in the proof
of Proposition 2.11, except that an extension of Itô’s formula is needed to overcome the lack
of continuity of the first order time derivative and second order space derivatives of V . Such
an extension is covered by the so-called Itô-Krylov formula for Itô processes driven by a
bounded drift and a bounded and uniformly nondegenerate volatility coefficient. Once again,
references are given in the Notes & Complements. ut

2.2 Game Versions of the Stochastic Maximum Principle

Generalizations of the Pontryagin maximum principle to stochastic games are not
as straightforward as one would like. While many versions are possible, we limit
ourselves to open loop and Markovian equilibria for the sake of simplicity. We treat
them separately to emphasize the differences.

Throughout this section, we assume that assumption Games is in force together
with:

Assumption (Games SMP). Each Ai, for i D 1; � � � ;N, is a convex subset of
R

ki . Moreover, the coefficients satisfy:

(A1) The drift and volatility functions B and ˙ , as well as the running
and terminal cost functions .f i/iD1;��� ;N and .gi/iD1;��� ;N are locally
bounded deterministic functions which are continuously differentiable
with respect to .x; ˛/.

(A2) For i D 1; � � � ;N, the partial derivatives @xf i and @˛f i (respectively @xgi)
for i D 1; � � � ;N are at most of linear growth in .x; ˛/ (respectively in
x), uniformly in t 2 Œ0;T�.
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Observe from the Lipschitz property of B and ˙ that the partial derivatives @xB,
@˛B, @x˙ and @˛˙ are also bounded.

Notice that, since B takes values in R
D and x 2 R

D, @xB is an element of
R

D�D, in other words a D � D matrix whose entries are the partial derivatives of
the components Bi of B with respect to the components xj of x. Analog statements
can be made concerning @x˙ which has the interpretation of a tensor.

In this section, we allow the volatility ˙ to depend upon the control parameter
˛ 2 A.N/. Also, we assume that A.N/ D QN

iD1 Ai with Ai � H
2;ki .

2.2.1 Open Loop Equilibria

The generalization of the stochastic Pontryagin maximum principle to open loop
stochastic games can be approached in a very natural way. Forms of the sufficient
condition for the existence and identification of an open loop Nash equilibrium can
be used in the case of linear quadratic models. Specific examples are given below.
We also refer to the Notes & Complements at the end of the chapter for further
references.

Definition 2.14 Given an admissible strategy profile ˛ 2 A
.N/ and the corre-

sponding controlled state X D X˛ of the system, a set of N couples of processes
..Yi;˛;Zi;˛/ D .Yi;˛

t ;Zi;˛
t /06t6T/iD1;��� ;N in S

2;D � H
2;D�M for each i D 1; � � � ;N,

is said to be a set of adjoint processes associated with ˛ 2 A
.N/ if, for each

i 2 f1; � � � ;Ng, they satisfy the Backward Stochastic Differential Equation (BSDE):

(
dYi;˛

t D �@xHi.t;Xt;Y
i;˛
t ;Zi;˛

t ; ˛t/dt C Zi;˛
t dWt; t 2 Œ0;T�;

Yi;˛
T D @xgi.X˛

T /:
(2.19)

Given ˛ 2 A
.N/ and the corresponding state X D X˛ defined in (2.1), equation

(2.19) can be viewed as a BSDE with random coefficients, a terminal condition in
L2 and a bounded variation term � i with the following p-th component, for each
p 2 f1; � � � ;Dg:

 i;p.t; !; y; z/ D @xp B
�
t;Xt.!/; ˛t.!/

� � y

C trace
�
@xp˙

�
t;Xt.!/; ˛t.!/

��
z
	 C @xp f i

�
t;Xt.!/; ˛t.!/

�
;

which is an affine function of y and z. Also, as X D X˛ 2 S
2;D and ˛i 2 H

2;ki for
each i 2 f1; � � � ;Ng, it holds:

E

Z T

0

j i.t;Xt;Y
i;˛
t ;Zi;˛

t ; ˛t/j2dt < 1:
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In the stochastic analysis literature, the bounded variation part of a BSDE (up to
the minus sign) is often called the driver of the equation and denoted by the letters
 or f . We shall not use f for the driver because we use the letter f for the running
cost. So, for each i 2 f1; � � � ;Ng, existence and uniqueness of a solution follow from
standard results on BSDEs. See the Notes & Complements at the end of the chapter
for references and Chapter 4 for precise statements of these results.

Necessary Part of the Stochastic Maximum Pontryagin Principle
The following result is the open loop game analog of the necessary part of the
stochastic maximum principle of stochastic control in the case of convex sets of
admissible controls.

Theorem 2.15 Under the above conditions, if Ǫ 2 A
.N/ is an open loop Nash

equilibrium, if we denote by OX D . OXt/0�t�T the corresponding controlled state of

the system, and the adjoint processes by OY D . OY1; � � � ; OYN
/ and OZ D . OZ1; � � � ; OZN

/,
then the generalized min-max Isaacs conditions hold along the optimal paths in the
sense that, for each i 2 f1; � � � ;Ng,

Hi
�
t; OXt; OYi

t ;
OZi

t ; Ǫ t
�

D inf
˛i2Ai

Hi
�
t; OXt; OYi

t ;
OZi

t ; .˛
i; Ǫ�i

t /
�
; Leb1 ˝ P a.e.; (2.20)

provided that the mapping Ai 3 ˛ 7! Hi.t; OXt; OYi
t ;

OZi
t ; .˛; Ǫ�i// is convex, Leb1 ˝ P

almost-everywhere, where Leb1 is the one-dimensional Lebesgue measure.

Proof. We only provide a sketch of the proof since we exclusively use this result as a
rationale behind our search strategy for a function satisfying the min-max Isaacs condition.

The proof is a consequence of the stochastic maximum principle of stochastic control
whose statement is recalled in Theorem 3.27 and which is proven in the greater generality
of the control of McKean-Vlasov equation in Chapters 6 and (Vol II)-1. See for example
Theorem 6.14 in Chapter 6. For a given i 2 f1; : : : ;Ng, in order to find the best response to
the strategies Ǫ �i we may consider the optimal control problem consisting in minimizing the
cost functional Ji.˛i; Ǫ �i/ over control strategies ˛i 2 Ai and controlled Itô processes:

dXt D B
�
t;Xt; .˛

i
t ; Ǫ �i

t /
�
dt C˙

�
t;Xt; .˛

i
t ; Ǫ �i

t /
�
dWt; t 2 Œ0; T�:

Since ˛i D Ǫ i is a minimizer, we can use the necessary part of the standard stochastic
maximum principle of stochastic control. The proof is completed by adapting the proofs
of Theorems 6.14 and (Vol II)-1.59 to the current setting, under which the coefficients are
random and the volatility is controlled. ut

Sufficiency Part of the Stochastic Maximum Pontryagin Principle
We now state and prove the sufficient condition which we shall use repeatedly.
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Theorem 2.16 For an admissible strategy profile Ǫ 2 A
.N/, with OX D . OXt/06t6T

as corresponding controlled state and . OY; OZ/ D .. OY1; � � � ; OYN
/; . OZ1; � � � ; OZN

// as
corresponding adjoint processes, assume that, for each i 2 f1; � � � ;Ng,

• R
D � Ai 3 .x; ˛i/ 7! Hi.t; x; OYi

t ;
OZi

t ; .˛
i; Ǫ�i

t // is a convex function, Leb1 ˝ P

almost-everywhere,
• gi is convex,

and

Hi.t; OXt; OYi
t ;

OZi
t ; Ǫ t/ D inf

˛i2Ai
Hi.t; OXt; OYi

t ;
OZi

t ; .˛
i; Ǫ�i

t //; Leb1 ˝ P a.e.; (2.21)

then Ǫ is an open loop Nash equilibrium.

Proof. We fix i 2 f1; � � � ;Ng, a generic ˛i 2 Ai, and for the sake of simplicity, we denote

by X the state process X.˛i; Ǫ
�i
/ controlled by the strategies .˛i; Ǫ �i/. The function gi being

convex, using the form of the terminal condition of the adjoint equations and integration by
parts, we get:

gi. OXT/ � gi.XT/ 6 @xgi. OXT/ � . OXT � XT/

D OYi
T � . OXT � XT/

D
Z T

0

. OXt � Xt/ � d OYi
t C

Z T

0

OYi
t � d. OXt � Xt/

C
Z T

0

trace
˚�
˙.t; OXt; Ǫ t/ �˙�

t;Xt; .˛
i
t ; Ǫ�i

t /
�	� OZi

t

�
dt

D �
Z T

0

. OXt � Xt/ � @xHi.t; OXt; OYi
t ;

OZi
t ; Ǫ t/ dt

C
Z T

0

OYi
t � �

B.t; OXt; Ǫ t/ � B
�
t;Xt; .˛

i
t ; Ǫ�i

t /
�	

dt

C
Z T

0

trace
˚�
˙.t; OXt; Ǫ t/ �˙�

t;Xt; .˛
i
t ; Ǫ�i

t /
�	� OZi

t

�
dt C MT ;

where .Mt/06t6T is a martingale with M0 D 0. Taking expectations of both sides and
plugging the result into:

Ji. Ǫ / � Ji
�
.˛i; Ǫ �i

/
� D E

� Z T

0

�
f i.t; OXt; Ǫ t/ � f i

�
t;Xt; .˛

i
t ; Ǫ�i

t /
�	

dt C gi. OXT/ � gi.XT/

�
;
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we get:

Ji. Ǫ / � Ji
�
.˛i; Ǫ �i/

�

D E

� Z T

0

�
Hi

�
t; OXt; OYi

t ;
OZi

t ; Ǫ t
� � Hi

�
t;Xt; OYi

t ;
OZi

t ; .˛
i
t ; Ǫ�i

t /
�	

dt

�

� E

� Z T

0

OYi
t � �

B.t; OXt; Ǫ t/ � B
�
t;Xt; .˛

i
t ; Ǫ�i

t /
�	

dt

�

� E

� Z T

0

trace
˚�
˙.t; OXt; Ǫ t/ �˙�

t;Xt; .˛
i
t ; Ǫ�i

t /
�	 � OZi

t

�
dt

�

C E
�
gi. OXT/ � gi.XT/

	

6 E

� Z T

0

�
Hi.t; OXt; OYi

t ;
OZi

t ; Ǫ t/ � Hi
�
t;Xt; OYi

t ;
OZi

t ; .˛
i
t ; Ǫ�i

t /
�

� . OXt � Xt/ � @xHi.t; OXt; OYi
t ;

OZi
t ; Ǫ t/

	
dt

�

6 0;

(2.22)

because the above integrand is non-positive for Leb1 ˝ P almost every .t; !/ 2 Œ0; T� � ˝.
The last claim is easily seen by using the convexity of Hi together with the fact that Ǫ t is a
critical point. Indeed, by convexity of Ai and by the generalized Isaacs condition (2.21), we
have, dt ˝ dP a.s., for all ˛i 2 Ai,

�
˛i � Ǫ i

t

� � @˛i Hi.t; OXt; OYi
t ;

OZi
t ; Ǫ t/ > 0;

which completes the proof. ut

Implementation Strategy
We shall use this sufficient condition in the following manner. Under assumptions
Games and Games SMP, we shall search for a deterministic function:

�
t; x; .y1; � � � ; yN/; .z1; � � � ; zN/

� 7! Ǫ�
t; x; .y1; � � � ; yN/; .z1; � � � ; zN/

�

defined on Œ0;T� � R
D � .RD/N � .RD�M/N , with values in A.N/ and satisfying the

generalized Isaacs conditions. Next, we replace the adapted controls ˛ by:

Ǫ�
t;Xt; .Y

1
t ; � � � ;YN

t /; .Z
1
t ; � � � ;ZN

t /
�

both in the forward and backward equations. This creates a large FBSDE comprising
a forward equation in dimension D, and N backward equations in dimension D. The
couplings between these equations may be highly nonlinear, and this system may be
very difficult to solve. However, if we find processes X, .Y1; � � � ;YN/, .Z1; � � � ;ZN/

solving this FBSDE, namely:
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ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

dXt D B



t;Xt; Ǫ�
t;Xt; .Y1t ; � � � ;YN

t /; .Z
1
t ; � � � ;ZN

t /
��

dt

C˙�
t;Xt; Ǫ�

t;Xt; .Y1t ; � � � ;YN
t /; .Z

1
t ; � � � ;ZN

t /
��

dWt;

dY1t D �@xH1



t;Xt;Y1t ;Z
1
t ; Ǫ�

t;Xt; .Y1t ; � � � ;YN
t /; .Z

1
t ; � � � ;ZN

t /
��

dt

CZ1t dWt;

:
:
:

:
:
:

:
:
:

dYN
t D �@xHN



t;Xt;YN

t ;Z
N
t ; Ǫ�

t;Xt; .Y1t ; � � � ;YN
t /; .Z

1
t ; � � � ;ZN

t /
��

dt

CZN
t dWt;

(2.23)

for t 2 Œ0;T�, with the initial condition X0 D x0 2 R
D for the forward equation

and with the terminal conditions Yi
T D @xgi.XT/ for the backward equations

i 2 f1; � � � ;Ng, then, provided that the convexity assumptions in the statement of
Theorem 2.16 are satisfied, the above sufficient condition says that the strategy
profile Ǫ defined by Ǫ t D Ǫ .t;Xt; .Y1t ; � � � ;YN

t /; .Z
1
t ; � � � ;ZN

t //, for t 2 Œ0;T�, forms
an open loop Nash equilibrium.

For instance, the convexity assumptions are satisfied whenever, for each i 2
f1; : : : ;Ng, gi is convex and, for any .t; y; z/ 2 Œ0;T� � .RD/N � .RD�M/N and
˛�i 2 A�i D Q

j6Di Aj, the function R
D � Ai 3 .x; ˛i/ 7! Hi.t; x; y; z; .˛i; ˛�i// is

convex.
In the last two sections of the chapter, we implement this strategy in the cases

of the flocking model with ˇ D 0, and the systemic risk toy model introduced in
Chapter 1. We refer to Chapter 4 for general solvability results for forward-backward
systems.

2.2.2 Markovian Nash Equilibria

In the search for Markovian Nash equilibria, despite the strong appeal of the HJB
equation based PDE approach reviewed earlier, we may want to use a version of the
stochastic maximum principle to tackle the individual control problems entering the
construction of the best response function.

If we choose to do so, we may directly invoke, in the spirit of the sketch of
proof of Theorem 2.15, the usual stochastic maximum principle for standard optimal
control problems. As explained in the Notes & Complements below, a detailed
review of this usual version of the stochastic maximum principle is provided in
the next chapters, but anticipating on the sequel, we use now some of this material.

In full analogy with the derivation of the Nash system in Subsection 2.1.4, we
may indeed regard a Nash equilibrium .��1; : : : ; ��N/, say in closed loop feedback
form, as a partial optimizer. Once the Markovian feedback functions ���i are given
to the players j ¤ i, the feedback function ��i reads as a minimizer of the cost Ji

to player i. Throughout the subsection, we use the convenient notation Ji.� i; ���i/
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to denote the cost to player i when using the Markovian feedback function � i while
the others use the Markovian feedback functions .��j/j6Di.

Then, the Hamiltonian associated with the minimization of the cost Ji.� i; ���i/

over Markovian feedback functions � i reads:

H�i.t; x; y; z; ˛/ D B
�
t; x; .˛; ���i.t; x//

� � y

C trace
˚
˙

�
t; x; .˛; ���i.t; x//

��
z
� C f i

�
t; x; .˛; ���i.t; x//

�

D Hi
�
t; x; y; z; .˛; ���i.t; x//

�
; (2.24)

for .t; x; y; z/ 2 Œ0;T��R
D �R

D �R
D�M . Recalling that the adjoint equation in the

stochastic maximum principle is driven by the negative of @xH�i, see for instance
Subsection 3.3.2, the p-th component of the driver in the adjoint BSDE reads:

@xp H�i.t; x; y; z; ˛/ D @xp Hi
�
t; x; y; z; .˛; ���i.t; x//

�
(2.25)

C
NX

jD1;j6Di

@˛j Hi
�
t; x; y; z; .˛; ���i.t; x//

�
@xp�

�j.t; x/:

Notice that the last line of the above formula is not present when we use the
stochastic maximum principle to search for open loop Nash equilibria. Obviously,
this new line corresponds to the fact that, in closed loop equilibria, the strategies
chosen by the players are sensitive to the states of the others.

Let us assume that � D .�1; � � � ; �N/ is a jointly measurable function from
Œ0;T� � R

D into A.N/ D A1 � � � � � AN which is locally bounded and differentiable
in x 2 R

D, for t 2 Œ0;T� fixed, with derivatives that are uniformly bounded in
.t; x/ 2 Œ0;T� � R

D. Recalling that the drift and volatility functions B and ˙ are
Lipschitz in .x; ˛/ uniformly in t 2 Œ0;T�, we denote by X� the unique strong
solution of the state equation:

dXt D B
�
t;Xt; �.t;Xt/

�
dt C˙

�
t;Xt; �.t;Xt/

�
dWt; t 2 Œ0;T�; (2.26)

with initial condition X0 D x0.

Definition 2.17 A set of N couples ..Y�;i;Z�;i/ D .Y�;it ;Z�;it /06t6T/iD1;:::;N of
processes in S

2;D � H
2;D�M is said to be a set of adjoint processes associated with

the Markovian feedback functions � D .�1; � � � ; �N/, if for each i 2 f1; � � � ;Ng,
they satisfy the BSDE:
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ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

dY�;it D �
h
@xHi.t;X�t ;Y

�;i
t ;Z�;it ; �.t;X�t //

C
NX

jD1;j¤i

@˛j Hi.t;X�t ;Y
�;i
t ;Z�;it ; �.t;X�t //@x�

j.t;X�t /
i
dt

CZ�;it dWt; t 2 Œ0;T�;
Y�;iT D @xgi.X�T /:

(2.27)

We shall often drop the superscript � when no confusion is possible. Given the
current assumptions on the coefficients of the model and the functions � i, the
existence and uniqueness of the adjoint processes follow from the same argument
as in the open loop case.

We now state and prove the sufficient condition for the existence of a Markovian
equilibrium.

Theorem 2.18 For a Markovian feedback function �� D .��1; � � � ; ��N/, con-
tinuously differentiable in x 2 R

D with a bounded gradient, we denote by Y� D
.Y�1; � � � ;Y�N/ and Z� D .Z�1; � � � ;Z�N/ the adjoint processes associated with ��.
If, for each i 2 f1; � � � ;Ng,

• the (random) function:

R
D � Ai 3 .x; ˛i/ 7! hi.x; ˛i/ D Hi

�
t; x;Y�i

t ;Z
�i
t ; .˛

i; ���i.t; x//
�

is convex Leb1 ˝ P a.e.,
• gi is convex,

and

Hi
�
t;X�

t ;Y
�i
t ;Z

�i
t ; �

�.t;X�
t /

�

D inf
˛i2Ai

Hi
�
t;X�

t ;Y
�i
t ;Z

�i
t ; .˛

i; ���i.t;X�
t //

� (2.28)

Leb1 ˝ P a.e., where X� D X��

, then �� is a Markovian Nash equilibrium.

Proof. The proof is essentially the same as in the case of open loop equilibria. The
differences will become clear below. As before, we fix i 2 f1; � � � ;Ng together with a generic
feedback function .t; x/ 7!  .t; x/ 2 Ai and, for the sake of simplicity, we denote by X the
solution X. ;���i/ of (2.26) with the feedback function . ; ���i/ in lieu of �. Starting from:
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Ji.��/ � Ji
�
. ; ���i/

�

D E

� Z T

0

�
f i

�
t;X�

t ; �
�.t;X�

t /
� � f i

�
t;Xt; . .t;Xt/; �

��i.t;Xt//
�	

dt

C gi.X�

T / � gi.XT/

�
;

(2.29)

we use the definition of the Hamiltonian Hi to replace f i in the above expression. We get:

Ji.��/ � Ji
�
. ; ���i/

�

D E

� Z T

0

�
Hi

�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�

� Hi
�
t;Xt; Y

�i
t ; Z

�i
t ; . .t;Xt/; �

��i.t;Xt//
�	

dt

�

� E

� Z T

0

�
B

�
t;X�

t ; �
�.t;X�

t /
� � B

�
t;Xt; . .t;Xt/; �

��i.t;Xt//
�	 � Y�i

t dt

�

� E

� Z T

0

trace
h�
˙

�
t;X�

t ; �
�.t;X�

t /
� �˙�

t;Xt; . .t;Xt/; �
��i.t;Xt//

�	�
Z�i

t

i
dt

�

C E
�
gi.X�

T / � gi.XT/
	
: (2.30)

We bound this last expectation using the convexity of gi which implies:

gi.X�

T / � gi.XT/

6 @xgi.X�

T / � .X�

T � XT/

D Y�i
T � .X�

T � XT/

D
Z T

0

.X�

t � Xt/ � dY�i
t C

Z T

0

Y�i
t � d.X�

t � Xt/

C
Z T

0

trace
h�
˙

�
t;X�

t ; �
�.t;X�

t /
� �˙�

t;Xt; . .t;Xt/; �
��i.t;Xt//

�	�
Z�i

t

i
dt;

where we used the special form (2.27) of the adjoint BSDE in order to compute the bracket
in the last equality. Expanding dY�i

t in the third line, we obtain:
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gi.X�

T / � gi.XT/

6 �
Z T

0

.X�

t � Xt/ �
h
@xHi

�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�

C
NX

jD1;j¤i

@˛j Hi
�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�
@x�

�j.t;X�

t /
i

dt (2.31)

C
Z T

0

�
B

�
t;X�

t ; �
�.t;X�

t /
� � B

�
t;Xt; . .t;Xt/; �

��i.t;Xt//
�	 � Y�i

t dt

C
Z T

0

trace
h�
˙

�
t;X�

t ; �
�.t;X�

t /
� �˙�

t;Xt; . .t;Xt/; �
��i.t;Xt//

�	�
Z�i

t

i
dt

C MT ;

where .Mt/06t6T is a martingale starting from 0.
Putting together (2.30) and (2.31), we get:

Ji.��/ � Ji
�
. ; ���i/

�

6 E

� Z T

0



Hi

�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�

� Hi
�
t;Xt; Y

�i
t ; Z

�i
t ; . .t;Xt/; �

��i.t;X�

t //
�

(2.32)

� .X�

t � Xt/ � �
@xHi

�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�

C
NX

jD1;j¤i

@˛j Hi
�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�
@x�

�j.t;X�

t /
	�

dt

�
:

We conclude by using the convexity of the function .x; ˛i/ 7! hi.x; ˛i/ for .t; !/ fixed, where
for the sake of notation we defined this function as:

hi.x; ˛i/ D Hi
�
t; x; Y�i

t .!/; Z
�i
t .!/; .˛

i; ���i.t; x//
�
:

We use the convexity assumption in the form:

hi.x; ˛i/ � hi.Qx; Q̨ i/ � .x � Qx/ � @xhi.x; ˛i/ � .˛i � Q̨ i/ � @˛i hi.x; ˛i/ 6 0;

which we apply to x D X�

t , Qx D Xt, ˛i D ��i.t;X�

t / and Q̨ i D  .t;Xt/. Since the minimum
of the Hamiltonian is attained along the (candidate for the) optimal path, notice also that:

8ˇ 2 Ai;
�
� i.t;X�

t / � ˇ� � @˛i hi
�
X�

t ; �
�i.t;X�

t /
�

6 0:
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Altogether, this gives:

Hi
�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
� � Hi

�
t;Xt; Y

�i
t ; Z

�i
t ; . .t;Xt/; �

��i.t;X�

t //
�

� .X�

t � Xt/ �
h
@xHi

�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�

C
NX

jD1;j¤i

@˛j Hi
�
t;X�

t ; Y
�i
t ; Z

�i
t ; �

�.t;X�

t /
�
@x�

�j.t;X�

t /
i

6 0;

Leb1 ˝ P a:e:, which shows that:

Ji.��/ � Ji
�
. ; ���i/

�
6 0:

This concludes the proof that �� is a Markovian Nash equilibrium. ut

Implementation Strategy
As one can expect, the systematic use of the above sufficient condition to construct
Markovian Nash equilibria is much more delicate than in the open loop case. Under
assumptions Games and Games SMP, we should, as in the open loop case, search
for a deterministic function Ǫ :

�
t; x; .y1; � � � ; yN/; .z1; � � � ; zN/

� 7! Ǫ�
t; x; .y1; � � � ; yN/; .z1; � � � ; zN/

�

defined on Œ0;T� � R
D � .RD/N � .RD�M/N , with values in A.N/ and satisfying the

generalized Isaacs conditions. Let us assume for example that such a function is
found and that it does not depend upon z D .z1; � � � ; zN/. As in the case of the open
loop models, we would like to replace the instances of the controls in the forward
dynamics of the state as well as in the adjoint BSDEs by Ǫ .t;Xt; .Y1t ; � � � ;YN

t //,
looking for an FBSDE which could be solved. Unfortunately, while this idea was
reasonable in the open loop case, it cannot be implemented in a straightforward
manner for Markov games because the adjoint equations require the derivatives of
the controls.

However, taking advantage of the deterministic structure of the coefficients of
such an FBSDE, we may expect that there exists a smooth function .u1; : : : ; uN/ W
Œ0;T� � R

D ! .RD/N such that that Yi
t D ui.t;Xt/ and Zi

t D @xui.t;Xt/˙.t;Xt/.
Such a function is called decoupling field; we refer to the first section in Chapter 4
for a review on this notion. Basically, it is understood as the space derivative of the
solution to the Nash system (2.17).

So we may want to use ��.t; x/ D Ǫ .t; x; u.t; x//, and in the BSDE giving the
adjoint processes, the quantity @x Ǫ .t; x; u.t; x// C @y Ǫ .t; x; u.t; x//@xu.t; x/ instead
of the term @x�

�.t; x/. As in the case of the open loop models, this creates a large
FBSDE which we need to solve in order to obtain a Markov Nash equilibrium. In
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the last two sections of the chapter, we do just that in the cases of the flocking model
with ˇ D 0 and the systemic risk toy model introduced in Chapter 1.

2.3 N-Player Games withMean Field Interactions

In this section, we specialize the results of the first part of the chapter to the class
of models at the core of the book. As explained in Chapter 1, these models are
characterized by strong symmetry properties in the coefficients and cost functions,
and the interactions between players need to be such that the influence of each
individual player on the rest of the population disappears as the size of the game
grows without bound.

2.3.1 The N-Player Game

Stochastic differential game models with the strong symmetry property alluded
to above would require the dynamics of the private states of the N players i 2
f1; � � � ;Ng to be given by Itô stochastic differential equations of the form:

dXi
t D bi.t;Xi

t ;X
�i
t ; ˛

i
t ; ˛

�i
t /dt C � i.t;Xi

t ;X
�i
t ; ˛

i
t ; ˛

�i
t /dWi

t ; (2.33)

for i D 1; � � � ;N and t 2 Œ0;T�, where the m-dimensional Wiener processes
Wi D .Wi

t /06t6T are assumed to be independent for the time being. We shall
consider the case of dependent Wiener processes when we study models in which
states are subject to a common source of random shocks. See Chapters (Vol II)-2
and (Vol II)-3.

The symmetry requirement forces the dimensions di of all the private states Xi
t

to be the same. We denote by d their common value, so that now D D Nd. The
common value m of all the second dimensions of the .� i/1�i�N’s is now as well
the common dimension of the Wiener processes .Wi/1�i�N , so that M D Nm. For
the same reason, all the control sets Ai should be the same. We shall denote by A
this common set, so that A.N/ is now A � � � � � A D AN . Also, the functions bi

and � i should satisfy specific properties to account for the symmetry requirement.
First, these functions should not depend upon i and hence be the same for all the
players. Moreover, their dependence upon the N � 1 other states in X�i

t , and/or the
N � 1 controls in ˛�i

t should be symmetric. The same considerations apply to the
running cost functions f i, but for the sake of simplicity, we only argue the case of the
coefficients of the dynamics. So if we want symmetry and if we want each player
to have a vanishing influence when the number of players grows, then in light of
Lemma 1.2 in Chapter 1, it is reasonable to assume that, at least for large games,
these coefficients can be well approximated by functions of one private state, say
Xi

t , the corresponding control ˛i
t , and the empirical distribution N�N�1

.Xt ;˛t/�i of the other
couples private states/controls.
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So for the sake of our mathematical analysis, we shall assume that, instead
of (2.33), the dynamics of the private states of the individual players are given by
Itô’s stochastic differential equations of the form:

dXi
t D b.t;Xi

t ; N�N�1
.Xt ;˛t/�i ; ˛

i
t/dt C �.t;Xi

t ; N�N�1
.Xt ;˛t/�i ; ˛

i
t/dWi

t ; (2.34)

for i D 1; � � � ;N, where .b; �/ W Œ0;T� � R
d � P.Rd � A/ � A ! R

d � R
d�m is

a deterministic measurable function satisfying specific assumptions which we spell
out later on. Recall the notation N�N�1

.X�i
t ;˛�i

t /
for the empirical measure:

N�N�1
.Xt ;˛t/�i D 1

N � 1
X

16j¤i6N

ı
.X

j
t ;˛

j
t /
; (2.35)

Remark 2.19 Dependencies between the Wiener processes will be introduced in
Chapters (Vol II)-2 and (Vol II)-3 by adding a term of the form �0.� � � /dW0

t to
the right-hand side of the state dynamics given by (2.34). For obvious reasons, the
increments dW0

t of the Wiener process W0 will be called common noise as opposed
to the increments of the Wiener processes Wi for i D 1; � � � ;N which are intrinsic
to the private states and called idiosyncratic noises.

Remark 2.20 In most of the applications considered in the book, the private states
of the players interact through the empirical distributions of the states themselves.
However, as we saw in Chapter 1, in many applications of interest, the interactions
are built into the models through the empirical distribution of the controls, or even
through the empirical distribution of the couple of state and control as posited
in (2.34) above. These last two classes of problems are more difficult to solve than
the first one, and we shall not try to offer a systematic presentation of their analyses.
We shall only discuss these models in the limit N ! 1 in Section 4.6 of Chapter 4
where we call them extended mean field games. But as a general rule, we shall
mostly restrict our discussions of extended models to particular cases for which a
solution can be derived with a low overhead from the theoretical results we provide
for the models with interactions through the states only.

As explained in the previous section, for each player, the choice of a strategy
is driven by the desire to minimize an expected cost over a period Œ0;T�, each
individual cost being a combination of running and terminal costs. Based on the
above discussion of the form of the drift and volatility coefficients in the private
state dynamics, we shall assume that for each i 2 f1; � � � ;Ng, the running cost to
player i is given by a measurable function f W Œ0;T��R

d �P.Rd � A/� A ! R and
the terminal cost by a measurable function g W Rd � P.Rd � A/ ! R in such a way
that if the N players use the strategy profile ˛ D .˛1; � � � ;˛N/ 2 A

N , the expected
total cost to player i is:

Ji.˛/ D E

� Z T

0

f
�
t;Xi

t ; N�N�1
t ; ˛i

t

�
dt C g.Xi

T ; N�N�1
T /

�
; (2.36)
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where we use the short notation N�N�1
t for the empirical measures (2.35). Also, we

denote by A
N the product of N copies of A. In some instances, we shall also use

the notation JN;i instead of Ji when we want to emphasize the dependence upon
the number N of players. This will be the case when we study the limit N ! 1
in Chapter (Vol II)-6. Notice that even though only ˛i

t appears in the formula
giving the cost to player i, this cost depends upon the strategies used by the other
players indirectly, as these strategies affect not only the private state Xi

t , but also the
empirical distribution N�N�1

t .

2.3.2 Hamiltonians and the Stochastic Maximum Principle

We revisit our notation system in order to take advantage of the current emphasis
on the decomposition of the state of the system as the aggregation of the private
states of the individual players, and the strong symmetry conditions we impose on
the dynamics and the costs. In particular, we pay special attention to the players’
Hamiltonians introduced in (2.8). The state variable, denoted by the bold face letter
x, reads as an N-tuple x D .x1; : : : ; xN/ 2 .Rd/N , describing the private states of
the players, the first dual variable y reads as an N-tuple .y1; : : : ; yN/ 2 Œ.Rd/N �N ,
each yi being itself an N-tuple .yi;1; : : : ; yi;N/ 2 .Rd/N and the second dual variable
z reads as an N-tuple .z1; : : : ; zN/ 2 Œ.Rd�m/N�N �N , each zi denoting an N � N-tuple
.zi;1;1; : : : ; zi;N;N/ 2 .Rd�m/N�N . Finally, the control variable ˛ reads as an N-tuple
.˛1; : : : ; ˛N/ 2 AN of possible actions by the players.

With these conventions, the Hamiltonian of player i is given by:

Hi
�
t; x; yi; zi;˛

� D
NX

jD1
b
�
t; xj; N�N�1

.x;˛/�j ; ˛
j
� � yi;j

C
NX

jD1
�

�
t; xj; N�N�1

.x;˛/�j ; ˛
j
� � zi;j;j C f

�
t; xi; N�N�1

.x;˛/�i ; ˛
i
�
;

where in full analogy with (2.35), N�N�1
.x;˛/�j is the empirical measure defined by:

N�N�1
.x;˛/�j D 1

N � 1
X

16j¤i6N

ı.xi;˛i/: (2.37)

The necessary part of the stochastic maximum principle suggests the minimization
of Hi when t; x; yi; zi and ˛�i are frozen. Interestingly, whenever the interaction in
the coefficients is through the state only as explained in Remark 2.20, that is N�N�1

.x;˛/�j

and N�N�1
.x;˛/�i are replaced by N�N�1

x�j and N�N�1
x�i , the Hamiltonian has a distributed

additive structure, in the sense that each given control variable appears separately
from the others in each of the terms of the above sum. As a by-product, the partial
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optimization procedure over ˛i whenever all the other variables t; x; yi; zi and ˛�i

are frozen reduces to the optimization problem:

inf
˛2A

�
b
�
t; xi; N�N�1

x�i ; ˛
� � yi;i C �.t; xi; N�N�1

x�i ; ˛
� � zi;i;i C f

�
t; xi; N�N�1

x�i ; ˛
�	
;

of the type we have been dealing with so far. The symmetry assumed in this section
implies that one can focus on the Hamiltonian of one single player. By symmetry,
one can drop the superscript i in the notation of the Hamiltonian as it is enough to
consider H.t; xi; N�N�1

x�i ; yi;i; zi;i;i; ˛i/, where H is defined as:

H
�
t; x; �; y; z; ˛/ D b

�
t; x; �; ˛

� � y C �.t; x; �; ˛/ � z C f .t; x; �; ˛/;

for t 2 Œ0;T�, x 2 R
d, � 2 P.Rd/, y 2 R

d, z 2 R
d�m and ˛ 2 A. For that very

reason, the minimizer Ǫ of H.t; x; �; y; z; �/ plays an important role in the subsequent
analysis.

Definition 2.21 Assume that the interaction in the coefficients is through the state
only, as explained in Remark 2.20. Then, given t 2 Œ0;T�, x 2 R

d, � 2 P.Rd/, y 2
R

d and z 2 R
d�m, we use the generic notation Ǫ .t; x; �; y; z/ to denote a minimizer

of the function A 3 ˛ 7! H.t; x; �; y; z; ˛/, in other words:

Ǫ .t; x; �; y; z/ 2 argmin˛2AH.t; x; �; y; z; ˛/:

If the above minimizer is well-defined, then the function Œ0;T��.Rd/N �..Rd/N/N �
..Rd�m/N�N/N 3 .t; x; .y1; � � � ; yN/; .z1; � � � ; zN// 7! . Ǫ .t; xi; N�N�1

x�i ; yi;i; zi;i;i//16i6N

satisfies the Isaacs condition, see Definition 2.9.

Remark 2.22 In the most desirable situations, the minimizer in Definition 2.21 is
uniquely defined. This is for instance the case when A is convex and the Hamiltonian
is strictly convex in the variable ˛. We shall often restrict ourselves to this situation,
although it is rather restrictive since it requires the drift b to be linear in ˛. As
already used before, whenever A is convex and H is differentiable in ˛, we have:

8ˇ 2 A; .ˇ � ˛/ � @˛H
�
t; x; �; y; z; Ǫ .t; x; �; y; z/� > 0;

and, when Ǫ .t; x; �; y; z/ is in the interior of A,

@˛H
�
t; x; �; y; z; Ǫ .t; x; �; y; z/� D 0:

When H is strictly convex, the implicit function theorem may be used to transfer the
smoothness properties of H in the directions x,�, y and z into smoothness properties
of Ǫ . We shall make this important remark precise in several lemmas in the sequel.
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2.3.3 Potential Stochastic Differential Games

The notion of potential game introduced in Chapter 1 in the particular case of one
period models can be generalized to the setting of stochastic differential games.
Here, we specialize this notion to the case of N-player games with mean field
interactions, and we concentrate on N-player open loop games for the sake of
definiteness. We leave the discussion of potential mean field games to Chapter 6
where we emphasize the connection with the control of McKean-Vlasov stochastic
differential equations.

Recall the definitions of the running and terminal cost functions of the players
entering the definition of the stochastic differential game (2.34)–(2.36), and in
particular the fact that Ji is the cost functional of player i 2 f1; � � � ;Ng.

Definition 2.23 The game is said to be a potential game if there exists a functional
.˛1; � � � ;˛N/ 7! J.˛1; � � � ;˛N/, from A

N to R, satisfying

J.˛i;˛�i/ � J.ˇ;˛�i/ D Ji.˛i;˛�i/ � Ji.ˇ;˛�i/ (2.38)

for all i 2 f1; � � � ;Ng and admissible control strategies .˛1; � � � ;˛N/ 2 A
N and

ˇ 2 A.

In other words, a game is a potential game if one can find a single function J of
the set of player strategy profiles, such that any change in the value of this function
J when one (and only one) strategy is perturbed, equals the corresponding change
in the cost functional Ji of the player i whose strategy is perturbed, for the same
change in strategies. This special property makes it possible to replace the search for
a Nash equilibrium by the search for a minimum of this function, problem which is
usually simpler! Assume indeed that Ǫ D . Ǫ 1t ; � � � ; Ǫ N

t /06t6T is an argument of the
minimization of J. Then, one readily checks that Ǫ D . Ǫ 1t ; � � � ; Ǫ N

t /06t6T is a Nash
equilibrium for the game because

0 > J. Ǫ i; Ǫ �i/ � J.˛i; Ǫ �i/ D Ji. Ǫ i; Ǫ �i/ � Ji.˛i; Ǫ �i/;

for any i 2 f1; : : : ;Ng.
The following example illustrates the power of the concept. We consider a

stochastic differential game (2.34)–(2.36) with uncoupled private state dynamics
in the sense that the drift and volatility coefficients do not depend upon the measure
argument responsible for the interactions. In other words, we assume that they are
of the form:

b.t; x; �; ˛/ D b.t; x; ˛/ and �.t; x; �; ˛/ D �.t; x; ˛/:
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The fact that we use the same notation for different functions should not create
ambiguities. Next, we assume that the running cost function f W Œ0;T��R

d �P.Rd �
A/ � A ! R is in fact of the form:

f .t; x; �; ˛/ D 1

2
j˛j2 C Qf .t; x; �x/

for some function Qf W Œ0;T��R
d �P.Rd/ ! R and where �x 2 P.Rd/ denotes the

marginal in x 2 R
d of � 2 P.Rd � A/, in other words, the projection of � onto R

d.
Similarly, we assume that the terminal cost function g W Rd � P.Rd � A/ ! R is of
the form:

g.x; �/ D Qg.x; �x/:

Under these conditions, we have the following result.

Proposition 2.24 If on top of the above assumptions on the form of the coefficients,
there exist functions Œ0;T� � P.Rd/ 3 .t; �/ 7! F.t; �/ and P.Rd/ 3 � 7! G.�/
satisfying:

Qf .t; x; N�N�1
X / � Qf .t; x0; N�N�1

X /

D F

�
t;
1

N
ıx C N � 1

N
N�N�1

X

�
� F

�
t;
1

N
ıx0 C N � 1

N
N�N�1

X

�

and

Qg.x; N�N�1
X / � Qg.x0; N�N�1

X /

D G

�
1

N
ıx C N � 1

N
N�N�1

X

�
� G

�
1

N
ıx0 C N � 1

N
N�N�1

X

�

for every x; x0 2 R
d and X D .x1; � � � ; xN�1/ 2 R

d.N�1/, then the game is a potential
game and the function J defined by:

J.˛1; � � � ;˛N/ D E

� Z T

0

h1
2

NX

iD1
j˛i

t j2 C F.t; N�N
Xt
/
i
dt C G. N�N

XT
/

�
(2.39)

can be used in Definition 2.23.

Here and in the following we use the notation N�N
Z for the empirical measure

of the N-tuple Z D .z1; � � � ; zN/ as defined by formula (1.3) in Chapter 1. As
usual, it is implicitly required that the expectation in (2.39) is well-defined for
.˛1; � � � ;˛N/ 2 A

N .
It is crucial to emphasize the practical importance of this seemingly innocuous

result. While it is typically very difficult to identify Nash equilibria for stochastic
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games, especially for large games, it appears that if the cost functions are of the
special form identified in the above statement, the search for Nash equilibria reduces
to a single optimization problem. This type of result had many applications in
economics where this single optimization is often referred to as the central planner,
or representative agent or even the invisible hand optimization.

Proof. The proof is based on a direct verification argument relying on the specific form of
the cost functions.

For a given Ǫ D . Ǫ 1; � � � ; Ǫ N/ 2 A
N , we denote by OX D . OXt/06t6T the corresponding

state process. For a given i 2 f1; � � � ;Ng and for another ˛i 2 A, we change Ǫ i into ˛i.

Thanks to the special form of the forward dynamics, this does not affect OX�i
. We then denote

by Xi the state process to player i associated with ˛i. Also, we let X D .Xi; OX�i
/. Importantly,

we can write, for any t 2 Œ0; T�,

N�N
Xt

D 1

N
ıXi

t
C N � 1

N
N�N�1

OX�i
t
:

In particular,

F.t; N�N
Xt
/ � F.t; N�N

OXt
/ D Qf �

t;Xi
t ; N�N

OX�i
t

� � Qf �
t; OXi

t ; N�N
OX�i

t

�
:

and similarly for G.
Now, by (2.39),

J.˛i; Ǫ �i/ � J. Ǫ /

D E

� Z T

0

h1
2

�j˛i
t j2 � j Ǫ i

t j2
� C F.t; N�N

Xt
/ � F.t; N�N

OXt
/
i
dt C G. N�N

XT
/ � G. N�N

OXT
/

�

D E

� Z T

0

h1
2

�j˛i
t j2 � j Ǫ i

t j2
� C Qf �

t;Xi
t ; N�N

OX�i
t

� � Qf �
t; OXi

t ; N�N
OX�i

t

�i
dt

C Qg.Xi
T ; N�N�1

OX�i
T
/ � Qg. OXi

T ; N�N�1
OX�i

T
/

�

D Ji.˛i; Ǫ �i/ � Ji. Ǫ i; Ǫ �i/;

which completes the proof. ut

Notice that the last statement of the proof is specific to the open loop nature of
the problem as it does not hold any longer if the controls are closed loop.

Remark 2.25 We shall revisit this result about potential games in the case of the
asymptotic regime N ! 1 of large games. In this asymptotic regime, the search
for Nash equilibria will amount to solving for a mean field game equilibrium, and
the central planner optimization problem will reduce to the solution of an optimal
control problem for McKean-Vlasov’s stochastic differential equations. For this
reason, it is instructive to use the stochastic maximum principle to get an idea of
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what the controls forming the Nash equilibrium look like. We do just that in the
analysis of an example below. Notice that this exercise sheds some new and different
light on the above argument.

Examples.

1. The first obvious situation in which the assumptions of the above proposition are
satisfied is when there exist functions F and G such that:

Qf .t; x; N�N�1
X / D F

�
t;
1

N
ıx C N � 1

N
N�N�1

X

�
;

and

Qg.x; N�N�1
X / D G

�
1

N
ıx C N � 1

N
N�N�1

X

�
:

2. A more interesting example is provided by functions Qf and Qg of the form:

Qf .t; x; �/ D Œh.t; �/ � ��.x/; and Qg.x; �/ D Œk � ��.x/;

for some smooth even functions h.t; �/ and k. Indeed, if we define the functions
F and G by:

F.t; �/ D N2

2.N � 1/ hh.t; �/ � �;�i; and G.�/ D N2

2.N � 1/ hk � �;�i

a straightforward computation shows that the assumptions of Proposition 2.24 are
satisfied. Indeed, with the same notations as in the statement of Proposition 2.24,
we have:

F

�
t;
1

N
ıx C N � 1

N
N�N�1

X

�
� F

�
t;
1

N
ıx0 C N � 1

N
N�N�1

X

�

D N2

2.N � 1/
�
1

N2

�
Nh.t; 0/C 2

NX

iD1
h.t; x � xi/C

N�1X

i;jD1
h.t; xi � xj/

�

� 1

N2

�
Nh.t; 0/C 2

NX

iD1
h.t; x0 � xi/C

N�1X

i;jD1
h.t; xi � xj/

��

D 1

N � 1
� NX

iD1
h.t; x � xi/ �

NX

iD1
h.t; x0 � xi/

�

D Qf .t; x; N�N�1
X / � Qf .t; x0; N�N�1

X /;

and similarly for G.
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The reader may wonder about the scaling used in the cost coefficients F and
G, which grow linearly with N. Indeed, such a scaling may seem to contradict our
objective to investigate the asymptotic behavior of the equilibria as N tends to 1.
Actually, when it comes to potential games, what really matters is the fact that Nash
equilibria coincide with minima of some collective cost functional J. Of course,
those minima remain the same if J is replaced by J=N. In our specific case, J=N has
the right scaling: it represents the average cost to the society. We shall come back
to this question in Chapters 6 and (Vol II)-6 when we face optimal control problems
for McKean-Vlasov diffusion processes.

For the purpose of illustration, we show that, at least for this particular example,
the classical version of the Pontryagin stochastic maximum principle when applied
to the standard stochastic control problem of the minimization problem of the central
planner leads to the same FBSDE as the game version of the stochastic maximum
principle when applied to the above potential N-player game. Let us assume for
example that the dynamics of the private states of the N players are given by:

dXi
t D ˛i

tdt C �dWi
t ; t 2 Œ0;T�:

For the sake of simplicity, we also assume that d D 1, A D R and h is independent
of t. The reduced Hamiltonian of the central planner optimization problem with
F.�/ D .1=2/hh � �;�i and G.�/ D .1=2/hk � �;�i reads:

H.t; x; y;˛/ D
NX

iD1
˛iyi C 1

2

NX

iD1
j˛ij2 C 1

2.N � 1/
NX

i;jD1
h.xi � xj/;

for x D .x1; � � � ; xN/ 2 R
N , y D .y1; � � � ; yN/ 2 R

N and ˛ D .˛1; : : : ; ˛N/ 2
R

N . The partial minimizer in ˛ is Ǫ .t; x; y/ D �y and then, implementing the
stochastic maximum principle for standard optimal control exposed in Chapter 3,
a straightforward computation of @xi H shows that any optimal control . Ǫ t/06t6T

satisfies . Ǫ i
t D �Yi

t /06t6T where .Yt/06t6T is the backward component of the
FBSDE system:

8
ˆ̂<

ˆ̂:

dXj
t D �Yj

t dt C �dWj
t ; j D 1; � � � ;N;

dYi
t D � 1

N � 1
h NX

jD1;j¤i

h0.Xi
t � Xj

t/
i
dt C

NX

jD1
Zij

t dWj
t ;

(2.40)

for i D 1; � � � ;N and t 2 Œ0;T�, with Yi
T D 1

N�1 Œ
P

j¤i k0.Xi
T � Xj

T/�. Note that we
used the fact that h and k are even functions in the computation of the drift term and
terminal condition of Yi. Whenever h and k are convex, the Hamiltonian H is convex
in .x; ˛/ (regarded as a variable in .RN/2) and the terminal cost .x1; : : : ; xN/ 7!
G. 1N

PN
iD1 xi/ is also convex, in which case the stochastic maximum principle is not

only a necessary but also a sufficient condition of optimality, see Subsection 3.3.2
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We can check that the application of the game version of the stochastic maximum
principle gives the same result. Indeed, in the case of the N player game with Qf and
Qg as above, the (reduced) Hamiltonian of player i reads:

Hi.t; x; yi;˛/ D
NX

jD1
˛jyi;j C 1

2
j˛ij2 C 1

N � 1
NX

jD1;j¤i

h.xi � xj/;

and the necessary part of the Pontryagin stochastic maximum principle identifies the
same candidate Ǫ i

t D �Yi;i
t for the equilibrium controls, so that the forward dynam-

ics of the state .Xt/06t6T are still given by the first equation in the system (2.40):

dXi
t D �Yi;i

t dt C �dWi
t ; t 2 Œ0;T�:

The backward component of the FBSDE which provides a necessary condition for
any Nash equilibrium includes:

dYi;i
t

D �@xi Hi
�
t;Xt; .Y

i;1
t ; � � � ;Yi;N

t /;�.Yi;1
t ; � � � ;Yi;N

t /
�
dt C

NX

jD1
Zi;i;j

t dWj
t

D � 1

N � 1
h NX

jD1;j¤i

h0.Xi
t � Xj

t/
i
dt C

NX

jD1
Zi;i;j

t dWj
t ; t 2 Œ0;T�;

which is exactly the same equation as the second equation in (2.40) with the same
exact terminal conditions if we identify Yi

t and Yi;i
t , and Zi;j

t with Zi;i;j
t .

Remark 2.26 As a final remark, and anticipating on the discussion of the differen-
tiability of functions of measures in Chapter 5, we emphasize the fact that a crucial
role is played by the identity ıF.t; �/.x/ D N2

N�1 Qf .t; x; �/ �-a.e. which we will prove
in Chapter 5. Here, ıF.t; �/ is as in (1.11). Such a derivative is a function and, in
the notation ıF.t; �/.x/, this function is evaluated at x 2 R.

2.3.4 Linear Quadratic Games withMean Field Interactions

Linear quadratic (LQ) game models are popular because their solutions reduce to
systems of ordinary differential equations, the only nonlinearity appearing in a
matrix Riccati equation. Because these equations are not always solvable in the
multivariate case, we refrain from dwelling on a discussion of the general form of
LQ games, and instead, we restrict our attention to those linear quadratic games



2.3 N-Player Games with Mean Field Interactions 105

with mean field interactions. For such models, the dynamics of the state of player i
are given by a linear equation of the form:

dXi
t D

�
b1.t/X

i
t C Nb1.t/ NX�i

t C b2.t/˛
i
t

�
dt C �dWi

t ; (2.41)

where as usual the .Wi D .Wi
t /06t6T/16i6N’s are N independent standard Wiener

processes of dimension m and where:

NX�i
t D 1

N � 1
NX

jD1;j¤i

Xj
t D

Z

Rd
xd N�N�1

X�i
t
.x/

denotes the sample mean of the states of the players j ¤ i. Here b1 D .b1.t//06t6T ,
Nb1 D .Nb1.t//06t6T and b2 D .b2.t//06t6T are deterministic continuous functions of
t 2 Œ0;T� with values in R

d�d, Rd�d and R
d�k respectively, while � is a constant

matrix in R
d�m. As explained before, the volatility does not need to be constant. We

make this assumption for the sake of simplicity. In terms of the notation used in this
chapter, we have:

b.t; x; �; ˛/ D b1.t/x C Nb1.t/ N�C b2.t/˛; and �.t; x; �; ˛/ � �;

where we use the notation N� for the mean
R

xd�.x/ of the probability measure �
(which, in contrast with what we have done so far, is thus required to have a finite
first-order moment). Clearly, the continuity assumption is stronger than what we
need to assume on the coefficients. Again, it is here for the sake of simplicity. Using
the same notation f and g for the running and terminal cost functions, we assume
that these costs are of the form:

f .t; x; �; ˛/ D 1

2

�
x�q.t/x C .x � s.t/ N�/� Nq.t/.x � s.t/ N�/C ˛�r.t/˛

�
;

and

g.x; �/ D 1

2

�
x�qx C .x � s N�/� Nq.x � s N�/

�
;

where the symbol � is used for the transposition so that x�q.t/x stands for the
inner product x � .q.t/x/ (and similarly for the others) and where q; Nq; s 2 R

d�d,
q D .q.t//06t6T , r D .r.t//06t6T , s D .s.t//06t6T and Nq D .Nq.t//06t6T are
deterministic continuous functions of t 2 Œ0;T� with values in R

d�d, Rk�k, Rd�d and
R

d�d respectively. Moreover, we assume that q, Nq, q.t/, and Nq.t/ are symmetric and
nonnegative semi-definite, which guarantees that f and g are convex in the direction
x (which, in fact, would be true under the weaker assumption that qCNq and q.t/CNq.t/
are nonnegative semi-definite), while r.t/ is assumed to be symmetric and strictly
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positive definite, hence invertible, which guarantees that f is strictly convex in ˛.
Obviously, f is convex in the pair .x; ˛/. All the matrices we consider in this book
are real. Even though the notion of nonnegative definiteness in the sense of complex
vector spaces implies that the matrices in question are Hermitian (hence symmetric
since their entries are real), we shall make explicit the fact that we are considering
symmetric matrices in order to avoid any possible ambiguity. Eigenvalues of the
symmetric nonnegative matrices q, Nq, q.t/, and Nq.t/ are nonnegative. Moreover, all
of the eigenvalues of r.t/ are strictly positive. So r.t/ is invertible, and by continuity,
its inverse is also symmetric, with strictly positive eigenvalues, and is a continuous
function of time. The form chosen above for the running cost f is not the most
general. Indeed, we could have included cross terms in ˛ and x. Similar results could
be obtained for such an extension, at the cost of slightly more complicated formulas,
and extra assumptions on the coefficients of the cross terms. We refrain from going
to this level of generality as it does not bring anything new to the understanding of
the models.

Unless specified otherwise, when dealing with LQ game models, we shall
implicitly assume that the set A of possible control values is the whole Euclidean
space R

k and the space A of admissible strategies is the Hilbert space H
2;k. These

assumptions can be relaxed when needed. We make them for the sake of simplicity.
The matrix r.t/ being invertible, one sees that the players’ reduced Hamiltonians:

Hi.t; x; yi;˛/ D
NX

jD1

�
b1.t/x

j C Nb1.t/Nx�j C b2.t/˛
j
� � yi;j

C 1

2

�
.xi/�q.t/xi C .xi � s.t/Nx�i/� Nq.t/.xi � s.t/Nx�i/C .˛i/�r.t/˛i

�
;

with Nx�i D 1
N�1

PN
jD1;j6Di xj, for .t; x; y;˛/ 2 Œ0;T� � .Rd/N � .Rd/N � .Rk/N and

i 2 f1; � � � ;Ng, are strictly convex in the control variables and the generalized Isaacs
conditions are satisfied with Ǫ i D �r.t/�1b2.t/�yi;i. We could write the large system
of forward and backward equations by substituting these values for the controls
appearing in the forward dynamics of the states and in the adjoint equations and try
to solve the resulting high dimensional FBSDE by reducing it to a set of ordinary
differential equations and a matrix Riccati equation. Unfortunately, matrix Riccati
equations are not always well posed, and their analysis can be involved. So we
refrain from pursuing the search for solutions at the present level of generality to
avoid unnecessary technicalities.

However, we show in the last two sections of this chapter that linear quadratic
games with mean field interactions can be explicitly solvable. We substantiate this
claim by solving completely two of the models introduced in Chapter 1. We first
treat the particular case of the flocking model in the case ˇ D 0, and next, we solve
the systemic risk model.
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2.4 The Linear Quadratic Version of the FlockingModel

As a first application of the theory developed in this chapter, we consider the special
case of the flocking model introduced in Chapter 1 corresponding to the particular
choice ˇ D 0 of the parameter. In that case, the position xi

t of the bird at time t
does not appear in the cost function and as a result, the mathematical analysis can
be focused on the velocity component of the state. So for the purpose of this section,
Xi

t 2 R
3 represents the velocity at time t of bird i, and its dynamics are given by:

dXi
t D ˛i

tdt C �dWi
t ; 0 6 t 6 T; i D 1; � � � ;N;

where the 3-dimensional standard Wiener processes Wi D .Wi
t /06t6T are indepen-

dent for i D 1; � � � ;N, and where � > 0 is assumed to be a scalar for the sake of
simplicity. If we specialize the discussion of Subsection 1.5.1 of Chapter 1 to the
case ˇ D 0, we find that if ˛ D .˛1; � � � ;˛N/ is a strategy profile for the flock, bird
i will want to minimize the expected cost:

Ji.˛/ D E

� Z T

0

f i
�
t; .X1t ; � � � ;XN

t /; .˛
1
t ; � � � ; ˛N

t /
�
dt

�
;

where the running cost function is given by:

f i
�
t; .x1; � � � ; xN/; .˛1; � � � ; ˛N/

� D �2

2
jxi � Nxj2 C 1

2
j˛ij2;

for x D .x1; � � � ; xN/ 2 R
3N and ˛ D .˛1; � � � ; ˛N/ 2 R

3N , and � > 0. Recall that
there is no terminal cost in the model as we stated it.

Here, we could choose to have each bird interact with the empirical distribution
of the velocities of the other birds. We decided to have each bird interact with the
empirical distribution of all the velocities, including its own. So, we use the notation
Nx D .x1C� � �CxN/=N for the sample mean of the states of all the birds. As explained
in Remark 1.25 of Chapter 1, having bird i pay or be rewarded by the difference
between its state and the mean of the states of the other birds j ¤ i would simply
amount to multiplying the constant � by a quantity which converges to 1 as N ! 1.
So for the sake of definiteness, we use the empirical mean of all the states.

We first consider the open loop equilibrium problem. From now on, we use the
terms bird and player interchangeably.

2.4.1 Open Loop Nash Equilibria

We use reduced Hamiltonians since the volatility is constant. Since we concentrate
on the open loop problem, for each player, the set of admissible strategies A is
the space H

2;3 of R
3-valued square integrable adapted processes. For each i 2

f1; � � � ;Ng, the reduced Hamiltonian of player i reads:
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Hi.x; yi;˛/ D
NX

jD1
˛j � yi;j C �2

2
jNx � xij2 C 1

2
j˛ij2;

where x D .x1; : : : ; xN/ 2 R
3N , Nx D 1

N

PN
iD1 xi and yi D .yi;1; : : : ; yi;N/ 2 R

3N . The
value of ˛i minimizing this reduced Hamiltonian with respect to ˛i, when all the
other variables, including ˛j for j ¤ i, are fixed, is given by:

Ǫ i D Ǫ i.x; yi/ D �yi;i; x D .x1; : : : ; xN/ 2 R
3N ;

yi D .yi;1; : : : ; yi;N/ 2 R
3N :

(2.42)

Now, given an admissible strategy profile ˛ D .˛1t ; � � � ; ˛N
t /0�t�T and the corre-

sponding controlled state X D X˛, the adjoint processes associated with ˛ are the
processes Y D .Y1; � � � ;YN/ and Z D .Z1; � � � ;ZN/, each Yi being .R3/N-valued
and each Zi being .R3/N�N-valued, solving the system of BSDEs:

dYi;j
t D �@xj Hi

�
t;Xt; .Y

i;1
t ; : : : ;Y

i;N
t /; ˛t

�
dt C

NX

`D1
Zi;j;`

t dW`
t ;

D ��2.ıi;j � 1

N
/.Xi

t � NXt/ dt C
NX

`D1
Zi;j;`

t dW`
t ; t 2 Œ0;T�;

for i; j D 1; � � � ;N, with terminal conditions Yi;j
T D 0. Notice that the controls do

not appear explicitly in the adjoint equations. According to the strategy outlined
earlier, we replace all the occurrences of the controls ˛i

t in the forward dynamics by
Ǫ i.Xt;Yi

t / D �Yi;i
t , and we try to solve the resulting system of forward-backward

equations. If we manage to do so, the strategy profile ˛ D .˛1t ; � � � ; ˛N
t /0�t�T

defined by:

˛i
t D Ǫ i

�
Xt;Y

i
t

� D Ǫ i
�
Xt; .Y

i;1
t ; : : : ;Y

i;N
t /

� D �Yi;i
t ; t 2 Œ0;T�; (2.43)

will provide an open loop Nash equilibrium. Notice indeed that the stochastic
maximum principle here provides both a necessary and sufficient condition of
equilibrium since the Hamiltonian Hi is convex in .x;˛/. In the present situation,
the system of FBSDEs reads:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXi
t D �Yi;i

t dt C �dWi
t ;

dYi;j
t D ��2.ıi;j � 1

N
/.Xi

t � NXt/ dt C
NX

kD1
Zi;j;`

t dW`
t ; t 2 Œ0;T�;

Yi;j
T D 0; i; j D 1; : : : ;N:

(2.44)
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This is a system of affine FBSDEs, so we expect Yi;j
t to be an affine function

of Xi
t , or equivalently, using the terminology introduced in Chapter 4, we expect

the decoupling field to be affine. In other words, we expect that the backward
components Yt will be given by an affine function of Xt. In the present situation,
since the couplings between all these equations depend only upon quantities of the
form Xi

t � NXt, we search for a solution of the form:

Yi;j
t D �t

�
ıi;j � 1

N

�
.Xi

t � NXt/ (2.45)

for some smooth deterministic function Œ0;T� 3 t 7! �t 2 R to be determined. With
such an ansatz, for any i 2 f1; : : : ;Ng and t 2 Œ0;T�, the forward dynamics become:

dXi
t D ��t

�
1 � 1

N

��
Xi

t � NXt
�
dt C �dWi

t ; (2.46)

so that, by summing over i, we get:

d
�
Xi

t � NXt
� D ��t

�
1 � 1

N

��
Xi

t � NXt
�
dt C �

�
dWi

t � 1

N

NX

`D1
dW`

t

�
:

Therefore, computing the differential dYi;j
t from the ansatz (2.45), we get:

dYi;j
t D �

ıi;j � 1

N

�
.Xi

t � NXt/

�
P�t � �2t

�
1 � 1

N

��
dt

C ��t.ıi;j � 1

N
/

�
dWi

t � 1

N

NX

`D1
dW`

t

�
:

(2.47)

Identifying this differential with the right-hand side of the backward component
of (2.44) we get:

Zi;j;`
t D ��t

�
ıi;j � 1

N

��
ıi;` � 1

N

�
; ` D 1; � � � ;N;

and

P�t D �
1 � 1

N

�
�2t � �2; (2.48)

with terminal condition �T D 0. This is a scalar Riccati equation. Since we
shall encounter this type of equation frequently in the sequel, we state a standard
existence result for the sake of future reference.
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Scalar Riccati Equations. Let us assume that A;B; � and C are real numbers
such that B ¤ 0, �B > 0 and BC > 0. Then, the scalar Riccati equation:

P�t D 2A�t C B�2t � C; t 2 Œ0;T�; (2.49)

with terminal condition �T D � , has a unique solution:

�t D �C
�
e.ı

C�ı�/.T�t/ � 1� � ��
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � �B

�
e.ıC�ı�/.T�t/ � 1� ; t 2 Œ0;T�;

(2.50)
where ı˙ D �A ˙ p

R, with R D A2 C BC > 0.

Formula (2.50) follows from the standard change of variable:

A C B�t D �
P	t

	t
; t 2 Œ0;T�;

which transforms the nonlinear equation (2.49) into the second order linear ordinary
differential equation:

R	t D �
A2 C BC

�
	t; t 2 Œ0;T�:

The crucial point is to observe that ıC > 0 and ı� < 0, so that the denominator
in (2.50) does not vanish, which excludes any possibility of blow-up. Similarly, it is
clear that the numerator does not vanish except maybe in t D T , so that the function
� W Œ0;T� 3 t 7! �t takes values in Œ0;C1/ if � > 0 and in .�1; 0� if � 6 0.

In the particular case at hand we find that the unique solution of the Riccati
equation (2.48) is:

�t D �

r
N

N � 1
e2�

p
.N�1/=N.T�t/ � 1

e2�
p
.N�1/=N.T�t/ C 1

; t 2 Œ0;T�: (2.51)

Notice that �t > 0 if t < T . For this specific function Œ0;T� 3 t 7! �t 2
R, the sufficiency part of the Pontryagin stochastic maximum principle, recall
Theorem 2.18, says that the strategy profile Ǫ D . Ǫ 1; � � � ; Ǫ N/ where Ǫ i D
. Ǫ i

t/06t6T is given by:

Ǫ i
t D ��

1 � 1

N

�
�t.X

i
t � NXt/; (2.52)
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obtained by plugging the ansatz (2.45) into (2.43), is an open loop Nash equilibrium.
Notice that the controls (2.52) are in feedback form since they only depend upon
the current value of the state Xt at time t. Note also that in equilibrium, the state
Xt is Gaussian, and more precisely, the dynamics of the states ..Xi

t/06t6T/iD1��� ;N of
the individual birds are given by the stochastic differential equations (2.46), which
show that the velocities of the individual birds are Ornstein-Uhlenbeck processes
mean reverting toward the sample average of the velocities in the flock.

Important Remark. The strategy profile given by (2.52) was constructed in order
to satisfy the sufficient condition for an open loop Nash equilibrium given by
the stochastic maximum principle, and as such, it is indeed an open loop Nash
equilibrium. However, even though it is in closed loop form, or even Markovian
form, there is a priori no reason, except possibly wishful thinking, to believe that it
could also be a closed loop or a Markovian Nash equilibrium, simply because of the
definition we chose of Markovian equilibria.

2.4.2 Markovian Nash Equilibrium by the Stochastic Maximum
Approach

In this subsection, we search for a set � D .�1; � � � ; �N/ of R
3-valued feedback

functions � i forming a Nash equilibrium for the Markov model of the game. For
each player i 2 f1; � � � ;Ng, the reduced Hamiltonian (recall that the volatility
depends neither on the state nor the controls) reads:

H�i.x; yi; ˛/ D
NX

jD1;j¤i

� j.t; x/ � yi;j C ˛ � yi;i C �2

2
jxi � Nxj2 C 1

2
j˛j2;

for x D .x1; : : : ; xN/ 2 R
3N , yi D .yi;1; : : : ; yi;N/ 2 R

3N and ˛ 2 R
3. We refer

to (2.24) for the definition of H�i. The value of ˛ minimizing this Hamiltonian
(when all the other variables are fixed) is the same as before: Ǫ D �yi;i. Added to
the fact that the adjoint equations will lead to an affine FBSDE where the couplings
depend only upon quantities of the form Xi

t � NXt, we propose a similar ansatz for
the Markov feedback functions. To be specific, we search for equilibrium feedback
functions � i in the form:

� i.t; x/ D �
1� 1

N

�
�t.x

i � Nx/; .t; x/ 2 Œ0;T�� R
3N ; i D 1; � � � ;N; (2.53)
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for some deterministic function Œ0;T� 3 t 7! �t 2 R. Even though we use the same
notation .�t/06t6T , this function may differ from the one identified above in the case
of open loop equilibria. Using the special form of the Hamiltonian H�i, which is
convex in .x; ˛/ since � is linear in x, we get as FBSDE derived from the stochastic
maximum principle for Markovian equilibria:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

dXi
t D �Yi;i

t dt C �dWi
t ;

dYi;j
t D �

h NX

`D1;`¤i

�
@xj�`.t;Xt/

��
Yi;`

t C �2.ıi;j � 1

N
/.Xi

t � NXt/
i
dt

C
NX

`D1
Zi;j;`

t dW`
t ; t 2 Œ0;T�;

Yi;j
T D 0;

(2.54)

for i; j D 1; � � � ;N. Each Xi, each Yi;j and each Zi;j;` is R3-valued. For the particular
choice (2.53) of feedback functions, we have:

@xj�`.t; x/ D �
ıj;` � 1

N

��
1 � 1

N

�
�tI3;

where I3 denotes the 3 � 3 identity matrix. The backward component of (2.54) can
be rewritten as:

dYi;j
t D �

h�
1 � 1

N

�
�t

NX

`D1;`¤i

�
ı`;j � 1

N

�
Yi;`

t C �2
�
ıi;j � 1

N

�
.Xi

t � NXt/
i
dt

C
NX

`D1
Zi;j;`

t dW`
t ; (2.55)

for t 2 Œ0;T�, and i; j D 1; � � � ;N. For the same reasons as in the open loop case
(couplings depending only upon NXt � Xi

t), we make the same ansatz (2.45) on the
form of Yi;j

t , and we search for a solution of the FBSDE (2.54) in the form (2.45)
with the same function Œ0;T� 3 t 7! �t 2 R as in (2.53). Evaluating the right-hand
side of the BSDE part of (2.55) using the ansatz (2.45), we get:
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dYi;j
t D ���

1 � 1

N

�
�t

NX

`D1;`¤i

�
ı`;j � 1

N

�
�t

�
ıi;` � 1

N

��
Xi

t � NXt
�

C �2
�
ıi;j � 1

N

��
Xi

t � NXt
�	

dt C
NX

`D1
Zi;j;`

t dW`
t

D ���
1 � 1

N

�
�2t

�
Xi

t � NXt
� NX

`D1;`¤i

�
ı`;j � 1

N

��
ıi;` � 1

N

�

C �2
�
ıi;j � 1

N

��
Xi

t � NXt
�	

dt C
NX

`D1
Zi;j;`

t dW`
t

D �� 1
N

�
1 � 1

N

�
�2t C �2

	�
ıi;j � 1

N

��
Xi

t � NXt
�
dt C

NX

`D1
Zi;j;`

t dW`
t ;

where, to pass from the second to the third equality, we used the identity:

NX

`D1;` 6Di

�
ı`;j � 1

N

��
ı`;i � 1

N

� D 1

N

�
ıi;j � 1

N

�
: (2.56)

Equating with the differential dYi;j
t obtained in (2.47) from the ansatz (remember

that (2.47) only depends upon the form of the ansatz and not on the nature of the
equilibrium), we get the same identification for the Zi;j;`

t and the following Riccati
equation for �t:

P�t D .1 � 1

N
/2�2t � �2; t 2 Œ0;T�; (2.57)

with the same terminal condition �T D 0. This equation is very similar, but still
different from the Riccati equation (2.48) obtained in the search for open loop
equilibria. By (2.50), we get an explicit formula for the solution. In the present
case, ıC D �.1 � 1=N/ and ı� D �ıC and consequently:

�t D �
N

N � 1
e2�.1�1=N/.T�t/ � 1
e2�.1�1=N/.T�t/ C 1

; 0 6 t 6 T: (2.58)

As in the case of the open loop problem, the equilibrium dynamics of the state .X D
.X1; � � � ;XN// are given by an R

3N-valued Ornstein-Uhlenbeck process reverting
toward the sample mean . NXt D 1

N

PN
jD1 Xj

t/06t6T .
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Remark 2.27 Clearly, the function Œ0;T� 3 t 7! �t 2 R (2.58) obtained in our
search for Markov Nash equilibria is different from the function giving the open
loop Nash equilibrium found in (2.51). Notice that both functions converge toward
the same limit as N ! 1, this common limit solving the Riccati equation:

P�t D �2t � �2:

and as a consequence, being given explicitly by the formula:

�t D �
e2�.T�t/ � 1
e2�.T�t/ C 1

; 0 6 t 6 T; (2.59)

obtained by passing to the limit N ! 1 in (2.58).

2.5 The Coupled OUModel of Systemic Risk

We now present a second example of finite player game which can be solved
explicitly, and for which the open loop and Markovian equilibria, though similar
and given by feedback functions, differ as long as the number of players remains
finite. As in the previous section, the model is of the linear quadratic type and the
interactions are of a mean field nature. The computations will be more involved than
in the previous section, but the analysis will remain very similar. Our interest in this
example lies mostly in the fact that it contains a common noise and cross terms in
the running cost function.

The example is based on the model of systemic risk introduced in Subsec-
tion 1.3.1 in Chapter 1. It is a particular case of linear quadratic game with mean
field interactions as introduced in Subsection 2.3.4 above. Like in the previous
section, we solve the model completely, and illustrate how the several versions of the
stochastic maximum principle presented in this chapter can lead to different Nash
equilibria. Moreover, we also implement the analytic approach based on the solution
of a large system of coupled Hamilton-Jacobi-Bellman partial differential equations,
if only to show that the Markovian equilibrium found in this way does coincide with
the Markov equilibrium found via the Pontryagin stochastic maximum principle.

As in the case of the flocking model analyzed earlier, we choose to work with
the form of the interaction where each player interact with the empirical mean of
the states of all the banks, as opposed to the empirical mean of the states of all the
other banks. As already explained for the flocking model, switching from one form
of interaction to the other, simply amounts to multiplying the constants of the model
by functions of N which tend to 1 as N ! 1.
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2.5.1 Open Loop Nash Equilibria

In this model, we assume that the log-cash reserves Xt D .X1t ; � � � ;XN
t / of N banks

are Ornstein-Uhlenbeck (OU) processes reverting to their sample mean NXt D .X1t C
� � � C XN

t /=N at a rate a > 0. To be specific, we assume that the dynamics of the
log-reserves of the banks are given by equations of the form:

dXi
t D �

a. NXt � Xi
t/C ˛i

t

	
dt C �dBi

t; i D 1; � � � ;N; (2.60)

where:

dBi
t D

p
1 � �2dWi

t C �dW0
t ;

for some � 2 Œ�1; 1�. The major fundamental difference between this model
and the flocking model considered in the previous section is the presence of the
Wiener process W0 in the dynamics of all the log-cash reserve processes Xi. The
state processes are usually correlated through their empirical distribution, but when
� ¤ 0, the presence of this common noise W0 creates an extra source of dependence.
The process ˛i is understood as the control of bank i.

In this model, bank i tries to minimize:

Ji.˛1; � � � ;˛N/

D E

� Z T

0

�
�

2
. NXt � Xi

t/
2 � q˛i

t.
NXt � Xi

t/C 1

2
j˛i

t j2
�

dt C c

2
. NXT � Xi

T/
2

�
;

where �, c, and q are positive constants.
As before, we use reduced Hamiltonians since the volatility depends neither upon

the state Xt, nor the control ˛t. For each player, the set of admissible strategies is
the space H

2 D H
2;1 of real valued, square integrable adapted processes. For each

i 2 f1; � � � ;Ng, the reduced Hamiltonian of player i reads:

Hi.x; yi;˛/ D
NX

jD1
Œa.Nx � xj/C ˛j�yi;j C �

2
.Nx � xi/2 � q˛i.Nx � xi/C 1

2
.˛i/2;

where x D .x1; � � � ; xN/ 2 R
N , Nx D 1

N

PN
iD1 xi, yi D .yi;1; � � � ; yi;N/ 2 R

N and
˛ D .˛1; � � � ; ˛N/ 2 R

N . The value of ˛i minimizing this reduced Hamiltonian
with respect to ˛i, when all the other variables, including ˛j for j ¤ i, are fixed, is
given by:

Ǫ i D Ǫ i.x; yi/ D �yi;i C q.Nx � xi/; (2.61)

for x D .x1; � � � ; xN/ 2 R
N , and yi D .yi;1; � � � ; yi;N/ 2 R

N . Now, given an
admissible strategy profile ˛ D .˛1t ; � � � ; ˛N

t /0�t�T and the corresponding controlled
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state X D X˛, the adjoint processes associated with ˛ are the processes Y D
.Y1; � � � ;YN/ and Z D .Z1; � � � ;ZN/, each Yi being R

N-valued and each Zi being
R

N�.NC1/-valued, solving the system of BSDEs:

dYi;j
t D �@xj Hi

�
t;Xt; .Y

i;1
t ; � � � ;Yi;N

t /; ˛t
�
dt C

NX

`D0
Zi;j;`

t dW`
t ;

D �
� NX

`D1
a.
1

N
� ı`;j/Yi;`

t � q˛i
t.
1

N
� ıi;j/C �. NXt � Xi

t/.
1

N
� ıi;j/

�
dt

C
NX

`D0
Zi;j;`

t dW`
t ; t 2 Œ0;T�; (2.62)

for i; j D 1; � � � ;N with terminal conditions Yi;j
T D c. NXT � Xi

T/.
1
N � ıi;j/. According

to the strategy outlined earlier, we replace all the occurrences of the controls ˛i
t ,

in the forward equations giving the dynamics of the states, and in the backward
adjoint equations, by Ǫ i.Xt;Yi

t / D �Yi;i
t C q. NXt � Xi

t/. Then, we try to solve the
resulting system of forward-backward equations. If we succeed, the strategy profile
˛ D .˛1t ; � � � ; ˛N

t /0�t�T defined by:

˛i
t D Ǫ i

�
Xt; .Y

i;1
t ; : : : ;Y

i;N
t /

� D �Yi;i
t C q. NXt � Xi

t/; t 2 Œ0;T�; (2.63)

will provide an open loop Nash equilibrium. Notice that the condition � > q2

implies that Hi is convex in .x;˛/. In the present situation, the FBSDEs read:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

dXi
t D

h
.a C q/. NXt � Xi

t/ � Yi;i
t

i
dt C ��dW0

t C �
p
1 � �2dWi

t ;

dYi;j
t D �

h
a

NX

`D1
.
1

N
� ı`;j/Yi;`

t C qŒYi;i
t � q. NXt � Xi

t/�.
1

N
� ıi;j/

C �. NXt � Xi
t/.
1

N
� ıi;j/

i
dt

C
NX

`D0
Zi;j;`

t dW`
t ; t 2 Œ0;T�;

Yi;j
T D c. NXT � Xi

T/.
1

N
� ıi;j/; i; j D 1; � � � ;N:

(2.64)

This is a system of affine FBSDEs, so we expect that the backward components Yt

at time t will be given by an affine function of Xt. However, since the couplings
between all these equations depend only upon quantities of the form NXt � Xi

t , we
search for a solution of the form:

Yi;j
t D �t. NXt � Xi

t/.
1

N
� ıi;j/; (2.65)
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for some smooth deterministic function Œ0;T� 3 t 7! �t 2 R to be determined. With
such an ansatz, it holds that, for any i 2 f1; : : : ;Ng and t 2 Œ0;T�:

dXi
t D

h
a C q C �

1 � 1

N

�
�t

i� NXt � Xi
t

�
dt C ��dW0

t C �
p
1 � �2dWi

t ;

from which it easily follows that:

d
� NXt � Xi

t

�

D �
h
a C q C �

1 � 1

N

�
�t

i� NXt � Xi
t

�
dt C �

p
1 � �2


 1
N

NX

`D1
dW`

t � dWi
t

�
:

Therefore, computing the differential dYi;j
t from the ansatz (2.65), we get:

dYi;j
t D � 1

N
� ıi;j

�
. NXt � Xi

t/
h

P�t � �t



a C q C .1 � 1

N
/�t

�i
dt

C �
p
1 � �2�t.

1

N
� ıi;j/


 1
N

NX

`D1
dW`

t � dWi
t

�
:

(2.66)

Evaluating the right-hand side of the BSDE part of (2.64) using the ansatz (2.65)
we get:

dYi;j
t D �

�
a

NX

`D1

� 1
N

� ı`;j
�
�t. NXt � Xi

t/
� 1

N
� ı`;i

�

Cq
�
�t

� NXt � Xi
t

�� 1
N

� 1� � q
� NXt � Xi

t

�	� 1
N

� ıi;j
�

C�� NXt � Xi
t

�� 1
N

� ıi;j
��

dt C
NX

`D0
Zi;j;`

t dW`
t :

Similar to (2.56), we observe that, for any x D .x1; � � � ; xN/ 2 R
N ,

NX

`D1

� 1
N

� ı`;j
�
�t.Nx � xi/.

1

N
� ı`;i/ D ��t.Nx � xi/

� 1
N

� ıi;j
�
: (2.67)

Therefore, for any t 2 Œ0;T�, we have:

dYi;j
t (2.68)

D � 1
N

� ıi;j
�
. NXt � Xi

t/

��
a C q.1 � 1

N
/
�
�t C q2 � �

�
dt C

NX

`D0
Zi;j;`

t dW`
t :
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Identifying the two Itô decompositions of Yi;j
t given in (2.66) and (2.68) we get, as

a necessary condition for (2.65):

Zi;j;0
t D 0; Zi;j;`

t D �
p
1 � �2�t.

1

N
� ıi;j/.

1

N
� ıi;`/; ` D 1; � � � ;N;

and

P�t � �t

�
a C q C .1 � 1

N
/�t

�
D .a C q/�t � 1

N
q�t C q2 � �;

which we rewrite as a standard scalar Riccati’s equation:

P�t D �
2.a C q/ � 1

N
q
	
�t C �

1 � 1

N

�
�2t C q2 � �; (2.69)

with terminal condition �T D c. Under the condition � > q2, the existence result
which we recalled in the previous section says that this Riccati equation has a unique
solution, given by:

�t D �.� � q2/
�
e.ı

C�ı�/.T�t/ � 1� � c
�
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � c.1 � 1=N/

�
e.ıC�ı�/.T�t/ � 1� ; (2.70)

with:

ı˙ D �



a C q � q

2N

�
˙ p

R;

and R D



a C q � q

2N

�2 C


1 � 1

N

�
.� � q2/ > 0:

(2.71)

Figure 2.1 gives the plots of the solution for a few values of the parameters.
With such a function Œ0;T� 3 t 7! �t 2 R in hand, the sufficiency part of the

Pontryagin stochastic maximum principle given in Theorem 2.18 implies that the
strategy profile given by:

˛i
t D �

q C .1 � 1

N
/�t

	
. NXt � Xi

t/; t 2 Œ0;T�; (2.72)

obtained by plugging the value (2.65) of Yi;j
t in (2.63), is an open loop Nash

equilibrium. Notice that the controls (2.72) are in feedback form since they only
depend upon the current value of the state Xt at time t. Note also that in equilibrium,
the dynamics of the state X are given by the stochastic differential equations:



2.5 The Coupled OUModel of Systemic Risk 119

dXi
t D �

a C q C .1 � 1

N
/�t

	� NXt � Xi
t

�
dt C ��dW0

t C �
p
1 � �2dWi

t ; (2.73)

for i D 1; � � � ;N, which are exactly the uncontrolled versions of the equations we
started from, except for the fact that the mean reversion coefficient a is replaced by
the time dependent mean reversion rate a C q C .1 � 1

N /�t.

Same Remark as Before. Even though the strategy profile given by (2.72) is in
closed loop form, we can only claim that it is an open loop Nash equilibrium.

2.5.2 Markovian Nash Equilibrium by the Stochastic Maximum
Approach

We now search for a set � D .�1; � � � ; �N/ of feedback functions � i forming a Nash
equilibrium for the Markov model of the game. For each player i 2 f1; � � � ;Ng, the
reduced Hamiltonian (recall that the volatility depends neither on the state nor the
controls) reads:

H�i.x; yi; ˛/ D
NX

`D1;`¤i

Œa.Nx � x`/C �`.t; x/�yi;` C Œa.Nx � xi/C ˛�yi;i

C �

2
.Nx � xi/2 � q˛.Nx � xi/C 1

2
˛2;

for x D .x1; : : : ; xN/ 2 R
N , yi D .yi;1; : : : ; yi;N/ 2 R

N and ˛ 2 R. The value of
˛ minimizing this Hamiltonian (when all the other variables are fixed) is again the
value Ǫ given by (2.61). Using this formula and the fact that the adjoint equations
will lead to an affine FBSDE where the couplings depend only upon quantities of the
form . NXt � Xi

t/06t6T , we search, as in the open loop case, for equilibrium feedback
functions � i in the form:

� i.t; x/ D �
q C �

1 � 1

N

�
�t

	
.Nx � xi/; .t; x/ 2 Œ0;T� � R

N ; (2.74)

for i D 1; � � � ;N and for some deterministic function Œ0;T� 3 t 7! �t 2 R

to be determined, and we try to find such a function in order for these feedback
functions � i to form a Markovian Nash equilibrium. Importantly, with these
feedback functions in hand, H�i is convex in .x; ˛/.
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Using formula (2.25) for the partial derivative of the Hamiltonian, we can solve
the Markovian model by means of the Pontryagin principle, which leads to the
FBSDE:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

dXi
t D �

.a C q/. NXt � Xi
t/ � Yi;i

t

	
dt C ��dW0

t C �
p
1 � �2dWi

t ;

dYi;j
t D �

h
a

NX

`D1
.
1

N
� ı`;j/Yi;`

t C
NX

`D1;`¤i

@xj�`.t;Xt/Y
i;`
t

CqŒYi;i
t � q. NXt � Xi

t/�.
1

N
� ıi;j/C �. NXt � Xi

t/.
1

N
� ıi;j/

i
dt

C
NX

`D0
Zi;j;`

t dW`
t ; t 2 Œ0;T�;

Yi;j
T D c. NXT � Xi

T/.
1

N
� ıi;j/; i; j D 1; � � � ;N:

(2.75)

For the particular choice (2.74) of feedback functions, we have:

@xj�`.t; x/ D � 1
N

� ıj;`
��

q C .1 � 1

N
/�t

	
;

and the backward component of the BSDE rewrites:

dYi;j
t D �

�
a

NX

`D1
.
1

N
� ı`;j/Yi;`

t C
NX

`D1;`¤i

.
1

N
� ı`;j/

�
q C �t

�
1 � 1

N

�	
Yi;`

t

C qŒYi;i
t � q. NXt � Xi

t/�.
1

N
� ıi;j/C �. NXt � Xi

t/.
1

N
� ıi;j/

�
dt

C
NX

`D0
Zi;j;`

t dW`
t ; t 2 Œ0;T�; i; j D 1; � � � ;N: (2.76)

For the same reasons as in the open loop case (couplings depending only upon NXt �
Xi

t), we make the same ansatz on the form of Yi;j
t , namely Yi;j

t D �t. NXt �Xi
t/.

1
N �ıi;j/,

and search for a solution of the FBSDE (2.75) in the form (2.65). Evaluating the
right-hand side of the BSDE part of (2.76) using the ansatz (2.65), we get:
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dYi;j
t D �

�
a

NX

`D1

� 1
N

� ı`;j
�
�t

� NXt � Xi
t

�� 1
N

� ı`;i
�

C
NX

`D1;`¤i

� 1
N

� ı`;j
��

q C �t.1 � 1

N
/
	
�t

� NXt � Xi
t

�� 1
N

� ı`;i
�

C q
�
�t

� NXt � Xi
t

�� 1
N

� 1� � q
� NXt � Xi

t

�	� 1
N

� ıi;j
�

C �
� NXt � Xi

t

�� 1
N

� ıi;j
��

dt

C
NX

`D0
Zi;j;`

t dW`
t ; t 2 Œ0;T�; i; j D 1; � � � ;N:

Following (2.56), we observe that, for any x D .x1; : : : ; xN/ 2 R
N ,

NX

`D1;`¤i

� 1
N

� ı`;j
��

q C �t.1 � 1

N
/
	
�t

�Nx � xi
�� 1

N
� ı`;i

�

D 1

N

�
q C �t.1 � 1

N
/
	�
ıi;j � 1

N

�
�t

�Nx � xi
�
:

Using (2.67) to handle the first line in dYi;j
t , we get:

dYi;j
t D � 1

N
� ıi;j

�
. NXt � Xi

t/

�
.a C q/�t C 1

N

�
1 � 1

N

�
�2t C q2 � �

�
dt

C
NX

`D0
Zi;j;`

t dW`
t :

Identifying this Itô decomposition with the differential dYi;j
t obtained in (2.66) from

the ansatz, we get the same identification for the Zi;j;k
t and the following Riccati

equation for �t:

P�t D 2.a C q/�t C .1 � 1

N2
/�2t C q2 � �; t 2 Œ0;T�; (2.77)

with the same terminal condition �T D c as before. This equation has a unique
solution since � > q2 and (2.50) gives for any t 2 Œ0;T�:

�t D �.� � q2/
�
e.ı

C�ı�/.T�t/ � 1� � c
�
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � c.1 � 1=N2/

�
e.ıC�ı�/.T�t/ � 1� ; (2.78)



122 2 Probabilistic Approach to Stochastic Differential Games

0.0 0.2 0.4 0.6 0.8 1.0

0.
50

0.
55

0.
60

0.
65

ETA of t,  a= 1   q= 0.1
epsilon= 1.5 c= 0.5  N= 1,2,5,10,25,50

t

et
a

MFG
OL
CL

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

ETA of t,  a= 1   q= 0.1
epsilon= 0.5 c= 1  N= 1,2,5,10,25,50

t
et

a

MFG
OL
CL

Fig. 2.1 Plot of the solution �t of the Riccati equations (2.69) and (2.80) for several values of the
parameters and numbers of players N increasing from 1 to 50.

with:

ı˙ D �.aCq/˙p
R; and R D .aCq/2C



1� 1

N2

�
.��q2/ > 0: (2.79)

Clearly, the function Œ0;T� 3 t 7! �t 2 R obtained in our search for Markov Nash
equilibria is different from the function giving the open loop Nash equilibrium found
in (2.70) and (2.71).

Notice that both functions converge toward the same limit as N ! 1, this
common limit solving the Riccati equation:

P�t D 2.a C q/�t C �2t C q2 � �; �T D c: (2.80)

Figure 2.1 gives the plots of the solutions for the two types of equilibria and for a
few values of the parameters. We indeed observe from the plots that, as N increases,
the two functions Œ0;T� 3 t 7! �t 2 R decrease to their common limit as N ! 1.
In the limit of large games (N ! 1) the open loop and the closed loop (Markovian)
Nash equilibria found with the Pontryagin stochastic maximum principle coincide.
The fact that the differences between open and closed loop equilibria disappear
in the limit of large games is expected. It is part of the game theory folklore. We
will elaborate further on that limit N ! 1 in Chapter 3 when we discuss Mean
Field Games (MFGs), and at the end of the Notes & Complements section of that
chapter where we give references to papers and book chapters discussing this claim.
These references include Chapter 6 of the second volume, which is dedicated to the
passage from games with finitely many players to mean field games.
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2.5.3 Markovian Nash Equilibria by PDEMethods

For the sake of completeness, we show that the analytic approach based on the
solution of a system of coupled partial differential equations of the Hamilton-
Jacobi-Bellman (HJB for short) type can also be implemented, and that it gives
exactly the same Markovian Nash equilibrium as the stochastic maximum principle
approach implemented in the previous subsection. Notice that the present set-up
fits the setting used in Subsection 2.1.4, with B.t; x;˛/ D .Bi.t; x;˛//16i6N and
˙.t; x;˛/ D .˙i;j.t; x;˛//16i6N;06j6NC1, given by:

Bi.t; x;˛/ D a.Nx � xi/C ˛i; i 2 f1; � � � ;Ng;

˙i;j.t; x/ D

8
ˆ̂<

ˆ̂:

�� if i D j 6D 0;

�
p
1 � �2 if j D 0;

0 otherwise;

for x;˛ 2 R
N , where, as above, we use the notation Nx for the mean Nx D .x1 C

� � � C xN/=N. Accordingly, the noise in (2.12) is regarded as an .N C1/-dimensional
Wiener process W D .Wt/06t6T D .W0

t ;W
1
t ; � � � ;WN

t /06t6T .
Recall that, given an N-tuple .� i/16i6N of functions from Œ0;T� � R into R, we

define, for each i 2 f1; � � � ;Ng, the related value function Vi by:

Vi.t; x1; : : : ; xN/

D inf
.˛i

s/t6s6T

E

� Z T

t
f
�
s;Xi

s; N�N
s ; ˛

i
s

�
ds C g.Xi

T ; N�N
T /

ˇ̌
Xt D x

�
;

with x D .x1; : : : ; xN/ 2 R
N and with the same cost functions f and g as before.

Here the dynamics of .X1s ; : : : ;X
N
s /t6s6T are given by (2.60) with Xj

t D xj for j 2
f1; : : : ;Ng and ˛j

s D � j.s;Xs/ for j ¤ i. By dynamic programming, each scalar
function Vi, for i D 1; � � � ;N, must satisfy the HJB equation:

@tV
i.t; x/

C inf
˛2R

˚�
a.Nx � xi/C ˛

�
@xi Vi.t; x/C 1

2
˛2 � q˛

�Nx � xi
�� C �

2
.Nx � xi/2

C
NX

jD1;j6Di

�
a.Nx � xj/C � j.t; xj/

�
@xj Vi.t; x/

C �2

2

NX

jD1

NX

kD1

�
�2 C ıj;k.1 � �2/� @2xjxk Vi.t; x/ D 0;
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for .t; x/ 2 Œ0;T� � R
N , with the terminal condition Vi.T; x/ D c.Nx � xi/2=2. The

infima in these HJB equations can be computed explicitly:

inf
˛2R

˚�
a.Nx � xi/C ˛

�
@xi Vi.t; x/C 1

2
˛2 � q˛

�Nx � xi
��

D a.Nx � xi/@xi Vi.t; x/ � 1

2

�
q
�Nx � xi

� � @xi Vi.t; x/
	2
;

the infima being attained for

Ǫ D q
�Nx � xi

� � @xi Vi.t; x/:

Therefore, the Markovian strategies .� i/16i6N will form a Nash equilibrium if
� i.t; x/ D q.Nx � xi/ � @xi Vi.t; x/, which suggests that we need to solve the system
of N coupled HJB equations:

@tV
i.t; x/C

NX

jD1

�
.a C q/

�Nx � xj
� � @xj Vj.t; x/

	
@xj Vi.t; x/

C �2

2

NX

jD1

NX

kD1

�
�2 C ıj;k.1 � �2/� @2xjxk Vi.t; x/

C 1

2
.� � q2/

�Nx � xi
�2 C 1

2

�
@xi Vi.t; x/

�2 D 0;

(2.81)

for i D 1; � � � ;N, with the same terminal condition as above. In (2.17), we called the
system (2.81) the Nash system of the game. If and when this system is solved, the
feedback functions � i.t; x/ D q.Nx � xi/ � @xi Vi.t; x/ should give the equilibrium
Markovian strategies. Generally speaking, these systems of HJB equations are
difficult to solve. Here, because of the particular forms of the couplings and the
terminal conditions, we can solve the system by inspection, checking that a solution
can be found in the form:

Vi.t; x/ D �t

2
.Nx � xi/2 C �t; .t; x/ 2 Œ0;T� � R

N ; (2.82)

for some deterministic scalar functions Œ0;T� 3 t 7! �t 2 R and Œ0;T� 3 t 7! �t 2 R

satisfying �T D c and �T D 0 in order to match the terminal conditions for the
functions .Vi/16i6N . With this ansatz, the partial derivatives @xj Vi and @xjxk Vi read:

@xj Vi.t; x/ D �t
� 1

N
� ıi;j

� �Nx � xi
�
;

@2xjxk Vi.t; x/ D �t
� 1

N
� ıi;j

�
.
1

N
� ıi;k/;
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and plugging these expressions into (2.81), and identifying term by term, we see
that the system of HJB equations is solved if and only if:

(
P�t D 2.a C q/�t C �

1 � 1
N2

�
�2t � .� � q2/;

P�t D � 1
2
�2.1 � �2/�1 � 1

N

�
�t;

(2.83)

for t 2 Œ0;T�, with the terminal conditions �T D c and �T D 0. As already explained
earlier, the Riccati equation is scalar and can be solved explicitly. Here it coincides
with (2.77), and following (2.78), we get:

�t D �.� � q2/
�
e.ı

C�ı�/.T�t/ � 1� � c
�
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � c.1 � 1=N2/

�
e.ıC�ı�/.T�t/ � 1� ; (2.84)

provided we set:

ı˙ D �.aCq/˙p
R; with R D .aCq/2C�

1� 1

N2

�
.��q2/ > 0: (2.85)

Once �t is identified, one solves for �t (remember that �T D 0) and finds:

�t D 1

2
�2.1 � �2/



1 � 1

N

� Z T

t
�s ds: (2.86)

For the record, we note that the optimal Markovian strategies read:

Ǫ i
t D q

� NXt � Xi
t

� � @xi Vi.t;Xt/ D



q C .1 � 1

N
/�t

�� NXt � Xi
t

�
; (2.87)

for t 2 Œ0;T�, and the optimally controlled dynamics:

dXi
t D



a C q C .1 � 1

N
/�t

�� NXt � Xi
t

�
dt C �


p
1 � �2dWi

t C �dW0
t

�
; (2.88)

for t 2 Œ0;T�. As announced, we recover the solution found by the Pontryagin
stochastic maximum principle.

2.6 Notes & Complements

The main purpose of this chapter was to present background material and notation
for the analysis of finite player stochastic differential games. The published
literature on general nonzero sum stochastic differential games is rather limited,
especially in textbook form. Moreover, the terminology varies from one source
to the next. In particular, there is no clear consensus on the names to give to
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the many notions of admissibility for strategy profiles and for the corresponding
equilibria. The definitions we use in this text reflect our own personal biases. They
are borrowed from Carmona’s recent text [94]. The reader is referred to Chapter 5
of this book for proofs of the necessary part of the stochastic Pontryagin maximum
principle, and detailed discussions of linear quadratic game models and applications
to predatory trading.

The formulation of the Isaacs condition as given in Definition 2.9 is credited to
Isaacs in the case of two-player (N D 2) zero-sum games, and to Friedman in the
general case of noncooperative N-player games. Earlier results on the solvability
of the Nash system (2.17)–(2.18) in the classical or strong sense and with bounded
controls may be found in the monograph by Ladyzenskaja et al. [258] and in the
paper by Friedman [163]. We also refer to the series of papers by Bensoussan
and Frehse [45, 48, 49] for refined solvability properties and estimates for parabolic
or elliptic Nash systems allowing for Hamiltonians of quadratic growth. For other
monographs on semilinear PDEs, we refer to Friedman [162] and Lieberman [264].
The solvability property of the Nash system used in the proof of Proposition 2.13
may be explicitly found in Delarue and Guatteri [134]. The unique solvability
of the SDE appearing in the same proof is taken from the seminal work by
Veretennikov [336]. The Itô-Krylov formula is due to Krylov, see Chapter II in his
monograph [242].

The stochastic maximum principle for stochastic differential games was used
in the linear quadratic setting by Hamadène [193] and [194]. Generalizations have
been considered by several authors, among which generalizations to games with
stochastic dynamics including jumps or with partial observation. We refer the
interested reader to [22] and [23] and the references therein. For further details on
the stochastic maximum principle for stochastic optimal control problems, from
which the stochastic maximum principle for games may be derived, we refer the
reader to the subsequent Chapters 3, 4, 6, and (Vol II)-1: The standard version with
deterministic coefficients is exposed in Chapters 3 and 4, while the case with random
coefficients is addressed in Chapter (Vol II)-1; Chapter 6 is dedicated to the optimal
control of McKean-Vlasov diffusion processes.

Our reasons to present the case ˇ D 0 of the flocking model, and the systemic
risk toy model (whose discussion is based on the paper by Carmona, Fouque, and
Sun [102]), are mainly pedagogical. Indeed, in both cases, the open and closed
loop forms of the models can be solved explicitly, and the large game limits appear
effortlessly. So in this sense, they offer a perfect introduction to the discussion
of mean field games, hence our decision to present them in full detail, despite
their possible shortcomings. Indeed, the LQ form of the flocking model is rather
unrealistic, and when viewed as a model for systemic risk in an interbank system,
our toy model of systemic risk is very naive. Indeed, despite the strong case made
in [102] for the relevance of the model to systemic risk of the banking system, it
remains that according to this model, banks can borrow from each other without
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having to repay their debts, and even worse, the case for the model is further
weakened by the fact that the liabilities of the banks are not included in the model.
As already mentioned in the Notes & Complements of Chapter 1, the realism of
the model was recently improved in [101] by Carmona, Fouque, Moussavi, and Sun
who included delayed terms in the drift of the state to account for the fact that the
decision to borrow or lend at a given time will have an impact down the road on the
ability of a bank to borrow or lend.
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Abstract

The goal of this chapter is to propose solutions to asymptotic forms of the
search for Nash equilibria for large stochastic differential games with mean field
interactions. We implement the Mean Field Game strategy, initially developed
by Lasry and Lions in an analytic set-up, in a purely probabilistic framework.
The roads to solutions go through a class of standard stochastic control problems
followed by fixed point problems for flows of probability measures. We tackle
the inherent stochastic optimization problems in two different ways. Once
by representing the value function as the solution of a backward stochastic
differential equation (reminiscent of the so-called weak formulation approach),
and a second time using the Pontryagin stochastic maximum principle. In both
cases, the optimization problem reduces to the solutions of a Forward-Backward
Stochastic Differential Equation (FBSDE for short). The search for a fixed
flow of probability measures turns the FBSDE into a system of equations of
the McKean-Vlasov type where the distribution of the solution appears in the
coefficients. In this way, both the optimization and interaction components of
the problem are captured by a single FBSDE, avoiding the twofold reference
to Hamilton-Jacobi-Bellman equations on the one hand, and to Kolmogorov
equations on the other hand.

3.1 Notation, Assumptions, and Preliminaries

Here, we recall the basic results and ingredients from stochastic analysis and optimal
stochastic control theory which we use throughout the chapter. We leverage the
resources of Chapter 2 to formalize what we mean by a mean field game problem.
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3.1.1 The N Player Game

We consider a stochastic differential game with N players. As usual the players are
denoted by the integers i 2 f1; � � � ;Ng. Each player is controlling its own private
state Xi

t 2 R
d at time t 2 Œ0;T� by taking an action ˛i

t in a closed convex set A � R
k.

We assume that the dynamics of the private states of the individual players are given
by Itô’s stochastic differential equations of the form:

dXi
t D b.t;Xi

t ; N�N�1
X�i

t
; ˛i

t/dt C �.t;Xi
t ; N�N�1

X�i
t
; ˛i

t/dWi
t ; t 2 Œ0;T�; (3.1)

for i D 1; � � � ;N, where the .Wi D .Wi
t /06t6T/iD1;��� ;N are m-dimensional inde-

pendent Wiener processes. Often in the text, we choose m D d for simplicity. The
function .b; �/ W Œ0;T��R

d �P.Rd/�A ! R
d �R

d�m is deterministic and satisfies
assumptions to be spelled out later on, and N�N�1

X�i
t

denotes the empirical distribution

of the states X�i
t , namely the states Xj

t for j ¤ i. This is a slight departure from our
earlier discussion of finite player games with mean field interactions in which the
empirical distribution was typically assumed to be the empirical distribution of the
couples “state/control.” We saw in Chapter 1 several instances of models for which
the interactions appeared through the empirical distributions of the controls, or even
through the empirical distributions of the couples “state/control.” We shall provide
in Section 4.6 of Chapter 4 insight and tools to handle some of these more general
classes of mean field games which we call extended mean field games.

Recall that the symmetry and small individual influence conditions articulated
in Chapters 1 and 2 have been incorporated in the model through the choice of the
form of the coefficients of the states dynamics. Indeed, the dimensions of the states
and the random shocks, as well as the drift and volatility coefficients b and � are the
same for all the players. Moreover, since we want the influence of the players j ¤ i
on the state of player i to be symmetric and diminishing quickly as the number of
players grows, we used the intuition behind the result of Lemma 1.2 to assume that
the coefficients are given by functions of measures. In this way, the state of player i
is influenced by the empirical distribution of the states of the other players.

Remark 3.1 Later on, we shall add a term of the form �0.t;Xi
t ; N�N�1

X�i
t
; ˛i

t/dW0
t to the

right-hand side of the state dynamics given by (3.1). For obvious reasons, the Wiener
process W0 will be called a common noise as opposed to the Wiener processes Wi

for i D 1; � � � ;N which are intrinsic to the private states and called idiosyncratic
noises.

In this chapter, we concern ourselves with both open and closed loop equilibria,
without paying much attention to the differences between the two cases since, in
our framework, the asymptotic formulations are expected to be the same in the
limit N ! 1. So, whatever the type of the equilibrium, each player chooses a
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strategy in the space A of progressively measurable A-valued stochastic processes
˛ D .˛t/06t6T satisfying the admissibility condition:

E

� Z T

0

j˛tj2dt

�
< C1: (3.2)

As explained in Chapter 2, the choice of a strategy is driven by the desire to
minimize an expected cost over a period Œ0;T�, each individual cost being a
combination of running and terminal costs. For each i 2 f1; � � � ;Ng, the running
cost to player i is given by a measurable function f i W Œ0;T��R

d �P.Rd/� A ! R

and the terminal cost by a measurable function gi W Rd �P.Rd/ ! R in such a way
that if the N players use the strategy profile ˛ D .˛1; � � � ;˛N/ 2 A

N , the expected
total cost to player i is:

Ji.˛/ D E

� Z T

0

f i
�
t;Xi

t ; N�N�1
X�i

t
; ˛i

t

�
dt C gi

�
Xi

T ; N�N�1
X�i

T

��
: (3.3)

Quite often, we denote by A
N the product of N copies of A. We shall also use the

notation JN;i when we want to emphasize the dependence upon the number N of
players. This will be the case when we study the limit N ! 1 in Chapter (Vol II)-
6. Notice that even though only ˛i

t appears in the formula giving the cost to player
i, this cost depends upon the strategies used by the other players indirectly, as these
strategies affect not only the private state Xi

t , but also the empirical distribution N�N�1
X�i

t

of the private states of the other players. As emphasized in Chapter 1, we restrict
ourselves to games with strong symmetry properties and our models require that
the behaviors of the players be statistically identical when driven by controls which
are statistically invariant under permutation, imposing that the running and terminal
cost functions f i and gi, like the drift and volatility coefficients, do not depend upon
i. We denote them by f and g respectively.

The final remark of this introductory subsection is related to the actual definition
of the mean field interaction between finitely many players. In accordance with
earlier discussions, the empirical measure which appears in (3.1) and (3.3) is the
empirical measure of the other states, namely of the variables Xj

t for j ¤ i. However,
as we already explained in several instances, if we were to use instead the empirical
measure N�N

t of all the states Xj
t including j D i, the results would be qualitatively the

same, though possibly different quantitatively. This was highlighted in Remark 1.19
and Remark 1.25 of Chapter 1 where the net effect of switching from one empirical
measure to the other amounts to applying multiplicative factors on the parameters
of the models. We also argued that these multiplicative factors were converging to
1 as N ! 1. Since the mean field game problems which we study throughout the
book are essentially limits as N ! 1 of N-player stochastic differential games with
mean field interactions (see Chapter (Vol II)-6 for rigorous proofs), the convention
we use for the empirical measures in the finite player games should not matter in the
end. For this reason, we shall often start from the empirical measure N�N

t of the states
of all the players when we motivate the formulation of mean field game models.
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3.1.2 TheMean Field Game Problem

We now formalize the definition of the Mean Field Game problem without a
common noise. For this purpose, we start with a complete filtered probability
space .˝;F ;F D .Ft/06t6T ;P/, the filtration F supporting a d-dimensional
Wiener process W D .Wt/06t6T with respect to F and an initial condition � 2
L2.˝;F0;PIRd/. As announced in Subsection 3.1.1, we thus choose W of the
same dimension as the state variable. This is for convenience only. Most of the
time, the filtration F will be chosen as the filtration generated by F0 and W. As
usual, the law of � is denoted by L.�/. From a practical point of view, �0 D L.�/
should be understood as the initial distribution of the population. Following the
notations introduced in the previous subsection, we shall denote by A the set of F-
progressively measurable A-valued stochastic processes ˛ D .˛t/06t6T that satisfy
the square-integrability condition (3.2).

In the present context, the mean field game problem derived from the finite player
game model introduced in the previous section is articulated in the following way:

(i) For each fixed deterministic flow � D .�t/06t6T of probability measures on
R

d, solve the standard stochastic control problem:

inf
˛2A J�.˛/ with J�.˛/ D E

� Z T

0

f .t;X˛
t ; �t; ˛t/dt C g.X˛

T ; �T/

�
;

subject to
(

dX˛
t D b.t;X˛

t ; �t; ˛t/dt C �.t;X˛
t ; �t; ˛t/dWt; t 2 Œ0;T�;

X˛
0 D �:

(3.4)

(ii) Find a flow � D .�t/06t6T such that L. OX�
t / D �t for all t 2 Œ0;T�, if OX�

is a
solution of the above optimal control problem.

Notice that here, Xt represents the private state of a representative player, not the
whole system as before. Recasting these two steps in the set-up of finite player
games and the concept of Nash equilibrium, we see that the first step provides the
best response of a given player interacting with the statistical distribution of the
states of the other players if this statistical distribution is assumed to be given by �t,
while the second step solves a specific fixed point problem in the spirit of the search
for fixed points of the best response function. The strategy outlined by these two
steps parallels exactly what needs to be done to construct Nash equilibria for finite
player games. Once these two steps have been taken successfully, if the fixed-point
optimal control Ǫ � identified in step (ii) is in feedback form, in the sense that it is of
the form ˛

�
t D �.t; OX�

t ; �t/ for some deterministic function � on Œ0;T��Rd�P.Rd/,
where � D .�t D L. OX�

t //06t6T is the flow of marginal distributions at the fixed
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point, we expect that the prescription Ǫ i
t D �.t;Xi

t ; �t/, if used by the players i D
1; � � � ;N of a large game, should form an approximate Nash equilibrium. This fact
will be proven rigorously in Chapter (Vol II)-6, where we also quantify the accuracy
of the approximation.

Remark 3.2 Throughout the book, we shall consider the case when the optimiza-
tion problem inf˛2A J�.˛/ has a unique minimizer for any input �. In that case, we
denote by OX�

the unique optimal trajectory under the input � and � is said to be an
equilibrium (or a solution of the mean field game) if �t D L. OX�

t / for all t 2 Œ0;T�.
When the optimization problem inf˛2A J�.˛/ has several solutions, the two steps

(i) and (ii) may be reformulated as follows. Denoting the set of minimizing controls
by OA� D argmin˛2AJ�.˛/, � is said to be an equilibrium if there exists Ǫ 2 OA�

such that, for all t 2 Œ0;T�, �t D L.X Ǫ
t /. However, we shall not consider this level

of generality in the book.

3.1.3 An Alternative Description of theMean Field Game Problem

If our goal is to study the limiting MFG problem more than solving the finite player
games from which it is issued, a possible alternative introduction of the problem
may be useful. We motivate this approach by the limit of finite player games, but
it should be understood that the finite player games we are about to introduce are
different from the games we started from to derive the MFG problem.

We framed the search for Nash equilibria as a search for fixed points of the best
response map. We exploit this point of view systematically throughout the book
and our formulation of the mean field game problem was strongly influenced by
this approach. It naturally leads to a search for fixed points on flows of probability
measures. The present discussion will remain informal, as we do not spend much
effort providing explicit definitions of all the objects we manipulate. As before, we
assume that the N players use controls .˛i/iD1;��� ;N given by deterministic functions
.� i/iD1;��� ;N . We shall denote by N�N

t the empirical distribution of Xt D .X1; � � � ;XN
t /

at time t, and assume that the controls used by the players are of the form:

˛i
t D � i.t;Xi

t ; N�N
t /; i D 1; � � � ;N;

when we search for distributed Markovian equilibria, or ˛i
t D � i.t;Xi

Œ0;t�; N�N
t / when

we aim at distributed feedback controls, or ˛i
t D � i.t;Wi

Œ0;t�; N�N
t / in the case of

distributed open loop controls. Given the form of the coefficients, we expect that
in the limit N ! 1, all the players will use the same functions � i in equilibrium.
So instead of fixing a specific player, say i 2 f1; � � � ;Ng, and try to find its best
response to the other players j ¤ i assuming they chose their strategies ˛�i, because
of the symmetries among the players and the fact that we shall eventually consider
the case N ! 1, we might as well assume that all the N players have chosen their
strategies ˛ D .˛1; � � � ;˛N/ given by the same function �, and we try to determine
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the best response, say N̨ of a virtual .N C 1/-th player (which we will refer to using
the index 0), interacting with the empirical distribution of the states of the N players.
In other words

• We fix a feedback function � W .t; x; �/ 7! �.t; x; �/ to determine the strategies
˛i

t D �.t;Xi
t ; N�N

t /, or ˛i
t D �.t;Xi

Œ0;t�; N�N
t /, or ˛i

t D �.t;Wi
Œ0;t�; N�N

t / depending
upon the case we study.

• Next we solve the system of N coupled stochastic differential equations

dXi
t D b.t;Xi

t ; N�N
t ; ˛

i
t/dt C �.t;Xi

t ; N�N
t ; ˛

i
t/dWi

t ; i D 1; � � � ;N;

and we treat X1t , � � � , XN
t as the states of the N players of the game.

• Given the flow . N�N
t /06t6T of (random) empirical measures of the X1t , � � � , XN

t just
computed, we now introduce a virtual player which looks for a control ˛0 given
by a feedback function �0 which bears to ˛0 the same relationship as � bears to
˛i for i D 1; � � � ;N, in order to minimize:

J.˛0/ D E

� Z T

0

f .t;Xt; N�N
t ; ˛

0
t /dt C g.XT ; N�N

T /

�

under the dynamical constraint

dXt D b.t;Xt; N�N
t ; ˛

0
t /dt C �.t;Xt; N�N

t ; ˛
0
t /dWt;

for a Wiener process W independent of the Wiener processes Wi for i D
1; � � � ;N. Here, we assume that the feedback function �0 bears to ˛0 the same
relationship as � bears to ˛i for i D 1; � � � ;N with X and W in lieu of Xi and Wi.

• Denoting by ˛0;�.˛/ the set of optimal Markov controls ˛0 (or equivalently by
�0;�.�/ the set of optimal feedback functions �0) for the virtual player, the set
of controls ˛0;�.˛/ (resp. �0;�.�/) plays the role of the best response to the
control ˛ (resp. �) of the virtual player interacting with the flow of empirical
distributions . N�N

t /0�t�T of the N players i D 1; � � � ;N.

We now explain how in the limit N ! 1 of large games, the above steps lead to
the mean field game paradigm introduced in the previous subsection.

First we notice that the first two bullet points do not involve any optimization.
Anticipating on the several discussions of the propagation of chaos which we give in
Chapters 4, 5, (Vol II)-2 and (Vol II)-7, we realize that when N ! 1, the .Xi/iD1;��� ;N
become independent of each other, and their marginal distributions converge toward
the law of the solution of the McKean-Vlasov equation:

d QXt D b.t; QXt;L. QXt/; Q̨ t/dt C �.t; QXt;L. QXt/; Q̨ t/d QWt;

where L. QXt/ denotes the law of the random element QXt, QW is a Wiener process, and
Q̨ D . Q̨ t/06t6T is computed from the function � and the processes QX and QW. In some
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sense, in the limit N ! 1, the role of the first two bullet points is to associate, to
each control ˛ or function �, a flow � D .�t/06t6T of probability given by the
marginal laws �t D L. QXt/ of the solution of the above McKean-Vlasov stochastic
differential equation.

Once this flow of measures is obtained, the third bullet point proposes a standard
optimal control problem (still not a game) in which a virtual player minimizes
its expected costs in interaction with the flow of distributions. This optimization
problem is exactly the same as (3.4) except for the fact that the input flow of
probability measures � D .�t/06t6T is not arbitrary. Instead, this flow is given
by the marginal laws of the solution of a McKean-Vlasov stochastic differential
equation whose coefficients are determined by the choice of a control ˛ or a
function �. Clearly, if the fixed point problem can be solved, its solution provides a
solution to the mean field game problem as articulated in the previous subsection.
Conversely, any solution to the mean field game problem of the previous section
provides a solution to the problem stated in the above bullet points.

The present formulation of the mean field game problem exhibits two useful
features.

1. It offers an alternative to the fixed point step by formulating it in a space of
controls instead of flows of measures.

2. It highlights from the start the fact that, because we are interested in large games
and mean field interactions, the state dynamics are necessarily of a McKean-
Vlasov nature, fact which is not clear from the previous formulation.

3.1.4 The Hamiltonian

As already emphasized, we shall assume (unless stated otherwise) that A is a closed
convex subset of Rk. This makes it easier to minimize the Hamiltonian when the
running cost f is convex in ˛. Here, the full-fledged Hamiltonian has the form:

H.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C �.t; x; �; ˛/ � z C f .t; x; �; ˛/;

for t 2 Œ0;T�, x; y 2 R
d, z 2 R

d�d, ˛ 2 A and � 2 P.Rd/. Above, the dots ‘ � ’ stand
for the inner products in R

d and R
d�d respectively.

In order to lighten the notation and avoid unwanted technicalities at this early
stage of the discussion, we also assume throughout the chapter (and actually
throughout most of the book) that the volatility is uncontrolled (i.e. does not depend
upon the value of the control). In other words we assume that:

�.t; x; �; ˛/ D �.t; x; �/:

In fact, for some of the derivations in this chapter, we shall sometimes assume that
the volatility is also independent of � or, even, that it is a constant matrix � 2 R

d�d
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The fact that the volatility is uncontrolled allows us to use the reduced Hamilto-
nian defined as:

H.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/; (3.5)

for t 2 Œ0;T�, x; y 2 R
d, ˛ 2 A and � 2 P.Rd/. As in Chapter 2, we use the

same letter H for the full-fledged and the reduced Hamiltonians. The context and
the variables appearing as arguments specify which Hamiltonian we are using: it is
the reduced Hamiltonian when there is only one single adjoint variable, and it is the
regular Hamiltonian otherwise.

Our first task will be to minimize the reduced Hamiltonian with respect to the
control parameter; in other words, to search for a function .t; x; �; y/ 7! Ǫ .t; x; �; y/
satisfying:

Ǫ .t; x; �; y/ 2 argmin˛2AH.t; x; �; y; ˛/; (3.6)

and understand how such a minimizer depends upon its variables.
It will be convenient to use the following spaces of probability measures. Some

of them already appeared in earlier chapters. They will be studied in great detail in
Chapter 5. Here and in the following, whenever E is a separable metric space and
p > 1, we denote by Pp.E/ the subspace of P.E/ of probability measures of order
p, having a finite moment of order p meaning that the p-th power of the distance to
a fixed point of E is integrable. Obviously, the specific choice of this fixed point is
irrelevant. When E is a normed space, � 2 Pp.E/ if � 2 P.E/ and

Mp;E.�/ D
� Z

E
kxkp

Ed�.x/

�1=p

< 1: (3.7)

We simply write Mp whenever E is a Euclidean space. Bounded subsets of Pp.E/
are defined as sets of probability measures with uniformly bounded moments of
order p, in other words we call bounded subsets of Pp.E/, subsets on which Mp;E is
bounded.

Most of the time, the measure argument in the coefficients b, f and g is taken
in P2.Rd/ instead of P.Rd/, which is precisely what we do in the next set of
assumptions, under which we will be able to minimize the Hamiltonian and control
the properties of the minimizer:

Assumption (Minimization of the Hamiltonian). The coefficients b and f
are defined on Œ0;T� � R

d � P2.Rd/ � R
k and Œ0;T� � R

d � P2.Rd/ � A
respectively and satisfy:

(continued)
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(A1) The drift b is an affine function of ˛ of the form

b.t; x; �; ˛/ D b1.t; x; �/C b2.t/˛; (3.8)

where Œ0;T� 3 t 7! b2.t/ 2 R
d�k is measurable and bounded, and

the mapping Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! b1.t; x; �/ 2 R

d is
measurable and bounded on bounded subsets of Œ0;T� � R

d � P2.Rd/.
(A2) There exist two constants 
 > 0 and L > 0 such that for any t 2 Œ0;T�

and � 2 P2.Rd/, the function R
d � A 3 .x; ˛/ 7! f .t; x; �; ˛/ 2 R is

once continuously differentiable with respect to ˛, the derivative being
L- Lipschitz-continuous in x and ˛. Moreover, it satisfies the following
strong form of convexity:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ > 
j˛0 � ˛j2:
(3.9)

Finally, f and @˛f are locally bounded over Œ0;T� � R
d � P2.Rd/ � A.

The minimization of the Hamiltonian is taken care of by the following result.

Lemma 3.3 If A is closed and convex and assumption Minimization of the
Hamiltonian is in force, then for each .t; x; �; y/ 2 Œ0;T� � R

d � P2.Rd/ � R
d,

there exists a unique minimizer Ǫ .t; x; �; y/ of H in A. Moreover, the function
Œ0;T� � R

d � P2.Rd/ � R
d 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/ 2 A is measurable, locally

bounded and Lipschitz-continuous with respect to .x; y/, uniformly in .t; �/ 2
Œ0;T� � P2.Rd/, with a Lipschitz constant depending only upon 
, the supremum
norm of b2 and the Lipschitz constant of @˛f in x. In fact, an explicit upper bound
for Ǫ reads:

8.t; x; �; y/ 2 Œ0;T� � R
d � P2.Rd/ � R

d;

j Ǫ .t; x; �; y/j 6 
�1�j@˛f .t; x; �; ˇ0/j C jb2.t/j jyj� C jˇ0j;
(3.10)

where ˇ0 is any arbitrary point in A.

Proof. For any given .t; x; �; y/, the function A 3 ˛ 7! H.t; x; �; y; ˛/ is once continuously
differentiable and strictly convex so that Ǫ .t; x; �; y/ appears as the unique solution of the
variational inequality:

8ˇ 2 A;
�
ˇ � Ǫ .t; x; �; y/� � @˛H

�
t; x; �; y; Ǫ .t; x; �; y/� > 0: (3.11)

By strict convexity, measurability of the minimizer Ǫ .t; x; �; y/ is a consequence of the
gradient descent algorithm with convex constraints. See the Notes & Complements at the
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end of the chapter for references. Local boundedness of Ǫ .t; x; �; y/ also follows from strict
convexity since by (3.9), for any arbitrary point ˇ0 2 A,

H.t; x; �; y; ˇ0/ > H.t; x; �; y; Ǫ .t; x; �; y/�

> H.t; x; �; y; ˇ0/

C � Ǫ .t; x; �; y/ � ˇ0
� � @˛H.t; x; �; y; ˇ0/C 


ˇ̌ Ǫ .t; x; �; y/ � ˇ0
ˇ̌2
;

so that:

ˇ̌
ˇ0 � Ǫ .t; x; �; y/ˇ̌ 6 
�1

�j@˛f .t; x; �; ˇ0/j C jb2.t/j jyj�;

and consequently:

ˇ̌ Ǫ .t; x; �; y/ˇ̌ 6 
�1
�j@˛f .t; x; �; ˇ0/j C jb2.t/j jyj� C jˇ0j;

which proves the local boundedness claim since ˇ0 is arbitrary, @˛f is locally bounded, and
b2 is bounded.

The smoothness of Ǫ with respect to x and y follows from a suitable adaptation of the
implicit function theorem to variational inequalities driven by coercive functionals. Indeed,
for x; x0; y; y0 2 R

d and .t; �/ 2 Œ0; T� � P2.Rd/, we have the two inequalities:

� Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/� � @˛H
�
t; x; �; y; Ǫ .t; x; �; y/� > 0;

� Ǫ .t; x; �; y/ � Ǫ .t; x0; �; y0/
� � @˛H

�
t; x0; �; y0; Ǫ .t; x0; �; y0/

�
> 0:

Summing these inequalities, we get:

� Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/�

� �
@˛H

�
t; x0; �; y0; Ǫ .t; x0; �; y0/

� � @˛H
�
t; x; �; y; Ǫ .t; x; �; y/�� 6 0;

that is:

� Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/�

� �
@˛H

�
t; x; �; y; Ǫ .t; x0; �; y0/

� � @˛H
�
t; x; �; y; Ǫ .t; x; �; y/��

6
� Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/�

� �
@˛H

�
t; x; �; y; Ǫ .t; x0; �; y0/

� � @˛H
�
t; x0; �; y0; Ǫ .t; x0; �; y0/

��
:

Exchanging the roles of ˛ and ˛0 in (3.9) and summing the resulting bounds, we check that
for any ˛; ˛0 2 A,

�
˛0 � ˛� � �

@˛f .t; x; �; ˛0/ � @˛ f .t; x; �; ˛/
�

> 2
j˛0 � ˛j2:

Using the two previous inequalities together with the fact that b is linear in ˛, we deduce
that:
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2

ˇ̌ Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/ˇ̌2

6
� Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/�

� �
@˛H

�
t; x; �; y; Ǫ .t; x0; �; y0/

� � @˛H
�
t; x0; �; y0; Ǫ .t; x0; �; y0/

��

6 C
ˇ̌ Ǫ .t; x0; �; y0/ � Ǫ .t; x; �; y/ˇ̌�jx0 � xj C jy0 � yj�;

where C only depends upon the bound for b2 and the Lipschitz-constant of @˛f as a function
of x. ut

Remark 3.4 Various generalizations of Lemma 3.3 to cases for which b2 is allowed
to depend upon x and � are possible. For the sake of simplicity, we refrain from
giving such generalizations as we shall most often focus on the case where b2 is
a function of the sole variable t. Indeed, in this case, the whole drift b in (3.8) is
Lipschitz continuous in the variable x whenever b1 is itself Lipschitz continuous in x.
This assumption on b2 may be rather restrictive for some practical applications. In
order to consider more general models, the reader may want to reformulate some of
the results proven in this chapter (and the next one) in the more general case where
b2 is a function of .t; x; �/ (or of .t; �/). In doing so, he/she must pay particular
attention to the regularity of the whole drift b.

3.1.5 The Analytic Approach toMFGs

Going back to the program (i)–(ii) articulated in Subsection 3.1.2, the first step
consists in solving a standard stochastic control problem when the deterministic
flow � D .�t/06t6T of probability measures is given and frozen. A natural route is
to express the value function of the optimization problem (3.4) as the solution of
the corresponding Hamilton-Jacobi-Bellman (HJB for short) equation. This is the
keystone of the analytic approach to the MFG theory, the matching problem (ii)
being resolved by coupling the HJB equation with a Kolmogorov equation intended
to identify the flow � D .�t/06t6T with the flow of marginal distributions of the
optimal states. With the same notation Ǫ as above for the minimizer of the reduced
Hamiltonian H, the resulting system of PDEs can be written as:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

@tV.t; x/C 1

2
trace

h�
���

�
.t; x; �t/@

2
xxV.t; x/

i

CH



t; x; �t; @xV.t; x/; Ǫ .t; x; �t; @xV.t; x//
�

D 0;

@t�t � 1

2
trace

h
@2xx


�
���

�
.t; x; �t/�t

�i

Cdivx



b
�
t; x; �t; Ǫ .t; x; �t; @xV.t; x//

�
�t

�
D 0;

(3.12)

in Œ0;T� � R
d, with V.T; �/ D g.�; �T/ as terminal condition for the first equation

and �0 D �0 as initial condition for the second (recall (3.4) for the meaning of �0).
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The first equation is the HJB equation of the stochastic control problem when the
flow � D .�t/06t6T is frozen, see for instance Lemma 4.47. Notice that, as pointed
out earlier, this equation can be written using the reduced Hamiltonian H instead
of the usual minimized operator symbol because the volatility is not controlled
and because H is assumed to have a minimizer. The existence of Ǫ is especially
useful as it provides the form of the optimal feedback function, which reads
Œ0;T� � R

d 3 .t; x/ 7! Ǫ .t; x; @xV.t; x//. The second equation is the Kolmogorov
(sometimes referred to Fokker-Planck) equation giving the time evolution of the
flow � D .�t/06t6T of measures dictated by the dynamics (3.4) of the state of
the system once we have implemented the optimal feedback function. These two
equations are coupled by the fact that the Hamiltonian appearing in the HJB equation
is a function of the measure �t at time t and the drift appearing in the Kolmogorov
equation is a function of the gradient of the value function V . Notice that the first
equation is a backward equation to be solved from a terminal condition, while the
second equation is forward in time, starting from an initial condition.

The resulting system thus reads as a two-point boundary value problem, noto-
rious for being difficult to solve. In other words, the system (3.12) is nothing but
a forward-backward deterministic differential system in infinite dimension. From
experience with the analysis of forward-backward stochastic differential systems
in finite dimension, we expect that Cauchy-Lipschitz like theory, when it can be
applied, will only provide solutions in small time. One of the major difficulties of
mean field games is to identify sufficient conditions under which existence and/or
uniqueness of a solution hold over a time-interval of arbitrary length. Moreover,
it is also to be expected that, for systems of the same type as (3.12), ellipticity of
the diffusion matrix � cannot suffice to decouple the two equations as the forward
component is entirely deterministic. On this last point, we refer to Subsection 3.2.3
below for a more detailed account.

As we shall see next, the crux of our approach is to recast the infinite dimensional
deterministic forward-backward system (3.12) into a finite dimensional stochastic
forward-backward system of the McKean-Vlasov type. The fact that the probabilis-
tic point of view yields a finite dimensional system should not be a surprise. The
infinite dimensional feature is in fact hidden in the McKean-Vlasov component.

3.2 Why andWhich FBSDEs?

We do not intend to solve MFG problems in the analytic approach described
above. We presented it for the sake of completeness, and to give an enlightening
perspective to the different ways we shall approach these problems. For this reason,
we revisit the formulation of the MFG problem with a view toward the probabilistic
approaches we intend to follow. As before, this section is rather informal, favoring
ideas and strategies over precise quantitative statements and proofs. The latter will
come later in this chapter and in the next chapter as well.

In the search for a Nash equilibrium, a typical player has to compute its best
response to all the other players, assuming that they have already chosen their own
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strategies. This search for the best response amounts to the solution of an optimal
control problem whereby the typical player seeks a control strategy in order to
minimize its expected cost, assuming that all the other players have chosen their
own strategies and play the game without deviating from these choices. If we work
with models of stochastic differential games with mean field interactions, such an
optimal control problem can be written in the same form as in (3.4) (with, in full
generality, � possibly depending on ˛):

inf
˛2AE

� Z T

0

f .t;Xt; �t; ˛t/dt C g.XT ; �T/

�

subject to
(

dXt D b.t;Xt; �t; ˛t/dt C �.t;Xt; �t; ˛t/dWt; t 2 Œ0;T�;
X0 D �:

(3.13)

Here, Xt is the private state of the typical player, ˛t the action it chooses to take at
time t, and �t represents the impact of the strategies chosen by the other players.
For the purpose of this control problem, �t is regarded as an input: it is fixed. We
saw in Chapter 2 that, in the case of games with finitely many players, �t should
be the empirical distribution of the states (or the actions, or both states and actions)
of the other players. This can be viewed as a random measure with finite support.
In the case of mean field games, �t is typically deterministic. It is the marginal
distribution at time t of the state of a generic player in the population. However in
the case of mean field games with a common noise discussed in Chapter (Vol II)-
2, �t is a random measure representing the conditional marginal distribution of a
generic state given the realization of the common noise. In that case and as already
alluded to in Remark 3.1, the state dynamics appearing in the stochastic control
problem (3.13) contain an extra diffusion term involving the common noise.

The solutions of the optimal control problems leading to the best responses of
individual players form an important component of the search for Nash equilibria.
However, they are not the whole story. Since Nash equilibria are the fixed points
of the best response function, the second step needs to be the search for fixed
points of this function, in accordance with step (ii) in the program articulated in
Subsection 3.1.2. In our context, this will involve the search for particular flows of
probability measures � D .�t/06t6T which, if used as input, need to be recovered
as output.

While the analytic methods discussed in the previous section have underpinned
the first works on mean field games, our contention is that a probabilistic approach
should bring new insights and allow for more general and possibly less regular
models to be solved. The purpose of this section is to explain why and how
Forward-Backward Stochastic Differential Equations (FBSDEs) appear naturally in
the solutions of the mean field game problems, and to develop the tools necessary
for their analyses.
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3.2.1 FBSDEs and Control Problems

We first consider the optimal control step of the formulation of the mean field
game problems described earlier. Probabilists have a two pronged approach to
these optimal control problems. We proceed to their descriptions when the input
� D .�t/06t6T is deterministic and fixed. We refer the reader to Chapter (Vol II)-1
for a review of the corresponding optimization problem in a random environment
given by a stochastic input. As announced, we assume that the volatility function
� appearing in the state dynamics part of the stochastic control problem (3.13) is
independent of the control ˛.

1. The first method is closer in spirit to the analytic approach based on the
Hamilton-Jacobi-Bellman (HJB) equation derived from the dynamic programming
principle. The crux of this method is to give a probabilistic representation of the
value function of the optimization problem as the solution of a Backward Stochastic
Differential Equation (BSDE). Assuming that the volatility � is an invertible matrix,
this BSDE reads:

dYt D �f
�
t;Xt; �t; ˛t

�
dt C Zt � dWt; t 2 Œ0;T�; (3.14)

with terminal condition YT D g.XT ; �T/, where X D .Xt/06t6T is the controlled
process obtained by choosing for ˛ D .˛t/06t6T the specific control:

˛t D Ǫ�
t;Xt; �t; �.t;Xt; �t/

�1�Zt
�
; t 2 Œ0;T�:

In (3.14), the process Y D .Yt/06t6T is scalar valued while Z D .Zt/06t6T takes
values in R

d. For that reason, the stochastic integration is denoted under the form
of an inner product. This is in contrast with the notation used when Y is vector
valued, in which case the stochastic integration is written under the form of a
matrix multiplication. Moreover, �.t;Xt; �t/

�1 is the inverse of �.t;Xt; �t/ and
�.t;Xt; �t/

�1� denotes its transpose. Also, the function Ǫ is the minimizer of the
Hamiltonian in the sense that:

Ǫ .t; x; �; y/ 2 argmin˛2AH.t; x; �; y; ˛/;

where H is the reduced Hamiltonian function introduced when � is uncontrolled:

H.t; x; �; y; ˛/ D y � b.t; x; �; ˛/C f .t; x; �; ˛/:

Lemma 3.3 provides conditions for existence, uniqueness and regularity of such a
function Ǫ . A first remark is that, even before we replace ˛t, the state Xt appears in
the driver of the BSDE (3.14), by which we mean the coefficient, up to the sign �,
in front of the dt. So this BSDE has random coefficients. But if, as we require, the
player has to use the specific control ˛t given by the function Ǫ for the system to be
at the optimum, then the term Zt appears in the forward dynamics of the state of the
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control problem (3.13). Equations giving dXt and dYt are now strongly coupled, and
instead of a BSDE with random coefficients (due to the dependence of the driver
upon Xt), we now need to solve a fully coupled FBSDE, whose coefficients are
deterministic and depend upon the measure flow � D .�t/06t6T .

2. The second prong of the probabilistic approach is based on the extension
of the Pontryagin maximum principle to the control of stochastic differential
equations. It does not require invertibility of the volatility matrix � , but it requires
differentiability of the coefficients. It is based on a probabilistic representation of the
derivative of the value function (the so-called adjoint variable or adjoint process) as
a solution of a BSDE called the adjoint equation:

dYt D �@xHfull.t;Xt; �t;Yt;Zt; ˛t/dt C ZtdWt; t 2 Œ0;T�; (3.15)

with terminal condition YT D @xg.XT ; �T/, where as before, the control ˛t is
chosen to be the specific control ˛t D Ǫ .t;Xt; �t;Yt/. Above, Y takes values in R

d

and Z in R
d�d. In agreement with our previous remark, the stochastic integration

is written under the form of a matrix acting on a vector and the Hamiltonian
Hfull.t; x; �; y; z; ˛/ is equal to H.t; x; �; y; ˛/ C �.t; x; �/ � z, which also admits
Ǫ .t; x; �; y/ as minimizer in ˛.

The equation (3.15) is a BSDE with random coefficients because of the presence
of Xt in the expression giving the driver. But as before, replacing ˛t by Ǫ .t;Xt; �t;Yt/

in the forward dynamics of the control problem (3.13) creates a strong coupling
between dXt and dYt and the solution of the control problem reduces to the solution
of an FBSDE with deterministic coefficients.

Remark 3.5 This remark complements Remark 3.1 on mean field games with a
common noise. Indeed, the above discussion makes a strong case for the use of
FBSDEs in the solution of mean field game problems. However, the FBSDEs touted
above cannot be used to handle mean field games with a common noise which
we study later in the book. Indeed, as seen in some of the models introduced in
Chapter 1 (see for instance paragraphs 1.3.2 and 1.4.1), the forward SDEs giving
the dynamics of the state should contain an extra term in dW0

t accounting for a
common source of random shocks. Accordingly, the input � D .�t/06t6T should
be random and stand for the conditional distribution of a generic state given
the realization of the common noise. As a result, the BSDE should also have a
term Z0t dW0

t (or Z0t � dW0
t depending on the dimension of the backward equation).

However, as explained in detail in Chapter (Vol II)-2, although � D .�t/06t6T

is expected to be adapted to the filtration generated by W0 D .W0
t /06t6T , it

may happen that � involves additional sources of randomness, as it is the case
in the construction of weak solutions of stochastic differential equations which
often end up not being adapted to the underlying Brownian filtration. Therefore,
randomness in the measure � may prevent us from assuming that the filtrations
satisfy the martingale representation theorem. As a result, we should be prepared
to face cases for which the extra martingale term forced on us by the presence
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of a common noise, may not be a stochastic integral of the form Z0t dW0
t . Instead,

this martingale term should be of the more general form Z0t dW0
t C dMt for some

martingale M D .Mt/06t6T orthogonal to .W;W0/ D .Wt;W0
t /0�t�T . This class of

FBSDEs is not standard, and as far as we know, was little studied in the existing
literature. We call them FBSDEs in a random environment (due to the randomness
of �), or simply FBSDEs with random coefficients. We develop their theory (or
at least what we need for the purpose of the analysis of mean field games with a
common noise) in Section (Vol II)-1.1.

3.2.2 FBSDEs of McKean-Vlasov Type andMFGs

The second step of the search for Nash equilibria is the construction of the fixed
points (if any) of the best response map, see for instance step (ii) in the program
articulated in Subsection 3.1.2. In the present context of mean field games, this step
amounts to finding particular flows of probability measures � D .�t/06t6T which, if
used as input to the stochastic control problem, will force the marginal distribution
at time t of the optimal state of the controlled problem to coincide with the original
�t we started from. In other words, these fixed points will force .�t/06t6T to be the
flow of marginal distributions of the X D .Xt/06t6T -component of the solution of the
FBSDE associated with the control problem. Replacing �t by L.Xt/ in the FBSDE
turns the family of standard FBSDEs parameterized by the flow of measures � into
an FBSDE of McKean-Vlasov type.

Remark 3.6 Strictly speaking, the above discussion applies to the mean field game
models solved in this chapter. In the presence of a common noise, as we shall
see in Chapter (Vol II)-2, the measures .�t/06t6T are random since they depend
upon the realizations of the common noise. In that case, the fixed point argument
says that �t needs to be identified to the conditional distribution of Xt given the
common noise. So technically speaking, the solution of the mean field game becomes
equivalent to the solution of an FBSDE of conditional McKean-Vlasov type. These
new FBSDEs of McKean-Vlasov type will also appear in Chapter (Vol II)-6 when we
study mean field games with a major and minor players. The solvability of FBSDEs
of conditional McKean-Vlasov type is addressed in Chapter (Vol II)-3.

Remark 3.7 As explained above, �t should hopefully be identified with L.Xt/.
Since solutions of generic stochastic differential equations have finite moments, we
shall work from the get-go with probability measures �t already in the so-called
Wasserstein space P2.Rd/ of probability measures over R

d with a finite second
moment. The space P2.Rd/ is equipped with the Wasserstein distance W2. For the
convenience of the reader and for the present chapter to be self-contained, we give
a precise definition of the Wasserstein distances. They are studied in full detail in
Chapter 5. Recall that if E is a complete separable metric space (quite often R

d in
the book), for any p > 1 we denote by Pp.E/ the subspace of P.E/ of the probability
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measures of order p, namely those probability measures which integrate the p-th
power of the distance to a fixed point whose choice is irrelevant in the definition of
Pp.E/. If �;�0 2 Pp.E/, the p-Wasserstein distance Wp.�; �

0/ is defined by:

Wp.�; �
0/ D inf

�2˘p.�;�0/

� Z

E�E
d.x; y/p �.dx; dy/

�1=p

; (3.16)

where˘p.�; �
0/ denotes the set of probability measures in Pp.E�E/with marginals

� and �0. It is customary to talk about Wasserstein space and Wasserstein distance
(without referring to p) when p is assumed to be equal to 2.

Recasting the two prongs of the probabilistic approach into a single formulation,
and leaving for later the introduction of an additional common noise W0 as
explained in Remark 3.5, we see that the optimal control part leads in both cases
to the analysis of an FBSDE of the form:

8
ˆ̂<

ˆ̂:

dXt D B.t;Xt; �t;Yt;Zt/dt C˙.t;Xt; �t/dWt;

dYt D �F.t;Xt; �t;Yt;Zt/dt C ZtdWt; t 2 Œ0;T�;
YT D G.XT ; �T/;

(3.17)

where W D .Wt/06t6T is a Wiener processes in R
d, B and F are functions from

Œ0;T� � R
d � P2.Rd/ � R

m � R
m�d into R

d and R
m respectively, and ˙ is a

function from Œ0;T� � R
d � P2.Rd/ into R

d�d. Observe that the integer m used
for the dimension of the backward component has nothing to do with the integer
m used in Subsection 3.1.1 to denote the dimension of the noise; recall indeed that
W is assumed to be d-dimensional. The flow � D .�t/06t6T accounts for the input,
which is deterministic for the time being. It is assumed to take values (continuously)
in the Wasserstein space P2.Rd/ of probability measures of order 2. A solution
of such an FBSDE comprises progressively measurable processes X D .Xt/06t6T ,
Y D .Yt/06t6T and Z D .Zt/06t6T with values in R

d, Rm and R
m�d respectively.

We refer to Section 4.1 for a more detailed account of FBSDEs.
To be more specific, when implementing approach 1 based on the representation

of the value function as the solution of a BSDE, we end up with:

B.t; x; �; y; z/ D b
�
t; x; �; Ǫ .t; x; �; �.t; x; �/�1�z/�;

F.t; x; �; y; z/ D f
�
t; x; �; Ǫ .t; x; �; �.t; x; �/�1�z/�;

(3.18)

where �.t; x; �/�1� is the transpose of �.t; x; �/�1.
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On the other hand, when implementing approach 2 based on the stochastic
version of the Pontryagin maximum principle, we end up with:

B.t; x; �; y; z/ D b.t; x; �; Ǫ .t; x; �; y//;
F.t; x; �; y; z/ D �

@xHfull
��

t; x; �; y; z; Ǫ .t; x; �; y/�:
(3.19)

In the search for an MFG equilibrium, the flow � is required to match the flow of
marginal distributions .L.Xt//06t6T of the forward process X D .Xt/06t6T in (3.17).
The resulting equation is the epitome of an FBSDE of McKean-Vlasov type:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;L.Xt/;Yt;Zt

�
dt C˙

�
t;Xt;L.Xt/

�
dWt;

dYt D �F
�
t;Xt;L.Xt/;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T�;

YT D G
�
XT ;L.XT/

�
:

(3.20)

We shall provide a systematic analysis of this new class of FBSDEs in Section 4.3.

Remark 3.8 Our discussion highlighted a one-to-one correspondence between
optimal stochastic control problems and a specific class of FBSDEs. Yet, the
FBSDEs of McKean-Vlasov type introduced for the purpose of solving mean field
game problems are not directly associated with optimization problems. However,
as we shall see after developing a special differential calculus for measures in
Chapter 5, some of the FBSDEs of McKean-Vlasov type are in fact associated with
optimal control problems. The latter correspond to the optimal control of dynamics
given by stochastic differential equations of McKean-Vlasov type. This theory is
developed in Chapter 6.

Remark 3.9 When the dimension m of the backward component in (3.17) is equal
to 1, the process Z D .Zt/06t6T takes values in R

1�d. As already explained, it will be
more convenient to regard it as a process with values in R

d and to write the product
ZtdWt as an inner product in R

d. For that reason, in the special case m D 1, we
often write Zt � dWt instead of ZtdWt, Zt being understood as an element of Rd.

3.2.3 RoadMap to the Solution of FBSDEs of theMcKean-Vlasov
Type

The above reformulation of the MFG problems is screaming for the investigation
of the solvability of forward-backward SDEs of the McKean-Vlasov type. Most
of Chapter 4 will be devoted to this specific question, while Chapter (Vol II)-3
will address the same problem in the presence of a common noise. Here, we try
to provide new insight on the nature of the technical difficulties we are about to
face, and the tools that we shall bring to bear to overcome them.
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The most challenging feature of these equations is the twofold structure of the
boundary condition. To wit, a forward-backward equation is a two-point boundary
value problem. One of the simplest examples we may think of for this type of
equation is a pair of two coupled ODEs (with values in R), one being set forward
and the other one being set backward:

(
Pxt D b.t; xt; yt/;

Pyt D �f .t; xt; yt/; t 2 Œ0;T�; (3.21)

with a given initial condition x0 2 R for x D .xt/06t6T and terminal condition
yT D g.xT/ for y D .yt/06t6T . In most cases of interest to us, the forward-backward
system is stochastic as the forward equation is forced by a random noise, and
is driven by coefficients depending on an infinite dimensional variable since the
state variable at time t comprises both the private state Xt and the collective state
L.Xt/. Quite remarkably, the purely analytic formulation of the MFG problems
presented in Subsection 3.1.5 also consists in a forward-backward system: the
forward equation is the Fokker-Planck equation for the evolution of the population,
while the backward equation is the Hamilton-Jacobi-Bellman equation for the value
function. In that case, the forward-backward system is clearly infinite dimensional,
though deterministic, since both the forward and backward components are of
infinite dimension.

As we already mentioned, one of the major drawbacks of forward-backward
systems, even those of the simplest form (3.21), is that Cauchy-Lipschitz theory
fails except possibly in small time. There are very simple examples of systems of
the form (3.21), with coefficients b and f Lipschitz continuous in the variables x
and y, for which existence and/or uniqueness fail. We shall present one of them
in Subsection 4.3.4 in order to enlighten the fact that the same difficulties plague
FBSDEs of the McKean-Vlasov type. This is clearly a bad omen as we cannot
expect to solve systems like (3.20) by a standard Picard fixed point argument,
except possibly when T is small enough or equivalently, when the coupling between
the forward and the backward components is weak. Henceforth, we must seek
alternative strategies for proving existence and/or uniqueness of solutions to (3.20);
one of the major objectives of the book is to present some of them.
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1
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How CanWe Solve an FBSDE?
We first consider the case of systems like (3.20) without McKean-Vlasov interac-
tion. But even then, the discussion of the deterministic example (3.21) will show
that despite the simplification, solvability of the forward-backward system may still
be a touchy business. As a case in point, we concentrate on the following specific
examples:

8
ˆ̂<

ˆ̂:

Pxt D �yt; x0 2 R;

Pyt D 0; t 2 Œ0;T�;
yT D G.xT/:

(3.22)

with terminal condition functions G.x/ D ˙.�1/_x^1whose plots are reproduced
below.

When T D 1 and the leading sign in G is C, it is easy to check that the solution
to (3.22) is given by .xt D x0.1� t=2/; yt D x0=2/06t6T when x0 2 Œ�2; 2�. We plot
paths of the x-component of the solution in the left-hand side below. When T D 1

and the leading sign in G is �, the solutions to (3.22) are .xt D x0 C tsign.x0/; yt D
�sign.x0//06t6T if x0 6D 0, but when x0 D 0, all the curves .xt D at; yt D �a/06t6T ,
for a 2 Œ�1; 1�, are solutions. Plots of the x-components are given in the right-hand
side below, the solutions with x0 D 0 and sign D � being in red.

0

1

1

T 1 and sign for G.

00

1

1

T 1 and sign for G.

This example is quite enlightening as it shows that the monotonicity properties
of the coefficients (here of the function giving the terminal condition) may play a
key role in the properties of the forward-backward system.

In order to gain a better understanding of the meaning of this monotonic-
ity property, we may view equation (3.22) as a particular case of (3.15), with
� � 0 and without input �. Indeed, a straightforward computation based on
formula (3.19) shows that (3.22) is an instance of adjoint equation (3.15) for
.˛t D Ǫ .t;Xt; �t;Yt//06t6T when A D R, b.t; x; �; ˛/ D ˛, f .t; x; �; ˛/ D ˛2=2

and g.x/ D R x
0

G.r/dr. We then understand the monotonicity property of G as a
convexity property of the terminal cost function g.
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This observation is crucial. As we shall see in Subsection 3.3.2 below, the
forward-backward system obtained by coupling (3.15) with the corresponding for-
ward controlled equation is well posed when the underlying optimization problem
has a full-fledged convex structure in both ˛ and x. This is a prime strategy to solve
an FBSDE. In the sequel, we shall use it in order to solve the FBSDE derived from
the stochastic Pontryagin principle when convexity holds.

Although very helpful, this first solvability result will not suffice. As the reader
may have already noticed from the examples given in Chapter 1, convexity does
not always hold, even in simple models. However, as highlighted by Lemma 3.3,
convexity in the direction ˛ can play a crucial role as it guarantees that Ǫ inherits
the smoothness properties of the coefficients. The challenge for us will be to relax
the convexity condition in the direction x.

In regard to our preliminary discussion of the breakdown of the Cauchy-
Lipschitz theory for forward-backward systems, our goal is to replace the convexity
assumption by another sufficient condition guaranteeing the well posedness of the
FBSDE. In order to do so, we shall invoke another key ingredient in the theory of
forward-backward SDEs. When driven by deterministic coefficients, these forward-
backward systems can be viewed as systems of characteristics of nonlinear PDEs.
Indeed, going back to system (3.22) and assuming that existence and uniqueness
hold true, and that there exists a smooth function u W Œ0;T� � R ! R such
that yt D u.t; xt/ for all t 2 Œ0;T�, condition Pyt D 0 can be rewritten as
@tu.t; xt/C @xu.t; xt/Pxt D 0. Recalling that Pxt D �yt, we end up with:

@tu.t; xt/ � u.t; xt/@xu.t; xt/ D 0; t 2 Œ0;T�:

If existence and uniqueness hold true for any initial condition x0 2 R at any
initialization time t0 2 Œ0;T�, then u must solve the nonlinear equation:

@tu.t; x/ � u.t; x/@xu.t; x/ D 0; t 2 Œ0;T�; x 2 R; (3.23)

which is the backward Burgers’ equation with terminal condition u.T; �/ D G.
The plots given earlier are then the plots of the characteristics of the Burgers
equation, and the meaning of the monotonicity property of G may be reformulated
as follows: if G is nondecreasing, the equation is in a dilation regime (when
described in the backward sense, the characteristics diverge from each other); if
G is nonincreasing, the equation is in a compression regime (when described in
the backward sense, the characteristics get closer to each other). In the dilation
regime, the Burgers equation has a solution which is Lipschitz in space, while, in
the compression regime, solutions develop a singularity. We conclude that upward
monotonicity (i.e., convexity when regarded at the level of the optimal control
problem) has a regularizing effect onto the whole system.

Another way to regularize a nonlinear PDE such as the Burgers equation is to
force it by a diffusive term. Irrespective of the sign of G, (3.23) with .1=2/@2xxu.t; x/
added to the left-hand side has a classical solution. Thanks to the regularizing effect
of the heat kernel, the solution cannot develop singularities. We now revisit the
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discussion of the characteristics, and explain how the inclusion of the Laplacian
in the equation manifests in the form of a Brownian motion! In that case, the
system (3.22) becomes stochastic:

8
ˆ̂<

ˆ̂:

dXt D �Yt C dWt;

dYt D ZtdWt; t 2 Œ0;T�;
X0 D x0 2 R; YT D G.XT/;

(3.24)

where W D .Wt/06t6T is a one-dimensional Wiener process. Here the martingale
term in the backward equation is needed to force the solution to be adapted to the
filtration of the noise. It turns out that the well posedness of the viscous Burgers
equation transfers to the forward-backward SDE (3.24), which is also uniquely
solvable. Moreover, the solution .Xt;Yt;Zt/06t6T admits the representation:

P

h
8t 2 Œ0; 1�; Yt D u.t;Xt/

i
D 1;

u being the solution of the viscous Burgers equation, and Zt D @xu.t;Xt/ almost
everywhere under Leb1 ˝ P, where Leb1 denotes the one-dimensional Lebesgue
measure. In the theory of FBSDEs, u is called the decoupling field of the forward-
backward system.

This provides still another avenue to solve FBSDEs. Indeed, when the diffusion
coefficient (or volatility) driving the noise term is nondegenerate and the coefficients
are bounded in the space variable, it may be shown that the Cauchy-Lipschitz theory
still holds true, see the Notes and Complements at the end of the chapter. We
shall state and use this result in Chapter 4, see Theorem 4.12. The need for the
boundedness of coefficients has been documented in the literature with examples of
linear forward-backward systems with an additive nondegenerate noise for which
existence and/or uniqueness fail.

Implementing Schauder’s Fixed Point Theorem
The results discussed above have the potential to be very helpful. Indeed, they
provide effective tools for investigating the well posedness of the equation (3.17)
driven by an input � D .�t/06t6T . However, they fall short of being sufficient
for our purposes, since we are interested in the solvability of the McKean-Vlasov
version (3.20). As explained earlier and documented later in Chapter 4, there is no
Cauchy-Lipschitz theory for McKean-Vlasov FBSDEs, except in small time. Once
again, we shall need innovative technologies to bypass this roadblock.

Our strategy for solving the equation will rely on two main ingredients:

1. The first one is a suitable notion of upward monotonicity for functionals depend-
ing upon a measure argument, in full analogy with the upward monotonicity
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property of G in the example 3.22 discussed above. This notion is due to Lasry
and Lions and will be shown in Subsection 3.4, to play a key role in the
uniqueness of equilibria for mean field games.

2. The second one is a systematic use of Schauder’s fixed point theorem in order
to prove the existence (though not the uniqueness) of solutions to FBSDEs of
the McKean-Vlasov type and subsequently, of equilibria to the corresponding
mean field games. The implementation of Schauder’s theorem is discussed in
detail in Chapter 4 where it is applied to the function mapping the input � D
.�t/06t6T in (3.17) onto the output flow of marginal laws .L.Xt//06t6T formed
by the forward component X D .Xt/06t6T of the solution. This approach works
well because we can easily imbed the input � and the output .L.Xt//06t6T in a
topological space to which simple compactness criteria can be applied. This is
crucial as Schauder’s theorem is based on compactness arguments.

For the sake of illustration, we provide below the statement of one of the
solvability results proven in Chapter 4 by means of Schauder’s theorem. This
statement is given here for pedagogical reasons, in anticipation of the discussion
of next subsection where we use it to prove our first results of existence of equilibria
for mean field games. It will be generalized in Chapter 4.

The statement given below addresses the existence (but not the uniqueness)
of a solution to a fully coupled McKean-Vlasov forward-backward system of the
type (3.20), namely of the form:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;L.Xt/;Yt;Zt

�
dt C˙

�
t;Xt;L.Xt/;Yt

�
dWt

dYt D �F
�
t;Xt;L.Xt/;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T�;

YT D G
�
XT ;L.XT/

�
;

(3.25)

with initial condition X0 D � for some � 2 L2.˝;F0;PIRd/. The unknown
processes .X;Y;Z/ are of dimensions d, m, and m � d respectively. The coefficients
are assumed to be deterministic. The functions B and F map Œ0;T� � R

d �
P2.Rd/ � R

m � R
m�d into R

d and R
m respectively, while the coefficient ˙ maps

Œ0;T�� R
d � P2.Rd/� R

m into R
d�d. The function G giving the terminal condition

maps Rd �P2.Rd/ into R
m. All these functions are assumed to be Borel-measurable.

The space P2.Rd/ is equipped with the 2-Wasserstein distance W2, see Remark 3.7.
For � 2 P2.Rd/, we call M2.�/ the second moment:

M2.�/ D
� Z

Rd
jxj2d�.x/

�1=2
: (3.26)

For the sake of definiteness, we state formally the precise assumptions under which
the existence result will be proven.
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Assumption (Nondegenerate MKV FBSDE). There exists a constant L > 1

such that

(A1) For any t 2 Œ0;T�, x; x0 2 R
d, y; y0 2 R

m, z; z0 2 R
m�d and � 2 P2.Rd/,

j.B;F;G; ˙/.t; x0; �; y0; z0/ � .B;F;G; ˙/.t; x; �; y; z/j
6 Lj.x; y; z/ � .x0; y0; z0/j:

Moreover, for any .t; x; y; z/ 2 Œ0;T��R
d �R

m �R
m�d, the coefficients

B.t; x; �; y; z/, F.t; x; �; y; z/, ˙.t; x; �; y/ and G.x; �/ are continuous in the
measure argument with respect to the 2-Wasserstein distance.

(A2) The functions ˙ and G are bounded by L. Moreover, for any t 2 Œ0;T�,
x 2 R

d, y 2 R
m, z 2 R

m�d and � 2 P2.Rd/,

j.B;F/.t; x; �; y; z/j 6 L
�
1C jyj C jzj C M2.�/

	
:

(A3) The function ˙ is uniformly elliptic in the sense that, for any t 2 Œ0;T�,
x 2 R

d and � 2 P2.Rd/, the following inequality holds true:

�
˙˙�

�
.t; x; �; y/ > L�1Id;

in the sense of symmetric matrices, where Id is the d-dimensional
identity matrix, and where the exponent � denotes the transpose of a
matrix. Moreover, the function Œ0;T� � R

d � P2.Rd/ 3 .t; x; �/ 7!
˙.t; x; �/ is continuous.

We can now state the anticipated existence result whose proof is deferred to
Subsection 4.3:

Theorem 3.10 Under assumption Nondegenerate MKV FBSDE, for any random
variable � 2 L2.˝;F0;PIRd/, the FBSDE (3.25) has a solution .X;Y;Z/ D
.Xt;Yt;Zt/06t6T satisfying

E

�
sup
06t6T

�jXtj2 C jYtj2
� C

Z T

0

jZtj2dt

�
< 1;

with X0 D � as initial condition.
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3.3 The Two-Pronged Probabilistic Approach

We stress that most of the results given in this section are provisional. They will be
stated and proven in full generality in the next chapter. The rationale for presenting
them at this stage is to supply the reader with a fair understanding of the philosophy
of the probabilistic approach.

In this section, we offer a first, mostly pedagogical, approach to the mean field
game problem using probabilistic tools in two different ways. In both cases we
introduce BSDEs to tackle the stochastic optimization problem, and in both cases,
the optimality condition creates a coupling between the forward dynamics of the
state and the original BSDE, leading to the solution of an FBSDE. Both approaches
are well understood by probabilists working on optimal control problems. The first
approach is known as the weak formulation or martingale method, while the second
one is known under the name of stochastic maximum approach. We introduce them
below. As emphasized in the previous section, the fixed point step in the solution of
the mean field game problem, when implemented in each of these two approaches,
turns standard FBSDEs into FBSDEs of the McKean-Vlasov type. This unexpected
twist to the standard theory will require special attention in this chapter and in the
next one for the solution of mean field game problems without common noise, and
in Chapter 6 for the control of McKean-Vlasov dynamics.

In this section and the next, all the processes are assumed to be defined on
a complete filtered probability space .˝;F ;F D .Ft/06t6T ;P/, the filtration
F satisfying the usual conditions, supporting a d-dimensional Wiener process
W D .Wt/06t6T with respect to F. Recall that for each random variable/vector
or stochastic process X, we denote by L.X/ the law (alternatively called the
distribution) of X and, for any integer n > 1, by H

2;n the Hilbert space:

H
2;n D

n
Z 2 H

0;n W E

Z T

0

jZsj2ds < 1
o
;

where H
0;n stands for the collection of all R

n-valued progressively measurable
processes on Œ0;T�. We shall also denote by S

2;n the collection of all continuous
processes U D .Ut/06t6T in H

0;n such that EŒsup06t6T jUtj2� < 1.

3.3.1 TheWeak Formulation Approach

Of the two probabilistic approaches which we propose in this section, the Weak
Formulation is closest to the analytic approach. Indeed, it follows the strategy
based on the search for an equation for the value function of the optimal control
problem (3.4) of step (i) of the formulation of a mean field game problem, when
the flow � D .�t/06t6T of probability measures is fixed. Recall that, as stated
at the beginning of Subsection 3.1.2, we restrict ourselves to deterministic flows
in this chapter. The main characteristic (and possibly the main shortcoming) of
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the weak formulation as described in this chapter, is to be limited to models for
which the volatilities of the state dynamics are not controlled and do not depend
upon the measure arguments. In the next Chapter 4, we shall propose a more robust
formulation that accommodates a diffusion coefficient depending upon the measure
argument.

So, in this subsection, we restrict ourselves to models for which:

�.t; x; �; ˛/ D �.t; x/; (3.27)

for a locally bounded and measurable function Œ0;T��R
d 3 .t; x/ 7! �.t; x/ 2 R

d�d

which we assume to be Lipschitz in x uniformly in t 2 Œ0;T�. This guarantees
existence and uniqueness of a strong solution X D .Xt/06t6T of the equation:

dXt D �.t;Xt/dWt; t 2 Œ0;T�I X0 D �; (3.28)

for any given square integrable random variable � with values in R
d. We shall also

assume uniform ellipticity, namely that the spectrum of the matrix �.t; x/�.t; x/�

is bounded from below by a strictly positive constant independent of t and x. This
implies that �.t; x/ is invertible with a uniformly bounded inverse. This remark is
important because we plan to use Girsanov’s theorem. Indeed, for each continuous
measure flow � D .�t/06t6T and admissible control ˛ 2 A, we define the
probability measure P

�;˛ on .˝;FT/ by:

dP�;˛

dP
D E

�Z �

0

�.t;Xt/
�1b .t;Xt; �t; ˛t/ � dWt

�

T

;

where we use the notation E for the Doléans-Dade exponential of a martingale.
Recall that if M D .Mt/06t6T is a local martingale, its Doléans-Dade exponential
E.M/ (also called the stochastic exponential of M) is defined by the formula:

E.M/t D exp
�
Mt � M0 � 1

2
ŒM;M�t

�
;

where .ŒM;M�t/06t6T stands for the quadratic variation of M. The process W�;˛

defined by:

W�;˛
t D Wt �

Z t

0

�.s;Xs/
�1b .s;Xs; �s; ˛s/ ds; t 2 Œ0;T�;

is a Wiener process under P�;˛, provided that Girsanov’s theorem applies. The latter
is true if b is bounded, since ��1 is already known to be bounded. In such a case, it
holds P�;˛ almost-surely:

dXt D b .t;Xt; �t; ˛t/ dt C �.t;Xt/dW�;˛
t ; t 2 Œ0;T�:
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That is, under P�;˛, X is a weak solution of the state equation. Note that P�;˛ and P

agree on F0; in particular, the law of X0 D � remains the same. Moreover, � and W
remain independent under P�;˛.

Reformulation of the Mean Field Game. Given ˛ 2 A, we redefine the cost
functional J�.˛/ associated with ˛ by:

J�;weak.˛/ D E
�;˛

�
g.XT ; �T/C

Z T

0

f .t;Xt; �t; ˛t/dt

�
; (3.29)

where X solves the driftless equation (3.28) and E
�;˛ denotes the expectation with

respect to P
�;˛. It is worth mentioning that J�;weak.˛/may differ from J�.˛/ in (3.4)

since the distribution of the pair .X;˛/ under P
�;˛ may be different from the

distribution of the pair .X˛;˛/ under P. However, when b is bounded and � is
bounded and continuous, and when the control ˛ is Markovian in the sense that
˛t D �.t;Xt/ for some Borel-measurable function � W Œ0;T��R

d ! A, Stroock and
Varadhan uniqueness in law theorem guarantees that .X;˛/, with ˛t D �.t;Xt/ for
any t 2 Œ0;T�, has the same law under P�;˛ as .X�t ; �.t;X

�
t //0�t�T where X� is the

solution of the SDE:

dX�t D b
�
t;X�t ; �t; �.t;X

�
t /

�
dt C �.t;X�t /dWt; t 2 Œ0;T�I X�0 D �;

under P. In particular, when the optimization of J� is performed over Markovian
controls only, the minimal costs to the weak and strong formulations coincide, the
strong formulation referring to the one used in (3.4).

At this stage of the book, we shall avoid any further technical discussion about the
possible differences between the weak and strong formulations. We shall provide in
Chapter 4 a suitable set of assumptions under which both formulations have the
same minimization paths. In the current section, we shall reformulate the mean
field game problem (3.4) in terms of the weak formulation, namely we will seek
a flow � D .�t/06t6T such that, under the probability P

�;? associated with the
optimal control ˛? minimizing J�;weak, .Xt/06t6T has exactly � as flow of marginal
distributions.

Weak Formulation and BSDEs. In order to proceed, we now provide a set of
assumptions under which the weak formulation has, for any continuous flow � D
.�t/06t6T with values in P2.Rd/, a unique minimizer.

Assumption (Weak Formulation). The set A is a bounded subset of Rk, but
may not be closed nor convex. Moreover, the coefficients b, f , � and g are
defined on Œ0;T� � R

d � P2.Rd/ � A, Œ0;T� � R
d � P2.Rd/ � A, Œ0;T� � R

d,
and R

d � P2.Rd/ respectively, and they satisfy for a constant L > 1:

(continued)
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(A1) For any t 2 Œ0;T�, x; x0 2 R
d, ˛; ˛0 2 A, and � 2 P2.Rd/,

j.b; f /.t; x0; �; ˛0/ � .b; f /.t; x; �; ˛/j C j�.t; x0/ � �.t; x/j
C jg.x0; �/ � g.x; �/j 6 Lj.x; ˛/ � .x0; ˛0/j:

(A2) The functions b, f , � and g are bounded, the common bound being also
denoted by L.

(A3) The function � is continuous and uniformly elliptic in the sense that, for
any t 2 Œ0;T� and x 2 R

d, the following inequality holds:

�.t; x/
�
�.t; x/

�� > L�1Id;

in the sense of symmetric matrices. Here, Id denotes the d-dimensional
identity matrix.

(A4) There exists a function

Ǫ W Œ0;T� � R
d � P2.Rd/ � R

d 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/ 2 A;

which is L-Lipschitz continuous in .x; y/ such that, for each .t; x; �; y/ 2
Œ0;T� � R

d � P2.Rd/ � R
d, Ǫ .t; x; �; y/ is the unique minimizer of

H.t; x; �; y; ˛/.

As explained in Subsection 3.1.4, the existence of a strict minimizer for the
Hamiltonian, as required in (A4) right above, is guaranteed under assumption
Minimization of the Hamiltonian under the additional assumption that A is
closed and convex. This requires the Hamiltonian to have a convex structure in ˛.
Importantly, this is not in conflict with the assumption that f is bounded and
Lipschitz, since A is assumed to be bounded.

Also, in the rest of this subsection, the filtration F is required to be generated by
F0 and W.

The workhorse of the first probabilistic approach is the representation of the
optimal cost provided by the following result:

Proposition 3.11 Let assumption Weak Formulation be in force. Recall also the
definition (3.28) of the process X for an initial condition � 2 L2.˝;F0;PIRd/.
Then, for any continuous flow � D .�t/06t6T of probability measures on R

d, the
BSDE:

dYt D �H
�
t;Xt; �t; �.t;Xt/

�1�Zt; Ǫ .t;Xt; �t; �.t;Xt/
�1�Zt/

�
dt

� Zt � dWt; 0 6 t 6 T;
(3.30)
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with terminal condition YT D g.XT ; �T/, is uniquely solvable. Moreover, the control
Ǫ D . Ǫ t/06t6T defined by Ǫ t D Ǫ .t;Xt; �t; �.t;Xt/

�1�Zt/ is the unique optimal
control over the interval Œ0;T�, and the optimal cost of the problem is given by:

inf
˛2A J�;weak D Y0: (3.31)

Proof.

First Step. We first show that the BSDE (3.30) has a solution. Importantly, the process X
is adapted with respect to the filtration F, which is assumed to satisfy the representation
martingale theorem. However, the difficulty is that the Hamiltonian H is not Lipschitz
continuous in the variable y, and consequently, the driver of the BSDE is not Lipschitz as
a function of Zt. Indeed, when expanding H, (3.30) takes the form:

dYt D ���
�.t;Xt/

�1�Zt
� � b

�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt/

�1�Zt/
�

C f
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt/

�1�Zt/
�	

dt

� Zt � dWt; 0 6 t 6 T;

(3.32)

with YT D G.XT ; �T/. In order to bypass this obstacle, we shall invoke results from the
theory of quadratic BSDEs, a short account of which is given in Chapter 4. Thanks to the
boundedness of f and g, we first notice from standard results for backward SDEs that, for
any solution .Y;Z/ to (3.32), the component Y is bounded in the sense that sup06t6T jYtj
is in L1.˝;F ;PIR/. We only provide a sketch of the proof. We can find two constants
c > 0 and C > 0 such that, when applying Itô’s formula to .exp.ct/jYtj2/06t6T , we get, with
probability 1, for all t 2 Œ0; T�,

exp.ct/jYtj2 C 1

2

Z T

t
exp.ct/jZsj2ds 6 C C 2

Z T

t
exp.cs/YsZs � dWs:

Taking conditional expectation given Ft on both sides, we get an almost sure bound for jYtj.
Since Y is continuous, we easily obtain an almost sure bound for sup06t6T jYtj. Existence
and uniqueness then follow from Theorem 4.15.

Second Step. Given an admissible control ˇ 2 A, since the variable y does not appear in the
driver of the BSDE, and hence the map R � R

d 3 .y; z/ 7! H.t;Xt; �t; �.t;Xt/
�1�z; ˇt/ is

independent of y and uniformly Lipschitz in z (recall that A is assumed to be bounded),
existence and uniqueness hold for the following BSDE, whose solution is denoted by
.Yˇ;Zˇ/:

(
dYˇ

t D �H
�
t;Xt; �t; �.t;Xt/

�1�Zˇ
t ; ˇt

�
dt C Zˇ

t � dWt; t 2 Œ0; T�;
Yˇ

T D g.XT ; �T/:

Recalling that X D .Xt/06t6T is the solution of the driftless dynamic equation (3.28), we
have:
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Yˇ
t D g.XT ; �T/C

Z T

t
H

�
s;Xs; �s; �.s;Xs/

�1�Zˇ
s ; ˇs

�
ds �

Z T

t
Zˇs � dWs

D g.XT ; �T/C
Z T

t

�
f .s;Xs; �s; ˇs/C �

�.s;Xs/
�1�Zˇ

s

� � b.s;X; �s; ˇs/
	
ds

�
Z T

t
Zˇ

s � dWs

D g.XT ; �T/C
Z T

t
f .s;X; �s; ˇs/ds

C
Z T

t
Zˇ

s � �
�.s;X/�1b.s;X; �s; ˇs/ds � dWs

	

D g.XT ; �T/C
Z T

t
f .s;X; �s; ˇs/ds �

Z T

t
Zˇ

s � dW�;ˇ
s :

Since the density of P�;ˇ with respect to P has moments of any order, and since Zˇ is square
integrable under P, the stochastic integral above is a martingale under P�;ˇ . So by taking
P

�;ˇ-conditional expectation with respect to Ft, we get:

Yˇ
t D E

P
�;ˇ

�
g.XT ; �T/C

Z T

t
f .s;X; �s; ˇs/ds

ˇ̌
ˇ̌Ft

�
;

and:

E
�
Yˇ

0

	 D E
P

�;ˇ �
Yˇ

0

	 D E
P

�;ˇ

�
g.XT ; �T/C

Z T

0

f .s;Xs; �s; ˇs/ds

�
D J�;weak.ˇ/:

In order to conclude the proof, we notice that the solution .Y;Z/ of the FBSDE (3.30) is the
solution of the BSDE with terminal condition g.XT ; �T/ and driver �� defined by:

��.t; !; y; z/ D H
�
t;Xt.!/; �t; �.t;Xt.!//

�1�z; Ǫ .t;Xt.!/; �t; �.t;Xt.!//
�1�z/

�

while .Yˇ;Zˇ/ is the solution of the BSDE with the same terminal condition g.XT ; �T/ and
driver � defined by:

�.t; !; y; z/ D H
�
t;Xt.!/; �t; �.t;Xt.!//

�1�z; ˇt.!/
�
;

and by criticality of the function Ǫ , we have:

��.t; !; y; z/ 6 �.t; !; y; z/ P � a.s.

for every t, y and z. From this, we conclude EŒY0� 6 EŒYˇ

0 � by the comparison theorem for
BSDEs (see the Notes & Complements at the end of the chapter for references, see also
Theorem 4.16). Since the comparison theorem for BSDEs is strict and the minimizer of H is
strict as well, we have that:



3.3 The Two-Pronged Probabilistic Approach 159

EŒY0� D E
�
Yˇ

0

	 , ˇt D Ǫ t Leb1 ˝ P almost-everywhere;

with Ǫ D . Ǫ t D Ǫ .t;Xt; �.t;Xt/
�1�Zt//06t6T . ut

Connection with FBSDEs of the McKean-Vlasov Type. We are now in a position
to provide a rigorous definition of a solution to the mean field game associated
with (3.29).

Definition 3.12 Under assumption Weak Formulation, to any continuous flow
of measures � D .�t/06t6T from Œ0;T� to P2.Rd/, we associate the solution
.Y�;Z�/ to (3.30). Letting Ǫ � D . Ǫ .t;Xt; �t; �.t;Xt/

�1�Z�
t //06t6T , we say that �

is a solution to the mean field game (under the weak formulation of the stochastic
optimal control problem) if, for any t 2 Œ0;T�:

P
�; Ǫ � ı X�1

t D �t:

It is important to notice that, under P
�; Ǫ �

, the process .X;Y�;Z�/ solves the
FBSDE:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt/

�1�Z�
t /

�
dt

C�.t;Xt/dW�; Ǫ �

t ;

dY�
t D �f

�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt/

�1�Z�
t /

�
dt

CZ�
t � dW�; Ǫ �

t ; t 2 Œ0;T�;

(3.33)

with X0 D � as initial condition and Y�
T D G.XT ; �T/ as terminal condition. Indeed,

owing to Theorem 4.18 in Chapter 4, we know that, for any p > 1,

E

�� Z T

0

jZtj2dt

�p�
< 1:

Since dP�; Ǫ �

=dP is in any Lp.˝;FT ;PIR/, p > 1, we deduce that

E
�; Ǫ �

�� Z T

0

jZtj2dt

�p�
< 1;

proving that the martingale in the backward component of (3.33) is square-
integrable.

We shall prove in Theorem 4.12 (strong uniqueness for (3.33)) and in Theorem
(Vol I)-1.33 (version of the Yamada-Watanabe theorem for FBSDEs) that unique-
ness in law holds for (3.33). In particular, the law of the solution remains the same
if W�; Ǫ �

is replaced by W. Meanwhile, observe that (3.33) fits (3.17) and (3.18).
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We have the following characterization of the MFG equilibria:

Proposition 3.13 Under assumption Weak Formulation, a continuous flow of
measures � D .�t/06t6T from Œ0;T� to P2.Rd/ is an MFG equilibrium if and only
if �t D L. OXt/ for any t 2 Œ0;T�, where . OX; OY; OZ/ solves the McKean-Vlasov FBSDE

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d OXt D b
�
t; OXt;L. OXt/; Ǫ .t; OXt;L. OXt/; �.t; OXt/

�1� OZt
�
dt

C�.t; OXt/dWt;

d OYt D �f
�
t; OXt;L. OXt/; Ǫ .t; OXt;L. OXt/; �.t; OXt/

�1� OZt
�
dt

COZtdWt;

(3.34)

with OX0 D � as initial condition and OYT D G. OXT ;L. OXT// as terminal condition.

As we already alluded to, we shall prove in Theorem 4.12 that the system (3.34)
has a unique solution when the McKean-Vlasov component is replaced by a mere
input � D .�t/06t6T . This proves that there is no loss in replacing the noise W�; Ǫ �

in (3.33) by W, as done in (3.34).
Combining with Theorem 3.10, we finally deduce:

Theorem 3.14 On top of assumption Weak Formulation, assume that the coeffi-
cients b, f and g are continuous in the measure argument � and that the optimizer
Ǫ is also continuous in �. Then, there exists an MFG equilibrium whenever the
optimization problem in (3.4) is solved through the weak formulation.

Remark 3.15 The main shortcoming of Theorem 3.14 above is the restrictive
assumption that the set A of possible control values is bounded. However it is
possible to extend the application of the formulation based upon the representation
of the value function to cases where this assumption is not satisfied. For instance,
Theorem 4.44 in Chapter 4 gives a more general solvability result for MFGs with
unbounded A, � depending upon � and the optimal control problem (3.4) being
understood in the strong sense! At the current stage of our presentation of mean
field games, we chose not to introduce the technical tools required to overcome the
underlying obstacles by fear of obstructing the view of the road to the solution of
these problems with too many technicalities.

Remark 3.16 The reader may want to compare the PDE system (3.12) with the
mean field FBSDE (3.34). They suggest that the value of the adjoint process Yt at
time t should be identified with V.t;Xt/. Accordingly, the value of the representation
process Zt should be identified with ��.t;Xt;L.Xt//@xV.t;Xt/. Hence the dynamics
of Y D .Yt/06t6T are directly connected with the dynamics of the value function V
in (3.12) along the optimal paths. Similarly, the distribution of Xt at time t should
be identified to �t in (4.70). We shall revisit this question again in Chapter 4.
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3.3.2 The Stochastic Maximum Principle Approach

The strategy advocated in this subsection is based on the probabilistic description of
the optimal states of the optimization problem (3.4) provided by the stochastic max-
imum principle. Recall that under very general conditions, the necessary condition
of this principle identifies the optimal states of the problem (3.4). It posits that the
optimally controlled state satisfies the forward dynamics in a characteristic FBSDE,
referred to as the adjoint system of the stochastic optimization problem, see the end
of the subsection for more details. Moreover, the stochastic maximum principle also
provides a sufficient condition singling out convexity conditions, under which the
forward dynamics of any solution to the adjoint system is guaranteed to be optimal.
In this chapter, we use the sufficient condition to prove the existence of solutions
to problem (i)–(ii) as stated in Subsection 3.1.2. The challenges posed by the fixed
point step (ii) require additional assumptions. We shall assume:

Assumption (SMP). The coefficients b, f , � and g are defined on Œ0;T� �
R

d � P2.Rd/ � A, Œ0;T� � R
d � P2.Rd/ � A, Œ0;T� � R

d, and R
d � P2.Rd/

respectively. They satisfy:

(A1) The drift b is an affine function of .x; ˛/ of the form:

b.t; x; �; ˛/ D b0.t; �/C b1.t/x C b2.t/˛;

where b0 W Œ0;T� � P2.Rd/ 3 .t; �/ 7! b0.t; �/, b1 W Œ0;T� 3 t 7! b1.t/
and b2 W Œ0;T� 3 t 7! b2.t/ are R

d, Rd�d and R
d�k valued respectively,

and are measurable and bounded on bounded subsets of their respective
domains.

(A2) The function � is constant.
(A3) There exist two constants 
 > 0 and L > 1 such that the function

R
d � A 3 .x; ˛/ 7! f .t; x; �; ˛/ 2 R is once continuously differentiable

with Lipschitz-continuous derivatives (so that f .t; �; �; �/ is C1;1), the
Lipschitz constant in x and ˛ being bounded by L (so that it is uniform
in t and�). Moreover, it satisfies the following strong form of convexity:

f .t; x0; �; ˛0/ � f .t; x; �; ˛/ � .x0 � x; ˛0 � ˛/ � @.x;˛/f .t; x; �; ˛/
> 
j˛0 � ˛j2: (3.35)

The notation @.x;˛/f stands for the gradient in the joint variables .x; ˛/.
Finally, f , @xf and @˛f are locally bounded over Œ0;T��R

d �P2.Rd/�A.

(continued)
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(A4) The function R
d � P2.Rd/ 3 .x; �/ 7! g.x; �/ is locally bounded.

Moreover, for any � 2 P2.Rd/, the function R
d 3 x ! g.x; �/ is

once continuously differentiable and convex, and has a L-Lipschitz-
continuous first order derivative.

Assumption (A2) is presumably too restrictive, and the results of this section
could still be true under the more general assumption �.t; x/ D �0.t/ C �1.t/x of
linearity instead of boundedness of the volatility, see for instance the generalizations
in Section (Vol II)-3.4.

Convenient Forms of the Stochastic Maximum Principle. We shall take advan-
tage of the following variations on the standard proof of the stochastic maximum
principle. Their formulations are tailored to the needs of this chapter and the next
one. They provide not only existence, but quantitative estimates when the uniform
convexity assumptions hold.

Theorem 3.17 Let us assume that assumption SMP holds and that the mapping
� W Œ0;T� 3 t 7! �t 2 P2.Rd/ is measurable and bounded. Then, the FBSDE:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t;Yt/

�
dt C �dWt;

dYt D �@xH
�
t;Xt; �t;Yt; Ǫ .t;Xt; �t;Yt/

�
dt

CZtdWt; t 2 Œ0;T�;
X0 D �; YT D @xg.XT ; �T/;

(3.36)

where Ǫ is the minimizer of the Hamiltonian constructed in Lemma 3.3, has a
solution .X;Y;Z/ D .Xt;Yt;Zt/06t6T satisfying:

E

�
sup
06t6T

�jXtj2 C jYtj2
� C

Z T

0

jZtj2dt

�
< C1: (3.37)

If we define the control process Ǫ D . Ǫ t/06t6T by Ǫ t D Ǫ .t;Xt; �t;Yt/, then for any
progressively measurable admissible control ˛ D .˛t/06t6T satisfying (3.2), it holds
that:

J�
� Ǫ � C 
E

Z T

0

j˛t � Ǫ tj2dt 6 J�.˛/: (3.38)

Remark 3.18 While Ǫ will be shown to be progressively measurable with respect to
the filtration generated by F0 and W, ˛ in (3.38) may be assumed to be progressively
measurable with respect to a larger filtration. Put it differently, the filtration F used
in the definition of A may not be generated by F0 and W.
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Proof. The proof of the existence of a solution to (3.36) is deferred to Chapter 4; see
Lemma 4.56 there. Here we just focus on the proof of inequality (3.38). By Lemma 3.3,
Ǫ D . Ǫ t/06t6T satisfies (3.2), and the proof of the stochastic maximum principle (see for
example the proof given in Theorem 2.16) gives:

J�
�
˛

�
> J�

� Ǫ � C E

Z T

0

�
H.t;X˛

t ; �t; Yt; ˛t/ � H.t;Xt; �t; Yt; Ǫ t/

� .X˛
t � Xt/ � @xH.t;Xt; �t; Yt; Ǫ t/ � .˛t � Ǫ t/ � @˛H.t;Xt; �t; Yt; Ǫ t/

	
dt:

By linearity of b and assumption (A3) on f , the Hessian of H satisfies (3.35), so that the
required convexity assumption is satisfied. The result easily follows. ut

Remark 3.19 As the proof shows, and which is exactly what we claimed in the
previous remark, there is no need for F to be the filtration generated by F0 and the
Wiener process W D .Wt/06t6T .

Remark 3.20 Theorem 3.17 has interesting consequences. First, it says that the
optimal control exists and is unique. Second, it also implies uniqueness of the
solution of the FBSDE (3.36). Indeed, given two solutions .X;Y;Z/ and .X0;Y0;Z0/
of (3.36), Leb1 ˝ P a.e. it holds by (3.38) that:

Ǫ .t;Xt; �t;Yt/ D Ǫ .t;X0
t ; �t;Y

0
t /;

so that X and X0 coincide by the Lipschitz property of the coefficients of the forward
equation. As a consequence, .Y;Z/ and .Y0;Z0/ coincide as well.

The bound provided by Theorem 3.17 is sharp in the class of convex models as
shown for example by the following slight variation on the same theme. We shall
use this form repeatedly in this chapter and the next one.

Proposition 3.21 Under the assumptions and notation of Theorem 3.17 above, if
we consider in addition another measurable and bounded flow Œ0;T� 3 t 7! �0

t 2
P2.Rd/ of probability measures of order 2, and the corresponding controlled state
process X0 D .X0

t/06t6T defined by:

X0
t D � 0 C

Z t

0

b.s;X0
s; �

0
s; ˛s/ds C �Wt; t 2 Œ0;T�;

for an initial condition � 0 2 L2.˝;F0;PIRd/ possibly different from � and an
arbitrary control ˛ 2 A, then:

J�
� Ǫ � C E

�
.� 0 � �/ � Y0

	 C 
E

Z T

0

j˛t � Ǫ tj2dt

6 J�
��

˛;�0	� � E

� Z T

0

.b0.t; �
0
t/ � b0.t; �t// � Ytdt

�
;

(3.39)
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where the quantity J�
��

˛;�0	� is defined by:

J�
��

˛;�0	� D E

�
g
�
X0

T ; �T
� C

Z T

0

f .t;X0
t ; �t; ˛t/dt

�
:

The process X0 is the controlled diffusion process driven by the control ˛ and
evolving in the environment �0, but the cost functional is computed under the
environment �.

Proof. As before, we use the same old strategy of the original proof of the stochastic
maximum principle, by computing the Itô differential of the process:

�
.X0

t � Xt/ � Yt C
Z t

0

�
f .s;X0

s; �s; ˛s/ � f .s;Xs; �s; Ǫs/
	
ds

�

06t6T

;

and integrating it between 0 and T . Since the initial conditions � and � 0 are possibly different,
we get the additional term EŒ.� 0 � �/ � Y0� in the left-hand side of (3.39). Similarly, since the
drift of X0 is driven by �0 D .�0

t/06t6T , we get the additional difference of the drifts in
order to account for the fact that the drifts are driven by the different flows of probability
measures. ut

Connection with FBSDEs of the McKean-Vlasov Type. In order to solve the
standard stochastic control problem (3.4) using the Pontryagin maximum principle,
we minimize the Hamiltonian H with respect to the control variable ˛, and inject the
minimizer Ǫ into the forward equation of the state as well as the backward equation
defining the adjoint processes. Since the minimizer Ǫ depends upon both the forward
state Xt and the adjoint process Yt, this creates a strong coupling between the
forward and backward equations, leading to the FBSDE (3.36). The MFG matching
condition (ii) of Subsection 3.1.2 then reads: seek a flow of probability distributions
� D .�t/06t6T of order 2 such that the process X solving the forward equation
of (3.36) admits � D .�t/06t6T as flow of marginal distributions. As already
explained, the decision to consider probability measures of order 2 is not restrictive
because standard estimates for solutions of stochastic differential equations imply
that the state Xt will necessarily have a finite second order moment, provided that
� 2 L2.˝;F0;PIRd/. We thus deduce:

Definition 3.22 Under assumption SMP, for any continuous flow of measures � D
.�t/06t6T from Œ0;T� to P2.Rd/, call . OX�

; OY�
; OZ�

/ the solution to FBSDE (3.36)
(which is unique by Remark 3.20). Then, we say that � is a solution to the mean
field game (3.4) or an MFG equilibrium if, for any t 2 Œ0;T�,

P ı � OX�
t

��1 D �t:

Similar to Definition 3.12, Definition 3.22 captures the essence of the approach to
mean field games summarized in Subsection 3.1.2. The crux of this approach is to
freeze the probability measure when optimizing the cost. This is in sharp contrast
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with the study of the control of McKean-Vlasov dynamics investigated in Chapter 6.
Indeed in that case, optimization is also performed with respect to the measure
argument.

The net result is that, once the flow of probability measures giving the fixed point
is injected in the FBSDE, it becomes clear that the stochastic maximum principle
approach to the solution of the mean field game problem amounts to the solution
of an FBSDE of the McKean-Vlasov type since the marginal distribution of the
solution appears in the coefficients of the equation.

In analogy with Proposition 3.13, we claim:

Proposition 3.23 Under the assumption of Definition 3.22, a continuous flow of
measures � D .�t/06t6T from Œ0;T� to P2.Rd/ is an MFG equilibrium if and only
if �t D L. OXt/ for any t 2 Œ0;T�, where . OX; OY; OZ/ solves the McKean-Vlasov FBSDE

(
d OXt D b

�
t; OXt;L. OXt/; Ǫ .t; OXt;L. OXt/; OYt/

�
dt C �dWt;

d OYt D �@xH
�
t; OXt;L. OXt/; OYt; Ǫ .t; OXt;L. OXt/; OYt/

�
dt C OZtdWt;

(3.40)

with OX0 D � as initial condition and OYT D @xg. OXT ;L. OXT// as terminal condition.

With the special form of coefficients chosen in assumption SMP, the FBSDE reads:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d OXt D �
b0

�
t;L. OXt/

� C b1.t/ OXt C b2.t/ Ǫ�
t; OXt;L. OXt/; OYt

�	
dt

C�dWt;

d OYt D ��
b�1.t/ OYt C @xf

�
t; OXt;L. OXt/; Ǫ .t; OXt;L. OXt/; OYt/

�	
dt

COZtdWt;

(3.41)

where, as usual, b�1 denotes the transpose of the matrix b1.

Existence of a Solution to the MFG Problem. Using Theorem 3.10, we obtain a
first solvability result for the McKean-Vlasov FBSDE (3.41).

Theorem 3.24 On top of assumption SMP, assume that the set A is bounded, that
� is invertible, that the coefficients b0, @xf and @xg are globally bounded, that b1 is
zero, and that the coefficients b0, @xf , @xg and Ǫ are also continuous in the measure
argument �. Then, there exists a solution to the MFG problem.

Proof. It suffices to apply Theorem 3.10 with:

B
�
t;Xt;L.Xt/; Yt; Zt

� D b
�
t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/; Yt/

�
;

F
�
t;Xt;L.Xt/; Yt; Zt

� D @xf
�
t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/; Yt/

�
;

G
�
XT ;L.XT/

� D @xg
�
XT ;L.XT/

�
:

Regularity properties of Ǫ follow from Lemma 3.3, continuity with respect to � being easily
tackled by a compactness argument. ut
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Remark 3.25 Clearly, demanding that @xf and @xg are bounded while f and g are
already assumed to be convex, is very restrictive. For instance, the Linear Quadratic
(LQ) models considered in Section 3.5 are not covered by this result since the driver
F is not allowed to have linear growth. We shall revisit the problem under much
weaker conditions in Chapter 4. In full analogy with Remark 3.15, the reader will
find in Chapter 4 a more general version of Theorem 3.24 in which the set A and
the coefficients b0, @xf and @xg are allowed to be unbounded and the coefficient b1
to be nonzero. We refer to Theorem 4.53 for a precise statement.

Remark 3.26 If we recall the content of Remark 3.16, it is enlightening to compare
the PDE system (3.12) with the mean field FBSDE (3.40). Formally, the value of the
adjoint process Yt at time t should be identified with @xV.t;Xt/, so that the dynamics
of Y are directly connected with the dynamics of the gradient of the value function
V in (3.12) along the optimal paths. Similarly, the distribution of Xt at time t should
be identified to �t in (3.12).

The Stochastic Maximum Principle as a Necessary Condition
The statement of Theorem 3.17 provides a sufficient condition for proving the
optimality of the forward component in the forward-backward system (3.36). As
explained above, it is usually referred to as the sufficient condition of the stochastic
maximum principle.

In the proof of Theorem 3.17, the convexity conditions required in assumption
SMP play a crucial role as they permit to turn the condition (3.36) into a global
minimality property. In this regard, the full complete version of the stochastic
maximum principle sheds more light on the exact meaning of the condition (3.36).
It is the contribution of the necessary condition of the stochastic maximum principle
to show that the condition (3.36) is in fact a first-order order criticality condition for
the minimization problem inf˛2A J�.˛/.

In order to state properly this necessary condition, there is no need to require
the full convexity condition (A3). Under the same hypothesis as before that � is
constant, we shall just assume further:

Assumption (Necessary SMP).

(A1) The functions b and f are differentiable with respect to .x; ˛/, the
mappings Rd � A 3 .x; ˛/ 7! @x.b; f /.t; x; �; ˛/ and R

d � A 3 .x; ˛/ 7!
@˛.b; f /.t; x; �; ˛/ being continuous for each .t; �/ 2 Œ0;T� � P2.Rd/.
Similarly, the function g is differentiable with respect to x, the mapping
R

d 3 .x; �/ 7! @xg.x; �/ being continuous for each � 2 P2.Rd/.
(A2) The functions Œ0;T� 3 t 7! .b; f /.t; 0; ı0; 0A/ are uniformly bounded,

for some point 0A 2 A. The derivative @.x;˛/b is uniformly bounded and,
for any R > 0 and any .t; �/ 2 Œ0;T� � P2.Rd/ such that M2.�/ 6 R,
the function @xf .t; �; �; �/, @xg.�; �/ and @˛f .t; �; �; �/ are at most of linear
growth in .x; ˛/.
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Theorem 3.27 Let � D .�t/06t6T be a bounded and measurable function from
Œ0;T� into P2.Rd/ and ˛ D .˛t/06t6T 2 A be an admissible control. Under
assumption Necessary SMP, assume further that the Hamiltonian H is convex in
˛ 2 A. If ˛ is optimal, then, for the associated controlled state X˛ D .X˛

t /06t6T ,
and the corresponding solution .Y;Z/ D .Yt;Zt/06t6T of the adjoint backward SDE:

(
dYt D �@xH

�
t;X˛

t ; �t;Yt; ˛t
�
dt C ZtdWt; t 2 Œ0;T�;

YT D @xg
�
X˛

T ; �T
�
;

(3.42)

we have for all ˛ 2 A:

H
�
t;X˛

t ; �t;Yt; ˛t
�

6 H
�
t;X˛

t ; �t;Yt; ˛
�

Leb1 ˝ P a:e: : (3.43)

Since we make little use of Theorem 3.27 in this chapter and the next, we
postpone its proof to Chapters 6 and (Vol II)-1, where more general versions
are given, including cases where � is not constant, see Theorem 6.14 for mean
field stochastic control problems and Theorem (Vol II)-1.59 for stochastic control
problems in a random environment. Also, as indicated in Proposition 6.15, a weaker
form holds if convexity of H in ˛ fails. Roughly speaking, the corresponding version
says that, instead of (3.43), it holds @˛H.t;Xt; �t;Yt; ˛t/ D 0 when ˛t is in the
interior of A.

3.4 Lasry-Lions Monotonicity Condition

We postpone to Chapter 4 the detailed proof of Theorem 3.10, which served in
the previous subsection as the basic ingredient for establishing the existence of
a solution to the MFG problem. For the time being, we address the question of
uniqueness and provide a general criterion under which it is guaranteed. So far, very
little has been said about uniqueness. We claimed in Subsection 3.2.3 that Cauchy-
Lipschitz theory was true only in small time, a fact which will be proved rigorously
in Subsection 4.2.3. Accordingly, we based the construction of solutions over time
intervals of arbitrary length upon Theorem 3.10, whose proof relies on Schauder’s
theorem for the existence, though not the uniqueness, of fixed points.

Regarding the interpretation of the solution (i) – (ii) of an MFG equilibrium
based on FBSDEs of the McKean-Vlasov type, it would be tempting to adapt
the arguments used to ensure uniqueness of solutions to classical FBSDEs to the
McKean-Vlasov setting. Inspired by the discussion of Subsection 3.2.3, we can
imagine three possible avenues to uniqueness:

1. The first one is to assume that the coupling between the forward and backward
equations is weak in the sense that one of the two equations depends on the
solution of the other one through coefficients with a small Lipschitz constant.
Basically, this amounts to assuming that the time horizon T is small enough.
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2. In full analogy with the analysis of the inviscid Burgers equation presented in
Subsection 3.2.3, the second one is to make use of monotonicity conditions, but
in the direction of the measure argument.

3. Finally, given the role played by the Laplace operator in the viscous Burgers
equation, another possibility is to make use of non-degeneracy conditions, but on
the space of probability measures this time around.

Again, existence and uniqueness in small time under Lipschitz conditions will be
investigated in Subsection 4.2.3.

Adapting the third strategy to the McKean-Vlasov case is much more challenging
as the state variable has to be understood as the pair made of Xt, which describes
the private state of the player at time t, and of L.Xt/, which stands for the
statistical distribution of the states in the population at time t. As we shall see in
Chapters (Vol II)-4 and (Vol II)-5, the analogue of the viscous Burgers equation,
whose solution is the decoupling field of the FBSDE (3.24), is a PDE on the
space of probability measures, called the master equation. To put it differently, the
decoupling field of a McKean-Vlasov FBSDE has to be understood as a function
over an infinite-dimensional space. It is thus a rather intricate object. Moreover, it is
worth mentioning that, for mean field games without common noise, the dynamics
of .L.Xt//06t6T is entirely deterministic, and for this reason, we cannot invoke a
non-degeneracy argument. As we shall see in Chapters (Vol II)-2, (Vol II)-3, (Vol
II)-4, and (Vol II)-5, it is only in the presence of a common noise that we may
expect these arguments to make sense. Actually, even the framework considered in
these four chapters is too restrictive to address the smoothing effect of the common
noise in full generality. Indeed, except for a few cases, strict ellipticity cannot
hold true if the common noise is of finite dimension, a situation we encounter
throughout the book. The few examples which could work are cases where the
marginal laws .L.Xt//06t6T belong to a parametric family. We provide such an
example in Subsection (Vol II)-3.5.2 where we manage to prove that the common
noise restores uniqueness in some specific cases.

Therefore, at this stage of the discussion, it seems that there is only one possible
road to uniqueness, and it has to be based on a structural monotonicity condition.
We make this clear in what follows.

3.4.1 A First Notion of Monotonicity

The following definition of monotonicity is taken from the earlier works by Lasry
and Lions. We call it Lasry-Lions monotonicity condition.

Definition 3.28 A real valued function h on R
d �P2.Rd/ is said to be monotone (in

the sense of Lasry and Lions), if, for all� 2 P2.Rd/, the mapping R
d 3 x 7! h.x; �/

is at most of quadratic growth, and, for all �;�0 2 P2.Rd/, we have:
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Z

Rd
Œh.x; �/ � h.x; �0/� d.� � �0/.x/ > 0:

Clearly, any linear combination of functions which satisfy the Lasry-Lions Mono-
tonicity condition also satisfies it if the coefficients are nonnegative. A first set of
examples of monotone functions will be provided in Subsection 3.4.2. More prop-
erties of monotone functions, including convexity, will be discussed in Chapter 5,
see for instance Remark 5.75.

We now introduce what turns out to be the most popular set of assumptions under
which uniqueness has been proven to hold in the existing literature. It goes back to
the earlier works of Lasry and Lions on mean field games. With the same notation
as in Subsection 3.1.2, it reads as follows.

Assumption (Lasry-Lions Monotonicity).

(A1) The coefficients b and � do not depend upon the measure argument.
They thus read as mappings b W Œ0;T� � R

d � A ! R
d and � W Œ0;T� �

R
d ! R

d�d.
(A2) The running cost f has a separated structure of the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

t 2 Œ0;T�; x 2 R
d; ˛ 2 A; � 2 P2.Rd/;

where f0 is a Borel-measurable mapping from Œ0;T��R
d �P2.Rd/ into

R and f1 is a Borel-measurable mapping from Œ0;T� � R
d � A into R.

Moreover,

jf .t; x; �; ˛/j 6 C
�
1C jxj C M2.�/C j˛j�2;

jg.x; �/j 6 C
�
1C jxj C M2.�/

�2
;

for all .t; x; �; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � A, for a constant C > 0.

(A3) The functions f0.t; � ; � / for t 2 Œ0;T�, and g are monotone in the sense
of Definition 3.28.

The main result of this section is the following important uniqueness conse-
quence of the monotonicity assumption.

Theorem 3.29 Let assumption Lasry-Lions Monotonicity hold, and let us assume
that for any deterministic continuous flow � D .�t/06t6T from Œ0;T� to P2.Rd/,
the optimal control problem (3.4) has a unique minimizer Ǫ � 2 A. Call OX�

the
corresponding optimal path.
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Then there exists at most one flow � D .�t/06t6T so that:

8t 2 Œ0;T�; L. OX�
t / D �t: (3.44)

In other words, there exists at most one MFG equilibrium.

Implicitly, we here require that, for any �, OX�
satisfies EŒsup06t6T j OX�

t j2� < 1.

Proof. Assume that there are two different MFG equilibria � D .�t/06t6T and �0 D
.�0

t/06t6T . Then, the processes Ǫ � and Ǫ �0

must differ as otherwise OX�
and then OX�0

would be the same and then, by (3.44), � and �0 would be the same as well. Therefore,
by uniqueness of the minimizer of the cost functionals J� and J�0

, we have:

J�
� Ǫ �

� � J�
� Ǫ �0 �

< 0 and J�0 � Ǫ �0 � � J�0 � Ǫ �
�
< 0:

Adding the two inequalities, we get:

J�
� Ǫ �

� � J�0 � Ǫ �
� �



J�

� Ǫ �0 � � J�0 � Ǫ �0 ��
< 0: (3.45)

Now, we use the fact that the coefficients b and � are independent of�. So in the environment

�, the controlled path driven by Ǫ �0

is exactly OX�0

. Similarly, in the environment �0, the
controlled path driven by Ǫ � is exactly OX�

. Therefore,

J�
� Ǫ �

� � J�0 � Ǫ �
� D E

� Z T

0



f0

�
t; OX�

t ; �t
� � f0

�
t; OX�

t ; �
0

t

��
dt

C
Z T

0



f1

�
t; OX�

t ; Ǫ �
t

� � f1
�
t; OX�

t ; Ǫ �
t

��
dt C g

� OX�
T ; �T

� � g
� OX�

T ; �
0

T

��
;

and we observe that the first term in the second line is zero. Thanks to (3.44), we deduce that:

J�
� Ǫ �

� � J�0 � Ǫ �
� D

Z T

0

Z

Rd

�
f0.t; x; �t/ � f0.t; x; �

0

t/
�
d�t.x/dt

C
Z

Rd

�
g.x; �T/ � g.x; �0

T/
	
d�T.x/:

Similarly,

J�
� Ǫ �0 � � J�0 � Ǫ �0 � D

Z T

0

Z

Rd

�
f0.t; x; �t/ � f0.t; x; �

0

t/
�
d�0

t.x/dt

C
Z

Rd

�
g.x; �T/ � g.x; �0

T/
	
d�0

T.x/:

Taking differences as in (3.45), we get:
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J�
� Ǫ �

� � J�0 � Ǫ �
� �



J�

� Ǫ �0 � � J�0 � Ǫ �0 ��

D
Z T

0

Z

Rd

�
f0.t; x; �t/ � f0.t; x; �

0

t/
�
d
�
�t � �0

t

�
.x/dt

C
Z

Rd

�
g.x; �T/ � g.x; �0

T/
	
d
�
�T � �0

T

�
.x/:

By (A3) in assumption Lasry-Lions Monotonicity, the right-hand side is nonnegative,
which contradicts (3.45) and concludes the proof. ut

Remark 3.30 It should be noticed that the Lasry-Lions monotonicity condition
also guarantees uniqueness whenever the optimization problem is understood in
the weak sense. Indeed, with the same definition of the cost functional J�;weak as
in (3.29), we have, for two optimal controls Ǫ � and Ǫ �0

in A,

J�;weak
� Ǫ �

� � J�0;weak
� Ǫ �

� D E
�; Ǫ �

�
g.XT ; �T/C

Z T

0

f .t;Xt; �t; Ǫ�
t /dt

�

� E
�0; Ǫ �

�
g.XT ; �

0
T/C

Z T

0

f .t;Xt; �
0
t; Ǫ�

t /dt

�
:

Recalling that b and � are independent of � under assumption Lasry-Lions
Monotonicity, we observe that:

P
�; Ǫ � D P

�0; Ǫ �

;

so that:

J�;weak
� Ǫ �

� � J�0;weak
� Ǫ �

�

D E
�; Ǫ �

�
g.XT ; �T/ � g.XT ; �

0
T/C

Z T

0

�
f0.t;Xt; �t/ � f0.t;Xt; �

0
t/

�
dt

�
:

Exploiting the fact that P�; Ǫ � ı X�1
t D �t, we then deduce that:

J�;weak
� Ǫ �

� � J�0;weak
� Ǫ �

� D
Z

Rd

�
g.x; �T/ � g.x; �0

T/
	
d�T.x/

C
Z T

0

Z

Rd

�
f0.t; x; �t/ � f0.t; x; �

0
t/

	
d�t.x/dt;

which suffices to repeat the proof of Theorem 3.29.
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3.4.2 Examples

We now provide several examples of real valued functions h on R
d �P2.Rd/ which

are Lasry-Lions monotone, i.e., monotone in the sense of Definition 3.28.

Example 1. If h does not depend upon � and is of quadratic growth in x, then it
satisfies the requirements of Definition 3.28.

Example 2. If h does not depend upon x, then it also satisfies the requirements
of Definition 3.28. Indeed, for any function h W P2.Rd/ ! R and for all �;�0 2
P2.Rd/,

Z

Rd

�
h.�/ � h.�0/

�
d
�
� � �0/.x/ D �

h.�/ � h.�0/
��
� � �0/.Rd/ D 0:

Example 3. Let h W Rd � P2.Rd/ ! R be given by:

h.x; �/ D a x � N�; with N� D
Z

Rd
yd�.y/;

for some a > 0. Then h satisfies the requirements of Definition 3.28. Indeed, for all
�;�0 2 P2.Rd/,

Z

Rd

�
h.x; �/ � h.x; �0/

�
d.� � �0/.x/ D a

Z

Rd

Z

Rd
x � yd

�
� � �0�.y/d.� � �0/.x/:

Therefore,

Z

Rd

�
h.x; �/ � h.x; �0/

�
d.� � �0/.x/ D a

ˇ̌
ˇ̌
Z

Rd
xd.� � �0/.x/

ˇ̌
ˇ̌
2

:

This example may be useful in linear-quadratic optimization problems, see Subsec-
tion 3.5 below.

Example 4. Let h W Rd � P2.Rd/ ! R be given by:

h.x; �/ D
Z

Rd
`.x � y/d�.y/;

for some Borel-measurable odd function ` satisfying j`.x/j 6 C.1C jxj2/ for some
C > 0 and all x 2 R. Then, h is also covered by Definition 3.28. Indeed, for all
�;�0 2 P2.Rd/,
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Z

Rd

�
h.x; �/ � h.x; �0/

�
d.� � �0/.x/

D
Z

Rd

Z

Rd
`.x � y/d

�
� � �0�.y/d.� � �0/.x/

D 1

2

Z

Rd

Z

Rd
`.x � y/d

�
� � �0�.y/d.� � �0/.x/

� 1

2

Z

Rd

Z

Rd
`.y � x/d

�
� � �0�.y/d.� � �0/.x/

D 0;

where we used the fact that `.x�y/ D �`.y�x/ to pass from the second to the third
line. This form of function h is well adapted to our discussion of potential games in
Chapter 6.

Example 5. Let h W Rd � P2.Rd/ ! R be given by:

h.x; �/ D
Z

Rd
`.x � y/d�.y/;

for some symmetric function ` W Rd ! RC writing

`.r/ D
Z

Rd
exp.ir � s/d
.s/; r 2 R

d;

where 
 is a symmetric positive finite measure on R
d and i2 D �1.

Then, for all �;�0 2 P2.Rd/,

Z

Rd

�
h.x; �/ � h.x; �0/

�
d
�
� � �0/.x/

D
Z

Rd

Z

Rd
`.x � y/d

�
� � �0�.y/d

�
� � �0�.x/

D
Z

Rd

Z

Rd

Z

Rd
exp

�
i.x � y/ � s

�
d
.s/d

�
� � �0�.y/d

�
� � �0�.x/

D
Z

Rd

ˇ̌
ˇ̌
Z

Rd
exp

�
ix � s

�
d
�
� � �0�.x/

ˇ̌
ˇ̌
2

d
.s/

Taking 
 as the Gaussian or Cauchy distributions, we deduce that monotonicity
holds true with `.x/ D exp.� 1

2
jxj2/ or `.x/ D exp.�jxj/.

Example 6. Let d D 1 and h be given by:

h.x; �/ D �
�
.�1; x/

� C 1

2
�

�fxg�; x 2 R; � 2 P2.R/:
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Then, h satisfies the requirements of Definition 3.28. Notice that, when � has no
atoms, h.x; �/ coincides with the cumulative distribution function of � at point x.

Indeed, using the sign function (sign.x/ D 1 if x > 0, �1 if x < 0 and 0 if x D 0),
we have

Z

R

sign.x � y/d�.y/ D �
�
.�1; x/

� � ��
.x;1/

�

D 2�
�
.�1; x/

� C �
�fxg� � 1 D 2h.x; �/ � 1:

By the third example, we deduce that 2h � 1 satisfies the Lasry-Lions monotonicity
condition. By linearity, h satisfies it as well.

Example 7. Let h W Rd � P2.Rd/ ! R be given by

h.x; �/ D
Z

Rd
L
�
z; � � �.z/��.x � z/dz;

where � is a bounded even smooth probability density function over Rd such thatR
Rd jxj2�.x/dx < 1 and L W Rd � Œ0;1/ ! Œ0;1/ is nondecreasing in the second

variable and satisfies, for any r > 0 and all % 2 Œ�r; r�, jL.z; %/j 6 Cr.1 C j%j2/
for some constant Cr > 0. The notation � � � denotes the standard convolution
product. Notice in particular that the function � � � is bounded. Then, h satisfies
Definition 3.28. While the fact that h is at most of quadratic growth is easily checked,
monotonicity may be proved as follows. For all �;�0 2 P2.Rd/,

Z

Rd

�
h.x; �/ � h.x; �0/

�
d
�
� � �0�.x/

D
Z

Rd

�

L
�
z; � � �.z/� � L

�
z; � � �0.z/

�� Z

Rd
�.x � z/

�
d�.x/ � d�0.x/

��
dz

D
Z

Rd



L
�
z; � � �.z/� � L

�
z; � � �0.z/

���
� � �.z/ � � � �0.z/

�
dz > 0;

the last line following from the fact that L is nondecreasing in the second variable.
When h is understood as a cost functional, it increases at a point x as the mass of �
in the neighborhood of x increases.

3.4.3 Another Form of Monotonicity

Although Definition 3.28 is the most frequently used notion of monotonicity, we
introduce a variation on the same idea. Even though the concept captured by
Definition 3.31 below is slightly different, it will also lead to a useful sufficient
condition for uniqueness.
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Definition 3.31 A real valued function H from R
d �P2.Rd/ into R

d is said to be L-
monotone if, for any � 2 P2.Rd/, the mapping R

d 3 x 7! H.x; �/ 2 R
d is at most

of linear growth and, for any two R
d-valued square-integrable random variables X

and X0 defined on some probability space .˝;F ;P/, we have:

E
��

H
�
X;L.X/� � H

�
X0;L.X0/

�� � .X � X0/
	

> 0:

Importantly, observe that the above definition does not depend upon the choice of the
probability space .˝;F ;P/, provided that .˝;F ;P/ is assumed to be rich enough
to carry, for any joint distribution � 2 P2..Rd � R

d/2/, a pair of random variables
.X;X0/with � as distribution. We shall address this latter point in detail in Chapter 5.

Examples of L-monotone functions will be given in Subsection 3.4.3. The
reasons for the terminology “L-monotone” will be made clear in Subsection 5.7.1.
Therein, we shall show that, surprisingly, the two notions of monotonicity have
different origins.

We now provide another sufficient condition for uniqueness using the notion of
L-monotonicity introduced in Definition 3.31:

Assumption (L-Monotonicity).

(A1) The coefficient � is constant and the coefficient b does not depend upon
the measure argument and reads, for all .t; x; ˛/ 2 Œ0;T� � R

d � A,

b.t; x; ˛/ D b0.t/C b1.t/x C b2.t/˛;

for some bounded measurable deterministic functions b0, b1 and b2 with
values in R

d, Rd�d, Rd�k.
(A2) The running cost f has a separated structure of the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

t 2 Œ0;T�; x 2 R
d; ˛ 2 A; � 2 P2.Rd/;

where f0 is a Borel-measurable mapping from Œ0;T��R
d �P2.Rd/ into

R and f1 is a Borel-measurable mapping from Œ0;T� � R
d � A into R.

(A3) For t and � fixed, the functions f0.t; �; �/ and g.�; �/ are continuously
differentiable in x, the partial derivative @xf0 and @xg being at most of
linear growth in x, uniformly in .t; �/. The function f1 is continuously
differentiable in .x; ˛/ for t fixed, the derivative being at most linear
growth in .x; ˛/, uniformly in t 2 Œ0;T�.

The function Œ0;T� 3 t 7! f1.t; 0; 0/ is bounded and the function
Œ0;T� � P2.Rd/ 3 .t; �/ 7! f0.t; 0; �/ is bounded on bounded subsets.

(continued)
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(A4) The functions @xf0.t; � ; � / for t 2 Œ0;T�, and @xg are L-monotone in
the sense of Definition 3.31. Moreover, the function f1 satisfies the
following strong form of convexity:

f1.t; x
0; ˛0/ � f1.t; x; ˛/ � .x0 � x; ˛0 � ˛/ � @.x;˛/f1.t; x; ˛/

> 
j˛0 � ˛j2;

for some 
 > 0. The notation @.x;˛/f1 stands for the gradient in the joint
variables .x; ˛/.

Here is the uniqueness result announced earlier.

Theorem 3.32 If assumption L-Monotonicity holds and for any deterministic
continuous flow � D .�t/06t6T in P2.Rd/, the optimal control problem (3.4) has a
unique minimizer Ǫ � 2 A, then there exists at most one MFG equilibrium.

Proof. The proof depends upon the equilibrium criticality condition based on the necessary
from of the Pontryagin stochastic maximum principle.

First Step. Owing to Theorem 3.27, the Pontryagin FBSDE of McKean-Vlasov type
satisfied by any equilibrium takes the form:

8
ˆ̂<

ˆ̂:

dXt D b
�
t;Xt; Ǫ t

�
dt C �dWt; t 2 Œ0; T�;

dYt D �@xH
�
t;Xt;L.Xt/; Yt; Ǫ t

�
dt C ZtdWt; t 2 Œ0; T�;

YT D @xg
�
XT ;L.XT/

�
;

(3.46)

where Ǫ t D Ǫ .t;Xt;L.Xt/; Yt/, with Ǫ .t; x; �; y/ minimizing the function A 3 ˛ 7!
H1.t; x; y; ˛/, where H1 is the reduced Hamiltonian:

H1.t; x; y; ˛/ D �
b2.t/˛

� � y C f1.t; x; ˛/; .t; x; y; ˛/ 2 Œ0; T� � R
d � R

d � A:

Observe that, in the Pontryagin system (3.46),

@xH.t; x; �; y; ˛/ D b1.t/
�y C @xf0.t; x; �/C @xf1.t; x; ˛/:

Let us assume that X0 D .X0

t /06t6T is the optimal path of another equilibrium. The
Pontryagin FBSDE of McKean-Vlasov type for X0 takes a similar form as long as we replace
.Xt; Yt; Zt; Ǫ t/06t6T with .X0

t ; Y
0

t ; Z
0

t ; Ǫ 0

t /06t6T .
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Second Step. Like in the derivation of the stochastic Pontryagin principle, we compute:

d .X0

t � Xt/ � .Y 0

t � Yt/

D
��

b.t;X0

t ; Ǫ 0

t / � b.t;Xt; Ǫ t/
� � .Y 0

t � Yt/

� �
@xH

�
t;X0

t ;L.X0

t /; Y
0

t ; Ǫ 0

t

� � @xH
�
t;Xt;L.Xt/; Yt; Ǫ t

�� � .X0

t � Xt/

�
dt

C dMt;

where .Mt/06t6T is a martingale. Therefore,

d .X0

t � Xt/ � .Y 0

t � Yt/

D
�


b2.t/
� Ǫ 0

t � Ǫ t
�� � .Y 0

t � Yt/

�


@xf0

�
t;X0

t ;L.X0

t /
� � @xf0

�
t;Xt;L.Xt/

�� � .X0

t � Xt/

�


@xf1

�
t;X0

t ; Ǫt
0
� � @xf1

�
t;Xt; Ǫ t

�� � .X0

t � Xt/

�
dt C dMt;

(3.47)

Third Step. Since, for any realization, Ǫ t is a minimizer of the function A 3 ˛ 7!
H.t;Xt; Yt; ˛/, we have, for all ˛ 2 A,

.˛ � Ǫ t/ � �
b2.t/

�Yt C @˛f1.t;Xt; Ǫ t/
�

> 0:

So by joint convexity of f1 in the variable .x; ˛/, we have:

�
b2.t/ Ǫ 0

t

� � Yt C f1
�
t;X0

t ; Ǫ 0

t

�

>
�
b2.t/ Ǫ t

� � Yt C f1
�
t;Xt; Ǫ t

� C .X0

t � Xt/ � @xf1
�
t;Xt; Ǫ t

� C 
j Ǫ 0

t � Ǫ tj2:

Similarly,

�
b2.t/ Ǫ t

� � Y 0

t C f1
�
t;Xt; Ǫ t

�

>
�
b2.t/ Ǫ 0

t

� � Y 0

t C f1
�
t;X0

t ; Ǫ 0

t

� C .Xt � X0

t / � @xf1
�
t;X0

t ; Ǫ 0

t

� C 
j Ǫ 0

t � Ǫ tj2;

and summing the two inequalities, we get:

�
b2.t/ Ǫ 0

t

� � .Yt � Y 0

t /

>
�
b2.t/ Ǫ t

� � .Yt � Y 0

t / � .X0

t � Xt/ �


@xf1

�
t;X0

t ; Ǫt
0
� � @xf1

�
t;Xt; Ǫt

��

C 2
j Ǫ 0

t � Ǫ tj2;
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and consequently:



b2.t/

� Ǫ 0

t � Ǫ t
�� � .Y 0

t � Yt/ � .X0

t � Xt/ �


@xf1

�
t;X0

t ; Ǫt
0
� � @xf1

�
t;Xt; Ǫt

��

6 � 2
j Ǫ 0

t � Ǫ tj2:

Plugging into (3.47) and using in addition the L-monotonicity of f0, we deduce that:

E
�
.Y 0

T � YT/ � .X0

T � XT/
	 C 2
E

Z T

0

j Ǫ 0

t � Ǫ tj2dt 6 0:

Using now the terminal condition, and again the L-monotonicity condition, we get:

E
�
.Y 0

T � YT/ � .X0

T � XT/
	

D E
��
@xg

�
X0

T ;L.X0

T/
� � @xg

�
XT ;L.XT

��
/ � .X0

T � XT/
	

> 0;

proving that:

E

Z T

0

j Ǫ t � Ǫ 0

t j2dt D 0;

which completes the proof. ut

Remark 3.33 As made clear by the proof of Theorem (Vol II)-1.59 in Chapter (Vol
II)-1, the result easily extends to the case when � takes the form �.t; x/ D �0.t/C
�1.t/x.

Example. Let h be a continuously differentiable even convex function from R
d

into R whose gradient @h is at most of linear growth. Then, the x-derivative of the
function:

f .x; �/ D
Z

Rd
h.x � x0/d�.x0/; x 2 R

d; � 2 P2.Rd/;

is L-monotone.

Proof. We have:

@xf .x; �/ D
Z

Rd
@h.x � x0/d�.x0/; x 2 R

d; � 2 P2.Rd/:

Then, for two square-integrable random variables X and X0 with values in R
d, we have:

E

h�
@xf .X; �/ � @xf .X0; �0/

� � .X � X0/
i

D E

h�
@h.X � Y/ � @h.X0 � Y 0/

� � .X � X0/
i
;
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where .Y; Y 0/ has the same distribution as, and is independent of, .X;X0/. Since @h is odd,
we have:

E

h�
@h.X � Y/ � @h.X0 � Y 0/

� � .X � X0/
i

D E

h�
@h.Y � X/ � @h.Y 0 � X0/

� � .Y � Y 0/
i

D �E

h�
@h.X � Y/ � @h.X0 � Y 0/

� � .Y � Y 0/
i
:

Therefore,

E

h�
@xf .X; �/ � @xf .X0; �0/

� � .X � X0/
i

D 1

2
E

h�
@h.X � Y/ � @h.X0 � Y 0/

� � �
X � Y � .X0 � Y 0/

�i
> 0;

the last inequality following from the fact that h is convex. This proves that @xf is
L-monotone. ut

Importantly, we shall prove in Lemma 5.73 of Chapter 5 that f is not mono-
tone in the sense of Definition 3.28. Therefore, this provides an example where
Theorem 3.32 applies but Theorem 3.29 does not! We shall revisit this fact in
Subsection 5.7.1 through ad hoc notions of convexity for functionals defined on
the space of probability measures.

3.5 Linear Quadratic Mean Field Games

Our first application of the strategy and the results obtained in this chapter concerns
the Linear Quadratic (LQ for short) models. The linearity of the coefficients and
the convexity of the costs are screaming for the use of the stochastic maximum
approach, as the weak formulation approach cannot take advantage of these features
as easily.

With A being equal to the entire R
k, we use the notation and assumptions

introduced in Subsection 2.3.4 of Chapter 2, but with W of dimension d and � a
constant matrix in R

d�d. Since

b.t; x; �; ˛/ D b1.t/x C Nb1.t/ N�C b2.t/˛;

for deterministic continuous matrix functions b1, b2 and Nb1, (A1) in assumption
SMP is satisfied. Since

f .t; x; �; ˛/ D 1

2

�
x�q.t/x C .x � s.t/ N�/� Nq.t/.x � s.t/ N�/C ˛�r.t/˛

�
;
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assumption (A3) is also satisfied as the matrices q.t/ and Nq.t/ are symmetric
nonnegative semi-definite and continuous in time t 2 Œ0;T� and the matrix r.t/
is symmetric strictly positive definite and continuous in t 2 Œ0;T�; in particular, r.t/
is strictly positive definite, uniformly in t 2 Œ0;T�. Finally, since

g.x; �/ D 1

2

�
x�qx C .x � s N�/� Nq.x � s N�/

�
;

with q and Nq symmetric nonnegative semi-definite, assumption (A4) is satisfied for
the same reasons.

However, although assumption SMP is satisfied, Theorem 3.24 does not apply.
Obviously, the reason is that the set A is unbounded and the coefficients b0 (which
is Nb1 in the present situation), @xf and @xg are unbounded as well. In Chapter 4
we prove an extension of Theorem 3.24, namely Theorem 4.53, which covers
a large class of linear quadratic mean field games. It is proven under a set of
assumptions called MFG Solvability SMP. In particular, assumptions (A5) and
(A6) in assumption MFG Solvability SMP are easily checked in the present
situation. However, assumption (A7) is not always satisfied. It is satisfied when the
matrices Nq.t/s.t/ and Nqs are non-positive semi-definite. So clearly, a very large class
of linear quadratic mean field games are covered by the results of Chapter 4.

Still, and even if assumption MFG Solvability SMP is satisfied, it is instructive
to know that one can solve LQ mean field games directly, without appealing to the
abstract existence and uniqueness results proven in this chapter and the next. In the
present set-up, the two main steps of the mean field game strategy articulated in
Subsection 3.1.2 above read as:

(i) For each fixed deterministic function Œ0;T� 3 t 7! N�t 2 R
d, solve the standard

stochastic control problem

inf
˛2AE

�
1

2

�
X�TqXT C .XT � s N�T/

� Nq.XT � s N�T/

�

C 1

2

Z T

0

�
X�t q.t/Xt C .Xt � s.t/ N�t/

� Nq.t/.Xt � s.t/ N�t/C ˛
�
t r.t/˛t

�
dt

�

subject to (3.48)
8
<

:
dXt D

�
b1.t/Xt C b2.t/˛t C Nb1.t/ N�t

�
dt C �dWt;

X0 D �:

(ii) Determine a function Œ0;T� 3 t 7! N�t 2 R
d so that, for all t 2 Œ0;T�, EŒXt� D

N�t, where .Xt/06t6T is the optimal path of the optimal control problem in the
environment . N�t/06t6T .
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The Hamiltonian of the control problem defined in (i) is given by:

H.t; x; �; y; ˛/ D Œb1.t/x C Nb1.t/ N�C b2.t/˛� � y

C 1

2

�
x�q.t/x C .x � s.t/ N�/� Nq.t/.x � s.t/ N�/C ˛�r.t/˛

�
:

This Hamiltonian is minimized for:

Ǫ D Ǫ .t; x; �; y/ D �r.t/�1b2.t/�y; (3.49)

which is independent of the measure argument �. For each fixed Œ0;T� 3 t 7! N�t 2
R

d, the optimal control problem of step (i) has a unique solution if and only if we
can uniquely solve the FBSDE:

8
ˆ̂<

ˆ̂:

dXt D
�

b1.t/Xt � b2.t/r.t/�1b2.t/�Yt C Nb1.t/ N�t

�
dt C �dWt;

dYt D �
�

b1.t/�Yt C Œq.t/C Nq.t/�Xt � Nq.t/s.t/ N�t

�
dt C ZtdWt;

(3.50)

with initial condition X0 D � and terminal condition YT D .q C Nq/XT � Nqs N�T . By
Theorem 3.17, this control problem and this FBSDE are indeed uniquely solvable
because of the strict convexity assumption (i.e., r.t/ is strictly positive definite).

Assuming that the fixed point step (ii) can be solved, we can substitute N�t for
EŒXt� in (3.50) and the FBSDE becomes the McKean-Vlasov FBSDE:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

dXt D
�

b1.t/Xt � b2.t/r.t/�1b2.t/�Yt C Nb1.t/EŒXt�

�
dt

C�dWt;

dYt D �
�

b1.t/�Yt C Œq.t/C Nq.t/�Xt � Nq.t/s.t/EŒXt�

�
dt

CZtdWt; t 2 Œ0;T�;

(3.51)

with initial condition X0 D � and terminal condition YT D .q C Nq/XT � NqsEŒXT �,
which is a particular case of the FBSDE (3.40) characterizing the solution of an
MFG problem. Taking expectations of both sides of (3.51) and using the notation Nxt

and Nyt for the expectations EŒXt� and EŒYt� respectively, we find that:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dNxt D
�
Œb1.t/C Nb1.t/�Nxt � b2.t/r.t/�1b2.t/� Nyt

�
dt;

dNyt D
�

� Œq.t/C Nq.t/ � Nq.t/s.t/�Nxt � b1.t/� Nyt

�
dt; t 2 Œ0;T�;

Nx0 D EŒ��; NyT D Œq C Nq � Nqs�NxT :

(3.52)
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This system of ordinary differential equations is not always easy to solve despite
its deceptive simplicity. Its forward/backward nature is the source of difficulty. We
shall say more below, especially in the univariate case d D m D k D 1. In any case,
its properties play a crucial role in the solution of the linear quadratic mean field
game. Indeed, we have the following statement.

Theorem 3.34 Existence and uniqueness of a solution to the LQ MFG problem
(i)-(ii) hold if and only there is existence and uniqueness of a solution of (3.52).

Proof. Clearly, existence of a solution to the MFG problem implies existence of a solution
for (3.52). We now prove the analogue, but for uniqueness. To do so, let us assume that there
is at most one equilibrium for the MFG problem. For each solution .Nxt; Nyt/06t6T of (3.52),
we can solve the system (3.50) with Nxt in lieu of N�t, and conclude that EŒXt� D Nxt and
EŒYt� D Nyt for all t 2 Œ0; T�. Indeed, forming the difference between (3.50) and (3.52), we see
that .EŒXt� � Nxt;EŒYt� � Nyt/06t6T is the solution of a homogeneous linear system of order 1
with zero initial condition; invoking Theorem 3.17, or duplicating its proof, we observe that
this homogeneous linear system has zero as unique solution because of the strict convexity
assumption implied by the fact that r.t/ is strictly positive definite. Therefore, the solution
.Xt; Yt/06t6T of (3.50) with Nxt in lieu of N�t solves (3.51); since (3.51) is uniquely solvable,
this shows that .Nxt D EŒXt�; Nyt D EŒYt�/06t6T , is uniquely determined. This concludes the
proof of the uniqueness of the solution of (3.52).

Conversely, let us assume existence of a unique solution for the deterministic sys-
tem (3.52). Recall from Theorem 3.17 that for each fixed deterministic continuous function
Œ0; T� 3 t 7! N�t 2 R

d , the FBSDE (3.50) is uniquely solvable. Using the unique solution
.Nxt/06t6T of (3.52) in lieu of . N�t/06t6T as input in (3.50) and forming as above the difference
between (3.50) and (3.52), we get by the same argument that EŒXt� D Nxt for all t 2 Œ0; T�,
which proves that the fixed point step of the MFG strategy is also satisfied. Furthermore,
the uniqueness of the solution of (3.52) and the uniqueness of the solution of (3.50) for
Œ0; T� 3 t 7! N�t 2 R

d fixed imply the uniqueness of the solution of the MFG equilibrium.
ut

Consistent with the time honored method to solve affine FBSDEs, we may want
to look for a solution of (3.52) in the form Nyt D N�t NxtC N�t where t 7! N�t and t 7! N�t are
smooth functions with values in R

d�d and R
d respectively. For the sake of notation,

we rewrite the forward-backward system (3.52) in the form:

8
ˆ̂<

ˆ̂:

PNxt D at Nxt C bt Nyt;

PNyt D ct Nxt C dt Nyt; t 2 Œ0;T�;
Nx0 D EŒ��; NyT D eNxT ;

(3.53)

where:

at D b1.t/C Nb1.t/; bt D �b2.t/r.t/
�1b2.t/�;
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and

ct D �Œq.t/C Nq.t/ � Nq.t/s.t/�; dt D �b1.t/
�; e D q C Nq � Nqs:

Notice that we use the standard ODE notation of a dot for the time derivative of
deterministic functions of time. If we compute the derivative of Nyt from the ansatz
Nyt D N�t Nxt C N�t and use the forward equation to express PNxt, we obtain:

PNyt D Œ PN�t C N�tat C N�tbt N�t�Nxt C N�tbt N�t C PN�t; t 2 Œ0;T�:

If we now replace Nyt by the ansatz in the backward equation in (3.53), we obtain:

PNyt D Œct C dt N�t�Nxt C dt N�t; t 2 Œ0;T�;

and identifying the two forms of the derivative PNyt, we find that given the ansatz, the
system (3.53) is equivalent to the system:

( PN�t C N�tat � dt N�t C N�tbt N�t � ct D 0; N�T D e;
PN�t C Œ N�tbt � dt� N�t D 0; N�T D 0:

(3.54)

The first equation is a matrix Riccati equation which is not always solvable on a
time interval of pre-assigned length. When it is, its solution can be injected into the
second equation, which then becomes a first order homogenous linear equation with
terminal condition zero, so its solution is identically zero.

Let us assume momentarily that the Riccati equation appearing as the first
equation in the system (3.54) has a unique solution which we denote by . N�t/06t6T .
Injecting the ansatz Nyt D N�t Nxt into the first equation of the system (3.53), we find
that .Nxt/06t6T has to solve the ODE:

PNxt D Œat C bt N�t�Nxt; Nx0 D EŒ��; (3.55)

which is a linear ODE for which existence and uniqueness are guaranteed. Finding
the optimal mean function Œ0;T� 3 t 7! Nxt guarantees the existence of a solution to
the MFG problem, but it does not tell much about the optimal state trajectories or the
optimal control. The latter can be obtained by plugging the so-obtained Nxt into the
FBSDE (3.51) in lieu of EŒXt� and solving for X D .Xt/06t6T and Y D .Yt/06t6T .
This search reduces to the solution of the affine FBSDE:

8
ˆ̂<

ˆ̂:

dXt D ŒatXt C btYt C ct�dt C �dWt;

dYt D ŒmtXt � a
�
t Yt C dt�dt C ZtdWt;

X0 D �; YT D qXT C r;

(3.56)
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where we set:

at D b1.t/; bt D �b2.t/r.t/
�1b2.t/�; ct D Nb1.t/Nxt;

and

mt D �Œq.t/C Nq.t/�; dt D Nq.t/s.t/Nxt; q D q C Nq; r D �NqsNxT :

The standard theory of FBSDEs suggests that Yt should be given by a deterministic
function of t and Xt, the so-called decoupling field. The affine structure of the
FBSDE (3.56) suggests that this decoupling field should be affine. So, again, we
search for deterministic differentiable functions �t and �t such that:

Yt D �tXt C �t; t 2 Œ0;T�: (3.57)

Notice that taking expectations on both sides of this ansatz we get EŒYt� D �tEŒXt�C
�t, but since both functions � and � depend upon the function Œ0;T� 3 t 7! Nxt, there
is no contradiction with the formula Nyt D N�t Nxt even if, as we are about to find out, the
function � is not identically zero, since the function � may solve a Riccati equation
different from the Riccati equation solved by N�.

Computing dYt from ansatz (3.57) by using the expression of dXt given by the
first equation of (3.56), we get:

dYt D Œ. P�t C �tat C �tbt�t/Xt C P�t C �tbt�t C �tct�dt C �t�dWt; t 2 Œ0;T�;

and identifying term by term with the expression of dYt given in (3.56), we get:

8
ˆ̂<

ˆ̂:

P�t C �tbt�t C a
�
t �t C �tat � mt D 0; �T D q;

P�t C .a
�
t C �tbt/�t � dt C �tct D 0; �T D r;

Zt D �t�:

(3.58)

As before, the first equation is a matrix Riccati equation. If and when it can be
solved, the third equation becomes solved automatically, and the second equation
becomes a first order linear ODE, though not homogenous this time, which can
be solved by standard methods. Notice that the quadratic terms of the two Riccati
equations (3.54) and (3.58) are the same since bt D bt D �b2.t/r.t/�1b2.t/�.
However, the terminal conditions are different since the terminal condition in (3.58)
is given by q D q C Nq while it was given by e D q C Nq.Id � s/ in (3.54). Notice also
that the first order terms are different as well.
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3.5.1 Connection with Deterministic Control Theory

In several instances, we alluded to a strong connection between the solvability of
Riccati equations and deterministic LQ optimal control problems. We now make
this correspondence precise for the purpose of the discussion of the solvability of
the above matrix Riccati equation.

Stochastic Maximum Principle and Riccati Equation. Under the same assump-
tions on the dynamics, we consider the minimization of the functional:

QJ.˛/ D 1

2
x�T QqxT C

Z T

0

1

2

�
x�t Qqtxt C ˛

�
t rt˛t

�
dt

under the dynamic constraint:

dxt D .atxt C bt˛t/ dt; x0 D EŒ��;

where ˛ D .˛t/06t6T is a deterministic control in L2.Œ0;T�I A/. Pay attention that
.at/0�t�T and .bt/0�t�T may differ from the coefficients .at/0�t�T and .bt/0�t�T

defined earlier and, similarly, .rt/0�t�T may differ from .r.t//0�t�T . Notice that this
problem has a unique solution if we assume as before that the matrix coefficients
are continuous functions of the time variable t, and if we also assume that Qq and Qqt

are symmetric and nonnegative semi-definite, and that rt is symmetric and strictly
positive definite. The Hamiltonian:

H.t; x; y; ˛/ D y�atx C y�bt˛ C 1

2
x� Qqtx C 1

2
˛�rt˛

is minimized for ˛ D Ǫ .t; x; y/ D �r�1
t b�t y so that the forward-backward system

given by the maximum principle reads:

8
ˆ̂<

ˆ̂:

Pxt D atxt � btr�1
t b�t yt;

Pyt D �Qqtxt � a�t yt; t 2 Œ0;T�;
x0 D EŒ��; yT D QqxT :

(3.59)

Existence and uniqueness of a solution are guaranteed by the maximum prin-
ciple and the convexity properties of the coefficients of the functional QJ, see
Theorem 3.17.

Based on the same ansatz as before, we seek a pair of functions .�t; �t/06t6T ,
independent of the initial condition x0, such yt D �txt C �t for all t 2 Œ0;T�.
Proceeding as above, this prompts us to address the solvability of the matrix Riccati
equation:

P�t C a�t �t C �tat � �tŒbtr
�1
t b�t ��t C Qqt D 0; �T D Qq; (3.60)
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together with the linear equation:

P�t C a�t �t � �tŒbtr
�1
t b�t ��t D 0; �T D 0: (3.61)

Of course, (3.60) is locally uniquely solvable on an interval ŒT � ı;T�, for some
ı > 0. This permits to solve the equation:

Px0
t D atx

0
t � btr

�1
t b�t �tx

0
t � btr

�1
t b�t �t

on ŒT � ı;T�, with some initial condition at T � ı. The above equation may be
obtained by inserting the ansatz in the forward equation of the system (3.59). Letting
.y0

t D �tx0
tC�t/T�ı6t6T , we construct in this way a solution to the forward-backward

system (3.59) but with an initial condition at time T � ı in lieu of 0. By small time
uniqueness of the solutions to (3.59), or equivalently by uniqueness of the solutions
to (3.59) when initialized at time T�ı in lieu of 0 for ı small enough, this shows that
any solution .xt; yt/06t6T of (3.59) must take the form yt D �txtC�t for t 2 ŒT�ı;T�.
Anticipating on the notion of decoupling field discussed in detail in Chapter 4, this
shows that the function ŒT � ı;T� � R

d 3 .t; x/ 7! �tx C �t is the decoupling
field of the system (3.59) on ŒT � ı;T�. Now, the stability property provided by
Proposition 3.21 may be used to prove that the decoupling field of (3.59) is Lipschitz
in x, uniformly in t 2 Œ0;T�, see Lemma 4.56 for details. This provides an a priori
bound for .�t/T�ı6t6T and permits to extend by induction the solution of the Riccati
equation to the entire Œ0;T�.

As a conclusion, we deduce that, under the standing assumption on the coeffi-
cients of QJ, the matrix Riccati equation (3.60) is uniquely solvable on Œ0;T�.

Application to LQ Mean Field Games. If we set:

at D b1.t/; bt D b2.t/; rt D r.t/; Qqt D q.t/C Nq.t/ and Qq D q C Nq;

the Riccati equation (3.60) coincides with the Riccati equation in (3.58) since at D
at, bt D bt and mt D �Qqt and we can use the equivalence provided by the maximum
principle to conclude existence and uniqueness of a solution for the Riccati equation
in (3.58).

However, in our study of LQ mean field games, it is also necessary to provide
conditions implying existence and uniqueness of a solution to the system (3.52)
which, according to Theorem 3.34, is equivalent to the existence and uniqueness of
a solution to the LQ mean field game problem. Indeed, as we already remarked, the
only issue is the solution of the fixed point problem (ii), since for any continuous
function Œ0;T� 3 t 7! N�t 2 R

d the standard optimal control problem (i) has a unique
solution under the above assumptions on the coefficients.

Notice that if we assume that the Rd-valued function t 7! �t satisfies an equation
of the form:

P�t D ctxt C dt�t; t 2 Œ0;T�;
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like in the second equation of the system (3.53), and if we define t 7! et as the
unique R

d�d-valued solution of the matrix ODE Pet D Nb1.t/�et with initial condition
e0 D Id, then, the R

d-valued function t 7! Q�t defined by Q�t D et�t satisfies:

PQ�t D Œetct�xt C ŒNb1.t/� C dt� Q�t; t 2 Œ0;T�;

if the matrices et and dt commute in the sense that etdt D dtet for all t 2 Œ0;T�.
Notice that, while this commutativity property is often satisfied in applications
(in particular in the unidimensional case d D k D 1), it is still rather restrictive.
We make it here for the purpose of the discussion of the assumptions under which
the fixed point step (ii) can be solved for LQ models.

The relevance of this remark comes about in the following way. The above
maximum principle argument shows that if we set:

at D b1.t/C Nb1.t/; bt D b2.t/; rt D Qrt;

for some continuous and strictly positive-definite-symmetric-matrix-valued func-
tion Œ0;T� 3 t 7! Qrt to be determined, then the system:

8
ˆ̂<

ˆ̂:

Pxt D atxt � bt Qr�1
t b�t �t;

P�t D �Qqtxt � a�t �t; t 2 Œ0;T�;
x0 D EŒ��; �T D Qq�T ;

(3.62)

has a unique solution, if, as prescribed above, Œ0;T� 3 t 7! Qqt is continuous and
takes values in the set of symmetric nonnegative semi-definite matrices and Qq is also
a symmetric nonnegative semi-definite matrix. Setting Q�t D et�t with et as above
and assuming that et commutes with a�t , we conclude that the couple .xt; Q�t/06t6T

satisfies:
8
ˆ̂<

ˆ̂:

Pxt D Œb1.t/C Nb1.t/�xt � b2.t/Qr�1
t b2.t/�e�1

t
Q�t;

PQ�t D �et Qqtxt � b1.t/� Q�t; t 2 Œ0;T�;
x0 D EŒ��; Q�T D eT QqxT ;

(3.63)

which is nothing but the system (3.52) if we can choose .Qqt/06t6T and Qq so that:

(
et Qqt D q.t/C Nq.t/ � Nq.t/s.t/; t 2 Œ0;T�;
eT Qq D q C Nq � Nqs;

and Qrt such that:

Qr�1
t b2.t/

�et D r.t/�1b2.t/�;
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for all t 2 Œ0;T�. Checking that Qqt is symmetric and nonnegative semi-definite and
that Qrt is symmetric and strictly positive definite may be difficult. Still, if Nb1.t/
happens to be a multiple of the d � d identity matrix Id, et will also be a multiple
of Id, with a positive multiplicative constant. As such, et will commute with all the
d � d matrices. In this case, we may choose Qrt as equal to rt up to a multiplicative
constant. Moreover, Qqt will be symmetric if q.t/s.t/ is symmetric, and nonnegative
semi-definite if q.t/ C Nq.t/ � q.t/s.t/ > 0, which is the case if q.t/s.t/ 6 0,
and similarly for Qq. This matches condition (A7) in the set of assumption MFG
Solvability SMP that we shall introduce in Chapter 4 in order to prove existence
of an MFG equilibrium within a larger framework that includes both Theorem 3.24
and the linear-quadratic case.

We deduce:

Proposition 3.35 Assume, as above, that the matrix coefficients are continuous, q,
Nq, q.t/, and Nq.t/ are nonnegative semi-definite, and r.t/ is strictly positive definite.
Assume also that Nb1.t/ is a multiple of the identity matrix Id, that for all t 2 Œ0;T�,
q.t/s.t/ is symmetric and q.t/C Nq.t/� q.t/s.t/ is nonnegative semi-definite and that
qs is symmetric and qC Nq�qs is nonnegative semi-definite. Then, the LQ mean field
game problem defined through (3.48) has a unique solution.

3.5.2 The One-Dimensional Case d D k D 1

In the one-dimensional case, d D m D k D 1, the system (3.58) can be rewritten in
the form:

8
ˆ̂<

ˆ̂:

P�t D �bt�
2
t � 2at�t C mt; �T D q;

P�t C .at C bt�t/�t D dt � ct�t; �T D r;

Zt D �t�:

(3.64)

The first equation is now a scalar Riccati equation, and according to the classical
theory of scalar Ordinary Differential Equations (ODEs for short), a straightforward
approach is to solve the second order linear equation:

�bt
R	t C Œ Pbt � 2atbt� P	t C mtb

2
t 	t D 0; t 2 Œ0;T�;

with terminal conditions 	T D 1 and P	T D bTq, and set �t D .bt	t/
�1 P	t, provided

one can find a solution Œ0;T� 3 t 7! 	t which does not vanish. Once .�t/06t6T

in (3.64) is computed, the next step is to plug its value in the third equation to
determine Z D .Zt/06t6T , and in the second equation, which can then be solved by:

�t D re
R T

t ŒauCbu�u�du �
Z T

t
Œds � cs�s�e

R s
t ŒauCbu�u�duds; t 2 Œ0;T�: (3.65)
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When the Riccati equation is well posed, its solution does not blow up and all
the terms above are integrable. Now that the deterministic functions .�t/06t6T and
.�t/06t6T are computed, we rewrite the forward stochastic differential equation for
the dynamics of the state, see (3.56), using the ansatz (3.57):

dXt D Œ.at C bt�t/Xt C bt�t C ct�dt C �dWt; X0 D �:

Such a stochastic differential equation admits an explicit solution:

Xt D X0e
R t
0.auCbu�u/du C

Z t

0

.bu�u C cu/e
R t

u.avCbv�v/dvdu

C �

Z t

0

e
R t

u.avCbv�v/dvdWu; t 2 Œ0;T�;
(3.66)

which provides the solution to (3.56) in the univariate case once the fixed point
condition in the LQ mean field game problem has been solved.

In order to solve the fixed point condition, we may pursue the argument started
earlier in the multidimensional case. To do so, we notice that in the one-dimensional
case, the function .et/0�t�T used in (3.63) is given explicitly by:

et D exp

� Z t

0

Nb1.u/du

�
; t 2 Œ0;T�;

and since the commutativity conditions are automatically satisfied we only need to
check the positivity conditions. Since Qrt D e�1

t r.t/ is strictly positive if and only if
r.t/ is, which is part of our assumptions, the only requirement we need to guarantee
existence of a solution to the MFG problem is the nonnegativity of Qqt, for t 2 Œ0;T�,
and of Qq, which amounts to assuming that q.t/C Nq.t/ � Nq.t/s.t/ > 0, for t 2 Œ0;T�,
and q C Nq � Nqs > 0.

Remark 3.36 Whenever we solve the above LQ mean field game problems with a
deterministic initial private state � D x0 2 R, the equilibrium state process X D
.Xt/06t6T , its adjoint process Y D .Yt/06t6T as well as the optimal control process
˛ D .˛t/06t6T are Gaussian processes whose mean and auto-covariance functions
can be computed explicitly in terms of the functions .�t/06t6T and .�t/06t6T .

Remark 3.37 We refer to (2.49)–(2.50) for the analysis of the Riccati equation
in (3.64) when the coefficients b, a and m are constant.

A Very Simple Example
For the sake of illustration, we consider an example frequently used in the early
literature on mean field games. In this example, the drift b reduces to the control,
namely b.t; x; �; ˛/ D ˛, so that b1.t/ D Nb1.t/ D 0, and b2.t/ D 1, and the state
equation reads
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dXt D ˛tdt C �dWt; t 2 Œ0;T�I X0 D �:

We also assume that the running cost is simply the square of the control, i.e.,
f .t; x; �; ˛/ D ˛2=2 so that r.t/ D 1 and q.t/ D Nq.t/ D 0. In particular,
at D dt D ct D 0 and bt D �1, see (3.56). In this example, the interaction between
the players occurs only through the terminal cost, which we assume to be of the
form g.x; �/ D Nq.x � s N�/2=2 for some Nq > 0 and s 2 R to conform with the setting
of this section. Using the notation and the results above, we see that after fixing the
mean N�t D EŒXt�, the FBSDE from the Pontryagin stochastic maximum principle
has the simple form:

8
ˆ̂<

ˆ̂:

dXt D �Ytdt C �dWt;

dYt D ZtdWt; t 2 Œ0;T�;
X0 D �; YT D qXT C r;

(3.67)

with q D Nq and r D �Nqs N�T . As explained above, we solve this FBSDE by
postulating Yt D �tXt C �t, and solving for the two deterministic functions t 7! �t

and t 7! �t. The ODEs of (3.64) read P�t � �2t D 0 and P�t � �t�t D 0 with terminal
conditions �T D q and �T D r respectively. Their solutions are:

�t D q

1C q.T � t/
; �t D r

1C q.T � t/
;

(keep in mind that q > 0 so that the functions above are well defined) and plugging
these expressions into (3.66) we get:

Xt D �
1C q.T � t/

1C qT
� rt

1C qT
C �Œ1C q.T � t/�

Z t

0

dWu

1C q.T � u/
: (3.68)

Notice further that the optimal control ˛t and the adjoint process Yt satisfy:

�˛t D Yt D q

1C q.T � t/
Xt C r

1C q.T � t/
;

and that the only quantity depending upon the fixed mean function t 7! N�t is the
constant r D �Nq s N�T , which depends only upon the mean state at the end of the
time interval. Recalling that q D Nq, this makes the search for a fixed point very
simple and one easily checks that if

N�T D EŒ��

1C Nq.1 � s/T
; (3.69)

then the mean at time T of the random variable XT given by (3.68) is N�T .
From this, we deduce that an equilibrium exists if and only if 1C Nq.1� s/T 6D 0.
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Remark 3.38 Whenever 1 C Nq.1 � s/T < 0, the reader may find contradictory
the fact that N�T and N�0 have opposite signs in equilibrium, while (3.55) seemingly
implies that EŒXt� has the same sign as EŒX0� D EŒ�� in equilibrium. To resolve
this ostensible contradiction, we must recall that (3.55) holds whenever the Riccati
equation in (3.54) is solvable. Whenever 1 C Nq.1 � s/T < 0, the Riccati equation
in (3.54) is certainly not solvable on Œ0;T� as otherwise there would be a solution on
the shorter interval Œ0;Tc� with the same terminal condition at Tc in lieu of T, where
Tc is the critical time when 1 C Nq.1 � s/Tc D 0. Of course, the Riccati equation
cannot be solvable on Œ0;Tc� since (3.69) asserts that there is no equilibrium when
T D Tc.

3.6 Revisiting Some of the Examples of Chapter 1

We test the results of this chapter on some of the examples introduced in Chapter 1.

3.6.1 A Particular Case of the FlockingModel

We first consider the mean field game problem arising from the flocking model
introduced in Subsection 1.5.1 of Chapter 1. As in the discussion of the finite player
game given in Section 2.4 of Chapter 2, we first consider the particular case ˇ D 0.
The general case ˇ ¤ 0 will be treated in Chapter 4. As explained in Section 2.4,
when ˇ D 0, the weights (1.44) are identically equal to a constant, and the costs to
the individuals depend only upon their velocities. Since the position does not appear
in the dynamics of the velocities, it is possible to reframe the model in terms of the
velocities only. Doing so, we are facing a linear quadratic mean field game model
fitting perfectly the framework discussed in this chapter.

As explained in Section 2.4 of Chapter 2, we use the notation Xi
t to denote the

velocity at time t of bird i. This choice of the upper case letter X for the velocity, is
made to conform with the notation used throughout Chapter 2. Later on, when we
consider the general case in Chapter 4, we shall switch back to the original notation
introduced in Chapter 1. Here we focus on the dynamics of the velocity:

dXt D ˛tdt C �dWt;

and recalling the form (1.48) of the running cost, the minimization concerns the cost
functional:

J.˛/ D E

� Z T

0

Œ
1

2
j˛tj2 C �2

2
jXt � N�tj2�dt

�
:

This model appears as a simple particular case covered by the discussion of
Section 3.5 with:

b1.t/ D 0; b2.t/ D I3; Nb1.t/ D 0;
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and

r.t/ D I3; s.t/ D I3; Nq.t/ D �2I3; q.t/ D 0; q D Nq D s D 0:

If we denote by Y the adjoint variable of X, and if we set Nxt D EŒXt� and Nyt D EŒYt�,
system (3.52) becomes:

(
dNxt D �Nytdt; Nx0 D N�0;
dNyt D 0; NyT D 0;

which shows that Nxt D N�0 and Nyt D 0. Theorem 3.34 implies existence and
uniqueness of a solution to the mean field game. We identify this solution by solving
the usual forward-backward system of ODEs (3.58) which reduces to the following
system in the present situation:

8
ˆ̂<

ˆ̂:

P�t � �2t C �2I3 D 0; �T D 0;

P�t � �t�t � �2 N�0 D 0; �T D 0;

Zt D �t�:

The first equation is a d � d matrix Riccati equation. However, in its present very
special form, its solution can clearly be searched for as a scalar multiple of the
identity. So if the above matrix valued function t 7! �t is of the form t 7! �tI3 for
some real valued function t 7! �t, the latter should solve the scalar Riccati equation:

P�t � �2t C �2 D 0; �T D 0: (3.70)

We chose to use the same letter � for both the matrix valued and the scalar functions,
not so much because of a shortage of Greek characters, but because we already
considered a scalar Riccati equation of the type (3.70) in Section 2.4. In fact, this
very equation appeared as the limit N ! 1 of the Riccati equations providing open
loop and Markovian Nash equilibria for the N player games, and we explained there
that this equation has a unique solution given by (2.59):

�t D �
e2�.T�t/ � 1
e2�.T�t/ C 1

; t 2 Œ0;T�:

Similarly, the components �i
t of the vector valued function �t are given by:

�i
t D ��2 N�i

0

Z T

t
e

R t
s �ududs; t 2 Œ0;T�; i D 1; � � � ; d:

So the equilibrium trajectories of the velocity are given by the d-dimensional
Gaussian dynamics:

dXt D �.�tXt C �t/dt C �dWt; t 2 Œ0;T�:
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Fig. 3.1 Monte Carlo simulations of N D 50 samples with � D 1, � D 1 and T D 10 in
dimension d D 2. The left pane shows the velocity vectors at time t D T , the positions and the
(properly rescaled) velocity vectors being shown on the right for t 2 Œ0;T�.

These dynamics are mean reverting because the scalar function t 7! �t is positive.
In fact, the velocity is given by the explicit formula:

Xt D e� R t
0 �uduv0 �

Z t

0

e� R t
s �udu�s ds C �

Z t

0

e� R t
s �ududWs; t 2 Œ0;T�;

where v0 is the initial velocity, from which we obtain xt D x0 C R t
0

Xsds for the
position at time t of a typical bird in the flock, x0 denoting the initial position. The
left pane of Figure 3.1 shows the results of N D 50 Monte Carlo simulations of the
model with � D 1, � D 1 and T D 10 in dimension d D 2.

3.6.2 Systemic Risk ExampleWithout Common Noise

Even though we were able to solve the finite player game for open and closed loop
Nash equilibria, it is instructive to consider the mean field game version of the toy
model of systemic risk in the absence of common noise, i.e., when � D 0. The
general case will be discussed later in Chapter (Vol II)-4. When � D 0, this model is
a particular case of the LQ mean field game models considered earlier. Indeed, the
MFG strategy is based on the following two steps:

(i) For each fixed deterministic function Œ0;T� 3 t 7! mt 2 R, solve the standard
control problem:

inf
˛2AE

� Z T

0

�
˛2t
2

� q˛t.mt � Xt/C �

2
.mt � Xt/

2

�
dt C c

2
.mT � XT/

2

�
;
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subject to the dynamics:

dXt D Œa.mt � Xt/C ˛t� dt C �dWt;

where W D .Wt/06t6T is a Wiener process independent of the initial value X0
which may be a square integrable random variable � .

(ii) Solve the fixed point problem: find Œ0;T� 3 t 7! mt so that mt D EŒXt� for
all t 2 Œ0;T�, where .Xt/06t6T is an optimal trajectory of the optimal control
problem in environment .mt/06t6T .

As stated, this problem is a particular case of the LQ mean field game models
discussed above only when q D 0. However, in the general case q 6 �2, the
arguments used above can be applied mutatis mutandis. The reduced Hamiltonian
of the system is given by:

H.t; x; y; ˛/ D Œa.mt � x/C ˛� y C 1

2
˛2 � q˛.mt � x/C �

2
.mt � x/2;

which is strictly convex in .x; ˛/ under the condition q2 6 �, and attains its
minimum for:

˛ D Ǫ .t; x;mt; y/ D q.mt � x/ � y:

The corresponding adjoint forward-backward equations are given by:

8
ˆ̂<

ˆ̂:

dXt D Œ.a C q/.mt � Xt/ � Yt�dt C �dWt

dYt D �
.a C q/Yt C .� � q2/.mt � Xt/

	
dt C ZtdWt; t 2 Œ0;T�;

YT D c.XT � mT/:

(3.71)

This affine FBSDE is of the type considered above and can be solved in the same
way. Given our experience with the corresponding finite player game solved in the
previous chapter, we make the (educated) ansatz:

Yt D ��t.mt � Xt/; (3.72)

and the deterministic function t 7! �t must solve the Riccati equation:

P�t D 2.a C q/�t C �2t � .� � q2/; (3.73)

with terminal condition �T D c. As expected, this equation appears as the limit as
N ! 1 of the Riccati equations obtained in the solutions of the N-player games
for open and closed loop equilibria, see (2.80). This is a first concrete confirmation
of the folk theorem according to which the differences between open and closed
loop equilibria disappear in the limit N ! 1 of large games. See the Notes &
Complements at the end of the chapter for references discussing this claim.
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3.6.3 The Diffusion Form of Aiyagari’s GrowthModel

The diffusion version of Aiyagari’s growth model presented in Subsection 1.4.3
of Chapter 1 belongs in the family of MFG models considered in this chapter.
In order to satisfy the ergodic property mentioned in Remark 1.22, we model
the Z-component of the state .Zt;At/ by an Ornstein-Uhlenbeck process, choosing
�Z.z/ D 1�z and a positive constant for �Z . We shall specify the numerical value for
�Z when we want to compare our numerical results to some computations reported
in the literature. So the state dynamics are given by:

(
dZt D �.Zt � 1/ dt C �ZdWt;

dAt D �
.1 � ˛/ N�˛t Zt C �

˛ N�˛�1
t � ı�At � ct

	
dt; t 2 Œ0;T�; (3.74)

where . N�t/06t6T denotes the flow of average wealths in the population in equilib-
rium. We switched to a system of notation used in this chapter, but the reader is
warned that this average wealth was denoted Kt when we introduced the model in
Chapter 1 using standard notation in the macro-economic literature. In any case,
this average wealth is assumed to take (strictly) positive values, both for economic
reasons and because of the powers ˛ 2 .0; 1/ and 1 � ˛ 2 .0; 1/ appearing in
the above equation. Observe also that we used the Greek letter ˛ for the exponent
in (3.74), although we already used the same letter for the elements of the admissible
values for the control processes; clearly, there is no risk of confusion between both
in the sequel. In order to make sure that .Zt/t>0 is stationary for all times (and not
simply “asymptotically stationary”), we can assume that the distribution of Z0 is
the invariant measure N.1; �2Z=2/ of the process. For our purpose, we just assume
that EŒZ0� D 1, Z0 being independent of W. Among other things, this implies that
EŒZt� D 1 for all t > 0, fact which we shall use later on. Last, observe that, in
comparison with (1.37) in Chapter 1, we took Na D 1.

The set A of admissible controls is the set H2;1
C of real valued square-integrable

F-adapted processes c D .ct/06t6T with nonnegative values, and the cost functional
is defined by:

J.c/ D E

� Z T

0

.�U/.ct/dt � QU.AT/

�
;

for the CRRA utility function U given by (1.35), namely U.c/ D .c1�� �1/=.1��/
for � > 0 with U.c/ D ln.c/ if � D 1, and QU.a/ D a. Notice the additional minus
signs due to the fact that we want to treat the optimization problem as a minimization
problem. Here we chose to take 0 for the discount rate since we are working on a
finite horizon. Throughout the analysis, we shall assume that A0 > 0.

Application of the PontryaginMaximum Principle
The Hamiltonian reads:

H.t; z; a; �; yz; ya; c/

D .1 � z/yz C � � c C .1 � ˛/ N�˛z C .˛ N�˛�1 � ı/a	
ya � U.c/;
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where N� D R
R2

a�.dz; da/ denotes the mean of the second marginal of the measure
�. Notice that we use the reduced Hamiltonian because the volatility of Z is constant
and the volatility of A is zero. The first adjoint equation reads:

dYz;t D �@zH
�
t;Zt;At; �t;Yz;t;Ya;t; ct

�
dt C QZz;tdWt

D �
Yz;t � .1 � ˛/ N�˛t

�
dt C QZz;tdWt; t 2 Œ0;T�:

Since the variables z and yz do not play any role in the minimization of the
Hamiltonian with respect to the control variable c, the process .Yz;t/06t6T does not
enter the definition of the optimal trajectory. Consequently, we can ignore these
variables and not include them in the Hamiltonian. Accordingly, we shall use the
(further) reduced Hamiltonian:

H.t; a; �; y; c/ D � � c C .˛ N�˛�1 � ı/a	
y � U.c/;

y being understood as ya. Clearly, this Hamiltonian is convex in .a; c/ and strictly
convex in c. The form (1.36) of the derivative of the utility function implies that the
value of the control minimizing the Hamiltonian is Oc D .�U0/�1.y/ D .�y/�1=� .
Therefore, the FBSDE derived from the Pontryagin stochastic maximum principle
reads:

(
dAt D �

.1 � ˛/ N�˛t Zt C Œ˛ N�˛�1
t � ı�At � .�Yt/

�1=� 	dt

dYt D �YtŒ˛ N�˛�1
t � ı�dt C QZtdWt; t 2 Œ0;T� I YT D �1; (3.75)

where we used the notation . QZt/06t6T to denote the integrand of the backward
equation in order to distinguish it from the process .Zt/06t6T used in the model for
the first component of the state. We emphasize that, the utility function U having
a singularity at 0, the assumptions of the Pontryagin principle used in this chapter
are not satisfied here. However, it is easy to see that the proof of the sufficient part
of the Pontryagin principle goes through provided that the adjoint process .Yt/06t6T

lives, with probability 1, in a compact subset of .�1; 0/.
The crux of our analysis is to notice that the backward equation may be decoupled

from the forward equation. Its solution is deterministic and is obtained by solving
the backward ordinary differential equation:

dYt D �YtŒ˛ N�˛�1
t � ı�dt; t 2 Œ0;T� I YT D �1:

Among other things, this shows that the process .Yt/06t6T is negative valued,
whatever the input . N�t/06t6T . Also the optimal trajectory is unique and the optimal
consumption Oct D .�Yt/

�1=� is also deterministic! Once we know that .Yt/06t6T is
deterministic, taking the expectation in the dynamics of .At/06t6T , we deduce that
the flow . N�t/06t6T describing the average wealth of the population in equilibrium,
if it exists, must solve the deterministic forward-backward system:
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(
d N�t D � N�˛t � ı N�t � .�Yt/

�1=� 	dt;

dYt D �YtŒ˛ N�˛�1
t � ı�dt; t 2 Œ0;T� I YT D �1: (3.76)

Above we used the fact that EŒZt� D 1 for all t 2 Œ0;T�. In order to tackle the
existence and uniqueness of an MFG equilibrium, it thus suffices to prove that (3.76)
admits a unique solution . N�t;Yt/06t6T satisfying N�t > 0 (and Yt < 0) for any
t 2 Œ0;T�. Once (3.76) has been solved, it is indeed straightforward to plug the
solution into (3.75) and to solve the forward equation therein.

Looking for an Equilibrium
Obviously, a major difficulty in (3.76) is to guarantee that the solutions have the
required signs. In order to proceed, we perturb the original system and smooth
out the power terms coming from the derivation of the Cobb-Douglas production
function. We consider a continuously differentiable concave function ' such that '
is affine on .�1; 0� and ' coincides with x 7! x˛ on Œ�;C1/ for some � > 0.
In particular, '0 is bounded and Lipschitz continuous on the whole line. Then, we
replace (3.76) by the system:

(
d N�t D �

'. N�t/ � ı N�t � .�Yt/
�1=� 	dt;

dYt D �YtŒ'
0. N�t/ � ı�dt; t 2 Œ0;T� I YT D �1: (3.77)

Figure 3.2 gives the plots of ' and its derivative for the value � D 0:01 which we
shall use in the numerical computations below.

Notice that if we assume that .at D N�t/06t6T is given, then the second equation
of (3.77) can be solved explicitly. We get:

Yt D �e
R T

t Œ'
0.as/�ı�ds; t 2 Œ0;T�: (3.78)
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Fig. 3.2 Plots of the regularizing function a 7! '.a/ (left) and its derivative a 7! '0.a/ (right)
for the values � D 0:01 and ˛ D 0:5 of the parameters.
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Strangely enough, the system (3.77) is quite easy to solve numerically. Indeed, a
simple Picard’s iteration converges very quickly to a numerical solution. Typically,
we start with .Yt D �1/06t6T , inject it in the first equation, run a standard Ordinary
Differential Equation (ODE) solver to find .at D N�t/06t6T satisfying this first
equation, inject this solution into formula (3.78), retrieve .Yt/06t6T which we then
inject in the first equation, etc. The process converges after a small number (no more
than 5 or 6 depending upon the values of the parameters) of iterations. Figure 3.3
gives the plots of the solutions . N�t/06t6T and .Yt/06t6T obtained for a few values of
the parameters given in the caption.

Figure 3.4 shows how the average wealth . N�t/06t6T and the adjoint variable Yt

depend upon the risk aversion level � of the agents.
As for the mathematical analysis of the system (3.77), we first notice that,

quite remarkably, it reads like the forward-backward system obtained from the
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Fig. 3.3 Plots of the solutions . N�t/06t6T (left) and .Yt/06t6T (right) of the forward/backward
system (3.77) for different values of ˛, and for the values � D 0:01 and � D 1:5 for the cut-off
and risk aversion parameters.
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Fig. 3.4 Plots of the solutions . N�t/06t6T (left) and .Yt/06t6T (right) of the forward/backward
system (3.77) for different values of the risk aversion parameter � , and for the values � D 0:01 and
˛ D 0:5 for the cut-off and Cobb-Douglas parameters.
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deterministic Pontryagin maximum principle, when applied to the minimization
problem:

inf
c

NJ.c/; with NJ.c/ D
Z T

0

.�U/.ct/dt � QU.aT/;

where c D .ct/06t6T is a deterministic integrable path from Œ0;T� to RC and a D
.at/06t6T solves:

Pat D '.at/ � ıat � ct: (3.79)

Here, the Hamiltonian reads:

NH.a; y; c/ D Œ'.a/ � ıa � c�y � U.c/;

which is easily seen to be convex in .a; c/ when y is restricted to .�1; 0/. Since '0
is bounded, it is indeed pretty clear that the solution of the backward equation:

Pyt D �yt
�
'0.at/ � ı�; t 2 Œ0;T�I yT D �1; (3.80)

where a D .at/06t6T solves the controlled equation (3.79), lives in a compact
subset in .�1; 0/. As a byproduct, this shows that, in the minimization of NJ, the
dual variable y must live in a compact subset of .�1; 0/. In particular, in (3.77),
the singular term .�Yt/

�1=� may be replaced by a bounded and Lipschitz function
of Y . With such a prescription, (3.77) may be seen as an FBSDE with Lipschitz
coefficients. It is thus uniquely solvable in small time, see Chapter 4. The fact
that the backward equation lives in a compact subset of .�1; 0/, determined by
k'0k1 and ı only, shows that the optimal control, given by ..�Yt/

�1=� /06t6T , lives
a compact subset of .0;C1/, independently of the initial condition of . N�t/06t6T .
In order to extend inductively the property of unique solvability from small to long
time intervals, it suffices to notice that, for the useful values of c and y, the mapping
.a; y; c/ 7! NH.a; y; c/ is convex in .a; c/ and is uniformly convex in c. Then, by
the Pontryagin maximum principle and using the same argument as in the proof of
Lemma 4.56, based on Proposition 3.21, we can control the Lipschitz constant of
the decoupling field along the induction used in the extension from small time to
long time. This gives the unique solvability of (3.77) for an initial condition N�0 > 0.

We now show that we can replace the function ' and its derivative by the original
power function x 7! x˛ and its derivative, and still solve the system. First we notice
that formula (3.78) giving Yt in terms of at implies that:

�Yt > exp.ı.t � T//; t 2 Œ0;T�;

and therefore:

.�Yt/
�1=� 6 exp

�ı.T � t/

�

�
; t 2 Œ0;T�:
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Consider now the solution of the forward ODE:

Pat D �
'.at/ � ıat � .�Yt/

�1=� 	; t 2 Œ0;T�:

Then,

at D exp.�ıt/
h
a0 C

Z t

0

exp.ıs/'.as/ds �
Z t

0

exp.ıs/.�Ys/
�1=�ds

i

> exp.�ıt/
h
a0 �

Z t

0

exp.ıs/ exp
�ı.T � s/

�

�
ds

i
:

Therefore, when

a0 D N�0 >
Z T

0

exp.ıs/ exp
�ı.T � s/

�

�
ds; (3.81)

we can choose � small enough so that the solution of (3.77) is also a solution
of (3.76). By the same argument, the solution must be unique, since any other
solution of (3.76), with the prescribed signed condition (that is N�t > 0 and Yt < 0

for all t 2 Œ0;T�), is a solution of (3.77) for a well-chosen �. It is worth mentioning
that the solution to (3.75), obtained in the end under the condition (3.81), satisfies
EŒAt� > 0 for any t 2 Œ0;T�.

Monte Carlo Simulations
Once the equilibrium values of the functions .at D N�t/06t6T and .Yt/06t6T are
obtained, it is easy to run Monte Carlo simulations using the original system (3.74).
Indeed, it is straightforward to simulate samples from the Ornstein-Uhlenbeck
dynamics given by the first equation, and for each such sample, one can use the
second equation to compute the corresponding trajectory of the wealth .At/06t6T .
Doing so, one can keep track of the full distribution of wealth over the entire
population. For example, Figure 3.5 shows the histogram of the wealth distribution
at the terminal time. It was computed from N D 20; 000 Monte Carlo scenarios
(based on simulations of the Ornstein-Uhlenbeck process .Zt/06t6T ) with T D 5

year, ˛ D 0:5 and � D 6, starting from an initial distribution of the wealth, which
was chosen to be uniform over the interval Œ0; 2�.

3.7 Games with a Continuum of Players

The rationale for the mean field game models studied in this book is based on
the limit as N ! 1 of N-player games with mean field interactions. One of the
justifications given in Chapter 1 for the formulation of the mean field game paradigm
is that the influence on the game of each individual player vanishes in this limit.
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Fig. 3.5 Histogram of the
terminal wealth from a
sample of N D 20;000 Monte
Carlo scenarios.

Histogram of the terminal wealth distribution
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Mathematical physicists and economists have been using game models in which the
impact of each single player is insignificant. They do just that by considering games
for which the players are labeled by elements i of an uncountable set I, accounting
for a continuum of agents. This set I is equipped with a � -field I and a probability
measure 
 which is assumed to be continuous (i.e., nonatomic). In this way, if i 2 I
represents a player, the fact that 
.fig/ D 0 accounts for the insignificance of the
players in the model. This section is thus intended to be a quick introduction to the
framework of games with a continuum of players.

The classical Glivenko-Cantelli form of the Law of Large Numbers (LLN) states
that if F denotes the cumulative distribution function of a probability measure on
R, if .Xn/n>1 is an infinite sequence of independent identically distributed random
variables on a probability space .˝;F ;P/ with common distribution �, and if we
use the notation:

F!.x/ D lim sup
N!1

1

N
#
˚
n 2 f1; � � � ;Ng W Xn.!/ 6 x

�
; x 2 R; ! 2 ˝; (3.82)

for the proportion of Xn.!/’s not greater than x, then this lim sup is in fact a limit
for all x 2 R and P-almost all ! 2 ˝, and PŒf! 2 ˝ W F!.�/ D Fg� D 1.

Switching gears momentarily, recall that, over fifty years ago, economists
suggested that the appropriate model for perfectly competitive markets is a model
with a continuum of traders represented as elements of a measurable space. In such
a set-up, the insignificance of individual traders is captured by the idea of a set with
zero measure, and summation or aggregation is generalized by the notion of integral.
In games with a continuum of players, the latter are labeled by the elements i 2 I
of an arbitrary set I (often assumed to be uncountable, and most often chosen to
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be the unit interval Œ0; 1�) equipped with a � -field I and a probability measure 
.
In this set-up, if the state of each player i 2 I is given by a random variable Xi

on a probability space .˝;F ;P/, in analogy with the countable case leading to
formula (3.82), the quantity:

F!.x/ D 

�fi 2 I W Xi.!/ 6 xg� (3.83)

appears as a natural generalization of the proportion of .Xi.!//i2I’s not greater
than x, in other words of the cumulative distribution function of the empirical
distribution, and if the .Xi/i2I’s were to be independent with the same distribution,
we could have a reasonable generalization of the Law of Large Numbers to this
setting. However, as we explain in the next subsection, measurability issues get in
the way and such a generalization is, when it does exist, far from trivial.

3.7.1 The Exact Law of Large Numbers

If E is a Polish space, for each probability measure � 2 P.E/, Kolmogorov’s
theorem can be used to construct on the product space ˝ D EI equipped with
the � -field F obtained as the product of copies of the Borel � -field of E, the
product probability measure P for which the coordinate projections .Xi W ˝ 3
! 7! Xi.!/ D !.i/ 2 E/i2I become independent and identically distributed random
variables with common distribution � on the probability space .˝;F ;P/. It is also
well known that the sample paths I 3 i 7! Xi.!/ 2 E are pretty rough functions
since they are (for P-almost ! 2 ˝) nowhere continuous and not even measurable.

Hence, this construction of a continuum of independent identically distributed
random variables leads to irregular structures lacking measurability properties. The
following definition offers an alternative which keeps most of what is needed from
the independence.

Definition 3.39 If E is a Polish space, the E-valued random variables .Xi/i2I are
said to be essentially pairwise independent if, for 
-almost every i 2 I, the random
variable Xi is independent of Xj for 
-almost every j 2 I. Accordingly, if the real
valued random variables .Xi/i2I are square integrable, we say that the family .Xi/i2I

is essentially pairwise uncorrelated if, for 
-almost every i 2 I, the correlation
coefficient of Xi with Xj is 0 for 
-almost every j 2 I.

One may wonder if essentially pairwise independent families .Xi/i2I can be
constructed on probability spaces .˝;F ;P/ so that the process X W I�˝ 3 .i; !/ 7!
Xi.!/ satisfies relevant measurability properties. To do so, we shall construct such
processes on extensions of the product space .I �˝; I˝F ; 
˝P/, which are called
Fubini’s extensions.
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Definition 3.40 If I � F is a � -field containing I ˝ F and 
� P is a probability
measure on .I � ˝; I � F/, then .I � ˝; I � F ; 
 � P/ is said to be a Fubini
extension of .I �˝; I ˝ F ; 
˝ P/ if, for every measurable and 
� P-integrable
X W I �˝ 3 .i; !/ 7! Xi.!/ 2 R, we have:

1. for 
-a.e. i 2 I, ˝ 3 ! 7! Xi.!/ is a P-integrable random variable, and for
P-a.e. ! 2 ˝, I 3 i 7! Xi.!/ is measurable and 
-integrable;

2. I 3 i 7! R
˝

Xi.!/dP.!/ is measurable and 
-integrable, and ˝ 3 ! 7!R
I Xi.!/d
.i/ is a P-integrable random variable, and:

Z

I

� Z

˝

Xi.!/dP.!/

�
d
.i/ D

Z

˝

� Z

I
Xi.!/d
.i/

�
dP.!/

D
Z

I�˝
Xi.!/d

�

� P

�
.i; !/:

(3.84)

In the sequel, we shall use the standard symbol E for denoting the expectation
under the sole probability P.

Measurable essentially pairwise independent processes X are first constructed
in such a way that, for each i 2 I, the law of Xi is the uniform distribution
on the unit interval Œ0; 1�. Then, using the tools we develop in Chapter 5, see
for example Lemma 5.29, we easily construct measurable essentially pairwise
independent Euclidean-valued processes with any given prescribed marginals. So
the actual problem is to construct rich product probability spaces in the sense of the
following definition.

Definition 3.41 A Fubini extension .I �˝; I �F ; 
�P/ is said to be rich if there
exists a real valued I � F-measurable essentially pairwise independent process X
such that the law of Xi is the uniform distribution on Œ0; 1� for every i 2 I.

We refer to the Notes & Complements at the end of the chapter for references
to papers giving the construction of essentially pairwise independent measurable
processes on Fubini extensions.

The following gives a simple property of rich Fubini extensions.

Lemma 3.42 If the Fubini extension .I � ˝; I � F ; 
 � P/ is rich, then 
 is
necessarily atomless.

Proof. We shall argue by contradiction. If A 2 I, with 
.A/ > 0, is an atom of .I;I; 
/,
then, for P-a.e. ! 2 ˝, the function I 3 i 7! Xi.!/ is 
-a.e. constant on A. So for P-a.e.
! 2 ˝ and 
-a.e. i 2 A,

Xi.!/ D
Z

A
Xj.!/

d
.j/


.A/
;
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and using the Fubini property (3.84), we deduce that for 
-a.e. i 2 A, the random variable
˝ 3 ! 7! Xi.!/ is P-a.e. equal to the random variable 	 W ˝ 3 ! 7! R

A Xj.!/d
.j/=
.A/.
Also, for any event B 2 F ,

PŒ	 2 B� D 1


.A/

� P

�
.i; !/ 2 A �˝ W Xi.!/ 2 B

	

D 1


.A/

Z

A
PŒXi 2 B�d
.i/ D Leb1.B/;

proving that 	 , as a random variable on .˝;F ;P/, has the uniform distribution. In particular,
EŒ	2� D 1=3.

On the other hand, we know that, for almost every i 2 I, the function I �˝ 3 .j; !/ 7!
Xi.!/Xj.!/ is I�F-measurable. Also, by the Fubini property, the function I 3 j 7! EŒXiXj�

is integrable with respect to 
 and

1


.A/

Z

A
EŒXiXj�d
.j/ D EŒXi	�: (3.85)

Now, we observe that the function I �˝ 3 .i; !/ 7! Xi.!/	.!/ is also I � F-measurable.
Hence, I 3 i 7! EŒXi	� is integrable with respect to 
 and

1


.A/

Z

A
EŒXi	�d
.i/ D EŒ	2� D 1

3
:

The contradiction comes from the fact that, for almost every i 2 I, Xi is orthogonal to Xj for
almost every j 2 I. In other words, the left-hand side in (3.85) is equal to:

1


.A/

Z

A
EŒXiXj�d
.j/ D 1

4
;

which gives the desired contradiction. ut

Using Lemma 5.29 from Chapter 5 when E is a Euclidean space and an
extension of it when E is a more general Polish space, see for instance the Notes
& Complements at the end of Chapter 5, we get the following result which we
already announced.

Proposition 3.43 If the Fubini extension .I � ˝; I � F ; 
 � P/ is rich, if E is a
Polish space, and if � W I ! P.E/ is I-measurable, then there exists a I � F-
measurable E-valued essentially pairwise independent process Y W I �˝ ! E such
that for 
-a.e. i 2 I, P ı Y�1

i D �i.

An exact law of large numbers can be proven on Fubini’s extensions. In a weak
form, this law can be given in the following way.
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Theorem 3.44 Let X D .Xi/i2I be a measurable square integrable process on a
Fubini extension .I �˝; I � F ; 
� P/. The following are equivalent:

(i) The random variables .Xi/i2I are essentially pairwise uncorrelated;
(ii) For every A 2 I with 
.A/ > 0, one has for P-almost every ! 2 ˝:

Z

A
Xi.!/d
.i/ D

Z

A
EŒXi�d
.i/:

Proof.

First Step. We first check that if Y D .Yi/i2I and Z D .Zi/i2I are measurable and square
integrable processes on the Fubini extension .I �˝;I � F ; 
� P/, and if we set QXi;j.!/ D
Yi.!/Zj.!/ for i; j 2 I and ! 2 ˝, then ˝ 3 ! 7! QXi;j is P-integrable for 
-a.e. i 2 I and
j 2 I. Now, proceeding as in the proof of Lemma 3.42 and using the Fubini property of the
space, we easily check that, for 
-a.e. i 2 I, the function I 3 j 7! EŒ QXi;j� is 
-integrable,
that the function I 3 i 7! R

I EŒ
QXi;j�d
.j/ D EŒYi

R
I Zjd
.j/� is 
-integrable, that the function

˝ 3 ! 7! .
R

I Yi.!/d
.i//.
R

I Zj.!/d
.j// is P-integrable and that:

E

�� Z

I
Yi.!/d
.i/

�� Z

I
Zj.!/d
.j/

��
D

Z

I

� Z

I
EŒ QXi;j�d
.i/

�
d
.j/: (3.86)

Second Step. Let A;B 2 I, and let us define the processes Y D .Yi/i2I and Z D .Zi/i2I by
.Yi D 1A.i/.Xi � EŒXi�//i2I and .Zi D 1B.i/.Xi � EŒXi�//i2I respectively. Applying (3.86)
from the first step we get:

Z

A

Z

B
E

h

Xi � EŒXi�

�

Xj � EŒXj�

�i
d
.i/d
.j/

D E

� Z

A



Xi � EŒXi�

�
d
.i/

Z

B



Xj � EŒXj�

�
d
.j/

�
;

(3.87)

and the implication (i) ) (ii) follows by taking B D A. On the other hand, if we assume that
(ii) holds, equation (3.87) implies that:

Z

A

Z

B
E

h

Xi � EŒXi�

�

Xj � EŒXj�

�i
d
.i/d
.j/ D 0

for all A;B 2 I. The set A 2 I being arbitrary, we conclude that:

Z

B
E

h

Xi � EŒXi�

�

Xj � EŒXj�

�i
d
.j/ D 0;

for 
-a.e. i 2 I. So for 
-a.e. i 2 I, B 2 I being arbitrary, we conclude that:

E

h

Xi � EŒXi�

�

Xj � EŒXj�

�i
D 0

for 
-a.e. j 2 I which completes the proof. ut
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Theorem 3.44 provides a form of the weak law of large numbers for essentially
pairwise uncorrelated uncountable families of random variables. Here is a stronger
form for essentially pairwise independent families of random variables.

Theorem 3.45 Let E be a Polish space and X D .Xi/i2I be a measurable E-valued
process on a Fubini extension .I �˝; I �F ; 
�P/ such that the random variables
.Xi/i2I are essentially pairwise independent. Then, for P almost every ! 2 ˝ and
for any B in the Borel � -field B.E/,



�fi 2 I W Xi.!/ 2 Bg	 D

Z

I
P

�
Xi 2 B

	
d
.i/:

Of course, we may choose E as a Euclidean space, in which case we get a
strong form of the exact law of large numbers for essentially pairwise independent
families of random variables with values in R

d, for some d > 1. By choosing E
as a functional space, the same holds true for a continuum of essentially pairwise
independent random processes.

Finally, we can also derive conditional versions of these exact laws. We do
not give the details here because we want to keep the presentation to a rather
nontechnical level since our motivation is merely to connect our approach to mean
field games to the existing literature on games with a continuum of players. The
interested reader is referred to the Notes & Complements at the end of the chapter
for references.

3.7.2 Mean Field Games with a Continuum of Players

We now revisit the introductory discussion of Section 3.1, and especially Subsec-
tion 3.1.1 to introduce what would be the analogue with a continuum of players. In
other words, we would like to replace the finite set I D f1; � � � ;Ng of players, by
a general probability space .I; I; 
/ possibly with a continuous measure 
. Under
the same assumptions on the drift and volatility functions b and � , as well as on the
running and terminal cost functions f and g, we thus posit that the dynamics of the
state process Xi of each player i 2 I are given by a stochastic differential equation
of the form:

dXi
t D b.t;Xi

t ; �
i
t; ˛

i
t/dt C �.t;Xi

t ; �
i
t; ˛

i
t/dWi

t ; t 2 Œ0;T�; (3.88)

in full analogy with (3.1). Here, each Wi D .Wi
t /06t6T , for i 2 I, is intended to

be a Brownian motion with values in R
d, where d is the dimension of the state

space, constructed on some common probability space .˝;F ;P/. Accordingly, each
.˛i

t/06t6T is intended to be a control process which we require to be progressively
measurable with respect to the larger filtration generated by all the noises .Wi/i2I .
Similarly, each .�i

t/06t6T is a measure-valued process which we also require to be
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progressively measurable with respect to the same filtration. We refer to Chapter 5
for the topologies and � -algebras with which we may equip spaces of measures.

Of course, solving (3.88) for any given i 2 I is not a problem as long as
we do not ask the family of processes .Xi/i2I to satisfy any further measurability
properties or statistical constraints with respect to the variable i. However, simply
stating (3.88) with the additional constraint that the processes .Xi/i2I must both form
a jointly measurable mapping in .i; !/ and be independent with respect to i, which
is intuitively what we should expect to be relevant for defining an equilibrium over a
continuum of players, immediately raises challenging questions. The purpose of this
subsection is to address them in an informal manner, paving the way to a possible
rigorous treatment of the issues.

1. Certainly, the starting point is to define a collection .Wi/i2I of Wiener processes
such that the map W W I�˝ 3 .i; !/ 7! Wi.!/ 2 C.Œ0;T�IRd/ is measurable and
the variables .Wi/i2I are essentially pairwise independent. This major difficulty
may be overcome if we use a rich Fubini extension, as defined in the previous
subsection.

2. In fact, using such a Fubini extension will kill two birds with one stone. Indeed,
the mean field nature of the model is usually guaranteed by the interactions
between the private states provided by the presence of the empirical distribution
of the states in the coefficients. In other words, the place holder �i

t appearing
in (3.88) should be the empirical distribution of all the players, or if not the
empirical distribution of the players j 2 I with j ¤ i. According to our earlier
discussion, a proxy for the former could be provided by a formula similar
to (3.83) as long as X has the right measurability. In such a case, �i

t.!/, for
t 2 Œ0;T� and .i; !/ 2 I �˝, becomes independent of i and could be just defined
as �t.!/ D 
 ı .I 3 j 7! Xj

t.!//
�1, i.e., the push forward of the probability

measure 
 under the map that associates any player j with its state at time t under
the realization ! of the randomness.

The notion of Nash equilibrium could then be defined in a natural way.

Definition 3.46 On the same rich Fubini extension .I �˝; I �F ; 
�P/ as above,
a collection of admissible controls ˛� D .˛�i/i2I is said to form a Nash equilibrium
for the game with a continuum of players whenever the following two conditions are
satisfied.

(i) We can solve the state equation (3.88) in such a way that the state process
X� W I �˝ 3 .i; !/ 7! X�i 2 C.Œ0;T�IRd/ is measurable with respect to I �F and
each X�i solves (3.88) with ˛i D ˛�i and

�i
t.!/ D �t.!/; where �t.!/ D 
 ı �

I 3 j 7! X�j
t .!/

��1
;

for all i 2 I.
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(ii) If for each player i 2 I and any strategy profile ˛i for player i, we define the
expected cost to player i by the formula:

Ji.˛/ D E

� Z T

0

f .t;Xi
t ; �t; ˛

i
t/dt C g.Xi

T ; �T/

�
;

where Xi solves (3.88), then, for 
-a.e. i 2 I and any admissible control ˛i D
.˛i

t/06t6T for player i, we have:

Ji.˛�i/ 6 Ji
�
˛i

�
:

Observe that, in the notation used right above, Ji implicitly depends upon
˛� D .˛�j/j2I through the empirical distributions .�t/06t6T . The fact that the same
.�t/06t6T is used whenever player i uses ˛i in place of ˛�i is fully legitimated by
Lemma 3.42, which asserts that the measure 
 is necessarily continuous. Indeed,
the continuity of the measure 
 guarantees that each player is insignificant, and in
particular that the empirical measures constructed from the strategy profiles ˛� and
.˛i;˛��i/ are the same, where as usual, the strategy profile .˛i;˛��i/ is given by all
the players j ¤ i using the controls ˛�j while player i is using control ˛i.

It is worth noting that the rich Fubini extension is in fact just needed to construct
the state process X� forming the equilibrium. In stark contrast, any unilateral
deviation from the equilibrium calls for the redefinition of the trajectories of one
single player i 2 I only, which can be done on the sole space .˝;F ;P/.

We now explain why, at least at an intuitive level,

a solution of the mean field game problem stated in Section 3.1 provides a Nash
equilibrium for the mean field game with a continuum of players.

Given the drift and volatility functions b and � , and given the running and
terminal cost functions f and g, let us assume that the mean field game problem
formulated in Subsection 3.1.2 has a solution. We denote by Ǫ D . Ǫ t/06t6T the
equilibrium strategy, as defined in Subsection 3.1.2, which we assume to be a
progressively measurable function of the path of the Wiener process W D .Wt/06t6T

on which the game model is based. We also denote by � D .�t/06t6T the
corresponding equilibrium flow of probability measures. Recall that the latter is
entirely deterministic. Next, we proceed to define the strategy profile ˛� D .˛�i/i2I

for the mean field game with a continuum of players by demanding that, for each
i 2 I, ˛�i bears to Wi the same relationship as Ǫ does to W. Next, still for each
i 2 I, we consider the process X�i D .X�i

t /06t6T solving (3.88) when we use the
deterministic measures .�t/06t6T in lieu of the possibly random empirical measures
.�t/06t6T . Under standard assumption, the state equation (3.88) is strongly solvable
when, for each i 2 I, .˛i

t/06t6T and .�i
t/06t6T are given as we just explained. In

particular, we claim that there exists a progressively measurable function F from
C.Œ0;T�IRd/ into itself such that X�i D F.Wi/ for all i 2 I. We deduce that
X� W I �˝ 3 .i; !/ 7! X�i.!/ 2 C.Œ0;T�IRd/ is measurable with respect to I � F
and that the family .X�i/i2I is essentially pairwise independent. Hence, the exact
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law of large numbers implies that, for each t 2 Œ0;T�, the corresponding empirical
measure, defined as 
 ı .I 3 i 7! X�i

t /
�1, is nonrandom and coincides with �t.

It then remains to identify Ji, as defined in (3.46), with the cost functional defined
in (3.4). The only subtlety when we do so is to note that ˛i is adapted to a much
larger filtration than the filtration generated by Wi. This says that, to conclude, we
must assume that Ǫ in (3.4) is optimal among a class A of control processes that are
progressively measurable with respect to a filtration F which is strictly larger than
the filtration generated by W. In fact, so is the case under standard assumptions on
the coefficients of the game, like those we use throughout the book.

3.8 Notes & Complements

The formulation of the mean field game problem given in Subsection 3.1.2 as a
set of bullet points leads to a family of standard continuous time stochastic control
problems followed by a fixed point problem in the space of deterministic measure
flows. This is inspired by the presentation of the Nash Certainty Equivalence (NCE)
principle by Huang, Caines and Malhamé in [211]. However, our search for a
solution is of a probabilistic nature as opposed to the analytic approach identifying
the value functions of the control problems as solutions of HJB partial differential
equations as described in Subsection 3.1.5. It is tempting to tackle the solutions of
both the HJB equations and the fixed point problems by contraction fixed point
arguments. This scheme is followed in [211]. Unfortunately, this strategy faces
subtle difficulties created by the fact that the two problems have time evolutions in
opposite directions, and as a result, it requires strong hypotheses which are difficult
to check in practice, and equilibria are only obtained over sufficiently short time
intervals. Existence over arbitrary time intervals can be proved for various types of
models at the cost of sophisticated PDE arguments. This was first done by Lasry
and Lions in [260–262] when � is equal to the identity. In all these references, the
coefficients are allowed to depend upon the distribution of the population through its
density, in which case the coupling is said to be local. The note [260] is dedicated to
the stationary case presented in Chapter 7, while the finite horizon case is discussed
in both [261] and [262]. The arguments are detailed in the video lectures [265];
the reader may also consult the notes by Cardaliaguet [83]. As in our approach,
Schauder’s theorem is explicitly invoked in [83] to complete the existence proof of
a solution to the MFG system (3.12).

Since Lasry and Lions’ work, several contributions have addressed the solvability
of the MFG system (3.12). Some efforts have been concentrated on the so-called first
order case, when the volatility � in (3.1) is null: We refer to Cardaliaguet [85] and
Cardaliaguet and Graber [87] for results with local coupling and to Cardaliaguet,
Mészáros, and Santambrogio [92] for cases when the density of the population is
constrained. Second order but degenerate cases were addressed by Cardaliaguet,
Graber, Porretta, and Tonon [88], while a great attention has been paid by Gomes
and his coauthors to the nondegenerate case but with various forms of Hamiltonians
and couplings: Gomes, Pimentel, and Sanchez [179] studied mean field games
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on the torus with sub-quadratic Hamiltonians and power like dependence on the
density of the population, such a form of interaction accounting for some aversion
to congestion; Gomes and Pimentel [177] addressed the same problem but with a
logarithmic dependence on the density; and Gomes, Pimentel, and Sanchez [180]
investigated mean field games with super-quadratic Hamiltonians and power like
dependence on the density. Similar models, but on the whole space, are discussed in
Gomes and Pimentel [178]. In [85,87,88,92], the construction of a solution relies on
the connection with mean field optimal control problems as exposed in Chapter 6; in
[177,179,180], it is based on a smoothing procedure of the coefficients permitting to
apply Lasry and Lions’ original results. We refer to Guéant [186] for a subtle change
of variable transforming the MFG system, when driven by quadratic Hamiltonians,
into a tractable system of two heat equations. For a more complete account, the
reader may also consult the monographs by Bensoussan, Frehse and Yam [50],
Gomes, Nurbekyan, and Pimentel [176] and Gomes, Pimentel, and Voskanyan
[181].

For a complete overview of the theory of stochastic optimal control, we refer the
reader to the textbooks by Fleming and Soner [157], Pham [310], Touzi [334], and
Yong and Zhou [343]. For a quicker introduction to the subject, the reader may have
at a look at the surveys by Borkar [65] and Pham [309].

The theory of backward SDEs goes back to the pioneering works by Pardoux
and Peng in the early 90s, see for instance [297, 298]. We refer to the monograph
by Pardoux and Rǎşcanu [299] for a complete overview of the subject and of the
bibliography. For a pedagogical introduction on the connection between backward
SDEs and stochastic control, the reader may also have a look at Pham’s textbook
[310]. Actually, existence of a connection between backward SDEs and stochastic
control was known before Pardoux and Peng’s works as an earlier version of the
stochastic maximum principle appeared in Bismut’s contributions [60–62]. The
standard version of the stochastic maximum principle, as exposed in this chapter,
is due to Peng [302], and it is now a standard tool of stochastic optimization. It is
featured in many textbooks on the subject, for example Chapter IV of Yong and
Zhou’s textbook [343] or Chapter 4 of Carmona’s lectures [94]. We also refer to the
survey by Hu [202]. The sufficient condition can be found in Chapter 6 of Pham’s
book [310] or in Chapter 10 of Touzi’s monograph [334]. We give a complete proof
in the more general set-up of stochastic dynamics of the McKean-Vlasov type in
Chapter 6. The representation of Hamilton-Jacobi-Bellman equations by means
of backward SDEs, as explained in Remark 3.16, is also due to Peng, see [304];
we shall revisit it in the next chapter. Our presentation of the weak formulation in
Subsection 3.3.1 is inspired by the articles by Hamadène and Lepeltier [195] and
El Karoui, Peng, and Quenez [226]. Earlier formulation of the comparison principle
for BSDEs, as used in the proof of Proposition 3.11 on the weak formulation, may
be found in [304]; we refer to Chapter 5 in the monograph by Pardoux and Rǎşcanu
[299] for a more systematic presentation or to any textbook on the subject. See for
example [94, 310] or [343].
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The analysis of fully coupled forward-backward SDEs is a challenging question,
which we shall review in the next Chapter 4. A common reference on the subject is
the textbook by Ma and Yong [274].

Inspired by the original works of Lasry, Lions and collaborators, BSDEs of mean
field type have been studied in several papers by Buckdahn and his coauthors, see
[74, 75] for example. Unfortunately, these results are of little use in the analysis of
the mean field game problems discussed in this chapter and in the optimal control
of McKean-Vlasov stochastic differential equations studied in Chapter 6. Indeed,
more than BSDEs, systems of coupled forward-backward stochastic differential
equations (FBSDEs for short) of McKean-Vlasov type need to be solved, and, as
already explained for the classical case, existence and uniqueness result for BSDEs
are much easier to come by than for FBSDEs. To the best of our knowledge, the
FBSDEs of McKean-Vlasov type discussed in this chapter had not been considered
before their investigation by Carmona and Delarue in [95]. The main result of [95]
will be presented and extended in Chapter 4.

The weak formulation (also known as the martingale method) for mean field
game problems, as exposed in Subsection 3.3.1, was used first by Carmona and
Lacker in [103] in a more general setting than in the present chapter. There, the
authors consider interactions through the empirical distributions of the controls as
well as the states of the players. Moreover, weaker assumptions on the dependence
of the coefficients upon their measure arguments are required, allowing for the
handling of more singular interactions. However, these authors required the control
space A to be compact, ruling out, among other things, the LQ models.

Uniqueness criterion provided by Theorem 3.29 is the most popular one in the
theory of mean field games. It goes back to the original papers by Lasry and
Lions [260–262] The monotonicity condition in Definition 3.28 underpinning the
statement of Theorem 3.29 is inspired by the theory of evolution equations with
a monotone operator. Example 5 of a monotonous function in Subsection 3.4.2 is
taken from the paper of Gatheral, Schied, and Slynko [171]. Example 7 is standard
in the theory. From a modeling point of view, Example 7 says that, whenever h
is regarded as a cost functional, the cost h.x; �/ when the representative player is
in state x and the population is in state � increases with the local mass of � in
the neighborhood of x. This reads as an aversion to congestion. The other form of
monotonicity in Definition 3.31 is less standard; it appeared in Ahuja [11]. These
forms of monotonicity will be revisited in Chapter 5, see Subsection 5.7.1, when
equipping the space of probability measures with different forms of differential
calculus.

The discussion of the Linear Quadratic (LQ) models provided in Section 3.5
is inspired by the contents of the papers [53] of Bensoussan, Sung, Yam, and
Yung, and [99] of Carmona, Delarue, and Lachapelle. The results of these two
groups of authors were announced essentially at the same time, and are very
similar. They demonstrate how to solve linear quadratic mean field games and
linear quadratic optimal control problems for McKean-Vlasov dynamics (also called
mean field stochastic control problems), and they both argue that, even in the
linear quadratic setting, the solutions to these two problems should be expected
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to be different. McKean-Vlasov control problems are discussed in Chapter 6
where we emphatically make this point. Several sufficient conditions for existence
and uniqueness of a solution to the forward-backward system of deterministic
ODEs (3.52) are given in [53]. These restrictive assumptions are reminiscent of
existence and uniqueness of a solution for small time. The search for a solution
given by an ansatz expressing the backward component as an affine function of the
forward component is mentioned in [53] and used systematically in [99] in the one-
dimensional case. The paper [33] by Bardi provides explicit solutions of LQ Mean
Field Games when the objective function minimized by the players is computed as
an ergodic average over an infinite horizon.

Multidimensional linear quadratic mean field games have been considered and
solved under various sorts of assumptions. For an alternative to the results presented
in this chapter, the interested reader may consult the papers [210] and [212] by
Huang, Caines, and Malhamé in the book chapter [213] by the same authors.

Affine FBSDEs of the form (3.56) have been studied in [341, 342]. For the sake
of completeness, and at the risk of appearing too elementary, we chose to construct
a solution from scratch. As a result of the affine structure, LQ control problems as
well as LQ Mean Field Games lead to Gaussian solutions. However they are not the
only MFG models with this property. Guéant and his coauthors show in [189] that
Gaussian equilibria can be obtained even with logarithmic running costs typically
used in crowd models.

The solution of the MFG form of the toy model for systemic risk was shown to
be given by the solution of a Riccati equation appearing as the common limit of the
Riccati equations giving Nash equilibria for finite player game models associated
with the open and closed loop information structures. It has been argued that for
large games in which the influence to each individual player disappears as the
size of the game grows, the differences between open loop and closed loop Nash
equilibria disappear as well. See for example the introduction of the paper [164] by
Fudenberg and Levine, or Section 4.7.3 of the book by Fudenberg and Tirole [165]
for a discussion of this claim.

The analysis of the diffusion form of Aiyagari’s growth model given in Subsec-
tion 3.6.3 is due to the authors. It appears in print for the first time here.

A weaker formulation of mean field games, based on the notion of relaxed
controls, was introduced in Lacker [254]. Relaxed controls are probability measures
on the set A of admissible values of the control. In general, using relaxed controls
allows for weaker assumptions on the coefficients and turn the space of controls into
a compact set when A is bounded. As a result, the existence of a best response to
a given state of the population comes for free if the cost functional is lower semi-
continuous. However, this best response may not be unique. In the context of the
search of an equilibrium in a mean field game, this says that, in the second step
of the procedure detailed in Subsection 3.1.2, the quantity OX�

may be multivalued.
The fixed point condition then reads � 2 .L. OX�

t //06t6T , where .L. OX�
t //06t6T is

understood as the collection of flows of marginal measures generated by the set
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of optimal paths OX�
. Instead of Schauder’s fixed point theorem, one may invoke

Kakutani’s fixed point theorem for multivalued functions in order to solve the
equilibrium condition � 2 .L. OX�

t //06t6T .
We refer the reader to the survey by Borkar [65] and to the monograph by Yong

and Zhou for an overview of controlled diffusion processes with relaxed controls.
Earlier results in that direction are due to Young [344] and Fleming [158]. In
Chapter 6, we shall study a simple example of mean field control problem by means
of the notion of relaxed controls.

Examples of mean field games with other different cost functionals, like risk-
sensitive cost functionals for instance, may be found in Tembine, Zhu, and Basar
[332]. Models leading to mean field games with several populations, mean field
games with an infinite time horizon, and mean field games with a finite state space
are discussed in Chapter 7. Mean field games with major minor players will be
presented in Chapter (Vol II)-7.

The results on convex optimization used in the text can be found in most standard
monographs on the subject, see for instance Bertsekas’ [55] or Ciarlet’s [115]
textbooks.

Games models with a continuum of players were introduced by Aumann in 1964
in a breakthrough paper [27]. Our presentation of the exact law of large numbers is
modeled after Sun’s paper [324]. This law was also used by Duffie and Sun in [148]
to model matching from searches. This last work was used to justify the assumptions
of the percolation of information model presented in Chapter 1.



4FBSDEs and the Solution of MFGsWithout
Common Noise

Abstract

The goal of this chapter is to develop a general methodology for the purpose
of solving mean field games using the forward-backward SDE formulations
introduced in Chapter 3. We first proceed with a careful analysis of forward-
backward mean field SDEs, that is of McKean-Vlasov type, which shows how
Schauder’s fixed point theorem can be used to prove existence of a solution.
As a by-product, we derive two general solvability results for mean field games:
first from the FBSDE representation of the value function, and then from the
stochastic Pontryagin maximum principle. In the last section, we revisit some
of the examples introduced in the first chapter, and illustrate how our general
existence results can be applied.

4.1 A Primer on FBSDE Theory

The goal of this section is to provide basic solvability results for standard forward-
backward SDEs. These results will serve us well when we try to prove existence
of solutions to forward-backward SDEs of the McKean-Vlasov type. Precise
references are cited in the Notes & Complements at the end of the chapter for all the
results given without proof.

As a general rule, we consider forward-backward SDEs of a slightly more general
form than what is really needed in order to implement the program outlined in
Chapter 3. Typically, we allow the diffusion coefficient (or volatility) to depend
upon the backward component of the solution. In doing so, we obtain almost for
free, an existence result for FBSDEs of the McKean-Vlasov type for a larger class
of models covering mean field games as a particular case. Being able to handle such
a larger class will turn out to be handy in Chapter 6 for the study of the optimal
control of McKean-Vlasov diffusion processes.
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The framework of this section is as follows. Given a complete probability space
.˝;F ;P/, equipped with a complete and right-continuous filtration F, an initial
condition � 2 L2.˝;F0;PIRd/, and a d-dimensional F-Brownian W D .Wt/06t6T ,
we consider the forward-backward SDE:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt

�
dt C˙.t;Xt;Yt/dWt;

dYt D �F
�
t;Xt;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T�;

X0 D �; YT D G.XT/;

(4.1)

where B and F are functions defined on Œ0;T� � R
d � R

m � R
m�d into R

d and R
m

respectively,˙ is a function from Œ0;T��R
d�R

m into R
d�d and G is a function from

R
d into R

m. The coefficients B, F, G and˙ are assumed to be Borel measurable. As
in the previous chapter, the dimensions of X and of W are assumed to be the same
for convenience.

We call solution any triple .X;Y;Z/ D .Xt;Yt;Zt/06t6T of F-progressively
measurable processes, with values in R

d � R
m � R

m�d, such that X and Y have
continuous paths,

E

�
sup
06t6T

�jXtj2 C jYtj2
� C

Z T

0

jZtj2dt

�
< 1;

and (4.1) holds true P almost surely. In the next subsections, we address the
existence and uniqueness of such solutions.

Remark 4.1 For the reader who is not familiar with the theory of forward-
backward equations, it may sound rather strange to ask for the well posedness of
a system with three unknowns but two equations only. Actually, the reader must
remember the fact that the triple .X;Y;Z/ is required to be progressively measurable
with respect to F. In particular, it should not anticipate the future of W. The role of
the process Z is precisely to guarantee the adaptedness of the solution with respect
to the filtration F. In the end, the forward-backward system actually consists of two
equations and a progressive measurability constraint.

All the results stated in this section are given in a rigorous form, and all the
assumptions they require are given in full detail. However, proofs are frequently
skipped. Indeed, while we want the reader to have a good sense of the underpin-
nings of the theory of FBSDEs, its main achievements as well as its limitations,
we fear that too many technical proofs will distract from the thrust of our analysis.
We shall only give proofs of results which further the theory of FBSDEs to help
us solve the new challenges posed by mean field game models and the control of
McKean-Vlasov dynamics.
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4.1.1 Lipschitz Setting and Decoupling Field

Throughout this subsection, we assume that the coefficients are Lipschitz continuous
in the variables x, y, and z:

Assumption (Lipschitz FBSDE). There exist two nonnegative constants �
and L such that

(A1) The function Œ0;T� 3 t 7! .B.t; 0; 0; 0/;F.t; 0; 0; 0/;˙.t; 0; 0/;G.0// is
bounded by �.

(A2) For each t 2 Œ0;T�, the functions B.t; �; �; �/, F.t; �; �; �/, ˙.t; �; �/ and G
are L-Lipschitz continuous on their own domain.

Small Time Solvability
As announced in Subsection 3.2.3, Cauchy-Lipschitz theory for forward-backward
systems provides existence and uniqueness in small time.

Theorem 4.2 Under assumption Lipschitz FBSDE, there exists a constant c > 0,
only depending on L (and not on �), such that, for any initial condition � 2
L2.˝;F0;PIRd/, equation (4.1) has a unique solution as long as T 6 c.

Remark 4.3 Uniqueness is understood in the following pathwise sense. We say
that (4.1) has a unique solution if, for any two solutions .X;Y;Z/ D .Xt;Yt;Zt/06t6T

and .X0;Y0;Z0/ D .X0
t ;Y

0
t ;Z

0
t /06t6T defined on the same probabilistic set-up

.˝;F ;F;P/ as described above, we have:

E

�
sup
06t6T

�jXt � X0
t j2 C jYt � Y 0

t j2
� C

Z T

0

jZt � Z0
t j2dt

�
D 0: (4.2)

In Chapter (Vol II)-1, we shall address another form of uniqueness, namely
uniqueness in law. In particular, we shall prove a suitable version of the Yamada-
Watanabe theorem for FBSDEs saying that pathwise uniqueness in the sense of (4.2)
implies weak uniqueness.

We do not give the proof of Theorem 4.2 here. Indeed, the reader will find the
proof of a more general statement, including the McKean-Vlasov case, in Subsec-
tion 4.2.3. In fact, a careful inspection of the proof provided in Subsection 4.2.3
shows that Theorem 4.2 may be easily turned into a stability property which we
also state without proof.

Theorem 4.4 There exist two constants c;C > 0, only depending on L, such that,
for any other set of coefficients .B0;F0;G0; ˙ 0/ satisfying assumption Lipschitz
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FBSDE with the same constant L (and a possibly different constant �) as
.B;F;G; ˙/ and for any other initial condition � 0 2 L2.˝;F0;PIRd/, the solution
.X0;Y0;Z0/ D .X0

t ;Y
0
t ;Z

0
t /06t6T to the FBSDE driven by .B0;F0;G0; ˙ 0/ and � 0

satisfies, with probability 1:

E

�
sup
06t6T



jXt � X0

t j2 C jYt � Y 0
t j2

�
C

Z T

0

jZt � Z0
t j2dt jF0

�

6 CE

�
j� � � 0j2 C j.G � G0/.XT/j2

C
Z T

0

ˇ̌�
B � B0;F � F0; ˙ �˙ 0��t;Xt;Yt;Zt

�ˇ̌2
dt jF0

�
:

as long as T 6 c.

Role of the Decoupling Field
We notice that the forward-backward system (4.1) may be solved with respect to
the complete and right-continuous filtration generated by the initial condition �
and the Brownian motion W. When T is small enough, Theorem 4.2 says that a
solution exists and is unique. We call this solution the solution constructed on the
canonical set-up. Quite remarkably, this solution is also a solution of the original
problem defined on the set-up .˝;F ;F;P/. Since Theorem 4.2 ensures that the
equation (4.1), when solved on the original set-up .˝;F ;F;P/, is uniquely solvable,
we deduce that the solution constructed on the canonical set-up coincides with the
solution defined on the set-up .˝;F ;F;P/. In short, the solution is left invariant
under augmentation of the filtration, provided that W remains a Brownian motion
under the new filtration. As we shall see in Chapter (Vol II)-1, this result is false
when the coefficients B, F, G, and˙ are random and are not adapted to the filtration
generated by W and � .

Therefore, we can assume without any loss of generality that F is the complete
and right-continuous augmentation of the filtration generated by � and W. Whenever
� is deterministic, we know from Blumenthal’s zero-one law that F0 is almost surely
trivial, proving (at least when T 6 c) that the unique solution of (4.1) is almost
surely deterministic at time 0. Denoting, for any x 2 R

d, by .X0;x;Y0;x;Z0;x/ D
.X0;xt ;Y0;xt ;Z0;xt /06t6T the unique solution to (4.1) with X0 D x, this prompts us to
define a mapping x 7! u.0; x/ by:

u.0; x/ D EŒY0;x0 �; x 2 R
d:

We then have:

P
�
Y0;x0 D u.0; x/

	 D 1: (4.3)
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Now, applying Theorem 4.4 with .B0;F0;G0; ˙ 0/ D .B;F;G; ˙/, � D x and � 0 D x0,
we deduce that, for T 6 c (without any loss of generality we can assume that the
constants c in the statements of Theorems 4.2 and 4.4 are the same), this function is
Lipschitz in the sense that:

8x; x0 2 R
d; ju.0; x/ � u.0; x0/j 6 Cjx � x0j: (4.4)

The thrust of the notion of decoupling field is that the relationship (4.3) remains
true when the initial condition � is random; namely, denoting by .X0;� ;Y0;� ;Z0;� /
the unique solution to (4.1) when T 6 c, we claim that:

P
�
Y0;� D u.0; �/

	 D 1: (4.5)

The proof of (4.5) is quite simple. When � is a simple random variable of the form
� D PN

iD1 1Ai xi, for some integer N > 1, events .Ai/iD1;��� ;N 2 FN
0 and points

.xi/iD1;��� ;N 2 .Rd/N , (4.5) is quite obvious since Y0;� D PN
iD1 1Ai Y

0;xi
0 . In the general

case, it suffices to approximate � by a sequence of simple random variables and to
take advantage of the stability result of Theorem 4.4 and the Lipschitz property of
u.0; �/ in order to pass to the limit in (4.5) along the approximating sequence.

Another key fact is that the decoupling field may be defined, not only at time 0,
but at any time t 2 Œ0;T�, provided that T 6 c. It suffices to initialize the forward
equation at time t and to let Xt match some x 2 R

d. Solving the equation (4.1) on the
interval Œt;T� instead of Œ0;T� with respect to the complete filtration generated by
.Ws �Wt/t6s6T , we then get, by the same argument as above, that Yt is almost surely
deterministic. Below, we shall denote by .Xt;x;Yt;x;Zt;x/ D .Xt;x

s ;Y
t;x
s ;Z

t;x
s /t6s6T the

unique solution with Xt D x as initial condition. It satisfies:

8
ˆ̂<

ˆ̂:

dXt;x
s D B

�
s;Xt;x

s ;Y
t;x
s ;Z

t;x
s

�
ds C˙.s;Xt;x

s ;Y
t;x
s /dWs;

dYt;x
s D �F

�
s;Xt;x

s ;Y
t;x
s ;Z

t;x
s

�
ds C Zt;x

s dWs; s 2 Œt;T�;
Xt;x

t D x; Yt;x
T D G

�
Xt;x

T

�
:

(4.6)

The decoupling field at time t is then defined by letting:

u.t; x/ D EŒYt;x
t �;

so that PŒYt;x
t D u.t; x/� D 1. Following (4.4), u is Lipschitz in space, uniformly in

time. As above, the relationship between the backward component of the solution
and the decoupling field may be generalized to any random variable � in the space
L2.˝;Ft;PIRd/. Denoting by .Xt;� ;Yt;� ;Zt;� / D .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T the unique

solution to (4.1) with Xt D � as initial condition, we have:

P
�
Yt;�

t D u.t; �/
	 D 1: (4.7)
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Relationship (4.7) is fundamental. Indeed, if we consider any solution .X;Y;Z/
to (4.1) with some initial condition at time 0, then .Xs;Ys;Zs/t6s6T is also a solution
to (4.1) but on the interval Œt;T� and with Xt as initial condition. Therefore,

P
�
Yt D u.t;Xt/

	 D 1;

provided u is continuous in .t; x/, which is the object of the next lemma:

P
�8t 2 Œ0;T�; Yt D u.t;Xt/

	 D 1: (4.8)

The next lemma shows that u is not only continuous in space, but also jointly
continuous in time and space.

Lemma 4.5 Under assumption Lipschitz FBSDE and for T 6 c with c as in the
statements of Theorem 4.2 and Theorem 4.4, the decoupling field is Lipschitz in
space uniformly in time, and 1=2-Hölder continuous in time locally in space, the
Hölder constant growing at most linearly with the space variable.

Proof. Given t 2 Œ0; T� and h > 0 such that t; t C h 2 Œ0; T�, and x 2 R
d , we have:

u.t; x/ � u.t C h; x/

D E
�
u.t; x/ � u.t C h;Xt;x

tCh/
	 C E

�
u.t C h;Xt;x

tCh/ � u.t C h; x/
	

D E
�
Yt;x

t � Yt;x
tCh

	 C E
�
u.t C h;Xt;x

tCh/ � u.t C h; x/
	
:

(4.9)

By Theorem 4.4 (with � 0 D 0, B0 � B, F0 � F, G0 � G, ˙ 0 � ˙ ), it is readily seen that:

E

�
sup

t6s6T



jXt;x

s j2 C jYt;x
s j2

�
C

Z T

t
jZt;x

s j2ds

�
6 C

�
1C jxj2�;

where C is independent of t and x. Plugging this estimate into (4.6), and using the Lipschitz
property of u with respect to x, we deduce that the two terms in (4.9) are less than C.1 C
jxj/h1=2, for a possibly new value of the constant C. ut

We end this subsection with two important remarks.

Remark 4.6 As we already alluded to, we shall prove in Chapter (Vol II)-1
that strong (or pathwise) uniqueness for FBSDEs, as we consider here, implies
uniqueness in law. As a by-product, this will show that the decoupling field u is
independent of the probabilistic set-up on which the solution is constructed, see
also Lemma 4.25.

Remark 4.7 The construction of the decoupling field u provided in this subsection
relies on the assumption T 6 c. The role of this condition is to guarantee the unique
solvability of (4.6). Clearly, the above construction of the decoupling field is
possible on any time interval on which existence and uniqueness are known to hold
for any initial condition.
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Furthermore, the analysis of the regularity of u may be carried out for arbitrary
times provided that the conclusion of Theorem 4.4 remains true.

4.1.2 InductionMethod and Nondegenerate Case

Our goal is now to provide a systematic method to extend the small time existence
and uniqueness result. The counter-example of Subsection 3.2.3 shows that such
a method cannot work under the sole assumption Lipschitz FBSDE. Our strategy
is to prove that, as long as we can exhibit a decoupling field which is Lipschitz
continuous in the space variable, existence and uniqueness must hold.

Iteration
Our approach relies on the following observation. For an arbitrary time horizon
T > c, we can first restrict the analysis of the forward-backward system (4.1) to
the interval ŒT � c;T�, for c as in the statements of Theorem 4.2 and Theorem 4.4.
Then, following the argument of the previous subsection, we know that for any
t 2 ŒT � c;T�, for any random variable � 2 L2.˝;Ft;PIRd/, the restriction of
the system (4.1) to Œt;T� with Xt D � as initial condition, is uniquely solvable. We
set .Xt;� ;Yt;� ;Zt;� / D .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T for the unique solution and define the

decoupling field

u W ŒT � c;T� � R
d 3 .t; x/ 7! u.t; x/ D EŒYt;x

t �:

For any t 2 ŒT � c;T� and � 2 L2.˝;Ft;R
dIP/, we have PŒ8s 2 Œt;T�; Yt;�

s D
u.s;Xt;�

s /� D 1.
Assume now that the forward-backward system (4.1) has a solution .X;Y;Z/

for some initial condition � 2 L2.˝;F0;PIRd/. Then, as in Subsection 4.1.1, we
may regard .Xt;Yt;Zt/T�c6t6T as a solution to (4.1) on the interval ŒT � c;T� with
XT�c as initial condition at time T � c. Since the problem set on ŒT � c;T� with
XT�c as initial condition is uniquely solvable, we get that .Xt;Yt;Zt/T�c6t6T D
.XT�c;XT�c ;YT�c;XT�c ;ZT�c;XT�c/. In particular, we may use the decoupling field to
represent the solution:

P
�8t 2 ŒT � c;T�; Yt D u.t;Xt/

	 D 1;

from which we get that .Xt;Yt;Zt/06t6T�c is a solution of the forward-backward
system (4.1) over the interval Œ0;T � c� with terminal condition function u.T � c; �/
instead of G; in other words:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt

�
dt C˙.t;Xt;Yt/dWt;

dYt D �F
�
t;Xt;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T � c�;

X0 D �; YT�c D u.T � c;XT�c/:

(4.10)
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Regarding (4.10) as the new forward-backward system, we may apply the same
argument as above. Denoting the previous c by c0, we deduce that there exists a new
c1 such that (4.10) is uniquely solvable on ŒT � .c0 C c1/;T � c0�. The reason is that
the new terminal condition u.T � c0; �/ is Lipschitz continuous, but with a Lipschitz
constant possibly differing from L. Of course, when this Lipschitz constant is greater
than L, c1 is smaller than c0. We shall come back to this crucial point momentarily.

In order to distinguish solutions constructed on the interval ŒT � c0;T� from that
constructed on ŒT � .c0 C c1/;T � c0�, we use the following convention. We label
the solutions constructed on the interval ŒT � c0;T� with a superscript ‘0’ and those
constructed on the interval ŒT �.c0Cc1/;T �c0�with a superscript ‘1’. In particular,
for any t 2 ŒT �c0;T� and � 2 L2.˝;Ft;PIRd/, the previous .Xt;� ;Yt;� ;Zt;� / is now
denoted by .X0It;� ;Y0It;� ;Z0It;� /. Similarly, for any t 2 ŒT � .c0 C c1/;T � c0� and
� 2 L2.˝;Ft;PIRd/, we call .X1It;� ;Y1It;� ;Z1It;� / the unique solution to (4.10) with
X1It;�t D � as initial condition.

Of course, a very natural idea is to patch together the two solutions. For given
t 2 ŒT � .c0 C c1/;T � c0� and � 2 L2.˝;Ft;PIRd/, we let for any s 2 Œt;T�:

.Xs;Ys;Zs/

D
( �

X1It;�s ;Y1It;�s ;Z1It;�s
�
; if s 2 ŒT � .c0 C c1/;T � c0�;

�
X
0IT�c0;X

1It;�
T�c0

s ;Y
0IT�c0;X

1It;�
T�c0

s ;Z
0IT�c0;X

1It;�
T�c0

s
�
; if s 2 .T � c0;T�;

Observe that, P almost surely,

lim
s&T�c0

Xs D lim
s&T�c0

X
0IT�c0;X

1It;�
T�c0

s D X1It;�T�c0
D XT�c0 ;

lim
s&T�c0

Ys D lim
s&T�c0

Y
0IT�c0;X

1It;�
T�c0

s D lims&T�c0 u
�
s;X

0IT�c0;X
1It;�
T�c0

s
�

D u
�
T � c0;X

1It;�
T�c0

� D YT�c0 ;

which proves that .Xs;Ys/T�.c0Cc1/6s6T is continuous at s D T � c0. It is then plain
to check that the process .Xs;Ys;Zs/T�.c0Cc1/6s6T is a solution of the FBSDE (4.1)
on ŒT � .c0 C c1/;T�. Quite remarkably, this solution satisfies:

P
�8t 2 ŒT � .c0 C c1/;T�; Yt D u.t;Xt/

	 D 1:

To summarize, we managed to extend the definition of the decoupling field to the
domain ŒT � .c0 C c1/;T� � R

d and to construct a solution to (4.1) for any initial
condition .t; �/ with t 2 ŒT � .c0 C c1/;T� and � 2 L2.˝;Ft;PIRd/. Notice that
u is Lipschitz continuous in x, uniformly in time, and, by the same argument as in
Lemma 4.5, that it is time-space continuous.

Obviously, the method can be iterated. We can find a sequence .cn/n2N of positive
real numbers such that, as long as T � .c0 C � � � C cn/ > 0, we can extend the
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decoupling field u to the domain ŒT � .c0 C � � � C cn/;T��R
d and construct for any

initial condition .t; �/ with t 2 ŒT � .c0 C � � � C cn/;T� and � 2 L2.˝;Ft;PIRd/, a
solution to (4.1) satisfying:

P

h
8t 2 �

T � .c0 C � � � C cn/;T
	
; Yt D u.t;Xt/

i
D 1: (4.11)

Moreover, u is jointly continuous in time and space, and Lipschitz continuous in
space, uniformly in time.

Although very attractive, this method suffers from a major drawback. Nothing
guarantees that the sequence .

Pn
kD0 ck/n2N goes beyond T . Actually, the counter-

example given in Subsection 3.2.3 shows that even in the Lipschitz regime, the
sequence .

Pn
kD0 ck/n2N may not reach T . Indeed, it may happen that the Lipschitz

constant of the decoupling field becomes so large along the induction that the sum
of the time lengths

P
n>0 cn remains less than T . Recall that each time length cn

is determined by the Lipschitz constant (in space) of the decoupling field u at time
T � .c0 C � � � C cn�1/.

Before we derive sufficient conditions to control the Lipschitz constant of the
decoupling field along the induction, we notice that such a construction necessarily
implies uniqueness in addition to the existence of a solution.

Proposition 4.8 On top of assumption Lipschitz FBSDE, assume that there exists
a continuous function u W Œ0;T� � R

d ! R
m which is Lipschitz continuous in space

uniformly in time, and such that, for any .t; x/ 2 Œ0;T� � R
d, we can find a solution

to (4.1), with Xt D x as initial condition at time t, satisfying:

P

h
8s 2 Œt;T�; Ys D u.s;Xs/

i
D 1: (4.12)

Then, for any t 2 Œ0;T� and � 2 L2.˝;Ft;PIRd/, there exists a unique solution
to (4.1) with Xt D � as initial condition, and this solution satisfies the representation
formula (4.12).

Proof. With the same notation as before, we start with the following observation: there must
exist ı > 0 such that, for all n 2 N, cn > ı. Indeed, since on the interval ŒT � c0; T�
existence and uniqueness hold true for any initial condition, by (4.12), u must coincide with
the decoupling field on ŒT � c0; T�. Since the Lipschitz constant of u in space is bounded
from above by a known (fixed) constant by assumption, this implies that c1 is bounded from
below by a known (fixed) constant. Iterating the argument, we realize that the extension of
the decoupling field to the domain ŒT � .c0 C c1/; T� � R

d still coincides with u. Therefore,
the Lipschitz constant of the decoupling field at time T � .c0 C c1/ is bounded from above
by the same known (fixed) constant and hence, c2 is bounded from below by a known (fixed)
constant, etc.

As a result, there exists a finite integer n 2 N such that T 6 c0 C � � � C cn. In other
words, the iteration argument presented above needs only a finite number of steps to provide
a solution for any initial condition .t; �/ satisfying the prescribed conditions.

In order to prove uniqueness, it suffices to prove that any solution satisfies the representa-
tion formula (4.12). Indeed, once we have the representation formula (4.12), we may compare
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any two solutions (say starting from some � at time 0) on the small interval Œ0; T �.c0C� � �C
cn�1/�, where n is the smallest integer such that T 6 c0 C � � � C cn. On this small interval,
the two solutions are known to satisfy (4.1) with the same terminal condition because of the
representation formula. By existence and uniqueness in small time, they coincide on this first
interval. Then, we can repeat the argument on ŒT � .c0 C � � � C cn�1/; T � .c0 C � � � C cn�2/�,
since the two solutions are now known to restart from the same (new) initial condition at time
T � .c0 C � � � C cn�1/. Uniqueness follows by induction.

The fact that any solution .X;Y;Z/ satisfies (4.12) may be proved by a backward
induction starting from the last interval ŒT �c0; T�. The representation property on ŒT �c0; T�
is indeed a consequence of Theorem 4.2. It permits to identify YT�c0 with u.T � c0;XT�c0 /

and then to repeat the same argument on ŒT � .c0 C c1/; T � c0�. And so on... ut

Stability
Proposition 4.8 may be complemented with the following stability property, which
is the long time analogue of Theorem 4.4.

Lemma 4.9 Let us assume that there is another set of coefficients .B0;F0;G0; ˙ 0/
satisfying the same assumption as .B;F;G; ˙/ in the statement of Proposition 4.8,
with respect to another decoupling field u0.

Then, there exists a constant C, only depending on T, L and the Lipschitz con-
stants of u and u0 in x such that, for any initial conditions �; � 0 2 L2.˝;F0;PIRd/,
the two processes .X;Y;Z/ and .X0;Y0;Z0/ obtained by solving (4.1) with � and � 0 as
respective initial conditions and with .B;F;G; ˙/ and .B0;F0;G0; ˙ 0/ as respective
coefficients, satisfy:

E

�
sup
06t6T



jXt � X0

t j2 C jYt � Y 0
t j2

�
C

Z T

0

jZt � Z0
t j2dt

�

6 CE

�
j� � � 0j2 C j.G � G0/.XT/j2

C
Z T

0

ˇ̌�
B � B0;F � F0; ˙ �˙ 0��t;Xt;Yt;Zt

�ˇ̌2
dt

�
:

Proof. For small time T > 0, this estimate follows immediately from Theorem 4.4. We only
need to show that one can extend it to arbitrarily large values of T . We then choose a regular
subdivision 0 D T0 < T1 < � � � < TN�1 < TN D T so that the common length of the
intervals ŒTi; TiC1� is small enough in order to apply Theorem 4.4 on each interval ŒTi; TiC1�

with u.TiC1; �/ or u0.TiC1; � / as terminal condition function. For any i 2 f0; � � � ;N � 1g, we
have:

E

�
sup

Ti6t6TiC1



jXt � X0

t j2 C jYt � Y 0

t j2
�

C
Z TiC1

Ti

jZt � Z0

t j2dt

�

6 C

�
E

�jXTi � X0

Ti
j2 C j.u � u0/.TiC1;XTiC1

/j2	

C E

Z TiC1

Ti

ˇ̌�
B � B0;F � F0; ˙ �˙ 0

��
t;Xt; Yt; Zt

�ˇ̌2
dt

�
:

(4.13)
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For simplicity, we denote the left-hand side by �.Ti; TiC1/ and we let:

t D ˇ̌�
B � B0;F � F0; ˙ �˙ 0

��
t;Xt; Yt; Zt

�ˇ̌2
:

In this proof, we shall also use the notation ıT D ˇ̌
.G � G0/.XT/

ˇ̌2
.

We first consider the last interval ŒTN�1; TN � corresponding to the case i D N � 1. Since
TN D T we have u.T; �/ D G and u0.T; �/ D G0, so that:

�.TN�1; T/ 6 C

�
E

�jXTN�1 � X0

TN�1
j2	 C ıT C

Z T

TN�1

tdt

�
;

this estimate being true for all possible initial conditions for the process X0 at time TN�1. In
this regard, notice that, while some freedom is allowed in the choice of X0

TN�1
, the initial

condition of X is somehow fixed through .t/TN�16t6T . Note also that C is implicitly
assumed to be larger than 1 and that we can allow its value to change from line to line as
long as this new value depends only upon T , L in assumption Lipschitz FBSDE and the
Lipschitz constants in x of u and u0.

Next we freeze the process X but we let X0 vary. We use the fact that the decoupling field
u0 does not depend on the initial condition of X0. In particular, we can choose to keep the
coefficients .B0;F0;G0; ˙ 0/ but set X0

TN�1
D XTN�1 . Then the above inequality implies

E
�ju.TN�1;XTN�1 / � u0.TN�1;XTN�1 /j2

	
6 C

�
ıT C

Z T

TN�1

tdt

�
:

We can now plug this estimate into inequality (4.13) with i D N � 2 to get:

�.TN�2; TN�1/ 6 C

�
E

�jXTN�2 � X0

TN�2
j2	 C ıT C

Z T

TN�2

tdt

�
:

As before, we can write what this estimate gives if we keep .B0;F0;G0; ˙ 0/, and set XTN�2 D
X0

TN�2
:

E
�ju.TN�2;XTN�2 / � u0.TN�2;XTN�2 /j2

	
6 C

�
ıT C

Z T

TN�2

tdt

�
:

Plugging this estimate into inequality (4.13) with i D N � 3 we get:

�.TN�3; TN�2/ 6 C

�
E

�jXTN�3 � X0

TN�3
j2	 C ıT C

Z T

TN�3

tdt

�
:

Iterating, we get:

�.Ti; TiC1/ 6 C

�
E

�jXTi � X0

Ti
j2	 C ıT C

Z T

Ti

tdt

�
: (4.14)

As before the value of the constants can change from line to line. From this, we get the
desired estimate once we notice that, for each i 2 f1; � � � ;Ng, we have:
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E
�jXTi � X0

Ti
j2	 6 E

h
sup

Ti�16t6Ti

jXt � X0

t j2
i

6 C

�
E

�jXTi�1 � X0

Ti�1
j2	 C ıT C

Z T

Ti�1

tdt

�
;

from which we easily derive the required bound for EŒsup0�t�T jXt � X0

t j2� by means of a
forward induction. Summing over i in (4.14), we conclude the proof. ut

Connection with PDEs
Representation formula (4.8) is reminiscent of the Markov property as it offers
a representation of the backward component at time t as a function of the sole
position of the state variable at time t. Furthermore, the proof of the representation
formula (4.8) is itself reminiscent of the Markov property as it suggests that the
solution .Xs;Ys;Zs/t6s6T after time t only depends upon the present position Xt at
time t and the Brownian increments after time t, at least provided that T is small
enough. Although quite intuitive, this last assertion will be made entirely rigorous
in Chapter (Vol II)-1 with a suitable version for FBSDEs, of the Yamada-Watanabe
theorem in Theorem (Vol II)-1.33.

The fact that the forward component of (4.1) is a Markov process whenever
existence and uniqueness hold is a strong indication that u solves a partial
differential equation.

Actually, this is another feature of forward-backward equations which we already
alluded to in Chapter 3. See for instance Remarks 3.16 and 3.26. Forward-backward
SDEs (at least when driven by deterministic coefficients) provide a nonlinear version
of the Feynman-Kac formula and it should now be clear that the decoupling field
should be the core of the connection with PDEs. This is usually checked with a
verification argument.

Lemma 4.10 For a given T > 0, assume that on top of assumption Lipschitz
FBSDE, the system of PDEs:

@tu
i C B

�
t; x; u.t; x/; @xu.t; x/˙.t; x; u.t; x//

� � @xui.t; x/

C 1

2
trace

��
˙˙�

�
.t; x; u.t; x//@2xxui.t; x/

	

C Fi
�
t; x; u.t; x/; @xu.t; x/˙.t; x; u.t; x//

� D 0;

for .t; x/ 2 Œ0;T� � R
d; i 2 f1; � � � ;mg, with the terminal condition u.T; x/ D G.x/

for x 2 R
d, has a bounded classical solution u W Œ0;T� � R

d 3 .t; x/ 7! u.t; x/ D
.u1.t; x/; � � � ; um.t; x//, continuous on Œ0;T� � R

d, once differentiable in time, and
twice differentiable in space with jointly continuous derivatives on Œ0;T/ � R

d and
with bounded first and second order derivatives in space.

Then, for any t 2 Œ0;T� and � 2 L2.˝;Ft;PIRd/, the FBSDE (4.1) with initial
condition Xt D � , has a unique solution .Xt;� ;Yt;� ;Zt;� /, Xt;� solving the SDE:
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dXt;�
s D B



s;Xt;�

s ; u.s;X
t;�
s /; @xu.s;Xt;�

s /˙
�
s;Xt;�

s ; u.s;X
t;�
s /

��
ds

C˙
�
s;Xt;�

s ; u.s;X
t;�
s /

�
dWs; s 2 Œt;T�;

(4.15)

and Yt;� and Zt;� being given by:

Yt;�
s D u.s;Xt;�

s /; Zt;�
s D @xu.s;Xt;�

s /˙
�
s;Xt;�

s ; u.s;X
t;�
s /

�
; (4.16)

for s 2 Œt;T�.

Proof. The proof is quite straightforward. There is no difficulty for solving (4.15). Once this
is done, one can define Yt;� and Zt;� as in (4.16), and prove the desired result, namely that
.Xt;� ;Yt;� ;Zt;� / satisfies (4.1), by applying Itô’s formula to Yt;� D .u.s;Xt;�

s //t6s6T and by
taking advantage of the fact that the function u solves the above system of PDEs. Uniqueness
follows from Proposition 4.8. ut

At this stage, the reader may wonder whether the representation of the gradient
given by the formula (4.16) can be directly proved, without any use of a PDE
argument. A positive answer is given by the following result.

Lemma 4.11 On top of assumption Lipschitz FBSDE, assume that for a random
variable � 2 L2.˝;F0;PIRd/, we can find a solution .X;Y;Z/ to (4.1) with X0 D �

as initial condition and a jointly continuous function u W Œ0;T� � R
d ! R

m, once
differentiable in space with a bounded and jointly continuous derivative, such that

P

h
8t 2 Œ0;T�; Yt D u.t;Xt/

i
D 1: (4.17)

Then, for Leb1 ˝ P-almost every .t; !/ 2 Œ0;T� �˝ it holds that:

Zt D @xu.t;Xt/˙
�
t;Xt; u.t;Xt/

�
:

When u is merely Lipschitz-continuous in x uniformly in time, and ˙ is bounded,
we can find a constant C only depending upon the Lipschitz constant of u and the
bound for˙ , such that .Zt/06t6T is bounded by C, almost everywhere for Leb1˝P. If
m D 1 and if˙ is invertible and its inverse is bounded, then .˙�1�.t;Xt;Yt/Zt/0�t�T

is essentially bounded by the Lipschitz constant of u in x.

Proof. We first prove the representation formula under the strong assumptions on u. Consider
a uniform subdivision 0 D T0 < T1 < � � � < TN D T of step size h together with a simple
process � of the form:

	t D
N�1X

iD0

	 i1.ti;tiC1�.t/; t 2 Œ0; T�;
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with 	 i 2 L1.˝;Fti ;PIRd/, the variables .	 i/iD0;��� ;N�1 being uniformly bounded by some
constant K. Next, for any i D 0; � � � ;N � 1, notice that:

E

�� Z TiC1

Ti

	t � dWt

�
YTiC1

�
D E

h

	Ti � �

WTiC1
� WTi

��
YTiC1

i
:

Using the fact that:

YTiC1
D YTi �

Z TiC1

Ti

F
�
s;Xs; Ys; Zs

�
ds C

Z TiC1

Ti

ZsdWs;

with:

E

�
sup
06t6T

�jXsj2 C jYsj2
� C

Z T

0

jZsj2ds

�
< 1;

we easily see that:

E

�� Z TiC1

Ti

	s � dWs

�
YTiC1

�
D E

� Z TiC1

Ti

Zs	sds

�
C h".Ti; h/; (4.18)

where, here and below in the proof, .".t; h//t2Œ0;T�;h>0 is a generic notation for a function
satisfying:

lim
h&0

sup
t2Œ0;T�

j".t; h/j D 0:

Now, we observe that the left-hand side is also equal to:

E

�� Z TiC1

Ti

	s � dWs

�
YTiC1

�

D E

�� Z TiC1

Ti

	s � dWs

�

u
�
TiC1;XTiC1

/ � u
�
TiC1;XTi

���

D E

�� Z TiC1

Ti

	s � dWs

�

�

 Z 1

0

@xu
�
TiC1; rXTiC1

C .1 � r/XTi

��
XTiC1

� XTi

�
dr

��
:

(4.19)

Thanks to the boundedness and the joint continuity of @xu, observe that:

E

�ˇ̌
ˇ
Z TiC1

Ti

@xu.s;Xs/˙.s;Xs; Ys/dWs

�
Z 1

0

@xu
�
TiC1; rXTiC1

C .1 � r/XTi

��
XTiC1

� XTi

�
dr

ˇ̌
ˇ
2
�1=2

D h".Ti; h/:
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We finally get:

E

�
 Z TiC1

Ti

	s � dWs

�
YTiC1

�

D E

�� Z TiC1

Ti

	s � dWs

�� Z TiC1

Ti

@xu.s;Xs/˙.s;Xs; Ys/dWs

��
C h".Ti; h/

D E

� Z TiC1

Ti

@xu.s;Xs/˙.s;Xs; Ys/	sds

�
C h".Ti; h/:

(4.20)

Identifying (4.18) and (4.20), summing over i D 0; � � � ;N � 1, and then letting h tend to 0,
we finally get:

E

� Z T

0

@xu.s;Xs/˙.s;Xs; Ys/	sds

�
D E

� Z T

0

Zs	sds

�
:

The proof of the first claim is easily completed, using the fact that the class of simple
processes � is dense within the family of square-integrable F-progressively measurable
processes.

When u is Lipschitz continuous in space and not necessarily differentiable in x, we assume
that ˙ is bounded. We then observe that (4.19) still makes sense. Indeed, since the function
R 3 r 7! u.TiC1;XTi C r.XTiC1

� XTi// is Lipschitz continuous, we can still give a sense to

the integral
R 1
0
@xu.TiC1; rXTiC1

C .1 � r/XTi/dr. Also, we can handle the last term in (4.19)
by Itô’s formula, namely we can prove:

E

�ˇ̌
ˇ̌
� Z TiC1

Ti

	s � dWs

��
XTiC1

� XTi

� �
Z TiC1

Ti

˙.s;Xs; Ys/	sds

ˇ̌
ˇ̌
�

D h".Ti; h/:

Therefore, we can find a constant C, only depending on the Lipschitz bound for u and on the
bound for ˙ , such that:

E

�� Z TiC1

Ti

	s � dWs

�
YTiC1

�
6 CE

�ˇ̌
ˇ̌
Z TiC1

Ti

˙.s;Xs; Ys/	sds

ˇ̌
ˇ̌
�

C h".Ti; h/

6 CE

� Z TiC1

Ti

j	sjds

�
C h".Ti; h/;

the value of C being allowed to increase from line to line. Identifying again with (4.18),
summing over i 2 f0; � � � ;N � 1g and letting h tend to 0, we deduce that:

ˇ̌
ˇ̌E

� Z T

0

Zs	sds

�ˇ̌
ˇ̌ 6 CE

� Z T

0

j	sjds

�
:

Once again, the proof of the second claim is easily completed. The last claim may be proved
by changing .	s/0�s�T into .˙�1�.s;Xs; Ys/	s/0�s�T . ut



230 4 FBSDEs and the Solution of MFGs Without Common Noise

The Nondegenerate Case
Returning to the statement of Lemma 4.10, we understand that independently of
any result of existence of a classical solution to the system (4.10), the theory of
PDEs might help in another (though related) way. Actually, we may want to take
advantage of gradient estimates from the theory of nonlinear PDEs in order to
control the Lipschitz constant of the decoupling field in the induction procedure
described earlier. Indeed, some of these gradient estimates can be used to derive
existence and uniqueness of a solution to (4.1). A typical instance of a successful
implementation of this strategy is provided by the nondegenerate models which we
already alluded to in Subsection 3.2.3. Relevant to our current discussion is the
following result of Delarue which holds under the assumption given below, see the
Notes & Complements at the end of the chapter of a precise reference.

Assumption (Nondegenerate FBSDE). There exists a constant L > 1 such
that:

(A1) For any t 2 Œ0;T�, x; x0 2 R
d, y; y0 2 R

m, z; z0 2 R
m�d,

j.B;F;G; ˙/.t; x0; y0; z0/ � .B;F;G; ˙/.t; x; y; z/j
6 Lj.x; y; z/ � .x0; y0; z0/j:

(A2) The functions ˙ and G are bounded by L. Moreover, for any t 2 Œ0;T�,
x 2 R

d, y 2 R
m and z 2 R

m�d,

j.B;F/.t; x; y; z/j 6 L
�
1C jyj C jzj	:

(A3) The function ˙ is uniformly elliptic in the sense that, for any t 2 Œ0;T�,
x 2 R

d and y 2 R
m, the following inequality holds:

�
˙˙�

�
.t; x; y/ > L�1Id;

in the sense of symmetric matrices, where Id is the d-dimensional
identity matrix. Recall that we use the exponent � to denote the transpose
of a matrix. Moreover, the function Œ0;T� � R

d � R
m 3 .t; x; y/ 7!

˙.t; x; y/ is continuous.

Theorem 4.12 Under assumption Nondegenerate FBSDE, for any t 2 Œ0;T� and
� in the space L2.˝;Ft;PIRd/, the forward-backward system (4.1) with Xt D � as
initial condition has a unique solution, denoted by .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T . Moreover,

the decoupling field u W Œ0;T� � R
d 3 .t; x/ 7! u.t; x/ D Yt;x

t 2 R
m, obtained by

choosing � D x, is bounded by a constant � depending only upon T and L, and is
1=2-Hölder continuous in time and Lipschitz continuous in space in the sense that:



4.1 A Primer on FBSDE Theory 231

ju.t; x/ � u.t0; x0/j 6 �
�jt � t0j1=2 C jx � x0j�;

for some constant � only depending upon T and L. Finally, Yt;�
s D u.s;Xt;�

s / for any
t 6 s 6 T and jZt;�

s j 6 � L, Leb1 ˝ P almost everywhere.

Remark 4.13 The above Lipschitz estimate (in the variable x) will be established
in Subsection 4.4.2, when � is independent of y. The proof relies on the theory of
quadratic BSDEs, which we present in the next subsection.

4.1.3 Quadratic Backward SDEs

So far, we have provided results for general FBSDEs of the form (4.1), allowing
the diffusion coefficient ˙ to depend upon the variable y. Actually, in most of the
applications considered in this book, we do not need such a level of generality. In
fact, it will suffice to manipulate FBSDEs driven by a diffusion coefficient only
depending on the variables t and x.

A crucial insight into this case is the following: When ˙ is independent of the
backward component, the forward-backward system can be decoupled by means of
a Girsanov transformation, at least when ˙ is invertible. For instance, if .X;Y;Z/
is a solution to (4.1), we may let:

dQ

dP
D E

�
�

Z �

0

�
˙�1.t;Xt/B.t;Xt;Yt;Zt/

� � dWt

�

T

;

where as earlier, E stands for the Doléans-Dade exponential of a martingale. If
we are allowed to apply Girsanov’s theorem, this turns the forward-backward
system (4.1) into the following system of decoupled equations:

8
ˆ̂<

ˆ̂:

dXt D ˙.t;Xt/dWQ

t ;

dYt D �H
�
t;Xt;Yt;Zt

�
dt C ZtdWQ

t ; t 2 Œ0;T�;
X0 D �; YT D G.XT/;

(4.21)

where WQ D .WQ

t /06t6T is a Wiener process under Q and H is given by:

H.t; x; y; z/ D F.t; x; y; z/C z
�
˙�1.t; x/B.t; x; y; z/

�
;

for .t; x; y; z/ 2 Œ0;T��R
d �R

m �R
m�d, where z.˙�1.t; x/B.t; x; y; z// is the product

of an m � d-matrix and a d-vector.
We already used this strategy in the presentation of mean field games under the

weak formulation in Subsection 3.3.1. In particular, (4.21) is very close to (3.30),
although the functions H in the two definitions do not exactly coincide.
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A key observation with (4.21) is that the driver H is most often of quadratic
growth in the variable z. This departure from the standard Lipschitz setting creates
additional difficulties and requires a special treatment. In order to overcome these
new challenges we shall assume that m D 1, implying that the backward component
Y is one-dimensional. This restrictive assumption will not be too much of an
hindrance in what follows. Indeed, in the majority of the cases of interest to us,
quadratic BSDEs will be used to represent a cost; in this regard, quadratic BSDEs
under consideration will be only in dimension 1.

Below, we provide some of the basic results in the analysis of quadratic BSDEs.
We do not give proofs because of their technicalities. We refer to the Notes &
Complements at the end of the chapter for references on the subject.

Existence and Uniqueness of Solutions
In order to address existence and uniqueness, we recast the problem in the more
general setting of non-Markovian backward equations of the form:

dYt D ��.t;Yt;Zt/dt C Zt � dWt; t 2 Œ0;T� I YT D �; (4.22)

where � is a random variable in L1.˝;FT ;PIR/, and � is a random driver
satisfying the following assumption:

Assumption (Quadratic BSDE). The terminal condition � is a bounded FT -
measurable random variable with values in R, and the driver � is a function
from Œ0;T� �˝ � R � R

d into R satisfying:

(A1) For any .y; z/ 2 R � R
d, the process Œ0;T��˝ 3 .t; !/ 7! �.t; !; y; z/

is F-progressively measurable, where F is the usual augmentation of the
filtration generated by W and by an initial � -field F0, independent of W.

(A2) For any t 2 Œ0;T�, ! 2 ˝, y; y0 2 R, and z; z0 2 R
d, we have:

j�.t; !; y; z/j 6 L
�
1C jyj C jzj2�;

j�.t; !; y0; z0/ � �.t; !; y; z/j 6 L
�jy � y0j C .1C jzj C jz0j/jz � z0j�:

Remark 4.14 In accordance with the convention introduced in Chapter 3, the value
Zt at time t of the martingale integrand process Z in a one-dimensional BSDE will be
often regarded as a d-dimensional vector (and not as a 1 � d-matrix). This justifies
the use of the notation Zt � dWt instead of ZtdWt.

In order to understand the rationale for the boundedness assumption on the
terminal value �, the reader is referred to Subsection 4.7.3 below where we use the
so-called Cole-Hopf transformation in order to linearize a quadratic BSDE. Therein,
we transform an equation of the type (4.22) into a linear equation by considering the
exponential of the solution (or of a multiple of the solution). This analysis requires
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the exponential of � (up to a multiplicative constant) to be sufficiently integrable.
A convenient way to guarantee this restrictive integrability property is to assume
that � is bounded.

Notice that as usual, we dropped the variable ! in (4.22), and we shall do so
whenever possible. We give the main existence result without proof.

Theorem 4.15 Under assumption Quadratic BSDE, there exists a unique pair of
F-progressively measurable processes .Y;Z/ D .Yt;Zt/06t6T with values in R and
R

d satisfying (4.22) and

sup
06t6T

jYtj 2 L1.˝;FT ;PIR/; E

Z T

0

jZtj2dt < 1;

both quantities being controlled by T, L and the bound for �.

In Chapter 3, we already appealed to the following comparison principle.

Theorem 4.16 Under assumption Quadratic BSDE, let .�0;F0/ be another pair of
coefficients satisfying assumption Quadratic BSDE. Assume that PŒ� > �0� D 0

and

8y 2 R; z 2 R
d;

Leb1 ˝ P
�
.t; !/ 2 Œ0;T� �˝ W �.t; !; y; z/ > � 0.t; !; y; z/

	 D 0:

Then,

8t 2 Œ0;T�; P
�
Yt > Y 0

t

	 D 0;

where .Y0;Z0/ is the unique solution (in the sense of Theorem 4.15) to (4.22), when
driven by .�0;F0/.

Bounded-Mean-OscillationMartingales
One crucial ingredient with quadratic BSDEs is that the martingale process
.
R t
0

Zs � dWs/06t6T is of bounded-mean-oscillation in the sense of the following
definition.

Definition 4.17 Given an F-progressively measurable square-integrable process
Z D .Zt/06t6T with values in R

d (that is Z 2 H
2;d), the martingale .

R t
0

Zs �dWs/06t6T

is said to be of bounded-mean-oscillation (BMO for short) if there exists a constant
K > 0 such that for any F-stopping time with values in Œ0;T�,

P

�
E

� Z T

�

jZtj2dt jF�
�

6 K2

�
D 1:

We call the smallest constant K with this property the BMO norm of the martingale.
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An important property of BMO martingales is given in the following standard result
of stochastic analysis.

Proposition 4.18 Let Z be a process in H
2;d such that the martingale .

R t
0

Zs �
dWs/06t6T has a finite BMO norm. Then, there exists a constant r > 1, depending
only on the BMO norm of .

R t
0

Zs�dWs/06t6T , such that the Doléans-Dade exponential
E.R �

0
Zs�dWs/ belongs to Lr.˝;FT ;PIR/ and is thus uniformly integrable. Moreover,

the Lr.˝;FT ;PIR/-norm of E.R �
0

Zs � dWs/ only depends on T and the BMO norm
of .

R t
0

Zs � dWs/06t6T .

Finally, for any p > 1,
R T
0

jZsj2ds belongs to the space Lp.˝;FT ;PIR/ and its
Lp.˝;FT ;PIR/-norm only depends on the BMO norm of .

R t
0

Zs � dWs/06t6T .

The relevance of BMO martingales to quadratic BSDEs is captured by the
following statement.

Theorem 4.19 Under assumption Quadratic BSDE, consider the unique solution
.Y;Z/ D .Yt;Zt/06t6T to (4.22) as given in Theorem 4.15. Then, the process .

R t
0

Zs �
dWs/06t6T is a BMO martingale and its BMO norm only depends upon T, L and the
bound for the L1-norm of �.

Remark 4.20 Part of the statements given here will be revisited in Chapter (Vol II)-
1 when handling optimal control problems in random environments.

4.2 McKean-Vlasov Stochastic Differential Equations

Motivated by the formulation of mean field games developed in Chapter 3, we pro-
ceed with the analysis of (forward, backward, and forward-backward) stochastic
differential equations whose coefficients depend upon the law of their own solutions.
Solvability of these equations may be addressed in two steps. In the first one,
flow of probability measures underpinning the equation is treated as an input of
the problem, while the second step involves a fixed point argument. We cast the
latter as a matching problem which, once solved, replaces the input by the marginal
distributions of the solutions. As a result, the coefficients of the equations end up
containing the marginal distributions of the solutions. This characteristic is at the
origin of the terminology McKean-Vlasov equation. The existence and uniqueness
theory for forward SDEs of this type is rather standard by now. We introduce it
first. The corresponding theory for BSDEs of McKean-Vlasov type is recent. We
present it next, still in this section. Existence and uniqueness results for FBSDEs
of McKean-Vlasov type are quite new, and much more involved. In this section, we
provide an existence and uniqueness result in short time only. Its proof is modeled
after the argument behind the original proof of Theorem 4.2 which was not given
when we stated this short time existence and uniqueness result in Subsection 4.1.1.
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This argument will be used again when we state and prove Theorem 1.45 in Chapter
(Vol II)-1 as a generalization of Theorem 4.2 to the case of random coefficients.
Solving FBSDEs of the McKean-Vlasov type on arbitrary time intervals is much
more delicate and involved. We present a first class of models for which we can
actually do that in the following section. Other models will be investigated in the
next sections when we return to the existence of solutions for mean field games.

In this section and the next, all the processes are assumed to be defined on
a complete filtered probability space .˝;F ;F D .Ft/06t6T ;P/ supporting a d-
dimensional Wiener process W D .Wt/06t6T with respect to F, the filtration F

satisfying the usual conditions. We recall that, for each random variable/vector
or stochastic process X, we denote by L.X/ the law (alternatively called the
distribution) of X and for any integer n > 1, by H

2;n the Hilbert space:

H
2;n D

n
Z 2 H

0;n W E

Z T

0

jZsj2ds < 1
o
; (4.23)

where H
0;n stands for the collection of all R

n-valued progressively measurable
processes on Œ0;T�. We shall also denote by S

2;n the collection of all continuous
processes U D .Ut/06t6T in H

0;n such that EŒsup06t6T jUtj2� < C1. As for the
dependence of the coefficients (and the solutions) upon the measure parameters, we
refer the reader to the definition (3.16) of the Wasserstein distance given earlier, and
to Section 5.1 of Chapter 5 for a thorough discussion of its properties. We merely
highlight a simple property of the 2-Wasserstein distance W2:

W2.L.X/;L.X0//2 6 EŒjX � X0j2�; (4.24)

for any R
n-valued square-integrable random variables X and X0.

4.2.1 Forward SDEs of McKean-Vlasov Type

Let us consider a forward stochastic differential equation in a given environment
� D .�t/06t6T . One could think of the forward part of the general equation (3.17)
if we assume that it does not depend upon the backward component. Requiring that
the environment � D .�t/06t6T therein matches the flow .L.Xt//06t6T of marginal
distributions of the solution turns the ordinary SDE into a nonlinear SDE of the form

dXt D B
�
t;Xt;L.Xt/

�
dt C˙

�
t;Xt;L.Xt/

�
dWt; t 2 Œ0;T�: (4.25)

For technical reasons, we allow the coefficients to be random. This means that the
drift and diffusion coefficients of the state Xt of the system at time t are given by a
pair of (measurable) functions .B; ˙/ W Œ0;T��˝�R

d �P2.Rd/ ! R
d �R

d�d. The
term nonlinear used to qualify (4.25) does not refer to the fact that the coefficients
B and ˙ could be nonlinear functions of x, but instead to the fact that they depend
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not only on the value of the unknown process Xt at time t, but also on its marginal
distribution L.Xt/. We shall use the following assumptions.

Assumption (MKV SDE). There exists a constant L > 0 such that:

(A1) For each .x; �/ 2 R
d � P2.Rd/, the processes B.�; �; x; �/ W Œ0;T� �

˝ 3 .t; !/ 7! B.t; !; x; �/ and ˙.�; �; x; �/ W Œ0;T� � ˝ 3 .t; !/ 7!
˙.t; !; x; �/ are F-progressively measurable and belong to H

2;d and
H
2;d�d respectively.

(A2) For any t 2 Œ0;T�, ! 2 ˝, x; x0 2 R
d and �;�0 2 P2.Rd/,

jB.t; x; �/�B.t; x0; �0/jCj˙.t; x; �/�˙.t; x0; �0/j
6 L

�jx � x0jCW2.�; �
0/

	
:

Under the above conditions we have existence and uniqueness of a solution
to (4.25).

Theorem 4.21 Under assumption MKV SDE, if X0 2 L2.˝;F0;PIRd/, there
exists a unique solution X D .Xt/06t6T to (4.25) in S

2;d. In particular, this solution
satisfies:

E

h
sup
06t6T

jXtj2
i
< C1:

Proof. Let � D .�t/06t6T 2 C.Œ0; T�IP2.Rd// be temporarily fixed. Substituting momen-
tarily �t for L.Xt/ for all t 2 Œ0; T� in (4.25) and recalling that X0 is given, the classical
existence result for Lipschitz SDEs guarantees existence and uniqueness of a strong solution
of the classical stochastic differential equation with random coefficients:

dXt D B.t;Xt; �t/dt C˙.t;Xt; �t/dWt; t 2 Œ0; T�: (4.26)

We denote its solution by X� D .X�
t /06t6T . This classical existence result also implies that

the law of X� is of order 2, so that we can define the mapping

˚ W C.Œ0; T�IP2.Rd// 3 � 7! ˚.�/ D �
L.X�

t /
�
0�t�T

D �
P ı .X�

t /
�1

�
06t6T 2 C.Œ0; T�IP2.Rd//:

Observe that the last term is in C.Œ0; T�IP2.Rd// because X� has continuous paths and
satisfies EŒsup06t6T jX�

t j2� < 1.
Since a process X D .Xt/06t6T satisfying EŒsup06t6T jXtj2� < 1 is a solution of (4.25)

if and only if its law is a fixed point of ˚ , we prove the existence and uniqueness result of
the theorem by proving that the mapping ˚ has a unique fixed point. Let us choose � and
�0 in C.Œ0; T�IP2.Rd//. Since X� and X�0

have the same initial conditions, Doob’s maximal
inequality and the Lipschitz assumption yield, for all t 2 Œ0; T�:
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EŒ sup
06s6t

jX�
s � X�0

s j2�

6 2E

�
sup
06s6t

ˇ̌
ˇ̌
Z s

0

ŒB.r;X�
r ; �r/ � B.r;X�0

r ; �
0

r/�dr

ˇ̌
ˇ̌
2 �

C E

�
sup
06s6t

ˇ̌
ˇ̌
Z s

0

Œ˙.r;X�
r ; �r/ �˙.r;X�0

r ; �
0

r/�dWr

ˇ̌
ˇ̌
2 �

6 c.T/

�Z t

0

E

�
sup
06r6s

jX�
r � X�0

r j2
�

ds C
Z t

0

�
W2.�s; �

0

s/
�2

ds

CE

� Z t

0

j˙.r;X�
r ; �r/ �˙.r;X�0

r ; �
0

r/j2dr

��

6 c.T/

�Z t

0

E

�
sup
06r6s

jX�
r � X�0

r j2
�

ds C
Z t

0

�
W2.�s; �

0

s/
�2

ds

�
;

for a constant c.T/ depending on T and L, c.T/ being nondecreasing in T . As usual, and
except for the dependence upon T which we keep track of, we use the same notation c.T/
even though the value of this constant can change from line to line. Using Gronwall’s
inequality one concludes that:

E

�
sup
06s6t

jX�
s � X�0

s j2
�

6 c.T/
Z t

0

W2.�s; �
0

s/
2 ds; (4.27)

for t 2 Œ0; T�. Therefore,

sup
06s6t

W2

�
˚.�/s; ˚.�

0/s
�2 6 c.T/

Z t

0

W2.�s; �
0

s/
2 ds:

Iterating this inequality and denoting by ˚ k the k-th composition of the mapping ˚ with
itself we get that for any integer k > 1:

sup
06s6T

W2

�
˚ k.�/s; ˚

k.�0/s
�2 6 c.T/k

Z T

0

.T � s/k�1

.k � 1/Š W2.�s; �
0

s/
2 ds

6 c.T/kTk

kŠ
sup

06s6T
W2.�s; �

0

s/
2;

which shows that for k large enough, ˚ k is a strict contraction and hence, ˚ admits a unique
fixed point as the space C.Œ0; T�IP2.Rd// is complete. ut

The McKean-Vlasov dynamics posited in (4.25) are sometimes called of mean
field type. This is justified by the fact that stochastic differential equations of
McKean-Vlasov type first appeared as the infinite particle limits of large systems of
particles with mean field interactions. See Section (Vol II)-2.1 for a detailed account
of this theory.
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Remark 4.22 The reader may object to the fact that the SDE (4.25) does not
include all the models suggested by the general form touted in (3.17). Indeed, in
order to do so, we should investigate an SDE of the form

dXt D B
�
t;Xt;L.Xt; �t/

�
dt C˙

�
t;Xt;L.Xt; �t/

�
dWt; t 2 Œ0;T�; (4.28)

where .�t/06t6T denotes a given F-adapted process with paths in C.Œ0;T�IRm/ and
with square integrable marginals. However, it is easy to check that Theorem 4.21
extends to this slightly more general setting.

4.2.2 Mean Field BSDEs

This section is devoted to an existence and uniqueness result for BSDEs of McKean-
Vlasov type. We consider a backward stochastic differential equation of the form:

dYt D ���
t;Yt;Zt;L.�t;Yt/

�
dt C ZtdWt; t 2 Œ0;T�; (4.29)

with terminal condition YT D G. The driver� and the terminal condition function G
are measurable and random, with � W Œ0;T��˝�R

m �R
m�d �P2.Rd �R

m/ ! R
m

and G W ˝ ! R
m. Moreover, W D .Wt/06t6T is an R

d-valued Brownian motion and
� D .�t/06t6T is an R

d-valued square-integrable F-adapted process with continuous
paths on Œ0;T�, where F is the usual augmentation of the filtration generated by W
and by an initial � -field F0, independent of W.

Assumption (MKV BSDE).

(A1) For each .y; z; �/ 2 R
m�R

m�d�P2.Rd�R
m/, the process�.�; �; y; z; �/ W

Œ0;T��˝ 3 .t; !/ 7! �.t; !; y; z; �/ is F-progressively measurable and
belongs to H

2;m. Also, G 2 L2.˝;FT ;PIRm/.
(A2) There exists a constant L > 0 such that for any t 2 Œ0;T�, ! 2 ˝,

y; y0 2 R
m, z; z0 2 R

m�d, �; �0 2 P2.Rd �R
m/, � and �0 having the same

first marginal on R
d,

j�.t; y; z; �/ � �.t; y0; z0; �0/j 6 L
�jy � y0j C jz � z0j C W2.�; �

0/
	
;

where we use the same notation W2 for the 2-Wasserstein distance on P2.Rd/

and P2.Rd � R
m/.

Theorem 4.23 Under assumption MKV BSDE, there exists a unique solution
.Y;Z/ 2 S

2;m � H
2;m�d of (4.29).
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Proof. On H
2;m � H

2;m�d, we introduce the norm k � k
H;˛ defined by:

k.Y;Z/k2
H;˛ D E

Z T

0

e˛t.jYtj2 C jZtj2/dt;

with a positive constant ˛ to be chosen later in the proof. For any .Y;Z/ 2 H
2;d � H

2;m�d ,
we denote by .Y0;Z0/ the unique solution of the BSDE (which is known to exist by standard
results from BSDE theory):

dY 0

t D ���
t; Y 0

t ; Z
0

t ;L.�t; Yt/
�
dt C Z0

t dWt; t 2 Œ0; T�; Y 0

T D G:

This defines a map ˚ W .Y;Z/ 7! .Y0;Z0/ D ˚.Y;Z/ from H
2;m � H

2;m�d into itself.
Notice that Y0 2 S

2;m. The proof consists in showing that one can choose ˛ so that the
mapping ˚ is a strict contraction, its unique fixed point giving the desired solution to the
mean field BSDE (4.29). Let us choose .Y1;Z1/ and .Y2;Z2/ in H

2;m �H
2;m�d and let us set

.Y01;Z01/ D ˚.Y1;Z1/, .Y02;Z02/ D ˚.Y2;Z2/, . OY; OZ/ D .Y2 � Y1;Z2 � Z1/ and . OY0

; OZ0

/ D
.Y02 � Y01;Z02 � Z01/. Applying Itô’s formula to .e˛tj OY 0

t j2/06t6T , we get, for any t 2 Œ0; T�,

j OY 0

t j2 C E

�Z T

t
˛e˛.r�t/j OY 0

r j2dr
ˇ̌
Ft

�
C E

�Z T

t
e˛.r�t/j OZ0

rj2dr
ˇ̌
Ft

�

D 2E

� Z T

t
e˛.r�t/ OY 0

r � �
�

�
r; Y 02

r ; Z
02
r ;L.�r; Y

2
r /

�

���
r; Y 01

r ; Z
01
r ;L.�r; Y

1
r /

�	
dr

ˇ̌
Ft

�
:

From the integrability assumption (A1) and the uniform Lipschitz assumption (A2) in (MKV
BSDE), we deduce that there exists a constant c, depending on L but not on ˛, such that:

˛E

Z T

0

e˛rj OY 0

r j2dr C 1

2
E

Z T

0

e˛rj OZ0

rj2dr 6 cE
Z T

0

e˛r


j OY 0

r j2 C j OYrj2
�

dr;

which gives, for ˛ large enough:

E

Z T

0

e˛t.j OY 0

t j2 C j OZ0

t j2/dt 6 1

2
E

Z T

0

e˛t.j OYtj2 C j OZtj2/dt

or equivalently k. OY0

; OZ0

/k
H;˛ 6 2�1=2k. OY; OZ/k

H;˛ . This completes the proof. ut

4.2.3 McKean-Vlasov FBSDEs in Small Time

As stated earlier, our goal is to solve fully coupled McKean-Vlasov forward-
backward systems of the form:
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8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt;L.Xt;Yt/

�
dt

C˙�
t;Xt;Yt;L.Xt;Yt/

�
dWt;

dYt D �F
�
t;Xt;Yt;Zt;L.Xt;Yt/

�
dt C ZtdWt; t 2 Œ0;T�;

(4.30)

with initial condition X0 D � 2 L2.˝;F0;PIRd/, and terminal condition YT D
G.XT ;L.XT//. Here, the unknown processes .X;Y;Z/ are of dimensions d, m and
m � d respectively, the random coefficients B and F map Œ0;T� � ˝ � R

d � R
m �

R
m�d � P2.Rd � R

m/ into R
d and R

m respectively, while the coefficient ˙ maps
Œ0;T��˝ � R

d � R
m � P2.Rd � R

m/ into R
d�d, and the random function G giving

the terminal condition maps ˝ � R
d � P2.Rd/ into R

m. All these functions are
assumed to be measurable. Also, the spaces P2.Rd � R

m/ and P2.Rd/ are assumed
to be endowed with the topology of the 2-Wasserstein distance W2.

Our experience with the classical theory of FBSDEs suggests that existence and
uniqueness should hold for short time when the coefficients driving both equations
are Lipschitz-continuous in the variables x, y, z and � (or � according to the
dimension). In this subsection, we prove such a result for FBSDEs of McKean-
Vlasov type. However we warn the reader that global existence over a time interval
of arbitrarily prescribed length requires more restrictive assumptions and more
sophisticated arguments, and we refer to Subsection 4.3.4 for a counter-example
showing that Cauchy-Lipschitz theory typically fails over an interval of prescribed
length.

Assumption (MKV FBSDE in Small Time).

(A1) For each .x; y; z; �/ 2 R
d � R

m � R
m�d � P2.Rd � R

m/, the pro-
cesses B.�; �; x; y; z; �/ W Œ0;T� � ˝ 3 .t; !/ 7! B.t; !; x; y; z; �/,
F.�; �; x; y; z; �/ W Œ0;T��˝ 3 .t; !/ 7! F.t; !; x; y; z; �/,˙.�; �; x; y; �/ W
Œ0;T� � ˝ 3 .t; !/ 7! ˙.t; !; x; y; �/ are F-progressively measurable
and belong to H

2;d, H2;m and H
2;m�d respectively. Moreover, for any

x 2 R
d and � 2 P2.Rd/, G.x; �/ 2 L2.˝;FT ;P/.

(A2) There exists a constant L > 0 such that for any t 2 Œ0;T�, ! 2 ˝, x; x0 2
R

d, y; y0 2 R
m, z; z0 2 R

m�d, �; �0 2 P2.Rd �R
m/, �;�0 2 P2.Rd/, with

P-probability 1,

j.B;F/.t; x; y; z; �/ � .B;F/.t; x0; y0; z0; �0/j
6 L

�jx � x0j C jy � y0j C jz � z0j C W2.�; �
0/

	
;

j˙.t; x; y; �/ �˙.t; x0; y0; �0/j 6 L
�jx � x0j C jy � y0j C W2.�; �

0/
	
;

jG.x; �/ � G.x0; �0/j 6 L
�jx � x0j C W2.�; �

0/
	
;

where we use the same notation W2 for the 2-Wasserstein distance on P2.Rd/

and P2.Rd � R
m/.
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Theorem 4.24 Under assumption MKV FBSDE in Small Time, there exists a
constant c > 0, only depending on the parameter L in the assumption, such that for
T 6 c and for any initial condition X0 D � 2 L2.˝;F0;PIRd/, the FBSDE (4.30)
has a unique solution .X;Y;Z/ 2 S

2;d � S
2;m � H

2;m�d.

Proof. Throughout the proof, the initial condition � 2 L2.˝;F0;PIRd/ is fixed. For an
element X D .Xt/06t6T 2 S

2;d, X being progressively measurable with respect to the
completion of the filtration generated by � and W, we call .Y;Z/ D .Yt; Zt/06t6T the solution
of the BSDE:

dYt D �F
�
t;Xt; Yt; Zt;L.Xt; Yt/

�
dt C ZtdWt; t 2 Œ0; T�; (4.31)

with the terminal boundary condition YT D G.XT ;L.XT//. The pair .Y;Z/ is progressively
measurable with respect to the completion of the filtration generated by � and W. Its existence
is guaranteed by Theorem 4.23 if we use the driver:

�.t; !; y; z; �/ D F.t;Xt.!/; y; z; �/

and �t D Xt. With this .Y;Z/ 2 S
2;m � H

2;m�d, we associate X0 D .X0

t /06t6T the solution of
the SDE:

dX0

t D B
�
t;X0

t ; Yt; Zt;L.X0

t ; Yt/
�
dt C˙

�
t;X0

t ; Yt;L.X0

t ; Yt/
�
dWt; t 2 Œ0; T�;

with X0

0 D � as initial condition, see Theorem 4.21 and Remark 4.22. Obviously, X0 is
progressively measurable with respect to the completion of the filtration generated by � and
W. In this way, we created a map:

˚ W S2;d;.�;W/ 3 X 7! X0 2 S
2;d;.�;W/;

where S
2;d;.�;W/ denotes the collection of the processes X 2 S

2;d which are progressively
measurable with respect to the completion of the filtration generated by � and W, our goal
being now to prove that ˚ is a contraction when T is small enough.

Given two inputs X1 and X2 in S
2;d;.�;W/, we denote by .Y1;Z1/ and .Y2;Z2/ the solutions

of the BSDE (4.31) when X is replaced by X1 and X2 respectively. Moreover, we let X10 D
˚.X1/ and X20 D ˚.X2/. Then, we can find a constant C > 1, depending on L in MKV
FBSDE in Small Time such that, for T 6 1:

E

�
sup
06t6T

jY1t � Y2t j2 C
Z T

0

jZ1t � Z2t j2dt

�
6 CE

h
sup
06t6T

jX1t � X2t j2
i
;

and

E

h
sup
06t6T

jX10t � X20t j2
i

6 CTE

�
sup
06t6T

jY1t � Y2t j2 C
Z T

0

jZ1t � Z2t j2dt

�
;
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so that, increasing the constant C if needed, we get:

E

h
sup
06t6T

jX10t � X20t j2
i

6 CTE
h

sup
06t6T

jX1t � X2t j2
i
;

which proves that ˚ is a contraction when T is small enough. ut

4.2.4 A Primer on the Notion of Master Field

As we explained in the previous section, the notion of decoupling field plays a
major role in the machinery of forward-backward equations. Importantly, this notion
remains meaningful in the McKean-Vlasov framework, at least when the coeffi-
cients B, ˙ , F, and G are deterministic. However, the domain of the decoupling
field has to be enlarged to the whole space R

d � P2.Rd/, due to the fact that the
forward component in the McKean-Vlasov system has to be regarded as a process
with values in the enlarged state space Rd �P2.Rd/. Throughout the book, we shall
call the resulting decoupling field the master field of the underlying McKean-Vlasov
FBSDE.

Here is a first step toward the analysis of this master field.

Lemma 4.25 On top of assumption MKV FBSDE in Small Time, let us assume
that the coefficients B, ˙ , F and G are deterministic, and let us also assume that,
on any probabilistic set-up .˝;F ;F D .Ft/06t6T ;P/, for any t 2 Œ0;T� and � 2
L2.˝;Ft;PIRd/, there exists a unique solution, denoted by .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T ,

of (4.30) on Œt;T� with Xt;�
t D � as initial condition.

Then, for any � 2 P2.Rd/, there exists a measurable mapping U.t; �; �/ W Rd 3
x 7! U.t; x; �/ 2 R

m such that:

P
�
Yt;�

t D U.t; �;L.�//	 D 1:

Furthermore:

8s 2 Œt;T�; P
�
Yt;�

s D U
�
s;Xt;�

s ;L.Xt;�
s /

�	 D 1:

Remarkably, the mapping U is independent of the particular choice of the proba-
bilistic set-up .˝;F ;F;P/ used in its construction.

Proof. Given a probabilistic set-up .˝;F ;F;P/, an initial time t 2 Œ0; T/ and an initial
condition � 2 L2.˝;Ft;PIRd/, we can solve (4.30) with respect to the augmented filtration
F

t generated by � and .Ws � Wt/t6s6T . The resulting solution is also a solution with respect
to the larger filtration F, and by uniqueness, it coincides with the solution obtained by
solving the FBSDE (4.30) with respect to F. We deduce that Yt;�

t coincides a.s. with a
�f�g-measurable Rd-valued random variable. In particular, there exists a measurable function
u� .t; �/ W Rd ! R

m such that PŒYt;�
t D u� .t; �/�D1.
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We now claim that the law of .�; Yt;�
t / only depends upon the law of � (i.e., it depends

on � through its law only). This directly follows from the version of the Yamada-Watanabe
theorem for FBSDEs that we shall prove in Chapter (Vol II)-1, see Theorem (Vol II)-1.33.
Since uniqueness holds pathwise, it also holds in law, so that given two initial conditions
with the same law, the solutions also have the same laws. Therefore, given another R

d-
valued random vector � 0 with the same law as �, it holds .�; u� .t; �// � .� 0; u�0.t; � 0//. In
particular, for any measurable function v W Rd ! R

m, the random variables u� .t; �/ � v.�/

and u�0 .t; � 0/ � v.� 0/ have the same law. Choosing v D u� .t; �/, we deduce that u�0.t; �/ and
u� .t; �/ are a.e. equal under the probability measure L.�/. To put it differently, denoting by
� the law of �, there exists an element U.t; �; �/ 2 L2.Rd; �/ such that u� .t; �/ and u�0.t; �/
coincide � a.e. with U.t; �; �/. Identifying U.t; �; �/ with one of its version, this proves that:

P
�
Yt;�

t D U.t; �; �/
	 D 1:

When t > 0, we notice that, for any � 2 P2.Rd/, there exists an Ft-measurable random
variable � such that � D L.�/. As a result, the procedure we just described permits to define
U.t; �; �/ for any � 2 P2.Rd/. The situation may be different when t D 0 as F0 may reduce
to events of measure zero or one. In such a case, F0 can be enlarged without any loss of
generality in order to support Rd-valued random variables with arbitrary distributions.

The fact that U is independent of the choice of the probabilistic set-up .˝;F ;F;P/
directly follows from the uniqueness in law property. ut

Remark 4.26 Notice that the additional variable L.�/ is “for free” in the above
writing since we could set v.t; �/ D U.t; �;L.�// and then have Yt;�

t D v.t; �/.
In fact, this additional variable L.�/ is specified to emphasize the non-Markovian
nature of the equation over the state space R

d: the decoupling fields are not the
same if the laws of the initial conditions are different. Indeed, it is important
to keep in mind that, in the Markovian framework, the decoupling field is the
same for all possible initial conditions, thus yielding the connection with partial
differential equations. Here the Markov property holds, but over the enlarged space
R

d � P2.Rd/, justifying the use of the extra variable L.�/.

Remark 4.27 The notion of master field will be revisited in Subsection 5.7.2, and
used in a more systematic way in Chapters (Vol II)-4 and (Vol II)-5. The main
challenge will be to prove that the master field solves a partial differential equation
on the enlarged state space Œ0;T� � R

d � P2.Rd/, this partial differential equation
being referred to as the master equation.

4.3 Solvability of McKean-Vlasov FBSDEs by Schauder’s
Theorem

The goal of this section is to provide a general existence result for McKean-Vlasov
FBSDEs over an arbitrarily prescribed time interval. The result of this section was
announced and appealed to in Chapter 3 in order to provide first existence results
of MFG equilibria. It will be revisited in Subsection 4.5 below and in Chapter 6 in
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order to cover models which elude some of the assumptions made in this section.
There, the FBSDEs arise from optimization problems, and by taking advantage of
the assumptions specific to the applications to mean field games and control of
McKean-Vlasov dynamics respectively, we shall be able to extend the coverage of
the existence result of this section. These assumptions include, for example, strong
convexity of the cost functions, linearity of the drift, � � � Instead we here require the
diffusion matrix to be nondegenerate and the coefficients to be bounded in the space
variable.

The motivation of this section comes from the short time restriction in Theo-
rem 4.24. This restriction is not satisfactory for practical applications, hence the
need for conditions under which solutions exist on an arbitrary time intervals.
The non-degeneracy condition used in this section is borrowed from the theory of
standard FBSDEs, and part of the proof is based upon a result of unique solvability
for these equations, see Theorem 4.12.

We emphasize once more that all the regularity properties with respect to the
probability measure argument � are understood in the sense of the 2–Wasserstein’s
distance W2 whose definition was given in (3.16), and whose properties will be
discussed in detail in Section 5.1 of Chapter 5. We use the same notation as in
Section 4.2, see for instance (4.23) and (4.24).

4.3.1 Notation, Assumptions, and Statement of the Existence
Result

Our goal is to prove existence (but not necessarily uniqueness) of a solution to a fully
coupled McKean-Vlasov forward-backward system of the same form as in (4.30):

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt;L.Xt;Yt/

�
dt

C˙�
t;Xt;Yt;L.Xt;Yt/

�
dWt;

dYt D �F
�
t;Xt;Yt;Zt;L.Xt;Yt/

�
dt C ZtdWt; t 2 Œ0;T�;

(4.32)

with initial condition X0 D � for some � 2 L2.˝;F0;PIRd/, and terminal condition
YT D G.XT ;L.XT//. As in Subsection 4.2.3, the unknown processes X, Y and Z
are of dimensions d, m and m � d respectively. However, the coefficients are now
assumed to be deterministic. The functions B and F map Œ0;T��R

d �R
m �R

m�d �
P2.Rd � R

m/ into R
d and R

m respectively, while the coefficient ˙ maps Œ0;T� �
R

d � R
m � P2.Rd � R

m/ into R
d�d. The function G giving the terminal condition

maps Rd �P2.Rd/ into R
m. All these functions are assumed to be Borel-measurable.

Once again, the spaces P2.Rd � R
m/ and P2.Rd/ are assumed to be endowed with

the topology of the 2-Wasserstein distance W2.
The reader should notice that the system (4.32) is a generalization of the

system (3.25) introduced in Chapter 3. Here the McKean-Vlasov constraint involves
the full-fledged distribution of the process .Xt;Yt/06t6T .

The following standing assumptions extend those stated in Chapter 3.
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Assumption (Nondegenerate MKV FBSDE). There exists a constant L > 1

such that:

(A1) For any t 2 Œ0;T�, x; x0 2 R
d, y; y0 2 R

m, z; z0 2 R
m�d, � 2 P2.Rd �R

m/

and � 2 P2.Rd/,

j.B;F/.t; x0; y0; z0; �/ � .B;F/.t; x; y; z; �/j 6 Lj.x; y; z/ � .x0; y0; z0/j;
j˙.t; x0; y0; �/ �˙.t; x; y; �/j 6 Lj.x; y/ � .x0; y0/j;
jG.x0; �/ � G.x; �/j 6 Ljx � x0j:

Moreover, for any .t; x; y; z/ 2 Œ0;T��R
d �R

m �R
m�d, the coefficients

B.t; x; y; z; �/, F.t; x; y; z; �/, ˙.t; x; y; �/ and G.x; �/ are continuous in the
measure argument with respect to the 2-Wasserstein distance.

(A2) The functions ˙ and G are bounded by L. Moreover, for any t 2 Œ0;T�,
x 2 R

d, y 2 R
m, z 2 R

m�d and � 2 P2.Rd � R
m/,

jB.t; x; y; z; �/j 6 L
�
1C jyj C jzj C M2.�/

	
;

jF.t; x; y; z; �/j 6 L
�
1C jyj C jzj C M2.� ı ��1/

	
; with �.x; y/ D y:

(A3) The function ˙ is uniformly elliptic in the sense that, for any t 2 Œ0;T�,
x 2 R

d, y 2 R
m and � 2 P2.Rd � R

m/, the following inequality holds:

�
˙˙�

�
.t; x; y; �/ > L�1Id;

in the sense of symmetric matrices, where Id is the d-dimensional
identity matrix. Moreover, the function Œ0;T��R

d �R
m�P2.Rd �R

m/ 3
.t; x; y; �/ 7! ˙.t; x; y; �/ is continuous.

Remark 4.28 Recall that M2.�/ denotes the square root of the second moment of
�, see (3.7). We also notice that (A2) may be rewritten as:

ˇ̌
B

�
t; x; y; z;L.X;Y/�ˇ̌ 6 L

�
1C jyj C jzj C EŒjXj2 C jYj2�1=2	;

ˇ̌
F

�
t; x; y; z;L.X;Y/�ˇ̌ 6 L

�
1C jyj C jzj C EŒjYj2�1=2	;

for any square-integrable random variables X and Y. The fact that F is uniformly
bounded with respect to EŒjXj2�1=2 will be explicitly used in the analysis below.

Recall that throughout the book, we use the superscript � to denote the transpose
of a matrix. We can now state the main result of this section. Notice that it extends
Theorem 3.10.
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Theorem 4.29 Under assumption Nondegenerate MKV FBSDE, for any random
variable � 2 L2.˝;F0;PIRd/, the FBSDE (4.32) has a solution .X;Y;Z/ 2 S

2;d �
S
2;m � H

2;d�m with X0 D � as initial condition.

Reminiscing about the discussion of the notion of decoupling field presented in
Subsections 4.1.1 and 4.2.4, we expect Yt and Xt to be connected by a deterministic
relationship of the form Yt D '.t;Xt/, ' being a function from Œ0;T� � R

d into R
m.

If that is indeed the case, the law of the pair .Xt;Yt/ is entirely determined by the
law of Xt since the distribution L.Xt;Yt/ of .Xt;Yt/ is equal to .Id; '.t; �//.L.Xt// D
.L.Xt// ı .Id; '.t; �//�1, depending upon which measure theory notation the reader
is familiar with. For a probability measure � in R

d and for a measurable mapping  
from R

d into R
m, we shall denote by  ˘ � the image of � under the map .Id;  / W

R
d 3 x 7! .x;  .x// 2 R

d � R
m, that is  ˘ � D � ı .Id;  /

�1. With this notation
in hand, it is natural to look for a function ' W Œ0;T� � R

d ! R
m and a flow

Œ0;T� 3 t 7! �t 2 P2.Rd/ such that:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt; '.t; �/ ˘ �t

�
dt

C˙�
t;Xt;Yt; '.t; �/ ˘ �t

�
dWt;

dYt D �F
�
t;Xt;Yt;Zt; '.t; �/ ˘ �t

�
dt C ZtdWt; t 2 Œ0;T�;

(4.33)

under the constraints that Yt D '.t;Xt/ and �t D L.Xt/ for t 2 Œ0;T�, and with the
boundary conditions X0 D � and YT D G.XT ;L.XT//. The strategy we use below
consists in recasting the stochastic system (4.33) into a fixed point problem over
the arguments .'; .�t/06t6T/. The first step is to use '.t; �/ ˘ �t as an input, and
solve (4.33) as a standard FBSDE. In order to do so, we should be able to use some
of the known existence results for standard FBSDEs which we reviewed earlier.

Remark 4.30 Theorem 4.29 could be extended to the more general case when, in
the McKean-Vlasov argument, the joint law L.Xt;Yt/ of Xt and Yt is replaced by
the joint law L.Xt;Yt;Zt/ of Xt, Yt, and Zt in B and F. Indeed, in the nondegenerate
setting, Zt is also given by a continuous function of Xt in the same way as Yt is,
namely Zt D v.t;Xt/ with v.t; x/ D @xu.t; x/˙.t; x; u.t; x/; u.t; �/˘L.Xt// whenever
Yt D u.t;Xt/ (i.e., u � ' with the notations used above), see Lemmas 4.10
and 4.11. However, since the proof would require a careful analysis of the smoothing
properties of the operator driving the forward component of the equation, we refrain
from tackling this question here.

Remark 4.31 The assumption that ˙ is independent of .Zt/06t6T should not be
underestimated. Indeed, if ˙ depends upon Zt, even in the classical (i.e., non-
McKean-Vlasov) case, the arguments needed to prove existence are much more
involved if this assumption is not satisfied. In essence, they try to recreate via specific
monotonicity assumptions the role played by convexity in the analysis of the so-
called adjoint FBSDEs arising in optimal stochastic control.
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Below, the fixed point problem is solved by means of Schauder’s fixed point
theorem. This provides existence of a fixed point from compactness arguments.
However, it is important to keep in mind that it does not say anything about
uniqueness. The way we implement Schauder’s theorem is quite typical of the
strategy we shall use later on to solve mean field games. In this regard, Theorem 4.29
serves as a good testbed for our technology, although so far, nothing has been said
about the connection with mean field games.

We here recall the statement of Schauder’s theorem for the sake of completeness.

Theorem 4.32 Let .V; k � k/ be a normed linear vector space and E be a nonempty
closed convex subset of V. Then, any continuous mapping from E into itself which
has a relatively compact range has a fixed point.

Preliminary Step: Structure of the Solution for a Given Input
Our fixed point argument relies on a reformulation of the results described in
Section 4.1. Lemma 4.33 below is a reformulation of Theorem 4.12, while
Lemma 4.34 bears the same relationship to Lemma 4.9.

Lemma 4.33 Fix T > 0 and on top of assumption Nondegenerate MKV FBSDE,
assume that, instead of (A2), B and F have the following growth property:

j.B;F/.t; x; y; z; �/j 6 L
�
1C jyj C jzj	;

for all .t; x; y; z; �/ 2 Œ0;T� � R
d � R

m � R
m�d � P2.Rd � R

m/.
Then, given a deterministic continuous function � W Œ0;T� 3 t 7! �t 2

P2.Rd � R
m/, a probability � 2 P2.Rd/, and an initial condition .t; �/ 2 Œ0;T� �

L2.˝;Ft;PIRd/, the forward-backward system

(
dXs D B

�
s;Xs;Ys;Zs; �s

�
ds C˙.s;Xs;Ys; �s/dWs;

dYs D �F
�
s;Xs;Ys;Zs; �s

�
ds C ZsdWs; s 2 Œt;T�; (4.34)

with Xt D � as initial condition and YT D G.XT ; �/ as terminal condition, has a
unique solution, denoted by .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T . Moreover, the decoupling field u W

Œ0;T� � R
d 3 .t; x/ 7! u.t; x/ D Yt;x

t 2 R
m obtained by choosing � D x is bounded

by a constant � depending only upon T and L, and is 1=2-Hölder continuous in time
and Lipschitz continuous in space in the sense that:

ju.t; x/ � u.t0; x0/j 6 �
�jt � t0j1=2 C jx � x0j�;

for some constant � only depending upon T and L. In particular, both � and � are
independent of � and �. Finally, it holds that Yt;�

s D u.s;Xt;�
s / for any t 6 s 6 T

and jZt;�
s j 6 � L, ds ˝ P almost everywhere.
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For the time being, we use this existence result in the following way. We start
with a bounded continuous function ' from Œ0;T� � R

d into R
m, and a flow of

probability measures � D .�t/06t6T in C.Œ0;T�IP2.Rd//, which we want to think
of as the flow of marginal laws .L.Xt//06t6T of the solution. We apply the above
existence result for (4.34) to � D �T and �t D '.t; �/ ˘ �t for t 2 Œ0;T� and solve:

8
ˆ̂<

ˆ̂:

dXt D B
�
t;Xt;Yt;Zt; '.t; �/ ˘ �t

�
dt

C˙.t;Xt;Yt; '.t; �/ ˘ �t/dWt;

dYt D �F
�
t;Xt;Yt;Zt; '.t; �/ ˘ �t

�
dt C ZtdWt; t 2 Œ0;T�;

(4.35)

with terminal condition YT D G.XT ; �T/ and initial condition X0 D � . The
following estimate will be instrumental in the proof of the main result.

Lemma 4.34 Under the same assumptions as in Lemma 4.33, there exists a positive
constant C, depending on T and L only, such that for any initial conditions
�; � 0 2 L1.˝;F0;PIRd/ and any inputs .';�/ and .'0;�0/ as above, the processes
.X;Y;Z/ and .X0;Y0;Z0/ obtained by solving (4.35) with � and � 0 as respective
initial conditions and .';�/ and .'0;�0/ as respective inputs, satisfy:

E
�

sup
06t6T

jXt � X0
t j2

	 C E
�

sup
06t6T

jYt � Y 0
t j2

	 C E

Z T

0

jZt � Z0
t j2dt

6 C

�
E

�j� � � 0j2	 C E

Z T

0

ˇ̌�
B;F; ˙

��
t;Xt;Yt;Zt; '.t; �/ ˘ �t

�

� �
B;F; ˙

��
t;Xt;Yt;Zt; '

0.t; �/ ˘ �0
t

�ˇ̌2
dt

�
:

(4.36)

Notice that Lemma 4.34 is the analogue of Lemma 4.9.

Remark 4.35 We shall use the following bound:

W2.'.t; �/ ˘ �t; '
0.t; �/ ˘ �0

t/

6 C

�
W2



�t ı �

Id; '.t; �/
��1
; �0

t ı �
Id; '.t; �/

��1�

C
� Z

Rd
j.' � '0/.t; x/j2d�0

t.x/

�1=2�
:

(4.37)

to estimate the integral in the right-hand side of (4.36)

We are now in a position to implement the fixed point part of the strategy touted
for the construction of solutions to McKean-Vlasov FBSDEs in arbitrary time.
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4.3.2 Fixed Point Argument in the Bounded Case

Some of the arguments in this subsection rely on properties of spaces of measures
that are discussed in detail in Chapter 5. The reader may want to consult
Section 5.1 of that chapter if he/she is not familiar with the results we take for
granted.

In this subsection we assume that the coefficients B and F are bounded by the
constant L. In addition, we assume that the initial condition � of the forward
component is also bounded in the sense that it belongs to L1.˝;F0;PIRd/.
For any bounded continuous function ' W Œ0;T� � R

d ! R
m and for any flow of

probability measures � D .�t/06t6T 2 C.Œ0;T�IP2.Rd//, the map Œ0;T� 3 t 7!
'.t; �/ ˘ �t 2 P2.Rd � R

m/ is continuous. So by Lemma 4.33, there exists a unique
triplet .Xt;Yt;Zt/06t6T satisfying (4.35) with X0 D � as initial condition. Moreover,
there exists a bounded and continuous mapping u from Œ0;T� � R

d into R
m such

that Yt D u.t;Xt/, the bound for u being denoted by � . This maps the input .';�/
into the output .u; .L.Xt//06t6T/ and our goal is to find a fixed point for this map.
We shall take advantage of the a priori L1 - bound on u to restrict the choice of the
functions ' to the set:

E1 D ˚
' 2 C.Œ0;T��R

dIRm/ W 8.t; x/ 2 Œ0;T��R
d; j'.t; x/j 6 �

�
: (4.38)

Similarly, since � is in L1.˝;F0;PIRd/ and the drift B and the volatility ˙ are
uniformly bounded, the fourth moment of the supremum sup06t6T jXtj is bounded
by a constant depending only upon the bounds of � , B and ˙ . Consequently, we
shall choose the input measure � in the set:

E2 D


� 2 C�
Œ0;T�IP4.Rd/

� W sup
06t6T

Z

Rd
jxj4 d�t.x/ 6 � 0

�
; (4.39)

for � 0 appropriately chosen in such a way that EŒsup06t6T jXtj4� 6 � 0 for any input
.';�/. We then denote by E the Cartesian product E D E1 � E2. We view E as a
subset of the product vector space V D V1 � V2, where V1 D Cb.Œ0;T� � R

dIRm/

stands for the space of bounded continuous functions from Œ0;T� � R
d into R

m,
and V2 D C.Œ0;T�IM1

f .R
d// for the space of continuous functions from Œ0;T� into

the space M1
f .R

d/ of finite signed measures � on R
d such that Rd 3 x 7! jxj is

integrable under j�j. On V1, we use the exponentially weighted supremum-norm:

khkV1 D sup
.t;x/2Œ0;T��Rd

e�jxjjh.t; x/j;

and on V2 the supremum over a variant of the Kantorovich-Rubinstein norm:

k�kV2 D sup
t2Œ0;T�

k�tkKR?;

with k�kKR? D j�.Rd/j C sup

 Z

Rd
`.x/d�.x/I ` 2 Lip1.R

d/; `.0/ D 0

�
:
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Here, Lip1.R
d/ stands for the space of Lip-1 functions on R

d. As we shall show in
Corollary 5.4, when restricted to P1.Rd/, the distance induced by the Kantorovich-
Rubinstein norm k � kKR? coincides with the 1-Wasserstein metric W1 as already
defined in (3.16) earlier in Chapter 3 and studied in detail in Chapter 5.

The fact that k � kV2 is a norm on V2 may be easily checked. It suffices to
check that k � kKR? is a norm on M1

f .R
d/. While the triangular inequality and the

homogeneity are easily verified, the property k�kKR? D 0 ) � D 0 may be
proved as follows. If k�kKR? D 0 then �C.Rd/ D ��.Rd/, where �C and �� are
the positive and negative parts of �. If �C.Rd/ > 0, we may assume without any
loss of generality that �C and �� are two probability measures and k�C � ��kKR?
is equal to:

k�C � ��kKR? D sup

 Z

Rd
`.x/d

�
�C � ���

.x/I ` 2 Lip1.R
d/; `.0/ D 0

�

D sup

 Z

Rd
`.x/d

�
�C � ���

.x/I ` 2 Lip1.R
d/

�
;

the passage from the first to the second line following from the fact that any `
as in the second line can be replaced by `.�/ � `.0/. By Corollary 5.4, we get
k�C � ��kKR? D W1.�

C; ��/. Since W1 is a distance, k�C � ��kKR? is equal
to 0, which shows that �C D ��.

We emphasize that E1 is a convex closed bounded subset of V1. Moreover, we
notice that the convergence for the norm k � kV1 of a sequence of functions in E1 is
equivalent to the uniform convergence on compact subsets of Œ0;T��R

d. Similarly,
E2 is a convex closed bounded subset of V2 since the space P1.Rd/ is closed
under k � kKR? and since, as shown in Theorem 5.5, the convergence of probability
measures for k � kKR? implies weak convergence of measures, which guarantees that
the mapping P1.Rd/ 3 � 7! R

Rd jxj4d�.x/ 2 Œ0;C1� is lower semicontinuous for
the distance induced by the Kantorovich-Rubinstein norm. We now claim:

Lemma 4.36 In addition to assumption Nondegenerate MKV FBSDE, assume
that B and F are bounded and that the initial condition � lies in L1.˝;F0;PIRd/.
Then, the mapping ˚ W E 3 .';�/ 7! .u; .L.Xt//06t6T/ 2 E defined above is
continuous and has a relatively compact range.

Proof. We first check the continuity of ˚ . Given a sequence .'n;�n/ in E converging
towards .';�/ 2 E with respect to the product norm on V1�V2, and given the corresponding
solutions .Xn;Yn;Zn/ and .X;Y;Z/ obtained by solving (4.35) with .'n; �n/ and .'; �/
respectively, we have (compare with (4.37)): .i/ for any t 2 Œ0; T�, W2.�t; �

n
t / ! 0 as

n ! C1 since .�n
t /n>1 converges weakly towards �t and the moments of order 4 of the

measures .�n
t /n>1 are uniformly bounded by � 0, see Theorem 5.5; .ii/ by continuity and

boundedness of ', and by a similar argument, W2.�t ı .Id; '.t; �//�1; �n
t ı .Id; '.t; �//�1/

converges toward 0 as n ! C1; .iii/ since the sup-norms of all the .'n/n>1 are not greater
than � , the tightness of the measures .�n

t /n>1, for any t 2 Œ0; T�, together with the uniform
convergence of .'n/n>1 towards ' on compact sets can be used to prove that:
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8t 2 Œ0; T�; lim
n!1

Z

Rd
j.' � 'n/.t; y/j2d�n

t .y/ D 0:

Therefore, by (4.37),

8t 2 Œ0; T�; lim
n!1

W2.'.t; �/ ˘ �t; '
n.t; �/ ˘ �n

t / D 0;

so that, by Lebesgue’s dominated convergence theorem,

lim
n!1

E

� Z T

0

ˇ̌�
B;F; ˙

��
t;Xt; Yt; Zt; '.t; �/ ˘ �t

�

� �
B;F; ˙

��
t;Xt; Yt; Zt; '

n.t; �/ ˘ �n
t

�ˇ̌2
dt

�
D 0:

Similarly, W2.�T ; �
n
T/ ! 0 as n tends to C1 and:

lim
n!1

E
�ˇ̌

G.XT ; �T/ � G.XT ; �
n
T/

ˇ̌2	 D 0:

From (4.36), we obtain

lim
n!1

�
E



sup
06t6T

jXt � Xn
t j2

�
C E



sup
06t6T

jYt � Yn
t j2

�
C E

Z T

0

jZt � Zn
t j2dt

�
D 0;

from which we deduce that .L.Xn
t //06t6T converges towards .L.Xt//06t6T as n tends to

C1, in the Wasserstein metric W1 uniformly in t 2 Œ0; T�, and thus in the topology associated
with the norm k � kV2 . Denoting by un the FBSDE decoupling field, which is a function from
Œ0; T��R

d into R
m such that Yn

t D un.t;Xn
t /, and by u the FBSDE decoupling field for which

Yt D u.t;Xt/, we deduce that:

lim
n!1

sup
06t6T

E
�jun.t;Xn

t / � u.t;Xt/j2
	 D 0:

By Lemma 4.33, we know that all the mappings .un/n>1 are bounded and Lipschitz
continuous with respect to x, uniformly with respect to n. Therefore,

lim
n!1

sup
06t6T

E
�jun.t;Xt/ � u.t;Xt/j2

	 D 0:

Moreover, by Arzèla-Ascoli’s theorem and by Lemma 4.33 again, the sequence .un/n>1
is relatively compact for the uniform convergence on compact sets, so denoting by Ou the
limit of a subsequence converging for the norm k � kV1 , we deduce that, for any t 2 Œ0; T�,
Ou.t; �/ D u.t; �/ L.Xt/-almost surely. By Stroock and Varadhan’s support theorem for
diffusion processes, L.Xt/ has a full support for any t 2 .0; T�, so that, by continuity,
Ou.t; �/ D u.t; �/ for any t 2 .0; T�. By continuity of u and Ou on the whole Œ0; T�� R

d, equality
holds at t D 0 as well. This shows that .un/n>1 converges towards u for k � kV1 and completes
the proof of the continuity of ˚ .

We now prove that ˚.E/ is relatively compact for the product norm of V1 � V2. Given
.u;�0/ D ˚.';�/ for some .';�/ 2 E , we know from Lemma 4.33 that u is bounded by
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� and .1=2; 1/-Hölder continuous with respect to .t; x/, the Hölder constant being bounded
by � . In particular, u remains in a compact subset of C.Œ0; T� � R

dIRm/ for the topology
of uniform convergence on compact sets as .';�/ varies over E . Similarly, �0 remains in
a compact set when .';�/ varies over E . Indeed, if .L.Xt//06t6T D �0 is associated with
.';�/, the moments of the measures .�0

t/06t6T can be easily controlled from the fact B and
˙ are bounded by constants independent of ' and �. Using Corollary 5.6 which will be
proven in Chapter 5, this implies that all the .�0

t/06t6T live in a compact subset of P1.Rd/

equipped with the distance W1, independently of the input .';�/ 2 E . Moreover, it is clear
that there exists a constant C, independent of the input .';�/ 2 E , such that:

W1.�
0

t ; �
0

s/ 6 Cjt � sj1=2; s; t 2 Œ0; T�;

which proves, by Arzelà-Ascoli theorem, that the path .Œ0; T� 3 t 7! �0

t/06t6T lives in a
compact subset of C.Œ0; T�;P1.Rd//, independently of the input .';�/ 2 E . ut

We completed all the steps needed in the proof of the main result of this
subsection.

Proposition 4.37 In addition to assumption Nondegenerate MKV FBSDE,
assume that B and F are bounded and that � 2 L1.˝;F0;PIRd/. Then,
equation (4.32) has a solution .X;Y;Z/ 2 S

2;d � S
2;m � H

2;m�d with X0 D �

as initial condition.

Proof. By Schauder’s fixed point Theorem 4.32, ˚ has a fixed point .';�/. As explained
in our description of the strategy of the proof, solving (4.35) with this .';�/ as input, and
denoting by .Xt; Yt; Zt/06t6T the resulting solution, by definition of a fixed point, we have
Yt D '.t;Xt/ for any t 2 Œ0; T�, a.s., and .L.Xt//06t6T D .�t/06t6T . In particular, '.t; �/˘�t

coincides with L..Xt; Yt//. We conclude that .Xt; Yt; Zt/06t6T satisfies (4.32). ut

4.3.3 Relaxing the Boundedness Condition

We now complete the proof of Theorem 4.29 when the coefficients only satisfy
assumption Nondegenerate MKV FBSDE. The proof consists in approximating
the initial condition � and the coefficients B and F by a sequence of initial
conditions .�n/n>1 and sequences of coefficients .Bn/n>1 and .Fn/n>1, such that each
.�n;Bn;Fn; ˙;G/, for n > 1, satisfies the assumptions of Proposition 4.37.

Proof. We first construct the approximating sequences. For any n > 1, t 2 Œ0; T�, x 2 R
d ,

y 2 R
m, z 2 R

m�d , � 2 P2.Rd � R
m/ and � 2 P2.Rd/, we set:

.Bn;Fn/.t; x; y; z; �/ D .B;F/
�
t; ˘.d/

n .x/;˘.m/
n .y/;˘.m�d/

n .z/; � ı .˘.dCm/
n /�1

�
;

where for any integer k > 1,˘.k/
n is the orthogonal projection from R

k onto the k-dimensional
ball of radius n centered at the origin, and for any probability measure � on R

k, � ı .˘.k/
n /�1

denotes the push-forward of � by ˘.k/
n . Finally, for each n > 1, we define �n D ˘

.d/
n .�/.
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For each n > 1, the assumptions of Proposition 4.37 are satisfied with �n instead of �
as initial condition and .Bn;Fn; ˙n;Gn/ instead of .B;F; ˙;G/ as coefficients. We denote
by .Xn;Yn;Zn/ the solution of (4.32) given by Proposition 4.37 when the system (4.32) has
�n as initial condition and is driven by the coefficients Bn, Fn, ˙n, and Gn. As explained in
the previous subsection, the process Yn satisfies Yn

t D un.t;Xn
t /, for any t 2 Œ0; T�, for some

deterministic function un.
The next step of the proof is to provide a uniform bound on the decoupling fields

.un/n>1. Applying Itô’s formula and using the specific growth condition (A2) in assumption
Nondegenerate MKV FBSDE, we get:

8t 2 Œ0; T�; E
�jYn

t j2	 6 C C C
Z T

t
E

�jYn
s j2	ds;

for some constant C depending on T and L only, and whose value may vary from line to line
at our convenience. By Gronwall’s inequality, we deduce that the quantity sup06t6T EŒjYn

t j2�
can be bounded in terms of T and L only. Injecting this estimate into (A2) shows that
.�Fn.t;Xn

t ; Y
n
t ; Z

n
t ;L.Xn

t ; Y
n
t ///06t6T is bounded by .C.1 C jYn

t j C jZn
t j//06t6T , which fits

the growth condition in Lemma 4.33. Moreover, repeating the Itô expansion of .jYn
t j2/06t6T ,

we also have:

E

� Z T

0

jZn
s j2ds

�
6 C: (4.40)

Plugging the bounds for .sup06t6T EŒjYn
t j2�/n>1 and for .E

R T
0

jZn
t j2dt/n>1 into the forward

equation, we obtain in a similar way:

8t 2 Œ0; T�; E
�jXn

t j2	 6 C C C
Z t

0

E
�jXn

s j2	ds;

which proves that:

sup
06t6T

E
�jXn

t j2	 6 C:

The crucial fact is that C is independent of n. Injecting this new estimate into (A2) shows
that the drift .Bn.t;Xn

t ; Y
n
t ; Z

n
t ;L.Xn

t ; Y
n
t ///06t6T is bounded by .C.1 C jYn

t j C jZn
t j//06t6T ,

which also fits the growth condition in Lemma 4.33.
By Lemma 4.33, we deduce that the processes .Yn/n>1 and .Zn/n>1 are uniformly

bounded by a constant C that depends upon T and L.
The next step of the proof is to establish the relative compactness of the family of

functions .Œ0; T� 3 t 7! L.Xn
t ; Y

n
t / 2 P2.Rd � R

m//n>1, P2.Rd � R
m/ being equipped

with the 2-Wasserstein metric W2. Thanks to the uniform bounds we have for .Yn/n>1 and
.Zn/n>1, we see that the driver:



Fn

�
t;Xn

t ; Y
n
t ; Z

n
t ;L.Xn

t ; Y
n
t /

��

06t6T

of the backward equation is bounded by C, for a possibly new value of C. In particular, using
the fact that .Zn/n>1 is uniformly bounded, we get:
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8s; t 2 Œ0; T�; E
�jYn

t � Yn
s j2	 6 Cjt � sj: (4.41)

Similarly, using the bound (A2) for Bn, we easily deduce that:

E
�

sup
06t6T

jXn
t j4jF0

	1=2 6 C
�
1C j�j2�; (4.42)

and that:

E
�jXn

t � Xn
s j2	 6 Cjt � sj; (4.43)

for all s; t 2 Œ0; T�. From (4.41) and (4.43), we deduce that, for all n > 1,

8s; t 2 Œ0; T�; W2

�
L.Xn

t ; Y
n
t /;L.Xn

s ; Y
n
s /

�
6 Cjt � sj1=2: (4.44)

Moreover, (4.42) implies:

E
�

sup
06t6T

jXn
t j2	 6 C

�
1C E

�j�j2	�; (4.45)

and using (4.42) once again, we obtain, for any event D 2 F :

8" > 0; E
�

sup
06t6T

jXn
t j21D

	
6 E

h
E

�
sup
06t6T

jXn
t j4jF0

	1=2�
P

�
DjF0

�	1=2i

6 CE

h�
1C j�j2��P�

DjF0
�	1=2i

6 C


"E

�
1C j�j2	 C 1

"
E

h�
1C j�j2�P�

DjF0
�i�

D C


"E

�
1C j�j2	 C 1

"
E

��
1C j�j2�1D

	�
:

(4.46)

We deduce that:

lim
ı&0

sup
n>1

sup
D2FWP.D/6ı

E
�

sup
06t6T

jXn
t j21D

	 D 0:

Using (4.45), this shows that:

lim
a!1

sup
n>1

E
�

sup
06t6T

jXn
t j21

fsup06t6T jXn
t j
2 > ag

	 D 0:

In particular, by uniform boundedness of the .Yn/n>1, this implies that:

lim
a!1

sup
n>1

E
�

sup
06t6T

j.Xn
t ; Y

n
t /j21fsup06t6T j.Xn

t ;Y
n
t /j

2 > ag

	 D 0: (4.47)

By Corollary 5.6 in Chapter 5, we deduce that the family ..L.Xn
t ; Y

n
t //06t6T/n>1 lives in a

compact subset of P2.Rd � R
m/. From (4.44) and Arzéla-Ascoli theorem, we finally obtain

that the mappings .Œ0; T� 3 t 7! L.Xn
t ; Y

n
t / 2 P2.Rd � R

m//n>1 are in a compact subset of
C.Œ0; T�IP2.Rd/ � R

m/.
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For the last step of the proof, we denote by � D .�t/06t6T a limit point of .�n D
.�n

t /06t6T/n>1, with �n
t D L.Xn

t ; Y
n
t /, and we call .X;Y;Z/ the solution to the FBSDE (4.34)

with � as initial condition, with � as input flow of measures, and with � D �T ı .Rd � R
d 3

.x; y/ 7! x/�1 as input terminal measure. From Lemma 4.34 (injecting in (A2) the bounds
we have on the moments of the solutions in order to fit the framework of Lemma 4.33), we
deduce that, possibly modulo the extraction of a subsequence,

lim
n!1

E

�
sup
06t6T

jXn
t � Xtj2 C sup

06t6T
jYn

t � Ytj2 C
Z T

0

jZn
t � Ztj2dt

�
D 0:

Therefore, for all t 2 Œ0; T�, .L.Xn
t ; Y

n
t //n>1 converges in W2 to L.Xt; Yt/ D �t. From there,

we easily conclude that .X;Y;Z/ satisfies (4.32). ut

4.3.4 Uniqueness does not Always Hold: A Counter-Example

We close this discussion with a counter-example showing that uniqueness cannot
hold in general under assumption Nondegenerate MKV FBSDE even with an
additional Cauchy-Lipschitz property in the measure argument (with respect to the
2-Wasserstein distance), and even in the case d D m D p D 1. Indeed, let us
consider the forward-backward system:

8
ˆ̂<

ˆ̂:

dXt D B.EŒYt�/dt C dWt;

dYt D �F.EŒXt�/dt C ZtdWt; t 2 Œ0;T�;
X0 D x0; YT D G.EŒXT �/;

(4.48)

where B, F and G are real valued bounded and Lipschitz-continuous functions on
the real line satisfying B.x/ D F.x/ D G.x/ D x for jxj 6 R. For T D �=4 and for
any a 2 R, the pair:

xt D a sin.t/; yt D a cos.t/; 0 6 t 6 T D �

4
;

satisfies Pxt D yt, Pyt D �xt, for t 2 Œ0;T�, with yT D xT as terminal condition
and x0 D 0 as initial condition. Therefore, for jaj 6 R, .a sin.t/; a cos.t//06t6T is a
solution of the deterministic forward-backward system:

(
Pxt D B.yt/;

Pyt D �F.xt/;

with initial condition x0 D 0 and terminal condition yT D G.xT/ over the interval
Œ0;T�. For such a value of a, we now set:

Xt D xt C Wt; Yt D yt; t 2 Œ0;T�:
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Then, .X;Y; 0/ solves:

(
dXt D B.EŒYt�/dt C dWt;

dYt D �F.EŒXt�/dt C 0 dWt;

with X0 D 0 and YT D G.EŒXT �/, proving that uniqueness fails.

Remark 4.38 The reason for the failure of uniqueness can be explained as follows.
In the classical FBSDE framework, uniqueness holds because of the smoothing
effect of the diffusion operator in the spatial direction. However, in the McKean-
Vlasov setting, the smoothing effect of the diffusion operator is ineffective in the
direction of the measure variable.

4.3.5 Focusing on FBSDEs arising fromMFG Problems

Theorem 4.29 can be applied directly to some of the FBSDEs of the McKean-Vlasov
type describing equilibria of mean field games. However, its setting is somewhat
too general for what is actually needed for the solution of MFG problems, and one
should be able to do better under weaker assumptions to solve for MFG equilibria.

As we already explained, FBSDEs of the McKean-Vlasov type underpinning
mean field games are of the simpler form (at least for games for which the volatility
is independent of the control parameter):

(
dXt D B

�
t;Xt;L.Xt/;Yt;Zt

�
dt C˙

�
t;Xt;L.Xt/

�
dWt;

dYt D �F
�
t;Xt;L.Xt/;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T�; (4.49)

with a terminal condition of the form YT D G.XT ;L.XT//.

In contrast with the notation used in the previous section, we changed the order
in which the arguments appear in the coefficients. Most noticeably, the measure
argument now appears right after the state x argument, to conform with the
notation used in Chapter 3 and earlier in this chapter when we discussed mean
field games.

In comparison with (4.32), the McKean-Vlasov constraint integrates the marginal
law of the sole forward process instead of the joint law of both the forward and
backward components. Moreover, the volatility coefficient is independent of the
process .Yt/06t6T . Clearly, these two facts should make things easier, and in fact,
they do!

1. The form of the assumption Nondegenerate MKV FBSDE is predicated
by the full-fledged coupled structure of (4.32). Parts may be relaxed when
handling FBSDEs of the type (4.49). For instance, we shall drop the non-
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degeneracy condition when dealing with the stochastic Pontryagin principle in
Subsection 4.5.1 or when revisiting the model of flocking in Subsection 4.7.3.
In both cases, we shall also relax the growth conditions on the coefficients and
allow the coefficients to be unbounded in the space variable.

2. The implementation of Schauder’s fixed point theorem in Subsection 4.3.2 relies
on a compactness proof wherein we argue that both the mapping ' and the flow
of measures � may be chosen in compact sets. But clearly, when dealing with
FBSDEs of the simpler form (4.49), it suffices to focus on the flow of measures �.

Based on these observations, we can revisit the proof of Theorem 4.29 and
establish, under the new set of assumptions spelled out below, a version of the
existence result for a system of the type (4.49). See Theorem 4.39 for the statement.

Assumption (MKV FBSDE for MFG). The coefficient ˙ is independent of
the variable y and the measure argument of all the coefficients is a probability
measure in P2.Rd/. Moreover, there exists a constant L > 1 such that:

(A1) Condition (A1) in assumption Nondegenerate MKV FBSDE holds;
(A2) The function ˙ is bounded by L. Moreover, the coefficients B, F and

G are of at most linear growth in x, y, z and �, uniformly in t (linear
growth in � being understood as a bound by 1C M2.�/, with M2.�/ as
in (3.26)).

Introducing the non-McKean-Vlasov parameterized version of (4.49):

(
dXt D B

�
t;Xt; �t;Yt;Zt

�
dt C˙

�
t;Xt; �t

�
dWt;

dYt D �F
�
t;Xt; �t;Yt;Zt

�
dt C ZtdWt; t 2 Œ0;T�; (4.50)

with a terminal condition of the form YT D G.XT ; �T/, where the parameter � D
.�t/06t6T is in C.Œ0;T�IP2.Rd//, we also assume:

(A3) For any .t0; x/ 2 Œ0;T� � R
d, the FBSDE (4.50) over the time interval

Œt0;T� with Xt0 D x as initial condition at time t0 has a unique solution
.Xt0;x

t ;Yt0;x
t ;Zt0;x

t /t06t6T .
(A4) There exists a continuous mapping u W Œ0;T� � R

d ! R
m, Lipschitz

continuous in x uniformly in t 2 Œ0;T�, such that for any initial condition
.t0; x/ 2 Œ0;T� � R

d, it holds with probability 1 under P:

P

h
8t 2 Œt0;T�; Yt0;x

t D u.t;Xt0;x
t /

i
D 1:

(continued)
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(A5) The Lipschitz constant of u in x and the supremum norm of the
function Œ0;T� 3 t 7! u.t; 0/ may be bounded independently of
� D .�t/06t6T .

Here is the result announced earlier.

Theorem 4.39 Under assumption MKV FBSDE for MFG, for any random vari-
able � belonging to L2.˝;F0;PIRd/, the FBSDE (4.49) has a solution .X;Y;Z/ 2
S
2;d � S

2;m � H
2;d�m with X0 D � as initial condition.

Proof. For � 2 L2.˝;F0;PIRd/ and � 2 C.Œ0; T�IP2.Rd//, we know from (A3), (A4) and
Proposition 4.8 that (4.50) has a unique solution .X�;Y�;Z�/ D .X�

t ; Y
�
t ; Z

�
t /06t6T . We

thus define the mapping ˚ W C.Œ0; T�;P2.Rd// 3 � 7! ˚.�/ D .L.X�
t //06t6T . The goal is

to apply Schauder’s Theorem 4.32 in order to prove that ˚ has a fixed point.
Following the argument used in Subsection 4.3.2, we apply Schauder’s fixed point

theorem in the space C.Œ0; T�IM1
f .R

d// of continuous functions � D .�t/06t6T from Œ0; T�
into the space of finite signed measures � over Rd such that Rd 3 x 7! jxj is integrable under
j�j, equipped with the supremum of the Kantorovich-Rubinstein norm:

k�k D sup
t2Œ0;T�

k�tkKR?;

with:

k�kKR? D j�.Rd/j C sup

 Z

Rd
`.x/d�.x/I ` 2 Lip1.R

d/; `.0/ D 0

�
:

As already mentioned, the norm k � kKR? is known to coincide with the Wasserstein distance
W1 on P1.Rd/. This fact will be proven rigorously in Chapter 5.

We prove existence by proving that there exists a closed convex subset E included in
C.Œ0; T�IP2.Rd// � C.Œ0; T�IM1

f .R
d// which is stable under ˚ , such that ˚.E/ is relatively

compact, and ˚ is continuous on E . But first, we establish a priori estimates for the solution
of (4.49).

The key point is to notice that the coefficients B, ˙ , F and G being Lipschitz in
the variable .x; y; z/ and the decoupling field satisfying (A5), Lemma 4.11 implies that
jY�

t j 6 C.1C jX�
t j/ and jZ�

t j 6 C, Leb1 ˝P almost everywhere. Plugging these bounds into
the forward part of (4.49) and using (A2), standard Lp estimates for SDEs imply that there
exists a constant C, independent of � (but possibly depending on EŒj�j2�), such that:

E
�

sup
06t6T

jX�
t j4jF0

	1=2 6 C


1C j�j2

�
: (4.51)

Following (4.46) and allowing the constant C to change from line to line, we deduce that, for
any " > 0 and a > 1,
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E

h
sup
06t6T

jX�
t j21

fsup06t6T jX
�
t j > ag

i
6 C



"C "�1

E
��
1C j�j2�1

fsup06t6T jX
�
t j > ag

	�

6 C


"C "�1 sup

D2FWP.D/6Ca�2

E
��
1C j�j2�1D

	�
;

where we used the fact that EŒsup06t6T jX�
t j2� 6 C, which is implied by (4.51). Minimizing

over " > 0, we get:

E

h
sup
06t6T

jX�
t j21

fsup06t6T jX
�
t j > ag

i
6 C sup

D2FWP.D/6Ca�2

E
��
1C j�j2�1D

	1=2
:

Now, for any D 2 F such that P.D/ 6 Ca�2, with a > 1, we have that:

E
��
1C j�j2�1D

	
6 2Ca�1 C E

�j�j21
fj�j>a1=2g

	
;

so that:

E

h
sup
06t6T

jX�
t j21

fsup06t6T jX
�
t j>ag

i
6 C



a�1 C E

�j�j21
fj�j>a1=2g

	�
:

This prompts us to consider the restriction of ˚ to the subset E defined as:

E D


� 2C�
Œ0; T�IP2.Rd/

� W

8a > 1; sup
06t6T

Z

fjxj>ag

jxj2d�t.x/ 6 C



a�1 C E
�j�j21

fj�j>a1=2g

	��
:

Clearly, E is convex and closed in C.Œ0; T�IM1
f .R

d// equipped with k � k. Also ˚ maps E
into itself.

Returning to the dynamics of X�, observe that (4.51) implies that, for any � 2 E and
0 6 s 6 t 6 T:

E
�jX�

t � X�
s j2	 6 C.t � s/;

so that:

W2

�
Œ˚.�/�t; Œ˚.�/�s

� D W2

�
L.X�

t /;L.X�
s /

�
6 C.t � s/1=2;

which essentially says that the family fŒ0; T� 3 t 7! Œ˚.�/�tI � 2 Eg is equicontinuous.
We already know that there exists a compact subset K � P2.Rd/ such that for any � 2 E ,
Œ˚.�/�t 2 K for any t 2 Œ0; T�. By the above bound and by Arzelà-Ascoli theorem, we deduce
that ˚.E/ is a relatively compact subset of C.Œ0; T�IP2.Rd//, and thus of C.Œ0; T�IP1.Rd//.

Finally, the continuity of ˚ on E follows from the stability properties of FBSDEs with
a Lipschitz decoupling field, see Lemma 4.9, and from the fact that any E-valued sequence
.�n/n>1 converging in C.Œ0; T�IM1

f .R
d//with respect to k�k converges in C.Œ0; T�IP2.Rd//.

This latter observation is a consequence of Theorem 5.5 and of the uniform integrability
property upon which the definition of E is based. ut
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Remark 4.40 Notice that Corollary 5.6 in Chapter 5 implies that the set:

� 2 P2.Rd/ W 8a > 1;

Z

fjxj > ag
jxj2d�.x/ 6 C



a�1 C E

�j�j21fj�j>a1=2g
	��

;

is a compact subset of P2.Rd/. This remark will play a crucial role in the sequel.
We already appealed to this type of argument in the third step of the proof given in
Subsection 4.3.3.

Remark 4.41 At this stage, it may be worth mentioning the relevant version of the
Arzelà-Ascoli theorem which we use: if X is a compact Hausdorff space, and Y
is a metric space, then F � C.X IY/ is compact in the compact-open topology
if and only if it is equicontinuous, pointwise relatively compact and closed. Here
pointwise relatively compact means that for each x 2 X , the set Fx D ff .x/I f 2 Fg
is relatively compact in Y .

Remark 4.42 The reader presumably noticed the following difference between
the proofs of Theorems 4.29 and 4.39. In the proof of Theorem 4.29, we first
assume that � is in L1.˝;F0;PIRd/, and then handle the general case where
� 2 L2.˝;F0;PIRd/ by an approximation argument. In contrast, we work directly
with � 2 L2.˝;F0;PIRd/ in the proof of Theorem 4.39. As a result, different
prescriptions are required for the definition of the set E in the first step of the proof
of Theorem 4.39.

4.4 SolvingMFGs from the Probabilistic Representation
of the Value Function

In this section and the next, we provide two general solvability results for the MFG
problem described in Subsection 3.1.2 of Chapter 3. We remind the reader of the
objective: find a deterministic flow � D .�t/06t6T of probability measures on R

d

such that the stochastic control problem:

inf
˛2A J�.˛/; with J�.˛/ D E

� Z T

0

f .t;X˛
t ; �t; ˛t/dt C g.X˛

T ; �T/

�
;

subject to
(

dX˛
t D b.t;X˛

t ; �t; ˛t/dt C �.t;X˛
t ; �t; ˛t/dWt; t 2 Œ0;T�;

X˛
0 D �;

(4.52)

has an optimally controlled process with .�t/06t6T as flow of marginal distributions.
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We recall that the above problem is set on a complete filtered probability space
.˝;F ;F D .Ft/06t6T ;P/ supporting a d-dimensional F-Wiener process W D
.Wt/06t6T , and for an initial condition � 2 L2.˝;F0;PIRd/. The set A denotes the
collection of square-integrable and F-progressively measurable control processes
˛ D .˛t/06t6T taking values in a convex closed subset A � R

k. Moreover, the
state process X D .Xt/06t6T takes values in R

d. The solvability results which we
provide in this section and the next are derived within the two forms of FBSDE-
based approaches introduced in Subsection 3.2 to characterize the solutions of an
optimal stochastic control problem.

This section is specifically dedicated to the method based upon the FBSDE
representation of the value function, in the spirit of the weak formulation approach
discussed in Subsection 3.3.1, except for the fact that the control problem
underpinning the mean field game is formulated in the strong sense.

Throughout the section, we assume that the volatility coefficient � does not
depend upon the control. The coefficients b and f will be regarded as measurable
mappings from Œ0;T� � R

d � P2.Rd/ � A into R
d and R respectively, the volatility

coefficient � as a measurable mapping from Œ0;T� � R
d � P2.Rd/ into R

d�d, and g
as a measurable function from R

d � P2.Rd/ into R.

4.4.1 Assumptions and Existence Result

As suggested in Subsection 3.3.1, a first way to tackle the MFG problem is
to represent the value function of the optimal stochastic control problem (4.52)
computed along the optimal path as the backward component of an FBSDE. We
shall do so under the following assumptions.

Assumption (MFG Solvability HJB).

(A1) The volatility � is independent of the control parameter ˛.
(A2) There exists a constant L > 0 such that:

jb.t; x; �; ˛/j 6 L
�
1C j˛j�; jf .t; x; �; ˛/ˇ̌ 6 L

�
1C j˛j2�;

j.�; ��1/.t; x; �/j 6 L; jg.x; �/j 6 L;

for all .t; x; �; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � A.

(A3) For any t 2 Œ0;T�, x 2 R
d, and � 2 P2.Rd/, the functions b.t; x; �; �/

and f .t; x; �; �/ are continuously differentiable in ˛.

(continued)
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(A4) For any t 2 Œ0;T�, � 2 P2.Rd/ and ˛ 2 A, the functions b.t; �; �; ˛/,
f .t; �; �; ˛/, �.t; �; �/ and g.�; �/ are L-Lipschitz continuous in x; for
any t 2 Œ0;T�, x 2 R

d and ˛ 2 A, the functions b.t; x; �; ˛/, f .t; x; �; ˛/,
�.t; x; �/ and g.x; �/ are continuous in the measure argument with respect
to the 2-Wasserstein distance.

(A5) For the same constant L and for all .t; x; �; ˛/ 2 Œ0;T��R
d�P2.Rd/�A,

j@˛b.t; x; �; ˛/j 6 L; j@˛f .t; x; �; ˛/j 6 L
�
1C j˛j�:

We shall also require:

(A6) Letting

H.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/;

for all .t; x; �; y; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � R

d � A, there exists a
unique minimizer Ǫ .t; x; �; y/ 2 argmin˛H.t; x; �; y; ˛/, continuous in
� and L-Lipschitz continuous in .x; y/, satisfying:

j Ǫ .t; x; �; y/j 6 L
�
1C jyj�; (4.53)

for all .t; x; �; y/ 2 Œ0;T� � R
d � P2.Rd/ � R

d.

In exactly the same way as for Lemma 3.3, one proves the following sufficient
condition ensuring that assumption (A6) holds.

Lemma 4.43 On top of assumptions (A1–5) above, assume that b.t; x; �; ˛/ has
the form:

b.t; x; �; ˛/ D b0.t; x; �/C b1.t/˛;

for a bounded function b1, that, for any t 2 Œ0;T�, the function @˛f .t; �; �; �/ is
continuous in � and L-Lipschitz continuous in .x; ˛/, and finally that f satisfies
the 
-convexity assumption:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � .˛0 � ˛/ � @˛f .t; x; �; ˛/ > 
j˛0 � ˛j2;

for all t 2 Œ0;T�, .x; �/ 2 R
d � P2.Rd/ and .˛; ˛0/ 2 A � A, for some 
 > 0. Then

(A6) in assumption MFG Solvability HJB holds true for a possibly new value of L.
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We now state the main result of this section. It provides a solution to the mean
field game problem by solving the appropriate FBSDE associated with the stochastic
control problem (4.52). Recall that in the first prong of the probabilistic approach,
the variable z��1.t; x; �/ is substituted for the dual variable y appearing in the
coefficients b and f (and hence the Hamiltonian H) and the minimizer Ǫ .

Theorem 4.44 Let assumption MFG Solvability HJB be in force. Then, for any
initial condition � 2 L2.˝;F0;PIRd/, the McKean-Vlasov FBSDE:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D b
�
t;Xt;L.Xt/; Ǫ�

t;Xt;L.Xt/; �.t;Xt;L.Xt//
�1�Zt

��
dt

C�.t;Xt;L.Xt//dWt;

dYt D �f
�
t;Xt;L.Xt/; Ǫ�

t;Xt;L.Xt/; �.t;Xt;L.Xt//
�1�Zt

��
dt

CZt � dWt;

(4.54)

for t 2 Œ0;T�, with YT D g.XT ;L.XT// as terminal condition, is solvable.
Moreover, the flow .L.Xt//06t6T given by the marginal distributions of the for-

ward component of any solution is an equilibrium of the MFG problem associated
with the stochastic control problem (4.52).

Following Remark 4.14, the martingale part in (4.54) is denoted by Zt � dWt

in order to account for the fact that the backward equation is one-dimensional.
Put it differently, Zt is regarded as a d-dimensional vector while it is regarded as
a 1 � d-random matrix if we use the notation ZtdWt. Observe that this remark
fully justifies the fact that the coefficients depend upon �.t;Xt; �t/

�1�Zt instead of
Zt�.t;Xt; �t/

�1.
The remainder of this section is devoted to the proof of Theorem 4.44.

4.4.2 FBSDE Representation in the Strong Formulation
of the Control Problem

As a preliminary step, we revisit the FBSDE representation of the value function
of a stochastic control problem introduced in Chapter 3. In contrast with Subsec-
tion 3.3.1, our objective here is to provide a strong representation as opposed to the
representation in weak form given there.

Given an input � D .�t/06t6T 2 C.Œ0;T�IP2.Rd//, the FBSDE used to represent
the value function has the form:

(
dXt D b

�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt C �.t;Xt; �t/dWt;

dYt D �f
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt C Zt � dWt;

(4.55)

for t 2 Œ0;T�, with the initial condition X0 D � 2 L2.˝;F0;PIRd/ and the terminal
condition YT D g.XT ; �T/.
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Remark that (4.55) differs from equation (3.30) appearing in the statement
of Proposition 3.11 articulating the so-called weak formulation of the optimal
stochastic control problem. As demonstrated by the proof of Proposition 3.11, we
may go (at least formally) from (3.30) to (4.55) by means of Girsanov’s theorem.
Part of the argument in the proof of Proposition 3.11 is precisely to check that it is
indeed legal to invoke Girsanov’s theorem in that context.

Here we work with (4.55) instead of (3.30) in order to avoid any Girsanov
transformation, and in so doing, get a direct representation of the solution of the
stochastic control problem instead of a weaker one. We give a precise statement
now, and we postpone the proof to Subsection 4.4.3.

Theorem 4.45 For the same input � as above and under assumption MFG
Solvability HJB, the FBSDE (4.55) with X0 D � as initial condition at time 0
has a unique solution .X0;�t ;Y0;�t ;Z0;�t /06t6T with .Z0;�t /06t6T being bounded by a
deterministic constant, almost everywhere for Leb1 ˝ P on Œ0;T� �˝.

Moreover, there exists a continuous mapping u W Œ0;T��R
d ! R, Lipschitz con-

tinuous in x uniformly with respect to t 2 Œ0;T� and to the input �, such that, for any
initial condition � 2 L2.˝;F0;PIRd/, the unique solution .X0;�t ;Y0;�t ;Z0;�t /06t6T to
the FBSDE (4.55) with X0 D � as initial condition at time 0, satisfies:

P

h
8t 2 Œ0;T�; Y0;�t D u

�
t;X0;�t

�i D 1:

Also, the process .�.t;X0;�t ; �t/
�1�Z0;�t /06t6T is bounded by the Lipschitz con-

stant of u in x. Finally, the process .X0;�t /06t6T is the unique solution of the
optimal control problem (4.52). In particular, EŒu.0; �/� D J�. Ǫ / for Ǫ D
. Ǫ .t;X0;�t ; �t; �.t;X

0;�
t ; �t/

�1�Z0;�t //06t6T .

Remark 4.46 Observe that the driver in the backward component of (4.55) is not
assumed to be Lipschitz continuous, see (A5) above. This explains why the analysis
of (4.55) requires a special treatment.

Connection with the HJB Equation
Recall that, according to our terminology, u in the statement of Theorem 4.45 is
the decoupling field of the FBSDE (4.55). As one can expect, a straightforward
application of Itô’s formula gives the following verification result.

Lemma 4.47 For the same input � as above and under assumption MFG Solv-
ability HJB, assume that the HJB equation:

@tV.t; x/C 1

2
trace

h�
���

�
.t; x/@2xxV.t; x/

i

C H



t; x; �t; @xV.t; x/; Ǫ .t; x; �t; @xV.t; x//
�

D 0; .t; x/ 2 Œ0;T� � R
d;
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with V.T; x/ D g.x; �T/ as terminal condition, has a classical solution V, once
differentiable in time and twice in space with jointly continuous derivatives, and
such that @xV and @2xxV are bounded. Then, the process .X;Y;Z/ D .Xt;Yt;Zt/06t6T

where X is the solution of the SDE:

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t; @xV.t;Xt//

�
dt C �.t;Xt; �t/dWt; X0 D �;

and:

Yt D V.t;Xt/; and Zt D �.t;Xt; �t/
�@xV.t;Xt/; 0 6 t 6 T;

solves (4.55). It is the unique solution for which the process .Zt/06t6T is bounded.
Moreover, the assumption of Proposition 4.51 below are satisfied by taking u D V.

Observe that the representation of Zt is fully justified by the fact that Zt is here
understood as a random vector with values in R

d and that, V being R-valued, @xV
is also regarded as an R

d-valued function. When Zt and @xV are regarded as taking
values in R

1�d, Zt takes the form @xV.t;Xt/�.t;Xt; �t/.
We give an example of an application of Lemma 4.47 in Subsection 4.7.3.

Proof. We only provide a sketch of the proof. The fact that (4.55) is satisfied is a
straightforward application of Itô’s formula to compute dYt D dV.t;Xt/ given the fact that V
solves the HJB equation, and the SDE satisfied by X, which is solvable under the standing
assumption.

Uniqueness of the solution can be proved in two ways. First, one can observe that
for solutions with a bounded .Zt/06t6T , the equation may be rewritten as an equation
with Lipschitz coefficients. Since we have identified V with a Lipschitz decoupling field,
there must be at most one solution by Proposition 4.8. Another strategy is to expand
.V.t;X0

t //06t6T , for any other solution .X0

t ; Y
0

t ; Z
0

t /06t6T , and to check that the pair process
.V.t;X0

t /; �.t;X
0

t ; �t/
�@xV.t;X0

t //06t6T satisfies a BSDE with random Lipschitz coefficients
that is also satisfied by .Y 0

t ; Z
0

t /06t6T . By Cauchy-Lipschitz theory for BSDEs (and not
FBSDEs), we get Y 0

t D V.t;X0

t / and Z0

t D �.t;X0

t ; �t//
�@xV.t;X0

t /, for t 2 Œ0; T�, which
shows that .X0

t /06t6T solves the same SDE as .Xt/06t6T . Uniqueness then follows. ut

Remark 4.48 We shall not discuss existence results for classical solutions of the
HJB equation. We just emphasize that, whenever the coefficients (obtained after
composition with �) are Hölder continuous in time and satisfy the conditions
required in assumption MFG Solvability HJB and the terminal condition g is
smooth in x, classical solutions are known to exist. We refer to the Notes &
Complements at the end of the chapter for references.

The following lemma shows that, in the framework of Lemma 4.47, the
conclusion of Theorem 4.45 can be checked by a standard verification argument.
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Lemma 4.49 Under the assumptions of Lemma 4.47, the process X D .Xt/06t6T

identified in the statement is the unique optimal solution of the stochastic control
problem (4.52) with X0 D � as initial condition.

Proof. The proof consists in another application of Itô’s formula. Indeed, consider the
process:

dXˇ
t D b.t;Xˇ

t ; �t; ˇt/dt C �.t;Xˇ
t ; �t/dWt; t 2 Œ0; T�;

controlled by an F-progressively measurable and square integrable control process ˇ D
.ˇt/06t6T with values in A. Using Itô’s formula to expand the process .V.t;Xˇ

t / CR t
0

f .s;Xˇ
s ; �s; ˇs//06t6T , and using the form of the HJB equation to modify the expansion,

we get:

d



V
�
t;Xˇ

t

� C
Z t

0

f
�
s;Xˇ

s ; �s; ˇs
�
ds

�

D @xV
�
t;Xˇ

t

� �


�.t;Xˇ

t /dWt

�

C
h
H



t;Xˇ

t ; �t; @xV.t;Xˇt /; ˇt

�

� H



t;Xˇ
t ; �t; @xV.t;Xˇt /; Ǫ�

t;Xˇ
t ; �t; @xV.t;Xˇ

t /
��i

dt;

for 0 6 t 6 T . Since Ǫ .t; x; �; y/ is the unique minimizer of A 3 ˛ 7! H.t; x; �; y; ˛/, we
deduce, by taking the expectation and by recalling the terminal condition V.T; �/ D g.�; �T/,
that

J�.ˇ/ > E
�
V.0; �/

	 D J�. Ǫ /;

with equality if and only if ˇt D Ǫ .t;Xˇ
t ; �t; @xV.t;Xˇ

t ; �t// for all t 2 Œ0; T�, where, in the
right-hand side above, Ǫ D . Ǫ .t;Xt; �t; Zt//06t6T denotes the control process given by the
solution of the FBSDE (4.55). The result easily follows. ut

Remark 4.50 It is important to emphasize that the non-degeneracy condition
required on � can be relaxed. Indeed, if for instance A is a closed convex subset
of Rd and

b.t; x; �; ˛/ D b1.t; x; �/C �.t; x; �/˛;

with b1.t; x; �/ as in Lemma 4.43, then the Hamiltonian takes the form:

H� .t; x; �; y; ˛/ D b1.t; x; �/ � y C �
��.t; x; �/y

� � ˛ C f .t; x; �; ˛/;

and its minimizer Ǫ� in the variable ˛ is given by the formula:

Ǫ� .t; x; �; y/ D Ǫ Id .t; x; �; �.t; x; �/
�y/; (4.56)

where Ǫ Id is the minimizer of the Hamiltonian:
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HId .t; x; �; y; ˛/ D b1.t; x; �/ � y C ˛ � y C f .t; x; �; ˛/:

It is important to notice that because of the assumptions on the function b1, the
minimizer Ǫ Id has all the smoothness properties of the minimizers corresponding
to nondegenerate volatility matrices � since it corresponds to the case � D Id.
Now, as explained already several times, the FBSDE relevant to the first prong
of the probabilistic approach is obtained by replacing the dual variable y by
�.t; x; �t/

�1�z in the minimizer Ǫ . In the present situation, this substitution gives
Ǫ� .t;Xt; �t; �.t;Xt; �t/

�1�Zt/, but the latter is in fact equal to Ǫ Id .t;Xt; �t;Zt/

because of the equality (4.56). We claim that the conclusion of Theorem 4.45
remains true for this new FBSDE.

For a proof, the reader may try to adapt the arguments given in Chapter (Vol II)-1
to the present situation, or have a look at Subsection 4.7.3 for an illustration.

4.4.3 Proof of the Representation Theorem for the Strong
Formulation

We now turn to the proof of Theorem 4.45 as we aim at proving that the FBSDE:

8
<

:
dXt D b

�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
�
dt C �.t;Xt; �t/dWt;

dYt D �f
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
�
dt C Zt � dWt;

(4.57)

for t 2 Œ0;T�, with initial condition X0 D � 2 L2.˝;F0;PIRd/ and terminal
condition YT D g.XT ; �T/, is uniquely solvable within the class of processes .Y;Z/
with Z bounded. In the process, we identify the forward component as the unique
solution of the stochastic control problem (4.52).

We start with the following proposition, which provides a sufficient condition for
this identification.

Proposition 4.51 On top of assumption MFG Solvability HJB, assume that there
exists R > 0 such that, for any initial condition .t0; x/ 2 Œ0;T� � R

d, the
FBSDE (4.57), with Xt0 D x as initial condition at time t0, has a unique solution
.Xt0;x

t ;Yt0;x
t ;Zt0;x

t /t06t6T satisfying j�.t;Xt0;x
t ; �t/

�1�Zt0;x
t j 6 R for almost every

.t; !/ 2 Œt0;T� � ˝ under Leb1 ˝ P. Assume also that there exists a continuous
mapping u W Œ0;T��R

d ! R, Lipschitz continuous in x uniformly in t 2 Œ0;T�, such
that for any .t0; x/ 2 Œ0;T� � R

d:

P

h
8t 2 Œt0;T�; Yt0;x

t D u.t;Xt0;x
t /

i
D 1:

Then, the FBSDE (4.57) with X0 D � as initial condition at time 0 has a solution
.Xt;Yt;Zt/06t6T . Also, .�.t;Xt; �t/

�1�Zt/06t6T is bounded by the Lipschitz constant
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of u in x and .Xt;Yt;Zt/06t6T is in fact the unique solution of (4.57) with a bounded
martingale integrand .Zt/06t6T . Finally, .Xt/06t6T is the unique optimal path of
the stochastic control problem (4.52). In particular, EŒu.0; �/� D J�. Ǫ /, for Ǫ D
. Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt//06t6T .

Remark 4.52 While the result is true in full generality, the proof provided below
uses the fact that the filtration F is generated by F0 and the Wiener process W. This
is due to the use of BSDEs with F-progressively measurable coefficients in the proof
below. A proof of the result in the general case will be provided in Theorem (Vol II)-
1.57 in Chapter (Vol II)-1 when we discuss FBSDEs with random coefficients. A key
ingredient in that proof will be the so-called Kunita-Watanabe decomposition which
we do not want to introduce at this stage.

Proof. We divide the proof in four separate steps.

First Step. We first prove the unique solvability of (4.57) when X0 D �. Notice that since:

j�.t;Xt0;x
t ; �t/

�1�Zt0;x
t j 6 R;

for any t 2 Œt0; T� and any .t0; x/ 2 Œ0; T� � R
d , we may replace the driver

�.t; x; z/ D f
�
t; x; �t; Ǫ .t; x; �t; �.t; x; �t/

�1�z/
�

of the backward component of the FBSDE (4.57) by  .z/�.t; x; z/ for a smooth cut-off
function  W Rd ! Œ0; 1� such that  .z/ D 1 when jzj 6 LR and  .z/D0 when jzj > 2LR. In
this way, we may regard (4.57) as an FBSDE driven by Lipschitz continuous coefficients.
By Proposition 4.8, we deduce that the FBSDE driven by  .z/�.t; x; z/ has a unique
solution .X0;� ;Y0;� ;Z0;� / with X0 D �. By Lemma 4.11, Z0;� is bounded by a deterministic
constant. Without any loss generality, we can assume that this constant is LR itself. Therefore,
.X0;� ;Y0;� ;Z0;� / is also a solution of (4.57). Uniqueness in the class of processes .Y;Z/ with
Z bounded is proved in the same way, using the same truncation argument.

Second Step. We now return to the control problem (4.52). Given another controlled path
.Xˇ;ˇ/, the control ˇ being bounded by some deterministic constant, we consider, on the
original probabilistic set-up and with the same cut-off function  as above, the BSDE:

dYˇ
t D � �

Zˇ
t

�
f
�
t;Xˇ

t ; �t; Ǫ ˇ
t

�
dt

C Zˇ
t �

h�
��1b

��
t;Xˇ

t ; �t; ˇt
� � �

��1b
��

t;Xˇ
t ; �t; Ǫˇ

t

�i
dt

C Zˇ
t � dWt;

(4.58)

with Ǫˇ
t D Ǫ .t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t / and terminal condition Yˇ

T D g.Xˇ
T ; �T/. Here, we

use the notation .��1b/.t; x; �; ˛/ for �.t; x; �/�1b.t; x; �; ˛/ despite the fact that ��1 and
b do not have the same arguments. Equation (4.58) is a quadratic BSDE and we can solve
it using Theorem 4.15. Let .Eˇ

t /06t6T be the Doléans-Dade exponential of the stochastic
integral:
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�
�

Z t

0

�
.��1b

��
s;Xˇ

s ; �s; ˇs
� � .��1b

��
s;Xˇ

s ; �s; Ǫ ˇ
s

�	 � dWs

�

06t6T

:

We observe that the integrand, at time t, is bounded by C.1 C jZˇ
t j/. Since the martingale

.
R t
0

Zˇ
s � dWs/06t6T is of bounded mean oscillation, so is the stochastic integral above. By

Proposition 4.18, .Eˇ
t /06t6T is a true martingale and we can define the probability measure

P
ˇ D Eˇ

T � P. Under Pˇ , the process:

�
Wˇ

t D Wt C
Z t

0

�
.��1b

��
s;Xˇ

s ; �s; ˇs
� � .��1b

��
s;Xˇ

s ; �s; Ǫ ˇ
s

�	
ds

�

06t6T

;

is a d-dimensional Brownian motion. We show, at the end of the proof, that EP
ˇ R T

0
jZˇ

t j2dt <
1 and that, under Pˇ , .Xˇ;Yˇ;Zˇ/06t6T is a solution of the FBSDE (4.57) when driven by
 .z/�.t; x; z/ instead of �.t; x; z/, and Wˇ instead of W. Therefore, taking these facts for
granted momentarily, we infer (by strong and thus weak uniqueness) that the law of .Xˇ; Ǫ ˇ/

under Pˇ is the same as the law of the pair .X; Ǫ D . Ǫ .t;Xt; �t; �.t;Xt; �t/
�1�Zt//06t6T/

under P, which proves in particular that:

J�. Ǫ / D E
P

ˇ

�
g.Xˇ

T ; �T/C
Z T

0

f .t;Xˇ
t ; �t; Ǫˇ

t /dt

�
;

and that .�.t;Xˇ
t ; �t/

�1�Zˇ
t /06t6T is bounded by R, Leb1 ˝P

ˇ almost everywhere, and thus
Leb1 ˝ P almost everywhere. As a byproduct, by (4.58),  .Zˇ

t / is equal to 1. Moreover,
E
P

ˇ
ŒYˇ

0 � is equal to the above right-hand side, and thus to J�. Ǫ /. Since

E
P

ˇ

ŒYˇ

0 � D E
PŒEˇ

T Yˇ

0 � D E
PŒEˇ

0 Yˇ

0 � D E
PŒYˇ

0 �;

we have:

J�. Ǫ / � J�.ˇ/ D E
PŒYˇ

0

	 � J�.ˇ/

D E
P

� Z T

0

�
H

�
t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t ; Ǫˇ

t

�

� H
�
t;Xˇ

t ; �t; �.t;X
ˇ
t ; �t/

�1�Zˇ
t ; ˇt

�	
dt

�
;

(4.59)

so that J�. Ǫ / 6 J�.ˇ/.
For a generic ˇ satisfying E

R T
0

jˇtj2dt < 1, we can apply the previous inequality with
ˇ replaced by ˇn D .ˇt1jˇtj6n/06t6T . Using the continuity and growth assumptions on the
coefficients, it is plain to prove that J�.ˇn/ converges to J�.ˇ/ as n tends to 1, and deduce
that Ǫ is a control minimizing the cost.

Third Step. Since Ǫ .t; x; �; y/ is a strict minimizer of H.t; x; �; y; �/, we have that, for any
bounded control ˇ, J�.ˇ/ D J�. Ǫ / if and only if ˇ D Ǫ ˇ Leb1 ˝ P almost everywhere. In
such a case, the second line in (4.58) vanishes and .Xˇ;Yˇ;Zˇ/ satisfies the FBSDE (4.57)
under P and by uniqueness of solutions with a bounded martingale integrand, we conclude
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that Xˇ D X and ˇ D Ǫ ˇ D Ǫ . If ˇ is not bounded, we can use the same approximating
sequence .ˇn/n>0 as above, and since Xˇn

converges to Xˇ for the norm E
PŒsup06t6T j�j2�1=2,

we have from (4.59):

J�.ˇ/ � J�. Ǫ / D lim
n!1

J�.ˇn/ � J�. Ǫ /

> E
P

Z T

0

lim inf
n!1

h

H

�
t;Xˇn

t ; �t; �.t;X
ˇn

t ; �t/
�1�Zˇn

t ; ˇ
n
t

�

� H
�
t;Xˇn

t ; �t; �.t;X
ˇn

t ; �t/
�1�Zˇn

t ; Ǫˇn

t

��i
dt:

Again, if ˇ is not bounded, we can find R0 > L.R C 1/ C 1 for L such that
j Ǫ .t; x; �; y/j 6 L.1 C jyj/, and such that E

R T
0

1L.RC1/C1<jˇtj<R0 dt 6D 0. Given
.t; x; �/ 2 Œ0; T� � R

d � P2.Rd/, we then let:

�.t; x; �/ D ˚
.y; ˇ/ 2 R

d � A W jyj 6 R; jˇj 6 R0; jˇ � Ǫ .t; x; �; y/j > 1
�
:

Then,

J�.ˇ/ � J�. Ǫ /

> E
P

Z T

0

lim inf
n!1

h
inf

.y;ˇ/2�.t;X
ˇn
t ;�t/



H

�
t;Xˇn

t ; �t; y; ˇ
�

� H
�
t;Xˇn

t ; �t; y; Ǫ .t;Xˇn

t ; �t; y/
��

1L.RC1/C16jˇn
t j6R0

i
dt:

By continuity of H.t; �; �t; �; �/ and Ǫ .t; �; �t; �/ and by compactness of �.t; x; �/ for each
.t; x; �/, it is plain to deduce that:

J�.ˇ/ � J�. Ǫ / > E
P

Z T

0

h
inf

.y;ˇ/2�.t;X
ˇ
t ;�t/



H

�
t;Xˇ

t ; �t; y; ˇ
�

� H
�
t;Xˇ

t ; �t; y; Ǫ .t;Xˇ
t ; �t; y/

��
1L.RC1/C1<jˇtj<R0

i
dt;

which cannot be zero by definition of �.t;Xˇ
t ; �t/. This proves that X is the unique

minimizing path.

Fourth Step. In order to complete the proof, it remains to check that, for ˇ bounded and
under P

ˇ , .Xˇ;Yˇ;Zˇ/ is a solution of the FBSDE (4.57) when driven by  .z/�.t; x; z/
instead of �.t; x; z/ and by Wˇ instead of W. We know that, for t 2 Œ0; T�,

dXˇ
t D b

�
t;Xˇ

t ; �t; ˇt
�
dt C �

�
t;Xˇ

t ; �t
�
dWt

D b
�
t;Xˇ

t ; �t; Ǫ ˇ
t

�
dt C �

�
t;Xˇ

t ; �t
�
dWˇ

t ;
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and

dYˇ
t D � �

Zˇ
t

�
f
�
t;Xˇ

t ; �t; Ǫ ˇ
t

�
dt C Zˇ

t � dWˇ
t

D � �
Zˇ

t

�
�

�
t;Xˇ

t ; Z
ˇ
t

�
dt C Zˇ

t � dWˇ
t ;

with the terminal condition Yˇ
T D g.Xˇ

T ; �T/. This shows that the equations in the
system (4.57) hold true under Pˇ with W replaced by Wˇ and with  .z/�.t; x; z/ as driver in
the backward equation. To prove that .Xˇ;Yˇ;Zˇ/ is indeed a solution of (4.57), it remains
to check the appropriate integrability conditions.

By Proposition 4.18, we know that, for any p > 1,

E
P

�� Z T

0

jZˇ
t j2ds

�p�
< 1:

Since Eˇ
T is in Lr.˝;FT ;PIR/ for some r > 1, the above is also true under Pˇ .

By (4.57), we also have E
PŒsup06t6T jYˇ

t jp� < 1, and then E
P

ˇ
Œsup06t6T jYˇ

t jp� < 1.
Since ˇ is bounded, the same holds with Xˇ instead of Yˇ . The proof is easily completed.

ut

End of the Proof of Theorem 4.45
We now complete the proof of Theorem 4.45.

Proof. The objective is to prove that, for a given deterministic initial condition, the
FBSDE (4.57) has a solution with a bounded martingale integrand, and that this solution
is unique within the class of solutions with bounded martingale integrands. Meanwhile, we
must also construct a decoupling field. As before, we split the proof into successive steps.

First Step. Following the proof of Proposition 4.51, we first focus on a truncated version
of (4.57), namely:

(
dXt D b

�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt C �.t;Xt; �t/dWt;

dYt D � .Zt/f
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt C Zt � dWt;

(4.60)

for t 2 Œ0; T�, with the terminal condition YT D g.XT ; �T/, for a cut-off function  W Rd !
Œ0; 1�, equal to 1 on the ball of center 0 and radius R, and equal to 0 outside the ball of center
0 and radius 2R, such that sup j 0j 6 2=R. For the time being, R > 0 is an arbitrary real
number. Its value will be fixed later on.

By Theorem 4.12, we know that, for any initial condition .t0; x/ 2 Œ0; T� � R
d, (4.60)

is uniquely solvable. We denote the unique solution by .XRIt0;x;YRIt0;x;ZRIt0;x/ D
.XRIt0;x

t ; YRIt0;x
t ; ZRIt0;x

t /t06t6T . Thanks to the cut-off function  , the driver of (4.60) is
indeed Lipschitz-continuous in the variable z. Moreover, the solution can be represented
through a continuous decoupling field uR, Lipschitz continuous in the variable x, uniformly
in time. Also, the martingale integrand ZRIt0;x is bounded by L times the Lipschitz constant
of uR, with L as in assumption MFG Solvability HJB. See also Lemma 4.11. Therefore,
the proof boils down to showing that we can bound the Lipschitz constant of the decoupling
field independently of the cut-off function  in (4.60).
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Second Step. In this step, we fix the values of .t0; x/ 2 Œ0; T� � R
d and R > 0, and we use

the notation .X;Y;Z/ for .XRIt0;x;YRIt0;x;ZRIt0;x/. We then let .Et/06t6T be the Doléans-Dade
exponential of the stochastic integral:

�
�

Z t

0

�
.��1b/.s;Xs; �s; Ǫs/

	 � dWs

�

06t6T

;

where Ǫs D Ǫ .s;Xs; �s; �.s;Xs; �s/
�1�Zs/. As earlier, we write .��1b/.t; x; �; ˛/ for

�.t; x; �/�1b.t; x; �; ˛/ despite the fact that ��1 and b do not have the same arguments. Since
the integrand is bounded, .Et/06t6T is a true martingale, and we can define the probability
measure Q D ET � P. Under Q, the process:

�
WQ

t D Wt C
Z t

0

�
��1b

�
.s;Xs; �s; Ǫs/ds

�

06t6T

is a d-dimensional Brownian motion. Following the proof of Proposition 4.51, we learn that
under Q, .Xt; Yt; Zt/06t6T is a solution of the forward-backward SDE:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D �.t;Xt; �t/dWQ

t ;

dYt D � .Zt/f
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

�Zt � .��1b/
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

CZt � dWQ

t ;

(4.61)

over the interval Œt0; T�, with the same terminal condition as before. Since Z is bounded, the
forward-backward SDE (4.61) may be regarded as an FBSDE with Lipschitz-continuous
coefficients. By the FBSDE version of Yamada-Watanabe theorem proven in Theorem
(Vol II)-1.33 of Chapter (Vol II)-1, any other solution with a bounded martingale integrand,
with the same initial condition but constructed with respect to another Brownian motion, has
the same distribution. Therefore, we can focus on the version of (4.61) obtained by replacing
WQ by W. If, for this version, the backward component Y can be represented in the form
Yt D V.t;Xt/, for all t 2 Œt0; T�, with V being Lipschitz continuous in space, uniformly in
time, and with Z bounded, then V.t0; x/must coincide with uR.t0; x/. Repeating the argument
for any .t0; x/ 2 Œ0; T� � R

d, we then have V � uR.

Third Step. The strategy is now as follows. We consider the same FBSDE as in (4.61), but
with WQ replaced by the original W:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D �.t;Xt; �t/dWt;

dYt D � .Zt/f
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

�Zt � .��1b/
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

CZt � dWt; t 2 Œ0; T�;

with YT D g.XT ; �T/. This BSDE may be regarded as a quadratic BSDE. In particular,
Theorem 4.15 applies and guarantees that it is uniquely solvable. However, since the driver
in the backward equation is not Lipschitz continuous, we cannot make use of the tools
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developed in Subsection 4.1.2 for FBSDEs with Lipschitz continuous coefficients. To bypass
this obstacle, we shall modify the form of the equation and focus on the following version:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D �.t;Xt; �t/dWt;

dYt D � .Zt/f
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

� .Zt/Zt � .��1b/
�
t;Xt; �t; Ǫ�

t;Xt; �t; �.t;Xt; �t/
�1�Zt

��
dt

CZt � dWt; t 2 Œ0; T�:

(4.62)

Notice that the cut-off function  now appears on the third line. Our objective being to prove
that (4.62) admits a solution for which Z is bounded independently of R, when R is large, the
presence of the cut-off does not make any difference.

Now, (4.62) may be regarded as both a quadratic and a Lipschitz FBSDE. For any initial
condition .t0; x/, we may again denote the solution by .XRIt0;x;YRIt0;x;ZRIt0;x/. This is the
same notation as in the first step although the equation is different. Since the steps are
completely separated, there is no risk of confusion. We denote the corresponding decoupling
field by VR. By Theorem 4.12, it is bounded (the bound possibly depending on R at this stage
of the proof) and ZRIt0;x is bounded.

For the sake of simplicity, we assume that t0 D 0 and we drop the indices R and t0 in the
notation .XRIt0;x;YRIt0;x;ZRIt0;x/. We just denote it by .Xx;Yx;Zx/. Similarly, we just denote
VR by V .

The goal is then to prove that there exists a constant C, independent of R and of the cut-off
functions, such that, for all x; x0 2 R

d,

ˇ̌
E

�
Yx0

0 � Yx
0

	ˇ̌
6 Cjx0 � xj; (4.63)

from which we will deduce that, for all x; x0 2 R
d ,

jV.0; x0/ � V.0; x/j 6 Cjx0 � xj;

which is exactly the Lipschitz control we need on the decoupling field.

Fourth Step. We now proceed with the proof of (4.63). Fixing the values of x and x0 and
letting

�
ıXt; ıYt; ıZt

� D �
Xx0

t � Xx
t ; Y

x0

t � Yx
t ; Z

x0

t � Zx
t

�
; t 2 Œ0; T�;

we can write:

dıXt D �
ı�tıXt

	
dWt; t 2 Œ0; T�; (4.64)

where ı�tıXt is the d � d matrix with entries:

�
ı�tıXt

�
i;j D

dX

`D1

�
ı�t

�
i;j;`

�
ıXt

�
`
; i; j 2 f1; � � � ; dg2;



274 4 FBSDEs and the Solution of MFGs Without Common Noise

where .ıXt/` is the `th coordinate of ıXt and

�
ı�t

�
i;j;` D �i;j

�
t;X`�1Ix!x0

t ; �t
� � �i;j

�
t;X`Ix!x0

t ; �t
�

.ıXt/`
1.ıXt/` 6D0;

with:

X`Ix!x0

t D �
.Xx

t /1; � � � ; .Xx
t /`; .X

x0

t /`C1; � � � ; .Xx0

t /d
�
:

From the Lipschitz property of � in x, the process .ı�t/06t6T is bounded by a constant C only
depending upon L in the assumption. Notice that in the notation ı�tıXt, .ı�tıXt/i;j appears
as the inner product of ..ı�t/i;j;`/16`6d and ..ıXt/`/16`6d. Because of the presence of the
additional indices .i; j/, we chose not to use the inner product notation in this definition. This
warning being out of the way, we may use the inner product notation when convenient.

Indeed, in a similar fashion, the pair .ıYt; ıZt/06t6T satisfies a backward equation of the
form:

ıYt D ıgT � ıXT

C
Z T

t

�
ıF.1/s � ıXs C ıF.2/s � ıZs

�
ds �

Z T

t
ıZs � dWs; t 2 Œ0; T�;

(4.65)

where ıgT is an R
d-valued random variable bounded by C and ıF.1/ D .ıF.1/t /06t6T

and ıF.2/ D .ıF.2/t /06t6T are progressively measurable R
d-valued processes, which are

bounded, the bounds possibly depending upon the function  . Here, “�” denotes the inner
product of Rd. Notice that, as a uniform bound on the growth of ıF.1/ and ıF.2/, we have:

jıF.1/t j 6 C
�
1C jZx

t j2 C jZx0

t j2�
jıF.2/t j 6 C

�
1C jZx

t j C jZx0

t j� ; t 2 Œ0; T�; (4.66)

the constant C only depending on the constant L appearing in the assumption and where we
used the assumption sup j 0j 6 2=R.

Since ıF.2/ is bounded, we may introduce a probability Q (again this is not the same Q as
that appearing in the second step, but, since the two steps are completely independent, there
is no risk of confusion), equivalent to P, under which .WQ

t D Wt � R t
0
ıF.2/s ds/06t6T is a

Brownian motion. Then,

ˇ̌
E

�
ıY0

�ˇ̌ D ˇ̌
E
Q

�
ıY0

�ˇ̌ D
ˇ̌
ˇ̌EQ

�
ıgT � ıXT C

Z T

0

ıF.1/s � ıXs ds

�ˇ̌
ˇ̌: (4.67)

In order to handle the above right-hand side, we need to investigate dQ=dP. This requires to
go back to (4.66) and to (4.62).

Fifth Step. The backward equation in (4.62) may be regarded as a quadratic BSDE satisfying
assumption Quadratic BSDE, uniformly in R. By Theorem 4.19, the stochastic integral
.
R t
0

Zx
s � dWs/06t6T is of Bounded Mean Oscillation and its BMO norm is independent of

x and R. Without any loss of generality, we may assume that it is less than C.
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Coincidentally, the same holds true if we replace Zx
s by ıF.2/s from (4.65), as

jıF.2/s j 6 C.1C jZx
s j C jZx0

s j/. By Proposition 4.18, we deduce that there exists an exponent
r > 1, only depending on L and T , such that (allowing the constant C to increase from line
to line):

E

h
 dQ

dP

�ri
6 C:

Now (4.64) implies that, for any p > 1, there exists a constant C0

p, independent of the cut-
off functions  , such that EŒsup06t6T jıXsjp�1=p 6 C0

pjx � x0j. Therefore, applying Hölder’s
inequality, (4.67) and the bound for the r-moment of dQ=dP, we obtain:

ˇ̌
E

�
ıY0

�ˇ̌
6 Cjx � x0j


1C E

�� Z T

0

�jZx
s j2 C jZx0

s j2�ds

�r0 �1=r0 �
; (4.68)

for some r0 > 1. In order to estimate the right-hand side, we invoke Theorem 4.18 again. We
deduce that:

ˇ̌
E

�
ıY0

�ˇ̌
6 C0jx � x0j;

for a constant C0 that only depends upon L and T . This proves the required estimate for the
Lipschitz constant of the decoupling field associated with the system (4.62). ut

4.4.4 Conclusion

We now return to the mean field game associated with the stochastic control
problem (4.52).

By Theorem 4.45, any solution to the McKean-Vlasov FBSDE:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D b
�
t;Xt;L.Xt/; Ǫ�

t;Xt;L.Xt/; �.t;Xt;L.Xt//
�1�Zt

��
dt

C�.t;Xt;L.Xt//dWt;

dYt D �f
�
t;Xt;L.Xt/; Ǫ�

t;Xt;L.Xt/; �.t;Xt;L.Xt//
�1�Zt

��
dt

CZt � dWt;

(4.69)

for t 2 Œ0;T�, with X0 D � 2 L2.˝;F0;PIRd/ as initial condition and YT D
g.XT ;L.XT// as terminal condition, provides a solution to the MFG problem derived
from (4.52) since, under assumption MFG Solvability HJB, Equation (4.69) but
with a frozen interaction falls within the scope of Theorem 4.45.

The goal now is to invoke Theorem 4.39 to solve (4.69). Using the fact that
the bound for the process Z0I� in the statement of Theorem 4.45 is independent of
�, we can recover the setting of Theorem 4.39: By a truncation argument, we can
indeed assume without any loss of generality that assumption MKV FBSDE for
MFG holds true. Combining the results of Theorems 4.39 and 4.45, we complete
the proof of Theorem 4.44, proving the existence of an equilibrium to the MFG
problem.
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4.5 SolvingMFGs by the Stochastic Pontryagin Principle

4.5.1 Statement of the Solvability Results

We now present another strategy for proving the existence of an MFG equilibrium,
based upon the stochastic Pontryagin maximum principle. We already presented
this alternative method in Subsection 3.3.2, but we now address the solvability
of the underpinning McKean-Vlasov FBSDE under weaker conditions than in
Theorem 3.24. Recall that the FBSDE takes the form:

(
dXt D b

�
t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/;Yt/

�
dt C �dWt;

dYt D �@xH
�
t;Xt;L.Xt/;Yt; Ǫ .t;Xt;L.Xt/;Yt/

�
dt C ZtdWt;

(4.70)

for t 2 Œ0;T�, with the initial condition X0 D � 2 L2.˝;F0;PIRd/, together with
the terminal condition YT D @xg.XT ;L.XT//. For convenience purposes, we recall
the assumption introduced in Chapter 3.

Assumption (SMP). The coefficients b, f , � and g are defined on Œ0;T� �
R

d � A � P2.Rd/, Œ0;T� � R
d � A � P2.Rd/, Œ0;T� � R

d and R
d � P2.Rd/

respectively and they satisfy, for two constants 
 > 0 and L > 1,

(A1) The drift b is an affine function of .x; ˛/ in the sense that it is of the
form:

b.t; x; �; ˛/ D b0.t; �/C b1.t/x C b2.t/˛; (4.71)

where Œ0;T� � P2.Rd/ 3 .t; �/ 7! b0.t; �/, b1 W Œ0;T� 3 t 7! b1.t/
and b2 W Œ0;T� 3 t 7! b2.t/ are R

d, Rd�d and R
d�k valued respectively,

and are measurable and bounded on bounded subsets of their respective
domains.

(A2) The function � is constant.
(A3) The function R

d � A 3 .x; ˛/ 7! f .t; x; �; ˛/ 2 R is once continuously
differentiable with Lipschitz-continuous derivatives (so that f .t; �; �; �/
is C1;1), the Lipschitz constant in x and ˛ being bounded by L (so that
it is uniform in t and �). Moreover, it satisfies the following form of

-convexity:

f .t; x0; �; ˛0/ � f .t; x; �; ˛/

� .x0 � x; ˛0 � ˛/ � @.x;˛/f .t; x; �; ˛/ > 
j˛0 � ˛j2:
(4.72)

The notation @.x;˛/f stands for the gradient in the joint variables .x; ˛/.
Finally, f , @xf and @˛f are locally bounded over Œ0;T��R

d �P2.Rd/�A.

(continued)
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(A4) The function R
d � P2.Rd/ 3 .x; �/ 7! g.x; �/ is locally bounded.

Moreover, for any � 2 P2.Rd/, the function R
d 3 x 7! g.x; �/ is

once continuously differentiable and convex, and has an L-Lipschitz-
continuous first order derivative.

On top of assumption SMP, we shall use the following assumptions to solve the
matching problem (ii) in (3.4). Recall the notation M2.�/

2 for the second moment
of the measure � introduced in (3.26). The following assumptions are stated using
a fixed point ˛0 2 A. Clearly, the assumptions do not depend upon the particular
choice of this control value in A.

Assumption (MFG Solvability SMP). On top of assumption SMP, the
coefficients b, f and g satisfy for some ˛0 2 A and with the same constant L:

(A5) The functions Œ0;T� 3 t 7! f .t; 0; ı0; ˛0/, Œ0;T� 3 t 7! @xf .t; 0; ı0; ˛0/
and Œ0;T� 3 t 7! @˛f .t; 0; ı0; ˛0/ are bounded by L, and for all t 2 Œ0;T�,
x; x0 2 R

d, ˛; ˛0 2 A and �;�0 2 P2.Rd/, it holds:

ˇ̌
f .t; x0; �0; ˛0/ � f .t; x; �; ˛/

ˇ̌ C ˇ̌
g.x0; �0/ � g.x; �/

ˇ̌

6 L
�
1C j.x0; ˛0/j C j.x; ˛/j C M2.�/C M2.�

0/
	

� �j.x0; ˛0/ � .x; ˛/j C W2.�
0; �/

	
:

Moreover, b0, b1 and b2 in (4.71) are bounded by L and b0 satisfies, for
any �;�0 2 P2.Rd/,

jb0.t; �0/ � b0.t; �/j 6 LW2.�; �
0/:

(A6) For all t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/; j@˛f .t; x; �; ˛0/j 6 L.

(A7) For all .t; x/ 2 Œ0;T� � R
d,

x � @xf .t; 0; ıx; ˛0/ > �L.1Cjxj/; and x � @xg.0; ıx/ > �L.1Cjxj/:

Assumption (A5) provides Lipschitz continuity while condition (A6) controls the
smoothness of the running cost f with respect to ˛ uniformly in the other variables.
The most unusual assumption is certainly condition (A7). We refer to it as a weak
mean-reverting condition as it looks like a standard mean-reverting condition for
recurrent diffusion processes, even though the notion of recurrence does not make
much sense in our case since we are working on a finite time interval. Still, as
shown by the proof of Theorem 4.53 below, its role is to control the expectation of
the solution of the forward equation in (4.70), providing an a priori bound for it.
The latter will play a crucial role in the proof of compactness.
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Here is the main result of this section:

Theorem 4.53 Under assumption MFG Solvability SMP, when A D R
k and ˛0 D

0, the forward-backward system (4.70) has a solution. Hence, so does the MFG
problem associated with the stochastic control problem (4.52).

Moreover, for any solution .X;Y;Z/ D .Xt;Yt;Zt/06t6T of (4.70), there exists a
function u W Œ0;T� � R

d ! R
d satisfying the growth and Lipschitz properties:

8t 2 Œ0;T�; 8x; x0 2 R
d;

 ju.t; x/j 6 C.1C jxj/;
ju.t; x/ � u.t; x0/j 6 Cjx � x0j; (4.73)

for some constant C > 0, and such that P-a.s. Yt D u.t;Xt/ for all t 2 Œ0;T�. In
particular, for any p > 1, EŒsup06t6T jXtjp� < C1.

In line with the terminology used so far, the function u will be referred to as the
decoupling field of the FBSDE when the environment � D .�t D L.Xt//06t6T is
fixed.

Remark 4.54 An interesting example which should be kept in mind is a particular
case of the class of linear-quadratic models which we already studied in detail in
Section 3.5. Indeed, assume that b0, f , and g have the form:

b0.t; �/ D b0.t/ N�; g.x; �/ D 1

2

ˇ̌
qx C Nq N�ˇ̌2

;

f .t; x; �; ˛/ D 1

2

ˇ̌
m.t/x C Nm.t/ N�ˇ̌2 C 1

2
jn.t/˛j2;

where q, Nq, m.t/ and Nm.t/ are elements of Rd0�d, for some d0 > 1, n.t/ is an element
of Rk0�k, for some k0 > k, and N� stands for the mean of �. Assumption MFG
Solvability SMP is satisfied when b0.t/ � 0 (so that b0 is bounded as required in
(A5)), Nq�q > 0, Nm.t/�m.t/ > 0, and n.t/�n.t/ > 
Ik in the sense of quadratic forms
so that (A7) and (A3) hold. In the one-dimensional case d D m D 1, (A7) says that
qNq and m.t/ Nm.t/ must be nonnegative and (A3) says that n.t/2 must be greater than

. As we saw in Section 3.5, these conditions are not optimal for existence when
d D m D 1, as we showed that (4.70) is indeed solvable when Œ0;T� 3 t 7! b0.t/ is
a (possibly nonzero) continuous function, q.q C Nq/ > 0 and m.t/.m.t/C Nm.t// > 0.
Obviously, the gap between these conditions is the price to pay for treating general
systems within a single framework.

Another example investigated in Section 3.5 is b0 � 0, b1 � 0, b2 � 1, f � ˛2=2,
with d D m D 1. When g.x; �/ D Nq.x � s N�/2=2, with Nq > 0 and s 2 R, assumption
MFG Solvability SMP is satisfied when Nqs 6 0 (so that (A7) holds). The optimal
condition given in Section 3.5 is 1C Nq.1 � s/T 6D 0.

Notice that assumption MFG Solvability SMP is satisfied when g.x; �/ D Nq.x�
s�. N�//2=2 for a bounded Lipschitz-continuous function � from R into itself.
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Remark 4.55 The reader may want to apply Theorem 4.39 in order to prove
Theorem 4.53, but, as made clear in the proof below, the difficulty is that (A5) in
assumption MKV FBSDE for MFG may not be satisfied.

The remainder of the section is dedicated to the proof of Theorem 4.53. It split
into four main steps.

Preliminary Analysis of the SMP
The first step is to prove, for an initial condition � in L2.˝;F0;PIRd/, the
solvability of the FBSDE:

8
ˆ̂<

ˆ̂:

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t;Yt/

�
dt C �dWt;

dYt D �@xH
�
t;Xt; �t;Yt; Ǫ .t;Xt; �t;Yt/

�
dt C ZtdWt; t 2 Œ0;T�;

X0 D �; YT D @xg.XT ; �T/;

(4.74)

whose analysis was left open in the proof of Theorem 3.17.
To this end, we need the following lemma.

Lemma 4.56 Given a continuous flow � D .�t/06t6T from Œ0;T� to P2.Rd/, the
FBSDE (4.74) is uniquely solvable under assumption SMP, A being a general
closed convex subset of Rk. If we denote its solution by .X0;�t ;Y0;�t ;Z0;�t /06t6T , then
there exist a constant C > 0, only depending upon the parameters in SMP and thus
independent of �, and a locally bounded measurable function u W Œ0;T��R

d ! R
d,

depending on �, such that

8t 2 Œ0;T�; 8x; x0 2 R
d; ju.t; x0/ � u.t; x/j 6 Cjx0 � xj;

and P-a.s., for all t 2 Œ0;T�, Y0;�t D u.t;X0;�t /.

The proof of Lemma 4.56 is based on Lemma 3.3 and Proposition 3.21 from
Chapter 3.

Proof. From the definition of the reduced Hamiltonian, @xH reads @xH.t; x; �; y; ˛/ D
b1.t/�y C @xf .t; x; �; ˛/, so that, by Lemma 3.3, the driver Œ0; T� � R

d � R
d 3 .t; x; y/ 7!

@xH.t; x; �t; Ǫ .t; x; �t; y// of the backward equation in (4.70) is Lipschitz continuous in the
variables .x; y/, uniformly in t. Therefore, by Theorem 4.2, existence and uniqueness hold
when T is small enough. Equivalently, when T is arbitrary, there exists ı > 0, depending
on the Lipschitz constant of the coefficients in the variables x and y such that unique
solvability holds on ŒT � ı; T�, that is when the initial condition � 2 L2.˝;Ft0 ;PIRd/ of
the forward process is prescribed at some time t0 2 ŒT � ı; T�. The solution is then denoted
by .Xt0;�

t ; Yt0;�
t ; Zt0;�

t /t06t6T . Following Subsection 4.1.2, existence and uniqueness can be
established on the whole Œ0; T� by iterating the unique solvability property in short time
provided we have:

8x0; x
0

0 2 R
d;

ˇ̌
Yt0;x0

t0 � Y
t0;x

0

0
t0

ˇ̌2 6 Cjx0 � x0

0j2; (4.75)
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for some constant C independent of t0 and ı. By (3.39), we have:

OJt0;x0 C �
x0

0 � x0
� � Yt0;x0

t0 C 
E

Z T

t0

j Ǫ t0;x0
t � Ǫ t0;x

0

0
t j2dt 6 OJt0;x

0

0 ; (4.76)

where OJt0;x0 D J�.. Ǫ t0;x0
t /t06t6T/ and Ǫ t0;x0

t D Ǫ .t;Xt0;x0
t ; �t; Y

t0;x0
t / (with similar definitions

for OJt0;x
0

0 and Ǫ t0;x
0

0
t by replacing x0 by x0

0). Exchanging the roles of x0 and x0

0 in (4.76) and
adding the resulting inequality to (4.76), we deduce that:

2
E

Z T

t0

j Ǫ t0;x0
t � Ǫ t0;x

0

0
t j2dt 6

�
x0

0 � x0
� � �

Y
t0;x

0

0
t0 � Yt0;x0

t0

�
: (4.77)

Moreover, by standard SDE estimates first and then by standard BSDE estimates, there exists
a constant C (the value of which may vary from line to line), independent of t0 and ı, such
that:

E
�

sup
t06t6T

jXt0;x0
t � X

t0;x
0

0
t j2	 C E

�
sup

t06t6T
jYt0;x0

t � Y
t0;x

0

0
t j2	

6 CE

Z T

t0

j Ǫ t0;x0
t � Ǫ t0;x

0

0
t j2dt:

Plugging (4.77) into the above inequality completes the proof of (4.75). As explained in
Section 4.1, the function u is then defined as u W Œ0; T� � R

d 3 .t; x/ 7! Yt;x
t and the

representation property of Y in terms of X follows from (4.8). Local boundedness of u follows
from the Lipschitz continuity in the variable x together with the obvious inequality:

sup06t6T ju.t; 0/j 6 sup06t6T

�
E

�ju.t;X0;0t / � u.t; 0/j	 C E
�jY0;0t j	

�
< 1. ut

4.5.2 Existence under Additional Boundedness Conditions

We first prove existence under an extra boundedness assumption. When, in addition,
A is bounded, � is invertible, b does not depend on x and the coefficients of
(4.74) are continuous in the measure argument, existence is already known from
Theorem 3.24. In the proof below, we derive the a priori estimates needed for
compactness in the statement of Schauder’s theorem from the strong convexity
of the running cost and the convenient form of the stochastic maximum principle
recalled earlier.

Proposition 4.57 The system (4.70) is solvable if, in addition to assumption MFG
Solvability SMP, we also assume that EŒj�j4� < 1 and that @xf and @xg are
uniformly bounded, i.e., for some constant c > 0

8t 2 Œ0;T�; x 2 R
d; � 2 P2.Rd/; ˛ 2 A;

j@xg.x; �/j C j@xf .t; x; �; ˛/j 6 c:
(4.78)
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Notice that (4.78) implies (A7) in assumption MFG Solvability SMP.

Proof. Throughout the proof, we denote by .X�I�;Y�I�;Z�I�/ the solution of (4.74) with �

as input. Also, we denote by u� the corresponding decoupling field.
For a given � 2 L4.˝;F0;PIRd/, we consider the map � 7! ˚.�/ D .L.X�I�t //06t6T

and try to apply Schauder’s Theorem 4.32 in order to prove that ˚ has a fixed point, very
much in the spirit of the proofs of Theorems 4.29 and 4.39. See also Remark 4.42 for a
comment on the difference between the two proofs. Following Subsections 4.3.2 and 4.3.5,
we apply Schauder’s fixed point theorem in the space C.Œ0; T�IM1

f .R
d// of continuous

functions � D .�t/06t6T from Œ0; T� into the space of finite signed measures over R
d ,

equipped with the supremum of the Kantorovich-Rubinstein norm:

k�k D sup
t2Œ0;T�

k�tkKR?;

with

k�kKR? D j�.Rd/j C sup

 Z

Rd
`.x/d�.x/I ` 2 Lip1.R

d/; `.0/ D 0

�
:

As already explained several times, k � kKR? coincides with the Wasserstein distance W1 on
P1.Rd/. See the Notes & Complements at the end of Chapter 5 for details and references.

We prove existence by proving that there exists a closed convex subset E included in
C.Œ0; T�IP2.Rd// which, when viewed as a subset of C.Œ0; T�IM1

f .R
d//, is stable for ˚ ,

with a relatively compact range, ˚ being continuous on E .

First Step. We first establish several a priori estimates for the solution of (4.74). The
coefficients @xf and @xg being bounded, the terminal condition in (4.74) is bounded, and
the growth of the driver is controlled by:

j@xH
�
t; x; �t; y; Ǫ .t; x; �t; y/

�j 6 c C Ljyj:

By expanding .jY�I�t j2/06t6T as the solution of a one-dimensional BSDE, we can compare
it with the solution of a deterministic BSDE with a constant terminal condition. This implies
that there exists a constant C, only depending upon c, L and T , such that, for any � 2
C.Œ0; T�IP2.Rd//, P-almost surely,

8t 2 Œ0; T�; jY�I�t j 6 C: (4.79)

Notice that the value of the constant C will vary from line to line. By (3.10) in the statement
of Lemma 3.3, and by (A6) in assumption MFG Solvability SMP, we deduce that:

8t 2 Œ0; T�; ˇ̌ Ǫ�
t;X�I�t ; �t; Y

�I�
t

�ˇ̌
6 C: (4.80)

Plugging this bound into the forward part of (4.74), and again, allowing the constant C to
increase when necessary, standard Lp estimates for SDEs imply:

E
�

sup
06t6T

jX�I�t j4j	 6 C


1C E

�j�j4	
�
: (4.81)
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We consider the restriction of ˚ to the subset E of continuous flows of probability measures
whose fourth moments are not greater than C.1C EŒj�j4�/, i.e.,

E D


� 2 C
�
Œ0; T�IP4.Rd/

� W sup
06t6T

Z

Rd
jxj4d�t.x/ 6 C

�
1C EŒj�j4��

�
:

Clearly, E is convex and closed for the 1-Wasserstein distance, and ˚ maps E into itself.

Second Step. By (4.80), we get for any � 2 E and 0 6 s 6 t 6 T:

jX�I�t � X�I�s j 6 C
�
.t � s/

�
1C sup

06r6T
jX�I�r j� C jWt � Wsj

	
;

so that, by (4.81),

W2

�
Œ˚.�/�t; Œ˚.�/�s

� D W2

�
L.X�I�t /;L.X�I�s /

�
6 C.t � s/1=2;

where C is now allowed to depend on �.
Using (4.81) and Corollary 5.6 in Chapter 5, we deduce that there exists a compact subset

K � P2.Rd/ such that, for any � 2 E , Œ˚.�/�t 2 K for any t 2 Œ0; T�. By the above
bound and by Arzelà-Ascoli theorem, we deduce that ˚.E/ is a relatively compact subset of
C.Œ0; T�IP2.Rd// and thus of C.Œ0; T�IP1.Rd//; see Chapter 5.

Third Step. We finally check that ˚ is continuous on E . Given another flow of measures
�0 2 E , (3.39) in Proposition 3.21 implies that:

J�
� Ǫ � C 
E

Z T

0

j Ǫ 0

t � Ǫ tj2dt

6 J�
�� Ǫ 0;�0

	� � E

Z T

0

�
b0.t; �

0

t/ � b0.t; �t/
� � Y�I�t dt;

(4.82)

where Ǫ t D Ǫ .t;X�I�t ; �t; Y
�I�
t / for t 2 Œ0; T�, Ǫ 0

t being defined in a similar way by replacing
� by �0. By optimality of Ǫ 0 for the cost functional J�0

.�/, we claim:

J�
�� Ǫ 0;�0

	�
6 J�0 � Ǫ � C J�

�� Ǫ 0;�0
	� � J�0 � Ǫ 0

�
;

so that (4.82) yields:


E

Z T

0

j Ǫ 0

t � Ǫ tj2dt 6 J�0 � Ǫ � � J�
� Ǫ � C J�

�� Ǫ 0;�0
	� � J�0 � Ǫ 0

�

� E

Z T

0

�
b0.t; �

0

t/ � b0.t; �t/
� � Y�I�t dt:

(4.83)

We now compare J�0

. Ǫ / with J�. Ǫ /, and similarly J�0

. Ǫ 0/ with J�.Œ Ǫ 0;�0�/. We notice
that J�. Ǫ / is the cost associated with the flow of measures � D .�t/06t6T and the
diffusion process X�I�, whereas J�0

. Ǫ / is the cost associated with the flow of measures
�0 D .�0

t/06t6T and the controlled diffusion process U D .Ut/06t6T satisfying:

dUt D �
b0.t; �

0

t/C b1.t/Ut C b2.t/ Ǫ t
	
dt C �dWt; t 2 Œ0; T� I U0 D �:
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By Gronwall’s lemma, we can modify the value of C (which is now allowed to depend on �)
in such a way that:

E
�

sup
06t6T

jX�I�t � Utj2
	

6 C
Z T

0

W2
2 .�t; �

0

t/dt:

Since � and �0 are in E , we deduce from (A5) in assumption MFG Solvability SMP, (4.80)
and (4.81) that:

J�0 � Ǫ � � J�
� Ǫ �

6 C

��Z T

0

W2
2 .�t; �

0

t/dt

�1=2
C W2.�T ; �

0

T/

�
:

A similar bound holds for J�.Œ Ǫ 0;�0�/�J�0

. Ǫ 0/, the argument being even simpler as the costs
are driven by the same processes. So from (4.83) and (4.79) again, together with Gronwall’s
lemma to go back to the controlled SDEs,

E

Z T

0

j Ǫ 0

t � Ǫ tj2dt C E
�

sup
06t6T

jX�I�t � X�I�
0

t j2	

6 C

��Z T

0

W2
2 .�t; �

0

t/dt

�1=2
C W2.�T ; �

0

T/

�
;

where C is also allowed to depend on 
.
As probability measures in E have bounded moments of order 4, Cauchy-Schwartz

inequality yields:

sup
06t6T

W1

�
Œ˚.�/�t; Œ˚.�

0/�t
�

6 C

��Z T

0

W2.�t; �
0

t/
2dt

�1=4
C W2.�T ; �

0

T/
1=2

�

6 C

��Z T

0

W1.�t; �
0

t/
1=2dt

�1=4
C W1.�T ; �

0

T/
1=8

�
;

showing that ˚ is continuous on E . The last inequality follows from Hölder’s inequality
EŒjXj2� D EŒjXj1=2jXj3=2� 6 EŒjXj�1=2EŒjXj3�1=2 6 EŒjXj�1=2EŒjXj4�3=8, for any random
variable X. ut

4.5.3 Approximation Procedure

Obviously, examples of functions f and g which are convex in x and such that @xf and
@xg are bounded are rather limited in number and scope. Also, boundedness of @xf
and @xg fails in the typical case when f and g are quadratic with respect to x. In order
to overcome this limitation, we propose to approximate the cost functions f and g
by two sequences .f n/n>1 and .gn/n>1, referred to as approximated cost functions,
satisfying assumption MFG Solvability SMP uniformly with respect to n > 1, and
such that, for any n > 1, equation (4.70), with .@xf ; @xg/ replaced by .@xf n; @xgn/

and with � 2 L4.˝;F0;PIRd/, has a solution .Xn;Yn;Zn/. In this framework,
Proposition 4.57 says that such approximate FBSDEs are indeed solvable when @xf n

and @xgn are bounded for any n > 1. Our approximation procedure relies on the
following:
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Lemma 4.58 Let us assume that there exist two sequences .f n/n>1 and .gn/n>1 such
that:

(i) there exist two parameters L0 and 
0 > 0 such that, for any n > 1, f n and gn

satisfy assumption MFG Solvability SMP with 
0 and L0;
(ii) f n (resp. gn) converges towards f (resp. g) uniformly on bounded subsets of

Œ0;T� � R
d � P2.Rd/ � A (resp. Rd � P2.Rd/);

(iii) for any n > 1, equation (4.70), with .@xf ; @xg/ replaced by .@xf n; @xgn/ and
with � 2 L4.˝;F0;PIRd/ instead of � 2 L2.˝;F0;PIRd/, has a solution.

Then, equation (4.70), with the original coefficients and with � 2 L2.˝;F0;PIRd/,
is solvable.

Proof. For a sequence of F0-measurable random variables .�n/n>1 with values in R
d , such

that j�nj 6 j�j ^ n for all n > 1 and EŒj� � �nj2� ! 0 as n tends to 1, we denote
by .Xn;Yn;Zn/n>1 the sequence of processes obtained by solving (4.70), with .@xf ; @xg/
replaced by .@xf n; @xgn/ and � by �n.

We establish tightness of the processes .Xn/n>1 in order to extract a convergent subse-
quence of .�n D .�n

t D L.Xn
t //06t6T/n>1. For any n > 1, we consider the approximate

Hamiltonian:

Hn.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f n.t; x; �; ˛/;

together with its minimizer Ǫ n.t; x; �; y/ D argmin˛Hn.t; x; �; y; ˛/. Setting Ǫ n
t D

Ǫ n.t;Xn
t ;L.Xn

t /; Y
n
t / for any t 2 Œ0; T� and n > 1, our first step will be to prove that:

sup
n>1

E

� Z T

0

j Ǫ n
s j2ds

�
< C1: (4.84)

Since Xn is the diffusion process controlled by Ǫ n D . Ǫ n
t /06t6T , we use Theorem 3.17 to

compare its behavior to the behavior of a reference controlled process Un whose dynamics are
driven by a specific control ˇn. We shall consider two different versions for Un corresponding
to the following choices for ˇn:

.i/ ˇn
s D EŒ Ǫ n

s � for 0 6 s 6 TI .ii/ ˇn � 0: (4.85)

For each of these controls, we compare its cost to the optimal cost by using the version of
the stochastic maximum principle which we proved earlier, and subsequently, derive useful
information on the optimal control Ǫ n.

First Step. We first consider .i/ in (4.85). In this case,

Un
t D �n C

Z t

0

�
b0.s;L.Xn

s //C b1.s/U
n
s C b2.s/E. Ǫ n

s /
	
ds C �Wt; t 2 Œ0; T�: (4.86)

Notice that taking expectations on both sides of (4.86) shows that E.Un
s / D E.Xn

s /, for
0 6 s 6 T , and that:

�
Un

t � E.Un
t /

	 D �
�n � E.�n/

	 C
Z t

0

b1.s/
�
Un

s � E.Un
s /

	
ds C �Wt; t 2 Œ0; T�;
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from which it easily follows that supn>1 sup06s6T Var.Un
s / < C1. By Theorem 3.17, with

gn.�;L.Xn
T// as terminal cost and .f n.t; �;L.Xn

t /; �//06t6T as running cost, we get:

E
�
gn

�
Xn

T ;L.Xn
T/

�	 C E

Z T

0

�

0j Ǫ n

s � ˇn
s j2 C f n

�
s;Xn

s ;L.Xn
s /; Ǫ n

s

�	
ds

6 E

�
gn

�
Un

T ;L.Xn
T/

� C
Z T

0

f n
�
s;Un

s ;L.Xn
s /; ˇ

n
s

�
ds

�
:

(4.87)

Using the fact that ˇn
s D EŒ Ǫ n

s �, the convexity condition in (A2) and (A4) and Jensen’s
inequality, we obtain:

gn
�
E.Xn

T/;L.Xn
T/

� C
Z T

0

�

0Var. Ǫ n

s /C f n
�
s;E.Xn

s /;L.Xn
s /;E. Ǫ n

s /
�	

ds

6 E

�
gn

�
Un

T ;L.Xn
T/

� C
Z T

0

f n
�
s;Un

s ;L.Xn
s /;E. Ǫ n

s /
�
ds

�
:

(4.88)

By (A5) in assumption MFG Solvability SMP, we deduce that there exists a constant C,
depending only on 
, L, EŒj�j2� and T , such that (the actual value of C possibly varying from
line to line):

Z T

0

Var. Ǫ n
s /ds 6 C

�
1C E

�jUn
T j2	1=2 C E

�jXn
T j2	1=2�E�jUn

T � E.Xn
T/j2

	1=2

C C
Z T

0

�
1C E

�jUn
s j2	1=2 C E

�jXn
s j2	1=2 C E

�j Ǫ n
s j2	1=2�E�jUn

s � E.Xn
s /j2

	1=2
ds:

Since E.Xn
t / D E.Un

t / for any t 2 Œ0; T�, we deduce from the uniform boundedness of the
variance of .Un

s /06s6T that:

Z T

0

Var. Ǫ n
s /ds 6 C

�
1C sup

06s6T
EŒjXn

s j2�1=2 C
�
E

Z T

0

j Ǫ n
s j2ds

�1=2�
: (4.89)

From this, the linearity of the dynamics of Xn and Gronwall’s inequality, we deduce:

sup
06s6T

Var.Xn
s / 6 C

�
1C

�
E

Z T

0

j Ǫ n
s j2ds

�1=2�
; (4.90)

since

sup
06s6T

E
�jXn

s j2	 6 C

�
1C E

Z T

0

j Ǫ n
s j2ds

�
: (4.91)

Bounds like (4.90) allow us to control, for any 0 6 s 6 T , the Wasserstein distance between
the distribution of Xn

s and the Dirac mass at the point E.Xn
s /.

Second Step. We now compare Xn to the process controlled by the null control. So we
consider case .ii/ in (4.85), and now:
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Un
t D �n C

Z t

0

�
b0

�
s;L.Xn

s /
� C b1.s/U

n
s

	
ds C �Wt; t 2 Œ0; T�:

Note that we still denote the solution by Un although it is different from the one in the first
step. By the boundedness of b0 in (A5) in assumption MFG Solvability SMP, it holds that
supn>1 EŒsup06s6T jUn

s j2� < 1. Using Theorem 3.17 as before in the derivation of (4.87)
and (4.88), we get:

gn
�
E.Xn

T/;L.Xn
T/

� C
Z T

0

�

0
E.j Ǫ n

s j2/C f n
�
s;E.Xn

s /;L.Xn
s /;E. Ǫ n

s /
�	

ds

6 E

�
gn

�
Un

T ;L.Xn
T/

� C
Z T

0

f n
�
s;Un

s ;L.Xn
s /; 0

�
ds

�
:

By convexity of f n with respect to ˛ (recall (A2) in assumption MFG Solvability SMP,
together with (A6)), we get:

gn
�
E.Xn

T/;L.Xn
T/

� C
Z T

0

�

0
E

�j Ǫ n
s j2� C f n

�
s;E.Xn

s /;L.Xn
s /; 0

�	
ds

6 E

�
gn

�
Un

T ;L.Xn
T/

� C
Z T

0

f n
�
s;Un

s ;L.Xn
s /; 0

�
ds

�
C CE

Z T

0

j Ǫ n
s jds;

for some constant C, independent of n. Using (A5), we obtain:

gn
�
E.Xn

T/; ıE.Xn
T /

� C
Z T

0

�

0
E

�j Ǫ n
s j2� C f n

�
s;E.Xn

s /; ıE.Xn
s /
; 0

�	
ds

6 gn
�
0; ıE.Xn

T /

� C
Z T

0

f n
�
s; 0; ıE.Xn

s /
; 0

�
ds C CE

Z T

0

j Ǫ n
s jds

C C
�
1C sup

06s6T

�
E

�jXn
s j2	1=2	��1C sup

06s6T

�
Var.Xn

s /
	1=2�

;

the value of C possibly varying from line to line. From (4.91), Young’s inequality yields:

gn
�
E.Xn

T/; ıE.Xn
T /

� C
Z T

0

�
0

2
E

�j Ǫ n
s j2� C f n

�
s;E.Xn

s /; ıE.Xn
s /
; 0

�	
ds

6 gn
�
0; ıE.Xn

T /

� C
Z T

0

f n
�
s; 0; ıE.Xn

s /
; 0

�
ds C C

�
1C sup

06s6T

�
Var.Xn

s /
	�
:

By (4.90), we obtain:

gn
�
E.Xn

T/; ıE.Xn
T /

� C
Z T

0

�
0

2
E

�j Ǫ n
s j2� C f n

�
s;E.Xn

s /; ıE.Xn
s /
; 0

�	
ds

6 gn
�
0; ıE.Xn

T /

� C
Z T

0

f n
�
s; 0; ıE.Xn

s /
; 0

�
ds C C

�
1C

� Z T

0

E
�j Ǫ n

s j2�ds

�1=2�
:
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Young’s inequality and the convexity in x of gn and f n give:

E.Xn
T/ � @xgn

�
0; ıE.Xn

T /

� C
Z T

0

�
0

4
E

�j Ǫ n
s j2� C E.Xn

s / � @xf n
�
s; 0; ıE.Xn

s /
; 0

�	
ds 6 C:

By (A7), we get E
R T
0

j Ǫ n
s j2ds 6 C.1 C sup06s6T EŒjXn

s j2�1=2/, and the bound (4.84) now
follows from (4.91), and as a consequence,

EŒ sup
06s6T

jXn
s j2� 6 C: (4.92)

Using (4.84) and (4.92), we can prove that the processes .Xn/n>1 are tight in C.Œ0; T�IRd/.
Indeed, there exists a constant C0, independent of n, such that, for any 0 6 s 6 t 6 T ,

jXn
t � Xn

s j 6 C0.t � s/1=2
�
1C

� Z T

0

�jXn
r j2 C j Ǫ n

r j2	dr

�1=2�
C C0jWt � Wsj;

so that tightness follows from (4.84) and (4.92).

Third Step. Let .np/p>1 be an increasing sequence of integers such that the distributions
of the processes .Xnp/p>1 on C.Œ0; T�IRd/ are weakly convergent. We then denote by
.�np W Œ0; T� 3 t 7! �

np
t D L.Xnp

t //p>1 the corresponding sequence of flows of marginal
distributions. For any t 2 Œ0; T�,�np

t converges in the weak sense to�t, where � D .�t/06t6T

is the flow of marginal distributions of the limit law, which belongs to P2.C.Œ0; T�IRd//

by (4.92). It satisfies � 2 C.Œ0; T�IP2.Rd//. Therefore, by Lemma 4.56, FBSDE (4.74), with
� as input and on the same space as before, has a unique solution .Xt; Yt; Zt/06t6T . Moreover,
there exists u W Œ0; T��R

d ! R
d, which is C-Lipschitz in the variable x for the same constant

C as in the statement of the lemma, such that Yt D u.t;Xt/ for any t 2 Œ0; T�. In particular,

sup
06t6T

ju.t; 0/j 6 sup
06t6T

�
E

�ju.t;Xt/ � u.t; 0/j	 C E
�jYtj

	�
< 1: (4.93)

So there exists a constant, still denoted by C0, such that ju.t; x/j 6 C0.1 C jxj/, for t 2
Œ0; T� and x 2 R

d. By (3.10) and (A6), we deduce that (for a possibly new value of C0)
j Ǫ .t; x; �t; u.t; x//j 6 C0.1 C jxj/: Plugging this bound into the forward SDE satisfied by X
in (4.70), we conclude that, for a possibly new value of C0,

8` > 1; E
�

sup
06t6T

jXtj2`jF0
	1=` 6 C0

�
1C j�j2�; (4.94)

and, thus,

E

Z T

0

j Ǫ tj2dt < 1; (4.95)

with Ǫ t D Ǫ .t;Xt; �t; Yt/, for t 2 Œ0; T�. We can now apply the same argument to any
.Xn

t /06t6T , for any n > 1. We claim:
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8` > 1; sup
n>1

E
�

sup
06t6T

jXn
t j2`jF0

	1=` 6 C0
�
1C j�j2�; (4.96)

which is a consequence of the following three observations. First, the constant C in the
statement of Lemma 4.56 does not depend on n. Second, the second-order moments of
sup06t6T jXn

t j are bounded, uniformly in n > 1 by (4.92). Third, by (A5), the driver of the
backward component in (4.74) is at most of linear growth in .x; y; ˛/, so that by (4.84) and
standard L2 estimates for BSDEs, the second-order moments of sup06t6T jYn

t j are uniformly
bounded as well. This shows (4.96) by repeating the proof of (4.94). By (4.94) and (4.96) and
by the same uniform integrability argument as in the third step of the proof of Theorem 4.29
in Subsection 4.3.3, we get that sup06t6T W2.�

np
t ; �t/ ! 0 as n tends to C1. Repeating the

proof of (4.83) (see (3.39) for the notations), we have:


0
E

Z T

0

j Ǫ n
t � Ǫ tj2dt 6 Jn;�n � Ǫ � � J�

� Ǫ � C J�
�� Ǫ n;�n

	� � Jn;�n � Ǫ n�

� E
��
�n � �� � Y0

	 � E

Z T

0

�
b0.t; �

n
t / � b0.t; �t/

� � Ytdt;

(4.97)

where J�.�/ is given by (4.52) and Jn;�n
.�/ is defined in a similar way, but with .f ; g/ and

.�t/06t6T replaced by .f n; gn/ and .�n
t /06t6T . With these definitions at hand, we notice that:

Jn;�n � Ǫ � � J�
� Ǫ �

D E
�
gn.Un

T ; �
n
T/ � g.XT ; �T/

	 C E

Z T

0

�
f n

�
t;Un

t ; �
n
t ; Ǫ t

� � f
�
t;Xt; �t; Ǫ t

�	
dt;

where Un is the controlled diffusion process:

dUn
t D �

b0.t; �
n
t /C b1.t/U

n
t C b2.t/ Ǫ t

	
dt C �dWt; t 2 Œ0; T� I Un

0 D �n:

By Gronwall’s lemma and by convergence of �np towards � for the 2–Wasserstein distance,
we claim that Unp ! X as p ! C1 for the norm EŒsup06s6T j �s j2�1=2, namely in S

2;d.
Using on one hand the uniform convergence of f n and gn towards f and g on bounded subsets
of their respective domains together with the regularity properties of f n, gn, f and g, and on
the other hand the convergence of �np towards � together with the bounds (4.94), (4.95)
and (4.96)), we deduce that Jnp;�

np
. Ǫ / ! J�. Ǫ / as p ! C1. Similarly, using the

bounds (4.84), (4.94) and (4.96), the other differences in the right-hand side in (4.97) tend to
0 along the subsequence .np/p>1 so that Ǫ np ! Ǫ as p ! C1 in L2.Œ0; T� �˝;Leb1 ˝ P/.
We conclude that X is the limit of the sequence .Xnp/p>1 in S

2;d. Therefore, � matches the
flow of marginal laws of X, proving that equation (4.70) is solvable. ut

4.5.4 Choice of the Approximating Sequences

In order to complete the proof of Theorem 4.53, we must specify the choice of the
approximating sequences in Lemma 4.58. Actually, the choice is performed in two
steps. We first consider the case when the cost functions f and g are strongly convex
in the variables x.
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Lemma 4.59 Assume that, in addition to assumption MFG Solvability SMP, there
exists a constant � > 0 such that the functions f and g satisfy (compare with (4.72)):

f .t; x0; �; ˛0/ � f .t; x; �; ˛/

� .x0 � x; ˛0 � ˛/ � @.x;˛/f .t; x; �; ˛/ > � jx0 � xj2 C 
j˛0 � ˛j2;
g.x0; �/ � g.x; �/ � .x0 � x/ � @xg.x; �/ > � jx0 � xj2:

(4.98)

Then, there exist two positive constants 
0 and L0, depending only upon 
, L and � ,
and two sequences of functions .f n/n>1 and .gn/n>1 such that:

(i) for any n > 1, f n and gn satisfy MFG Solvability SMP with the parameters 
0
and L0 and @xf n and @xgn are bounded;

(ii) for any bounded subsets of Œ0;T� � R
d � P2.Rd/ � R

k and R
d � P2.Rd/, there

exists an integer n0, such that, for any n > n0, f n and gn coincide with f and g
on these bounded sets.

Proof. The proof of Lemma 4.59 is a pure technical exercise in convex analysis. We focus
on the approximation of the running cost f (the case of the terminal cost g is similar) and we
ignore the dependence of f upon t to simplify the notation. For any n > 1, we define fn as the
truncated Legendre transform:

fn.x; �; ˛/ D sup
jyj6n

inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	
; (4.99)

for .x; ˛/ 2 R
d � R

k and � 2 P2.Rd/. By standard properties of the Legendre transform of
convex functions,

fn.x; �; ˛/ 6 sup
y2Rd

inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	 D f .x; �; ˛/: (4.100)

Moreover, by strict convexity of f in x,

fn.x; �; ˛/ > inf
z2Rd

�
f .z; �; ˛/

	
> inf

z2Rd

�
� jzj2 C @xf .0; �; ˛/ � z

	 C f .0; �; ˛/

> � 1

4�
j@xf .0; �; ˛/j2 C f .0; �; ˛/;

(4.101)

so that fn has finite real values. Clearly, it is also n-Lipschitz continuous in x.

First Step. We first check that the sequence .fn/n>1 converges towards f , uniformly on
bounded subsets of Rd � P2.Rd/ � R

k. So for any given R > 0, we restrict ourselves to
jxj 6 R, j˛j 6 R, and � 2 P2.Rd/, such that M2.�/ 6 R. By (A5) in assumption MFG
Solvability SMP, there exists a constant c > 0, independent of R, such that

sup
z2Rd

�
y � z � f .z; �; ˛/

	
> sup

z2Rd

�
y � z � cjzj2	 � c.1C R2/ D jyj2

4c
� c.1C R2/: (4.102)
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Therefore,

inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	
6 Rjyj � jyj2

4c
C c.1C R2/: (4.103)

By (4.101) and (A5) in assumption MFG Solvability SMP, fn.t; x; �; ˛/ > � c.1C R2/, c
depending possibly on � , so that optimization in the variable y in the definition of fn can be
done over points y? satisfying:

� c.1C R2/ 6 Rjy?j � jy?j2
4c

C c.1C R2/; that is jy?j 6 c.1C R/; (4.104)

the constant c being allowed to vary from inequality to another. In particular, for n large
enough (depending on R),

fn.x; �; ˛/ D sup
y2Rd

inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	 D f .x; �; ˛/: (4.105)

So on bounded subsets of Rd�P2.Rd/�R
k, fn and f coincide for n large enough. In particular,

for n large enough, fn.0; ı0; 0/, @xfn.0; ı0; 0/ and @˛fn.0; ı0; 0/ exist, coincide with f .0; ı0; 0/,
@xf .0; ı0; 0/ and @˛f .0; ı0; 0/ respectively, and are bounded by L as in (A5). Moreover, still
for jxj 6 R, j˛j 6 R and M2.�/ 6 R, we see from (4.100) and (4.104) that optimization in z
can be reduced to z? satisfying:

y? � .x � z?/C f .z?; �; ˛/ 6 f .x; �; ˛/ 6 c.1C R2/;

the second inequality following from (A5). By strict convexity of f in x, we obtain:

�c.1C R/jz?j C � jz?j2 C @xf .0; �; ˛/ � z? C f .0; �; ˛/ 6 c.1C R2/;

so that, by (A5), � jz?j2 � c.1C R/jz?j 6 c.1C R2/, in other words:

jz?j 6 c.1C R/: (4.106)

Second Step. We now investigate the convexity property of fn.�; �; �/, for given � 2 P2.Rd/.
For any h 2 R, x; e; y; z1; z2 2 R

d and ˛; ˇ 2 R
k, with jyj 6 n and jej; jˇj � 1, we deduce

from the convexity of f .�; �; �/:

2 inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	

6 y �


.x C he � z1/C .x � he � z2/

�
C 2f

�
z1 C z2
2

; �;
.˛ C hˇ/C .˛ � hˇ/

2

�

6 y � .x C he � z1/C f .z1; �; ˛ C hˇ/C y � .x � he � z2/C f .z2; �; ˛ � hˇ/ � 2
h2jˇj2:

Taking infimum with respect to z1; z2, and supremum with respect to y, we obtain:

fn.x; �; ˛/ 6 1

2
fn.x C he; �; ˛ C hˇ/C 1

2
fn.x � he; �; ˛ � hˇ/ � 
h2jˇj2: (4.107)
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In particular, the function R
d � R

k 3 .x; ˛/ ! fn.x; �; ˛/ � 
j˛j2 is convex. We prove later
on that it is also continuously differentiable so that (4.72) holds.

In a similar way, we can investigate the semi-concavity property of fn.�; �; �/. For any
h 2 R, x; e; y1; y2 2 R

d, ˛; ˇ 2 R
k, with jy1j; jy2j 6 n and jej; jˇj � 1,

inf
z2Rd

�
y1 � .x C he � z/C f .z; �; ˛ C hˇ/

	

C inf
z2Rd

�
y2 � .x � he � z/C f .z; �; ˛ � hˇ/

	

D inf
z2Rd

�
y1 � .x � z/C f .z C he; �; ˛ C hˇ/

	

C inf
z2Rd

�
y2 � .x � z/C f .z � he; �; ˛ � hˇ/

	
:

By expanding f .�; �; �/ up to the first order and by using the Lipschitz regularity of the first
order derivatives, we see that:

inf
z2Rd

�
y1 � .x C he � z/C f .z; �; ˛ C hˇ/

	

C inf
z2Rd

�
y2 � .x � he � z/C f .z; �; ˛ � hˇ/

	

6 inf
z2Rd

�
.y1 C y2/ � .x � z/C 2f .z; �; ˛/

	 C cjhj2�jej2 C jˇj2�

D 2 inf
z2Rd

� y1 C y2
2

� .x � z/C f .z; �; ˛/
	 C cjhj2�jej2 C jˇj2�;

for some constant c. Taking the supremum over y1; y2, we deduce that:

fn.x C he; �; ˛ C hˇ/C fn.x � he; �; ˛ � hˇ/ � 2fn.x; �; ˛/ 6 cjhj2�jej2 C jˇj2�:

So for any � 2 P2.Rd/, the function R
d � R

k 3 .x; ˛/ 7! fn.x; �; ˛/ � cŒjxj2 C j˛j2� is
concave. Therefore, fn.�; �; ˛/ is both convex and semi-concave from which we deduce that
it is C1;1, i.e., continuously differentiable with Lipschitz derivatives, the Lipschitz constant
of the derivatives being uniform with respect to n > 1 and to � 2 P2.Rd/. Moreover, by
definition, the function fn.�; �; �/ is n-Lipschitz continuous in the variable x, that is @xfn is
bounded, as required.

Third Step. We now investigate the consequences of (A5). Given ı > 0, R > 0 and n > 1,
we consider x 2 R

d, ˛ 2 R
k, �;�0 2 P2.Rd/ such that:

max
�jxj; j˛j;M2.�/;M2.�

0/
�

6 R; W2.�; �
0/ 6 ı: (4.108)

By (A5) in assumption MFG Solvability SMP and (4.106), we can find a constant c0

(possibly depending on � ) such that:
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fn.x; �
0; ˛/ D sup

jyj6n
inf

jzj6c.1CR/

�
y � .x � z/C f .z; �0; ˛/

	

6 sup
jyj6n

inf
z6c.1CR/

�
y � .x � z/C f .z; �; ˛/C L.1C R C jzj/ı	

D sup
jyj 6 n

inf
z2Rd

�
y � .x � z/C f .z; �; ˛/

	 C c0.1C R/ı:

(4.109)

This proves local Lipschitz-continuity in the measure argument as in (A5).
In order to prove local Lipschitz-continuity in the variables x and ˛, we use the C1;1-

property. Indeed, for x, � and ˛ as in (4.108), we know that:

ˇ̌
@xfn.x; �; ˛/

ˇ̌ C ˇ̌
@˛fn.x; �; ˛/

ˇ̌
6

ˇ̌
@xfn.0; �; 0/

ˇ̌ C ˇ̌
@˛fn.0; �; 0/

ˇ̌ C cR: (4.110)

By (4.105), for any integer p > 1, there exists an integer np, such that, for any n > np,
@xfn.0; �; 0/ and @˛fn.0; �; 0/ are respectively equal to @xf .0; �; 0/ and @˛f .0; �; 0/ for
M2.�/ 6 p. In particular, for n > np,

ˇ̌
@xfn.0; �; 0/

ˇ̌ C ˇ̌
@˛fn.0; �; 0/

ˇ̌
6 c

�
1C M2.�/

�
whenever M2.�/ 6 p; (4.111)

so that (4.110) implies (A5) whenever n > np and M2.�/ 6 p. We get rid of these
restrictions by modifying the definition of fn. Given a probability measure � 2 P2.Rd/

and an integer p > 1, we define ˚p.�/ as the push-forward of � by the mapping R
d 3

x ! Œmax.M2.�/; p/��1px so that ˚p.�/ 2 P2.Rd/ and M2.˚p.�// 6 min.p;M2.�//.
Indeed, if the random variable X has � as distribution, i.e., L.X/ D �, then the random
variable Xp D pX=max.M2.�/; p/ has ˚p.�/ as distribution. It is easy to check that ˚p is
Lipschitz continuous for the 2-Wasserstein distance, uniformly in n > 1. We then consider
the approximating sequence:

Ofp W Rd � P2.Rd/ � R
k 3 .x; �; ˛/ ! fnp

�
x; ˚p.�/; ˛/; p > 1;

instead of .fn/n>1 itself. Clearly, on any bounded subset, Ofp still coincides with f for p
large enough. Moreover, the conclusion of the second step is preserved. In particular, the
conclusion of the second step together with (4.109), (4.110), and (4.111) say that (A5) holds
(for a possible new choice of L). From now on, we get rid of the symbol “hat” in .Ofp/p>1 and
keep the notation .fn/n>1 for .Ofp/p>1.
Fourth Step. It only remains to check that fn satisfies the bound (A6) and the sign condition
(A7) in assumption MFG Solvability SMP. Since j@˛f .x; �; 0/j 6 L, the Lipschitz property
of @˛f implies that there exists a constant c > 0 such that j@˛ f .x; �; ˛/j 6 c for all
.x; �; ˛/ 2 R

d � P2.Rd/ � R
k with j˛j 6 1. In particular, for any n > 1, it is plain to

see that fn.x; �; ˛/ 6 fn.x; �; 0/C cj˛j; for any .x; �; ˛/ 2 R
d � P2.Rd/ � R

k with j˛j 6 1,
so that j@˛fn.x; �; 0/j 6 c. This proves (A6).

Finally, we can modify the definition of fn once more to satisfy (A7). Indeed, for any R >
0, there exists an integer nR, such that, for any n > nR, fn.x; �; ˛/ and f .x; �; ˛/ coincide for
.x; �; ˛/ 2 R

d �P2.Rd/�R
k with jxj; j˛j;M2.�/ 6 R so that x �@xfn.0; ıx; 0/ > �L.1Cjxj/;

for jxj 6 R and n > nR. Next we choose a smooth function  W R
d ! R

d, satisfying
j .x/j 6 1 for any x 2 R

d,  .x/ D x for jxj 6 1=2 and  .x/ D x=jxj for jxj > 1, and we
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set Ofp.x; �; ˛/ D fnp

�
x; �p.�/; ˛

�
for any integer p > 1 and .x; �; ˛/ 2 R

d � P2.Rd/ � R
k

where �p.�/ is the push-forward of � by the mapping R
d 3 x ! x � N� C p .p�1 N�/.

Recall that N� stands for the mean of �. In other words, if X has distribution �, then OXp D
X � E.X/C p .p�1

E.X// has distribution �p.�/.
The function �p is Lipschitz continuous with respect to W2, uniformly in p > 1.

Moreover, for any R > 0 and p > 2R, M2.�/ 6 R implies j R
Rd x0d�.x0/j 6 R so

that p�1j R
Rd x0d�.x0/j 6 1=2, that is �p.�/ D � and, for jxj; j˛j 6 R, Ofp.x; �; ˛/ D

fnp.x; �; ˛/ D f .x; �; ˛/. Therefore, the sequence .Ofp/p>1 is an approximating sequence for f
which satisfies the same regularity properties as .fn/n>1. In addition:

x � @x Ofp.0; ıx; 0/ D x � @xfnp.0; ıp .p�1x/; 0/ D x � @xf .0; ıp .p�1x/; 0/

for x 2 R
d. Finally we choose  .x/ D Œ�.jxj/=jxj�x (with  .0/ D 0), where � is a smooth

nondecreasing function from Œ0;C1/ into Œ0; 1� such that �.x/ D x on Œ0; 1=2� and �.x/ D 1

on Œ1;C1/. If x 6D 0, then the above right-hand side is equal to:

x � @xf .0; ıp .p�1x/; 0/ D jp�1xj
�.jp�1xj/

�
p .p�1x/

� � @xf .0; ıp .p�1x/; 0/

> � L
jp�1xj
�.jp�1xj/

�
1C jp .p�1x/j�:

For jxj 6 p=2, we have �.p�1jxj/ D jp�1xj, so that the right-hand side coincides with
�L.1C jxj/. For jxj > p=2, we have �.p�1jxj/ > 1=2 so that:

� jp�1xj
�.jp�1xj/

�
1C jp .p�1x/j� > �2p�1jxj�1C jp .p�1x/j� > �2p�1jxj�1C p

�
> �4jxj:

This proves that (A7) in assumption MFG Solvability SMP holds with a new constant. ut

4.5.5 Conclusion

Equation (4.70) is solvable when, in addition to assumption MFG Solvability SMP,
f and g satisfy the convexity condition (4.98). Indeed, by Lemma 4.59, there exists
an approximating sequence .f n; gn/n>1 satisfying .i/ and .ii/ in the statement of
Lemma 4.58, and also .iii/ by Proposition 4.57. When f and g satisfy assumption
MFG Solvability SMP only, the assumptions of Lemma 4.58 are satisfied with the
following approximating sequence:

fn.t; x; �; ˛/ D f .t; x; �; ˛/C 1

n
jxj2I gn.x; �/ D g.x; �/C 1

n
jxj2;

for .t; x; �; ˛/ 2 Œ0;T� � R
d � P.Rd/ � R

k and n > 1. Therefore, (4.70) is solvable
under assumption MFG Solvability SMP. Moreover, given an arbitrary solution
to (4.70), the existence of a function u, as in the statement of Theorem 4.53, follows
from Lemma 4.56 and (4.93). This completes the proof of Theorem 4.53. ut
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4.6 ExtendedMean Field Games: Interaction Through
the Controls

The purpose of this section is to revisit the theory of mean field games when
the individual players can also interact via the controls. These models have been
referred to as extended mean field games in the PDE literature on mean field games.
We saw several examples of this kind in Chapter 1, notably when we discussed
models for exhaustible resources as in Subsection 1.4.4. Therein, the inventories of
N oil producers are modeled by means of a stochastic differential game in which the
cost functional of each player depends upon the empirical mean of the instantaneous
rates of production of all the producers. A similar situation appeared when we
introduced the price impact model which we shall solve in detail in the next section.

While the N-player game models are usually detailed in the discussions of the
practical applications, here, we jump directly to the asymptotic formulation of
the mean field games. We work with the usual set-up .˝;F ;F D .Ft/06t6T ;P/,
equipped with a d-dimensional F - Wiener process W D .Wt/06t6T and an
F0-measurable initial condition � 2 L2.˝;F0;PIRd/. We rewrite the matching
problem (i)–(ii) of Subsection 3.1.2 as follows:

(i) For each fixed deterministic continuous flow � D .�t/06t6T of probability
measures on R

d � A (where the closed convex subset A � R
k denotes the

set of admissible values for the controls), solve the standard stochastic control
problem

inf
˛2A J�.˛/; with J�.˛/ D E

� Z T

0

f .t;X˛
t ; �t; ˛t/dt C g.X˛

T ; �T/

�
;

subject to (4.112)
(

dX˛
t D b.t;X˛

t ; �t; ˛t/dt C �.t;X˛
t ; �t; ˛t/dWt; t 2 Œ0;T�;

X˛
0 D �;

where �T (respectively �t for t 2 Œ0;T�) denotes the first marginal of �T on R
d

(respectively the first marginal of �t on R
d).

(ii) Find a flow � D .�t/0�t�T so that, for all t 2 Œ0;T�, L. OX�
t ; Ǫ �

t / D �t, if Ǫ � 2 A

is a minimizer of J� with OX�
as optimal path.

Implicitly, the coefficients b, � , and f are now given as (measurable) mappings
from Œ0;T��R

d �P.Rd �A/�A to R
d, Rd�d and R respectively. In line with what we

have done so far, we shall restrict the discussion to the case when � is independent
of the control: in that case, � reads as a mapping from Œ0;T��R

d �P.Rd � A/ into
R

d�d.
Notice though that g remains the same, as in the previous chapters: The terminal

boundary condition only feels the terminal state and the terminal distribution of the
state of a typical agent.
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Revisiting the Analytic Approach
Since � is assumed to be independent of the control, we can work with the reduced
Hamiltonian instead of the full Hamiltonian associated with the optimization control
problem (4.112). The form of the reduced Hamiltonian is the same as in (3.5), except
that the variable � has to be replaced by �, namely:

H.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/; (4.113)

for t 2 Œ0;T�, x; y 2 R
d, ˛ 2 A and � 2 P.Rd � A/. In particular, Lemma 3.3

may be generalized at no cost and under a straightforward adaptation of assumption
Minimization of the Hamiltonian introduced in Chapter 3, we can find, for any
t 2 Œ0;T�, x 2 R

d and � 2 P.Rd � A/, a unique minimizer Ǫ .t; x; �; y/ 2
argmin˛2AH.t; x; �; y; ˛/.

Following Subsection 3.1.5, we denote by V the value function of the optimiza-
tion problem (i). When the flow of probability measures � D .�t/06t6T is fixed, V
is the solution of the HJB equation (the reader may want to compare with the first
equation (3.12)):

@tV.t; x/C 1

2
trace

h�
���

�
.t; x; �t/@

2
xxV.t; x/

i

C H



t; x; �t; @xV.t; x/; Ǫ�
t; x; �t; @xV.t; x/

�� D 0;

(4.114)

in Œ0;T� � R
d, with V.T; �/ D g.�; �T/ as terminal condition. The following simple

observation will turn out to be instrumental in the subsequent analysis. The optimal
feedback associated with the optimization problem has the form:

Œ0;T� � R
d 3 .t; x/ 7! Ǫ�

t; x; �t; @xV.t; x/
�
;

which implies in particular that the optimal control in (i) takes the Markovian form:

Ǫ �
t D Q̨�

t; OX�
t ; �t

�
; t 2 Œ0;T�;

for the function Q̨ defined as Q̨ .t; x; �/ D Ǫ .t; x; �; @xV.t; x//. Therefore, for any
t 2 Œ0;T�, the law of . OX�

t ; Ǫ �
t / appears as the pushed forward image of the law of OX�

t
since:

L� OX�
t ; Ǫ �

t

� D L� OX�
t

� ı �
Id; Ǫ .t; �; �t; @xV.t; �//��1

:

Now, the equilibrium condition reads:

�t D L� OX�
t ; Ǫ �

t

� D L� OX�
t

� ı �
Id; Ǫ .t; �; �t; @xV.t; �//��1

; t 2 Œ0;T�:

Consequently, the fixed point condition (ii) for the flow � D .�t/06t6T of joint
distributions of the state and the control can be rewritten as:
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(
�t D L� OX�

t

�
;

�t D �t ı �
Id; Ǫ .t; �; �t; @xV.t; �//��1

;
t 2 Œ0;T�; (4.115)

where �t is the first marginal of �t on R
d. Moreover, the analogue of the forward-

backward PDE system (3.12) which characterizes the equilibrium has the form:
8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

@tV.t; x/C 1

2
trace

h�
���

�
.t; x; �t/@

2
xxV.t; x/

i

CH



t; x; �t; @xV.t; x/; Ǫ .t; x; �t; @xV.t; x//
�

D 0;

@t�t � 1

2
trace

h
@2xx


�
���

�
.t; x; �t/�t

�i

Cdivx



b
�
t; x; �t; Ǫ .t; x; �t; @xV.t; x//

�
�t

�
D 0;

(4.116)

in Œ0;T� � R
d, with V.T; �/ D g.�; �T/ as terminal condition for the first equation,

and �0 D L.�/ as initial condition for the second equation.
In comparison with the standard case when the mean field interaction is only

through the states, the new feature is the second relationship in (4.115), which
provides in equilibrium, an implicit expression for the flow � D .�t/06t6T of joint
distributions of both the state and the control in terms of the flow � D .�t/06t6T of
marginal distributions of the state. Of course, a natural question is to identify cases
in which this implicit expression is uniquely solvable. In order to do so, we shall
restrict ourselves to flows of probability measures with values in P2.Rd � A/:

Lemma 4.60 Let assumption Minimization of the Hamiltonian be in force, the
measure argument being in P2.Rd � A/ in lieu of P2.Rd/. Assume also that, for any
t 2 Œ0;T� and � 2 P2.Rd �A/, f .t; �; �; �/ is at most of quadratic growth in .x; ˛/ and
that, for any t 2 Œ0;T�, @˛f .t; �; �; �/ is L-Lipschitz continuous in .x; �; ˛/, for some
constant L > 0.

If, for any t 2 Œ0;T�, any probability distribution � 2 P2.Rd/, and any Borel-
measurable mappings  and  0 from R

d into A, it holds:

Z

Rd


�
f
�
t; x; � ı .Id;  .�//�1;  .x/

� � f
�
t; x; � ı .Id;  

0.�//�1;  .x/�	

� �
f
�
t; x; � ı .Id;  .�//�1;  0.x/

� � f
�
t; x; � ı .Id;  

0.�//�1;  0.x/
�	�

d�.x/

> 0; (4.117)

then, t and � being fixed, for any Borel-measurable function � W R
d ! R

d in
L2.Rd; �IRd/, there exists a unique (up to a �-negligible Borel subset of Rd) square
integrable function  W Rd ! A, such that � D � ı .Id;  /

�1 satisfies:

� D � ı



Id; Ǫ�
t; �; �; �.�/�

��1
:
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Proof. We argue by a continuation argument like in some proofs of existence of solutions to
FBSDEs. We prove by induction that, for any ı 2 Œ0; 1�, any 
-convex function f as in the
statement, any function f0 W Œ0; T��R

d �A ! R satisfying (A2) in assumption Minimization
of the Hamiltonian, with f0.t; �; �/ being at most of quadratic growth and @˛f0.t; �; �/ being
L-Lipschitz continuous for any t 2 Œ0; T�, and any function � 2 L2.Rd; �IRd/ with values in
R

d, the equation:

� D � ı



Id; Ǫı
�
t; �; �; �.�/�

�
�1

; (4.118)

has a unique solution � 2 P2.Rd � A/ for any t 2 Œ0; T� and � 2 P2.Rd/, where:

8x; y 2 R
d; Ǫı

�
t; x; �; y

� D argmin˛2A

��
b2.t/˛

� � y C fı.t; x; �; ˛/
	
;

and

fı.t; x; �; ˛/ D ıf
�
t; x; �; ˛

� C .1 � ı/f0
�
t; x; ˛/:

First Step. We start with the case ı D 0. The result is obviously true since f0 and thus Ǫ0
are independent of the argument �. Therefore, we can just denote Ǫ0.t; x; �; y/ by Ǫ0.t; x; y/
and the only solution to (4.118) must be given by the function  .�/ D Ǫ0

�
t; �; �.�/�. By

Lemma 3.3, such a function  is square-integrable because:

8x 2 R
d;

ˇ̌ Ǫ0
�
t; x; �.x/

�ˇ̌
6 c

�
1C jxj C j�.x/j�; (4.119)

and � 2 L2.Rd; �IRd/, the constant c depending upon f0.

Second Step. Let us assume that for some ı 2 Œ0; 1/, for any f0 and � as above, the
equation (4.118) has a unique solution in P2.Rd � A/. Then, for � 2 Œ0; 1/ with ı C � 6 1,
we define the mapping � by:

� W P2.Rd � A/ 3 � 7! �0 2 P2.Rd � A/;

where �0 solves the equation:

�0 D � ı



Id; Ǫ �ı
�
t; �; �0; �.�/�

�
�1

; (4.120)

where, for a given �, Ǫ �ı is defined by:

8x; y 2 R
d; 8�0 2 P2.Rd � A/;

Ǫ �ı
�
t; x; �0; y

� D argmin˛2A

��
b2.t/˛

� � y C f �ı
�
t; x; �0; ˛

�	
;

the function f �ı depending upon the measure � through the choice of a new function f0,
namely:

f �ı
�
t; x; �0; ˛

� D ıf
�
t; x; �0; ˛/C �f

�
t; x; �; ˛/C �

1 � .ı C �/
�
f0.t; x; ˛/

D ıf
�
t; x; �0; ˛/C .1 � ı/Qf0.t; x; ˛/;
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with

Qf0.t; x; ˛/ D �

1 � ı f .t; x; �; ˛/C 1 � .ı C �/

1 � ı f0.t; x; ˛/:

Therefore, f �ı is covered by the induction assumption if we use for f0 the new function Qf0.
The induction assumption implies that equation (4.120) has a unique solution in P2.Rd �

A/ guaranteeing that the mapping � is well defined. Observe then that any fixed point � of
� satisfies:

� D � ı



Id; Ǫ �ı
�
t; �; �; �.�/�

�
�1

;

providing a solution of the equation (4.118) with ı replaced by ıC�. Conversely, any solution
of the equation (4.118), with ı replaced by ıC�, is a fixed point of the mapping� . Therefore,
in order to prove that (4.118), with ı replaced by ı C �, is uniquely solvable, it suffices to
prove that � is a contraction on P2.Rd � A/ for the Wasserstein distance W2.

Third Step. We now prove that, for � small enough, the function � is a contraction. Given
�1 and �2 2 P2.Rd � A/, we call �0

1 and �0

2 their respective images by � , and we denote by X
a random variable with distribution �. Then, by optimality of Ǫ �ı .t; �; �0; �.�//, we have:

�
b2.t/ Ǫ �1ı

�
t;X; �0

1; �.X/
�	 � �.X/C f �1ı



t;X; �0

1; Ǫ �1ı
�
t;X; �0

1; �.X/
��

C 

ˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2

6
�
b2.t/ Ǫ �2ı

�
t;X; �0

2; �.X/
�	 � �.X/C f �1ı



t;X; �0

1; Ǫ �2ı
�
t;X; �0

2; �.X/
��

�
b2.t/ Ǫ �2ı

�
t;X; �0

2; �.X/
�	 � �.X/C f �2ı



t;X; �0

2; Ǫ �2ı
�
t;X; �0

2; �.X/
��

C 

ˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2

6
�
b2.t/ Ǫ �1ı

�
t;X; �0

1; �.X/
�	 � �.X/C f �2ı



t;X; �0

2; Ǫ �1ı
�
t;X; �0

1; �.X/
��
:

Summing these two inequalities we get:

f �1ı



t;X; �0

1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� C f �2ı



t;X; �0

2; Ǫ �2ı
�
t;X; �0

2; �.X/
��

C 2

ˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2

6 f �1ı



t;X; �0

1; Ǫ �2ı
�
t;X; �0

2; �.X/
�� C f �2ı



t;X; �0

2; Ǫ �1ı
�
t;X; �0

1; �.X/
��
:

Rearranging the terms we get:
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f �1ı



t;X; �0

1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� � f �2ı



t;X; �0

2; Ǫ �1ı
�
t;X; �0

1; �.X/
��

C f �2ı



t;X; �0

2; Ǫ �2ı
�
t;X; �0

2; �.X/
�� � f �1ı



t;X; �0

1; Ǫ �2ı
�
t;X; �0

2; �.X/
��

C 2

ˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2

6 0:

(4.121)

Now, the expectation of the four terms on the two first lines is equal to:

E

h
f �1ı



t;X; �0

1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� � f �2ı



t;X; �0

2; Ǫ �1ı
�
t;X; �0

1; �.X/
��i

C E

h
f �2ı



t;X; �0

2; Ǫ �2ı
�
t;X; �0

2; �.X/
�� � f �1ı



t;X; �0

1; Ǫ �2ı
�
t;X; �0

2; �.X/
��i

D ı

�
E

h
f



t;X; �0

1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� � f



t;X; �0

2; Ǫ �1ı
�
t;X; �0

1; �.X/
��i

� E

h
f



t;X; �0

1; Ǫ �2ı
�
t;X; �0

2; �.X/
�� � f



t;X; �0

2; Ǫ �2ı
�
t;X; �0

2; �.X/
��i�

C �

�
E

h
f



t;X; �1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� � f



t;X; �2; Ǫ �1ı

�
t;X; �0

1; �.X/
��i

� E

h
f



t;X; �1; Ǫ �2ı
�
t;X; �0

2; �.X/
�� � f



t;X; �2; Ǫ �2ı

�
t;X; �0

2; �.X/
��i�

:

Since the random vector .X; Ǫ �1 .t;X; �0

1; �.X/// (respectively .X; Ǫ �2 .t;X; �0

2; �.X///) has
exactly �0

1 (respectively �0

2) as distribution, we deduce from (4.121) and from the monotonic-
ity property of f that:

2
E
hˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2i

6 �

ˇ̌
ˇ̌E

h
f



t;X; �1; Ǫ �1ı
�
t;X; �0

1; �.X/
�� � f



t;X; �2; Ǫ �1ı

�
t;X; �0

1; �.X/
��i

� E

h
f



t;X; �1; Ǫ �2ı
�
t;X; �0

2; �.X/
�� � f



t;X; �2; Ǫ �2ı

�
t;X; �0

2; �.X/
��iˇ̌

ˇ̌:

Thanks to the regularity properties of f , the term between absolute values in the right-hand
side is less than:

CW2.�1; �2/E
hˇ̌ Ǫ �1ı .t;X; �0

1; �.X// � Ǫ �2ı .t;X; �0

2; �.X//
ˇ̌2i1=2

;

for a constant C which only depends on the parameter L in the assumption. In particular, C
is independent of ı and of f0. Therefore,
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2
E
hˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2i

6 C�W2.�1; �2/E
hˇ̌ Ǫ �1ı

�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2i1=2

:

Allowing the constant C to increase from line to line if necessary, we deduce that:

E

hˇ̌ Ǫ �1ı
�
t;X; �0

1; �.X/
� � Ǫ �2ı

�
t;X; �0

2; �.X/
�ˇ̌2i1=2 6 C�W2.�1; �2/:

Using again the fact that .X; Ǫ �1 .t;X; �0

1; �.X/// (respectively .X; Ǫ �2 .t;X; �0

2; �.X///) has
exactly �0

1 (respectively �0

2) as distribution, we notice that the left-hand side is greater than
W2.�

0

1; �
0

2/, which finally yields:

W2.�
0

1; �
0

2/ 6 C�W2.�1; �2/:

This shows that the mapping � is a contraction for C� < 1. Therefore, for C� 6 1=2,
Equation (4.118), with ı replaced by ı C �, has a unique solution.

Final Step. Since the constant C, in the condition C� 6 1=2, is independent of ı, we can
apply a straightforward induction argument to prove that (4.118) is uniquely solvable for any
ı 2 Œ0; 1�, which completes the proof. ut

Examples
We now provide three important examples of function f satisfying (4.117).

Example 1. If the function f is of the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; �; ˛/;

where � denotes the first marginal of � on R
d, and f0 W Œ0;T� � R

d � P2.Rd �
A/ ! R and f1 W Œ0;T� � R

d � P2.Rd/ � A ! R are sufficiently regular, then
assumption (4.117) is satisfied since the left-hand side is identically 0.

Example 2. Consider now a Borel-measurable function h W Œ0;T��R
d �P2.Rd/�

A � P2.A/ ! R such that, for any t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/, the function:

A � P2.A/ 3 .˛; 	/ 7! h.t; x; �; ˛; 	/

satisfies:

jh.t; x; �; ˛; 	/j 6 C
�
1C jxj C j˛j C M2.�/C M2.	/

�2
; (4.122)

together with the Lasry-Lions monotonicity condition:

8	; 	 0 2 P2.A/;
Z

A

�
h.t; x; �; ˛; 	/ � h.t; x; �; ˛; 	 0/

	
d
�
	 � 	 0�.˛/ > 0:

(4.123)
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Then, the function f given by:

f .t; x; �; ˛/ D h
�
t; x; �; ˛;Q.x; �/�;

where � denotes the first marginal of � on R
d, and for �-almost every x 2

R
d; Q.x; d˛/ is the regular conditional distribution of � given that the first compo-

nent is x, also satisfies (4.117). Indeed, it suffices to take 	 D ı .x/ and 	 0 D ı 0.x/

in (4.123) in order to prove (4.117).

Example 3. Still another example is provided by any function f W Œ0;T� � R
d �

P2.Rd � A/ � A ! R satisfying:

jf .t; x; �; ˛/j 6 C
�
1C jxj C j˛j C M2.�/

�2
; (4.124)

together with the Lasry-Lions monotonicity condition on the whole Rd �A, namely:

8�; �0 2 P2.Rd � A/;
Z

Rd�A

�
f .t; x; �; ˛/ � f .t; x; �0; ˛/

	
d
�
� � �0�.x; ˛/ > 0:

(4.125)

Indeed, condition (4.117) is checked by choosing � D � ı .Id;  /
�1 and �0 D

� ı .Id;  
0/�1.

Recall that examples of functions satisfying the Lasry-Lions monotonicity condi-
tion were given in Section 3.4. These examples can easily be adapted to the current
framework. Nevertheless, it is more challenging to combine the monotonicity and
convexity properties. Examples 1, 2 and 3 of Section 3.4.2 clearly do. However,
Examples 4, 5 and 6 do not! As for Example 7 in Section 3.4.2, notice that the
function:

h.˛; 	/ D
Z

Rk
L
�
ˇ; � � 	.ˇ/��.˛ � ˇ/dˇ; ˛ 2 A; 	 2 P2.A/;

where L W Rk�Œ0;C1/ 3 .x; y/ 7! L.x; y/ is twice differentiable and convex in both
variables on A � Œ0;C1/, and nondecreasing in the second variable on Œ0;C1/,
and � is nonnegative, even, smooth, with compact support, satisfies:

@2˛h.˛; 	/ D
Z

Rk

�
@2xxL

�
ˇ; � � 	.ˇ/� C 2@2xyL

�
ˇ; � � 	.ˇ/� ˝ �

@� � 	.ˇ/�

C @2yyL
�
ˇ; � � 	.ˇ/��@� � 	.ˇ/�˝2

�
�.˛ � ˇ/dˇ

C
Z

Rk
@yL

�
ˇ; � � 	.ˇ/��@2� � 	.ˇ/��.˛ � ˇ/dˇ:
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When the set A is bounded, � may be assumed to be convex on the set A � A D
f˛�ˇ; ˛; ˇ 2 Ag. Since @yL is nonnegative and 	 is supported by A, the matrix @2˛h
inherits the convexity properties of L.

FBSDE Formulation
In the spirit of Chapter 3, we may characterize solutions of extended mean field
games by means of an FBSDE of the McKean-Vlasov type.

Using the Representation of the HJB Equation. As in the standard case, two
strategies are possible. The first one is to represent the value function of the game
as in Proposition 3.11 and Theorem 4.44, and the second one is to use the stochastic
maximum principle as we did in Proposition 3.21. In both cases, the main issue
is the identification of the analogue of relationship (4.115) which provides an
implicit expression of �t in terms of its first marginal �t. When representing the
value function of the game in Proposition 3.13, the gradient of the solution of the
Hamilton-Jacobi-Bellman equation (4.114) which appears in (4.115), is connected
with the martingale integrand . OZt/06t6T which appears in the FBSDE formulation
of the game. A quick glance at Proposition 3.13 shows that the analogue of (4.115)
should be:

�t D L

 OXt; Ǫ�

t; OXt; �t; �.t;Xt; �t/
�1� OZt

��
(4.126)

D L� OXt; �.t; OXt; �t/
�1� OZt

� ı


R

d � R
d 3 .x; y/ 7! �

x; Ǫ .t; x; �t; y/
���1

;

for t 2 Œ0;T�, where . OXt; OYt; OZt/06t6T denotes the solution of the associated FBSDE:

8
<

:
d OXt D b

�
t; OXt; �t; Ǫ�

t; OXt; �t; O�.t; OXt; �t/
�1�Zt

��
dt C �.t; OXt; �t/dWt;

d OYt D �f
�
t; OXt; �t; Ǫ�

t; OXt; �t; �.t; OXt; �t/
�1� OZt

��
dt C OZt � dWt;

(4.127)

with OX0 D � as initial condition and OYT D g. OXT ; �T/ as terminal condition, where
�T denotes the first marginal of �T on R

d.
The next result is given without proof because it can be proven following the

steps of the proof of Lemma 4.60.

Lemma 4.61 Let assumption Minimization of the Hamiltonian be in force, the
measure argument in the coefficients being in P2.Rd � A/ in lieu of P2.Rd/. Assume
also that, for any t 2 Œ0;T� and � 2 P2.Rd � A/, f .t; �; �; �/ is at most of quadratic
growth in .x; ˛/ and that, for any t 2 Œ0;T�, @˛f .t; �; �; �/ is L-Lipschitz continuous in
.x; �; ˛/, for some constant L > 0.

Assume further that, for any t 2 Œ0;T�, � 2 P2.Rd/, and transition probability
kernels .Q.x; �//x2Rd and .Q0.x; �//x2Rd from R

d to A, it holds that:
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Z

Rd

� Z

A

�
f .t; x; �; ˛/ � f .t; x; �0; ˛/

	�
Q.x; d˛/ � Q0.x; d˛/

	�
d�.x/ > 0;

where the finite measures � and �0 are defined by:

�.D/ D
Z

Rd

� Z

A
1D.x; ˛/Q.x; d˛/

�
d�.x/;

�0.D/ D
Z

Rd

� Z

A
1D.x; ˛/Q

0.x; d˛/
�

d�.x/;

for D 2 B.Rd � A/. Then, for any joint distribution � on R
d � R

d, there exists a
unique distribution � 2 P2.Rd � A/, which we shall denote ˘.t; �/, such that:

� D � ı


R

d � R
d 3 .x; y/ 7! �

x; Ǫ .t; x; �; y/� 2 R
d � A

��1
:

The proof of Lemma 4.61 is similar to that of Lemma 4.60. A crucial fact in the
proof is that, for any � 2 P2.Rd � R

d/ and � 2 P2.Rd � A/, the first marginal of
� ı.Rd �R

d 3 .x; y/ 7! .x; Ǫ .t; x; �; y// 2 R
d �A/�1 is equal to the first marginal of

� on R
d and is thus independent of �. This permits to recover the same framework

as in the proof of Lemma 4.60: the first marginal of � , denoted by � in the proof of
Lemma 4.60, is entirely fixed.

When � only depends on � 2 P2.Rd � A/ through its first marginal � 2 P2.Rd/

on R
d and under the assumption of Lemma 4.61, Equation (4.126) has a unique

solution:

�t D ˘



t;L� OXt; �.t; OXt;L. OXt//
�1� OZt

��
;

which we may rewrite, without any ambiguity, ˘ 0.t;L. OXt; OZt//. Then, the
FBSDE (4.127) rewrites:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

d OXt D b



t; OXt; ˘
0�t;L. OXt; OZt/

�
;

Ǫ�
t; OXt; ˘

0.t;L. OXt; OZt//; �.t; OXt;L. OXt//
�1� OZt

��
dt

C��
t; OXt;L. OXt/

�
dWt;

d OYt D �f



t; OXt; ˘
0�t;L. OXt; OZt/

�
;

Ǫ�
t; OXt; ˘

0.t;L. OXt; OZt//; �.t; OXt;L. OXt//
�1� OZt

��
dt

COZt � dWt;

(4.128)

with OX0 D � as initial condition and OYT D g. OXT ;L. OXT// as terminal condition.
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Based on Theorem 4.45, the analog of Proposition 3.11 (the control problem
being understood in the strong instead of weak sense) reads:

Proposition 4.62 Let assumption MFG Solvability HJB be in force, the measure
argument in the coefficients being in P2.Rd � A/ in lieu of P2.Rd/ except in � ,
which is still assumed to be a function from Œ0;T� � R

d � P2.Rd/ into R
d�d. Then,

a continuous flow of measures � D .�t/06t6T from Œ0;T� to P2.Rd � A/ is an MFG
equilibrium if and only if

�t D ˘ 0.t;L. OXt; OZt//;

where . OX; OY; OZ/ solves the McKean-Vlasov FBSDE (4.128).

Remark 4.63 The assumption that � only depends on � through � is well
understood. When � depends on the full measure �, Equation (4.126) becomes:

�t D ˘



t;L� OXt; �.t; OXt; �t/
�1� OZt

��
;

which is still implicit.
A possible way to tackle this problem is to let OZ0

t D �.t; OXt; �t/
�1� OZt, in which

case the fixed point condition becomes:

�t D ˘
�
t;L. OXt; OZ0

t /
�
;

and then to represent the backward equation accordingly with:

� Z t

0

OZ0
s �



�.s; OXs; �s/dWs

��

06t6T

as martingale part. Obviously, it would require a new analysis.

Using the Stochastic Maximum Principle. When using the Pontryagin stochastic
maximum principle, to derive an analog of Proposition 3.23, the gradient of the
solution of the Hamilton-Jacobi-Bellman equation is no longer related to the process
Z D .Zt/06t6T appearing in the FBSDE formulation of the game, but with the
process Y D .Yt/06t6T instead. In particular, repeating the above discussion shows
that, under the assumption of Lemma 4.61, the analogue of (4.115) reads:

�t D ˘.t;L.Xt;Yt//; (4.129)

where .X;Y;Z/ D .Xt;Yt;Zt/06t6T now denotes the solution of the FBSDE:
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8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

dXt D b



t;Xt; ˘
�
t;L.Xt;Yt/

�
; Ǫ�

t;Xt; ˘.t;L.Xt;Yt//;Yt
��

dt

C�dWt;

dYt D �@xH



t;Xt; ˘
�
t;L.Xt;Yt/

�
;Yt;

Ǫ�
t;Xt; ˘.t;L.Xt;Yt//;Yt

��
dt

CZtdWt;

(4.130)

with X0 D � as initial condition and YT D @xg.XT ;L.XT// as terminal condition.
Above, we assumed � to be constant as we did in the statement of Proposition 3.23.

In this case, the analog of Proposition 3.23 reads:

Proposition 4.64 Under the assumption of Definition 3.22, the measure argument
in the coefficients being in P2.Rd �A/, a continuous flow of measures � D .�t/06t6T

from Œ0;T� to P2.Rd � A/ is an MFG equilibrium if and only if �t D ˘.t;L.Xt;Yt//

for any t 2 Œ0;T�, where .X;Y;Z/ solves the McKean-Vlasov FBSDE (4.130).

Example. Following Example 1 right above, we know that, when the running cost
f is of the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; �; ˛/;

where � denotes the first marginal of � on R
d, f0 W Œ0;T��R

d �P2.Rd �A/ ! R and
f1 W Œ0;T� � R

d � P2.Rd/ � A ! R, the minimizer Ǫ of the Hamiltonian H depends
upon � through � only and writing Ǫ .t; �; �; �/ instead of Ǫ .t; �; �; �/, the fixed point
mapping ˘.t; �/ has the explicit expression:

˘.t; �/ D � ı �
R

d � R
d 3 .x; z/ 7! .x; Ǫ .t; x; �; z// 2 R

d � A
��1
;

where � is here given as the first marginal of � on R
d.

In the application to the model of price impact (recall Chapter 1) which we
solve in the next section the situation is even simpler. Indeed in this model,
the contributions of � and ˛ to the drift and the running cost functions are
separated as in:

(
b.t; x; �; ˛/ D b0.t; x; �/C b1.t; x; ˛/;

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

implying that the minimizer Ǫ is independent of �. In this case, the condition �t D
˘.t;L.Xt;Yt// reduces to �t D L.Xt; Ǫ .t;Xt;Yt//.
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Existence and Uniqueness
We shall not address existence of a solution in full generality. We just notice that
Equation (4.130) fits the general form (4.32) investigated in Subsection 4.3.1. This
may suffice whenever the (quite demanding) assumptions required in Subsection
4.3.1 are satisfied. We treat below an example which does not satisfy the growth
conditions used in Subsection 4.3.1.

We now briefly discuss the uniqueness part. Following Section 3.4, we can prove
that, provided that g satisfies the standard Lasry-Lions monotonicity condition and f
satisfies the version (4.124)–(4.125) on R

d �A (instead of Rd only), then uniqueness
holds. The proof is a straightforward adaptation of that of Theorem 3.29.

Typical Solution
Motivated by the model of price impact which was introduced in Subsection 1.3.2
of Chapter 1, and which we shall solve in the next section, we choose the following
specific set of assumptions to illustrate the applicability of the approach based on
the stochastic maximum principle discussed above.

Assumption (EMFG). The set A is closed and convex and the coefficients b,
� , f , and g are defined on Œ0;T��R

d � A, Œ0;T��R
d, Œ0;T��R

d �P2.A/� A,
and R

d respectively and they satisfy, for two constants 
;L > 0:

(A1) The volatility � is constant and the drift is an affine function of .x; ˛/:

b.t; x; ˛/ D b0.t/C b1.t/x C b2.t/˛;

where b0, b1 and b2 are measurable bounded functions from Œ0;T� into
R

d, Rd�d and R
d�k respectively.

(A2) The function f W Œ0;T��R
d �P2.A/�A 3 .t; x; 	; ˛/ 7! f .t; x; 	; ˛/ 2 R

is of the form:

f .t; x; 	; ˛/ D x � f0.t; 	/C f1.t; x; ˛/;

f0 W Œ0;T� � P2.A/ ! R
d being measurable, bounded by L and

continuous in 	 , and f1 W Œ0;T��R
d �A ! R being measurable and once

continuously differentiable with respect to .x; ˛/ and having Lipschitz-
continuous derivatives (so that f .t; �; 	; �/ is C1;1), the Lipschitz constant
in x and ˛ being bounded by L (so that it is uniform in t and 	 ).
Moreover, f1 satisfies the following strong form of convexity:

f1.t; x
0; ˛0/ � f1.t; x; ˛/ � .x0 � x; ˛0 � ˛/ � @.x;˛/f1.t; x; ˛/ > 
j˛0 � ˛j2:

(continued)
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Recall that the notation @.x;˛/f1 stands for the gradient in the joint
variables .x; ˛/. Finally, f1, @xf1 and @˛f1 are locally bounded over
Œ0;T� � R

d � A.
(A3) The function g is differentiable and its derivative is Lipschitz continu-

ous. Moreover, g is convex in the sense that:

g.x0/ � g.x/ � @xg.x/ � .x0 � x/ > 0; x; x0 2 R
d:

Notice that in the present context, the measure 	 2 P2.A/ should be understood
as the distribution of the control, namely the second marginal of the measure � used
throughout this section.

Theorem 4.65 Under assumption EMFG and for some � 2 L2.˝;F0;PIRd/ as
initial condition, the extended mean field game has a solution.

Proof. We make use of Proposition 4.64. Under the standing assumption, the McKean-
Vlasov FBSDE (4.130) takes the form:

(
dXt D b

�
t;Xt; Ǫ .t;Xt; Yt/

�
dt C �dWt;

dYt D ��
@xH1

�
t;Xt; Yt; Ǫ .t;Xt; Yt/

� C f0
�
t;L

� Ǫ .t;Xt; Yt/
��	

dt C ZtdWt;

for t 2 Œ0; T�, with X0 D � as initial condition and YT D @xg.XT/ as terminal boundary
condition. Above, H1 denotes the Hamiltonian:

H1.t; x; y; ˛/ D b.t; x; ˛/ � y C f1.t; x; ˛/; t 2 Œ0; T�; x; y 2 R
d; ˛ 2 A;

and Ǫ .t; x; y/ is the unique minimizer of the function A 3 ˛ 7! H1.t; x; y; ˛/.

First Step. We proceed as in the analysis of the system (4.50). For a given continuous flow
of measures � D .	t/06t6T with values in P2.A/, we consider the system:

(
dXt D b

�
t;Xt; Ǫ .t;Xt; Yt/

�
dt C �dWt;

dYt D ��
@xH1

�
t;Xt; Yt; Ǫ .t;Xt; Yt/

� C f0.t; 	t/
	
dt C ZtdWt;

(4.131)

for t 2 Œ0; T�, with X0 D � as initial condition and YT D @xg.XT/ as terminal boundary
condition.

Following the proof of Lemma 4.56, the system (4.131) is uniquely solvable and we may
call u� its decoupling field. Also, we can find a constant c, independent of � , such that, for
all t 2 Œ0; T� and x; x0 2 R

d,

ˇ̌
u�.t; x0/ � u� .t; x/

ˇ̌
6 cjx0 � xj: (4.132)
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Second Step. We now consider the system (4.131) but without .f0.t; 	t//06t6T in the
backward equation:

(
dX0

t D b
�
t;X0

t ; Ǫ .t;X0

t ; Y
0

t /
�
dt C �dWt;

dY 0

t D �@xH1

�
t;X0

t ; Y
0

t ; Ǫ .t;X0

t ; Y
0

t /
�
dt C Z0

t dWt;
(4.133)

for t 2 Œ0; T�, with X0

0 D � as initial condition and Y 0

T D @xg.X0

T/ as terminal boundary
condition.

Below, we let:

Ǫ t D Ǫ .t;Xt; Yt/; Ǫ 0

t D Ǫ .t;X0

t ; Y
0

t /; t 2 Œ0; T�:

Computing the Itô differential of the process:

�
.X0

t � Xt/ � Yt

C
Z t

0

�
X0

t � f0.t; 	t/C f1.s;X
0

s; Ǫ 0

s/ � Xt � f0.t; 	t/ � f1.s;Xs; Ǫs/
	
ds

�

06t6T

;

and following the proof of Proposition 3.21, we can prove that:

E

� Z T

0

�
Xt � f0.t; 	t/C f1.t;Xt; Ǫ t/

	
dt C g.XT/

�
C 
E

Z T

0

j Ǫ t � Ǫ 0

t j2dt

6 E

� Z T

0

�
X0

t � f0.t; 	t/C f1.t;X
0

t ; Ǫ 0

t /
	
dt C g.X0

T/

�
:

(4.134)

Proceeding the other way round, we get:

E

� Z T

0

f1.t;X
0

t ; Ǫ 0

t /dt C g.X0

T/

�
C 
E

Z T

0

j Ǫ t � Ǫ 0

t j2dt

6 E

� Z T

0

f1.t;Xt; Ǫ t/dt C g.XT/

�
:

(4.135)

Summing the two last inequalities (4.134) and (4.135), we get:

E

Z T

0

Xt � f0.t; 	t/dt C 2
E

Z T

0

j Ǫ t � Ǫ 0

t j2dt 6 E

Z T

0

X0

t � f0.t; 	t/dt:
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Since f0 is bounded, we easily deduce that:

E

Z T

0

j Ǫ t � Ǫ 0

t j2dt 6 c;

the constant c being allowed to increase from line to line, as long as it remains independent
of � .

Proceeding as in the proof of Lemma 4.56, we obtain that:

E
�jY0 � Y 0

0j2
	

6 c:

It is well checked that the above bound is independent of �. We then deduce that
ju� .0; 0/j 6 c. More generally, we have:

sup
06t6T

ju�.t; 0/j 6 c: (4.136)

Third Step. We now have all the ingredients to follow the proof of Theorem 4.39. To do so,
we call X� and Y� the forward and backward components of the solution to (4.131).

Proceeding as in the proof of Theorem 4.39, we deduce that there exists a compact subset
K � C.Œ0; T�;P2.Rd// such that, for any input � as above, the path .L.X�

t //06t6T is in K.
Since u� satisfies (4.132) and (4.136), we also deduce that, for any � as above, there exists

a compact subset K � P2.Rd/ such that, for any t 2 Œ0; T�, L.Y�
t / 2 K.

Thanks to (4.132) and (4.136) once again, we may proceed as in (4.9) and deduce that
ju� .t; x/ � u�.s; x/j 6 c.1C jxj/jt � sj1=2, from which we get that:

E
�jY�

t � Y�
s j2	 6 cjt � sj;

where the constant c is, as we already explained, independent of � . Following the proof of
Theorem 4.39 and modifying if necessary the compact subset K � C.Œ0; T�IP2.Rd//, we can
prove that, for all � , .L.Y�

t //06t6T 2 K.
Since Ǫ is known to be Lipschitz continuous in .x; y/ and locally bounded, see Lemma 3.3,

we deduce that there exists a compact subset K0 � C.Œ0; T�;P2.Rk// such that, for any � ,
.L. Ǫ .t;X�

t ; Y
�
t ///06t6T belongs to K0. We then conclude as in the proof of Theorem 4.39 the

existence of � 2 C.Œ0; T�;P2.Rk// such that

8t 2 Œ0; T�; 	t D L
� Ǫ .t;X�

t ; Y
�
t /

�
:

By construction of Ǫ , it holds that 	t 2 P2.A/ for all t 2 Œ0; T�. ut

4.7 Examples

4.7.1 The Price Impact MFGModel

The price impact model presented in Subsection 1.3.2 of Chapter 1 led to the
mean field game model in which for each fixed flow � D .	t/06t6T of probability
measures on A, a typical player minimizes the quantity:

J.˛/ D E

� Z T

0

f .t;Xt; 	t; ˛t/dt C g.XT/

�
(4.137)
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under the dynamical constraint:

dXt D ˛tdt C �dWt; t 2 Œ0;T� I X0 D �;

with a running cost function f of the form:

f .t; x; 	; ˛/ D c˛.˛/C cX.x/ � x
Z

A
hd	;

t 2 Œ0;T�; x 2 R
d; 	 2 P.A/; ˛ 2 A;

(4.138)

where c˛ and h are deterministic measurable functions on the control space A.
They model the individual price impact and the cost of trading at a given rate. The
functions cX and g are defined on R

d. They model running and terminal liquidation
constraints penalizing unwanted inventories. The fixed point step imposes the con-
dition 	t D L. Ǫ t/ where Ǫ D . Ǫ t/06t6T is the optimal control minimizing (4.137).

We assume that the functions cX and g are quadratic and that the function c˛
is strongly convex in the sense that its second derivative is bounded away from 0.
The function h is assumed to be uniformly Lipschitz continuous. In most practical
applications, it is even assumed to be linear. Such a particular case is known as
the Almgren-Chriss linear price impact model. For the numerical illustrations given
below we shall choose (recall that d D m D k D 1):

f .t; x; 	; ˛/ D c˛
2
˛2 C cX

2
x2 � x

Z

R

hd	; and g.x/ D cg

2
x2;

and b.t; x; ˛/ D ˛ and �.t; x/ D � > 0. Here, t 2 Œ0;T�, x 2 R, 	 2 P2.R/ and
˛ 2 A D R. Above, cX and c˛ are strictly positive constants and m is nonnegative.
Also, we assume that � D x0 2 R is deterministic.

When h is continuous and bounded, assumption EMFG is satisfied and one can
use Theorem 4.65 to conclude existence of a solution to the mean field game model.
We pursue the analysis with the goal of a constructive identification of the solutions
and numerical illustrations.

Numerical Results
The Hamiltonian

H.t; x; y; 	; ˛/ D ˛y C c˛
2
˛2 C cX

2
x2 � x

Z

R

hd	

is minimized (in ˛) for Ǫ D �y=c˛ and the McKean-Vlasov FBSDE we need to
solve is:

8
ˆ̂<

ˆ̂:

dXt D � 1
c˛

Yt dt C �dWt;

dYt D � � cXXt C EŒh.�Yt=c˛/�
	
dt C ZtdWt; t 2 Œ0;T�;

X0 D x0; YT D cgXT :

(4.139)

This form is consistent with Proposition 4.64 since �t D ˘.t;L.Xt;Yt// D
L.Xt;�Yt=c˛/, recall Ǫ .t; x; �; y/ D �y=c˛ .
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We first consider the case of a linear price impact function h, say h.˛/ D Nh˛.
Under this extra assumption, assumption EMFG is not satisfied any longer, but the
problem becomes particularly simple because the McKean-Vlasov FBSDE (4.139)
is now affine:

8
ˆ̂<

ˆ̂:

dXt D � 1
c˛

Yt dt C �dWt;

dYt D � � cXXt � Nh
c˛
EŒYt�

	
dt C ZtdWt; t 2 Œ0;T�;

X0 D x0; YT D cgXT :

(4.140)

We could approach existence and uniqueness of a solution to (4.140) by means of
our earlier analysis of McKean-Vlasov FBSDEs. However, we shall opt for a direct
approach in hope to get solutions via explicit formulas which could then be used
for numerical computations. Also, notice that we cannot directly apply the results
derived in Section 3.5 because the dependence upon the distribution in (4.140)
is through the expectation of the adjoint variable Yt instead of being through the
expectation of the state variable Xt. However, we can still implement the same
solution strategy by looking for an affine decoupling field Yt D �tXt C �t given
by two deterministic functions .�t/06t6T and .�t/06t6T . Like in Section 3.5, we first
need to compute the mean functions Nxt D EŒXt� and Nyt D EŒYt�.

Taking expectations on both sides of (4.140), we get:

8
ˆ̂<

ˆ̂:

PNxt D � 1
c˛

Nyt;

PNyt D �cX Nxt � Nh
c˛

Nyt; t 2 Œ0;T�;
Nx0 D x0 NyT D cg NxT :

(4.141)

This is a particular case of the system (3.53) which we solved by relying on the
ansatz Nyt D N�t Nxt C N�t. In the present situation, the functions N� and N� can be identified
as the solutions of the system of ODEs:

8
ˆ̂<

ˆ̂:

PN�t C Nh
c˛

N�t � 1
c˛

N�2t C cX D 0;

PN�t � Œ 1c˛ N�t � Nh
c˛
� N�t D 0; t 2 Œ0;T�;

N�T D cg; N�T D 0:

(4.142)

The first equation is a one-dimensional Riccati equation. Recalling that both c˛ and
cX are strictly positive and cg is nonnegative and following (2.49)–(2.50), we get:

N�t D �C
�
e.ı

C�ı�/.T�t/ � 1� � cg
�
ıCe.ı

C�ı�/.T�t/ � ı��
�
ı�e.ıC�ı�/.T�t/ � ıC� � cgB

�
e.ıC�ı�/.T�t/ � 1� ; (4.143)

for t 2 Œ0;T�, where A D �Nh=.2c˛/, B D 1=c˛ , C D cX , ı˙ D �A ˙ p
R, with

R D A2 C BC > 0.
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The second equation in (4.142) is a first order homogenous linear equation with
terminal condition zero, so its solution is identically zero. Consequently the means
Nxt and Nyt are given by:

Nxt D x0e� 1
c˛

R t
0 N�udu; and Nyt D x0 N�te

� 1
c˛

R t
0 N�udu; t 2 Œ0;T�: (4.144)

We can now go back to the McKean-Vlasov FBSDE (4.140) and solve for the
equilibrium processes X and Y. As explained above, we use the ansatz Yt D �tXtC�t

and substitute the quantity Nyt just computed for EŒYt�. Computing the stochastic
differential of Y using such an ansatz and the equations in (4.140), we find that
these functions solve the system of ODEs:

8
ˆ̂<

ˆ̂:

P�t D 1
c˛
�2t � cX;

P�t D 1
c˛
�t�t � Nh

c˛
Nyt;

�T D cg; �T D 0;

(4.145)

where we use the notation Nyt for the expectation EŒYt�. The first equation is a Riccati
equation which can be solved directly. Proceeding as above, we find:

�t D �c˛
p

cX=c˛
c˛

p
cX=c˛ � cg � .c˛

p
cX=c˛ C cg/e2

p
cX=c˛.T�t/

c˛
p

cX=c˛ � cg C .c˛
p

cX=c˛ C cg/e2
p

cX=c˛.T�t/
; (4.146)

for t 2 Œ0;T�. Once � is determined, one can inject its value (4.146) into the explicit
solution of the second equation in (4.145) which reads:

�t D
Nh

c˛

Z T

t
Nyse

� 1
c˛

R s
t �ududs; t 2 Œ0;T�: (4.147)

Observe that Yt D �tXt C �t yields Nyt D �t Nxt C �t, so that �t D . N�t � �t/Nxt.
As usual in linear quadratic models, the equilibrium state is Gaussian. Here, its

dynamics are given by the Ornstein-Uhlenbeck like equation:

dXt D � 1

c˛

�
�tXt C . N�t � �t/Nxt

�
dt C �dWt; t 2 Œ0;T� I X0 D x0:

Since Yt D �tXt C�t, the adjoint process and the optimal control process Ǫ D . Ǫ t D
�Yt=c˛/06t6T are also Gaussian. Notice that Ǫ t � N.�.˛/t ; Œ�

.˛/
t �2/ with:

�
.˛/
t D � x0

c˛
N�te

� 1
c˛

R t
0 N�u du and Œ�

.˛/
t �2 D �2

c2˛
�2t

Z t

0

e� 2
c˛

R t
s �u duds:

Figure 4.1 shows the time evolution of the density of the control process.
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Fig. 4.1 Time evolution (for t ranging from 0:06 to T D 1) of the marginal density of the optimal
rate of trading Ǫ t for a representative trader for the values x0 D 1, cX D 0:1, cg D 0:3, c˛ D 2,
k D 10 and � D 0:7 of the parameters.
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Fig. 4.2 Expected terminal inventory as a function of cg and cX (left) when the latter varies from
0:01 to 1 and Nh D 10, and as a function of cg and Nh (right) when the latter varies from 0:01 to
10 and cX D 0:1. In both cases, cg varies from 0:01 to 10. The values of the other parameters are
c˛ D 2 and � D 0:7.

Figures 4.2 and 4.3 give surface plots of the expected terminal inventory EŒXT � as
a function of the various parameters of the model. Clearly, both plots of Figure 4.2
confirm the intuition that large values of the parameter cg would force this terminal
inventory to be small.

Figure 4.3 seems to indicate that the price impact parameter Nh does not have
a large influence on the expected terminal inventory for large values of the
parameters cx and c˛ . However, for small values of the parameters cx and c˛ , the
expected terminal inventory seems to be a decreasing function of the price impact
parameter Nh.
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Fig. 4.3 Expected terminal inventory as a function of c˛ and Nh (left) when the former varies from
0:01 to 10 and cX D 0:1, and as a function of cX and Nh (right) when the former varies from 0:01

to 10 and c˛ D 2. In both cases, Nh varies from 0:01 to 10. The values of the other parameters are
cg D 1 and � D 0:7.

4.7.2 AModel of CrowdMotion with Congestion

We now study in detail the crowd congestion model introduced in Subsection 1.5.3
of Chapter 1.

We model the behavior of N individuals exiting an enclosed area such as a
ballroom, or a theater. The room is modeled as a bounded closed convex polyhedron
D � R

d, and the exits comprise the connected components of a relatively closed
subset E of the boundary @D (so that E itself is closed) with a nonempty relative
interior. The convexity assumption is mostly for convenience as it is not needed for
most of the theoretical arguments we use below. Non-convex models are important
for applications. Indeed, domains with holes can be used to model physical obstacles
(e.g., barriers, pillars, rows of seats, : : :) impeding the motion of the individuals.
Also, dumbell-like domains comprising thin corridors connecting convex bodies
can provide realistic models for suites of rooms connected by narrow hallways or
by staircases.

In the mean field game limit, the dynamics of the position of an individual are
assumed to be given by a controlled reflected stochastic differential equation of the
form:

dXt D ˛tdt C dWt C dKt; t 2 Œ0;T�; (4.148)

where W D .Wt/06t6T is a d-dimensional Wiener process on a complete filtered
probability space .˝;F ;F;P/ and K D .Kt/06t6T is a continuous process with finite
variation implementing the normal reflection de facto preventing X from exiting D.
We shall give more details on K later, but we already notice that its sample paths
only increase at the times of the set ft 2 Œ0;T� W Xt 2 @Dg. The admissible control
processes ˛ D .˛t/06t6T will be the F-progressively measurable processes with
values in a bounded closed convex subset A � R

d. Except for the noise term dWt and
the forced reflection produced by dKt, ˛t is the unperturbed velocity and represents
how the individual controls its motion through the room. An important quantity we
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will want to track is the exit time of the room given by the first hitting time of E by
the process X defined as:

� D infft 2 Œ0;T� W Xt 2 Eg: (4.149)

When an individual reaches a door, we consider that it is not part of the game any
longer, and instead of letting the reflection take place, we use a standard procedure
in the classical theory of Markov processes to send the individual to a point added
to the state space D and called the cemetery. We use the notation for the cemetery
to follow the tradition of the classical texts on Markov processes, hoping that it will
not be confused with the notation x used for the Laplacian operator at the end of
this subsection. Indeed the cemetery notation will only enter the definition of the
extended state space D D D [ fg. For the sake of definiteness, we shall assume
that  2 R

d n D. We want to apologize to the reader for our willingness to abide by
the standard notation and terminology that create this amusing oxymoron: we end
up calling cemetery the place the individuals want to reach (since they want to leave
the room) in the shortest amount of time !

For the control step of the mean field game problem, we fix a continuous flow
� D .�t/06t6T of probability measures in C.Œ0;T�IP.D//, and to each admissible
control ˛, we associate the cost:

J�.˛/ D E

� Z T^�

0



`.Xt; �t/

j˛tj2
2

C f .t/
�

dt

�
; (4.150)

where ` is a continuous function from R
d � P.D/ equipped with the product

of the Euclidean and weak topologies, into a compact subset of .0;C1/, and f
is an integrable function from Œ0;T� to RC. Notice that the cost J�.˛/ depends
only upon the part of the trajectory of X before it reaches the exit, so modifying
Xt for t > � will have no effect on the cost. The function f penalizes long stays
inside the domain D before exiting. It may be chosen to be identical equal to 1, in
which case its contribution to the running cost represents the total time spent in the
room. Finally, the function ` is intended to penalize the amount of energy spent (as
given by the term j˛tj2 representing the kinetic energy) where there is congestion.
A typical example of interest to us is:

`.x; �/ D '.1C .�jD � �/.x//

for an increasing continuous function ' from RC into itself, and a smooth even
compactly supported density � W Rd ! RC. Here, � is any probability measure on
D, �jD denotes its restriction to D, and ‘*’ stands for the standard convolution on
Euclidean space.

The fixed point step of the mean field game problem can be formulated as follows.
If X is the solution of the optimal control problem described above, we define the
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process X0 by X0
t D Xt for t < � and X0

t D  whenever t > � , and we say that X0
(or the flow �) is a solution of the MFG problem if, for any t 2 Œ0;T�; �t coincides
with the distribution of X0

t (and not of Xt). Notice that in the law of X0
t , the interesting

part is the measure �tjD D 1D�t which describes the statistical distribution of the
individuals who have not exited yet by time t. This is not necessarily a probability
measure since its total mass is the proportion of individuals still in D at time t.
We could have avoided the introduction of the cemetery and used flows of sub-
probability measures to define the costs and the mean field game equilibrium, but in
order to use the tools developed in this book for probability measures we introduced
the state process X0 and the above definition for the MFG equilibrium. In case when
` is given as the convolution of �jD with �, we may choose for cemetery  a point
satisfying 62 supp.�/C D. This condition ensures that the convolution of � and �
does not feel the mass allocated to the cemetery.

Because the problem is set on a bounded domain instead of the whole Euclidean
space R

d, and because of the special type of mixed boundary conditions needed in
this model, we cannot use directly the results derived in Subsections 4.4 and 4.5.
However, we shall prove that similar arguments may be used to solve the MFG
problem as derived from (4.148)–(4.150).

For the purpose of illustration we treat a numerical example at the end of this
subsection.

Reflected BrownianMotion
In order to simplify the presentation, we perform the stochastic control step in its
weak form, in full analogy with Subsection 3.3.1 in Chapter 3. The main reason is
to avoid the technical discussion of (fully coupled) FBSDEs with random terminal
times. Also, recall that we assume that the set A is bounded, an assumption which is
often in force when using the weak formulation.

Imitating (3.28), we thus consider the uncontrolled dynamics:

dXt D dWt C dKt; t 2 Œ0;T� I X0 D �; (4.151)

defined on some filtered complete probability space .˝;F ;F;P/ satisfying the
usual conditions, for an F0-measurable initial condition X0 D � whose law �0 is
assumed to have a bounded density on the �-neighborhood E� D fx 2 D W d.x;E/ <
�g of E for some � > 0. Equation (4.151) is the equation for the reflected Brownian
motion in the domain D. The process K is a bounded variation process acting in a
minimal way to prevent X from exiting D. It is required to satisfy:

jKjt D
Z t

0

1fXs2@DgdjKjs; Kt D
Z t

0

nsdjKjs; t 2 Œ0;T�;

where for any t 2 Œ0;T�, nt is an inward pointing unit normal vector to @D at Xt.
The first identity expresses the fact that K only acts when X is on the boundary.
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The second one says that K is directed along an inward pointing unit normal to
the boundary. Importantly, observe that for any F-progressively measurable process
Z D .Zt/06t6T with values in D, it holds, for all t 2 Œ0;T�,

Z t

0

�
Zs � Xs

� � dKs D
Z t

0

1fXs2@Dg
�
Zs � Xs

� � nsdjKjs > 0; (4.152)

the last inequality following from the fact that D is convex.
Precise references for the theory and the construction of reflected processes are

given in the Notes & Complements at the end of the chapter.
Notice that the process X considered in this section is different from the process

X considered earlier in the subsection since it does not contain the controlled drift.
However the stopping time � is defined in the same way as in (4.149), except that
the infimum is taken over all t 	 0. Recall also that we use implicitly the convention
inf ; D 1.

We shall need the following technical result whose proof we defer to the final
paragraph of this subsection to avoid distracting from the logical steps toward the
construction of a solution of the MFG problem.

Lemma 4.66 For any � 2 .0; 1=2/, the cumulative distribution function of � D
infft 	 0 W Xt 2 Eg, namely the function RC 3 t 7! P.� 6 t/ is .1=2 � �/

Hölder continuous, uniformly in time. Moreover, P.� < 1/ D 1 and for any t > 0,
P.� 6 t/ > 0.

Weak Formulation
Now, for any measure flow � D .�t/06t6T in C.Œ0;T�IP.D// and any admissible
control process ˛ D .˛t/06t6T (i.e., any F-progressively measurable A-valued
process), we define the probability P

�;˛ on .˝;FT/ by:

dP�;˛

dP
D exp

� Z T

0

˛t � dWt � 1

2

Z T

0

j˛tj2dt

�
:

Observe that P�;˛ is in fact independent of �, the rationale for the exponent � being
mostly for pedagogical reasons. Notice also that, under P�;˛, X is not a reflected
Brownian motion any longer. It is the result of the reflection of a process which is a
Brownian motion plus a drift given by

R t
0
˛sds, which is what we were looking for.

Under the weak formulation, the cost associated with ˛ is:

J�;weak.˛/ D E
�;˛

� Z T^�

0

�1
2
`.Xt; �t/j˛tj2 C f .t/

	
dt

�
;

where we use the notation E
�;˛ for the expectation with respect to the probability

P
�;˛. The reduced Hamiltonian H is independent of the boundary condition. It is

given by the same formula:
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H.t; x; �; y; ˛/ D ˛ � y C 1

2
`.x; �/j˛j2 C f .t/:

A straightforward computation shows that the minimizer of the function A 3 ˛ 7!
H.t; x; �; y; ˛/ is equal to the orthogonal projection of �y=`.x; �/ onto the convex
set A. With the same notation as above, we thus have Ǫ .x; �; y/ D ˘A.�y=`.x; �//
where ˘A is the orthogonal projection onto A. Hence, the minimized Hamiltonian
H� is given by:

H�.t; x; �; y/ D inf
˛2A

H.t; x; �; y; ˛/

D `.x; �/
h
˘A

� � y

`.x; �/

� � y

`.x; �/
C 1

2

ˇ̌
˘A

� � y

`.x; �/

�ˇ̌2i C f .t/:

In the present context, Proposition 3.11 gives:

Proposition 4.67 For any continuous flow � D .�t/06t6T of probability measures
on D, the BSDE:

dYt D �1ft6�gH
�
t;Xt; �t;Zt; Ǫ .Xt; �t;Zt/

�
dt C Zt � dWt; (4.153)

for t 2 Œ0;T�, with terminal condition YT D 0, is uniquely solvable. Moreover, the
control Ǫ D . Ǫ t/06t6T defined by Ǫ t D Ǫ .Xt; �t;Zt/ is the unique optimal control
over the interval Œ0;T� and the optimal cost of the problem is given by:

inf
˛2A J�;weak.˛/ D Y0: (4.154)

In order to emphasize the dependence of the optimal control Ǫ upon �, we shall
denote it by Ǫ �. It is worth mentioning that, with Y D .Yt/06t6T as above, we have
with P-probability 1 that Yt D 0 for any t 2 Œ�;T�. We do not give the proof of
Proposition 4.67 as it goes along the very same lines as for Proposition 3.11.

MFG Equilibrium in theWeak Formulation
According to Definition 3.12, solving the MFG problem under the weak formulation
consists in finding a flow � D .�t/06t6T of probability measures on D such that

8t 2 Œ0;T�; �t D P
�; Ǫ� ı .X0

t/
�1; where X0

t D


Xt if t < �
 otherwise

: (4.155)

Defining the map ˚ by:

˚ W C�
Œ0;T�IP.D/

� 3 � 7! �
P

�; Ǫ� ı .X0
t/

�1�
06t6T ; (4.156)
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our strategy is to prove that ˚ admits a fixed point by checking that Schauder’s
theorem can be used in the same way as in Subsection 4.3.2.

We start with the following simple remark. Since D is bounded and closed,
P.D/ coincides with P2.D/ and the topology of weak convergence usually
considered on P.D/ is the same as the topology given by the Wasserstein distance
W2 on P2.D/. Also, P.D/ is a closed compact subset of P2.Rd/. These facts were
already mentioned in Chapter 1, and they will be discussed in detail in Chapter 5.
For this reason, C.Œ0;T�IP.D// may be regarded as a closed convex subset of
C.Œ0;T�IP2.Rd//, and we can work along the same lines as in Section 4.3. Below,
we shall write C.Œ0;T�IP2.D// to emphasize the fact that P.D/ is equipped with
the 2-Wasserstein distance and that C.Œ0;T�IP.D// is equipped with the supremum
distance induced by W2. Henceforth, we aim at applying Schauder’s theorem as in
Subsection 4.3.2, and for that, it suffices to prove that ˚ is continuous and has a
relatively compact range. This is proven in Lemmas 4.68 and 4.69 below, proving
that the MFG problem (4.155) has a solution.

Lemma 4.68 There exists a constant C such that, for any � 2 C.Œ0;T�IP2.D//,

8s; t 2 Œ0;T�; W2



P

�; Ǫ� ı .X0
t/

�1;P�; Ǫ� ı .X0
s/

�1� 6 Cjt � sj1=8:

In particular, ˚ maps C.Œ0;T�IP2.D// onto a relatively compact subset of the
space C.Œ0;T�IP2.D//.

Proof. As we already mentioned, by Girsanov transformation, we know that under P�; Ǫ�
,

X D .Xt/06t6T satisfies the SDE:

dXt D Ǫ�
Xt; �t; Zt

�
dt C dWt C dKt:

Observe that, for any 0 6 s 6 t 6 T ,

dtjXt � Xsj2 D 2.Xt � Xs/ �



Ǫ�
Xt; �t; Zt

�
dt C dWt C dKt

�
C dt:

By (4.152), we have:

2.Xt � Xs/ � dKt 6 0;

from which we obtain

dtjXt � Xsj2 6 2.Xt � Xs/ �



Ǫ�
Xt; �t; Zt

�
dt C dWt

�
C dt:

Taking expectations and using the fact that Ǫ is bounded, we deduce that there exists a
constant C, independent of �, such that:

8s; t 2 Œ0; T�; E
�; Ǫ� �jXt � Xsj2

	
6 Cjt � sj: (4.157)



320 4 FBSDEs and the Solution of MFGs Without Common Noise

Now, for all s; t 2 Œ0; T�, with s < t,

E
�; Ǫ� �jX0

t � X0

sj2
	

6 E
�; Ǫ� �jXt � Xsj21ft<�g

	 C CP
�; Ǫ� �

s < � < t
	

6 E
�; Ǫ� �jXt � Xsj2

	 C CP
�; Ǫ� �

s < � < t
	
;

where we allowed the value of the constant C to change from line to line. By (4.157), we get:

E
�; Ǫ� �jX0

t � X0

sj2
	

6 C.t � s/C CP
�; Ǫ� �

s < � < t
	
:

The density of P
�; Ǫ�

with respect to P is defined in terms of Ǫ , which is bounded,
independently of �. Therefore,

E
�� dP�; Ǫ�

dP

�2	 6 C;

from which we get:

E
�; Ǫ� �jX0

t � X0

sj2
	

6 C.t � s/C CP
�
s < � < t

	1=2
:

The result follows from the fact that according to Lemma 4.66, the cumulative distribution
function of � is Hölder continuous. ut

We now investigate the continuity of ˚ .

Lemma 4.69 The function ˚ in (4.156) is continuous from C.Œ0;T�IP2.D// into
itself.

Proof. Given two continuous flows � D .�t/06t6T and �0 D .�0

t/06t6T with values in

P.D/, we compare the control processes Ǫ � and Ǫ �0

. By Proposition 4.15, we may call
.Yt; Zt/06t6T the solution of the quadratic BSDE (4.153) driven by �, and .Y 0

t ; Z
0

t /06t6T the
solution of the quadratic BSDE (4.153) driven by �0. Computing the difference between Yt

and Y 0

t for t 2 Œ0; T�, we get:

d
�
Yt � Y 0

t

� D �1ft<�g

h
H

�
Xt; �t; Zt; Ǫ�

Xt; �t; Zt
�� � H

�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

��

C H
�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

�� � H
�
Xt; �

0

t ; Z
0

t ; Ǫ�
Xt; �

0

t ; Z
0

t

��i
dt

C �
Zt � Z0

t

� � dWt:

Notice now, from the local Lipschitz property of the Hamiltonian H in the variables z and ˛
and from the Lipschitz property of the optimizer Ǫ in the variables z and ˛, that we can find
a process � D .�t/06t6T with values in R

d such that, for some constant C > 0, independent
of � and �0,

j�tj 6 C
�
1C jZtj C jZ0

t j
�
; t 2 Œ0; T�;



4.7 Examples 321

and, for all t 2 Œ0; T�,

1ft<�g

h
H

�
Xt; �t; Zt; Ǫ�

Xt; �t; Zt
�� � H

�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

��i D �
Zt � Z0

t

� � �t:

Define now the drifted Brownian motion .W�
t D Wt � R t

0
�sds/06t6T together with the

Girsanov transform:

dP�

dP
D exp

� Z T

0

�s � dWs � 1

2

Z T

0

j�sj2ds

�
:

By the BMO property of Z and Z0, we know from Proposition 4.18 that there exists r > 1,
independent of � and �0, such that (allowing the constant C to vary from line to line):

E

h
 dP�

dP

�ri
6 C: (4.158)

Under P� , we have that:

d
�
Yt � Y 0

t

� D �1ft<�g

h
H

�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

�� � H
�
Xt; �

0

t ; Z
0

t ; Ǫ�
Xt; �

0

t ; Z
0

t

��i
dt

C �
Zt � Z0

t

� � dW�
t ;

for t 2 Œ0; T�. Taking the power 2p on both sides for some p > 1, we deduce by standard
BSDE inequalities that:

E
�
�

sup
06t6T

jYt � Y 0

t j2p
	 C E

�

�� Z T

0

jZt � Z0

t j2dt

�p�

6 CE
�

�� Z T

0

ˇ̌
H

�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

��

� H
�
Xt; �

0

t ; Z
0

t ; Ǫ�
Xt; �

0

t ; Z
0

t

��ˇ̌2
dt

�p�
:

Thanks to (4.158), the above right-hand side is less than:

CE

�� Z T

0

ˇ̌
H

�
Xt; �t; Z

0

t ; Ǫ�
Xt; �t; Z

0

t

��

� H
�
Xt; �

0

t ; Z
0

t ; Ǫ�
Xt; �

0

t ; Z
0

t

��ˇ̌2
dt

�rp=.r�1/�.r�1/=r

:

Recalling that for any q > 1, EŒ.
R T
0

jZ0

t j2dt/q� can be bounded independently of �0, see again
Proposition 4.18, we easily deduce that the above right-hand side tends to 0 as �0 tends to �.
Therefore, for any p > 1,

E
�

�� Z T

0

jZt � Z0

t j2dt

�p�
; and thus E

�

�� Z T

0

j Ǫ�
t � Ǫ�0

t j2dt

�p�
;
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tend to 0 as �0 tends to � for the topology of uniform convergence on the space
C.Œ0; T�IP2.D//. Notice however that this result is not entirely satisfactory since P

�

depends on �0. We now prove that the same holds true but under P. To do, observe that,
for any � > 0,

lim
�0

!�
P

�

� Z T

0

j Ǫ�
t � Ǫ�0

t j2dt > �

�
D 0: (4.159)

Therefore, for any M > 1,

lim
�0

!�
P

�
dP�

dP
> 1

M
;

Z T

0

j Ǫ�
t � Ǫ�0

t j2dt > �

�
D 0:

It then remains to see that:

P

�
dP�

dP
<
1

M

�
D P

� Z T

0

�s � dWs � 1

2

Z T

0

j�sj2ds < � ln.M/

�

6 1

ln.M/
E

�ˇ̌
ˇ
Z T

0

�s � dWs

ˇ̌
ˇ C 1

2

Z T

0

j�sj2ds

�
;

which tends to 0 as M tends to 1. By combining the two above inequalities we deduce
that (4.159) holds with P

� replaced by P. Recalling that A is bounded and thus that Ǫ � and
Ǫ �0

are bounded independently of � and �0, we obtain:

lim
�0

!�
E

Z T

0

j Ǫ�
t � Ǫ �0

t j2dt D 0; (4.160)

which is the desired result.
We now go back to the expression of P�; Ǫ

�

and P
�0; Ǫ

�0

. They are equivalent probability

measures and the density of P�0; Ǫ
�0

with respect to P
�; Ǫ

�

is given by:

dP�0; Ǫ
�0

dP�; Ǫ
� D exp

� Z T

0

� Ǫ�0

t � Ǫ�
t

� � dWt � 1

2

Z T

0

�j Ǫ�0

t j2 � j Ǫ�
t j2�dt

�
:

Observe that, for any p > 1,

E

�
exp

�
p

Z T

0

� Ǫ�0

t � Ǫ �
t

� � dWt

��

6 E

�
exp

�
2p

Z T

0

� Ǫ �0

t � Ǫ�
t

� � dWt�2p2
Z T

0

ˇ̌ Ǫ�0

t � Ǫ�
t

ˇ̌2
dt

��1=2

� E

�
exp

�
2p2

Z T

0

ˇ̌ Ǫ�0

t � Ǫ�
t

ˇ̌2
dt

��1=2

D E

�
exp

�
2p2

Z T

0

ˇ̌ Ǫ �0

t � Ǫ �
t

ˇ̌2
dt

��1=2
:
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Recalling that the set A is bounded, we easily deduce that the above right-hand side tends to
1 as �0 tends to �. Therefore, for any p > 1,

lim sup
�0

!�

E

h
 dP�0; Ǫ
�0

dP�; Ǫ
�

�pi
6 1:

Now,

E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
� � 1

�2i D E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
�

�2i C 1 � 2E�; Ǫ
�
h dP�0; Ǫ

�0

dP�; Ǫ
�

i

D E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
�

�2i � 1:
(4.161)

Moreover, for any � > 1

lim sup
�0

!�

E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
�

�2i

D lim sup
�0

!�

E

hdP�; Ǫ
�

dP


dP�0; Ǫ
�0

dP�; Ǫ
�

�2i

6 E

h
 dP�; Ǫ
�

dP

�2�i1=�
lim sup
�0

!�

E

h
dP�0; Ǫ
�0

dP�; Ǫ
�

�2�=.��1/i.��1/=�

D E

h
 dP�; Ǫ
�

dP

�2�i1=�
:

Letting � tend to 1, we get:

lim sup
�0

!�

E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
�

�2i
6 1:

And then, by (4.161),

lim sup
�0

!�

E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
� � 1

�2i D 0: (4.162)

Finally, for any bounded measurable function F on C.Œ0; T�IR2d/, we have:

E
�0; Ǫ

�0 �
F.X/

	 � E
�; Ǫ

� �
F.X/

	 D E
�; Ǫ

�
h
 dP�0; Ǫ

�0

dP�; Ǫ
� � 1

�
F.X/

i
;

and from (4.162), we deduce that:

lim
�0

!�

ˇ̌
ˇE�0; Ǫ

�0 �
F.X/

	 � E
�; Ǫ

� �
F.X/

	ˇ̌
ˇ D 0;
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the convergence being uniform over measurable mappings F with a supremum norm less
than 1.

Observing that, for a given t 2 Œ0; T�, the mapping C.Œ0; T�IRd/ 3 x 7! x0

t , with x0

t D xt

if t < £ and x0

t D  if t > £ and £ D infft 2 Œ0; T� W xt 2 Eg, is measurable, we deduce that,
for any bounded measurable function h W D ! R,

lim
�0

!�
sup

t2Œ0;T�

ˇ̌
ˇE�0; Ǫ

�0 �
h.X0

t /
	 � E

�; Ǫ
� �

h.X0

t /
	ˇ̌
ˇ D 0;

the convergence being uniform over measurable mappings h with a sup-norm less than 1.
Expressed in terms of the function ˚ used in the statement, this says that:

lim
�0

!�
sup

khk1 6 1

sup
t2Œ0;T�

ˇ̌
ˇ̌
Z

D
hd

�
˚.�0/

�
t �

Z

D
hd

�
˚.�/

�
t

ˇ̌
ˇ̌ D 0;

that is, the probability measure .˚.�0//t weakly converges to .˚.�//t, uniformly in t 2
Œ0; T�. Recall that, since D is bounded, the metric associated with weak convergence on
P.D/ is equivalent to the 2-Wasserstein distance. Therefore,

lim
�0

!�
sup

t2Œ0;T�
W2


�
˚.�0/

�
t;

�
˚.�/

�
t

�
D 0;

which shows that ˚ is a continuous mapping from C.Œ0; T�IP2.D// into itself. ut

Now, the existence of an MFG equilibrium comes as a consequence of Lem-
mas 4.68 and 4.69. Indeed, it suffices to regard E D C.Œ0;T�IP.D// as a closed
convex subset of C.Œ0;T�IM1

f .R
d// equipped with the same norm k � k as in the

proof of Theorem 4.39 and to observe any E-valued sequence converging for k � k is
uniformly convergent with respect to the 2-Wasserstein distance.

Proof of Lemma 4.66

Proof. First, we recall some basic facts about exit times and exit distributions of standard
Brownian motion, as well as some properties of reflected Brownian motions. Recall that
the boundary @D of the domain D is assumed to be piecewise smooth. See the Notes &
Complements at the end of the chapter for references to papers providing proofs of these
results.

Under the standing assumptions on the domain D, the reflected Brownian motion in D has
a fundamental solution .p.t; x; y//t>0;x2D;y2D, namely:

P
�
Xt 2 BjX0 D x

	 D
Z

B
p.t; x; y/dy; B 2 B.D/:

For any t > 0, the mapping D2 3 .x; y/ 7! p.t; x; y/ is continuous and (strictly) positive.
Moreover, there exists a constant C such that, for all t 2 .0; 1/,

8x; y 2 D; p.t; x; y/ 6 Ct�d=2 exp
� � jx � yj2

Ct

�
; (4.163)
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and, for all t > 1,

8x; y 2 D; p.t; x; y/ 6 C: (4.164)

We also have that, for all t 2 .0; 1/,

8x 2 D; 8a > 0; P

h
sup
06s6t

jXs � xj > a j X0 D x
i

6 C exp
� � a2

Ct

�
: (4.165)

At times, it will be convenient to compare the stopping time � (defined as the first hitting time
of the part E of the boundary @D) to the first exit time Q� D infft > 0I Xt 2 @Dg of the domain
D. Although we shall not use this fact, we mention that the joint distribution of the first time
of exit and the location of exit, namely L. Q�;XQ� / is absolutely continuous with respect to the
measure dt �.dy/ where �.dy/ denotes the surface measure on @D. More precisely for any
starting point x in the interior of D, we have:

P
� Q� 2 dt; XQ� 2 dy j X0 D x

	 D 1

2

@

@ny
p0.t; x; y/ dt �.dy/ (4.166)

where ny denotes the inward pointing unit normal vector to @D at y 2 @D, and p0.t; x; y/ is
the fundamental solution of the Dirichlet problem in D, namely the density of the Brownian
motion killed the first time it hits the boundary @D; in other words:

PŒXt 2 dy; t < Q� j X0 D x� D p0.t; x; y/dy:

We used the process X while talking about standard Brownian motion because, at least in
distribution, X behaves like a standard Brownian motion up until time Q� . See the Notes &
Complements for references.

Now, we tackle the proof of the lemma by considering X0 D �, as in (4.151). For any
t > 0, we denote by �t the distribution of Xt. For each t > 0, �t has a density, which we
denote by �t:

�t.x/ D
Z

D
p.t; y; x/d�0.y/; x 2 D;

When t 2 .0; 1/ and x 2 E�=2, we have:

�t.x/ 6
Z

E�
p.t; y; x/�0.y/dy C C

td=2

Z

DnE�
exp

� � jx � yj2
Ct

�
d�0.y/

6
Z

E�
p.t; y; x/�0.y/dy C C

td=2
exp

� � �2

4Ct

�
;

where as before, E� D fx 2 D W dist.x;E/ < �g, and we used the notation �0 for the density
of the absolutely continuous part of �0. Since we assume that �0 is bounded on E�, we deduce
that there exists a constant C0 such that, for all t 2 .0; 1/,

8x 2 E�=2; �t.x/ 6 C0: (4.167)

The bound remains true when t > 1 because of (4.164).
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We now denote by mt the restriction of the distribution of X0

t to D, namely the sub-
probability measure defined by:

mt.B/ D P
�
Xt 2 B; t < �

	
; B 2 B.D/;

the initial condition � of X0 being prescribed. Obviously, we always have mt.B/ 6 �t.B/. For
any t > 0 such that PŒ� > t� > 0, we have:

P
�
� 6 t C h j � > t

	 D
Z

D
P

�
� 6 h j X0 D x

	
d�t.x/:

For a given x 2 D, we deduce from (4.165) that, for all h 2 .0; 1/,

P
�
� 6 h j X0 D x

	
6 P

h
sup
06t6h

jXt � xj > dist.x;E/
ˇ̌
X0 D x

i

6 C exp



� .dist.x;E//2

Ch

�
:

Therefore, for h 2 .0; 1/,

P
�
� 6 t C h j � > t

	
6 C

Z

D
exp



� .dist.x;E//2

Ch

�
d�t.x/:

We split the integral in the right-hand side into two parts according to the partition of D into
E�=2 and D n E�=2. Using (4.167) and allowing the constant C to increase from line to line,
we get, for any � 2 .0; 1=2/,

P
�
� 6 t C h j � > t

	

6 C
Z

E�=2
exp



� .dist.x;E//2

4Ch

�
dx C C

Z

DnE�=2
exp



� �2

Ch

�
d�t.x/

6 Ch.1��/=2
Z

E�=2

dx

.dist.x;E//1��
dx C C��1h1=2:

Using the fact that:

Z

D

1

.dist.x;E//1��
dx < 1; (4.168)

which we prove below, we can conclude that:

P
�
� 6 t C h j � > t

	
6 Ch.1��/=2;

for a constant C independent of t in Œ0;C1/ and h 2 .0; 1/. Therefore,

P
�
� > t C h j � > t

	
> 1 � Ch.1��/=2;



4.7 Examples 327

and then,

P
�
� > t C h

	
> P

�
� > t

	
.1 � Ch.1��/=2/:

Since the function t 7! PŒ� > t� is nonincreasing, this completes the proof of the desired
Hölder continuity, as long as we can check that (4.168) holds. This is indeed the case because,
writing E � @D D [N

iD1Fi, where .Fi/iD1;��� ;N denote the faces of D, it suffices to prove that,
for all i D 1; � � � ;N,

Z

D

1

.dist.x;Fi//1��
dx < 1:

Now, the distance from x to Fi is greater than the distance from x to the hyperplane Hi

supporting Fi. The result easily follows by changing the coordinates in such a way that,
under the new coordinates, dist.x;Hi/ D x1, x1 denoting the first coordinate of x in the new
reference frame.

Finally, we prove that, for any t > 0, PŒ� 6 t� > 0.
We start with the case when the support of �0 D L.�/ is not included in @D. Then, we can

find x0 2 D and � > 0 small enough such that the d-dimensional ball B.x0; �/ is included in
the interior of D. Also, we know that E contains a .d � 1/-dimensional relatively open ball F
included in one of the face of @D. Thanks to the polyhedral structure of D, we can find, for
any t > 0, a piecewise linear function % W Œ0; t� ! R

d such that %.0/ D x0, %.Œ0; t=2�/ � D,
%.Œ0; t=2�/ \ @D � F, %..t=2; t�/ \ D D ; and dist.%.t/;D/ > 1 (that is %.Œ0; t�/ crosses
@D at some point in F). Also, for � small enough, we can a draw a tube T D fx 2 R

d W
infs2Œ0;t� jx�%.s/j 6 �g such that T \@D � F. By support theorem for the Brownian motion,
we know that PŒ8s 2 Œ0; t�; X0 C Ws 2 T � > 0. Since Xs D X0 C Ws for s 6 Q� , we deduce
that PŒ Q� 6 t;XQ� 2 F� > 0. This concludes the proof since PŒ� 6 t� > PŒ Q� 6 t;XQ� 2 F�.

When X0 D � is concentrated on the boundary, we may use the fact that D2 3 .x; y/ 7!
p.t; x; y/ is strictly positive. In particular, for any t > 0, p.t; x; �/ must charge a ball in the
interior of D. Therefore, when starting from the boundary, there is a positive probability to
reach a ball in the interior of D, in any positive time. By the Markov property, we deduce that
there is a positive probability to reach E, in any positive time.

In order to prove that � is almost surely finite, we use the fact that p.1=2; �; �/ is bounded
from below. Starting from any point, there is a positive probability to belong, at time 1=2,
to the same ball B.x0; �/ as that constructed right above. Starting from this ball, there is a
positive probability to reach E between t D 1=2 and t D 1. By a standard iteration argument
based on the Markov property, we deduce that PŒ� < 1� D 1. ut

The Analytic Approach
Motivated in part by numerical considerations (see numerical example below) we
provide the necessary details on the PDE description of the equilibrium. In the
present situation, the HJB equation takes the form:

@tV.t; x/C 1

2
xV.t; x/C H��

x; �t; @xV.t; x/
� D 0; (4.169)

with 1) a Neumann condition on @DnE accounting for the normal reflection present
in the dynamics of the position of the typical individual, that is @xV.t; x/ � n.x/ D 0
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for x 2 @D n E, where n.x/ is the inward normal vector to @D at point x 2 @D n E,
and 2) a Dirichlet boundary condition on E accounting for the killing at the door,
that is V.t; x/ D 0 for x 2 E.

Similarly, the equation for the density x 7! mt.x/ of the restriction of �t to D,
or in other words, the mass remaining in D at time t, is given by a form of the
Kolmogorov/Fokker-Planck equation:

@tmt � 1

2
xmt C divx

� Q̨ .t; x/mt
� D 0; (4.170)

with mixed boundary conditions:

(
1
2
@xmt.x/ � n.x/ � mt.x/ Q̨ .t; x/ � n.x/ D 0; x 2 @D n E;

mt.x/ D 0; x 2 E;

where we use the notation Q̨ .t; x/ D Ǫ .x; �t; @xV.t; x// for convenience. The
intuitive interpretation of mt.x/ is the proportion of individuals who have not yet
exited by time t. Since deriving this equation directly involves delicate computations
with the singular process K (involving the local time of the process at the relevant
part of the boundary), we start from a solution of the above equation and identify it,
at least formally, with the distribution of the part of the population still in D by time
t. So we pick a time S 2 Œ0;T� and an arbitrary continuous bounded function g on D
and we prove that:

Z

D
g.x/m.S; x/dx D E

�
g.XS/1fS<�g

	
: (4.171)

In order to do so, for S and g given, we consider the solution u of the parabolic
Dirichlet-Neumann problem:

@tu.t; x/C 1

2
xu.t; x/C Q̨ .t; x/ � @xu.t; x/ D 0; (4.172)

for .t; x/ 2 Œ0; S� � D, with Neumann boundary condition @xu.t; x/ � n.x/ D 0 for
.t; x/ 2 Œ0; S/ � .@D n E/, Dirichlet boundary condition u.t; x/ D 0 for t 2 Œ0; S� �
E, and terminal condition u.S; x/ D g.x/ for x 2 E. Consider also the solution
.Xt/06t6T of the reflected SDE:

dXt D Q̨ .t;Xt/dt C dWt C dKt; t 2 Œ0;T�:

Introducing as above the first hitting time � D infft > 0 W Xt 2 Eg, and assuming
that u is smooth enough to apply Itô’s formula, we get:

d

dt
E

�
u
�
t ^ �;Xt^�

�	 D 0; t 2 Œ0; S�: (4.173)
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We used the fact that the expectation of the stochastic integral with respect to dWt

is 0 and that the Neumann boundary condition on u kills the integral with respect to
dKt. Now, using the notation m.t; x/ for mt.x/ and the equations (4.170) and (4.172)
satisfied by m and u, we get:

d

dt

Z

D
u.t; x/m.t; x/dx

D �
Z

D

h1
2
xu.t; x/C Q̨ .t; x/ � @xu.t; x/

i
m.t; x/dx

C
Z

D

h1
2

u.t; x/xm.t; x/ � u.t; x/divx
� Q̨ .t; x/m.t; x/�

i
dx:

(4.174)

Using Green’s formula we get:

�
Z

D
xu.t; x/m.t; x/dx

D
Z

D
@xu.t; x/ � @xm.t; x/dx C

Z

@D
m.t; x/@xu.t; x/ � n.x/d�.x/;

Z

D
u.t; x/xm.t; x/dx

D �
Z

D
@xu.t; x/ � @xm.t; x/dx �

Z

@D
u.t; x/@xm.t; x/ � n.x/d�.x/;

where � denotes the surface measure. Since u.t; x/ D m.t; x/ D 0 for x 2 E and
@xu.t; x/ � n.x/ D 0 for x 2 @D n E, we obtain:

�
Z

D
xu.t; x/m.t; x/dx C

Z

D
u.t; x/xm.t; x/dx

D �
Z

@DnE
u.t; x/@xm.t; x/ � n.x/d�.x/:

(4.175)

Similarly, using the divergence theorem, we get:

Z

D

h
� u.t; x/divx

� Q̨ .t; x/m.t; x/�
i
dx

D
Z

D
@xu.t; x/ � Q̨ .t; x/m.t; x/dx C

Z

@D
u.t; x/m.t; x/ Q̨ .t; x/ � n.x/d�.x/

D
Z

D
@xu.t; x/ � Q̨ .t; x/m.t; x/dx C

Z

@DnE
u.t; x/m.t; x/ Q̨ .t; x/ � n.x/d�.x/:
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By (4.174), (4.175), and the boundary conditions satisfied by m we obtain:

d

dt

Z

D
u.t; x/m.t; x/dx D 0: (4.176)

Putting together (4.173) and (4.176) and the fact that
R

D u.0; x/m.0; x/dx D
EŒu.0;X0/�, we deduce that:

Z

D
u.t; x/m.t; x/dx D E

�
u
�
t ^ �;Xt^�

�	
;

which gives the desired result (4.171) if we use the terminal condition of u.

Numerical Illustration
For the purpose of illustration, we consider the domain D D Œ0; 1� � Œ0; 1� in the
plane, and two exit doors E D .Œ0:95; 1� � f0g/ [ .Œ0:98; 1� � f1g/. They are shown
as unions of gray circles on the various panels of Figure 4.5. We implemented the
search for an equilibrium density as a simple Picard iteration. At each step of the
iteration, we use the values m.t; x; y/ obtained from the previous iteration with a
simple monotone finite difference Euler scheme to compute the solution of the HJB
equation (4.169) backward in time. In the case at hand, this HJB equation becomes:

@tV.t; x/C �2

2
V.t; x/ � ˇ

2.1C m.t; x//˛
jrVj2 C ı D 0; V.T; � / � 0:

if we choose R
2 for A and a constant ı > 0 for the function f .t/ appearing in

the expression of the loss J�.˛/ in (4.150) penalizing the time spent in the room
before exiting, and if we replace the congestion penalty `.x; �/ by a multiple of the
quantity .1 C m.x//˛ where m stands for the density of �. Once a solution of the
HJB equation is found, we solve (again with a simple monotone finite difference
Euler scheme) the forward Kolmogorov equation (4.170) which reads:

@tmt � �2

2
mt � ˇdiv


 mtrV

.1C mt/˛

�
D 0:

For the sake of definiteness (and comparison with numerical studies reported in the
still unpublished literature), we chose the values � D 0:1, ˇ D 16, ı D 1=320, and
we let time evolve from t D 0 to T D 8 by increments of size t D 0:02. Lack
of congestion corresponds to the choice ˛ D 0. For the purpose of the numerical
experiments whose results are reported below, we include minor contagion in the
model by choosing ˛ D 0:1.

Figure 4.4 shows the time evolution of the total mass of the measure mt,
essentially the number of individuals still in the room at time t, starting from a
uniform distribution of individuals in a square at the center of the room. This plot
shows that the effect of the congestion is to slow down the exit indeed.
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Fig. 4.4 Left: Initial distribution m0 used for the numerical illustrations. The small exits are
marked in gray. Right: Time evolution of the total mass of the distribution mt of the individuals
still in the room at time t for ˛ D 0, i.e., absence of congestion (continuous line) and ˛ D 0:1, i.e.,
moderate congestion (dotted line).

Figure 4.5 shows the time evolution of the density m.t; �/ starting from a uniform
distribution of individuals in a square at the center of the room. Snapshots of the
density are given for times t D 0:42; 1:22 and t D 2:42. For the sake of comparison
with numerical studies reported in the unpublished literature, we chose the values
� D 0:2, ˇ D 16, and ˛ D 0:1.

Clearly the congestion term slows down the exit of the individuals as we see
that it takes longer for the same mass of individuals to reach the exit doors, as
more individuals are stranded looking for the exit and bouncing off the walls before
finding the exit.

4.7.3 A Variant of theModel of Flocking

We revisit the model of flocking presented in Subsection 1.5.1, and offer a
theoretical solution as well as numerical illustrations for the general case ˇ ¤ 0.
Since the model can be used for schools of fish, flocks of birds, or human crowds,
we shall often use the generic terminology “particles” for the individual members
of the population.

An interesting feature of the model is the form of the state equation. As we
already explained in Chapter 1, the state variable contains both the position and
the velocity of the particle. While the original flocking example was introduced in
the physical dimension d D 3, the following discussion will not depend upon the
specific value of the dimension d. The state Xt D .xt; vt/ at time t is an element
of the phase space, whose dimension is 2d, and the dynamics read as a controlled
kinetic equation:

dxt D vtdt; dvt D ˛tdt C �dWt; t 2 Œ0;T� I X0 D .x0; v0/ D �; (4.177)
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Fig. 4.5 Surface plots of the density mt for times t D 0:42; 1:22 and t D 2:42 (from the top)
for ˛ D 0, i.e., absence of congestion (left column) and ˛ D 0:1, i.e., moderate congestion (right
column). The exit doors are shown as unions of gray circles.

where W D .Wt/06t6T is a d-dimensional Brownian motion defined on a filtered
complete probability space .˝;F ;F;P/ and � 2 L2.˝;F0;PIR2d/. Both x D
.xt/06t6T and v D .vt/06t6T are d-dimensional F-adapted processes. The control
˛ D .˛t/06t6T is a d-dimensional square-integrable progressively measurable
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process. Given a fixed flow � D .�t/06t6T 2 C.Œ0;T�IR2d/ of probability measures
on R

2d, the cost of a control ˛ is given by:

J�.˛/ D E

� Z T

0


1
2

j˛tj2 C f
�
.xt; vt/; �t

��
dt

�
: (4.178)

Here f is a measurable function from R
2d � P2.R2d/ into R. In the original

form (1.46) of the cost (4.178) introduced in Chapter 1, and the discussions of the
particular case ˇ D 0 offered in Chapter 2 and Chapter 3, we used the running cost
function:

f ..x; v/; �/ D �2

2

ˇ̌
ˇ̌
Z

R2d

1

.1C jx � x0j2/ˇ .v � v0/ �.dx0; dv0/
ˇ̌
ˇ̌
2

: (4.179)

However, like in the subsequent analysis of the corresponding control problem of
McKean-Vlasov dynamics presented in Chapter 6, we shall use the variant:

f ..x; v/; �/ D �2

2

Z

R2d

jv � v0j2
.1C jx � x0j2/ˇ �.dx0; dv0/: (4.180)

Clearly, the parameter ˇ > 0 plays a crucial role in both cases. Its role is to quantify
how much particles whose positions x are far from the bulk of the positions x0 of
particles distributed according to the input distribution �, contribute to the running
cost. Interestingly, in the case ˇ D 0, and for the running cost function (4.179),
we saw in Subsection 3.6.1 that the denominator is identically one, and the model
reduces to a LQ mean field game which we solved by the methods presented in
Section 3.5 of Chapter 3. Existence of equilibria in the case ˇ > 0 does not follow
directly from the results presented so far, mostly because of the degeneracy and
because of the lack of convexity of the function f .

In order to simplify somehow the discussion of the mathematical analysis
presented below, we shall assume that f is bounded. This comes as a slight restriction
in comparison with the original model described in Subsection 1.5.1 as recalled
above. In fact, we shall assume much more as we will require that the function f
is continuous on R

2d � P2.R2d/, P2.R2d/ being equipped with the 2-Wasserstein
distance, and that for any fixed � 2 P2.R2d/, f is twice differentiable in .x; v/ 2
R
2d, with derivatives uniformly bounded in �.

FBSDE Characterizing theMFG
Using Y D .yx; yv/ 2 R

2d for the adjoint variable of the state variable X D .x; v/,
the reduced Hamiltonian of the model takes the form:

H
�
t; .x; v/; �; .yx; yv/; ˛

� D yx � v C yv � ˛ C 1

2
j˛j2 C f

�
.x; v/; �

�
:
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The minimizer of H with respect to ˛ is:

Ǫ�
t; .x; v/; �; .yx; yv/

� D �yv:

Our goal is to use the first prong of the probabilistic approach based on the FBSDE
representation of the value function, in the strong formulation as given in (4.55).
In this approach, the relevant FBSDE is obtained by replacing the control by its
minimizer in both the forward dynamics and the BSDE representation of the value
function, and the adjoint variable by the martingale integrand multiplied by the
inverse of the volatility. Unfortunately, the .2d/ � .2d/ volatility matrix is not
invertible in the present situation. Indeed, it is of the form:

�.t; x; �/ D
�
0d 0d

0d � Id

�
:

However, if we identify the control space to the closed linear subspace A D f0dg�R
d

of R2d, the current form of the flocking model fits the framework of Remark 4.50
since:

b
�
t; .x; v/; �; .0; ˛/

� D .v; 0/� C �.t; x; �/.0; ˛/�;

and we can use the content of this remark to derive the appropriate version of the
FBSDE to be solved. Choosing � D 1 in the subsequent analysis, it reads:

8
<

:
dxt D vtdt; dvt D �Ztdt C dWt;

dYt D �


1
2
jZtj2 C f

�
.xt; vt/; �t

��
dt C Zt � dWt;

(4.181)

for t 2 Œ0;T�, with initial condition X0 D .x0; v0/ D � , and YT D 0 as
terminal condition since the terminal cost is not present in the model. According
to the first prong of the probabilistic approach to MFGs, we can solve the MFG
problem by solving this FBSDE. Unfortunately, assumption MFG Solvability HJB
of Subsection 4.4.1 is not satisfied in the present situation. Indeed, the forward
dynamics in equation (4.181) are degenerate: only the velocity is randomly forced,
and the position component x of X D .x; v/ can only feel the noise W through
the drift. As a consequence, we cannot use Theorem 4.45, which requires � to be
invertible. However, it turns out that this degeneracy is not fatal in the sense that
it is hypoelliptic. Notice that we cannot use the conclusion of Remark 4.50 either,
since it requires boundedness of the coefficients in the space variable, which is not
the case in the present situation.

As a result, we prove solvability of (4.181) by a direct approach, taking advantage
of the quadratic structure of the cost functional J� which allows us to implement a
form of the so-called Cole-Hopf transformation.
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Direct Analysis of the FBSDE
Following the same strategy as in Subsection 4.4.1, we first construct the decoupling
field U of the FBSDE (4.181). Here we use the upper case U to denote the
decoupling field in order to distinguish it from the object which will be referred
to by the lower case u later on. Recall that the flow of probability measures � is
fixed throughout the analysis. Prompted by the method of proof at the crux of the
weak formulation, we focus first on the decoupled system:

8
ˆ̂<

ˆ̂:

dxt D vtdt; dvt D dWt;

dYt D


1
2
jZtj2 � f

�
.xt; vt/; �t

��
dt C Zt � dWt; t 2 Œ0;T�;

X0 D .x0; v0/ D �; YT D 0;

(4.182)

where the control does not appear. We claim:

Proposition 4.70 For a given input � D .�t/06t6T as above, the equation (4.182)
has a unique solution .xt; vt;Yt;Zt/06t6T , for which Y D .Yt/06t6T and the
martingale integrand Z D .Zt/06t6T are bounded.

Moreover, there exists a bounded and continuous function U W Œ0;T� � R
d �

R
d ! R, differentiable and Lipschitz continuous in the space argument uniformly

in time, such that with probability 1, for all t 2 Œ0;T�, Yt D U.t; xt; vt/ and Zt D
@vU.t; xt; vt/. For each x; v 2 R

d and t 2 Œ0;T�, the quantity U.t; x; v/ is given by
the formula:

U.t; x; v/ D

� lnE

�
exp

�
�

Z T�t

0

f

�

x C vs C

Z s

0

Wrdr; v C Ws

�
; �sCt

�
ds

��
:

(4.183)

Proof. Since the forward and backward components of equation (4.182) are decoupled,
existence and uniqueness of a solution .x; v;Y;Z/ depend only on the BSDE part, and such
a result (with Y bounded), follows from Theorem 4.15. The identification of this solution
and of the decoupling field relies on the so-called Cole-Hopf transformation. Indeed, by Itô
formula, it must hold:

d
�
e�Yt

� D e�Yt f
�
.xt; vt/; �t

�
dt � e�Yt Zt � dWt; t 2 Œ0; T� I e�YT D 1:

Since Y D .Yt/06t6T is a bounded process, we deduce that the pair process . QY; QZ/ D
.e�Yt ;�e�Yt Zt/06t6T solves the linear BSDE:

d QYt D QYtf
�
.xt; vt/; �t

�
dt C QZt � dWt; t 2 Œ0; T� I QYT D 1;

which is uniquely solvable since f is bounded. Call . QYt; QZt/06t6T the solution. Then,

d

�
QYte

�

R t
0 f ..xs;vs/;�s/ds

�
D e�

R t
0 f ..xs;vs/;�s/ds QZt � dWt:
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Again, by boundedness of f , the term in the right-hand side must be a martingale. Thus,

E

�
QYT e�

R T
0 f ..xs;vs/;�s/ds jFt

�
D QYte

�

R t
0 f ..xs;vs/;�s/ds;

that is,

QYt D E

�
e�

R T
t f ..xs;vs/;�s/ds jFt

�
:

Because of the Markov property, QYt can be written as:

QYt D e�U.t;xt ;vt/;

with U as in (4.183). Since f is assumed to be differentiable in .x; v/, with bounded
derivatives, it is easily checked that U is also differentiable in .x; v/ with bounded and
continuous (in time and space) derivatives. Moreover, by Lemma 4.11, the process QZ may
be identified in L2.Œ0; T� �˝IRd/ with:

QZt D �@vU.t; xt; vt/ exp
� � U.t; xt; vt/

�
; t 2 Œ0; T�:

Recalling that by definition Yt D � ln. QYt/ and Zt D �QZt= QYt, we conclude that the process
.Yt; Zt/06t6T satisfies the conditions in the statement of the lemma. ut

We further investigate the properties of the function U constructed above.

Lemma 4.71 The function U constructed in Proposition 4.70 is once differentiable
in time and twice continuously differentiable in space, with bounded derivatives.
Moreover, the uniform bounds on the derivatives are independent of the flow of
probability measures � D .�t/06t6T .

Also, U satisfies the HJB equation:

@tU.t; x; v/C v � @xU.t; x; v/C 1

2
@2vvU.t; x; v/ � 1

2
j@vU.t; x; v/j2

C f
�
.x; v/; �t

� D 0;

for .t; .x; v// 2 Œ0;T� � R
2d, with the terminal condition U.T; �; �/ D 0.

Proof. Existence and continuity of the first and second order derivatives in .x; v/ is a
straightforward consequence of the regularity of f and of the formula given for U in the
statement of Proposition 4.70.

Existence of the first order derivative in time may be proved as follows. For some initial
condition .t; .x; v// 2 Œ0; T� � R

2d, consider the unique solution .Xs; Ys; Zs/t6s6T of (4.182)
with Xt D .x; v/ as initial condition at time t. Recall that we use the notation Xt D .xt; vt/ for
0 6 t 6 T . Then, by applying Itô’s formula in the space variable only, we get:
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E
�
U

�
t C h; xtCh; vtCh

�i D U.t C h; x; v
�

C E

Z tCh

t



vs@xU

�
t C h; xs; vs

� C 1

2
@2vvU

�
t C h; xs; vs

��
ds:

(4.184)

Recall that we can identify the left-hand side with EŒYtCh�. Going back to the backward
equation (4.182) and using the fact that Zs D @vU.s; xs; vs/ for s 2 Œt; T�, we see that:

EŒYtCh� D U.t; x; v/C E

Z tCh

t


1
2

j@vU.s; xs; vs/j2 � f
�
.xs; vs/; �s

��
ds: (4.185)

Therefore, by identifying the left-hand sides in (4.184) and (4.185) and by taking advantage
of the fact that @xU and @2vvU are (jointly) continuous and bounded, we easily deduce that:

lim
h&0

U.t C h; x; v/ � U.t; x; v/

h

D �v � @xU.t; x; v/ � 1

2
@2vvU.t; x; v/C 1

2
j@vU.t; x; v/j2 � f

�
.x; v/; �t

�
:

Since the right-hand side is continuous in t, we conclude that U is differentiable in time and
that the time derivative is equal to the right-hand side. ut

Using the above two results in the same way we used Lemmas 4.47 and 4.49 ear-
lier, we prove the following existence and uniqueness result for the FBSDE (4.181).

Proposition 4.72 Equation (4.181) has a unique solution .Xt;Yt;Zt/06t6T for
which the process Y D .Yt/06t6T is bounded and Z D .Zt/06t6T is essentially
bounded for Leb1 ˝ P. This solution admits the function U defined in (4.183) as
decoupling field.

Moreover, for a given initial condition X0 D .x0; v0/ D � 2 L2.˝;F0;PIR2d/,
the process X D .x; v/ D .xt; vt/06t6T is the unique optimal path for the control
problem (4.177)–(4.178).

Matching Reformulation and Solvability of theMFG Problem
Existence of an equilibrium for the MFG problem associated with the stochastic
control problem (4.177)–(4.178) is almost a direct consequence of Proposition 4.72
and Theorem 4.39. The only restriction is that, in the statement of Theorem 4.39,
coefficients of the McKean-Vlasov BSDE are required to be at most of linear growth
in the variable z, which is not the case here. However, this is easily circumvented
by using the fact that the process .Zt/06t6T in the statement of Proposition 4.72 is
bounded independently of �.

Quite remarkably, it turns out that we can say more about the form of the
equilibria. Owing to the quadratic structure of the control problem, we are indeed
able to provide a direct representation of the law of the optimal paths.
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Lemma 4.73 For a given initial distribution �0 2 P2.R2d/, we equip the space
C.Œ0;T�IR2d/ with the image P0 of the measure �0 ˝ Wd on R

2d � C.Œ0;T�IRd/ by
the mapping:

R
2d � C.Œ0;T�IRd/ 3 �

.x; v/;w D .wt/06t6T
�

7!



x C
Z t

0

.v C ws/ds; v C wt

�

06t6T
;

where Wd denotes the d-dimensional Wiener measure.
Then, for a given flow of probability measures � D .�t/06t6T with �0 as

initial condition and with paths in C.Œ0;T�IP2.R2d//, the law P
� on the space

C.Œ0;T�IR2d/ of the optimal path solving the stochastic control problem (4.177)–
(4.178), with an initial condition � being distributed according to �0, is absolutely
continuous with respect to P0, with the density:

dP�

dP0
D exp

�
U.0; x0; v0/

�
exp

�
�

Z T

0

f
�
.xt; vt/; �t

�
dt

�
; (4.186)

where .x D .xt/06t6T ; v D .vt/06t6T/ denotes the canonical process on the space
C.Œ0;T�IR2d/ and U is as in the statement of Proposition 4.70.

We emphasize that Lemma 4.73 is nothing but a probabilistic reformulation of
the Cole-Hopf transformation used in the proof of Proposition 4.70.

Proof. On the canonical space C.Œ0; T�IR2d/, equipped with the probability P0 and with the
complete and right-continuous augmentation of the canonical filtration F generated by the
canonical process .x; v/, we let .wt D vt � v0/06t6T . By construction of P0, w D .wt/06t6T

is an F-Wiener process, and we can write the dynamics of v in the form:

dvt D �@vU.t; xt; vt/dt C d



wt C
Z t

0

@vU.s; xs; vs/ds
�
; t 2 Œ0; T�:

This prompts us to define the equivalent probability measure (recall that @vU is bounded):

dP�

dP0
D exp

�
�

Z T

0

@vU.s; xs; vs/ � dws � 1

2

Z T

0

j@vU.s; xs; vs/j2ds

�
:

Under P
�, the process .w�

t D wt C R t
0
@vU.s; xs; vs/ds/06t6T is an F-Brownian motion.

Moreover,

dvt D �@vU.t; xt; vt/dt C dw�
t ;

so that .xt; vt/06t6T solves, under P
�, the same SDE as the optimal path of the optimal

control problem (4.177)–(4.178), see Propositions 4.70 and 4.72. Therefore, P� is the law of
the optimal path.
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It only remains to derive the form (4.186) of dP�=dP0. By Itô’s formula, we have:

U.T; xT ; vT/

D U.0; x0; v0/C
Z T

0

�
@tU.t; xt; vt/C vt � @xU.t; xt; vt/C 1

2
@2vvU.t; xt; vt/

�
dt

C
Z T

0

@vU.t; xt; vt/ � dwt;

D U.0; x0; v0/ �
Z T

0

f
�
.xt; vt/; �t

�
dt C

Z T

0

1

2
j@vU.t; xt; vt/j2dt

C
Z T

0

@vU.t; xt; vt/ � dwt;

where we have used the HJB equation to pass from the first to the second line. Finally, we
complete the proof using the fact that U.T; �; �/ D 0. ut

We can now state the desired characterization of the equilibrium:

Proposition 4.74 With the same notation as in the statement of Lemma 4.73, any
measure flow � D .�t/06t6T 2 C.Œ0;T�IP2.R2d// solving:

�t D P
� ı e�1

t ; 0 6 t 6 T;

where et denotes the evaluation map at time t on C.Œ0;T�IR2d/ (i.e., et.x; v/ D
.xt; vt)) is an equilibrium for the model of flocking.

Computational Implications
Formula (4.186) may be very useful for numerical purposes. Indeed it provides a
direct way to simulate the optimal path in the environment � D .�t/06t6T by using
an acceptance-rejection method when the supremum norm of f is not too large, or
more refined particle method otherwise. In this regard, it is worth noticing that there
is no need to solve the HJB equation to simulate the distribution of the optimal path
by Monte Carlo methods, even though U.0; �; �/ explicitly appears in the density. The
reason is that exp.U.0; x0; v0// is nothing but a normalizing constant and simulation
methods based on systems of particles do not need to evaluate it. This is the more
convenient that the HJB equation is in 2d dimensions.

The above discussion could serve as the basis for a strategy to solve MFG
problems numerically by means of Picard iterations based on the construction of
successive approximations of the measure flow � D .�t/06t6T by the empirical
measures of Monte Carlo samples generated according to formula (4.186).

We implemented the Monte Carlo strategy described above to simulate the
optimal paths of the solution of the optimal control problem whenever the input
measure flow � D .�t/06t6T is fixed. We restricted ourselves to the two-
dimensional case, i.e., d D 2, and we used the running cost functions f given
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Fig. 4.6 Monte Carlo samples of a system of particles near equilibrium in the case ˇ D 0 (left),
ˇ D 0:1 (center), and ˇ D 5 (right).

in (4.180) and (4.179). The qualitative features of the results being the same, we
only report on simulations based on the running cost function (4.179):

f ..x; v/; �/ D
Z

R4

jv � v0j2
.1C jx � x0j2/ˇ �.dx0; dv0/; x; v 2 R

2:

We chose � D p
2 for the sake of definiteness. Figure 4.6 shows Monte Carlo

samples of a system near equilibrium (i.e., for an input flow � still not a fixed point
of the Picard iteration) in the case ˇ D 0, ˇ D 0:1, and ˇ D 5, the other parameters
of the model being the same. Even though it may not appear very clearly, each
plot contains 2000 Monte Carlo sample trajectories, each of them comprising 100
points, the velocity vector being attached to each of these points. The impact of the
size of the parameter ˇ is clear. Indeed, when ˇ is large (right pane of Figure 4.6),
positions x far from the bulk of the positions likely to occur according to the flow
� will create large denominators in the expression of f , and as a consequence, a
small overall cost. So one way for the particles to lower the cost is to drift apart,
property which we can clearly see from Figure 4.6. As recalled in Subsection 1.5.1
of Chapter 1, the terminology flocking was introduced to describe situations in which
the birds (particles in our present context) remain in a bounded set as time evolves.
From the plots above, it seems clear that flocking is likely for small values of ˇ and
highly questionable for large values of ˇ, the threshold separating these regimes
being ˇ D 0:5 in the deterministic (nonequilibrium) dynamical system proposed
by Cucker and Smale. One way to prove flocking in the classical deterministic
dynamical systems was to prove asymptotic stability of the velocity. We reinforce
the points made earlier on the basis of the positions of the particles by looking at
the time evolutions of the velocities. Even though we let the time go from t D 0 to
T D 4 in 100 time steps, we see from Figure 4.7 that the velocity vectors seem to
remain in a compact set when ˇ D 0 while they seem to lack stability and diverge
when ˇ D 5, confirming the characterization of flocking touted for deterministic
dynamical systems.
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Fig. 4.7 Monte Carlo samples of the two components of the velocities of a system of 2000
particles near equilibrium in the case ˇ D 0 (top row), ˇ D 5 (bottom row). The three plots give
from left to right, the locations of the atoms of the empirical distributions of the two components
of the velocity vectors after 10, 50 and 100 time steps.

4.8 Notes & Complements

The analysis of fully coupled forward-backward SDEs in small time was initiated
first by Antonelli in [25]. Since then, several methods have been discussed in order
to prove existence and uniqueness over an interval of arbitrary length: Hu and
Peng [203] and Peng and Wu [307] implemented a continuation argument under
a suitable monotonicity assumption inspired by convexity conditions in the theory
of stochastic optimal control (see also Chapter 6 below where we implement this
method to solve McKean-Vlasov FBSDEs deriving from the stochastic Pontryagin
principle for mean field stochastic control problems), Pardoux and Tang [300]
exhibited another type of monotonicity condition that permits to apply the Picard
fixed point theorem, and Ma, Protter, and Yong [271] and Delarue [132] made
use of the connection with nondegenerate quasilinear PDEs for systems driven by
deterministic coefficients. The notion of decoupling field was introduced by Ma
and his coauthors in [272]. The reader is referred to the book of Ma and Yong
[274] for background material on adjoint equations, FBSDEs and the stochastic
maximum principle approach to stochastic optimization problems. The reader is
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also referred to the papers by Hu and Peng [203] and Peng and Wu [307] for general
solvability properties of standard FBSDEs within the same framework of stochastic
optimization.

The rehabilitation of the Cauchy-Lipschitz theory when the diffusion coefficient
(or volatility) driving the noise term is nondegenerate and the coefficients are
bounded in the space variable, see Theorem 4.12, is due to Delarue. The original
result can be found in [132], see Theorem 2.6 and Corollary 2.8 therein.

The representation formula for the process .Zt/06t6T in the statement of
Lemma 4.11 is a standard result in the theory of backward SDEs. It may be
seen as a particular case of a more general result permitting to represent .Zt/06t6T

in terms of the Malliavin derivative of .Yt/06t6T , see for instance El Karoui, Peng
and Quenez [226]. For differentiability properties of BSDEs, as used in the proof of
Proposition 4.51, we refer to the seminal paper by Pardoux and Peng [298].

The theory of quadratic BSDEs goes back to the original work of Kobylanski
[232], see also the seminal paper by Briand and Hu [71]. We refer the interested
reader to Dos Reis’ monograph [141] for a quite comprehensive overview of the
subject, including a discussion of the differentiability of the flow formed by the
solutions.

The most standard reference on the BMO condition is the monograph by
Kazamaki [227].

The analysis of SDEs of McKean-Vlasov type has a long history. These equations
were first introduced by Henry McKean Jr in [277] and [278] to provide a rigorous
treatment of special nonlinear Partial Differential Equations (PDEs). Later on, they
were studied for their own sake, and in a more general mathematical setting.
The standard reference for existence and uniqueness of solutions to these special
SDEs is Sznitman’s original set of lectures [325]. See also the paper of Jourdain,
Méléard, and Woyczynski [221] for a generalization including jumps. Properties of
the solutions have been studied in the framework of the propagation of chaos, as
McKean-Vlasov equations appear as effective equations describing the dynamics
of large populations of individuals subject to mean field interactions, see again
[325] together with Méléard [279]. Propagation of chaos will be revisited in Chapter
(Vol II)-2.

As explained in the Notes & Complements of Chapter 3, Backward Stochastic
Differential Equations (BSDEs) of mean field type were introduced by Buckdahn
and his coauthors, see [74, 75] for example. In these papers, the McKean-Vlasov
interaction is of a more restricted form than in Subsection 4.2.2. Also, these results
cannot be used in the applications considered in Chapter 3 and in the optimal control
of McKean-Vlasov stochastic differential equations studied in Chapter 6. Indeed,
we are mostly interested in the analysis of systems of coupled FBSDEs of McKean-
Vlasov type. As far as BSDEs (and not FBSDEs) are concerned, the discussion of
Subsection 4.2.2 is inspired by Carmona’s lecture notes [94]. The proof is adapted
from the original existence and uniqueness result of Pardoux and Peng [298] for
standard BSDEs.
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To the best of our knowledge, fully coupled FBSDEs of McKean-Vlasov type
were first investigated by Carmona and Delarue in [95]. In particular, Theorem 4.29
is taken from Carmona and Delarue [95], with a slight simplification in the
assumption: We here assume that B is bounded in x whereas it is allowed to be
of linear growth in [95]. The argument used to relax the boundedness condition in
Subsection 4.3.3 is also different: It is based on PDE arguments in [95] whereas we
here use a stability property for FBSDEs. As noticed in Remark 4.55, Theorem 4.39
may not suffice to prove Theorem 4.53; indeed, the analysis of linear-quadratic
games performed in Chapter 3 shows that (A5) in MKV FBSDE for MFG may fail
as, in that case, the feedback function may grow up linearly with the mean state of
the population. So, Theorem 4.39 does not cover some of the linear-quadratic games
already studied in the literature [33,53,99,212]. Most of the technical results of this
chapter are thus devoted to the extension of this existence result to coefficients with
linear growth. The reader could skip some of these derivations in a first reading.
Our approximation and convergence arguments in Subsection 4.5 are taken from
the paper [96] by Carmona and Delarue. As we rely on the stochastic maximum
principle, we find it natural to derive the a priori estimates needed in the proof
from convexity properties of the coefficients of the game. The solvability results
obtained in this chapter will be extended to more general cases in Chapter (Vol II)-
3, when dealing with mean field games with a common noise; by specializing some
of them to the case without common noise, we shall prove existence of a solution
under weaker assumptions than those used in this chapter, see for instance Section
(Vol II)-3.4.

Throughout the analysis of the McKean-Vlasov FBSDEs occurring in mean field
games, a significant amount of effort is devoted to the construction of the decoupling
field of the FBSDE. The latter expresses the solution of the backward equation as
a function of the solution of the forward dynamics. The existence of this function
is crucial for the formulation and the proofs of the approximation results given in
Section (Vol II)-6.1 of Chapter (Vol II)-6. In the present set-up, the decoupling field
is constructed as a function of the sole time and space variables; as a matter of
fact, the flow of marginal distributions of the forward component does not appear
explicitly although the decoupling field actually depends on it. In Chapter (Vol II)-
4, we shall show that, when uniquely solvable, McKean-Vlasov FBSDEs admit an
infinite dimensional decoupling field, called master field, independent of the flow of
marginal measures of the forward equation, but permitting to express the current
value of the backward solution in terms of the current realization and marginal
distribution of the forward component, see Subsection 4.2.4 for a primer.

The version of Schauder’s fixed point theorem used in this chapter, see Theo-
rem 4.32, may be found in many textbooks on fixed point theorems, see for instance
Granas and Dugundji [184], Reed and Simon [318] (although the statement therein
is limited to the case when E is compact), and Zeidler [345]. The original version
by Schauder [323] does not apply here since it requires the space V to be complete.
The extension to non-complete normed spaces (or more generally to locally convex



344 4 FBSDEs and the Solution of MFGs Without Common Noise

spaces) is sometimes called Schauder-Tychonoff’s fixed point theorem. For the
definition and the properties of the Kantorovich-Rubinstein norm set on the space
of finite measures, as used in Subsection 4.3.2 to implement Schauder’s theorem,
we refer to Chapter 8 in Bogachev [64].

As for classical solutions of HJB equations as cited in Remark 4.48, we refer
to monographs on semilinear parabolic PDEs, see for instance Friedman [162],
Ladyzenskaja, Solonnikov, and Ural’ceva [258] and Lieberman [264]. Regarding
the Cole-Hopf transformation cited in Subsection 4.1.3, the reader may consult
Guéant’s paper [186] for a quite systematic use within the MFG framework.

The price impact model proposed in Subsection 4.7.1 is based on the Almgren-
Chriss linear model of the influence of the trading intensity on prices. See [18]. Not
unlike most papers on optimal execution, the control of each trader is the rate of
trading. However, the presence of the Wiener processes .Wi

t /06t6T , i D 1; � � � ;N,
prevents the traders’ inventories from being differentiable. This is in accordance
with a recent trend in the literature on option trading in the presence of price
impact. See for example the works [112] by Cetin, Soner, and Touzi, and [107] by
Carmona and Webster, this latter paper containing empirical evidence of the infinite
variation nature of the inventories. Existence of a solution for the mean field game
in the weak formulation was proven by Carmona and Lacker in [103], though in a
nonconstructive way and under more restrictive assumptions including compactness
of the space A of controls. The results presented in Subsection 4.7.1 are from the
unpublished technical report by Aghbal and Carmona [9]. The solution given in
the text is based on the original approach to extended mean field games proposed
by the authors in Subsection 4.6. The terminology extended mean field games is
borrowed from Gomes and Saude [182] and Gomes and Voskanyan [183], although
the formulation therein is slightly different and is limited to dynamics without
volatility. The uniqueness criterion proven in [183] is similar to that obtained in
this chapter. Therein, the construction of a solution relies on the assumption that an
equation similar to (4.115) is solvable.

As explained in the Notes & Complements of Chapter 1, our discussion of
models of crowd aversion and congestion is inspired by the paper [253] of
Lachapelle and Wolfram. The room exit problem is borrowed from the paper [5]
by Achdou and Laurière who provided numerical illustrations without proofs. The
paper [43] of Benamou, Carlier, and Bonne proposes numerical schemes which are
far more sophisticated than the naive ones used to produce the numerical results
reproduced in the text. They are tailor-made to handle more realistic domains to
exit, including dumbell-shaped domains.

We believe that the theoretical solution provided in Subsection 4.7.2 is original.
The properties of the joint distribution of the exit time and location of a Brownian
motion from a regular domain can be found in the paper [13] by Aizenman and
Simon. By regular domain, we mean a bounded set with a smooth boundary, or at
least a piecewise smooth boundary like a convex polygon.



4.8 Notes & Complements 345

Concerning the reflected Brownian motion used in the application to crowd exits
discussed in Subsection 4.7.2, we refer the interested reader to the seminal papers by
Tanaka [329], and by Lions and Sznitman [267] for its construction in a bounded
domain of an Euclidean space. This construction is based on the use of the so-
called Skorokhod map whose theory was enhanced in a more recent paper [81]
by Burdzy, Kang, and Ramanan. The properties of Brownian motion reflected in
a convex domain which we used in the proof of Lemma 4.66 can be found for
instance in the paper [39] of Bass and Hsu, [109] by Carmona and Zheng, and [129]
by Davies.

The theoretical solution of the flocking model provided in Subsection 4.7.3 is
original.
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5Spaces of Measures and Related Differential
Calculus

Abstract

The goal of the present chapter is to present in a self-contained manner,
elements of differential calculus and stochastic analysis over spaces of prob-
ability measures. Such a calculus will play a crucial role in the sequel when
we discuss stochastic control of dynamics of the McKean-Vlasov type, and
various forms of the master equation for mean field games. After reviewing
the standard metric theory of spaces of probability measures, we introduce a
notion of differentiability of functions of measures tailor-made to our needs. We
provide a thorough analysis of its properties, and relate it to different notions
of differentiability which have been used in the existing literature, in particular
the geometric notion of Wasserstein gradient. Finally, we derive a first form of
chain rule (Itô’s formula) for functions of flows of measures, and we illustrate its
versatility on a couple of applications.

5.1 Metric Spaces of Probability Measures

In the previous chapters, we investigated special forms of large symmetric games
introduced as early as in Chapter 1. A simple limiting argument was used to show
that the analysis of symmetric functions of a large number of variables could be
advantageously replaced by the analysis of functions of probability measures. The
continuity properties of these functions, and the characterization of compact sets
of measures played an important role, and they were studied by classical measure
theoretical tools. In this first section, we collect some of the notation and concepts
already used. This will set the stage for the introduction of the more sophisticated
tools needed in the investigation of the differentiability properties of functions of
probability measures.

© Springer International Publishing AG 2018
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Recall from Chapter 1 that if .E; E/ is a measurable space, we use the notation
P.E/ for the space of probability measures on .E; E/, assuming that the � -field E
on which the measures are defined is understood.

5.1.1 Distances BetweenMeasures

Most of the results mentioned in this subsection are classical. They exist in
book form so we state them without proof. We refer the reader to the Notes &
Complements at the end of the chapter for references and a detailed bibliography.

Throughout the section, we denote by .E; d/ a complete separable metric space.
It is important to keep in mind that what we are about to do depends upon the
choice of the distance. Indeed, the metric structure of E is more important than the
topology determined on E by d. Indeed, the same topology could be obtained from
other metrics, for example a bounded metric, but the results of our analysis would
have to be modified. Quite often, we use a somewhat abusive terminology by saying
that .E; d/ is a Polish space, in which case, we implicitly assume that d is one of the
distances on E making E a complete and separable space. The � -field E equipping
E is always assumed to be the Borel � -field B.E/ which does not depend upon the
choice of the particular compatible distance.

Lévy-Prokhorov Distance
The weak convergence of probability measures on E appears as the convergence
in the sense of the so-called Lévy-Prokhorov distance dLP on P.E/ defined in the
following way:

dLP.�; �/

D inf
˚
� > 0 W 8A 2 B.E/; �.A/ 6 �.A�/C �; and �.A/ 6 �.A�/C �

�
;

where we use the notation A� for the �-neighborhood A� D fx 2 E W 9y 2
A; d.x; y/ < �g of a set A.

A famous result of Strassen (later extended by Dudley to more general metric
spaces) asserts that the Lévy-Prokhorov distance between � and � can be repre-
sented in terms of couplings between � and �:

dLP.�; �/ D inf
n
� > 0 W inf

�2˘.�;�/

Z

E�E
1fd.x;y/>�gd�.x; y/ < �

o
; (5.1)

where ˘.�; �/ denotes the set of probability measures on E � E with � and � as
respective first and second marginals. These probability measures are often called
couplings (or transport plans) between � and �. It is easy to check that if x 2 E and
y 2 E, then

dLP.ıx; ıy/ D 1 ^ d.x; y/: (5.2)
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More generally, for X D .x1; � � � ; xN/ and Y D .y1; � � � ; yN/ in EN , we may want to
compute the Lévy-Prokhorov distance between the empirical measures N�N

X and N�N
Y ,

where N�N
X was defined in Chapter 1 in formula (1.3) as:

N�N
X D 1

N

NX

jD1
ıxj ;

and similarly for N�N
Y . Using (5.1), we get the obvious rough bound:

dLP. N�N
X ; N�N

Y / 6



max
iD1;��� ;N d.xi; yi/

�
^ 1:

Actually, the proof of the result by Strassen and Dudley (see the Notes &
Complements at the end of the chapter for a precise reference) shows that:

dLP. N�N
X ; N�N

Y /

D inf


� > 0 W inf

�2SN


]fi 2 f1; � � � ;NgI d.xi; y�.i// > �g
N

�
< �

�
;

(5.3)

where SN denotes the set of all the permutations of f1; � � � ;Ng. The argument
relies on the so-called pairing theorem (whose statement may be found in the same
reference), applied with f1; � � � ;Ng � f1; � � � ;N C kg, where k is the floor part of N�
for � > dLP. N�N

X ; N�N
Y /. Two elements i 2 f1; � � � ;Ng and j 2 f1; � � � ;N C kg are said

to be connected if j � N and d.xi; yj/ < � or if j 	 N C 1. Since � > dLP. N�N
X ; N�N

Y /,
the pairing theorem implies the existence of a 1-1 mapping & from f1; � � � ;Ng into
f1; � � � ;N C kg such that i and &.i/ are connected for all i 2 f1; � � � ;Ng. Using this
& , we may construct an element � 2 SN as in (5.3).

Observe that, in comparison with (5.1), the representation formula (5.3) is solely
based on the couplings of N�N

X and N�N
Y that are of the form N�N

X ı .IE; '/
�1 where IE is

the identity on E and ' is a measurable mapping from E into itself. Such couplings
are said to be deterministic. Whenever both x1; � � � ; xN and y1; � � � ; yN are pairwise
distinct, ' must induce a one-to-one mapping from fx1; � � � ; xNg onto fy1; � � � ; yNg
by restriction.

Connection with the Total Variation Distance. Observe that by choosing:

� D sup
A2B.E/

j�.A/ � �.A/j

for �; � 2 P.E/ in the definition of dLP.�; �/, we get the bound:

dLP.�; �/ 6 1

2
dTV.�; �/;
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where dTV.�; �/ D 2 supA2B.E/ j�.A/ � �.A/j denotes the total variation distance
between � and �. In fact, a striking parallel with (5.1) exists. Indeed, another
coupling argument shows that the total variation distance between � and � can also
be expressed as:

dTV.�; �/ D 2 inf
�2˘.�;�/

Z

E�E
1fx 6Dygd�.x; y/:

Representation in Terms of Random Variables. Consider now an atomless
probability space .˝;F ;P/. By atomless we mean that for any A 2 F such that
P.A/ > 0, there exists B 2 F , B � A, such that 0 < P.B/ < P.A/. Then, for any
distribution � 2 P.E/, we can construct a random variable X W ˝ ! E with � as
distribution. A proof of this fact can be found for example in Proposition 9.1.11 in
Bogachev [64] or Proposition 9.1.2 and Theorem 13.1.1 in Dudley [143]. Applying
this result to probability measures on product spaces, say E � E equipped with any
product distance, we see that whenever � and � are probability distributions in P.E/
and � 2 ˘.�; �/, we can find a pair of two random variables .X;Y/ W ˝ ! E � E
such that � D L.X;Y/. We then have the two representation formulas:

dLP.�; �/ D inf
˚
" > 0 W inf

L.X/D�; L.Y/D� P
�
d.X;Y/ > "

	
< "

�
;

and

dTV.�; �/ D 2 inf
L.X/D�; L.Y/D� P

�
X 6D Y

	
:

Wasserstein Distances
We now introduce formally a class of metrics which we already used in several
instances, and which we will use most frequently in this book. For any p > 1,
we denote by Pp.E/ the subspace of P.E/ of the probability measures of order p,
namely those probability measures which integrate the p-th power of the distance to
a fixed point whose choice is irrelevant in the definition of Pp.E/.

For any p > 1 and �; � 2 Pp.E/, the p-Wasserstein distance Wp.�; �/ is
defined by:

Wp.�; �/ D inf
�2˘.�;�/

� Z

E�E
d.x; y/p d�.x; y/

�1=p

: (5.4)

Note that the quantity Wp.�; �/ depends upon the actual distance d in the sense
that another distance would lead to different values of Wp.�; �/, even if the
topology of E and the space P.E/ were to remain the same. Observe also that,
whenever � and � belong to Pp.E/, any � 2 ˘.�; �/ is also in Pp.E � E/,
E � E being equipped with any product distance. For convenience, we often use
product distances of the form dE�E..x1; x2/; .y1; y2// D .d.x1; y1/q C d.x2; y2/q/1=q

for some q 2 Œ1;1/, or dE�E..x1; x2/; .y1; y2// D max.d.x1; y1/; d.x2; y2//. The
quantity

R
E�E d.x; y/pd�.x; y/ is sometimes referred to as a cost associated with the

coupling � .
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The set ˘.�; �/ is obviously a nonempty compact subset of P.E � E/ equipped
with the Lévy-Prokhorov metric and, by a classical lower semicontinuity argument,
the infimum appearing in the definition (5.4) of Wp is always attained by at least
one coupling, which we will call an optimal coupling for Wp. For the sake of
convenience, we shall use the notation ˘ opt

p .�; �/ for the set of couplings at which
the infimum is attained:

˘ opt
p .�; �/ D

n
� 2 ˘p.�; �/ W �

Wp.�; �/
�p D

Z

Rd�Rd
d.x; y/pd�.x; y/

o
: (5.5)

We shall often use the notation ˘ opt for ˘ opt
p when p D 2. A measurable map

 from E into itself is called a transport map from � to � if it maps � into �, in
other words, if the push-forward � ı  �1 is equal to �. The associated transport
plan is defined as � ı .IE;  /

�1 where as before IE denotes the identity map of E,
namely the push-forward of the measure � by the map E 3 x 7! .x;  .x// 2 E � E.
This particular form of transport plan given by a transport map is often called a
deterministic transport plan or a deterministic coupling.

The claim that Wp is a distance is not completely obvious. Indeed, the proof of the
triangle inequality is not immediate as it requires using disintegration of measures,
see Theorem (Vol II)-1.1 for a short remainder. If �, � and 	 are elements of Pp.E/,
and if �1;2 (resp. �2;3) is a coupling between � and � (resp. � and 	 ), we can write:

�1;2.dx; dy/ D �1;2.dx; y/�.dy/; .resp. �2;3.dy; dz/ D �.dy/�2;3.y; dz/ /

for the disintegration of �1;2 on its second marginal � (resp. �2;3 on its first marginal
�), and then define the measure � on E � E � E by:

�.dx; dy; dz/ D �1;2.dx; y/�.dy/�2;3.y; dz/:

Then the probability measure �1;3 defined as the projection of � onto its first and
third coordinates provides a coupling between � and 	 which can be used to prove
the desired inequality:

Wp.�; 	/ 6 Wp.�; �/C Wp.�; 	/:

Notice also that Hölder’s inequality implies that:

Wp.�; �/ 6 Wq.�; �/; �; � 2 Pp.E/; 1 6 p 6 q:

Remark 5.1 While the terminology coupling is ubiquitous in probability and statis-
tics, transport plan is systematically used in the optimal transportation literature
(see Subsection 5.1.3 below). We shall use these two terminologies interchangeably.
We believe that the simultaneous use of both terms will not be the source of confusion
or ambiguity in the sequel.
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Remark 5.2 Instead of the generic terminology Wasserstein distance, we shall try
to use “p-Wasserstein distance” to make clear that we are using the distance Wp

on Pp.E/, for some p > 1. Indeed, in general, the term Wasserstein distance is
restricted to the distance W2 while the distance W1 is often called the Kantorovich-
Rubinstein distance because of the role it plays in optimal transportation. We
emphasize this connection in the next few results.

The next result is known as the Kantorovich duality theorem. It is central to the
theory of optimal transportation.

Proposition 5.3 If .E; d/ is a complete separable metric space, p > 1 and �; � 2
Pp.E/, then:

Wp.�; �/
p D sup

�; ; �.x/C .y/6d.x;y/p

� Z

E
�.x/�.dx/C

Z

E
 .y/�.dy/

�
; (5.6)

where the supremum is taken over all the real valued bounded continuous functions
� and  on E. Moreover, if � 2 ˘

opt
p .�; �/ is an optimal transport plan between

� and �, then there exists � 2 L1.E; �/ and  2 L1.E; �/ such that, for � almost
every .x; y/ 2 E � E,

�.x/C  .y/ D d.x; y/p:

Proof.

First Step. Let us denote by QWp.�; �/
p the right-hand side of (5.6), and prove that QWp

satisfies the triangle inequality in the sense that for three probability measures �, �, and
	 we have:

QWp.�; �/ 6 QWp.�; 	/C QWp.	; �/:

The idea of the proof is borrowed from the classical analysis proof that the norm of Lp spaces
satisfies the triangle inequality. For i D 1; 2, let .0;1/2 3 .s; t/ 7! ci.s; t/ 2 .0;1/ be
deterministic functions such that:

.a C b/p D inf
s;t>0

Œc1.s; t/a
p C c2.s; t/b

p�; a; b > 0: (5.7)

Explicit formulas can be found for c1.s; t/ and c2.s; t/. We refrain from giving them because
they do not play any role in the proof, but the reader can easily check that, in the case p D 2,
we can choose c1.s; t/ D 1C t and c2.s; t/ D 1C 1=t.

Now let � and  be two real valued bounded continuous functions on E satisfying �.x/C
 .y/ 6 d.x; y/p for all x; y 2 E. Notice that (5.7) implies that, for any s; t > 0 and x; y; z 2 E,
we have:

�.x/C  .y/ 6 d.x; y/p 6 c1.s; t/d.x; z/
p C c2.s; t/d.z; y/

p: (5.8)
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We define the real valued function � by:

�.z/ D inf
x2E
Œc1.s; t/d.x; z/

p � �.x/�; z 2 E:

By construction,

�.x/C �.z/ 6 c1.s; t/d.x; z/
p; x; z 2 E: (5.9)

Moreover,

 .y/ � �.z/ 6 �.x/C  .y/ � �.z/ � �.x/
6 c1.s; t/d.x; z/

p C c2.s; t/d.y; z/
p � �.z/ � �.x/;

where we used the assumption on the functions � and  and inequality (5.8). Since the left-
hand side does not depend upon x 2 E, it is still not greater than the infimum of the right-hand
side with respect to x. Consequently, we get:

 .y/ � �.z/ 6 inf
x2E
Œc1.s; t/d.x; z/

p � �.x/�C c2.s; t/d.y; z/
p � �.z/

D c2.s; t/d.y; z/
p:

(5.10)

Putting together (5.9) and (5.10) we get:

Z

E
�.x/�.dx/C

Z

E
 .y/�.dy/

6
� Z

E
�.x/�.dx/C

Z

E
�.z/	.dz/

�
C

� Z

E
 .y/�.dx/ �

Z

E
�.z/	.dz/

�

6 c1.s; t/ QWp.�; 	/
p C c2.s; t/ QWp.	; �/

p;

where we used the definition of QWp. Using again the definition of QWp, we can take the
supremum in the left-hand side over the functions � and  satisfying �.x/C .y/ 6 d.x; y/p.
We get:

QWp.�; �/
p 6 c1.s; t/ QWp.�; 	/

p C c2.s; t/ QWp.	; �/
p:

We can now take the infimum over s and t in the right-hand side and still get an upper bound
for QWp.�; �/

p. But by (5.7), this infimum is equal to Œ QWp.�; 	/ C QWp.	; �/�
p which proves

the desired triangle inequality for QWp.

Second Step. We now prove that (5.6) holds when the space E is finite, say E D fe1; � � � ; eng,
in which case we use the notation �.i/ D �.feig/ and �.i/ D �.feig/ for i D 1; � � � ; n. By
definition, we have:

Wp.�; �/
p D inf

�.i;j/>0;
P
16i6n �.i;j/D�.j/;P

16j6n �.i;j/D�.i/

X

16i;j6d

d.ei; ej/
p�.i; j/:
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If we treat the n � n matrix .d.ei; ej/
p/16i;j6n given by the distance on the space E as

an n2 vector b, then the p-Wasserstein distance between � and � is given by the value
of a plain linear program. This program is given by the infimum appearing in the right-
hand side of the equality below for the .2n/ � n2 matrix A derived by the equality
constraints of the above definition of Wp.�; �/

p, and the 2n vector c comprising the
values �.1/; � � � ; �.n/; �.1/; � � � ; �.n/. To sum up, b D .b.i;j/ D d.ei; ej/

p/16i;j6n, A D
.A`;.i;j//16`62n;16i;j6n with A`;.i;j/ D 1iD` if ` 6 n and A`;.i;j/ D 1jD`�n if ` > n, and
c D .c.`//16`62n with c.`/ D �.`/ if ` 6 n and c.`/ D �.` � n/ if ` > n. We may think of
this problem as the primal problem:

inf
�.i;j/> 0; A�Dc

b � �;

and then write that its value is given by the value of the corresponding dual problem. We
recall the classical duality theory for finite dimensional linear programming with obvious
notation:

sup
A�x6b

c � x D inf
y>0; AyDc

b � y:

Specializing this duality result to the present situation, we find:

Wp.�; �/
p D sup

�.i/C .j/6d.i;j/p

X

16i6n

�.i/�.i/C
X

16j6n

 .j/�.j/;

if we denote by �.1/; � � � ; �.n/;  .1/; � � � ;  .n/ the components of the vector x. This is
exactly the Kantorovich’s duality (5.6) in the case of the finite set E.

Third Step. Next, we prove, the inequality Wp.�; �/
p > QWp.�; �/

p in full generality. This
follows from the fact that if � and  are real valued bounded continuous functions on E
satisfying �.x/C  .y/ 6 d.x; y/p, then for any coupling � 2 ˘.�; �/, we have:

Z

E
�.x/�.dx/C

Z

E
 .y/�.dy/ D

Z

E�E
�.x/�.dx; dy/C

Z

E�E
 .y/�.dx; dy/

6
Z

E�E
d.x; y/p�.dx; dy/:

Since the left-hand side is independent of the coupling � , one can take the infimum of the
right-hand side over all the couplings and get that Wp.�; �/

p is still an upper bound for the
left-hand side. But we can now take the supremum of the left-hand side over all the couples
.�;  / and obtain the desired inequality.

Fourth Step. Finally, we prove the remaining inequality by an approximation procedure. Let
x0 2 E be fixed. Given � > 0, there exists a compact set K� � E such that:

Z

Kc
�

d.x; x0/
pŒ�.dx/C �.dx/� < �p:

Next we construct a finite partition .Ej
�/16j6n of K� by Borel sets of diameter at most �, and

for each j 2 f1; � � � ; ng we pick an element xj 2 Ej
� . Finally, we define the map  from E into

E by  .x/ D xj whenever x 2 Ej
� and  .x/ D x0 if x 2 Kc

� . Clearly,  is a coupling mapping
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between � and Q� D � ı  �1 as well as between � and Q� D � ı  �1. Using this coupling to
get an upper bound for the distances Wp.�; Q�/ and Wp. Q�; �/, we find that:

Wp.�; Q�/ 6 21=p� and Wp. Q�; �/ 6 21=p�;

and, using the triangle inequality for the distance Wp we get:

Wp.�; �/ 6 Wp.�; Q�/C Wp. Q�; Q�/C Wp. Q�; �/ 6 Wp. Q�; Q�/C 21C1=p�: (5.11)

Using the result proven for probability measures on finite spaces in the Second Step, we see
that Wp. Q�; Q�/ D QWp. Q�; Q�/ and using the triangle inequality proven in the First Step, we get:

QWp. Q�; Q�/ 6 QWp. Q�;�/C QWp.�; �/C QWp.�; Q�/
6 Wp. Q�;�/C QWp.�; �/C Wp.�; Q�/
6 QWp.�; �/C 21C1=p�; (5.12)

where we used once more the fact that QWp is not greater than Wp as proven in Third Step.
Putting together (5.11) and (5.12) we get:

Wp.�; �/ 6 QWp.�; �/C 22C1=p�:

and letting � & 0 concludes the proof. ut

As a direct consequence of the duality identity proven in Proposition 5.3, we
have the following characterization of the 1-Wasserstein distance W1. This result
was already mentioned several times, for example when we used the Kantorovich-
Rubinstein distance dKR in the proof of Remark 1.5 in Chapter 1, or when we used
the Kantorovich-Rubinstein norm k � kKR? in Subsections 4.3.2 and 4.3.5 in the
proofs of Theorems 4.29 and 4.39, and again in the proof of Proposition 4.57.

Corollary 5.4 If .E; d/ is a complete separable metric space, and �; � 2 P1.E/,
then,

W1.�; �/ D sup
�W j�.x/��.y/j6d.x;y/

Z

E
�.x/.� � �/.dx/: (5.13)

This proves that the Wasserstein distance W1 coincides with the Kantorovich-
Rubinstein distance dKR introduced earlier.

Proof. In the case p D 1, the constraint in the supremum of the Kantorovich duality, namely
the inequality �.x/C  .y/ 6 d.x; y/ can be replaced by:

�.x/ D inf
y2E
Œd.x; y/ �  .y/�; x 2 E;

from which we immediately conclude that � is 1-Lipschitz. So, limiting oneself to functions
� that are 1-Lipschitz, the inequality �.x/C  .y/ 6 d.x; y/ can be replaced by:

 .y/ D inf
x2E
Œd.x; y/ � �.x/� D ��.y/; y 2 E;
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so that, in the Kantorovich duality, it is enough to maximize over pairs of Lip-1 functions
.�;��/ which completes the proof. ut

Notice that this representation of the 1-Wasserstein distance W1 implies that
W1.�; �/ depends only upon the difference � � �!

Representation in Terms of Random Variables. Consider now an atomless
probability space .˝;F ;P/. An E-valued random variable X is said to be of order p
for a real p > 0, if EŒd.x0;X/p� < 1 for one, and hence all, x0 2 E. If p > 1 and X
and Y are E-valued random variables of order p, then

Wp
�L.X/;L.Y/� 6 E

�
d.X;Y/p

	1=p
: (5.14)

We shall use this simple estimate quite often throughout the book. Moreover, when
� and � are of order p,

Wp.�; �/
p D inf


E

�
d.X;Y/p

	I L.X/ D �; L.Y/ D �

�
:

Connection BetweenWasserstein Distances andWeak Convergence
It is natural to wonder how the convergence of measures in Pp.E/ relates to the
weak convergence of measures. The answer is quite simple when E is compact. In
this case, for any p > 1, if .�n/n>0 and � are probability measures on E, .�n/n>0
converges toward � for the weak convergence of probability measures if and only
if .Wp.�n; �//n>0 converges toward 0. The analog characterization is slightly more
involved in the general case.

Theorem 5.5 For any p > 1, if .�n/n>1 and � are in Pp.E/, limn!1 Wp.�n; �/ D
0 if and only if .�n/n>1 converges toward � for the weak convergence of probability
measures and:

lim
n!1

Z

E
d.x0; x/

pd�n.x/ D
Z

E
d.x0; x/

pd�.x/; (5.15)

for one (and hence for all) x0 2 E. The latter is also equivalent to the fact that
.�n/n>1 converges toward � for the weak convergence of probability measures and
is p-uniformly integrable, namely

lim
r!1 sup

n>1

Z

E
d.x0; x/

p1fd.x0;x/>rgd�n.x/ D 0: (5.16)

A famous theorem of Skorohod states that the weak convergence of .�n/n>1
toward � is equivalent to the existence of random variables .Xn/n>1 and X defined
on the same probability space, say .˝;F ;P/, such that L.X/ D � and L.Xn/ D �n

for each n > 1, and limn!1 Xn D X almost surely. We discuss this result later in the
chapter and we even provide a proof of a somewhat stronger statement tailor-made
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to our needs in this book. See Lemma 5.29 and the ensuing discussion. In any case,
Skorohod’s theorem together with Fatou’s lemma imply that:

Z

E
d.x0; x/

pd�.x/ D E
�
d.x0;X/

p
	

6 lim inf
n!1 E

�
d.x0;Xn/

p
	

6 lim inf
n!1

Z

E
d.x0; x/

pd�n.x/:

(5.17)

Proof.

First Step. Let us first assume that limn!1 Wp.�n; �/ D 0. We then observe that .�n/n>1
converges in law toward �.

To do so, we denote by �n an element of ˘ opt
p .�n; �/, for any n > 1. Then, for any

bounded and uniformly continuous function f from E to R, we have

Z

E
f .x/d�n.x/ �

Z

E
f .x/d�.x/ D

Z

E�E

�
f .x/ � f .y/

�
d�n.x; y/:

Splitting the integral in the right-hand side according to the partition of E � E into the sets
f.x; y/I d.x; y/ > �g and f.x; y/I d.x; y/ 6 �g, for a given � > 0, and using the boundedness
and the uniform continuity of f , it is plain to deduce that .�n/n>1 converges in law toward �.

We now prove the convergence of the moments. Again, let us fix � > 0 momentarily.
There exists a constant c� > 0 such that for all a; b > 0 we have .aCb/p 6 .1C�/ap Cc�bp.
So, for x; y 2 E, we have:

d.x0; x/
p 6 .d.x0; y/C d.y; x//p 6 .1C �/d.x0; y/

p C c�d.y; x/
p;

and integrating both sides with respect to �n 2 ˘ opt
p .�n; �/ we get:

Z

E
d.x0; x/

p d�n.x/ 6 .1C �/

Z

E
d.x0; y/

p d�.y/C c�

Z

E�E
d.y; x/p d�n.x; y/:

By definition, the right most integral is equal to Wp.�n; �/
p which goes to 0 as n ! 1. This

implies:

lim sup
n!1

Z

E
d.x0; x/

p d�n.x/ 6 .1C �/

Z

E
d.x0; y/

p d�.y/;

in which we can take � & 0. The resulting inequality together with (5.17) gives (5.15).

Second Step. Conversely, let us assume that .�n/n>1 converges weakly toward � and
that (5.15) holds. Invoking Skorohod’s representation theorem, we can find a sequence of
R

d-valued random variables .Xn/n>1, constructed on some probability space .˝;F ;P/ with
L.Xn/ D �n for any n > 1 and converging almost surely to some random variable X with
L.X/ D �. By (5.17), X 2 Lp.˝;A;PIRd/. Of course, Wp.�n; �/

p 6 EŒd.Xn;X/p�, for
any n > 1. Therefore, in order to complete the proof, it suffices to prove that the sequence
.Xn/n>1 is p-uniformly integrable, see (5.16). For any r > 0, we have:
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E
�
d.x0;Xn/

p1fd.x0;Xn/>rg

	 D E
�
d.x0;Xn/

p
	 � E

��
d.x0;Xn/ ^ r

�p	 C rp
P

�
d.x0;Xn/ > r

	
:

By (5.15) and by the Portemanteau theorem, we have:

lim sup
n!1

E
�
d.x0;Xn/

p1fd.x0;Xn/>rg

	

6 E
�
d.x0;X/

p
	 � E

��
d.x0;X/ ^ r

�p	 C rp
P

�
d.x0;X/ > r

	

D E
�
d.x0;X/

p1fd.x0;X/>rg

	
:

Obviously, the last term can be made as small as we want by taking the limit r ! 1.
Uniform integrability easily follows. The last claim in the statement is clear. ut

Combining Theorem 5.5 with standard uniform integrability arguments we obtain
the following important corollary.

Corollary 5.6 For any p > 1, any subset K � Pp.E/, relatively compact for
the topology of weak convergence of probability measures, any x0 2 E, and any
sequences .an/n>1 and .bn/n>1 of positive real numbers tending to C1 with n, the
set:

K \

� 2 Pp.E/I 8n > 1;

Z

fd.x0;x/>ang
d.x0; x/

pd�.x/ <
1

bn

�
;

is relatively compact for the Wasserstein distance Wp.

Topological Properties ofPp.E/

An important fact is that Pp.E/, when equipped with the Wasserstein distance Wp,
is a complete separable metric space whenever, as we have assumed, .E; d/ is itself
complete and separable. As explained earlier, we are indulging in a slight abuse of
terminology, and accordingly, we shall say that .Pp.E/;Wp/ is a Polish space. This
makes licit the application of weak convergence results for probability measures on
Pp.E/, among which Prokhorov and Skorohod theorems. We shall systematically
equip Pp.E/ with its Borel � -field. The following proposition is a useful tool to
characterize real valued Borel measurable functions on Pp.E/.

Proposition 5.7 The Borel � -field B.Pp.E// of Pp.E/ is generated by the family of
functions .Pp.E/ 3 � 7! �.D//D2B.E/, where B.E/ is the Borel � -field of E. More
generally, if E is a collection of subsets of E which generates B.E/ and is closed
under finite intersections, then B.Pp.E// is generated by the family of functions
.Pp.E/ 3 � 7! �.D//D2E . In particular, for any Borel measurable function  W
E ! R which satisfies j .x/j 6 C.1C d.x0; x/p/ for some C > 0, x0 2 E, and all
x 2 E, the function Pp.E/ 3 � 7! R

E  d� is Borel measurable on Pp.E/.
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Proposition 5.7 remains true with P.E/ instead of Pp.E/, P.E/ being equipped
with the Lévy-Prokhorov metric. Indeed, the Borel � -field B.P.E// on P.E/ is
generated by the family of mappings .P.E/ 3 � 7! �.D//D2B.E/. The fact that
B.Pp.E// D fD\Pp.E/I D 2 B.P.E//g, which we shall also denote by B.P.E//\
Pp.E/, can be checked directly by inspection. Indeed, for any �0 2 Pp.E/, the
mapping Pp.E/ 3 � 7! Wp.�; �0/ is lower semicontinuous for the Lévy-Prokhorov
distance, which proves that, for any " > 0, the set f� 2 Pp.E/ W Wp.�; �0/ <

"g 2 B.P.E//. Therefore, B.Pp.E// � B.P.E// \ Pp.E/. Conversely, for any
closed subset D � P.E/ for the Lévy-Prokhorov distance, the set D \ Pp.E/ is
a closed subset of Pp.E/ equipped with Wp. We get that D \ Pp.E/ 2 B.Pp.E//.
Since the � -algebra generated by sets of the form D \ Pp.E/, with D as above, is
B.P.E// \ Pp.E/, we get the required equality.

As an application of Proposition 5.7, observe that if Œ0;T� 3 t 7! �t 2 Pp.E/
is measurable and % W Œ0;T� � E 3 .t; x/ 7! %.t; x/ 2 R is jointly measurable and
satisfies j%.t; x/j 6 C.1C dE.x0; x/p/ for all .t; x/ 2 Œ0;T� � E and for some C > 0

and x0 2 E, then the mapping Œ0;T� 3 t 7! R
E  .t; x/d�t.x/ is measurable. The

proof is a consequence of the monotone class theorem. Moreover, if % W Pp.E/�E 3
.�; x/ 7! %.�; x/ 2 R is jointly measurable and satisfies

R
E j%.�; x/jd�.x/ < 1 for

all � 2 Pp.E/, then the mapping Pp.E/ 3 � 7! R
E %.�; x/d�.x/ is measurable.

5.1.2 Glivenko-Cantelli Convergence in theWasserstein Distance

In this subsection, we analyze the rate of convergence, for the Wasserstein distance,
in the Glivenko-Cantelli theorem.

We start with a basic reminder. If .Xn/n>1 is a sequence of independent identically
distributed (i.i.d. for short) random variables in R

d with common distribution � 2
P.Rd/ and if, for each N > 1, we denote by N�N the empirical measure:

N�N D 1

N

NX

iD1
ıXi ;

the classical Glivenko-Cantelli theorem implies the weak convergence of N�N toward
�, almost surely and (thus) in probability. Whenever the random variables .Xn/n>1
are square-integrable, convergence also holds almost surely for the 2-Wasserstein
distance:

P

h
lim

N!C1 W2.�; N�N/ D 0
i

D 1:

This follows from Theorem 5.5 and the law of large numbers, which asserts that:

P

h
lim

N!C1

Z

Rd
jxj2d N�N.x/ D

Z

Rd
jxj2d�.x/

i
D 1: (5.18)
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Actually, the sequence .W2.�; N�N//N>1 is also uniformly square-integrable, since P
almost-surely:

W2

�
ı0; N�N

�2 D 1

N

NX

iD1
jXij2;

the above right-hand side converging in L1. Therefore, provided that X1 is square-
integrable, it holds that:

lim
N!C1E

�
W2.�; N�N/2

	 D 0: (5.19)

The purpose of this section is to provide a non-asymptotic a priori estimate which
quantifies the rate of convergence in the above limit when � 2 Pq.R

d/ for some
q > 4. We shall use this estimate repeatedly throughout the book.

Theorem 5.8 If � 2 Pq.R
d/ for some q > 4 (that is if Mq.�/

q D R
Rd jxjqd�.x/ <

1), then, for each dimension d > 1, there exists a constant C D C.d; q;Mq.�//

such that, for all N > 2:

E
�
W2. N�N ; �/2

	
6 C

8
ˆ̂<

ˆ̂:

N�1=2; if d < 4;

N�1=2 log N; if d D 4;

N�2=d; if d > 4:

(5.20)

As far as we know, the above a priori estimate does not exist in book form. It
will be used repeatedly throughout the book so we give a detailed proof. It relies
on several technical results which we present, for the sake of completeness, in
the form of three lemmas. The reader only interested in the applications of the
estimate (5.20) may want to skip these lemmas which will only be needed in the
proof of Theorem 5.8.

Remark 5.9 Observe that, for an L-Lipschitz-continuous function � W R
d !

R
d and for two probability distributions � and � in P2.Rd/, W2.� ı ��1; � ı

��1/ 6 LW2.�; �/. When � 2 Pq.R
d/, with Mq.�/ 6D 0, choose � W R

d 3
x 7! Mq.�/x and let  W R

d 3 x 7! x=Mq.�/. We deduce that W2. N�N ; �/ 6
Mq.�/W2. N�N ı  �1; � ı  �1/. Since

N�N ı  �1 D 1

N

NX

iD1
ı .Xi/;
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and Mq.� ı  �1/ D 1, we obtain:

E
�
W2. N�N ; �/2

	
6 Mq.�/

2
E

�
W2

� N�N ı  �1; � ı  �1�2	

6 C.d; q; 1/Mq.�/
2

8
ˆ̂<

ˆ̂:

N�1=2; if d < 4;

N�1=2 log N; if d D 4;

N�2=d; if d > 4;

which shows how the constant C.d; q;Mq.�// depends on Mq.�/.

First Lemma in the Proof of Theorem 5.8
For each integer ` > 0, we denote by P` the partition of the hypercube .�1; 1�d into
2d` translations of the hypercube .�2�`; 2�`�d.

Lemma 5.10 There exists a universal constant c > 0 such that, for any pair .�; �/
of probability measures on .�1; 1�d, it holds that:

W2.�; �/
2 6 c

X

`>0
2�2` X

B2P`
�.B/

X

C2P`C1; C�B

ˇ̌
ˇ̌�.C/
�.B/

� �.C/

�.B/

ˇ̌
ˇ̌; (5.21)

where Œ�.C/=�.B/� is set to 1=2d whenever �.B/ D 0 (and similarly for � in lieu
of �).

Proof. We first isolate an argument which will be used repeatedly in the proof.

Preliminary Step. If .Ak/k>0 is a measurable partition of a Polish space E on which 	 and
� are probability measures, we define a new probability Q	 by its restrictions to each of the
.Ak/k>0 given by Q	. � \ Ak/ D �.Ak/	. � jAk/ for any k > 0. Of course, we implicitly assume
that 	 charges all the .Ak/k>0. Below we use the notation Q	jAk . � / for Q	. � \ Ak/. We then
have:

.	 ^ Q	/jAk . � / D �
	.Ak/ ^ �.Ak/

�
	. � jAk/; k > 0;

so that, if we set:

ı D 1

2

X

k>0

j	.Ak/ � �.Ak/j D 1 �
X

k>0

�
	.Ak/ ^ �.Ak/

�
;

we have:

.	 � Q	/C D
X

k>0

�
	.Ak/ � �.Ak/

�
C
	.�jAk/

D
X

k>0

�
	.Ak/ � .	 ^ �/.Ak/

�
	.�jAk/ D 	 � 	 ^ Q	;

. Q	 � 	/C D
X

k>0

�
�.Ak/ � 	.Ak/

�
C
	.�jAk/

D
X

k>0

�
�.Ak/ � .	 ^ �/.Ak/

�
C
	.�jAk/ D Q	 � 	 ^ Q	;
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and thus:

.	 � Q	/C.E/ D . Q	 � 	/C.E/ D ı:

In particular, if we use temporarily the notation  for the function E 3 x 7! .x; x/ 2 E � E,
then the probability measure � on E � E defined by:

�.B � C/ D �
	 ^ Q	�

.B \ C/C ı�1
�
	 � Q	�

C
.B/

� Q	 � 	�
C
.C/

D
Z

B�C
1fxDyg

�
.	 ^ Q	/ ı  �1

	
.dx; dy/

C ı�1

Z

B�C
1fx 6Dyg.	 � Q	/C.dx/. Q	 � 	/C.dy/;

for B;C 2 B.E/, or equivalently:

�.B/

D
Z

B
1fxDyg

�
.	 ^ Q	/ ı  �1

	
.dx; dy/C ı�1

Z

B
1fx 6Dyg.	 � Q	/C.dx/. Q	 � 	/C.dy/

D
Z

B
1fxDyg

�
.	 ^ Q	/ ı  �1

	
.dx; dy/C ı�1

Z

B
.	 � Q	/C.dx/. Q	 � 	/C.dy/;

for B 2 B.E � E/, is a coupling between 	 and Q	 satisfying �.f.x; y/ 2 E2 W x ¤ yg/ D ı.
Accordingly, if .X; Y/ is a couple of random variables with joint distribution �, then L.X/ D
	 , L.Y/ D Q	 , and for each k > 0, PŒX D Y;X 2 Ak� D 	.Ak/ ^ Q	.Ak/, and PŒX ¤ Y� D ı.

Note also that if 	 and Q	 are probability measures such that 	.Ak/ D Q	.Ak/ and �k is a
coupling between 	. � jAk/ and Q	. � jAk/ for each k, then � D P

k>0 	.Ak/�k is a coupling
between 	 and Q	 .

Second Step. We now return to the setting of the statement of the lemma, and we let � and
� be two probability measures on .�1; 1�d. We assume for a while that, for any Borel subset
B � .�1; 1�d with positive Lebesgue measure, �.B/ and �.B/ are also positive (in other
words, the Lebesgue measure on .�1; 1�d is absolutely continuous with respect to � and �).
We then construct a sequence .�n/n>0, with �0 D �, that converges to � in the weak sense,
and hence in the Wasserstein sense since the supports are bounded.

For each integer ` > 1, we define the probability measure �` by:

�`. � / D
X

B2P`

�.B/�. � jB/:

For each continuous function f W Rd ! R, if we denote by w its modulus of continuity on
Œ�1; 1�d with respect to the Euclidean norm, we have:

Z

Rd
f .x/d�`.x/ D

X

B2P`

Z

B
f .x/d�`.x/

D
X

B2P`

�
2`d

Z

B
f .x/dx

�
�`.B/C O

�
w.

p
d2�`/

�
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D
X

B2P`

�
2`d

Z

B
f .x/dx

�
�.B/C O

�
w.

p
d2�`/

�

D
Z

Rd
f .x/d�.x/C O

�
w.

p
d2�`/

�
;

where we used the Landau notation O. � / for a function O. � / of the form R 3 x 7! ı.x/ 2 R

such that jı.x/j 6 Cjxj for some constant C > 0. We deduce that .�`/`2N converges weakly
toward �. By Theorem 5.5, the convergence also holds in the sense of the 2-Wasserstein
distance, which implies that:

W2.�; �/ 6 sup
`>0

W2.�; �`/;

showing that in order to prove (5.21), it suffices to prove that its right-hand side is an upper
bound for W2.�; �`/

2 for ` fixed.

Third Step. Now, for each ` > 0, we construct a coupling �` 2 ˘.�`; �`C1/. The strategy
is to apply the Preliminary Step with 	 D �`, � D � and then Q	 D �`C1. To do so, observe
first that, for any B 2 P`,

�`C1.B/ D
2dX

iD1

�.Bi/�.BjBi/ D
2dX

iD1

�.Bi/ D �.B/;

where B1; � � � ;B2d form the partition of B into 2d hypercubes in P`C1. Moreover, for each
C 2 P`C1 contained in B, we have:

�`.C/ D �.B/�.CjB/ D �.B/�.C/

�.B/
;

�`. � jC/ D �.B/

�.B/�`.C/
�jC. � / D �. � jC/;

from which we get:

�`C1jC D �.C/�. � jC/ D �.C/�`. � jC/ D �.C/
�
�`. � jB/�. � jC/: (5.22)

Dividing both sides by �.B/, we can reinterpret this equality in the framework of the
Preliminary Step: It says that, if we start with 	 D �`. � jB/ and � D �. � jB/, the probability
�`C1. � jB/ is nothing but the probability Q	 obtained as in the Preliminary Step from the
partition fC 2 P`C1 W C � Bg of B. We then denote by �`;B the resulting coupling, and let:

�`. � / D
X

B2P`

�`.B/�`;B. � /:

Observe that �`.B/ D �.B/, so that �`.B/ D �`C1.B/. Therefore, �` 2 ˘.�`; �`C1/; �` is a
coupling constructed from the aggregation prescription. Notice, again from the Preliminary
Step, that:
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�`.f.x; y/ W x ¤ yg/ D
X

B2P`

�`.B/�`;B
�f.x; y/ W x ¤ yg�

D
X

B2P`

�
�`.B/

�
1

2

X

C2P`C1;C�B

ˇ̌
�`.CjB/ � �.CjB/ˇ̌

��

D 1

2

X

B2P`

X

C2P`C1;C�B

ˇ̌
ˇ̌�.C/ � �.B/�.C/

�.B/

ˇ̌
ˇ̌:

Notice also that, for any B 2 P`, �`.B � ..�1; 1�d n B// D 0.

Fourth Step. For ` > 0, we call K`C1 the conditional law of �` given the first marginal,
namely �`.dx`; dx`C1/ D �`.dx`/K`C1.x`; dx`C1/. In particular,

�`C1.dx`C1/ D
Z

.�1;1�d
�`.dx`/K`C1.x`; dx`C1/:

Then, Ionescu-Tulcea’s theorem guarantees the existence of a sequence .Z`/`>1 of .�1; 1�d-
valued random variables constructed on some probability space .˝;F ;P/ such that:

P
�
Z0 2 A0; Z1 2 A1; � � � ; Z` 2 A`

	

D
Z

A0

Z

A1

� � �
Z

A`

�0.dx0/K1.x0; dx1/ � � � K`.x`�1; dx`/;

for every ` > 1, and any Borel sets A0;A1; � � � ;A` in .�1; 1�d. For each ` > 1, the joint
distribution of .Z0; Z`/ is a coupling between � D �0 and �`. Now, if the random variable L
is defined by L D inff` > 0 W Z` ¤ Z`C1g:

W2.�; �/
2 6 sup

`>1

W2.�; �`/
2 6 sup

`>1

E
�jZ0 � Z`j2

	

6 2 sup
`>1

E
��jZ0 � ZLj2 C jZL � Z`j2

�
1fL6`�1g

	

D 2 sup
`>1

E
��jZL�1 � ZLj2 C jZL � Z`j2

�
1fL6`�1g

	

6 c sup
`>1

E
�
2�2L1fL6`�1g

	
;

for a universal constant c > 0. The constant c being allowed to increase from line to line, we
get:

W2.�; �/
2 6 c

X

`>0

2�2`
P

�
Z` 6D Z`C1

	

D c
X

`>0

2�2`�`C1

�f.x; y/I x ¤ yg�

D c

2

X

`>0

2�2`
X

B2P`

X

C2P`C1;C�B

ˇ̌
ˇ̌�.C/ � �.B/�.C/

�.B/

ˇ̌
ˇ̌;

(5.23)

which completes the proof when the Lebesgue measure on .�1; 1�d is absolutely continuous
with respect to � and �. Observe that we have exchanged the role of � and � in (5.21).
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Conclusion. In order to complete the proof, it remains to discuss the general case when
the Lebesgue measure is no longer absolutely continuous with respect to � and �. We then
approximate � and � by:

�� D .1 � �/�C �

2d
Lebdj.�1;1�d I �� D .1 � �/� C �

2d
Lebdj.�1;1�d ;

where Lebd denotes the d-dimensional Lebesgue measure and Lebdj.�1;1�d . � / D Lebd. � \
.�1; 1�d//. Then, .��/">0 and .��/�>0 converge in total variation to � and � as � tends to
0. Obviously, we can apply the conclusion of the fourth step to each pair .��; ��/, � > 0.
Letting � tend to 0 in (5.23) completes the proof. ut

Second Lemma in the Proof of Theorem 5.8
In order to control W2.�; �/, we shall introduce two auxiliary quantities based on
the right-hand side of (5.21). First, for any �; � 2 P..�1; 1�d/, we let:

ı2.�; �/ D
X

`>1
2�2` X

B2P`
j�.B/ � �.B/j:

Next, we introduce a partition .Bn/n>0 of Rd with B0 D .�1; 1�d and

Bn D .�2n; 2n�dn.�2n�1; 2n�1�d; n > 1:

For � 2 P.Rd/ and n > 0 such that �.Bn/ > 0, we define the probability measure
�Bn on .�1; 1�d by:

�Bn.A/ D �
�
2nAjBn

�
;

for any Borel set A � .�1; 1�d. In other words, �Bn is the push-forward by the map
R

d 3 x 7! x=2n of the probability � conditioned to be in Bn, namely the probability:

B 7! �.BjBn/ D �.B \ Bn/

�.Bn/
:

Whenever �.Bn/ D 0, we define �Bn as any arbitrary measure in P..�1; 1�d/. We
now let:

D2.�; �/ D
X

n>0
22n

�
j�.Bn/ � �.Bn/j C .�.Bn/ ^ �.Bn// ı2.�

Bn ; �Bn/

�
; (5.24)

for �; � 2 P2.Rd/. Importantly, D2.�; �/ does not depend upon the (arbitrary)
choice of �Bn or �Bn when �.Bn/ D 0 or �.Bn/ D 0. The relevance of D2 to our
analysis of convergence in the sense of the Wasserstein distance W2 is provided by
the following estimate.
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Lemma 5.11 There exists a universal constant � such that, for all pairs of
probability measures � and � in P2.Rd/, we have:

W2.�; �/
2 6 �D2.�; �/: (5.25)

Proof. If � and � are supported in .�1; 1�d, using estimate (5.21) from Lemma 5.10, we
have:

W2.�; �/
2 6 c

X

`>0

2�2`
X

B2P`

�.B/
X

C2P`C1; C�B

ˇ̌
ˇ̌�.C/
�.B/

� �.C/

�.B/

ˇ̌
ˇ̌

6 c
X

`>0

2�2`
X

B2P`

X

C2P`C1; C�B

�
�.C/

�.B/
j�.B/ � �.B/j C j�.C/ � �.C/j

�

6 c
X

`>0

2�2`

� X

B2P`

j�.B/ � �.B/j C
X

C2P`C1

j�.C/ � �.C/j
�

6 c.1C 22/
X

`>1

2�2`
X

B2P`

j�.B/ � �.B/j;

where we used the fact that
P

B2P0
j�.B/� �.B/j D 0. The above is nothing but the desired

right-hand side of (5.25) which completes the proof when � and � are supported in .�1; 1�d.
In the general case, for each n > 1, we denote by �n the optimal coupling of �Bn and �Bn ,

and by �n (that we shall also denote by �n.dx; dy/ for pedagogical reasons) the push-forward
of �n by scaling by 2n, namely by the mapping .x; y/ 7! .2nx; 2ny/. Obviously,

22nW2.�
Bn ; �Bn/2 D 22n

Z

Rd

Z

Rd
jx � yj2d�n.x; y/ D

Z

Rd

Z

Rd
jx � yj2d�n.x; y/:

Next we define the measure � on R
d � R

d by:

�.dx; dy/ D
X

n>0

.�.Bn/ ^ �.Bn//�n.dx; dy/C a�1˛.dx/ˇ.dy/;

where a D .1=2/
P

n>0 j�.Bn/ � �.Bn/j,

˛.dx/ D
X

n>0

.�.Bn/ � �.Bn//C�.dxjBn/;

ˇ.dy/ D
X

n>0

.�.Bn/ � �.Bn//C�.dyjBn/:

Following the proof of the preliminary step in Lemma 5.10, we notice that:

a D
X

n>0

.�.Bn/ � �.Bn//C D
X

n>0

.�.Bn/ � �.Bn//C D 1 �
X

n>0

�.Bn/ ^ �.Bn/:

We also note that by construction, the marginals of � are � and � respectively. Indeed, if
A 2 B.Rd/ we have:
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�.A � R
d/ D

X

n>0

.�.Bn/ ^ �.Bn//�n.A � R
d/C a�1˛.A/ˇ.Rd/

D
X

n>0

.�.Bn/ ^ �.Bn//�n.2
�nA � R

d/C ˛.A/

D
X

n>0

.�.Bn/ ^ �.Bn//�
Bn.2�nA/C

X

n>0

.�.Bn/ � �.Bn//
C�.AjBn/

D
X

n>0

�.Bn/�.AjBn/ D �.A/;

where we used the fact that a D ˇ.Rd/. Notice that the proof works correctly even if�.Bn/ D
0 for some n > 0. We argue similarly for the second marginal. Moreover,

Z

Rd

Z

Rd
jx � yj2a�1˛.dx/ˇ.dy/ 6 2

a

Z

Rd

Z

Rd



jxj2 C jyj2

�
˛.dx/ˇ.dy/

6 2

Z

Rd
jxj2˛.dx/C 2

Z

Rd
jyj2ˇ.dy/

6 2
X

n>0

22n

�
.�.Bn/ � �.Bn//

C C .�.Bn/��.Bn//
C

�

6 2
X

n>0

22nj�.Bn/ � �.Bn/j;

where we used once more the fact that a D ˛.Rd/ D ˇ.Rd/. Now, using the fact that the
marginals of � are � and �, we have:

W2.�; �/
2 6

Z

Rd

Z

Rd
jx � yj2�.dx; dy/

6
X

n>0

22n


2j�.Bn/ � �.Bn/j C �

�.Bn/ ^ �.Bn/
��

W2.�
Bn ; �Bn/

�2�
;

where we used the fact that
R
Rd

R
Rd jx � yj2�n.dx; dy/ D 22n.W2.�

Bn ; �Bn//2. Since �Bn and
�Bn are probability measures on .�1; 1�d, we can use the first part of the proof to bound
W2.�

Bn ; �Bn/2 by 5c.ı2.�Bn ; �Bn//2, completing the proof in the general case. ut

Third Lemma in the Proof of Theorem 5.8
A crucial ingredient in the proof of Theorem 5.8 is the following technical estimate.

Lemma 5.12 There exists a universal constant C such that, for all probability
measures � and � in P2.Rd/, we have:

D2.�; �/ 6 C
X

n>0
22n

X

`>0
2�2` X

B2P`

ˇ̌
�

�
.2nB/ \ Bn

� � ��
.2nB/ \ Bn

�ˇ̌
;

with the same notation as in the definition (5.24) of D2.�; �/, and where the notation
2nB stands for the set f2nx 2 R

dI x 2 Bg.
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Proof. Going back to the definition of D2.�; �/, we first notice that, for each n > 0:

j�.Bn/ � �.Bn/j D
X

B2P0

ˇ̌
�

�
.2nB/ \ Bn

� � ��
.2nB/ \ Bn

�ˇ̌
;

and, whenever �.Bn/ > 0:
�
�.Bn/ ^ �.Bn/

�
ı2.�

Bn ; �Bn/

6 �.Bn/
X

`>1

2�2`
X

B2P`

ˇ̌
�

�
2nBjBn

� � ��
2nBjBn

�ˇ̌

6
X

`>1

2�2`
X

B2P`

ˇ̌
�

�
.2nB/ \ Bn

� � ��
.2nB/ \ Bn

�ˇ̌

C
ˇ̌
ˇ1 � �.Bn/

�.Bn/

ˇ̌
ˇ
X

`>1

2�2`
X

B2P`

�
�
.2nB/ \ Bn

�
;

which completes the proof since the last term is not greater than j�.Bn/ � �.Bn/j=3, and the
bound remains true whenever �.Bn/ D 0. ut

End of the Proof of Theorem 5.8
We are now in a position to prove the main estimate of this subsection.

Proof of Theorem 5.8. Let us assume that � 2 Pq.R
d/, for some q > 4, and without loss of

generality that
R
Rd jxjqd�.x/ D 1. By Markov inequality, �.Bn/ 6 2�q.n�1/ for all n > 0.

First Step. We shall apply Lemma 5.11 in order to find a bound for EŒD2. N�N ; �/�. For a
Borel subset A � R

d, the random variable N N�N.A/ is Binomial with parameters N and �.A/
so that:

E
�j N�N.A/ � �.A/j	 6 min

�
2�.A/;

p
�.A/=N

	
:

Using Cauchy-Schwarz’ inequality and the fact that the partition P` has exactly 2d` elements,
we deduce that, for all n > 0 and ` > 0,

X

B2P`

E
�ˇ̌ N�N

�
.2nB/ \ Bn

� � ��
.2nB/ \ Bn

�ˇ̌	
6 min

�
2�.Bn/; 2

d`=2
p
�.Bn/=N

	
:

Using the result of Lemma 5.12 and the fact that �.Bn/ 6 2�q.n�1/, we get, for a universal
constant C possibly depending upon q (and whose value is allowed to increase from line to
line):

E
�
D2. N�N ; �/

	
6 C

X

n>0

22n
X

`>0

2�2` min
�
2�qn; 2d`=2

p
2�qn=N

	
: (5.26)

Second Step. We first consider the case d > 4. For N > 2 fixed, we estimate the right-hand
side of (5.26) by computing the sums in the order they appear. Let n0 D bq�1 log2 Nc where
we use the notation bxc for the integer part of x, namely the largest integer smaller than or
equal to x. For each integer n > 0, we define `.n/ D d�1.log2 N � qn/. Notice that `.n/ > 0

if and only if n 6 n0 and
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` 6 `.n/ , 2�qn > 2d`=2
p
2�qn=N

, min
�
2�qn; 2d`=2

p
2�qn=N

	 D 2d`=2
p
2�qn=N:

Similarly,

` > `.n/ , 2�qn < 2d`=2
p
2�qn=N ) min

�
2�qn; 2d`=2

p
2�qn=N

	 D 2�qn:

So if we split the above sum over n into two parts, ˙1 D P
06n6n0

� � � and ˙2 D P
n>n0

� � � ,

˙1 D
n0X

nD0

22n

� b`.n/cX

`D0

2�2`2d`=2
p
2�qn=N C

X

`>b`.n/c

2�2`2�qn

�

D
n0X

nD0

22n

� b`.n/cX

`D0

2�2`2d`=2
p
2�qn=N C 3�12�qn2�2b`.n/c

�

6 N�1=2

n0X

nD0

2.2�q=2/n
b`.n/cX

`D0

2.�2Cd=2/` C CN�2=d
n0X

nD0

2.2�qC2q=d/n:

Obviously, the second sum above is bounded by a constant times N�2=d since 2�qC2q=d <
0, recall d 	 4. As for the first sum, when d > 4, it is bounded from above by:

CN�1=2

n0X

nD0

2.2�q=2/n2.�2Cd=2/`.n/ 6 CN�1=2N.d�4/=.2d/
n0X

nD0

2.2�qC2q=d/n

6 CN�2=d;

where we used once more the fact that 2 � q C 2q=d < 0 because q > 4, and where the
constant C is allowed to increase from line to line.

Now when d D 4 the upper bound on the first term reads:

CN�1=2

n0X

nD0

2.2�q=2/n`.n/ 6 CN�1=2 log2 N:

Similarly, whether d > 4 or d D 4,

˙2 D
X

n>n0

22n
X

`>0

2�2`2�qn D 4

3

1

2q�2 � 12
�.q�2/n0 6 CN�.1�2=q/:

All together, we proved that, when d > 4 and q > 4,

E
�
D2

� N�N ; �
�	

6 C

(
N�1=2 log2 N if d D 4

N�2=d if d > 4:



372 5 Spaces of Measures and Related Differential Calculus

Third Step. In order to treat the case d < 4, we interchange the order of the summations in
the right-hand side of (5.26) and write:

E
�
D2

� N�N ; �
�	

6 C
X

`>0

2�2`
X

n>0

22n min
�
2�qn; 2d`=2

p
2�qn=N

	
;

and as before assume that N is fixed. Let `0 D bd�1 log2 Nc and let us split the above sum
into two parts, ˙1 D P

06`6`0
� � � and ˙2 D P

`>`0
� � � . For each integer ` > 0, we define

n.`/ D q�1.log2 N � d`/. Notice that n.`/ > 0 if and only if ` 6 `0 and

n 6 n.`/ , 2�qn > 2d`=2
p
2�qn=N

, min
�
2�qn; 2d`=2

p
2�qn=N

	 D 2d`=2
p
2�qn=N;

and similarly,

n > n.`/ , 2�qn < 2d`=2
p
2�qn=N ) min

�
2�qn; 2d`=2

p
2�qn=N

	 D 2�qn:

Consequently,

˙1 D
`0X

`D0

2�2`

� bn.`/cX

nD0

22n2d`=2
p
2�qn=N C

X

n>bn.`/c

22n2�qn

�

6 N�1=2

`0X

`D0

2�2`2d`=2
bn.`/cX

nD0

22n2�qn=2 C C
`0X

`D0

2�2`2�.q�2/n.`/

6 CN�1=2

`0X

`D0

2.d=2�2/` C CN�.1�2=q/
`0X

`D0

2.d�2�2d=q/`:

The second sum on the last line is less than C if d�2�2d=q < 0 and is less than CN1�2=q�2=d

if d � 2 � 2d=q > 0. If d � 2 � 2d=q D 0, which happens if and only if d D 3 and q D 6

since we assumed d < 4 and q > 4, it is less than C log2.N/. So, in any case the last term is
the right hand side is less than CN�1=2 since d < 4 and q > 4. Similarly,

˙2 D
X

`>`0

2�2`
X

n>0

22n2�qn D C
X

`>`0

2�2` 6 CN�2=d:

This concludes the proof in all cases. ut

5.1.3 Optimal Transportation Tidbits

In preparation for a thorough discussion of notions of differentiability and convexity
of functions of measures, we return to the metric spaces Pp.E/ equipped with the
Wasserstein distances Wp, and we specialize the analysis to the case p D 2 and
E D R

d of crucial importance for the developments of this book.



5.1 Metric Spaces of Probability Measures 373

The geometric nature of our approach to differentiability and convexity suggests
that we revisit the elements of optimal transportation introduced earlier. A crucial
question in optimal transportation is whether transport plans may be induced by
transport maps. This is especially important when the plans are optimal. Recall the
definitions of transport plans and transport maps given in the paragraph devoted to
Wasserstein distances in Subsection 5.1.1 above.

We usually prefer the notation @' to r' to denote the gradient (first derivative)
of a differentiable function '. However, in this subsection, we introduce and use
the notion of subdifferential of a function ' which is not necessarily differentiable,
and since the most commonly used notation for the subdifferential is @', we shall
use the notation r' for the gradient of a differentiable function '. Also, we often
denote by I the identity mapping on R

d, which, though it is connected with, should
not be confused with the identity matrix which we denote by Id. We are confident
that the context should make it clear.

The next proposition identifies an instance of an optimal transport map that may be
easily identified.

Proposition 5.13 Given a probability measure � 2 P2.Rd/ and a twice con-
tinuously differentiable and strictly convex function ' from R

d to R satisfyingR
Rd jr'.x/j2d�.x/ < 1, we denote by � D � ı r'�1 the push-forward image

of � by r'. Then, there exists a unique deterministic optimal transport plan in
˘

opt
2 .�; �/, it is induced by the map r', and as a result:

W2.�; �/
2 D

Z

Rd
jx � r'.x/j2d�.x/:

Proof. By strict convexity of ', the gradient r' of ' is increasing in the sense that:

8x; y 2 R
d; x 6D y ) .x � y/ � .r'.x/ � r'.y// > 0:

In particular, r' is one-to-one from R
d onto its range (also known as co-domain). Since

the Hessian of ' has a strictly positive determinant, the global inversion theorem ensures
that r' is a C1 diffeomorphism from R

d on its range. We denote the inverse by .r'/�1.
The remainder of the proof relies on a duality argument. We compute the so-called square-
transform of the potential jxj2 � 2'.x/:
�.y/ D inf

x2Rd

˚jx � yj2 � jxj2 C2'.x/
� D jyj2 C inf

x2Rd

˚ �2x � y C2'.x/
�
; y 2 R

d: (5.27)

By strict convexity of ', we deduce that, when y is in the range of r', the infimum is attained
at the unique root x 2 R

d of the equation r'.x/ D y, so that:

�.y/ D j.r'/�1.y/ � yj2 � j.r'/�1.y/j2 C 2'
�
.r'/�1.y/�

D jyj2 � 2y � .r'/�1.y/C 2'
�
.r'/�1.y/�:

(5.28)
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The key point is to observe that because of the definition (5.27) of the square transform, we
have:

8x; y 2 R
d; jx � yj2 > jxj2 C �.y/ � 2'.x/:

Now, if X and Y are two R
d-valued random variables on some probability space .˝;F ;P/,

such that L.X/ D � and L.Y/ D �,

E
�jX � Yj2	 > E

�jXj2 C �.Y/ � 2'.X/	

D E
�jXj2 C �

�r'.X/� � 2'.X/	;
(5.29)

where we used the fact that Y and r'.X/ have the same distribution. A priori, the right-hand
side could be �1, but Inserting (5.28), we get:

E
�jX � Yj2	 > E

�jXj2 C jr'.X/j2 � 2r'.X/ � X C 2'.X/ � 2'.X/	

D E
�jX � r'.X/j2	;

which shows that r' is an optimal transport map. As for the proof of uniqueness, we return
to the first line in (5.29). By definition of �, it holds P -a.s.

jX � Yj2 > jXj2 C �.Y/ � 2'.X/:
The expectation of the right-hand side only depends on � and � and does not depend on the
joint law of .X; Y/. Therefore, it is equal to W2.�; �/

2. So, if EŒjX � Yj2� D W2.�; �/
2, then

the above inequality becomes an equality:

jX � Yj2 D jXj2 C �.Y/ � 2'.X/;
which shows that X reaches the infimum in the definition of �.Y/. Notice now that Y belongs
to the codomain of r' with probability 1 (since � is the push-forward image of � by r').
Therefore, the minimum in the definition of �.Y/ is unique and is given by r'�1.Y/, in
other words Y D r'.X/. ut

Remark 5.14 Strict convexity is crucial for the conclusion of Proposition 5.13.
Here is a simple counter-example. Let � 2 P2.R/ have mean 0 and let � be the
push-forward image of � by the mapping R 3 x 7! �x. We show that the transport
map R 3 x 7! �x does not induce an optimal transport plan from � to �.

The cost of the transport map R 3 x 7! �x is:

E
�jX � .�X/j2	 D 4E

�jXj2	;
where X is any random variable with distribution �. Now, if Y is independent of X
and L.Y/ D L.�X/, then,

E
�jX � Yj2	 D 2E

�jXj2	;
which says the transport plan �˝ � is of smaller cost than the plan associated with
the map R 3 x 7! �x.
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Remark 5.15 One can easily push further the analysis in the one-dimensional case.
For example if � and � are two distributions in P2.R/, if we denote by F� and F�
their cumulative distribution functions, � being atomless (i.e., F� is continuous), it
is well known that � is the image of � by F�1

� ı F�, where F�1
� denotes the pseudo-

inverse of F� . Moreover, if � and � have smooth positive densities, then F�1
� ı F�

is strictly increasing. So, we can apply Proposition 5.13 by choosing ' as any anti-
derivative of F�1

� ı F�. We deduce that there exists a unique optimal plan induced
by the transport map F�1

� ı F�. In fact, this result remains true under the mere
assumption that � has no atom, i.e., F� is continuous.

Brenier’s Theorem. The remaining of this subsection is devoted to the proof of
a celebrated result of Brenier which asserts that in the d-dimensional case, the
situation identified in Proposition 5.13 is generic when the measure � 2 P.Rd/

is absolutely continuous.

Definition 5.16 If ' W Rd 7! .�1;C1� is convex and proper in the sense that it
is not identically equal to C1, for each x 2 R

d, we define the subdifferential of '
at x as the set:

@'.x/ D fu 2 R
d W 8y 2 R

d; '.y/ 	 '.x/Cu � .y � x/g

Obviously, if ' is finite and differentiable at the point x, the subdifferential @'.x/ is
the singleton fr'.x/g given by the actual derivative (or gradient) of ' at x.

Definition 5.17 A set A � R
d � R

d is said to be cyclic monotone if for any integer
m > 1 and any .x1; y1/, � � � , .xm; ym/ in A we have:

y1 � .x2 � x1/C y2 � .x3 � x2/C � � � C ym�1 � .xm � xm�1/C ym � .x1 � xm/ 6 0:

The relevance of cyclic monotonicity to our use of differentiable convex func-
tions is the following classical result of convex analysis due to Rockafellar [320].

Proposition 5.18 A nonempty set A � R
d � R

d is cyclic monotone if and only if it
is included in the subdifferential of a lower-semicontinuous proper convex function
on R

d in that sense that A � @' D f.x; y/ 2 R
d � R

d W y 2 @'.x/g.

Proof. The fact that a subset of the subdifferential of a convex function is cyclic monotone
is easy, and can be proven by simple computation from the definition of cyclic monotony by
iterating the definition of subdifferential. We do not give the details of the argument because
we shall not use this half of the equivalence. We give a detailed proof of the reciprocal which
we shall use in the sequel.

Let .x0; y0/ 2 A and let us define the function ' by:

'.x/ D sup
˚
ym � .x � xm/C ym�1 � .xm � xm�1/C � � � C y0 � .x1 � x0/I

m > 1; .x1; y1/; � � � ; .xm; ym/ 2 A
�
:
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The function ' is convex and lower semi-continuous as the supremum of linear functions.
Moreover, is it proper because '.x0/ D 0. Indeed, '.x0/ 6 0 by definition of cyclic
monotonicity, and '.x0/ > 0 by choosing m D 1 and x1 D x0, so that '.x0/ D 0. Now,
if .x; y/ 2 A, for any z 2 R

d we easily get from the very definition of ' that:

'.z/ > y � .z � x/C '.x/;

which proves that y 2 @'.x/, completing the proof. ut

Here is the connection with optimal transportation:

Proposition 5.19 For all measures � and � in P2.Rd/, the topological support of
any optimal transport plan is cyclic monotone.

Proof. Let us assume that the topological support of an optimal plan �� is not cyclic
monotone. There exist an integer m > 1 and couples .x1; y1/, � � � , .xm; ym/ in Supp.��/

such that:

mX

kD1

�
jxkC1 � ykj2 � jxk � ykj2

�
< 0;

where we use the notation xmC1 for x1. By definition of the topological support of a measure,
we can find neighborhoods Ui of xi and Vi of yi for i D 1; � � � ;m such that ��.Ui � Vi/ > 0

for all i D 1; � � � ;m and

mX

kD1

�
jQxkC1 � Qykj2 � jQxk � Qykj2

�
< 0; Qxk 2 Uk; Qyk 2 Vk; k D 1; � � � ;m:

For i D 1; � � � ;m, we define the conditional measures �i D ��Œ � jUi � Vi� D ��Œ � \
Ui � Vi�=�

�.Ui � Vi/, and we denote by �.1/i and �.2/i their marginals. Finally we define the
measure � by:

� D �� C c

m

mX

kD1

�
�
.1/

kC1
˝ �

.2/
k � �k

�
;

for a positive constant c to be chosen below and with �.1/mC1
D �

.1/
1 . Observe that, for all

A 2 B.Rd � R
d/,

�.A/ > ��.A/ � c

m

mX

kD1

��.A \ .Uk � Vk//

��.Uk � Vk/

> 1

m

mX

kD1

�
��.A/ � ��.A \ .Uk � Vk//

�
> 0;
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if c < min16i6m �
�.Ui � Vi/. The measure � is obviously a probability. Its second marginal

is the same as the second marginal of �� which is �. As for its first marginal, it is � because
of the cyclic summation over k. Hence it is a coupling between � and �. We reach the desired
contradiction by computing:

Z

Rd
�Rd

jx � yj2�.dx; dy/ �
Z

Rd
�Rd

jx � yj2��.dx; dy/

D c

m

Z

.Rd/4m

mX

kD1

�
jxk � ykj2 � jQxk � Qykj2

� mY

kD1

�
.1/

kC1
.dxkC1/�

.2/
k .dyk/�k.dQxk; dQyk/

< 0;

because xk; Qxk 2 Uk and yk; Qyk 2 Vk for k D 1; � � � ;m, and with the convention that xkC1 D x1.
ut

Finally, we state and prove Brenier’s theorem.

Theorem 5.20 If �; � 2 P2.Rd/ and if � is absolutely continuous, there exists an
optimal transport map from � to � given by the gradient r' of a .�1;1�-valued
lower semi-continuous proper convex function ' on R

d that is � almost-everywhere
differentiable.

Proof. Let �� be an optimal transport plan from � to �. Proposition 5.19 implies that its
support Supp.��/ is cyclic monotone, and by the part of Rockafellar’s characterization
which we proved in Proposition 5.18, there exists a .�1;1�-valued lower semi-continuous
proper convex function ' on R

d such that Supp.��/ � @', which we can rewrite as:

��
�f.x; y/ 2 R

d � R
dI y 2 @'.x/g� D 1: (5.30)

Choose now .x0; y0/ 2 Supp.��/. Then, for all x 2 R
d,

'.x/ > '.x0/C y0 � .x � x0/:

Also, for all .x; y/ 2 Supp.��/,

'.x0/ > '.x/C y � .x0 � x/;

so that, for all .x; y/ 2 Supp.��/,

'.x0/C y0 � .x � x0/ 6 '.x/ 6 '.x0/C y � .x � x0/: (5.31)

We now observe that the left- and right-hand sides are integrable with respect to �� and
satisfy:

Z

Rd
�Rd

ˇ̌
'.x0/C y0 � .x � x0/

ˇ̌
d��.x; y/ 6 j'.x0/j C jy0j

�
M1.�/C jx0j

�
< 1;

Z

Rd
�Rd

ˇ̌
'.x0/C y � .x � x0/

ˇ̌
d��.x; y/ 6 j'.x0/j C M2.�/j

�
M2.�/C jx0j

�
< 1:
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Integrating (5.31) with respect to �� on Supp.��/, we get:

Z

Rd
j'.x/jd�.x/ < 1:

Therefore, ' is a.s. finite under �, that is the domain of ', i.e., Dom.'/ D fx 2 R
d W

j'.x/j < 1g, is of full measure under �. Of course, Dom.'/ is a convex subset of Rd, and
its boundary has a zero Lebesgue measure, from which get �.Int.Dom.'/// D 1 since �
is absolutely continuous with respect to the Lebesgue measure, where Int.Dom.'// is the
interior of Dom.'/.

Recall now that a proper convex function is continuous and locally Lipschitz, and thus
almost everywhere differentiable, on the interior of its domain. Since �.Int.Dom.'/// D 1,
we deduce that �.fx 2 R

d W fr'.x/g D @'.x/g/ D 1, from which we conclude that:

��
�f.x; y/ 2 R

d � R
d W y D r'.x/g� D 1;

which completes the proof. ut

Remark 5.21 The above proof shows that any optimal transport plan is of the form
� ı .I;r'/�1 for some proper convex function. A simple duality argument shows
that in fact, there is uniqueness, not only of the optimal transport plan, but of the
gradient of a convex function transporting� onto �. Moreover, if � is also absolutely
continuous, and if we denote by '� the convex conjugate of ', then '� is the convex
function whose gradient transports � onto � optimally and it is not difficult to see
that for �-almost every x 2 R

d and �-almost every y 2 R
d, we have:

r'� ı r'.x/ D x; and r' ı r'�.y/ D y:

5.2 Differentiability of Functions of Probability Measures

There are many notions of differentiability for functions defined on spaces of
probability measures, and recent progress in the theory of optimal transportation
have put some of their geometric characteristics in the limelight. See Section 5.4
below where we review some of them.

However, the approach which we find convenient for the type of stochastic
optimization problems we are interested in is slightly different. It is more of a
functional analytic nature rather than of a geometric nature. Our choice is driven by
the fact that we need to control infinitesimal perturbations of probability measures
induced by infinitesimal variations in a linear space of random variables. For that
reason, differentiation is based on the lifting of functions P2.Rd/ 3 � 7! u.�/ to
functions Qu defined on a Hilbert space L2.˝;F ;PIRd/ over some probability space
.˝;F ;P/ by setting Qu.X/ D u.L.X//, for X 2 L2.˝;F ;PIRd/, ˝ being a Polish
space, F its Borel � -field and P an atomless probability measure (since˝ is Polish,
P is atomless if and only if every singleton has a zero measure).
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Throughout the analysis below, we shall use repeatedly the fact that, over an
atomless probability space .˝;F ;P/, for any probability distribution � on a Polish
space E, we can construct an E-valued random variable on˝ with � as distribution.
In this regard, we refer to Remark 5.26 for the properties of the lifting Qu over general
spaces .˝;F ;P/ that are neither Polish nor atomless.

Definition 5.22 A function u on P2.Rd/ is said to be L-differentiable at �0 2
P2.Rd/ if there exists a random variable X0 with law �0, in other words satisfying
L.X0/ D �0, such that the lifted function Qu is Fréchet differentiable at X0.

The Fréchet derivative of Qu at X0 can be viewed as an element of L2.˝;F ;PIRd/ by
identifying L2.˝;F ;PIRd/ and its dual. When studying this form of differentiation,
the first item on our agenda is to show that this notion of differentiability is intrinsic.

5.2.1 Structure of the L-Derivative

We first prove that the law of the random variable DQu. QX0/ does not depend
upon the particular choice of the random variable QX0 satisfying L. QX0/ D �0.
See Proposition 5.24 below, whose proof will use the following simple measure
theoretical lemma:

Lemma 5.23 If X and Y are elements of L2.˝;F ;PIRd/ with the same law, then
for each � > 0 there exist two measurable measure preserving mappings � and ��1
from˝ into itself such that Pf! 2 ˝ W .� ı ��1/.!/ D .��1 ı �/.!/ D !g D 1 and
PŒjY � X ı ��1j 6 �� D 1.

Proof. Let .An/n>1 be a partition of Rd by Borel sets of diameter at most �, and, for each
n > 1, let us set Bn D fX 2 Ang and Cn D fY 2 Ang. For each n > 1, P.Bn/ D P.Cn/.

We now use the fact that P is an atomless probability measure on a Polish space. We
denote by F� the completion of F under P and by P

� the extension of P to F�. Whenever
P.Bn/ D P.Cn/ > 0, there exist two subsets Mn � Bn and Nn � Cn, both being included in
Borel subsets of zero measure under P, and a one-to-one map �n from Bn n Mn onto Cn n Nn

such that �n and ��1
n are measurable with respect to the restriction of F� to Bn n Mn and

Cn n Nn and preserve the restrictions of the measure P� to Bn n Mn and Cn n Nn (see Corollary
6.6.7 and Theorem 9.2.2 in Bogachev [64]).

Then, we can extend �n into a measurable mapping, still denoted by �n, from Bn to Cn

(measurability being understood with respect to the restrictions of F� to Bn and Cn) and then
��1

n into a measurable mapping, still denoted by ��1
n , from Cn to Bn (measurability being

understood with respect to the restrictions of F� to Cn and Bn) in such a way that �n ı ��1
n is

the identity on Cn n Nn, ��1
n ı �n is the identity on Bn n Mn, ��1

n .Nn/ � Mn and �n.Mn/ � Nn.
Necessarily, .�n/

�1.Nn/ � Mn and .��1
n /�1.Mn/ � Nn. Here, .�n/

�1.�/ denotes the pre-
image by �n and, similarly, .��1

n /�1.�/ denotes the pre-image by ��1
n . Obviously, for all

A 2 F�, with A � Cn, we have P�.A/ D P
�.A n Nn/ D P

�.��1
n .A n Nn// D P

�..�n/
�1.A//.

Similarly, for all A 2 F�, with A � Bn, we have P
�.A/ D P

�..��1
n /�1.A//.

Whenever P.Bn/ D P.Cn/ D 0, we construct �n and ��1
n according to the same principle,

but with Mn D Bn and Nn D Cn.
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Since .Bn/n>1 and .Cn/n>1 are partitions of ˝ by measurable sets, the maps � DP
n>1 �n1Bn and ��1 D P

n>1 �
�1
n 1Cn are measurable from .˝;F�/ into itself. Letting

M D [n>1Mn and N D [n>1Nn, we have P
�.M/ D P

�.N/ D 0. On ˝ n N, � ı ��1 is the
identity and, on ˝ n M, ��1 ı � is also the identity.

Since � and ��1 are measurable with respect to F�, we can find two mappings Q� and
Q��1 from ˝ into itself, measurable with respect to F , such that � and Q� , and similarly
��1 and Q��1, coincide outside an event A in F of zero measure under P. In particular,
Q� and Q��1 preserve the probability measure P. As a by-product, P.. Q�/�1.A// D 0 and
P.. Q��1/�1.A// D 0. For any ! 62 A [ . Q�/�1.A/, we have �.!/ D Q�.!/ 62 A and thus
��1.�.!// D Q��1. Q�.!//. Therefore, P.f! 2 ˝ W Q��1. Q�.!// D !g/ D P

�.f! 2 ˝ W
��1.�.!// D !g/ D 1. Similarly, P.f! 2 ˝ W Q�. Q��1.!// D !g/ D 1.

Finally, observe that, by construction, kY � X ı ��1k1 6 �. Since � and Q� coincide
outside A, we deduce that PŒjY � X ı Q��1j 6 �� D 1. ut

Proposition 5.24 Let u be a real valued function on P2.Rd/, Qu its lifting to
L2.˝;F ;PIRd/. If u is L-differentiable at �0 2 P2.Rd/ in the sense of Defini-
tion 5.22, then the lifting Qu is differentiable at each X 2 L2.˝;F ;PIRd/ such that
�0 D L.X/, and the law of the pair .X;DQu.X// does not depend upon the random
variable X as long as �0 D L.X/.

Proof. By definition, there exists a random variable X0 with law �0 such that the lifted
function Qu is Fréchet differentiable at X0. Let X 2 L2.˝;F ;PIRd/ be such that L.X/ D �0.
Then Lemma 5.23 implies that, for any � > 0, there exist two measurable measure preserving
mappings �� and ��1

� from ˝ into itself, such that P.f! 2 ˝ W .�� ı ��1
� /.!/ D !g/ D

P.f! 2 ˝ W .��1
� ı ��/.!/ D !g/ D 1 and PŒjX0 � X ı ��j 6 �� D 1. Using the fact that

the lifting Qu is differentiable at X0 and that its values depend only upon the distributions of
its arguments, we get, for any Y 2 L2.˝;F ;PIRd/:

Qu.X C Y/ D Qu�
X ı �� C Y ı ��

�

D Qu.X0/C E
�
DQu.X0/ � �

X ı �� C Y ı �� � X0
�	

C o
�kX ı �� C Y ı �� � X0k2

�

D Qu.X0/C E
�
DQu.X0/ � �

X ı �� C Y ı �� � X0
�	

C o
�kX ı �� � X0k2 C kYk2

�

D Qu.X/C E
�
DQu.X0/ ı ��1

� � Y
	 C O

�kX ı �� � X0k2
� C o

�kYk2
�
:

(5.32)

It is important to observe that the symbols O. � / and o. � / which we use according to the
Landau convention, are here uniform with respect to �. Here o. � / stands for a function o. � /
of the form R 3 x 7! xı.x/ 2 R with limx!0 ı.x/ D 0.

Let us assume momentarily that DQu.X0/ı��1
� converges in L2.˝;F ;PIR2d/when � & 0,

and let us denote by Z its limit. Then, .X; Z/ has the same law as .X0;DQu.X0// because �� is
measure preserving. Taking the limit � & 0 in (5.32) we get:

Qu.X C Y/ D Qu.X/C E
�
Z � Y

	 C o
�kYk2

�
;

which proves that DQu.X/ exists and is equal to Z.
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We conclude the proof by proving that .DQu.X0/ ı ��1
� /�>0 forms a Cauchy family as

� & 0. This follows from the fact that, if we subtract the value of (5.32) for � to its value for
�0 2 .0; �/, we find that:

sup
�0

2.0;�/

ˇ̌
E

��
DQu.X0/ ı ��1

� � DQu.X0/ ı ��1
�0

� � Y
	ˇ̌

6 C
�
� C o.kYk2/

�
;

which is enough to conclude by taking kYk2 D p
�, dividing by kYk2, and finally, taking the

supremum over these Y’s. ut

The following result gives the structure of the L-derivative of a function of
probability measures, and provides the exact form in which it will be used.

Proposition 5.25 Let u be a real valued continuously L-differentiable function on
P2.Rd/, and Qu its lifting to L2.˝;F ;PIRd/. Then for any � 2 P2.Rd/, there exists
a measurable function � W R

d ! R
d such that for all X 2 L2.˝;F ;PIRd/ with

L.X/ D �, it holds that DQu.X/ D �.X/ almost surely.

When we say that u is continuously L-differentiable, we mean that the Fréchet
derivative DQu.X/ of the lifting Qu is a continuous function of X from the space
L2.˝;F ;PIRd/ into itself. Also, notice that the function � from R

d into itself
given in the above statement is uniquely defined �-almost everywhere on R

d,
and that necessarily

R
Rd j�.x/j2d�.x/ < 1. Moreover, notice that in the equality

DQu.X/ D �.X/, the meaning of the apparently similar evaluations at X are not the
same in the left and right sides of the equality. In the left-hand side, DQu is seen as a
mapping from L2.˝;F ;PIRd/ into itself which is evaluated at the random variable
X, seen as an element of L2.˝;F ;PIRd/, the result of this evaluation being another
R

d-valued random variable on .˝;F ;P/. In the right-hand side, � is a mapping
from R

d into itself which is evaluated at each realization of the random variable X.
In other words, for almost every ! 2 ˝, it holds that ŒDQu.X/�.!/ D �.X.!//.

Proof. For a given X 2 L2.˝;F ;PIRd/, the goal is to prove that, as a random variable,
DQu.X/ is measurable with respect to the � -field generated by X (fact which we denote by
DQu.X/ 2 �fXg), as the existence of � such that PŒDQu.X/ D �.X/� D 1 then follows
from standard measure theory arguments. The fact that � is independent of the choice of
the random variable X representing the distribution � then follows from Proposition 5.24.

Without any loss of generality, we may assume that u (and thus Qu) is bounded. Indeed,
it suffices to compose u with any smooth bounded function matching the identity on a
sufficiently large interval in order to recover the general case. For the time being, we also
assume that � is absolutely continuous with respect to the Lebesgue measure and that:

Z

Rd
jxjqd�.x/ < 1;

for some q > 4. For each � > 0, we define the function � on L4.˝;F ;PIRd/ by:

�.Y/ D Qu.Y/C 1

2�
E

�jX � Yj2	 C EŒjYj4�:



382 5 Spaces of Measures and Related Differential Calculus

Note that � is Fréchet differentiable on L4.˝;F ;PIRd/ and that its Fréchet derivative is
given by (or at least can be identified with) D�.Y/ D DQu.Y/ C ��1.Y � X/ C 4jYj2Y .
Notice also that �.Y/ ! C1 as EŒjYj4� ! C1 since Qu is bounded. We then call
.Zn/n>0 a minimizing sequence for � , and for each n > 0, we let �n D L.Zn/. Since �
is absolutely continuous, we can use Brenier’s Theorem 5.20 stating that there exists a real
valued convex function  n on R

d, which is differentiable �-almost everywhere, such that the
random variable Yn D r n.X/ satisfies L.Yn/ D �n and EŒjX � Ynj2� D W2.�; �n/

2. These
two facts imply that:

�.Yn/ D Qu.Yn/C 1

2�
W2.�; �n/

2 C EŒjYnj4�

D Qu.Zn/C 1

2�
W2.�; �n/

2 C EŒjZnj4� 6 �.Zn/;

proving that .Yn/n>0 is also a minimizing sequence of � . Since the lifting Qu is bounded, we
conclude that:

sup
n>0

Z

Rd
jxj4d�n.x/ D sup

n>0
EŒjYnj4� < 1;

and consequently that the sequence .�n/n>0 is tight. Extracting a subsequence if necessary,
we can assume that this sequence converges (in the sense of weak convergence as well as
for the distance W2 because of the uniform bound on the fourth moments), and we call � its
limit. Notice that:

u.�/ D lim
n!1

u.�n/ D lim
n!1

Qu.Yn/;

W2.�; �/
2 D lim

n!1

W2.�; �n/
2 D lim

n!1

EŒjX � Ynj2�;

the first part following from the fact that Qu is continuous on L2.˝;F ;PIRd/. By Fatou’s
lemma (modulo Skorohod’s equivalent form of weak convergence), we also have:

Z

Rd
jxj4d�.x/ 6 lim inf

n!1

Z

Rd
jxj4d�n.x/ D lim inf

n!1

EŒjYnj4�:

Using once more Brenier’s Theorem 5.20, we get the existence of a real valued convex
function  on R

d such that if we set Y D r .X/, then L.Y/ D � and W2.�; �/
2 D

EŒjX � Yj2�. Such a Y is a minimizer of � so that D�.Y/ D 0 which gives:

DQu.Y/ D ���1.Y � X/ � 4jYj2Y;

which together with the identity Y D r .X/, also shows that DQu.Y/ 2 �fXg. Since the
latter is closed in L2.˝;F ;PIRd/, we conclude that DQu.X/ 2 �fXg by letting � & 0 since Y
converges toward X (notice 2��.Y/ 6 2��.X/), and consequently DQu.Y/ converges toward
DQu.X/ by continuity of DQu.

Now if � 2 P2.Rd/ is still absolutely continuous but does not necessarily satisfy the
above moment condition, we use X with distribution �, i.e., such that L.X/ D �, and
we apply the above proof to Xn D nX=

p
n2 C jXj2, whose law is absolutely continuous,
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has moments of all orders, and converges toward X in L2.˝;F ;PIRd/. Hence DQu.Xn/ 2
�fXng � �fXg and, letting n ! 1, we get DQu.X/ 2 �fXg, again by continuity of DQu and
the fact that �fXg is closed.

Finally, if � 2 P2.Rd/ is not assumed to be absolutely continuous, we consider a triple
of random variables .X;G1;G2/ with L.X/ D �, X being independent of .G1;G2/, G1 and
G2 being two independent standard d-dimensional Gaussian random variables (recall that we
work on an atomless probability space). For each n > 1, we set Xi;n D X C n�1Gi, i D 1; 2.
The distribution of Xi;n is absolutely continuous so, by what we just saw, DQu.Xi;n/ 2 �fX;Gig,
and taking the limit n ! 1 as before we get DQu.X/ 2 �fX;Gig for i D 1; 2. Since G1 and
G2 are independent, we infer that DQu.X/ 2 �fXg, which concludes the proof. ut

Proposition 5.24 implies that the distribution of the L-derivative of u at �0,
when viewed as a random variable, depends only upon the law �0, and not upon
the particular random variable X0 having distribution �0. The Fréchet derivative
ŒDQu�.X0/ is called the representation of the L-derivative of u at �0 along the variable
X0. Since it is viewed as an element of L2.˝;F ;PIRd/, by definition,

u.�/ D u.�0/C ŒDQu�.X0/ � .X � X0/C o
�kX � X0k2

�
; (5.33)

whenever X and X0 are random variables with distributions � and �0 respectively,
the dot product being the L2- inner product of L2.˝;F ;PIRd/, and k � k2 the
associated norm. Proposition 5.25 implies that, as a random variable, this Fréchet
derivative is of the form �.X0/ for some deterministic measurable function � W Rd !
R

d, which is uniquely defined �0-almost everywhere on R
d. The equivalence class

of � in L2.Rd; �0IRd/ being uniquely defined, we can denote it by @�u.�0/ or
@u.�0/when no confusion is possible. We shall call @�u.�0/ the L-derivative of u at
�0 and most often identify it with a function @�u.�0/. � / W Rd 3 x 7! @�u.�0/.x/ 2
R

d or by @u.�0/. � / when no confusion is possible. With this notation, (5.33) takes
the form:

u.�/ D u.�0/C E
�
@�u

�L.X0/
�
.X0/ � .X � X0/

	 C o
�kX � X0k2

�
: (5.34)

Remark 5.26 The above construction of @�u.�0/ allows us to express ŒDQu�.X0/ as
a function of any random variable X0 with distribution �0, wherever this random
variable is defined. In particular, the differentiation formulas (5.33) and (5.34)
are invariant under changes of the space .˝;F ;P/ and the pair of variables
.X0;X/ used for the representation of u, in the sense that ŒDQu�.X0/ always reads
as @�u.�0/.X0/, whatever the choices of .˝;F ;P/ and X0. So, this construction
permits to express ŒDQu�.X0/ as a function of any random variable X0 with distri-
bution �0, irrespective of where this random variable is defined, giving a meaning
to the L-derivative of u at �0 independently of the lifting chosen to construct it.
In this regard, it is worth noticing that there is no need to assume .˝;F ;P/ to be
Polish and atomless to give a meaning to (5.34), as long as we are able to construct
random variables X and X0 with � and �0 as distributions.
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Remark 5.26 seems pretty obvious. Actually, the proof requires some care since
the Landau symbol o.�/ in (5.34) a priori depends on the variable X0 at which
the expansion is performed, and thus on the underlying probability space used to
construct the lift. In order to proceed, one may let:

#.�/ D
� Z

.Rd/2
jx � yj2d�.x; y/

��1=2

�
�

u.�/ � u.�0/ �
Z

.Rd/2
@�u

�
�0

�
.x/ � .y � x/ d�.x; y/

�
;

for any � 2 P2..Rd/2/ such that
R
.Rd/2

jx � yj2d�.x; y/ 6D 0, where �0 denotes the

first marginal of � on R
d. When

R
.Rd/2

jx � yj2d�.x; y/ D 0, we just let #.�/ D 0.
Expansion (5.34) says that there exists a probability space .˝;F ;P/ such that,

for any X0 2 L2.˝;F ;PIRd/,

lim
X!X0

#
�L.X0;X/

� D 0;

the limit in the left-hand side holding true in L2.˝;F ;PIRd/. We shall prove in
Subsection 5.3.1 below, see Lemma 5.30, that this implies:

#.�/ ! 0 as
Z

.Rd/2
jx � yj2d�.x; y/ ! 0;

as long as the first marginal of � on R
d remains fixed, which shows rigorously

that (5.34) may be transferred from one given probability space to any other as
explained in Remark 5.26.

The same argument shows that if the Fréchet derivative of the lift Qu, when
constructed on some probability space, is continuous, then the same holds true on
any other sufficiently rich probability space. Indeed, it suffices to apply the same
argument as above but with # given by:

#.�/ D
Z

.Rd/2

ˇ̌
@�u

�
�

�
.y/ � @�u

�
�0

�
.x/

ˇ̌2
d�.x; y/;

where � stands for the second marginal of � on R
d.

Remark 5.27 Let us assume that u W P2.Rd/ ! R is c-Lipschitz continuous in
� with respect to the 2-Wasserstein distance. If u is continuously L-differentiable,
then necessarily it holds EŒj@�u.�/.X/j2�1=2 6 c, for any � 2 P2.Rd/ and any
random variable X having distribution �. Indeed, if Qu is a lifting of u, L.X/ D �

and L.Y/ D � for �; � 2 P2.Rd/, then we have:
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jDQu.X/ � .Y � X/j 6 jQu.Y/ � Qu.X/j C o
�kY � Xk2

�

D ju.�/ � u.�/j C o
�kY � Xk2

�

6 cW2.�; �/C o
�kY � Xk2

�

6 ckY � Xk2 C o
�kY � Xk2

�
:

Dividing by kY � Xk2 (assuming that Y 6D X) and letting kY � Xk2 tend to zero, we
get the desired result.

Of course, the argument works the other way around. Indeed, if u is continuously
L-differentiable and DQu is bounded by C in L2, then for any two random variables
X and X0 in L2.˝;F ;PIRd/, we can find t 2 Œ0; 1� such that

ju.L.X// � u.L.X0//j
D ˇ̌

E
�
@�u

�L.tX C .1 � t/X0/
��

tX C .1 � t/X0�.X � X0/
	ˇ̌

6
��@�u

�L.tX C .1 � t/X0/
��

tX C .1 � t/X0���
2
kX � X0k2

6 CkX � X0k2:

Taking the infimum over the random variables X and X0 with prescribed marginal
distributions, we deduce that u is Lipschitz continuous with respect to the
2-Wasserstein distance.

5.2.2 Examples

We illustrate the structure of this peculiar form of differentiation with a couple of
fundamental examples which we shall use throughout the book.

Example 1. It is plain to compute the L-derivative of a linear function, namely
when the function u is of the first order form:

u.�/ D
Z

Rd
h.x/d�.x/ D hh; �i; (5.35)

for some scalar continuously differentiable function h defined on R
d, whose

derivative is at most of linear growth. Indeed, in this case, the lifted function Qu is
defined by Qu.X/ D EŒh.X/� and

Qu.X C Y/ D Qu.X/C E

Z 1

0

�
@h.X C 
Y/ � Y

	
d


D Qu.X/C E
�
@h.X/ � Y

	 C E

Z 1

0

��
@h.X C 
Y/ � @h.X/

� � Y
	
d
:
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Observing that the last term in the right-hand side is less than:

ˇ̌
ˇE

Z 1

0

��
@h.X C 
Y/ � @h.X/

� � Y
	
d


ˇ̌
ˇ

6
Z 1

0

E

h
sup

jyj6kYk1=22

ˇ̌
@h.X C 
y/ � @h.X/

ˇ̌ jYj
i
d


C CE

h
1fjYj>kYk1=22 g

�
1C jXj C jYj�jYj

i

6 E

h
sup

jyj6kYk1=22

ˇ̌
@h.X C y/ � @h.X/

ˇ̌2i1=2kYk2

C CkYk2


kYk2 C

p
kYk2 C sup

P.A/6kYk2
E

�jXj21A
	1=2�

;

where the constant C is connected with the growth of @h, it is easy to check that
the Fréchet derivative of Qu at X is given by @h.X/ (where @h is the classical gradient
of h) viewed as an element of the dual since DQu.X/ �Y D EŒ@h.X/ �Y�. Consequently,
we can think of @�u.�/ as the deterministic function @h. Example (5.35) highlights
the fact that this notion of L-differentiability is very different from the usual one.
Indeed, given the fact that the function u defined by (5.35) is linear in the measure
variable �, when viewed as an element of the dual of a function space, one should
expect the derivative to be h and NOT its derivative @h! We shall revisit this issue
in Section 5.4 where we show that this apparent anomaly is in fact generic. We
shall use this particular example to derive, from the general Pontryagin principle
for the optimal control of McKean-Vlasov diffusion processes which we prove
in Chapter 6, a simple form applicable to scalar interactions which are given by
functions of measures of this type.

Example 2. Next, we consider the example of a quadratic function of a measure.
This example will be used when we generalize the notion of potential mean field
game. To be specific, we assume that the function u is of the form:

u.�/ D hh��;�i D
Z

Rd
Œh���.x/d�.x/ D

Z

Rd

Z

Rd
h.x�y/d�.y/d�.x/; (5.36)

for some continuously differentiable function h on R
d, whose derivative is at most

of linear growth. We find it convenient to lift this function into the function Qu
defined by:

Qu.X/ D
Z

Rd
EŒh.x � X/� dPX.x/;
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where PX denotes the distribution of X, which we usually denote by L.X/. Indeed,
with this lifting, we can compute the Gâteaux derivative of Qu as follows. For U 2
L2.˝;F ;PIRd/ with kUk2 6 1, we have:

ŒQu.X C �U/ � Qu.X/�

D
Z

Rd
EŒh.x � X � �U/� dPXC�U.x/ �

Z

Rd
EŒh.x � X/� dPX.x/

D
Z

Rd
EŒh.x � X/� dPXC�U.x/ �

Z

Rd
EŒh.x � X/� dPX.x/

C
Z

Rd
EŒh.x � X � �U/ � h.x � X/� dPXC�U.x/

D .i/C .ii/:

Using Fubini’s theorem, we notice that:

lim
�&0

1

�
.i/ D lim

�&0

1

�

� Z

Rd
EŒh.X C �U � x/� dPX.x/ �

Z

Rd
EŒh.x � X/� dPX.x/

�

D
Z

Rd
EŒ@h.X � x/ � U� dPX.x/:

Moreover, it is clear that:

lim
�&0

1

�
.ii/ D �

Z

Rd
EŒ@h.x � X/ � U� dPX.x/;

from which we conclude that the Gâteaux derivative of the function Qu at X with
distribution � in the direction U is given by EfŒ.@h C N@h/ � ��.X/ � Ug if we
use the notation Nf to denote the function Nf .x/ D �f .�x/. Since the mapping
L2.˝;F ;PIRd/ 3 X 7! Œ.@h C N@h/ � .L.X//�.X/ 2 L2.˝;F ;PIRd/ is continuous,
we deduce that Qu is Fréchet differentiable and that the Fréchet derivative at X with
distribution � is given by Œ.@h C N@h/ � ��.X/.

Notice that when h is even (i.e., when h.x/ D h.�x/), then @h is odd (i.e.,
@h.�x/ D �@h.x/) and the derivative is given by 2@h � � or:

@�u.�/.�/ D �
2Œ@h� � ��

.�/:

Example 3. We now consider a slight generalization of the above example:

u.�/ D
Z

Rd
v.x; �/d�.x/;

for some continuous function R
d � P2.Rd/ 3 .x; �/ 7! v.x; �/ 2 R. We assume

that v is differentiable in x 2 R
d for � fixed, the derivative being jointly continuous

in .x; �/, and at most of linear growth in x, uniformly in � in bounded subsets of
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P2.Rd/. A subset K of P2.Rd/ is said to be bounded if there exists a > 0 such
that for all � 2 K,

R
Rd jxj2d�.x/ 6 a. We also assume that v is L-continuously

differentiable in � for x fixed, and that for each � 2 P2.Rd/, we can choose, for
each x 2 R

d, a version of @�v.x; �/.�/ in L2.Rd; �IRd/ in such a way that the
mapping R

d � R
d 3 .x; x0/ 7! @�v.x; �/.x0/ is measurable and at most of linear

growth, uniformly in � when restricted to bounded subsets of P2.Rd/.
Observe that v is at most of quadratic growth in x, uniformly in � in bounded

subsets, proving that u is well defined. Indeed, for X 2 L2.˝;F ;PIRd/ with
L.X/ D �:

v.x; �/

D v.0; �/C
Z 1

0

@xv.
x; �/ � x d


D v.0; ı0/C
Z 1

0

E
�
@�v

�
0;L.
X/

�
.
X/ � X

	
d
C

Z 1

0

@xv.
x; �/ � x d
:

Using the growth condition on @xv and @�v, the claim easily follows.
In full analogy with the previous example, we now claim that:

@�u.�/.�/ D @xv.�; �/C
Z

Rd
@�v.x

0; �/.�/d�.x0/: (5.37)

For the proof, we introduce an approach which we shall use repeatedly throughout
the chapter. We denote by . Q̋ ; QF ; QP/ a copy of the space .˝;F ;P/, and we use the
following convention. For any random variable X 2 L2.˝;F ;PIRd/, we denote by
QX the copy of X on . Q̋ ; QF ; QP/. Then, for X;Y 2 L2.˝;F ;PIRd/ with L.X/ D �

and kYk2 6 1:

ŒQu.X C Y/ � Qu.X/�
D E

�
v
�
X C Y;L.X C Y/

� � v�
X;L.X C Y/

�	

C E
�
v
�
X;L.X C Y/

� � v�
X;L.X/�	

D E
�
@xv

�
X;L.X/� � Y

	 C E QE
h
@�v

�
X;L.X/�. QX/ � QY

i

C E
�
v
�
X C Y;L.X C Y/

� � v�
X;L.X C Y/

� � @xv
�
X;L.X/� � Y

	

C E QE
h
v
�
X;L.X C Y/

� � v�
X;L.X/� � @�v

�
X;L.X/�. QX/ � QY

i

D E
�
@xv

�
X;L.X/� � Y

	 C E QE
h
@�v

�
X;L.X/�. QX/ � QY

i

C .i/C .ii/:
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By repeating mutatis mutandis the proof of the first example, we get:

.i/ D E

h Z 1

0



@xv

�
X C 
Y;L.X C Y/

� � @xv
�
X;L.X/�

�
� Yd


i

6 E

h
sup

jyj 6 kYk1=22
sup

�WW2.�;�/ 6 kYk2

ˇ̌
@xv.X C y; �/ � @xv.X; �/

ˇ̌2i1=2kYk2

C CkYk2


kYk2 C

p
kYk2 C sup

P.A/6kYk2
E

�jXj21A
	1=2�

;

where C may depend on M2.�/, which shows that .i/ D o.kYk2/. Regarding .ii/,
we have:

.ii/ D E QE
� Z 1

0



@�v

�
X;L.X C 
Y/

�� QX C 
 QY� � @�v
�
X;L.X/�. QX/

�
� QYd


�

6 kYk2E
h

sup
kZk2 6 kYk2

QE

ˇ̌
@�v

�
X;L.X C Z/

�� QX C QZ� � @�v
�
X;L.X/�� QX�ˇ̌2�i1=2

:

Without any loss of generality, we may assume that L2.˝;F ;PIRd/ is separable,
which is the case if F is a countably generated � -field or the completion of a count-
ably generated � -field. Also, by assumption, the function QZ 7! @�v.x;L. QZ//. QZ/
from L2. Q̋ ; QF ; QPIRd/ into itself is continuous for each x 2 R

d. By the growth
condition imposed on @�v, the above supremum reduces to a supremum over a
countable family and is a measurable function of X, and .ii/ is in fact o.kYk2/,
proving (5.37). The proof is easily completed.

Example 4. As a particular case of the above example, we may choose:

v.x; �/ D
Z

Rd
g.x; x0/d�.x0/; x 2 R

d; � 2 P2.Rd/;

for a function g W Rd � R
d ! R. If g is continuously differentiable in .x; x0/, with

@xg and @x0g being at most of linear growth in .x; x0/, then v satisfies the assumption
of Example 3 and the L-derivative of the function u W P2.Rd/ 3 � 7! u.�/ DR
Rd v.x; �/d�.x/ writes:

@�u.�/.x/ D
Z

Rd
@xg.x; x0/d�.x0/C

Z

Rd
@x0g.x0; x/d�.x0/;

for x 2 R
d, � 2 P2.Rd/. Indeed, by Lebesgue’s differentiation theorem, we have

@xv.x; �/ D
Z

Rd
@xg.x; x0/d�.x0/;
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which is jointly continuous in .x; �/ and at most of linear growth in x, uniformly in
� in bounded subsets. Moreover,

@�v.x; �/.x
0/ D @x0g.x; x0/;

which also satisfies the prescribed conditions.

Example 5. Finally we consider a slightly different challenge than the four exam-
ples considered above. We assume that Rd � P2.Rd/ 3 .x; �/ 7! v.x; �/ 2 R

d

satisfies the same assumption as in Example 3, and we define the function u by:

L2.˝;F ;PIRd/ 3 X 7! u.X/ D v.X;L.X// 2 L1.˝;F ;PIR/;
and we compute the Fréchet derivative Du.X/ of u at X 2 L2.˝;F ;PIRd/, which
should be interpreted as a bounded operator Du.X/.�/ from L2.˝;F ;PIRd/ into
L1.˝;F ;PIR/. For any Y 2 L2.˝;F ;PIRd/, with kYk2 6 1, we have:

u.X C �Y/ � u.X/ D v
�
X C �Y;L.X C �Y/

� � v�
X;L.X C �Y/

�

Cv�
X;L.X C �Y/

� � v�
X;L.X/�:

Repeating the computations of Example 3, it is easy to see that:

Du.X/.Y/ D @xv.X;L.X// � Y C QE�
@�v.X;L.X//. QX/ � QY	

:

Remark 5.28 The result of Proposition 5.36 below shows that, under a mild
regularity assumption on the Fréchet derivatives, the differentials constructed above
can be handled by rather regular versions. Indeed, if the function Qu is Fréchet
differentiable and its Fréchet derivative is uniformly Lipschitz, i.e., there exists a
constant c > 0 such that kDQu.X/ � DQu.X0/k2 6 ckX � X0k2 for all X;X0 in
L2.˝;F ;PIRd/, then there exists a function @�u:

P2.Rd/ � R
d 3 .�; x/ 7! @�u.�/.x/

such that j@�u.�/.x/ � @�u.�/.x0/j 6 cjx � x0j for all x; x0 2 R
d and � 2 P2.Rd/,

and for every � 2 P2.Rd/, @�u.�/.X/ D DQu.X/ almost surely if � D L.X/.

5.3 Regularity Properties of the L-Differentials

L-derivatives of functions of probability measures are defined in an L2-sense and a
modicum of care is needed to handle sets of measure zero if one tries to manipulate
versions of these derivatives which could be defined everywhere, hopefully keeping
some form of regularity. The beginning of this section collects a couple of results in
this direction.
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Because of the technical nature of some of these results, the reader may want to
skip the proofs in a first reading and jump to the more intuitive and enlightening
results of this section.

5.3.1 Measure Theoretical Preliminaries

Representation of RandomVariables
The first result will be used several times in the book, and its statement is influenced
by a couple of applications in Chapter (Vol II)-1.

Lemma 5.29 There exists a measurable mapping  W Œ0; 1/ � P2.Rd/ 3 .�; �/ 7!
 .�; �/ 2 R

d such that, for any � 2 P2.Rd/, the image of the Lebesgue
measure on Œ0; 1/ by  .�; �/ is � itself. Furthermore, for every atomless probability
space .˝;F ;P/, there exists a measurable mapping P2.Rd/ 3 � 7! X� 2
L2.˝;F ;PIRd/ such that X� � � for every � 2 P2.Rd/.

Recall that L2.˝;F ;PIRd/ is the quotient of the space of square-integrable
random variables for P almost sure equality.

Proof.

First Step. We first construct  .�; �/ for measures � concentrated on the unit cube in the
sense that �.Œ0; 1/d/ D 1. We call U the set of such measures. Observe from Proposition 5.7
that U is a Borel subset of P2.Rd/.

Given some n > 0, we split the hypercube Œ0; 1/d into .2n/d hypercubes of the form
Qn.k1; � � � ; kd/ D Qd

iD1Œki=2
n; .ki C 1/=2n/, with .k1; � � � ; kd/ 2 .Z \ Œ0; 2n � 1�/d . For any

d-tuple .k1; � � � ; kd/, we let Mn;�.k1; � � � ; kd/ D �.Qn.k1; � � � ; kd//.
The strategy is to arrange the Qn.k1; � � � ; kd/ increasingly according to some order. To this

end, we observe that, for any 1 6 i 6 d, ki=2
n may be uniquely written as:

ki

2n
D

nX

jD1

"n
j .ki/

2j
; (5.38)

with "n
j .ki/ 2 f0; 1g. Given .k1; � � � ; kd/ and .k0

1; � � � ; k0

d/ in .Z \ Œ0; 2n � 1�/d, with
.k1; � � � ; kd/ 6D .k0

1; � � � ; k0

d/, we say that .k1; � � � ; kd/ �n .k0

1; � � � ; k0

d/ if, letting:

p D inf
˚
j 2 f1; � � � ; ng W �

"n
j .k1/; � � � ; "n

j .kd/
� 6D �

"n
j .k

0

1/; � � � ; "n
j .k

0

d/
��
;

q D inf
˚
i 2 f1; � � � ; dg W "n

p.ki/ 6D "n
p.k

0

i /
��
;

it holds 0 D "n
p.kq/ < "

n
p.k

0

q/ D 1. In other words, the order is defined by taking into account
first the index j in (5.38) and then the coordinate i. Writing x n y if x �n y or x D y, n is a
total order on f0; � � � ; 2n � 1gd.

We divide the interval Œ0; 1/ into a sequence .In;�.k1; � � � ; kd//.k1;��� ;kd/2.Z\Œ0;2n
�1�/d of

.2n/d disjoint (possibly empty) intervals, closed on the left and open on the right, of
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length Mn;�.k1; � � � ; kd/, and ordered increasingly according to �n. This means that, for any
x 2 In;�.k1; � � � ; kd/ and x0 2 In;�.k0

1; � � � ; k0

d/, x < x0 if .k1; � � � ; kd/ �n .k0

1; � � � ; k0

d/. Then,
we let:

 n.�; �/ D
X

.k1;��� ;kd/2.Z\Œ0;2n
�1�/d

�
2�nk1; � � � ; 2�nkd

�
1f�2In;�.k1;��� ;kd/g; � 2 Œ0; 1/:

It is plain to check that the mapping Œ0; 1/ � U 3 .�; �/ 7!  n.�; �/ 2 Œ0; 1/d is
jointly measurable. Indeed, writing In;�.k1; � � � ; kd/ as Œan;�.k1; � � � ; kd/; bn;�.k1; � � � ; kd//, the
mapping U 3 � 7! .an;�.k1; � � � ; kd/; bn;�.k1; � � � ; kd// is measurable, since:

an;�.k1; � � � ; kd/ D �

� [

.k0

1;��� ;k
0

d/	n.k1;��� ;kd/

Qn.k0

1; � � � ; k0

d/

�
;

bn;�.k1; � � � ; kd/ D �

� [

.k0

1;��� ;k
0

d/
n.k1;��� ;kd/

Qn.k0

1; � � � ; k0

d/

�
:

Then, we notice that for any bounded and continuous function `:

Z 1

0

`
�
 n.�; �/

�
d� D

X

.k1;��� ;kd/2.Z\Œ0;2n
�1�/d

`

 k1
2n
; � � � ; kd

2n

�
�

�
Qn.k1; � � � ; kd/

�

!
Z

Rd
`.x/d�.x/;

proving that on Œ0; 1/ equipped with the Lebesgue measure, the sequence of random variables
.Œ0; 1/ 3 � 7!  n.�; �//n>0 converges in distribution to � as n tends to C1. Moreover,
because of our choice of ordering, we have:

In;�.k1; � � � ; kd/ D
[

.�1;��� ;�d/2f0;1gd

InC1;�.2k1 C �1; � � � ; 2kd C �d/: (5.39)

Indeed, for any .k1; � � � ; kd/ and .k0

1; � � � ; k0

d/ in f0; � � � ; 2n �1gd, .k0

1; � � � ; k0

d/ �n .k1; � � � ; kd/

if and only if .2k0

1C�0

1; � � � ; 2k0

d C�0

d/ �nC1 .2k1; � � � ; 2kd/ for any �1; �0

1; � � � ; �d; �
0

d 2 f0; 1g,
which implies that:

an;�.k1; � � � ; kd/ D �

� [

.k0

1;��� ;k
0

d/	nC1.2k1;��� ;2kd/

QnC1.k0

1; � � � ; k0

d/

�

D anC1;�.2k1; � � � ; 2kd/

6 inf
.�1;��� ;�d/2f0;1gd

anC1;�.2k1 C �1; � � � ; 2kd C "d/;

where we observed that .2k1; � � � ; 2kd/ nC1 .2k1 C �1; � � � ; 2kd C �d/. Similarly,
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bn;�.k1; � � � ; kd/

D �

�
 [

.k0

1;��� ;k
0

d/	nC1.2k1;��� ;2kd/

�

[

 [

.2k1;��� ;2kd/
nC1.k
0

1;��� ;k
0

d/
nC1.2k1C1;��� ;2kdC1/

Qn.k0

1; � � � ; k0

d/
��

> sup
.�1;��� ;�d/2f0;1gd

bnC1;�.2k1 C �1; � � � ; 2kd C �d/:

This proves that in (5.39), the right-hand side is included in the left-hand side. Observing
that both sides are intervals of the same length (closed on the left and open on the right), this
proves the equality.

As a by-product, there exists a constant C, independent of n and �, such that:

8� 2 Œ0; 1/; j n.�; �/ �  nC1.�; �/j 6 C

2n
: (5.40)

We deduce that, for each � 2 U , the random variables .Œ0; 1/ 3 � 7!  n.�; �//n>0 converge
pointwise. So, we can define:

 1.�; �/ D lim
n!1

 n.�; �/:

The function Œ0; 1/ � U 3 .�; �/ 7!  1.�; �/ is jointly measurable. Moreover, for any
� 2 U , the random variable Œ0; 1/ 3 � 7!  1.�; �/ has � as distribution.

Second Step. When the support of � is general, we define � ı ��1 as the push-forward (or
image) of � by the mapping:

�.x1; � � � ; xd/ D � 1
�

arctan.x1/C 1

2
; � � � ; 1

�
arctan.xd/C 1

2

�
; (5.41)

for x1; � � � ; xd 2 R
d. Observing that:

��1.u1; � � � ; ud/ D
�

tan
�
�u1 � �

2

�
; � � � ; tan

�
�ud � �

2

��
; .u1; � � � ; ud/ 2 .0; 1/d;

we then let:

 .�; �/ D ��1


 1

�
�; � ı ��1

��
; � 2 Œ0; 1/; � 2 P2.Rd/:

By construction, the random variable Œ0; 1/ 3 � 7!  1.�; � ı ��1/ has � ı ��1 as
distribution if as before we assume that Œ0; 1/ is equipped with the Lebesgue measure to
form a probability space. Therefore, Œ0; 1/ 3 � 7!  .�; �/ has � as distribution. Moreover,
by using Proposition 5.7 once again, we can easily verify that the mapping Œ0; 1/�P2.Rd/ 3
.�; �/ 7!  .�; �/ is measurable.
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Third Step. In order to complete the proof, we consider an atomless probability space
.˝;F ;P/ equipped with a uniformly distributed random variable � W ˝ ! Œ0; 1/. First,
from the first two steps of the proof, we know that for any � 2 P2.˝/, the random
variable ˝ 3 ! 7!  .�.!/; �/ has distribution �. Next, we argue that the mapping
P2.Rd/ 3 � 7! cl.˝ 3 ! 7!  .�.!/; �// 2 L2.˝;F ;PIRd/ is measurable, where we
use the notation cl.�/ for the equivalence class of the random variable � for the P-almost sure
equality.

For the proof, we shall use the fact that for a bounded continuous function ` W Rd �R
d !

R
d, the mapping L2.˝;F ;PIRd/ � R

d 3 .X; x/ 7! cl.`.X; x// 2 L2.˝;F ;PIRd/ is contin-
uous and thus measurable. Measurability is preserved by replacing ` by .1I1 ı `; � � � ; 1Id ı `/
for a collection of d intervals I1; � � � ; Id. Recalling the definition of  n in the first step of the
proof, we deduce that the map P2.Rd/ 3 � 7! cl. n.�; � ı ��1// 2 L2.˝;F ;PIRd/ is
measurable for any n > 0. Since for each � 2 P2.Rd/, .cl. n.�; � ı ��1///n>0 converges
in L2.˝;F ;PIRd/ to cl. 1.�; � ı ��1//, we conclude that the map P2.Rd/ 3 � 7!
cl. 1.�; � ı ��1// 2 L2.˝;F ;PIRd/ is measurable. In order to prove that the map
P2.Rd/ 3 � 7! cl. .�; �// 2 L2.˝;F ;PIRd/ is measurable, we can work component
by component. Since the i-th component of  .�; �/ is given by the tangent (up to shift) of
the i-th component of  1.�; � ı ��1/, we conclude by approximating the tangent by its
power series expansion and using the fact that if � 7! '.�/ 2 L2.˝;F ;PIR/ is measurable
and '.�/ is a bounded random variable, then any integer power of '.�/ is also measurable
(as a function of � with values in L2.˝;F ;PIR/). ut

Here is an application of Lemma 5.29:

Lemma 5.30 Let # W P2..Rd/2/ ! R satisfy, for some atomless probability space
.˝;F ;P/,

lim
X!X0

#
�L.X0;X/

� D 0;

the limit in the left-hand side holding true in L2.˝;F ;PIRd/, then, for any �0 2
P2.Rd/,

#.�/ ! 0 as
Z

.Rd/2
jx � yj2d�.x; y/ ! 0;

as long as the first marginal of � on R
d remains equal to �0.

Proof. Given a probability measure � 2 P2..Rd/2/, with �0 as first marginal on R
d, we call

.�.x; �//x2Rd the disintegration of � with respect to �0, namely:

�.dx; dy/ D �0.dx/�.x; dy/:

Recall that, for any D 2 B.Rd/, the mapping R
d 3 x 7! �.x;D/ is measurable, see Theorem

(Vol II)-1.1 if needed. Notice also that, without any loss of generality, we can assume that,
for all x 2 R

d, �.x; �/ 2 P2.Rd/. By Proposition 5.7, we deduce that the mapping R
d 3

x 7! �.x; �/ 2 P2.Rd/ is measurable. In particular, the mapping Œ0; 1/ � R
d 3 .�; x/ 7!

 .�; �.x; �// is measurable, where  is given by Lemma 5.29.
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On .˝;F ;P/, we consider two independent random variables X0 and Z, X0 being R
d-

valued and having �0 as distribution and Z being uniformly distributed on Œ0; 1/. We then let
X D  .Z; �.X0; �//, so that, conditional on X0, X has �.X0; �/ as distribution. Hence, the pair
.X0;X/ has � as joint distribution. In particular,

E
�jX0 � Xj2	 D

Z

.Rd/2
jx � yj2d�.x; y/:

Observing that X0 does not depend on � , we deduce that:

� Z

.Rd/2
jx � yj2d�.x; y/ ! 0

�
)

�
E

�jX0 � Xj2	 ! 0

�
;

which implies #.�/ D #.L.X0;X// ! 0. ut

Connection with Skorohod’s Representation Theorem
Lemma 5.29 gives a canonical way to construct a Rd-valued random variable on the
probability space .Œ0; 1/;B.Œ0; 1//;Leb1/ with a prescribed distribution. It is natural
to wonder whether this canonical representation is continuous.

Lemma 5.31 With � defined in (5.41), for any � 2 P2.Rd/ such that the measure
� ı ��1 satisfies:

�
� ı ��1�
˚

x 2 Œ0; 1/d W xi D k

2n

��
D �


˚
x 2 R

d W xi D tan
��k

2n
� �

2

���
D 0;

for all i 2 f1; � � � ; dg, n > 1 and k 2 f0; � � � ; 2n � 1g, we can find a Borel subset
C � Œ0; 1/ (obviously depending upon �), with Leb1.C/ D 1, such that:

8� 2 C; lim
�0)�

 .�; �0/ D  .�; �/;

the convergence �0 ) � being understood in the sense of the weak convergence
of probability measures. In particular, if � is a uniformly distributed Œ0; 1/-
valued random variable constructed on some probability space .˝;F ;P/, then
PŒlim�0)�  .�; �

0/ D  .�; �/� D 1.

Proof. We use the same notation as in the proof of Lemma 5.29. It suffices to prove that, for
every � 2 P2.Œ0; 1/d/ satisfying, for all i 2 f1; � � � ; dg, n > 1 and k 2 f0; � � � ; 2n � 1g,

�

˚

x 2 Œ0; 1/d W xi D k

2n

��
D 0; (5.42)

there exists a Borel subset C � Œ0; 1/, with Leb1.C/ D 1, such that:

8� 2 C; lim
�0

2P2.Œ0;1/d/W �0
)�

 1.�; �0/ D  1.�; �/:
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For a given � 2 P2.Œ0; 1/d/ satisfying (5.42), we thus consider a sequence .�N/N>1 of
probability measures on Œ0; 1/d weakly converging to �. We then recall that, for any integer
n > 1,

an;�.k1; � � � ; kd/ D �

� [

.k0

1;��� ;k
0

d/	n.k1;��� ;kd/

Qn.k0

1; � � � ; k0

d/

�
;

bn;�.k1; � � � ; kd/ D �

� [

.k0

1;��� ;k
0

d/
n.k1;��� ;kd/

Qn.k0

1; � � � ; k0

d/

�
;

where the relationship x n y stands for x �n y or x D y. For a given value of n, observe that
the boundaries of both

[

.k1;��� ;kd/	n.k
0

1;��� ;k
0

d/

Qn.k1; � � � ; kd/ and
[

.k1;��� ;kd/
n.k
0

1;��� ;k
0

d/

Qn.k0

1; � � � ; k0

d/

are included in [d
iD1 [2n

`D0 fx 2 Œ0; 1/d W xi D `=2ng. Thanks to (5.42), they are of zero
measure under �. We deduce that:

lim
N!1

an;�N .k1; � � � ; kd/ D an;�.k1; � � � ; kd/;

lim
N!1

bn;�N .k1; � � � ; kd/ D bn;�.k1; � � � ; kd/:

In particular, for any tuple .k1; � � � ; kd/ 2 f0; � � � ; 2n � 1gd and any real � in the interval
.an;�.k1; � � � ; kd/; bn;�.k1; � � � ; kd// (if the interval is not empty), we can find an integer
Nn;�.k1; � � � ; kd/ such that, for N > Nn;�.k1; � � � ; kd/,

an;�N .k1; � � � ; kd/ < � < bn;�N .k1; � � � ; kd/;

proving that:

 n.�; �N/ D � k1
2n
; � � � ; kd

2n

� D  n.�; �/:

Since

ˇ̌
 1.�; �N/ �  n.�; �N/

ˇ̌
6 C

2n
;

ˇ̌
 1.�; �/ �  n.�; �/

ˇ̌
6 C

2n
;

we deduce that, for N > Nn;�.k1; � � � ; kd/,

ˇ̌
 1.�; �N/ �  1.�; �/

ˇ̌
6 C

2n�1
;

which completes the proof. ut
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Lemma 5.31 is reminiscent of Skorohod’s representation theorem as it provides
a way to represent a weakly convergent sequence of probability measures by means
of an almost sure convergent sequence of random variables. However, the statement
is of a somewhat limited scope since it holds true only for probability measures
�ı��1 that have no mass on the hyperplanes having a prescribed dyadic coordinate.
In order to extend it to any probability measures, we may use an idea found in the
proof of Blackwell and Dubins’ theorem. For any integer n > 1, we let:

Q .�; a; �/ D  
�
�; � ı ��1

a

� � ae; �; a 2 Œ0; 1/; � 2 P2.Rd/;

where �a.x/ D x C ae and e D .1; � � � ; 1/ 2 R
d. Then, for any a 2 Œ0; 1/ and

� 2 P2.Rd/, the measure Leb1 ı .Œ0; 1/ 3 � 7! Q .�; a; �//�1 is exactly �.
Now, for a given � 2 P2.Rd/, we can find a countable subset Q D .c`/`2N of R

such that, for any i 2 f1; � � � ; dg and any c 2 R n Q, �.fx 2 R
d W xi D cg/ D 0.

Observe moreover that, for any a 2 R, any integer n > 1 and any k 2 f0; � � � ; 2n�1g:

� ı ��1
a


˚
x 2 R

dI xi D tan
��k

2n
� �

2

���

D �

˚

x 2 R
dI xi D tan

��k

2n
� �

2

� � a
��
;

so that:

� ı ��1
a


˚
x 2 R

dI xi D tan
��k

2n
� �

2

���
> 0

, 9` 2 N; a D tan
��k

2n
� �

2

� � c`:

Letting:

NQ D
n

tan
��k

2n
� �

2

� � cI c 2 Q; n > 0 n f0g; k 2 f0; � � � ; 2n � 1g
o
;

we deduce that, for a 62 NQ:

8n > 1; 8k 2 f0; � � � ; 2n � 1g; � ı ��1
a


˚
x 2 R

dI xi D tan
��k

2n
� �

2

���
D 0:

From Lemma 5.31, we deduce that, for a 62 NQ and � 2 P2.Rd/, there exists a Borel
subset C � Œ0; 1/ such that, for all � 2 C, the function Q .�; a; �/ is continuous at �.
So for any sequence .�N/N>1 weakly converging to �,

8a 62 NQ; Leb1

˚
� 2 Œ0; 1/ W lim

N!1
Q .�; a; �N/ D Q .�; a; �/�

�
D 1:
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And then,

Z

R

Leb1

˚
� 2 Œ0; 1/ W lim

N!1
Q .�; a; �N/ D Q .�; a; �/�

�
'.a/da D 1;

where ' denotes the density of the standard Gaussian probability measure. By
Fubini’s theorem, for almost every .�; a/ 3 Œ0; 1/ � R, the function Q .�; a; �/ is
continuous at �. This shows that it suffices to add an additional parameter in the
definition of  in order to make it continuous in � 2 P2.Rd/ for almost every
fixed values of the other parameters. Put it differently, if � and G denote two
independent random variables on some probability space .˝;F ;P/, with � being
uniformly distributed on Œ0; 1/ and G � N.0; 1/, then PŒlimN!1 Q .�;G; �N/ D
Q .�;G; �/� D 1, with Q .�;G; �N/ � �N , for all N > 1, and Q .�;G; �/ � �. This

recovers Blackwell and Dubins’ theorem.
Recall that we use freely the notation X � � in lieu of L.X/ D � whenever the
expressions for X and � may render the typesetting too cumbersome.

Remark 5.32 Blackwell and Dubins’ extension of Skorohod’s theorem is very
important for our purposes. Indeed, when dealing with a weakly convergent
sequence of probability measures .�N/N>1, we often consider an almost surely
convergent sequence of random variables .XN/N>1 representing the family .�N/N>1
in the sense that, for all N > 1, L.XN/ D �N. Blackwell and Dubins’ theorem
asserts that, on a probability space .˝;F ;P/ equipped with a pair of random
variables .�;G/ as above, it is always possible to construct such a sequence.
In particular, whenever the probability space is atomless, it is always possible
to construct such a pair .�;G/ and, subsequently, an almost surely convergent
sequence representing the family .�N/N>1.

Jointly Measurable Version of the L-Derivative
The next result says that one can always find a reasonable version of the derivative
of a continuously L-differentiable function of probability measures.

Proposition 5.33 Given a continuously L-differentiable function u W P2.Rd/ ! R,
for each � 2 P2.Rd/, one can redefine, @�u.�/. � / W Rd 3 x 7! @�u.�/.x/ on a �-
negligible set in such a way that the mapping P2.Rd/ � R

d 3 .�; x/ 7! @�u.�/.x/
is jointly measurable when P2.Rd/ is equipped with the Borel � -field generated
by the 2-Wasserstein topology. Whenever @�u.�/. � / has a continuous version, the
version constructed above for measurability reasons coincides with it on the support
Supp.�/ of �.

Proof. Let .˝;F ;P/ be a Polish atomless probability space. We use the fact that for any
bounded continuous function ` W R

d � R
d ! R and d intervals I1; � � � ; Id on the real

line, the mapping L2.˝;F ;PIRd/ � R
d 3 .X; x/ 7! cl.1I1 .`.X; x//; � � � ; 1Id .`.X; x/// 2

L2.˝;F ;PIRd/ is measurable. As before, L2.˝;F ;PIRd/ is the quotient of the space
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of square-integrable random variables for P-almost sure equality, and cl.�/ denotes the
equivalence class of � in L2.˝;F ;PIRd/.

Here is the way we apply this simple fact. Denoting by ‘�’ the inner product in
L2.˝;F ;PIRd/, the mapping ŒL2.˝;F ;PIRd/�2 3 .X; Y/ 7! ŒDQu�.X/ � Y is measurable
as the pointwise limit of measurable mappings. Therefore, for any vector e 2 R

d and any
" > 0, the mapping L2.˝;F ;PIRd/ � R

d 3 .X; x/ 7! ŒDQu�.X/ � .e1fjX�xj6"g/ is jointly
measurable. Then, the mapping  D . 1; � � � ;  d/ W L2.˝;F ;PIRd/ � R

d ! R
d given by

 i.X; x/ D lim inf
"&0

h ŒDQu�.X/ � .ei1fjX�xj 6 "g/

P.jX � xj 6 "/
1fP.jX�xj6"/>0g

i

is also jointly measurable, where .e1; � � � ; ed/ is the canonical basis of R
d. By Lebesgue-

Besicovitch differentiation theorem,  .X; �/ is a version of @�u.L.X//. � / in the space
L2.Rd;B.Rd/;L.X/IRd/. If @�u.L.X//. � / admits a continuous version, then it coincides
with it on the support of L.X/.

We can now conclude because the chain rule and Lemma 5.29 imply that the mapping
P2.Rd/ � R

d 3 .�; x/ 7!  .X�; x/ is measurable whenever .˝;F ;P/ is assumed to be
atomless. ut

5.3.2 L-Differentiability of Functions of Empirical Measures

The rather special notion of differentiability introduced in this chapter is best
understood as differentiation of functions of limits of empirical measures in the
directions of the atoms of the measures. We illustrate this fact in the next two
propositions.

Definition 5.34 Given a function u W P2.Rd/ ! R and an integer N > 1, we define
the empirical projection of u onto R

d by:

uN W .Rd/N 3 .x1; � � � ; xN/ 7! u

�
1

N

NX

iD1
ıxi

�
:

The following result connects the L-derivative of a function of probability
measures to the standard partial derivatives of its empirical projections. We shall
extend these connections to second order derivatives in Proposition 5.91 later in
the chapter, after a detailed discussion of the relevant notions of second order
differentiability.

Proposition 5.35 If u W P2.Rd/ ! R is continuously L-differentiable, then its
empirical projection uN is differentiable on .Rd/N and, for all i 2 f1; � � � ;Ng,

@xi u
N.x1; � � � ; xN/ D 1

N
@�u

�
1

N

NX

jD1
ıxj

�
.xi/:
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In the right-hand side of the above equality, the function @�u.N�1 PN
jD1 ıxj/.�/ is

uniquely defined in L2.Rd;N�1 PN
jD1 ıxj IRd/. In particular, for each i 2 f1; � � � ;Ng,

@�u.N�1 PN
jD1 ıxj/.xi/ is uniquely defined.

Proof. On an atomless Polish probability space .˝;F ;P/, we consider a random variable #
uniformly distributed over the set f1; � � � ;Ng. Then, for any fixed x D .x1; � � � ; xN/ 2 .Rd/N ,
x# is a random variable having distribution N�N

x D N�1
PN

iD1 ıxi . In particular, with the same
notation as above for Qu,

uN.x/ D uN.x1; � � � ; xN/ D Qu.x#/:

Therefore, for h D .h1; � � � ; hN/ 2 .Rd/N ,

uN.x C h/ D Qu.x# C h#/ D Qu.x#/C DQu.x#/ � h# C o.jhj/;

the dot product being here the L2- inner product over .˝;F ;P/, from which we deduce:

uN.x C h/ D uN.x/C 1

N

NX

iD1

@�u. N�N
x /.xi/ � hi C o.jhj/;

which is the desired result. ut

5.3.3 Lipschitz L-Differentials and Regular Versions

If a real valued function u on P2.Rd/ is L-differentiable, the Fréchet derivative
DQu of its lifting Qu is a mapping from L2.˝;F ;PIRd/ into itself since we identify
L2.˝;F ;PIRd/ and its dual. It is Lipschitz continuous if there exists a constant
C > 0 such that, for any identically distributed square integrable random variables
X and Y in L2.˝;F ;PIRd/, we have:

kDQu.X/ � DQu.Y/k2 6 CkX � Yk2:

Since the L-derivative of a function has the particular form given by Proposi-
tion 5.25, the Lipschitz property can be rewritten as:

E
�j@�u.PX/.X/ � @�u.PY/.Y/j2

	
6 C2

E
�jX � Yj2	; (5.43)

for any square integrable random variables X and Y in L2.˝;F ;PIRd/. Recall
that we use the notation PX instead of L.X/ when we want to emphasize the
probability P or we do not want to use too many parentheses in the formulas. From
our discussion of the construction of @�u, we know that for each �, @u.�/. � / is
only uniquely defined �-almost everywhere. However, the following result says that
under the above Lipschitz assumption, there exists a Lipschitz continuous version
of @u.�/. � /.
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Proposition 5.36 Assume that .v.�/. � //�2P2.Rd/ is a family of Borel-measurable
mappings from R

d into itself for which there exists a constant C such that,
for any identically distributed square integrable random variables � and � 0 in
L2.˝;F ;PIRd/ over an atomless probability space .˝;F ;P/, it holds:

E
�jv.P� /.�/ � v.P�0/.� 0/j2	 6 C2

E
�j� � � 0j2	: (5.44)

Then, for each � 2 P2.Rd/, one can redefine v.�/. � / on a �-negligible set in such
a way that:

8x; x0 2 R
d; jv.�/.x/ � v.�/.x0/j 6 Cjx � x0j;

for the same C as in (5.44).

Remark 5.37 Here, the atomless property is just used to guarantee the existence of
random variables with a prescribed distribution on any Polish space.

The proof of Proposition 5.36 is rather long and technical, so the reader mostly
interested in the practical applications of the notion of L-differentiability may
want to skip it in a first reading.

Proof.

First Step. We first consider the case of a bounded function v, and assume that � has
a strictly positive continuous density p on the whole R

d, p and its derivatives being of
exponential decay at infinity. We claim that there exists a continuously differentiable one-
to-one function U from .0; 1/d onto R

d such that, whenever �1; � � � ; �d are d independent
random variables uniformly distributed on .0; 1/, U.�1; � � � ; �d/ has distribution�. It satisfies
for any .z1; � � � ; zd/ 2 .0; 1/d:

@Ui

@zi
.z1; � � � ; zd/ 6D 0;

@Uj

@zi
.z1; � � � ; zd/ D 0; 1 6 i < j 6 d:

The result is well known when d D 1. In such a case, U is the inverse of the cumulative
distribution function of �. In higher dimension, U can be constructed by an induction
argument on the dimension. Assume indeed that some OU has been constructed for the first
marginal distribution O� of � on R

d�1, that is for the push-forward of � by the projection
mapping R

d 3 .x1; � � � ; xd/ 7! .x1; � � � ; xd�1/. Given .x1; � � � ; xd�1/ 2 R
d�1, we then denote

by p.�jx1; � � � ; xd�1/ the conditional density of � given the d � 1 first coordinates:

p.xdjx1; � � � ; xd�1/ D p.x1; � � � ; xd/

Op.x1; � � � ; xd�1/
; x1; � � � ; xd�1 2 R

d�1;

where Op denotes the density of O� (which is continuously differentiable and positive). We
then denote by .0; 1/ 3 zd 7! U.d/.zdjx1; � � � ; xd�1/ the inverse of the cumulative distribution
function of the law of density p. � jx1; � � � ; xd�1/. It satisfies:

Fd
�
U.d/.zdjx1; � � � ; xd�1/jx1; � � � ; xd�1

� D zd;
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with

Fd.xdjx1; � � � ; xd�1/ D
Z xd

�1

p.yjx1; � � � ; xd�1/dy;

which is continuously differentiable in .x1; � � � ; xd/ (using the exponential decay of the
density at infinity). By the implicit function theorem, the mapping:

R
d�1 � .0; 1/ 3 .x1; � � � ; xd�1; zd/ 7! U.d/.zdjx1; � � � ; xd�1/

is continuously differentiable. The partial derivative with respect to zd is given by:

@U.d/

@zd
.zdjx1; � � � ; xd�1/ D 1

p.U.d/.zdjx1; � � � ; xd�1/jx1; � � � ; xd�1/
;

which is nonzero. We now let:

U.z1; � � � ; zd/ D � OU.z1; � � � ; zd�1/;U
.d/.zdj OU.z1; � � � ; zd�1//

�
; z1; � � � ; zd 2 .0; 1/d:

By construction, U.�1; � � � ; �d/ has distribution �. Indeed, OU.�1; � � � ; �d�1/ has distribution
O� and the conditional law of Ud.�1; � � � ; �d/ given �1; � � � ; �d�1 is the conditional law of
� given the d � 1 first coordinates, since Ud.�1; � � � ; �d/ D U.d/.�dj OU.�1; � � � ; �d�1//. It
satisfies Œ@Ud=@zd�.z1; � � � ; zd/ > 0 and Œ@Ui=@zd� .z1; � � � ; zd/ D 0 for i < d. In particular,
since the induction assumption implies that OU is one-to-one and Œ@Ud=@zd�.z1; � � � ; zd/ > 0, U
must be one-to-one as well. As the Jacobian matrix of U is triangular with nonzero elements
on the diagonal, it is invertible. By the global inversion theorem, U is a diffeomorphism.
The range of U is the support of �, that is Rd . This proves that U is one-to-one from .0; 1/d

onto R
d.

Second Step. We still assume that v is bounded and � has a strictly positive continuous
density p on the whole R

d , p and its derivatives being of exponential decay at infinity. We
will use the mapping U constructed in the first step. For three random variables �, � 0 and G
in L2.˝;F ;PIRd/, the pair .�; � 0/ being independent of G, the random variables � and � 0

having the same distribution, and G being normally distributed with mean 0 and covariance
matrix given by the identity Id in dimension d, in notation G � Nd.0; Id/, then (5.44) implies
that, for any integer n > 1:

E
�jv�

P�Cn�1G

��
� C n�1G

� � v�
P�Cn�1G

��
� 0 C n�1G

�j2	 6 C2
E

�j� � � 0j2	:
In particular, setting:

vn.x/ D E
�
v
�
P�Cn�1G

��
x C n�1G

�	

D nd

.2�/d=2

Z

Rd
v
�
P�Cn�1G

�
.y/ exp

� � n2
jx � yj2
2

	
dy;

we have:

E
�jvn.�/ � vn.�

0/j2	 6 C2
E

�j� � � 0j2	: (5.45)

Notice that vn is infinitely differentiable with bounded derivatives.
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We now choose a specific coupling for � and � 0. Indeed, we know that, for any � D
.�1; � � � ; �d/ and �0 D .�0

1; � � � ; �0

d/, with uniform distributions on .0; 1/d, U.�/ and U.�0/

have the same distribution as �. Without any loss of generality, we may assume that the
probability space .˝;F ;P/ is given by .0; 1/d � R

d endowed with its Borel � -algebra and
the product of the Lebesgue measure on .0; 1/d and of the Gaussian measure Nd.0; Id/. The
random variables � and G are then chosen as the canonical mappings � W .0; 1/d � R

d 3
.z; y/ 7! z and G W .0; 1/d � R

d 3 .z; y/ 7! y.
We then define �0 as a function of the variable z 2 .0; 1/d only. For a given z0 D

.z01; � � � ; z0d/ 2 .0; 1/d and for h small enough so that the open ball B.z0; h/ of center z0

and radius h is included in .0; 1/d, we let:

�0.z/ D
(

z � 2.zd � z0d/ed if z 2 B.z0; h/;
z; outside;

where ed is the d-th vector of the canonical basis, that is �0 matches locally the symmetry
with respect to the hyperplane containing z0 and orthogonal to ed. Clearly, �0 preserves the
Lebesgue measure. With this particular choice, we rewrite (5.45) as:

Z

.0;1/d

ˇ̌
vn

�
U.�.z//

� � vn
�
U.�0.z//

�ˇ̌2
dz 6 C2

Z

.0;1/d

ˇ̌
U.�.z// � U.�0.z//

ˇ̌2
dz;

or equivalently:

Z

jrj<h

ˇ̌
vn

�
U

�
z0 C r � 2rded

�	 � vn
�
U.z0 C r/

�ˇ̌2
dr

6 C2

Z

jrj<h

ˇ̌
U

�
z0 C r � 2rded

� � U.z0 C r/
ˇ̌2

dr:

(5.46)

Since U is continuously differentiable, we have:

vn.U.z
0 C r// D vn.U.z

0//C @vn.U.z
0// � �

@U.z0/ � r
	 C o.r/;

where @U.z0/ is a d � d matrix. We deduce that:

vn
�
U

�
z0 C r � 2rded

�	 � vn.U.z
0 C r// D �2

dX

iD1

@vn

@xi
.U.z0//

@Ui

@zd
.z0/rd C o.r/

D �2@vn

@xd
.U.z0//

@Ud

@zd
.z0/rd C o.r/;

since @Ui=@zd D 0 for i 6D d, and

Z

jrj<h

ˇ̌
vn

�
U

�
z0 C r � 2rded

�	 � vn.U.z
0 � r//

ˇ̌2
dr

D 4
ˇ̌@vn

@xd
.U.z0//

@Ud

@zd
.z0/

ˇ̌2
Z

jrj<h
r2ddr C o.hdC2/:

(5.47)
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Similarly,

Z

jrj<h

ˇ̌
U.z0 C r � 2rded/� U.z0 C r/

ˇ̌2
dr D 4

ˇ̌@Ud

@zd
.z0/j2

Z

jrj<h
r2ddr C o.hdC2/; (5.48)

and putting together (5.46), (5.47) and (5.48), we obtain:

ˇ̌@vn

@xd
.U.z0//

@Ud

@zd
.z0/j2 6 C2

ˇ̌@Ud

@zd
.z0/j2:

Since Œ@Ud=@zd�.z0/ is different from zero, we deduce that:

ˇ̌@vn

@xd
.U.z0//j2 6 C2;

and since U is a one-to-one mapping from .0; 1/d onto R
d , and z0 2 .0; 1/d is arbitrary,

we conclude that jŒ@vn=@xd�.x/j 6 C, for any x 2 R
d. By changing the basis used for the

construction of U (we used the canonical basis but we could use any orthonormal basis as
well), we have jrvn.x/ej 6 C for any x; e 2 R

d with jej D 1. This proves that the functions
.vn/n>1 are uniformly bounded and C-Lipschitz continuous. We then denote by Ov the limit
of a subsequence converging for the topology of uniform convergence on compact subsets.
For simplicity, we keep the index n to denote the subsequence. Assumption (5.44) implies:

E
�jvn.�/ � v.P� /.�/j2

	
6 E

�jv.P�Cn�1G/.� C n�1G/ � v.P� /.�/j2
	

6 C2n�2;

and taking the limit n ! C1, we deduce that Ov and v. � ;P� / coincide P� almost everywhere.
This completes the proof when v is bounded and � has a continuous positive density p, p and
its derivatives being of exponential decay at infinity.

Third Step. When v is bounded and � is bounded and has a general distribution, we
approximate � by � C n�1G again. Then, � C n�1G has a positive continuous density, the
density and its derivatives being of Gaussian decay at infinity, so that, by the second step, the
function R

d 3 x 7! v.P�Cn�1G/.x/ can be assumed to be C-Lipschitz continuous for each
n > 1. Extracting a convergent subsequence and passing to the limit as above, we deduce
that v.P� /.�/ admits a C-Lipschitz continuous version.

When v is bounded and � is not assumed to be bounded, we approximate � by its
orthogonal projection on the ball of center 0 and radius n. We then complete the proof in
a similar way.

Finally when v is not bounded, we approximate v by . n.v//n>1 where, for each n > 1,
 n is a bounded smooth function from R into itself such that  n.r/ D r for r 2 Œ�n; n� and
jŒd n=dr�.r/j 6 1 for all r 2 R. Then, for each n > 1, there exists a C-Lipschitz continuous
version of  n.v.P� //.�/. Letting n tend to 1, we complete the proof. ut

Under the Lipschitz assumption (5.43) on the Fréchet derivative of the lifting
of u, we can use Proposition 5.36 in order to define @�u.�/.x/ for every � and
every x while preserving the Lipschitz property in the variable x. From now on,
whenever the derivative DQu is Lipschitz, we shall use such a version of @�u.�/.�/.
Importantly, observe that this version is uniquely defined on the support of � only.
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So, if �; � 2 P2.Rd/ and X and Y are random variables such that L.X/ D � and
L.Y/ D �, we have:

E
�j@�u.�/.X/ � @�u.�/.X/j2	

6 2


E

�j@�u.�/.X/ � @�u.�/.Y/j2	 C E
�j@�u.�/.Y/ � @�u.�/.X/j2	

�

6 4C2
E

�jY � Xj2	;

where we used the Lipschitz property (5.43) of the derivative together with the result
of Proposition 5.36 applied to the function @�u.�/. Now, taking the infimum over
all the couplings .X;Y/ with marginals � and �, we obtain:

inf
X;L.X/D�E

�j@�u.�/.X/ � @�u.�/.X/j2	 6 4C2W2.L.X/;L.Y//2;

and since the left-hand side depends only upon � and not on X as long as L.X/ D �,
we get:

E
�j@�u.�/.X/ � @�u.�/.X/j2	 6 4C2W2.�; �/

2: (5.49)

As a corollary, we claim a refinement of Proposition 5.33:

Corollary 5.38 Let u W P2.Rd/ ! R be L-differentiable, the Fréchet derivative
DQu of the lifting of u to L2.˝;F ;PIRd/ for an atomless Polish probability space
.˝;F ;P/ being Lipschitz.

Then for each � 2 P2.Rd/, we can find a Lipschitz version of @�u.�/.�/ W Rd !
R

d with a Lipschitz constant independent of � and such that @�u W P2.Rd/ � R
d 3

.�; x/ 7! @�u.�/.x/ is measurable and continuous at any point .�; x/ such that x
belongs to the support of �.

Proof. We already know that, for any � 2 P2.Rd/, we can find a Lipschitz version of
@�u.�/.�/. Whenever the support of � is the entire space R

d, this Lipschitz version is the
unique continuous version of @�u.�/.�/.
First Step. For any � 2 .0; 1�, we consider the function:

U� W P2.Rd/ � R
d 3 .�; x/ 7! U� .�; x/ D @�u

�
� � Nd.0; � Id/

�
.x/;

where as usual, Id is the d-dimensional identity matrix and Nd.0; � Id/ is the d-dimensional
Gaussian law with zero as mean and � Id as covariance matrix. We observe that U� is uniquely
defined and that, for any � 2 P2.Rd/, U� .�; �/ is Lipschitz continuous, uniformly in � and
� > 0. Moreover, for any � 2 P2.Rd/, any random variable X with � as distribution,
and any random variable G independent of X, with Nd.0; Id/ as distribution, X and G being
constructed on .˝;F ;P/, it holds that:

jU� .�; 0/j 6 CjX C �Gj C jU� .�;X C �G/j
D CjX C �Gj C jDQu.X C �G/j:



406 5 Spaces of Measures and Related Differential Calculus

Taking squares and then expectations, we deduce:

jU� .�; 0/j2 6 C


1C E

�jXj2	 C E
�jDQu.X C �G/j2	

�

6 C


1C E

�jXj2	 C E
�jDQu.0/j2	

�
;

the value of the constant C being allowed to increase from line to line, and where we used
the Lipschitz property of DQu in the last line. So for a constant C independent of � 2 .0; 1�,
we have:

jU� .�; 0/j2 6 C


1C �

M2.�/
�2�
:

We now claim that the mapping U� is jointly continuous. It suffices to observe that, for
a sequence .�n/n>0 converging to � 2 P2.Rd/, the family of mappings .U� .�n; �//n>0 is
uniformly continuous, the sequence .U� .�n; 0//n>0 being bounded. Therefore, the family of
functions .U� .�n; �//n>0 is relatively compact for the topology of uniform convergence on
compact subsets. Passing to the L2.˝;F ;PIRd/-limit in the identity:

DQu.Xn C �G/ D U� .�n;Xn C �G/;

where, for all n > 0, Xn � �n is independent of G, we deduce that any limit of .U� .�n; �//n>0
coincides with U� .�; �/. Joint continuity easily follows.

Second Step. We now let:

U.�; x/ D lim inf
n!1

U2�n
.�; x/; � 2 P2.Rd/; x 2 R

d;

the liminf being taken component by component. Clearly, U is jointly measurable on
P2.Rd/ � R

d. Moreover, since, for each � 2 .0; 1� and � 2 P2.Rd/, the function R
d 3

x 7! U� .�; x/ is C-Lipschitz continuous for a constant C independent of � and � , each
coordinate of U.�; �/ is also C-Lipschitz continuous. Hence, U.�; �/ is Lipschitz continuous,
uniformly in � 2 P2.Rd/. Similarly, U.�; 0/ is bounded, uniformly in �.

We now identify U.�; �/ with a version of @�u.�/.�/. Recall that, for any � > 0 and any
pair of independent random variables .X;G/, with X � � and G � Nd.0; � Id/, it holds that:

P
�
DQu.X C �G/ D U� .�;X C �G/

	 D 1:

Since DQu is C-Lipschitz continuous, we already know that :

��DQu�
X C 2�nG

� � DQu.X/��
2

6 2�nC;

so that, by a straightforward application of Borel Cantelli lemma, we get:

P
�

lim
n!1

DQu.X C 2�nG/ D DQu.X/	 D 1:

Moreover, the C-Lipschitz property of U� .�; �/ implies that we also have:

P
�

lim
n!1

jU2�n
.�;X C 2�nG/ � U2�n

.�;X/j	 D 1:
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Therefore:

P
�

lim inf
n!1

U2�n
.�;X C 2�nG/ D U.�;X/

	 D 1;

and finally:

P
�
DQu.X/ D U.�;X/

	 D 1:

Third Step. It remains to check that U is continuous at any .�; x/ such that x belongs to
the support of �. We thus consider such a pair .�; x/ together with a sequence .�n; xn/n>0
converging to .�; x/. By the same argument as in the first step, we may extract a subsequence
of .U.�n; �//n>0 converging for the topology of uniform convergence on compact subsets.
For simplicity, we still denote this sequence by .U.�n; �//n>0 and we call v.�/ its limit. Given
a sequence .Xn/n>0 of random variables converging to X in L2.˝;F ;PIRd/, with Xn � �n

and X � � (see for instance Subsection 5.3.1 for the construction), we can pass to the limit in:

P
�
DQu.Xn/ D U.�n;Xn/

	 D 1;

and exploiting the fact U.�n; �/ is Lipschitz continuous, uniformly in n, deduce that:

P
�
DQu.X/ D v.X/

	 D 1;

which proves that v coincides with U.�; �/ almost everywhere under �. Since both are
continuous, they must coincide on the support of �. In particular, for the same x as above,
v.x/ D U.�; x/. Since limn!1 U.�n; xn/ D v.x/, this completes the proof. ut

Finite Dimensional Projection
We will use the following consequence of estimate (5.49):

Proposition 5.39 Let u be an L-differentiable function on P2.Rd/ with a Lipschitz
derivative, and let � 2 P2.Rd/, x D .x1; � � � ; xN/ 2 .Rd/N and y D .y1; � � � ; yN/ 2
.Rd/N. Then, with the usual notation uN for the empirical projection of u (recall
Definition 5.35) and N�N

x for the empirical measure, we have:

@uN.x/ � .y � x/ D 1

N

NX

iD1
@�u.�/.xi/ � .yi � xi/

C O

�
W2. N�N

x ; �/

�
1

N

NX

iD1
jxi � yij2

�1=2�
;

the dot product in the left-hand side standing for the usual Euclidean inner product.
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Proof. Using Proposition 5.35, we get:

@uN.x/ � .y � x/

D
NX

iD1

@xi u
N.x/ � .yi � xi/

D 1

N

NX

iD1

@�u. N�N
x /.xi/ � .yi � xi/

D 1

N

NX

iD1

@�u.�/.xi/ � .yi � xi/C 1

N

NX

iD1

�
@�u. N�N

x /.xi/ � @�u.�/.xi/
	 � .yi � xi/;

where ‘�’ in the left-hand side is the inner product in R
dN , while ‘�’ in the right-hand side is

the inner product in R
d . Now, by Cauchy-Schwarz’ inequality,

ˇ̌
ˇ̌ 1
N

NX

iD1

Œ@�u. N�N
x /.xi/ � @�u.�/.xi/� � .yi � xi/

ˇ̌
ˇ̌

6
�
1

N

NX

iD1

j@�u. N�N
x /.xi/ � @�u.�/.xi/j2

�1=2�
1

N

NX

iD1

jyi � xij2
�1=2

D


E

�j@�u. N�N
x /.x#/ � @�u.�/.x#/j2

	�1=2� 1
N

NX

iD1

jyi � xij2
�1=2

6 2CW2. N�N
x ; �/

�
1

N

NX

iD1

jyi � xij2
�1=2

;

if we use the same notation for # as in the proof of Proposition 5.35, and apply the
estimate (5.49) with X D x# , � D N�N

x , and � D �. ut

Remark 5.40 We shall use the estimate of Proposition 5.39 with xi D Xi

when the Xi’s are independent Rd-valued random variables constructed on some
.˝;F ;P/ with common distribution �, in which case the empirical measure N�N

x
is the realization of the (random) empirical measure N�N of the (random) sample
X1; � � � ;XN. Whenever � 2 P2.Rd/, we know from Subsection 5.1.2 that:

P

h
lim

n!C1 W2. N�N ; �/ D 0
i

D 1;

and

lim
n!C1E

h
W2. N�N ; �/2

i
D 0:

Theorem 5.8 provides a sharp estimate of the rate of convergence whenever � 2
Pq.R

d/, namely when
R
Rd jxjq�.dx/ < 1 for some q > 4. This gives an intuitive

interpretation of the result of Proposition 5.39 which then says that, when N
is large, the gradient of the empirical projection uN computed at the empirical
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sample .Xi/16i6N is close to the sample .@�u.�/.Xi//16i6N, the accuracy of the
approximation being specified in the L2.˝;F ;PIRd/ norm by (5.20) when � is
sufficiently integrable.

5.3.4 Joint Differentiability

We often consider functions h W Rn � P2.Rd/ 3 .x; �/ 7! h.x; �/ 2 R depending
upon a point x in the n-dimensional Euclidean space R

n and a probability measure
� in P2.Rd/.

Joint Differentiability
The notion of joint differentiability is defined according to the same procedure as
before: h is said to be jointly differentiable if the lifting Qh W Rn � L2.˝;F ;PIRd/ 3
.x;X/ 7! h.x;PX/ over some atomless Polish probability space .˝;F ;P/ is jointly
differentiable. If Qh is continuously differentiable in the direction X, we can define the
partial derivatives in x and�. They read R

n�P2.Rd/ 3 .x; �/ 7! @xh.x; �/ and R
n�

P2.Rd/ 3 .x; �/ 7! @�h.x; �/.�/ 2 L2.Rd; �IRd/ respectively. By construction,
the partial Fréchet derivative of Qh in the direction X is given by the mapping
L2.˝;F ;PIRd/ 3 .x;X/ 7! DX Qh.x;X/ D @�h.x;PX/.X/ 2 L2.˝;F ;PIRd/.
The statement and the proof of Proposition 5.33 can be easily adapted to the joint
measurability of R

n � P2.Rd/ � R
d 3 .x; �; v/ 7! @�h.x; �/.v/. In order to

distinguish the variable x in h.x; �/ from the variable at which the derivative with
respect to � is computed, we shall often denote the latter by v.

A standard result from classical analysis which we often use says that joint
continuous differentiability in the two arguments is equivalent to the partial
differentiability in each of the two arguments together with the joint continuity
of the partial derivatives. Here, the joint continuity of @xh is understood as the
joint continuity with respect to the Euclidean distance on R

n and the Wasserstein
distance on P2.Rd/. The joint continuity of @�h needs to be understood as the joint
continuity of the mapping .x;X/ 7! @�h.x;PX/.X/ from R

n � L2.˝;F ;PIRd/ into
L2.˝;F ;PIRd/. The proof follows from the standard decomposition:

h.x0; �0/ � h.x; �/

D h.x0; �0/ � h.x; �0/C h.x; �0/ � h.x; �/

D
Z 1

0

@xh
�

x0 C .1 � 
/x; �0� � .x0 � x/ d


C
Z 1

0

E

h
@�h

�
x;L.
X0 C .1 � 
/X/��
X0 C .1 � 
/X� � .X0 � X/

i
d
;

for x; x0 2 R
d and �;�0 2 P2.Rd/, and X and X0 such that L.X/ D � and

L.X0/ D �0.
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Moreover, when the partial derivatives of Qh in X are Lipschitz continuous in X,
we can use the result of Proposition 5.36 which implies that, for any .x; �/, the
representation R

d 3 v 7! @�h.x; �/.v/ 2 R
d makes sense as a Lipschitz function

in v and that an appropriate version of (5.49) holds true. Moreover, we can adapt
Corollary 5.38 in the following way: If DX Qh is jointly continuous and the Lipschitz
constant of DX Qh in X is uniform with respect to x in compact subsets of Rn, then,
for each .x; �/ 2 R

n � P2.Rd/, we can find a Lipschitz continuous version of
R

d 3 v 7! @�h.x; �/.v/ 2 R
d such that the mapping R

n � P2.Rd/ � R
d 3

.x; �; v/ 7! @�h.x; �/.v/ is measurable and is continuous at any point .x; �; v/
such that v belongs to the support of �.

Fully Continuous Derivatives
It is sometimes convenient to have, for any .x; �/ 2 R

n � P2.Rd/, a version of
R

d 3 v 7! @�h.x; �/.v/ 2 R
d such that the global map R

n � P2.Rd/ � R
d 3

.x; �; v/ 7! @�h.x; �/.v/ is, not only continuous at any point .x; �; v/ such that v
belongs to the support of �, but is everywhere continuous. Whenever it exists, such
a version will be said to be fully regular.

We here provide a simple criterion that ensures the existence of such a fully
regular version:

Lemma 5.41 Let .u.x; �/.�//x2Rn;�2P2.Rd/ be a collection of real-valued functions
satisfying, for all x 2 R

n and� 2 P2.Rd/, u.x; �/.�/ 2 L1.Rd; �IR/, and for which
there exists a constant C such that, for all x; x0 2 R

n, and �; � 0; � 2 L2.˝;F ;PIRd/,

E
��

u.x;L.�//.�/ � u.x0;L.� 0//.� 0/
�
�

	

6 C
h
k�k1

�jx � x0j C k� � � 0k1
� C E

�j� � � 0j j�j	
i
;

where .˝;F ;P/ is an atomless probability space. Then, for each .x; �/ 2 R
n �

P2.Rd/, we can find a version of u.x; �/.�/ 2 L1.Rd; �IR/ such that, for the same
constant C as above, for all x; x0 2 R

n, �;�0 2 P2.Rd/ and v; v0 2 R
d,

ˇ̌
u.x; �/.v/ � u.x0; �0/.v0/

ˇ̌
6 C

�jx � x0j C W1.�; �
0/C jv � v0j�:

Remark 5.42 Observe that, differently from what we have done so far, we here use
the L1 norm instead of the L2 norm, and the 1-Wasserstein distance W1 instead of
the 2-Wasserstein distance W2, in order to characterize continuity with respect to
the measure argument. Of course, this is more demanding. This choice is dictated
by the argument used below for exhibiting a fully regular version of U , which is
based on the duality between L1 and L1.

Notice also that, although u.x; �/.�/ 2 L1.Rd; �IR/, we do not claim that the
version provided by the statement is bounded on the whole R

d.

Proof. As a preliminary remark, notice that from the main assumption in the statement, the
map R

d � L2.˝;F ;PIRd/ 3 .x; �/ 7! u.x;L.�//.�/ 2 L2.˝;F ;PIRd/ is continuous.
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First Step. Consider x; x0 2 R
n and �; � 0 2 L2.˝;F ;PIRd/. Observe that from the regularity

assumption, with probability 1 under P,

ˇ̌
u
�
x;L.�/

�
.�/ � u

�
x0;L.� 0/

�
.� 0/

ˇ̌
6 C

�jx � x0j C k� � � 0k1 C j� � � 0j�:

In particular, for a Gaussian random variable Z � Nd.0; Id/, Z being independent of .�; � 0/,
it holds, for any integer p > 1,

ˇ̌
u
�
x;L.� C 1

p Z/
�
.� C 1

p Z/ � u
�
x0;L.� 0 C 1

p Z/
�
.� 0 C 1

p Z/
ˇ̌

6 C
�jx � x0j C k� � � 0k1 C j� � � 0j�:

Integrating with respect to Z only, we get

ˇ̌
ˇ̌
Z

Rd
u
�
x;L.� C 1

p Z/
�
.� C 1

p z/'d.z/dz �
Z

Rd
u
�
x0;L.� 0 C 1

p Z/
�
.� 0 C 1

p z/'d.z/dz

ˇ̌
ˇ̌

6 C
�jx � x0j C k� � � 0k1 C j� � � 0j�:

Observe that the integrals in the left-hand side are well defined: Since L.�C 1
p Z/ has a positive

density, u.x;L.� C 1
p Z//.�/ 2 L1.Rd;LebdIR/, and similarly for the second integral.

Letting, for all x 2 R
n, � 2 P2.Rd/ and v 2 R

d,

up.x; �/.v/ D
Z

Rd
u
�
x; � � .Nd.0;

1
p2

Id//
�
.v C 1

p z/'d.z/dz;

we get that up.x; �/.�/ is continuous and satisfies, for all x; x0 in R
n and �; � 0 in

L2.˝;F ;PIRd/, with probability 1 under P,

ˇ̌
up

�
x;L.�/

�
.�/ � up

�
x;L.� 0/

�
.� 0/

ˇ̌
6 C

�jx � x0j C k� � � 0k1 C j� � � 0j�: (5.50)

Second Step. We now consider�;�0 2 P2.Rd/ such that both have a strictly positive smooth
density that decays at least exponentially fast at the infinity and whose derivative also decays
at least exponentially fact at infinity. We let � be an optimal coupling between � and �0 for
the 1-Wasserstein distance, that is

W1.�; �
0/ D

Z

Rd
�Rd

jv � v0jd�.v; v0/;

and we let .�; � 0/ be a pair of random variables with � as distribution.
Following the proof of Proposition 5.36, we can find two continuous mappings  W

.0; 1/d ! R
d and  0 W .0; 1/d ! R

d such that, for any random variable � with uniform
distribution on .0; 1/d, it holds that  .�/ � � and  0.�/ � �0. Importantly, both  and  0

are one-to-one from .0; 1/d onto R
d.

Therefore, for given values of v; v0 in R
d, we can find y0; y0

0 2 .0; 1/d such that:

v D  .y0/; v0 D  .y0

0/:
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Then, for a given random variable � with uniform distribution on .0; 1/d and for ı > 0 such
that B.y0; ı/ � .0; 1/d and B.y0

0; ı/ � .0; 1/d, where B.y0; ı/ denotes the d-dimensional open
ball of center y0 and of radius ı, we let:

�0 D

8
ˆ̂<

ˆ̂:

� if � 62 B.y0; ı/ [ B.y0

0; ı/;

�C y0

0 � y0 if � 2 B.y0; ı/;

�C y0 � y0

0 if � 2 B.y0

0; ı/:

Then, �0 is also uniformly distributed on .0; 1/d.
Without any loss of generality, we may assume that .�; � 0/ is independent of �, and thus

of .�; �0/. We then let N� D  .�/ and N� 0 D  0.�0/.

Third Step. We now consider a Bernoulli random variable " with parameter q 2 .0; 1/,
independent of .�; � 0; �/. We let:

�" D "� C .1 � "/ N�; �";0 D "� 0 C .1 � "/ N� 0:

Clearly, �" and �";0 have � and �0 as respective distributions. Taking advantage of the
conclusion of the first step, we deduce that, with probability 1 under P,

ˇ̌
up.x; �/.�

"/ � up.x
0; �0/.�";0/

ˇ̌
6 C

�jx � x0j C k�" � �";0k1 C j�" � �";0j�:

In particular, almost surely on the event f" D 0g \ f� 2 B.x0; ı/g,

ˇ̌
up.x; �/

�
 .�/

� � up.x
0; �0/

�
 0.�C y0

0 � y0/
�ˇ̌

6 C
�jx � x0j C k�" � �";0k1 C j .�/ �  0.�C y0

0 � y0/j
�
:

Therefore, we can find a sequence .ym/m>1 converging toward y0 such that:

ˇ̌
up.x; �/

�
 .ym/

� � up.x
0; �0/

�
 0.ym C y0

0 � y0/
�ˇ̌

6 C
�jx � x0j C k�" � �";0k1 C j .ym/ �  0.ym C y0

0 � y0/j
�
:

By continuity of up.x; �/.�/ and up.x; �0/.�/ and of  and  0, we get, by letting m tend to 1,

ˇ̌
up.x; �/.v/ � up.x; �

0/.v0/
ˇ̌

6 C
�jx � x0j C k�" � �";0k1 C jv � v0j�;

where we used the fact that  .y0/ D v and  0.y0

0/ D v0.
Letting the parameter q of " tend to 1 and recalling the choice of .�; � 0/, we deduce that:

ˇ̌
up.x; �/.v/ � up.x

0; �0/.v0/
ˇ̌

6 C
�jx � x0j C W1.�; �

0/C jv � v0j�: (5.51)

Inequality (5.51) holds true for probability measures�;�0 that have a strictly positive smooth
density that decays at least exponentially fast at infinity and whose derivative also decays
at least exponentially fast at infinity. Since the set of such smooth probability measures
is dense in P2.Rd/, we deduce that the restriction of up to smooth probability measures
extends by continuity to the whole R

n � P2.Rd/ � R
d. Of course, the continuous extension,



5.3 Regularity Properties of the L-Differentials 413

denoted by Nup, satisfies (5.51). By (5.50), for any .x; �/ 2 R
n � L2.˝;F ;PIRd/, it holds

that PŒup.x;L.�//.�/ D Nup.x;L.�//.�/� D 1. Since up.x;L.�//.�/ and Nup.x;L.�//.�/ are
continuous, we deduce that, for any � 2 P2.Rd/, Nup.x; �/.v/ coincides with up.x; �/.v/
when v belongs to the support of �. Put differently, Nup.x; �/.�/ provides a version of
up.x; �/.�/ in L1.Rd; �IR/.
Fourth Step. Actually, inequality (5.51) shows that Nup extends to the whole Rn�P1.Rd/�R

d ,
the extension still satisfying (5.51). The extension is at most of linear growth:

jNup.x; �/.v/j 6 jNup.0; ı0/.0/j C C
�jxj C M1.�/C jvj�:

Since up.0; ı0/.0/ D EŒu.0; 1p Z/. 1p Z/� and since the map R
d � L2.˝;F ;PIRd/ 3 .x; �/ 7!

u.x;L.�//.�/ 2 L2.˝;F ;PIRd/ is continuous, we deduce that the sequence .Nup.0; ı0/.0/ D
up.0; ı0/.0//p>1 is bounded, which shows that the functions .Nup/p>1 are uniformly at most
of linear growth.

Recalling that any bounded subset of P2.Rd/ is a compact subset of P1.Rd/, we deduce
from the Arzelà-Ascoli theorem that there exists a subsequence, still denoted by .Nup/p>1, that
converges uniformly on any bounded subset of Rn � P2.Rd/ � R

d.
It remains to identify the limit of Nup.x; �/.�/ with a version of u.x; �/.�/ in L1.Rd; �IR/.

This follows from the fact that, for any bounded and measurable function g W Rd ! R,

E
�Nup

�
x;L.�/

�
.�/g.�/

	 D E
�
u
�
x;L.� C 1

p Z/
�
.� C 1

p Z/g.�/
	
;

which implies that:

lim
p!1

E
�Nup

�
x;L.�/

�
.�/g.�/

	 D E
�
u
�
x;L.�/

�
.�/g.�/

	
;

where we used the first inequality in the statement of Lemma 5.41. ut

Other Forms of Joint Regularity of the Derivative
We shall need other forms of joint regularity of @�h. Observe for instance that,
whenever Qh W Rn � L2.˝;F ;PIRd/ 3 X 7! h.x;PX/ is Fréchet differentiable we
have:

lim
�&0

sup
kYk2 6 1

ˇ̌
ˇ
1

�


Qh.x;X C �Y/ � Qh.x;X/
�

� DX Qh.x;X/ � Y
ˇ̌
ˇ D 0:

So, if h is jointly measurable on R
n �P2.Rd/, then, for any Z 2 L2.˝;F ;PIRd/, the

mapping R
n�ŒL2.˝;F ;PIRd/�2 3 .x;X;Y/ 7! EŒ.DX Qh.x;X/�Z/�Y� is measurable

and the mapping R
n � L2.˝;F ;PIRd/ 3 .x;X/ 7! EŒ.DX Qh.x;X/� Z/ � .X;Z/� is

also measurable for any bounded and continuous function  from .Rd/2 into R
d. If

Q is a dense countable subset of the space of continuous functions from .Rd/2 ! R
d

converging to 0 at infinity, we see that:

R
n � L2.˝;F ;PIRd/ 3 .x;X/

7! sup
 2Q

n
E

��
DX Qh.x;X/ � Z

� �  .X;Z/	1fk .X;Z/k2 6 1g
o
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is also measurable. Recalling that DX Qh.x;X/ belongs to L2.˝; �fXg;PIRd/, we
deduce that the right-hand side is exactly kDX Qh.x;X/ � Zk2. This proves that
R

n � L2.˝;F ;PIRd/ 3 .x;X/ 7! DX Qh.x;X/ is measurable when L2.˝;F ;PIRd/

is separable, since the Borel � -field of L2.˝;F ;PIRd/ is then generated by a
countable collection of balls. The space L2.˝;F ;PIRd/ is separable when F is
a countably generated � -field or the completion of a countably generated � -field.
When Qh is continuously differentiable in the direction X, DX Qh may be represented by
means of @�h and the mapping R

n�L2.˝;F ;PIRd/ 3 .x;X/ 7! @�h.x;L.X//.X/ 2
L2.˝;F ;PIRd/ is measurable when L2.˝;F ;PIRd/ is separable.

Continuity may be addressed by using the same procedure. For instance, if � W
R

n �P2.Rd/�R
d 3 .x; �; v/ 7! �.x; �; v/ 2 R is continuous at any point .x; �; v/

such that v 2 Supp.�/ and satisfies:

sup
.x;�/2K

Z

Rd
j�.x; �; v/j2d�.v/ < 1;

for any compact subset K � R
n � P2.Rd/, with �.x; �; �/ W R

d 3 v 7!
�.x; �; v/ being measurable, then the function R

n � L2.˝;F ;PIR/ 3 .x;X/ 7!
�.x;L.X/;X/ 2 Lp.˝;F ;PIR/ is continuous when p 2 Œ1; 2/ and is measurable
when p D 2. It is continuous when p D 2 if we assume further that, for any compact
subset K � R

n � P2.Rd/,

lim
a!1 sup

.x;�/2K

Z

Rd
j�.x; �; v/j21j�.x;�;v/j > ad�.v/ D 0:

The proof is quite simple. It follows from the fact that, whenever a sequence
.x`;X`/`>1 converges to some .x;X/ in R

n � L2.˝;F ;PIRd/, then the sequence
.�.x`;L.X`/;X`//`>1 converges to �.x;L.X/;X/ in probability and the proof is
completed using uniform integrability. When p D 2 and continuity does not hold,
the measurability may be proved by approximating � by .�` ı �/`>1 where, for
each ` > 1, �` W R ! R is a bounded and continuous function satisfying �`.x/ D x
for jxj 6 ` and j�`.x/j 6 ` for all x 2 R

d.

5.4 Comparisons with Other Notions of Differentiability

We argued repeatedly that the notion of L-differentiability was natural in the context
of functions of probability measures appearing as the distributions of random
variables which needed to be perturbed. More convincing arguments will come
with the discussions of applications in which we need to track the dependence
with respect to the marginal distributions of a stochastic dynamical system. See
for example Section 5.6 later in this chapter or Chapter 6.
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This being said, L-differentiability may not appear as the most intuitive notion,
especially from a geometric analysis perspective. The goal of this section is to
enlighten the reader as to the relationships between L-differentiability and some
of the more traditional approaches which have been advocated in similar contexts,
and especially in the theory of optimal transportation.

5.4.1 Smooth Functions of Measures

Natural generalizations of multivariate calculus suggest that differential calculus
should be easily set up in a vector space. Fréchet’s theory of differentiable functions
on an open subset of a Banach space is a case in point. Notice that the notion of
L-differentiability is based on an attempt to provide such a vector space structure
by lifting functions of probability measures to a flat vector space away from the
space P2.Rd/. Typically, the lifting lives on a Hilbert space represented as an
L2-space, on which differential calculus can be handled with standard Fréchet’s
theory. However, since the space of probability measures, say P2.Rd/ for the sake of
definiteness, is a rather thin manifold in the vector space of measures, it is tempting
to work with functions u defined on an open neighborhood of P2.Rd/, say in the
linear space of finite measures for instance, and use a form of linear differential
calculus on this open set. It is instructive to compare this notion of differentiability
to L-differentiability.

Linear Functional Derivative
We refrain from dwelling on the exact topological structure put on the space of finite
measures. Instead, we start with a rather informal definition of a smooth function on
the space M.Rd/ of finite measures on R

d. We would like to say that a function
u W M.Rd/ ! R is smooth if there exists a function:

ıu

ım
W M.Rd/ � R

d ! R

such that, for every measures m and m0 in M.Rd/, it holds:

u.m0/ � u.m/ D
Z 1

0

Z

Rd

ıu

ım

�
tm0 C .1 � t/m

�
.x/dŒm0 � m�.x/ dt; (5.52)

with Œıu=ım�.tm0 C .1 � t/m/.�/ being close to Œıu=ım�.m/.�/ as m0 gets close to m
in a suitable sense. The function Œıu=ım�.m/.�/ should be understood as the Fréchet
or Gâteaux derivative of u at m, but for the sake of definiteness we shall call it the
(linear) functional derivative of u with respect to the measure m.

Stated in this way, the definition is not genuine as nothing is said of the well
posedness of the right-hand side in (5.52), neither on the topologies needed to quan-
tify the proximity of m0 and m, and subsequently Œıu=ım�.m0/.�/ and Œıu=ım�.m/.�/.
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Nevertheless, formula (5.52) is quite appealing. Whenever m and m0 are elements
of P2.Rd/, the derivative Œıu=ım� is evaluated at measures .tm0 C .1 � t/m/06t61,
which are also probability measures. This suggests how we could define the linear
functional derivative of a function u defined only on P2.Rd/ as opposed to a
neighborhood of the space of probability measures.

Definition 5.43 A function u W P2.Rd/ ! R is said to have a linear functional
derivative if there exists a function:

ıu

ım
W P2.Rd/ � R

d 3 .m; x/ 7! ıu

ım
.m/.x/ 2 R;

continuous for the product topology, P2.Rd/ being equipped with the 2-Wasserstein
distance, such that, for any bounded subset K � P2.Rd/, the function R

d 3 x 7!
Œıu=ım�.m/.x/ is at most of quadratic growth in x uniformly in m for m 2 K, and
such that for all m and m0 in P2.Rd/, it holds:

u.m0/ � u.m/ D
Z 1

0

Z

Rd

ıu

ım

�
tm0 C .1 � t/m

�
.x/dŒm0 � m�.x/ dt: (5.53)

The assumption in Definition 5.43 is tailor-made to guarantee the well posedness
of the right-hand side of (5.53). It also ensures that for any m 2 P2.Rd/,

lim
m0!m

Z

Rd

h ıu
ım

�
tm0 C .1 � t/m

�
.x/ � ıu

ım
.m/.x/

i
d
�
m0 � m

	
.x/ D 0;

which may be proved by writing:

Z

Rd

h ıu
ım

�
tm0 C .1 � t/m

�
.x/

i
dm0.x/ D E

h ıu
ım

�
tm0 C .1 � t/m

�
.X0/

i
;

for a random variable X0 � m0 and then by letting X0 ! X in L2.˝;F ;PIRd/, with
X � m, which is possible thanks to the Skorohod representation theorem provided
that .˝;F ;P/ is chosen accordingly. See Subsection 5.3.1. The convergence
follows from the continuity of Œıu=ım� together with a domination argument and
the fact that W2.tm0 C .1� t/m;m/ ! 0 as m0 tends towards m. In particular, u must
be continuous on P2.Rd/.

We can provide a first-order expansion of u.m0/ as m0 tends to m under extra
assumptions on Œıu=ım�.

Proposition 5.44 Let u have a linear functional derivative in the sense of Defi-
nition 5.43. Assume further that, for any m 2 P2.Rd/, the function R

d 3 x 7!
Œıu=ım�.m/.x/ is differentiable and the derivative
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P2.Rd/ � R
d 3 .m; x/ 7! @x

h ıu
ım

i
.m/.x/ 2 R

d

is jointly continuous in .m; x/ and is at most of linear growth in x, uniformly in
m 2 K for any bounded subset K � P2.Rd/.

Then, for any m 2 P2.Rd/, we can find a function " W RC ! RC such that
limr&0 ".r/ D 0 and for all m0 2 P2.Rd/,

u.m0/ � u.m/ D
Z

Rd

ıu

ım

�
m

�
.x/dŒm0 � m�.x/C o

�
W2.m;m

0/
�
; (5.54)

where o.W2.m;m0// is a term depending on m and m0 and satisfying
jo.W2.m;m0//j � ".W2.m;m0//W2.m;m0/.

Clearly, (5.54) is reminiscent of the notion of Fréchet derivative.

Proof. We write:

u.m0/ � u.m/ D
Z

Rd

ıu

ım
.m/.x/dŒm0 � m�.x/

C
Z 1

0

Z

Rd

h ıu
ım

�
tm0 C .1 � t/m

�
.x/ � ıu

ım
.m/.x/

i
dŒm0 � m�.x/ dt:

Denoting by � an optimal transport plan from m to m0, we have:

u.m0/ � u.m/

D
Z

Rd

ıu

ım
.m/.x/dŒm0 � m�.x/

C
Z 1

0

Z

Rd
�Rd

h
 ıu
ım

�
tm0 C .1 � t/m

�
.y/ � ıu

ım
.m/.y/

�

�

 ıu
ım

�
tm0 C .1 � t/m

�
.x/ � ıu

ım
.m/.x/

�i
d�.x; y/ dt

D
Z

Rd

ıu

ım
.m/.x/dŒm0 � m�.x/

C
Z 1

0

Z 1

0

Z

Rd
�Rd

h

@x
ıu

ım

�
tm0 C .1 � t/m

��

y C .1 � 
/x�

� @x
ıu

ım
.m/

�

y C .1 � 
/x�� � .y � x/

i
d�.x; y/ d
 dt:

In order to complete the proof, it suffices to show that the last term in the above right-hand
side is o.W2.m0;m// as W2.m0;m/ ! 0 while m is fixed. Invoking Lemma 5.30 and letting,
with the same notation as in the statement, ".r/ D supf#.�/g, the supremum being taken
over the probability measures � 2 P2..Rd/2/ having m as first marginal on R

d and satisfyingR
.Rd/2

jx � yj2d�.x; y/ � r2, we just have to prove that:
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lim
X0

!X

Z 1

0

Z 1

0

E

�

@x
ıu

ım

�
tm0 C .1 � t/m

��

X0 C .1 � 
/X�

� @x
ıu

ım
.m/

�

X0 C .1 � 
/X�� � X0 � X

kX0 � Xk2
�

d
dt D 0;

the convergence of X0 to X being understood in L2.˝;F ;PIRd/, for some well-chosen
probability space .˝;F ;P/, with the convention that X0 � m0 and that X � m. The above
limit follows from the growth and continuity properties of @xŒıu=ım� by the same argument
as that used to handle Examples 1 and 3 in Subsection 5.2.2. ut

Remark 5.45 In order to distinguish the functional derivative ıu=ım from the
L-derivative @�u, we use the letter ı instead of @ for the differential symbol.
Moreover, we use the letter m instead of � for the measure argument.

Remark 5.46 Formulas (5.53) and (5.54) only involve integrals with respect to the
measure m0 � m. As a result, any constant can be added to ıu=ım without affecting
either of these formulas as long as the measures m and m0 have the same total mass.
Consequently, ıu=ım is only defined up to an additive constant.

Remark 5.47 Observe also that if there exists a continuous function Œıu=ım� which
is at most of quadratic growth in x uniformly in m for m in a bounded subset of
P2.Rd/ and for which the conclusion (5.54) of Proposition 5.44 holds true, then u
has Œıu=ım� as linear functional derivative. This follows from the fact that, for any
two m;m0 2 P2.Rd/, under (5.54), the mapping Œ0; 1� 3 t 7! u.m C t.m0 � m// is
differentiable with

d

dt

�
u
�
m C t.m0 � m/

�	 D
Z

Rd

ıu

ım

�
m C t.m0 � m/

�
.x/d

�
m0 � m

	
.x/; t 2 Œ0; 1�;

the right-hand side being continuous in t.

Connection with the L-Derivative
The purpose of the present discussion is to relate the linear functional derivative to
the L-derivative whenever they both exist. As one can expect by now, we shall make
systematic use of the lifting:

Qu W L2.˝;F ;PIRd/ 3 X 7! u
�L.X/�;

where .˝;F ;P/ is an atomless Polish probability space.
If u has a linear functional derivative in the sense of Definition 5.43, if X and Y

are Rd-valued square integrable random variables, and if we denote by Qu a lifting of
u to the space on which X and Y are defined, we have:
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Qu.X C �Y/ � Qu.X/ D u
�L.X C �Y/

� � u
�L.X/�

D
Z 1

0

� Z

Rd

ıu

ım

�L�.t/�.x/ d
�L.X C �Y/ � L.X/	.x/

�
dt

D
Z 1

0

E

�
ıu

ım

�L�.t/�.X C �Y/ � ıu

ım

�L�.t/�.X/
�

dt;

where we used the notation L�.t/ for tL.X C �Y/ C .1 � t/L.X/. Furthermore, if
we assume that the function u satisfies the assumption of Proposition 5.44, then,
following the proof of (5.54), we have for kYk2 6 1:

Qu.X C �Y/ � Qu.X/

D �

Z 1

0

E

� Z 1

0

h
@x
ıu

ım

�L�.t/�.X C �
Y/ � Y
i
d


�
dt

D �E
h
@x
ıu

ım

�L0.t/�.X/ � Y
i

C �

Z 1

0

E

� Z 1

0

h

@x
ıu

ım

�L�.t/�.X C �
Y/ � @x
ıu

ım

�L0.t/�.X/
�

� Y
i
d


�
dt

D �E
h
@x
ıu

ım

�L.X/�.X/ � Y
i

C o.�/; (5.55)

where the Landau notation o.�/ in the last line is uniform with respect to Y 2
L2.˝;F ;PIRd/ with kYk2 6 1. This shows that the lifting Qu is Fréchet differ-
entiable at X and that its Fréchet derivative is given by:

DQu W L2.˝;F ;PIRd/ 3 X 7! @x
ıu

ım

�L.X/�.X/;

which is continuous because of the continuity and growth properties of @xŒıu=ım�.
We state the above result in a proposition for later reference.

Proposition 5.48 Under the assumptions of Proposition 5.44, the function u is
L-differentiable and

@�u.�/. � / D @x
ıu

ım
.�/. � /; � 2 P2.Rd/:

Remark 5.49 The above derivation has the following enlightening interpretation.
If a smooth extension of u to the space of measures exists, the L-derivative of u at
� 2 P2.Rd/, when viewed as a function on R

d, is the derivative (gradient) of the
(Fréchet or Gâteaux) derivative of u when considered as a function on the vector
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space of signed measures. This general fact was already encountered with our first
example of an L-derivative computation. The fact that the L-derivative, when viewed
as a function from R

d into itself, appears to be the gradient of a scalar function will
be argued rigorously in a more general setting in Proposition 5.50 below.

5.4.2 From the L-Derivative to the Functional Derivative

While we showed in the previous subsection how to reconstruct the L-derivative
from the functional derivative, we now attempt to recover the linear functional
derivative from the L-derivative.

The L-Derivative as a Gradient
In order to shed more light on the comparison with functional derivatives, we prove
that L-derivatives are typically given by gradients of scalar functions on R

d.

Proposition 5.50 If the scalar function u is L-differentiable on P2.Rd/ and the
Fréchet derivative of its lifting is uniformly Lipschitz, then for each � 2 P2.Rd/,
we can find a continuous version of @�u.�/.�/ which, when viewed as a function
from R

d into itself, is the gradient of a scalar-valued continuously differentiable
function p�. When p� is chosen to be 0 at 0, it may be expressed as:

p�.x/ D
Z 1

0

@�u.�/.tx/ � xdt; x 2 R
d: (5.56)

Proof.

First Step. We use the fact that, if a locally square-integrable vector field f W Rd ! R
d is

such that
R
Rd f .x/ � b.x/dx D 0 for every smooth divergence free vector field b with compact

support, then there exists a locally square-integrable function p W Rd ! R such that:

f D rp;

in the sense of distributions. See Remark 1.9 in Temam’s book [331]. We show that whenever
f is continuous, p must be continuously differentiable. Consider indeed a sequence of
mollifiers .�"/">0 with compact support. Then, for all " > 0,

f � �" D r�
p � �"�;

where we used the symbol � to denote convolution. Since both sides of the equality are
smooth, we have:

8x 2 R
d;

�
p � �"�.x/ D �

p � �"�.0/C
Z 1

0

h�
f � �"�.tx/ � x

i
dt: (5.57)

Since f is continuous, the right-hand side is continuous in x, uniformly in " > 0 on any
compact subset of Rd. This shows that the functions .Rd 3 x 7! p � �".x/� p � �".0//">0 are



5.4 Comparisons with Other Notions of Differentiability 421

equicontinuous on compact sets. Therefore, the family .Rd 3 x 7! p � �".x/ � p � �".0//">0
is relatively compact for the topology of uniform convergence on compact subsets of Rd. We
call Qp a limit. Similarly,

8x; y 2 R
d;

�
p � �"�.y/ D �

p � �"�.x/C
Z 1

0

h�
f � �"��ty C .1 � t/x

� � .y � x/
i
dt:

Letting " tend to 0, we get:

8x; y 2 R
d; Qp.y/ D Qp.x/C

Z 1

0

h
f
�
ty C .1 � t/x

� � .y � x/
i
dt;

which proves that Qp is differentiable and that f is its gradient.

Second Step. Let m 2 P2.Rd/ be fixed and choose an arbitrary smooth divergence free
vector field b with a compact support. For every � > 0, we define m� D m � '� where
'� denotes the density of the Gaussian distribution with mean 0 and variance �2Id. As
defined, m� is a smooth function which is strictly positive everywhere and, in particular,
bounded below by a strictly positive constant on the support of b. Consequently, the ordinary
differential equation:

PX�t D b

m�

.X�t /; t > 0;

has a unique solution for every initial condition, and the measure m�.dx/ D m�.x/dx is
invariant for this dynamical system, as b is divergence free. The fact that we use the same
notation m� for a measure and its density should not be a source of confusion. In any case,
L.X�t / D L.X�0/ if L.X�0/ D m� . Note that the randomness in X� comes from the initial
condition only. Consequently,

0 D 1

t

�
u
�
L.X�t /

� � u
�
L.X�0/

�	

D 1

t

�Qu�
X�t

� � Qu�
X�0

�	

D 1

t
DQu.X�0/ � .X�t � X�0/C 1

t
o
�kX�t � X�0k2

�

D E
�
@�u.m�/.X

�
0/ � b

m�

.X�0/
	 C o.1/;

where limt&0 o.1/ D 0. Taking the limit t & 0, we get:

Z

Rd
@�u.m�/.x/ � b.x/ dx D 0: (5.58)

We can now take the limit � & 0 in the above equality and get the desired result. Recall
that Proposition 5.36 and Corollary 5.38 guarantee the existence, for every � 2 P2.Rd/, of a
version x 7! @�u.�/.x/ of the L-derivative such that x 7! @�u.�/.x/ is Lipschitz continuous
with a constant independent of � and such that j@�u.�/.0/j 6 c.1C M2.�// for a constant
c independent of �. So, the family .@�u.m�/. � //�>0 is uniformly continuous on compact
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subsets of Rd, and we can extract a subsequence which converges uniformly on compact sets
toward a function providing a version of @�u.m/.�/. Since this limit satisfies (5.58) for every
b, it is a gradient.

Third Step. Since the version constructed in the second step is continuous, we deduce from
the first step that its potential p� is continuously differentiable. By choosing the version of
p� which vanishes at 0 and by taking the limit in (5.57), we prove that the representation
formula (5.56) holds. ut

Recovering the Linear Functional Derivative
We now show how to recover the linear functional derivative from the L-derivative
of a function of measures.

Proposition 5.51 Assume that the scalar function u is L-differentiable on P2.Rd/

and that the Fréchet derivative of its lifting is uniformly Lipschitz. Assume also that,
for each � 2 P2.Rd/, we can find a version of R

d 3 x 7! @�u.�/.x/ such that
the mapping R

d � P2.Rd/ 3 .x; �/ 7! @�u.�/.x/ is continuous. Then, the function
u has a linear functional derivative, which satisfies the fundamental relationship
in the statement of Proposition 5.48. Moreover, the conclusion of Proposition 5.44
holds.

Proof.

First Step. The goal is to check that we can write u as in Definition 5.43, with Œıu=ım� being
equal to the version of the potential constructed in Proposition 5.50.

We thus consider two square-integrable random variables X and Y together with U a third
random variable assumed to be uniform on the segment Œ0; 1� and independent of .X; Y/.
As usual, we work on an atomless Polish probability space .˝;F ;P/. We also denote by
˚ (resp. ') the cumulative distribution (resp. density) function of the univariate standard
normal distribution N.0; 1/. Given two parameters � > 0 and t 2 .0; 1/, we let:

� t;� D ˚
� t � U

�

�
Y C �

1 � ˚� t � U

�

�	
X:

This definition was chosen so that, as � tends to 0, � t;� tends almost surely toward:

� t;0 D 1fU<tgY C 1fU>tgX;

which has tL.Y/C .1 � t/L.X/ as distribution.
When � > 0, the mapping .0; 1/ 3 t 7! � t;� is differentiable with derivative:

d

dt
� t;� D 1

�
'

� t � U

�

��
Y � X

�
:

Since the derivative is bounded by CjX�Yj for a constant C independent of t, differentiability
also holds in the L2 sense. Therefore, by definition of the L-derivative, we have:

u
�
L.Y/

� � u
�
L.X/

� D lim
�&0

Z 1

0

E

h
@�u

�
L.� t;� /

��
� t;�

� �

 1
�
'

� t � U

�

��
Y � X

��i
dt:
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Since U is independent of .X; Y/, we have:

u
�
L.Y/

� � u
�
L.X/

�

D lim
�&0

E

Z 1

0

Z 1

0

h
@�u

�
L.� t;� /

�

˚

� t � 	
�

�
Y C �

1 � ˚� t � 	
�

�	
X

�

� 1
�
'

� t � 	
�

��
Y � X

�i
d	 dt:

(5.59)

Second Step. Thanks to Proposition 5.50, we may consider, for any � 2 P2.Rd/, a potential
p� W Rd ! R of @�u.�/.�/ provided we carefully choose the version of @�u.�/.�/. Actually,
since the L-derivative of u is assumed to have a version jointly continuous in the space and
measure variables, this jointly continuous version must coincide with the version constructed
in the proof of Proposition 5.50. When � has R

d as support, @�u.�/.�/ admits a unique
continuous version on the entire R

d. When the support of � is a strict subset of R
d ,

uniqueness of the continuous version holds true on the support of � only. However, the
density argument used in Proposition 5.50 to construct the continuous version shows that, in
that case as well, it coincides with the jointly continuous version of the L-derivative.

Choosing the version of the potential that vanishes at 0, we have the representation
formula:

p�.x/ D
Z 1

0

@�u.�/.tx/ � xdt; .x; �/ 2 R
d � P2.Rd/;

which proves that p is jointly continuous in .x; �/. Returning to the conclusion of the first
step, we observe that:

@�u
�
L.� t;� /

�

˚

� t � 	
�

�
Y C �

1 � ˚� t � 	
�

�	
X

�
�

 1
�
'

� t � 	
�

��
Y � X

��

D �@	
h
pL.� t;� /



˚

� t � 	
�

�
Y C �

1 � ˚� t � 	
�

�	
X

�i
:

Therefore, using (5.59) and the first step, we get:

u
�
L.Y/

� � u
�
L.X/

� D � lim
�&0

E

Z 1

0

h
pL.� t;� /



˚

� t � 1
�

�
Y C �

1 � ˚� t � 1
�

�	
X

�

� pL.� t;� /


˚

� t

�

�
Y C �

1 � ˚� t

�

�	
X

�i
dt:

From the proof of Proposition 5.50, we know that @�u.�/.x/ is at most of linear growth
in x, uniformly in � in bounded sets. Therefore, p�.x/ is at most of quadratic growth in x,
uniformly in � in bounded sets. By a uniform integrability argument, we can exchange the
limit and the integral. We get:
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u
�
L.Y/

� � u
�
L.X/

� D �E

Z 1

0

h
ptL.Y/C.1�t/L.X/.X/ � ptL.Y/C.1�t/L.X/.Y/

i
dt

D
Z 1

0

Z

Rd
ptL.Y/C.1�t/L.X/.y/

�
L.Y/ � L.X/

�
.dy/ dt;

which proves that, for all � 2 P2.Rd/, p�.�/ D Œıu=ım�.�/.�/ up to an additive constant
depending on �.

Third Step. The last two claims in the statement are easily proven. The fundamental
relationship is a straightforward consequence of the fact that p�.�/ D Œıu=ım�.�/.�/, while
the last claim follows from the fact that the assumptions of Proposition 5.44 are satisfied, the
linear growth property of @�u being shown as in the proof of Proposition 5.50. ut

5.4.3 Geometric Analysis on theWasserstein SpaceP2.R
d/

In the spirit of the theory of differential manifolds, we introduce a geometric
structure on the Wasserstein space P2.Rd/ via a natural notion of displacement.
Our goal is to connect the notion of Lions’ L-derivative introduced earlier, to the
notion of Wasserstein gradient issued from this geometric differential structure.

Displacements inP2.R
d/

Our earlier discussion of optimal transportation, recall for example Subsection 5.1.3,
took place in a static framework. Our goal is now to give a dynamic flavor to this
theory. For that purpose, we need a differential geometric structure on the space
of probability measures, and its introduction requires the notion of differentiable
curves joining elements of this space. So, given two probability measures � and �
in P2.Rd/ for which we can find an optimal transport map  from � to �, we would
like to construct natural paths, think for example of the graphs of functions from
Œ0; 1� to P2.Rd/, that would go from � to �.

A straightforward though rather naive solution would be to use the probability
measures �t defined by �t D .1 � t/�C t� for 0 6 t 6 1. This is natural indeed as
P2.Rd/ can be viewed as embedded in the linear space M.Rd/ of signed measures
on R

d equipped with its vector space structure. However this natural guess ignores
the metric structure of P2.Rd/ provided by the Wasserstein distance W2, and offers
no insight in the transport of �0 D � into �1 D �.

Inspired by the lifting procedure used in the construction of L-derivatives, one
can also search for a path from Œ0; 1� into L2.˝;F ;PIRd/ for an atomless Polish
probability space .˝;F ;P/, which would go from a random variable X with
distribution � to  .X/ which has � as distribution if  is indeed a transport map
from � to �. Taking advantage of the flat nature of the linear space L2, it is tempting
to consider:

Xt D .1 � t/X C t .X/ D X C t
�
 .X/ � X

�
; t 2 Œ0; 1�;
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and use the path � D .�t/06t6T in P2.Rd/ given by �t D L.Xt/. Notice that in this
case:

PXt D  .X/ � X; t 2 Œ0; 1�:

Brenier’s Theorem 5.20 suggests, at least when � is absolutely continuous, that we
search for  in the form of the gradient of a convex function '. Notice that, if 	 is
any smooth real valued function on R

d with compact support, then for � > 0 small
enough, the function ' W Rd 3 x 7! '.x/ D .1=2/jxj2 C �	.x/ 2 R is a smooth
strongly convex function. Using  D r' for such a function ' we get:

Xt D X C t�r	.X/ D .I C t�r	/.X/; and PXt D �r	.X/; t 2 Œ0; 1�:

By Proposition 5.13,  is an optimal transport map from � to � D � ı �1. At this
stage, the key observation is that, ' being strongly convex, the map r' D I C t�r	
is invertible for any t 2 Œ0; 1�. Indeed, for x 2 R

d, the map R
d 3 y 7! y � x � '.y/

has a unique maximizer, say yx; it satisfies x D r'.yx/. Therefore, the path Œ0; 1� 3
t 7! Xt solves the ordinary differential equation:

PXt D �r	

�

I C t�r	��1
.Xt/

�
; t 2 Œ0; 1�: (5.60)

While it is unclear at this stage that this situation is generic, the above example
shows that, in order to go from X to  .X/ with an optimal transport map, one can
simply follow the flow of an Ordinary Differential Equation (ODE) in a linear vector
space. As we shall see next, it can be proved that the path .L.Xt//06t61 is in fact a
geodesic for the 2-Wasserstein distance.

This is indeed a key idea in the theory of optimal transportation according to
which probability measures are transported along the flow of an ODE induced by
some possibly time-dependent vector field:

P�x
t D b.t; �x

t /; t 2 Œ0; 1�; �x
0 D x; (5.61)

for a Borel-measurable mapping b W Œ0; 1� � R
d ! R

d which plays the role of the
vector field. If the ODE (5.61) is well posed for any initial condition x 2 R

d, we
may indeed transport an initial distribution �0 2 P2.Rd/ by pushing it forward with
the flow solving the ODE, getting:

�t D �0 ı �
R

d 3 x 7! �x
t 2 R

d/�1:

Reformulated in probabilistic terms, �t is the distribution of the solution Xt of the
ODE at time t when initialized at time t D 0 with a random variable X0 having �0
as distribution. In particular,

PXt D b.t;Xt/; t 2 Œ0; 1�; (5.62)
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which should be compared with (5.60). As a result, integration by parts implies that
the dynamics of .�t/06t61 are given by the first-order Fokker-Planck equation:

@t�t C div
�
b.t; �/�t

� D 0; t 2 Œ0; 1�; (5.63)

understood in the sense of distributions. Notice that there are plenty more vector
fields transporting �0 to �1 in this way. Indeed, if we add a divergence free (for �t)
vector field w.t; �/ to b.t; �/, that is a vector field satisfying:

div
�
w.t; �/�t

� D 0; (5.64)

in the sense of distributions, then equation (5.63) remains unchanged. Recall that
this equation needs to be understood in the sense that:

8 2 C1
c .R

d/;

Z

Rd
w.t; x/ � r .x/d�t.x/ D 0;

where C1
c .R

d/ is the space of real valued smooth functions with compact support
in R

d.

Remark 5.52 The above argument, though informal, will make up half of the proof
of an important result of Benamou and Brenier proven below as Theorem 5.53.

Optimality of the Displacements
When �0 D � and �1 D � are given, the definition of the Wasserstein distances and
the solution of the classical optimal transportation problem involve the construction
of couplings (also called transport plans) of the two measures with the goal of
minimizing a cost depending only upon the properties of the coupling. This problem
is static in nature. As stated earlier, the purpose of this section is to introduce a
dynamic component in the transport of �0 to �1.

As highlighted by the informal discussion above, a major issue is the construction
of a vector field b.t; �/ transporting �0 D � into �1 D � and minimizing a cost
functional. In the particular case of the quadratic cost jx � yj2, such an optimization
problem should be somehow connected with the definition of the 2-Wasserstein
distance. This is the object of Theorem 5.53 proven below.

Coming back to the approach introduced above based on the lifting of the
optimization problem from the space P2.Rd/ to a flat space L2 of random variables,
the search for an optimal displacement can be reformulated as an optimal control
problem. Indeed, the desired vector field b can be interpreted as a control in closed-
loop feedback form. So we assume that the dynamics of the control system are given
by the solution X D .Xt/06t61 of an equation of the form:

PXt D ˛t;

with initial condition L.X0/ D �, driven by a control process ˛ D .˛t/06t61,
the goal being to minimize the energy J.˛/ D E

R 1
0

j˛tj2dt under the constraint
L.X1/ D �. As explained, we restrict the control process to be in closed loop
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feedback form, i.e., ˛t D b.t;Xt/, and we understand that the divergence free
component of b.t; �/ has no impact on the dynamics of (5.63). Therefore, we may
restrict the search for b.t; �/ to the subspace orthogonal to the divergence free
vector fields for �t, namely the closure of the gradients in L2.Rd; �tIRd/, where
�t D L.Xt/. Part of the difficulty is the fact that this space is not known since the
measure �t is unknown. The following result, which is often referred to as Benamou
and Brenier’s theorem, addresses this quandary.

Theorem 5.53 For any �; � 2 P2.Rd/, the 2-Wasserstein distance between � and
� satisfies:

W2.�; �/
2 D inf

.�;b/2A.�;�/A.�; b/ (5.65)

where the action A.�; b/ is defined by:

A.�; b/ D
Z 1

0

Z

Rd
jb.t; x/j2d�t.x/ dt;

the infimum being taken over the set A.�; �/ of pairs .�; b/ 2 C.Œ0; 1�IP2.Rd// �
L2.Œ0; 1� � R

d; �t.dx/dtIRd/, where �0 D �, �1 D �, and:

@t�t C div
�
b.t; �/�t

� D 0;

in the sense of distributions.

Remark 5.54 The above version of Benamou and Brenier’s theorem is due to
Ambrosio, Gigli, and Savaré, but the lines of the proof below are inspired from
Villani’s monograph; in this latter reference, � and � are required to be absolutely
continuous and compactly supported. The reader is referred to the Notes &
Complements at the end of the chapter for precise citations.

Proof. We provide a sketch of proof only in the case when� and � are absolutely continuous.
For a regular enough vector field b (for example locally bounded in .t; x/ and Lipschitz in x,
uniformly in t), and for each t 2 Œ0; 1�, let us define�t D �ıXt.�/�1 where .Xt.x//06t61; x2Rd

is the flow associated with the vector field b. Then, .�; b/ 2 A.�; �/. Using successively,
the definition of .�t/06t61, the definition of the solution .Xt/06t61, Fubini’s theorem, Hölder
inequality, the definition of the set A.�; �/, and finally the definition of W2.�; �/, we get:

Z 1

0

Z

Rd
jb.t; x/j2 �t.dx/dt D

Z 1

0

Z

Rd
jb.t;Xt.x//j2 d�.x/dt

D
Z 1

0

Z

Rd
j PXt.x/j2 d�.x/dt

D
Z

Rd


 Z 1

0

j PXt.x/j2dt
�

d�.x/
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>
Z

Rd

ˇ̌
ˇ
Z 1

0

PXt.x/dt
ˇ̌
ˇ
2

d�.x/

D
Z

Rd

ˇ̌
X1.x/ � x

ˇ̌2
d�.x/ > W2.�; �/

2:

Since the right-hand side is independent of .�; b/ 2 A.�; �/, we can take the infimum
of the left-hand side over A.�; �/ and still preserve the inequality. In order to prove that
W2.�; �/

2 is not greater than the right-hand side of (5.65), we need to consider general
.�; b/ 2 A.�; �/, without assuming that b is Lipschitz in space and make sure that the
above inequality still holds. This can be done by a mollifying argument and controlling the
limits when removing the mollification. The details are rather involved and we shall not give
them here. Details can be found in the references given in the Notes & Complements at the
end of the chapter.

We now prove the reverse inequality. For that, we assume that � is absolutely continuous
and we use the Brenier map '. So � ı .r'/�1 D � and:

W2.�; �/
2 D

Z

Rd
jr'.x/ � xj2 �.dx/:

Piggybacking on the informal discussion of the beginning of the section, for t 2 Œ0; 1� and
x 2 R

d we set:

't.x/ D 1 � t

2
jxj2 C t'.x/; and Xt.x/ D r't.x/ D .1 � t/x C tr'.x/;

the second definition making sense at points x where ' is well defined (which is true almost
everywhere under the Lebesgue measure Lebd on R

d). Since � is absolutely continuous with
respect to Lebd, we can define the flow � by �t D � ı Xt.�/�1, for t 2 Œ0; 1�. From the
definition of .Xt.x//06t61 we get:

PXt.x/ D �x C r'.x/; t 2 Œ0; 1�: (5.66)

Our goal is to find a vector field b for which b.t; �/ is defined �t-almost surely and in such a
way that the above right-hand side can be rewritten as b.t;Xt.x// for �0-almost every x 2 R

d .
Indeed, for such a vector field, we have:

Z 1

0

Z

Rd
jb.t; x/j2 �t.dx/dt D

Z 1

0

Z

Rd
jb.t;Xt.x//j2 �0.dx/dt

D W2.�; �/
2;

where we used the definition of the flow � D .�t/06t61 and the definition of b. This shows
that .�; b/ is optimal. The existence of b follows from Remark 5.21 following Brenier’s
Theorem 5.20 by setting:

b.t; x/ D r'�r'�

t .x/
� � r'�

t .x/; t 2 Œ0; 1�; �t � almost every x 2 R
d;
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where '�

t is the convex conjugate of 't. When t D 1, '1 D '� and Remark 5.21 guarantees
that r'.r'�.y// D y for �-almost every y 2 R

d and r'�.r'.x// D x for � almost every
x 2 R

d. When t 2 Œ0; 1/, 't is strongly convex, which shows that�t D �ır'�1
t is absolutely

continuous. Proceeding as in Remark 5.21, we deduce that r't.r'�

t .y// D y for �t-almost
every y 2 R

d and r'�

t .r't.x// D x for �-almost every x 2 R
d. ut

Remark 5.55 The construction of X in (5.66) is a generalization of the construction
of X in (5.60), as provided in the introductory discussion of the subsection.

The optimal flow � constructed in the proof of Benamou-Brenier’s theorem is
given by:

�t D � ı �
.1 � t/I C tr'/�1:

It is called the McCann’s interpolation between � and �. Observe also that b.t; �/
may be rewritten:

b.t; x/ D r'�r'�
t .x/

� � r'�
t .x/

D

1

t
r't � 1 � t

t
I
��r'�

t .x/
� � r'�

t .x/

D 1

t

�
x � r'�

t .x/
�
;

for �t almost every x 2 R
d and for t 2 .0; 1�.

Remark 5.56 It is possible to extract more properties of the McCann’s interpola-
tion flow from the above proof. Indeed, in the spirit of the differential geometric
discussion we provide next, and even though we will not study geodesics per se,
we mention the fact that the infimum in (5.65) is achieved along a geodesic path of
constant speed .�t/06t61, i.e. W2.�t; �tCh/ D hW2.�; �/ for all 0 6 t < t C h 6 1,
and the time-dependent vector field b W Œ0; 1� � R

d ! R satisfies:

b.t; �/ 2 ˚r'I ' 2 C1
c .R

dIR/�L2.Rd ;�tIRd/
; Leb1 a:e: t 2 Œ0; 1�;

the right-hand side denoting the closure of the set of smooth gradients in the space
L2.Rd; �tIRd/.

Prompted by the statement of the above remark, we introduce formally constant
speed geodesics in P2.Rd/ and we prove basic properties which will help our
discussion of the geometric properties of the Wasserstein space P2.Rd/.

Definition 5.57 A curve Œ0; 1� 3 t 7! �t 2 P2.Rd/ is called a geodesic path of
constant speed if W2.�s; �t/ D .t � s/W2.�0; �1/ whenever 0 6 s 6 t 6 1.

A first important property of these special curves is given in the following
proposition.
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Proposition 5.58 If Œ0; 1� 3 t 7! �t 2 P2.Rd/ is a geodesic path of constant
speed, then for any t 2 .0; 1/, ˘ opt

2 .�t; �0/ (resp. ˘ opt
2 .�t; �1/) contains a unique

transport plan which is given by a transport map.

Proof. Let � 2 ˘ opt
2 .�0; �t/ and � 2 ˘ opt

2 .�t; �1/ be optimal transportation plans, and write
their disintegrations with respect to their second and first marginals respectively as:

�.dx; dy/ D �.dx; y/�t.dy/; and �.dy; dz/ D �t.dy/�.y; dz/:

Finally define the probability measure 
 2 P2..Rd/3/ by:


.dx; dy; dz/ D �.dx; y/�t.dy/�.y; dz/;

and use the notations �1;2, �1;3 and �2;3 for the projections defined by �1;2.x; y; z/ D .x; y/,
�1;3.x; y; z/ D .x; z/, and �2;3.x; y; z/ D .y; z/. By construction, we have 
 ı .�1;2/�1 D � ,
and 
 ı .�2;3/�1 D �. Moreover, if we define � 2 P2.Rd � R

d/ by � D 
 ı .�1;3/�1,
then � 2 ˘.�0; �1/. We show that in fact, � is an optimal transport plan in the sense that
� 2 ˘ opt

2 .�0; �1/. Indeed:

W2.�0; �1/ 6
� Z

.Rd/2
jx � zj2�.dx; dz/

�1=2

D
� Z

.Rd/3
jx � zj2
.dx; dy; dz/

�1=2

6
� Z

.Rd/3
jx � yj2
.dx; dy; dz/

�1=2
C

� Z

.Rd/3
jy � zj2
.dx; dy; dz/

�1=2

D
� Z

.Rd/2
jx � yj2�.dx; dy/

	1=2 C
� Z

.Rd/2
jy � zj2�.dy; dz/

�1=2

D W2.�0; �t/C W2.�t; �1/ D tW2.�0; �1/C .1 � t/W2.�0; �1/

D W2.�0; �1/;

so that all the above inequalities are in fact equalities. In particular, since the norm of
L2..Rd/3; 
IRd/ is strictly convex, this implies that there exists ˛ > 0 such that:

y � x D ˛.z � x/ for 
 � a:e: .x; y; z/: (5.67)

Using the fact that W2.�0; �t/ D tW2.�0; �1/, we conclude that ˛ D t. Defining the function
N� by N�.y/ D R

Rd x�.dx; y/ for�t-a.e. y 2 R
d, and integrating both sides of (5.67) with respect

to the probability measure �.dx; y/ we get:

y � N�.y/ D t.z � N�.y// for � � a.e. .y; z/;

which shows that the map:

y 7! 't.y/ D 1

t
y � 1 � t

t
N�.y/
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is a transport map giving the transport plan �. Since N� depends only upon � , and � and �
were chosen independently of each other, this shows that the transport plan � is unique. This
concludes the proof for ˘ opt

2 .�t; �1/. We reach the same conclusion for ˘ opt
2 .�t; �0/ by

exchanging the roles of �0 and �1 through a simple time reversal t 7! 1 � t. ut

The following simple result provides a large class of constant speed geodesics.
In particular, it justifies the claim made in Remark 5.56 about the McCann
interpolation.

Proposition 5.59 If �0 and �1 belong to P2.Rd/, with �0 6D �1, and � 2
˘

opt
2 .�0; �1/ is an optimal plan, then the curve Œ0; 1� 3 t 7! �t D � ı .�t/

�1
in P2.Rd/ where �t is the projection:

R
d � R

d 3 .x; y/ 7! �t.x; y/ D .1 � t/x C ty 2 R
d; (5.68)

is a geodesic path of constant speed.

Remark 5.60 As announced in Remark 5.56, the above proposition says that, when
�1 is given by �1 D �0 ı .r'/�1, where ' is the Brenier map, the McCann’s
interpolation between �0 and �1, as constructed in the proof of Benamou-Brenier’s
theorem, is a geodesic path of constant speed between �0 and �1.

Proof. Let 0 6 s 6 t. Then,

W2.�s; �t/ 6
� Z

.Rd/2
j�t.x; y/ � �s.x; y/j2�.dx; dy/

�1=2

6 .t � s/

� Z

.Rd/2
jx � yj2�.dx; dy/

�1=2

6 .t � s/W2.�0; �1/ :

In fact, this inequality is an equality because, if there were a couple .s; t/with s 6 t for which
this inequality was strict, we would have:

W2.�0; �1/ 6 W2.�0; �s/C W2.�s; �t/C W2.�t; �1/

< sW2.�0; �1/C .t � s/W2.�0; �1/C .1 � t/W2.�0; �1/

D W2.�0; �1/:

which is an obvious contradiction. ut

Differential Geometry onP2.R
d/

As suggested in Remark 5.56, the variational formula for the 2-Wasserstein distance
given in Theorem 5.53 suggests that the tangent space to P2.Rd/ at a point
� 2 P2.Rd/ should consist of gradients, or at least, limits of gradients. We may
recast this intuition in the framework of our discussion of the introductory example
presented at the beginning of the subsection of displacements in P2.Rd/. Therein,



432 5 Spaces of Measures and Related Differential Calculus

we observe that, as the perturbation � in (5.60) goes to zero, namely as � and � get
closer and closer to each other, the direction used to go from� to � converges to r	 .
Importantly, 	 in (5.60) may be any compactly supported smooth function from R

d

to R so that the admissible direction r	 used for transporting � locally may be the
gradient of any compactly supported smooth function from R

d to R. More generally,
we can check that the function R

d 3 x 7! r	..I C �r	/�1.x// which provides the
vector field in (5.60) is always a gradient provided that � is small enough, which
shows that, at any time t 2 Œ0; 1�, the law of Xt in (5.60) indeed moves along a
gradient vector field. This can be proven by adapting the duality argument used in
Proposition 5.13. If we set:

��.y/ D inf
x2Rd

˚jx � yj2 C 2�	.x/
�
;

and if we mimic the computations of Proposition 5.13, we see that for any y 2 R
d:

��.y/ D ˇ̌
y � �

I C �r	��1
.y/

ˇ̌2 C 2�	
�
.I C �r	/�1.y/�:

Next we notice that the range of I C �r	 is the whole space, so that by expanding
��.I C �r	/, we get for all y 2 R

d:

r�".y/ D 2y � 2�I C �r	��1
.y/ D 2�r	


�
I C �r	��1

.y/
�
;

which completes the proof of our claim.
The geometric picture sketched above suggests that it may be appropriate to

endow the space P2.Rd/, equipped with the 2-Wasserstein distance W2, with a
Riemannian structure based on the result of Theorem 5.53. Indeed, the above
discussion hints at the following choice for the tangent space Tan�.P2.Rd// at a
point � 2 P2.Rd/. It should be defined as the closure, in L2.Rd; �IRd/, of the
vector space of gradients of smooth functions with compact supports, namely:

Tan�
�P2.Rd/

� D ˚r'I ' 2 C1
c .R

dIR/�L2.Rd ;�IRd/
:

Since gradients are orthogonal to divergence free fields, Tan�.P2.Rd// is also
equal to:

Tan�
�P2.Rd/

� D
n
v 2 L2.Rd; �IRd/ W

8w 2 L2.Rd; �IRd/ with div.w�/ D 0;

Z

Rd
v � w d� D 0

o
:

As a first step in our search for connections between L-derivatives and the
Wasserstein geometry advocated in this section, we have:
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Lemma 5.61 If the scalar function u is continuously L-differentiable on P2.Rd/,
then it holds that:

8� 2 P2.Rd/; @�u.�/.�/ 2 Tan�
�P2.Rd/

�
:

Proof.

First Step. We start with the case when the Fréchet derivative of the lifting of u is uniformly
Lipschitz. Then, for a given � 2 P2.Rd/, we know from Proposition 5.50 that there exists
a continuously differentiable function p� W Rd ! R, with a Lipschitz continuous gradient
rp�, such that, � almost everywhere:

@�u.�/.�/ D rp�:

The Lipschitz property of the L-derivative implies that we can find a constant C such that,
for any x; x0 2 R

d,
ˇ̌rp�.x/ � rp�.x0/

ˇ̌
6 Cjx � x0j;

and
ˇ̌rp�.x/

ˇ̌
6 C

�
1C jxj�; ˇ̌

p�.x/
ˇ̌

6 C
�
1C jxj2�:

For a sequence .�n/n>1 of C1 mollifiers with supports included in a fixed compact set and
converging to ı0, we set:

p�n .x/ D �
p� � �n

�
.x/; x 2 R

d:

Since rp� is continuous, rp�n converges to rp�, uniformly on compact subsets. The con-
vergence also holds in L2.Rd; �IRd/ since, up to a possible modification of the constant C:

ˇ̌rp�n .x/
ˇ̌

6 C
�
1C jxj�; x 2 R

d;

the right-hand side being obviously square integrable under �.
Next we show that we can approximate rp� by gradients of functions in C1

c .Rd/. We
start with a smooth cut-off function � W Rd ! R with �.x/ D 1 for jxj 6 1 and �.x/ D 0

for jxj > 2. Then we set �n.x/ D �.x=n/ for x 2 R
d and n > 1, and prove that r.�np�n /

converges to rp� in L2.Rd; �IRd/. Clearly, it suffices to prove that r.�np�n � p�n / converges
to 0 in L2.Rd; �IRd/. Expanding the gradient, we obtain:

r�
�np�n � p�n

� D .�n � 1/rp�n C p�n r�n:

Since �n � 1 converges to 0 pointwise, the same domination argument as above shows that:
.�n �1/rp�n converges to 0 in L2.RdI�/. In order to handle the second term in the right-hand
side, we observe that r�n converges to 0 pointwise and that:

ˇ̌
p�n r�n

ˇ̌
6 C

n
.1C jxj2/1fn6jxj62ng 6 C.1C jxj/;

which is enough to apply Lebesgue’s dominated theorem once again.

Second Step. We now handle the general case. The proof is based on a regularization
argument which will be proved in Section 5.6. For that reason, the reader may want to skip
this step on a first reading.
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Indeed, we shall prove in Lemma 5.94 below that for any smooth function � W R
d !

R
d with compact support, the function P2.Rd/ 3 � 7! u.� ı ��1/ 2 R is bounded and

continuously L-differentiable; also, its Fréchet derivative is bounded (in L2). In particular,
the lifting of P2.Rd/ 3 � 7! u.� ı ��1/ 2 R is Lipschitz continuous.

Next, we consider a sequence .�n/n>1 of compactly supported smooth functions from R
d

into itself such that, for any n > 1 and for all x 2 R
d, �n.x/ D x for jxj � n and j�n.x/j 6 Cjxj

for a constant C independent of n. We then let un.�/ D u.� ı ��1
n / for all � 2 P2.Rd/. As a

byproduct of the proof of Lemma 5.95, it is straightforward to prove that:

8� 2 P2.Rd/; lim
n!1

Z

Rd
j@�un.�/.x/ � @�u.�/.x/j2d�.x/ D 0:

This shows that @�u 2 Tan�.P2.Rd// provided that @�un 2 Tan�.P2.Rd// for all
n > 1. Put differently, we can assume that the lifting Qu of u is bounded and continuously
Fréchet differentiable on L2.˝;F ;PIRd/ and that its Fréchet derivative is bounded (in
L2.˝;F ;PIRd/).

For any 0 < ı < �, we call Qu�;ı the sup-inf convolution of Qu with parameters .�; ı/:

Qu�;ı.X/ D sup
Z2H

inf
Y2H

�Qu.Y/C 1

2�
EŒjY � Zj2� � 1

2ı
EŒjZ � Xj2�	;

for X 2 L2.˝;F ;PIRd/, where H D L2.˝;F ;PIRd/. It is known (see the Notes &
Complements for a precise citation) that Qu�;ı is Fréchet differentiable and has a Lipschitz
continuous derivative. Also Qu�;ı converges to Qu, uniformly on H. Thanks to the boundedness
of u, it is then well checked that there exists a constant C > 0 such that:

sup
Z2H

inf
Y2H

�Qu.Y/C 1

2�
EŒjY � Zj2� � 1

2ı
EŒjZ � Xj2�	 6 sup

Z2H

�
C � 1

2ı
EŒjZ � Xj2�	;

which shows that the maximization over Z may be restricted to those Z such that kZ �
Xk22 6 Cı, the value of C being allowed to increase from line to line. Therefore, the
minimization over Y may be restricted to those Y such that kZ � Yk2 6 C", that is
kY � Xk22 6 C" for a new value of C.

Now, for another W 2 H, we have:

Qu";ı.X C W/ D sup
Z2H

inf
Y2H

�Qu.Y/C 1

2�
EŒjY � Zj2� � 1

2ı
EŒjZ � .X C W/j2�	

D sup
Z2H

inf
Y2H

�Qu.Y/C 1

2�
EŒjY � W � Zj2� � 1

2ı
EŒjZ � Xj2�

D sup
Z2H

inf
Y2H

�Qu.Y C W/C 1

2�
EŒjY � Zj2� � 1

2ı
EŒjZ � Xj2�:

(5.69)

Since Qu is continuously Fréchet differentiable, we can find a mapping "X W RC ! RC

depending upon the variable X such that limr&0 "X.r/ D 0 and

ˇ̌Qu.Y C W/ � Qu.Y/ � hDQu.X/;WiH
ˇ̌

6 kWk2"X
�kY � Xk2 C kWk2

�
;

where h�; �iH denotes the inner product in H.
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Plugging the above expansion in (5.69), we get:

ˇ̌Qu";ı.X C W/ � Qu�;ı.X/ � hDQu.X/;WiH
ˇ̌

6 kWk2"X
�
� C kWk2

�
:

Recalling that Qu";ı has a Lipschitz continuous Fréchet derivative, we deduce that, for all r > 0,

��DQu�;ı.X/ � DQu.X/��
2

6 "X
�
� C r

� C C�;ır;

where the constant C�;ı depends upon � and ı. Letting first r tend to 0 and then � to 0, we
deduce that kDQu�;ı.X/ � DQu.X/k2 tends to 0 as � tends to 0.

Therefore, in order to complete the proof, it suffices to show that DQu�;ı.X/ may be
represented in the form 	�;ı.X/ for some 	�;ı 2 Tan�.P2.Rd//. To do so, it suffices to observe
that:

Qu�;ı.X/ D sup inf

�
u.�/C 1

2ı

Z

.Rd/2
jy � zj2d�.y; z/ �

Z

.Rd/2
jx � zj2d%.x; z/

�
;

the infimum being taken over the probability measures � 2 P2..Rd/2/, the argument � in u
standing for the first marginal of � on R

d, and the supremum being taken over the probability
measures % 2 P2..Rd/2/ with � D L.X/ as first marginal on R

d and with the same second
marginal on R

d as � . Obviously, the right-hand side only depends on � D L.X/, which
shows that Qu�;ı may be projected as a function u�;ı on P2.Rd/. By the first step of the proof,
@�u�;ı.�/.�/ 2 Tan�.P2.Rd//. ut

Geometric Differentiability and Lions’ L-Derivatives
In the geometric theory of Wasserstein spaces, the notion of differentiability is
usually defined in terms of sub- and super-differentials:

Definition 5.62 Let u W P2.Rd/ ! R and let � 2 P2.Rd/.

1. A function � 2 Tan�.P2.Rd// is said to belong to the sub-differential of u at �,
and we write � 2 @�u.�/, if for all �0 2 P2.Rd/:

u.�0/ > u.�/C sup
�2˘opt

2 .�;�0/

Z

Rd�Rd
�.x/ � �

y � x
�
d�.x; y/C o

�
W2.�; �

0/
�
;

where ˘ opt
2 .�; �0/ is the set of optimal transport plans from � to �0 defined

in (5.5). If @�u.�/ is not empty, u is said to be sub-differentiable at �.
2. A function � 2 Tan�.P2.Rd// is said to belong to the super-differential of u at �,

and we write � 2 @Cu.�/, if �� 2 @�.�u/.�/. If @Cu.�/ is not empty, u is said
to be super-differentiable at �.

3. The function u is said to be W-differentiable at � (in other words in the
Wasserstein sense) if it is both sub- and super-differentiable, that is if both
@�u.�/ and @Cu.�/ are not empty.

The notion of gradient is then given by:
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Proposition 5.63 If u W P2.Rd/ ! R is W-differentiable at � in the sense
of Definition 5.62, then the sets @�u.�/ and @Cu.�/ coincide and contain one
element only. This element of Tan�.P2.Rd// is called the Wasserstein gradient, or
W-gradient, of u at � and is denoted r�u.�/.

Elements in Tan�.P2.Rd// are identified when equal up to a �-null Borel set.

Proof. Let us assume that �� 2 @�u.�/ and �C 2 @Cu.�/. The proof is based on the very
same argument we used in our introductory discussion of displacements when we suggested
that optimal transport of measures was taking place along gradients. In the definition of the
sub-differential, choose �0 D � ı .I C �r	/�1 where 	 is a smooth function with compact
support from R

d into R and � 2 R. For j�j small enough, I C �r	 is the gradient of a strictly
convex function, namely R

d 3 x 7! .1=2/jxj2 C �	.x/. By Proposition 5.13, we know that
the map R

d 3 x 7! x C �r	.x/ 2 R
d is an optimal transport map from � to �0, and that it

defines the unique optimal transport plan from � to �0. Therefore, by definition of the sub-
and super-differentials, we have that:

u.�0/ > u.�/C �

Z

Rd
��.x/ � r	.x/d�.x/C o.�/;

and

u.�0/ 6 u.�/C �

Z

Rd
�C.x/ � r	.x/d�.x/C o.�/;

from which we deduce, by letting � tend to 0 (on both sides 0C and 0�), that:

Z

Rd

�
�C.x/ � ��.x/

�r	.x/d�.x/ D 0:

The above is true for any smooth function 	 from R
d to R with a compact support. Since

�C � �� 2 Tan�.P2.Rd//, and the latter is equal to the closure in L2.Rd; �IRd/ of the
gradients of smooth functions with compact supports, we conclude that �C D �� almost
everywhere under �. ut

Finally, we reconcile the notions of Lions L-derivative and Wasserstein W-gradient.

Theorem 5.64 If u W P2.Rd/ ! R is continuously L-differentiable, then u is also
W-differentiable in the sense of Definition 5.62 at any � 2 P2.Rd/, and @�u.�/ D
r�u.�/.

Proof. Given two probability measures �;�0 2 P2.Rd/, we assume � 2 ˘
opt
2 .�; �0/ and

we call .�.x; �//x2Rd the disintegration of � with respect to �, namely:

�.dx; dy/ D �.dx/�.x; dy/:

On an atomless Polish probability space .˝;F ;P/, we consider two R
d-valued random

variables X and X0 such that the pair .X;X0/ has � as joint distribution. By definition of
the L-derivative, we have:
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u.�0/ D u.�/C
Z 1

0

E
�
@�u

�
L..1 � t/X C tX0/

��
.1 � t/X C tX0

� � �
X0 � X

�	
dt

D u.�/C E
�
@�u

�
L.X/

�
.X/ � �

X0 � X
�	

C
Z 1

0

E

h

@�u

�
L..1 � t/X C tX0/

��
.1 � t/X C tX0

� � @�u
�
L.X/

��
X

��

� �
X0 � X

�i
dt:

Following the discussion right after Remark 5.26 based on the application of Lemma 5.30,
we can prove that:

ˇ̌
ˇ̌
Z 1

0

E

h

@�u

�
L..1 � t/X C tX0/

��
.1 � t/X C tX0

� � @�u
�
L.X/

�
.X/

�
� �

X0 � X
�i

dt

ˇ̌
ˇ̌

6
� Z

.Rd/2
jx � yj2d�.x; y/

�1=2
"�

�� Z

.Rd/2
jx � yj2d�.x; y/

�1=2�
;

where "� W RC ! RC satisfies limr&0 "�.r/ D 0. Since the coupling � is optimal, it holdsR
.Rd/2

jx � yj2d�.x; y/ D W2.�; �
0/2, so that:

u.�0/ > u.�/C
Z

Rd
@�u

�
�

�
.x/ � .y � x/ d�.x; y/ � W2.�; �

0/"�
�
W2.�; �

0/
�
:

Therefore, taking the supremum over the optimal plans � 2 ˘ opt
2 .�; �0/, we deduce that:

u.�0/ > u.�/C sup
�2˘

opt
2 .�;�0/

Z

Rd
@�u

�
�

�
.x/ � .y � x/ d�.x; y/

� W2.�; �
0/"�

�
W2.�; �

0/
�
:

Lemma 5.61 asserts that @�u.�/ 2 Tan�.P2.Rd//. This proves that @�u.�/ 2 @�u.�/. We
then prove that @�u.�/ 2 @Cu.�/ in the same way. ut

5.4.4 Finite State Spaces

Mean field games with finite state spaces have been studied sporadically, their
relevance coming from the importance of some of their applications. Our intro-
ductory Chapter 1 contains a couple of such examples. In these models, marginal
distributions have a fixed finite support, and functions of these distributions appear
as functions on a finite dimensional simplex. As before, when these functions are
assumed to be restrictions of smooth functions on the ambient Euclidean space, a
natural notion of differentiability can be used. However, this notion differs from the
notion of L-differentiability, and we propose to highlight the differences.
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In this subsection, we work with a finite state space E D fe1; � � � ; edg. Without
any loss of generality, we shall regard e1; � � � ; ed as the canonical basis of the d-
dimensional Euclidean space. In other words, we identify E with the subset of Rd

formed by the unit coordinate vectors e1 D .1; 0; � � � ; 0/, � � � , ed D .0; � � � ; 0; 1/.

An Informal Preliminary Discussion
Our starting point is formula (5.52) which holds for finite measures, though not
necessarily for functions only defined on the space of probability measures. Here,
a finite measure m on E can be identified with the masses it assigns to each of
the singletons, in other words, with the element .m1; � � � ;md/ of R

d defined as
mi D m.feig/ for i D 1; � � � ; d. Probability measures correspond to the elements
.p1; � � � ; pd/ of the simplex Sd of pi > 0 for i D 1; � � � ; d and p1 C � � � C pd D 1.
Assuming that the function u is defined on the space of measures M.E/, or at least
on an open subset of M.E/ containing the space P.E/ of probability measures, and
is smooth in the sense of (5.52), we get:

u

� dX

iD1
m0

iıei

�
� u

� dX

iD1
miıei

�

D
Z 1

0

Z

Rd

ıu

ım

� dX

iD1
Œtm0

i C .1 � t/mi�ıei

�
.x/ d

� dX

iD1
Œm0

i � mi�ıei

�
.x/ dt

D
dX

iD1

� Z 1

0

ıu

ım

� dX

iD1
Œtm0

i C .1 � t/mi�ıei

�
.ei/dt

�
.m0

i � mi/; (5.70)

from which we conclude that the derivation in the space of measures (in the rough
sense of (5.52)) should coincide with the usual derivative of the function R

d 3
.m1; � � � ;md/ 7! u

� Pd
iD1 miıei

�
, with the identity:

@

@mk

h
u

 dX

iD1
miıei

�i
D ıu

ım


 dX

iD1
miıei

�
.ek/;

that should hold true for all k 2 f1; � � � ; dg and .m1; � � � ;md/ 2 R
d. Importantly,

this formula is for functions of measures and not only for functions of probability
measures. In particular, .m1; � � � ;md/ lives in the whole space R

d and not only in
the simplex Sd. We shall prove in Proposition 5.66 below that the formula takes
a somewhat different form when the domain of definition of u is restricted to the
subset of probability measures.

The above formula says that we can view the d values taken by the function
Œıu=ım�.

Pd
iD1 miıei/ on E as the d components of the gradient of the function u

when viewed as a function on R
d. Clearly, the present discussion is rather informal.

Indeed, implicit continuity assumptions were used to derive the above identity
from (5.70).
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Connection with the Linear Functional Derivative
In order to make things more rigorous, we focus the discussion on functionals u
defined on the space P2.Rd/. We make use of the sets Sd�1;6 D f.p1; � � � ; pd�1/ 2
Œ0; 1�d�1 W Pd�1

iD1 pi 6 1g and Sd D f.p1; � � � ; pd�1; pd/ 2 Œ0; 1�d W Pd
iD1 pi D 1g.

Obviously, Sd�1;6 and Sd are in one-to-one correspondence and both may be
identified with a .d � 1/-dimensional simplex. Most importantly, Sd�1;6 has a
nonempty interior in R

d�1 and, of course, Sd coincides with the set P.E/ of
probability measures on E. We first notice that, when viewed as a subset of R

d,
the Euclidean and Wasserstein distances are equivalent on Sd.

Lemma 5.65 For all p; p0 2 Sd,

1

2
jp � p0j 6 W2.p; p0/ 6

p
djp � p0j1=2;

where j � j denotes the Euclidean norm.

Proof. We have, for any two p; p0 2 Sd,

jp � p0j2 D
dX

iD1

jpi � p0

i j2;

while, for two random variables X and X0 (constructed on some probability space .˝;F ;P/)
with values in E and with p and p0 as respective distributions, we have (using the fact that
e1; � � � ; ed are chosen as the vectors of the canonical basis of Rd):

E
�jX � X0j2	 D 2P

�
X 6D X0

	

D 2 � 2P�
X D X0

	

> 2 � 2
dX

iD1

P
�
X D ei

	1=2
P

�
X0 D ei

	1=2 D
dX

iD1



p1=2i � .p0

i/
1=2

�2
:

Using the fact that jpi � p0

i j D j.p1=2i � .p0

i/
1=2/.p1=2i C .p0

i/
1=2/j 6 2jp1=2i � .p0

i/
1=2j, we get:

W2

�
p; p0

�2 > 1

4
jp � p0j2:

Conversely, for p; p0 2 Sd, we can construct two random variables X and X0 (on the same
probability space as above), with p and p0 as respective distributions, such that PŒX D X0 D
ei� D min.pi; p0

i/ for all i 2 f1; � � � ; dg. We then have:
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W2

�
p; p0

�2 6 E
�jX � X0j2	

D 2P
�
X 6D X0

�

6 2


1 �

dX

iD1

min.pi; p
0

i/
�

D 2
h
1C 1

2

dX

iD1



jpi � p0

i j � .pi C p0

i/
�i

D
dX

iD1

jpi � p0

i j 6
p

djp � p0j;

which completes the proof. ut

Repeating (5.70), we get:

Proposition 5.66 Let u W P2.Rd/ ! R have a linear functional derivative in the
sense of Definition 5.43. Then, the function:

Sd�1;6 3 .p1; � � � ; pd�1/ 7! u

 dX

iD1
piıei

�
with pd D 1 �

d�1X

iD1
pi;

is continuously differentiable and for all i 2 f1; � � � ; d � 1g,

@

@pi

�
u

 dX

jD1
pjıej

��
D ıu

ım


 dX

jD1
pjıej

�
.ei/ � ıu

ım


 dX

jD1
pjıej

�
.ed/;

for .p1; � � � ; pd�1/ 2 Sd�1;6 and pd D 1 � .p1 C � � � C pd�1/.

Proof. From (5.70), for p; p0 2 Sd, we have:

u

 dX

iD1

p0

iıei

�
� u


 dX

iD1

piıei

�

D
dX

iD1

�� Z 1

0

ıu

ım


 dX

jD1

�
tp0

j C .1 � t/pj
	
ıej

�
.ei/dt

�
.p0

i � pi/

�
;

from which we get:
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u

 dX

iD1

p0

iıei

�
� u


 dX

iD1

piıei

�

D
d�1X

iD1

�� Z 1

0

h ıu
ım


 dX

jD1

�
tp0

j C .1 � t/pj
	
ıej

�
.ei/

� ıu

ım


 dX

jD1

�
tp0

j C .1 � t/pj
	
ıej

�
.ed/

i
dt

�
.p0

i � pi/

�

D
d�1X

iD1

��
ıu

ım


 dX

jD1

pjıej

�
.ei/ � ıu

ım


 dX

jD1

pjıej

�
.ed/

�
.p0

i � pi/

�
C o

�jp0 � pj�;

(5.71)

the last equality following from the continuity of Œıu=ım� on P2.Rd/�R
d assumed as part of

the definition of the existence of a linear functional derivative. Notice that we also used the
fact that the set fPd

iD1 piıei I p D .p1; � � � ; pd/ 2 Sdg is a compact subset of P2.Rd/, which
guarantees that for any i 2 f1; � � � ; dg, the function:

Sd 3 p 7! ıu

ım


 dX

jD1

pjıej

�
.ei/

is uniformly continuous with respect to the Wasserstein distance, and hence the Euclidean
distance because of Lemma 5.65. ut

Corollary 5.67 Assume that there exists a continuously differentiable function Nu
defined on a d-dimensional open neighborhood of the set Sd such that for all p 2 Sd,

u

 dX

iD1
piıei

�
D Nu.p1; � � � ; pd/:

Then, for all i 2 f1; � � � ; d � 1g,

ıu

ım


 dX

jD1
pjıej

�
.ei/ � ıu

ım


 dX

jD1
pjıej

�
.ed/ D @Nu

@pi
.p1; � � � ; pd/ � @Nu

@pd
.p1; � � � ; pd/:

Proof. It suffices to observe that, for two p; p0 2 Sd:
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u

 dX

iD1

p0

iıei

�
� u


 dX

iD1

piıei

�

D Nu.p0

1; � � � ; p0

d/ � Nu.p1; � � � ; pd/

D
dX

iD1

@Nu
@pi
.p1; � � � ; pd/

�
p0

i � pi
� C o

�jp0 � pj�

D
d�1X

iD1

h @Nu
@pi
.p1; � � � ; pd/ � @Nu

@pd
.p1; � � � ; pd/

i�
p0

i � pi
� C o

�jp0 � pj�;

where we used the fact that
Pd

iD1.p
0

i �pi/ D 0 in order to derive the last equality. Identifying
with the expansion (5.71), we complete the proof. ut

Remark 5.68 Observe that, in contrast with our preliminary discussion in (5.70)
for functions of signed measures, the statement of Corollary 5.67 identifies the
vector ..ıu=ım/.

Pd
jD1 pjıej/.ei//i2f1;��� ;dg with ..@Nu=@pi/.p1; � � � ; pd//i2f1;��� ;dg up to

an additive constant. This is consistent with our previous observation of the fact that
ıu=ım is uniquely defined up to an additive constant when u is only defined on the
subset of probability measures. Recall Remark 5.46.

Connection with L-Derivatives
Notice that the derivatives computed above catch infinitesimal changes in the values
of the function u when its argument changes through infinitesimal variations of the
weights .pi/i. Indeed, the atoms .ei/i do not change when we work on a finite state
space. This is in sharp contrast with the rationale we gave for the L-differentiation
when we considered the empirical projections of a function of probability measures.
Indeed we showed that since the weights were fixed to 1=N and the locations of the
atoms were changing, L-differentials catch infinitesimal changes in the values of the
function u when its argument changes through infinitesimal variations of the atoms
.ei/i. As a result, L-differentiation of functions of probability distributions on a finite
state space is likely to be less straightforward. This is confirmed by putting together
the formulas obtained above and in the Subsection 5.4.1. If the L-derivative has to
involve the derivation of the functional derivative with respect to its argument, the
formula in Proposition 5.66 seems to indicate that this will be delicate since the
.ek/k are fixed.

Remark 5.69 In an attempt to illustrate this difficulty, we introduce a possible
lifting for a generic function on a finite set E. As above, we identify E with
the subset of Rd formed by the unit coordinate vectors e1 D .1; 0; � � � ; 0/, � � � ,
ed D .0; � � � ; 0; 1/ and for any probability measure p D p1ıe1 C � � � C pdıed on
E, with pi > 0 for all i 2 f1; � � � ; dg, we consider the R

d-valued random variable
X D .X1; � � � ;Xd/ defined by:
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X1 D 1fU16p1g;

X2 D 1fU1>p1;U26p2=.1�p1/g;

� � � � � � � � � � � �
Xd D 1fU1>p1;U2>p2=.1�p1/;��� ;Ud�1>pd�1=.1�p1�����pd�2/g

where .U1; � � � ;Ud�1/ are independent random variables uniformly distributed on
the unit interval Œ0; 1�. It is plain to check that, by construction, p D L.X/.

Observe that the vector X encodes the smallest index i 2 f1; � � � ; d �1g such that
Ui 6 pi=.1 � p1 � � � � � pi�1/.

Remark 5.69 provides an alternative road for proving Proposition 5.66, at least
when pi > 0 for all i 2 f1; � � � ; dg and when the assumption of Proposition 5.51 is
in force so that Œıu=ım�.�/.�/ is a potential of @�u.�/.�/.

Proof of Proposition 5.66 Using L-Derivatives.

First Step. We start with the case d D 2, and we use the same strategy as in the proof of
Proposition 5.51. For a parameter � > 0, we set:

8p 2 .0; 1/; w 2 R; �� .p;w/ D ˚
� p � w

�

�
e1 C



1 � ˚� p � w

�

��
e2;

where as usual ˚ denotes the cumulative distribution function of the standard normal
distribution N.0; 1/. Observe that:

8p 2 .0; 1/; w 2 R; @w�
� .p;w/ D � 1

�
'

� p � w

�

��
e1 � e2

� D �@p�
� .p;w/;

where as before ' denotes the density of the standard normal distribution. Then, for two p
and p0 in .0; 1/ and any random variable U uniformly distributed in Œ0; 1�, the mapping:

Œ0; 1� 3 t 7! ��t D ��
�
tp0 C .1 � t/p;U

� 2 L2.˝;F ;PIRd/

is differentiable, with:

d

dt

�
��t

� D p0 � p

�
'


 tp0 C .1 � t/p � U

�

��
e1 � e2

�

D �.p0 � p/@w�
�
�
tp0 C .1 � t/p;U

�
:

We deduce that:

u
�
L.��1 /

� � u
�
L.��0 /

�

D ��
p0 � p

�
E

Z 1

0

@�u
�
L.��t /

��
��t

� � @w�
�
�
tp0 C .1 � t/p;U

�
dt

D ��
p0 � p

�

�
Z 1

0

� Z 1

0

@�u
�
L.��t /

�

��

�
tp0 C .1 � t/p;w

�� � @w�
�
�
tp0 C .1 � t/p;w

�
dw

�
dt:
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Recalling that Œıu=ım�.�/.�/ is a potential of @�u.�/.�/, we get:

u
�
L.��1 /

� � u
�
L.��0 /

� D .p0 � p/
Z 1

0

�
ıu

ım

�
L.��t /

��
�� .tp0 C .1 � t/p; 0/

�

� ıu

ım

�
L.��t /

��
�� .tp0 C .1 � t/p; 1/

��
dt:

Letting � tend to 0, we get:

u
�
p0ıe1 C .1 � p0/ıe2

� � u
�
pıe1 C .1 � p/ıe2

�

D .p0 � p/
Z 1

0

�
ıu

ım


�
tp0 C .1 � t/p

�
ıe1 C �

1 � tp0 � .1 � t/p
�
ıe2

�
.e1/

� ıu

ım


�
tp0 C .1 � t/p

�
ıe1 C �

1 � tp0 � .1 � t/p
�
ıe2

�
.e2/

�
dt;

where we used the fact that, for p 2 .0; 1/,

lim
�&0

�� .p; 0/ D e1; lim
�&0

�� .p; 1/ D e2:

The proof is easily completed in that case.

Second Step. We now consider the case d > 3. We denote by Sı

d the open .d � 1/-
dimensional simplex of the d-tuples p D .p1; � � � ; pd/ 2 .0; 1/d such that

Pd
iD1 pi D 1.

For any � > 0, p 2 Sı

d and w 2 R
d�1, we then let:

��i .p;w/ D ��i
�
q.p/;w

�
; i 2 f1; � � � ; dg;

where, for q D .q1; � � � ; qd�1/ 2 .0; 1/d�1,

��1 .q;w/ D ˚
� q1 � w1

�

�
;

��i .q;w/ D
� i�1Y

jD1



1 � ˚� qj � wj

�

���
˚

� qi � wi

�

�
; i 2 f2; � � � ; d � 1g;

��d .q;w/ D
d�1Y

jD1



1 � ˚� qj � wj

�

��
;

and

q1.p/ D p1;

qi.p/ D pi

1 � .p1 C � � � C pi�1/
D pi

pi C � � � C pd
; i 2 f2; � � � ; d � 1g:
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Below, we use the convention qd.p/ D 1. Observe that:

8q 2 .0; 1/d�1; w 2 R
d�1; @w�

�
i .q;w/ D �@q�

�
i .q;w/:

Now, for any two p and p0 in Sı

d and any vector U D .U1; � � � ;Ud�1/ of d � 1 independent
random variables U1; � � � ;Ud�1 uniformly distributed on Œ0; 1�, the mapping:

Œ0; 1� 3 t 7! ��t D
dX

iD1

��i
�
tp0 C .1 � t/p;U

�
ei 2 L2.˝;F ;PIRd/

is differentiable, with:

d

dt
��t D

dX

iD1

�
@q�

�
i

�
q
�
tp0 C .1 � t/p

�
;U

� � d

dt

�
q
�
tp0 C .1 � t/p

�	�
ei:

We deduce that:

u
�
L

�
��1

�� � u
�
L

�
��0

��

D �
dX

iD1

E

Z 1

0

@�u
�
L

�
��t

���
��t

�

�
��
@w�

�
i

�
q
�
tp0 C .1 � t/p

�
;U

� � d

dt

�
q
�
tp0 C .1 � t/p

�	�
ei

�
dt;

so that:

u
�
L

�
��1

�� � u
�
L

�
��0

��

D �
dX

iD1

Z 1

0

Z

.0;1/d�1


@�u

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
��
@w�

�
i

�
tp0 C .1 � t/p;w

� � d

dt

�
q
�
tp0 C .1 � t/p

�	�
ei

��
dw dt:

Using once again the fact that Œıu=ım�.�/.�/ is a potential of @�u.�/.�/, and in particular the
relationship @xi Œıu=ım�.�/.x/ D @�u.�/.x/ � ei, we get:

u
�
L

�
��1

�� � u
�
L

�
��0

��

D �
Z 1

0

Z

.0;1/d�1

�
@w

�
ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

��

� d

dt

�
q
�
tp0 C .1 � t/p

�	�
dw dt:
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By Stokes’ theorem,

u
�
L

�
��1

�� � u
�
L

�
��0

��

D �
Z 1

0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�
dt;

(5.72)

where n.w/ denotes the outward unit normal vector to @.0; 1/d�1 at w and s denotes the
surface measure on @.0; 1/d�1.

Third Step. Now, for any t 2 .0; 1/,

lim
�&0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�

D
d�1X

iD1

dX

`D1

� Z

fwiD1g

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
`�1Y

kD1

1wk>qk.tp0
C.1�t/p/1w`6q`.tp0

C.1�t/p/

h d

dt

�
q
�
tp0 C .1 � t/p

�	 � ei

i
ds.w/

��

�
d�1X

iD1

dX

`D1

� Z

fwiD0g

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
`�1Y

kD1

1wk>qk.tp0
C.1�t/p/1w`6q`.tp0

C.1�t/p/

h d

dt

�
q
�
tp0 C .1 � t/p

�	 � ei

i
ds.w/

��
;

where we used the convention wd D 0 and the fact that, whenever wi D 0 (resp. 1), n.w/ D
�ei (resp. Cei) except at the vertices where the outward normal unit vector is not uniquely
defined. Above, we used two main ingredients. First, we used the fact that for any p 2 So

d
and P-almost surely:

lim
�&0

��i
�
tp0 C .1 � t/p;U

� D
� i�1Y

jD1

1fUj>qj.tp0
C.1�t/p/g

�
1fUi<qi.tp0

C.1�t/p/g:

By Remark 5.69, we deduce that for any t 2 Œ0; 1�, the random vector ��t converges in law toPd
jD1.tp

0

j C .1� t/pj/ıej as � tends to 0. Also, we used the fact that for w 6D q.tp0 C .1� t/p/,

the vector
Pd

jD1 �
�
j .tp

0 C .1 � t/p;w/ej converges to the vector e`, where ` is the smallest
index such that w` 6 q`.tp0 C .1 � t/p/.
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Recalling the convention qd.tp0 C .1� t/p/ D 1 and thus Œd=dt�.qd.tp0 C .1� t/p// D 0,
we deduce that for any t 2 .0; 1/:

lim
�&0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�

D
dX

`D1

X

i 6D`

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
h Y

k6`�1;k 6Di



1 � qk.tp0 C .1 � t/p/

�i
q`.tp0 C .1 � t/p/

d

dt

�
qi

�
tp0 C .1 � t/p

�	�

�
dX

`D1

dX

iD`C1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
h Y

k6`�1



1 � qk.tp0 C .1 � t/p/

�i
q`.tp0 C .1 � t/p/

d

dt

�
qi

�
tp0 C .1 � t/p

�	�

�
dX

`D1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
h Y

k6`�1



1 � qk.tp0 C .1 � t/p/

�i d

dt

�
q`

�
tp0 C .1 � t/p

�	�
;

which gives:

lim
�&0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�

D
dX

`D1

X

i6`�1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
h Y

k6`�1;k 6Di



1 � qk.tp0 C .1 � t/p/

�i
q`.tp0 C .1 � t/p/

d

dt

�
qi

�
tp0 C .1 � t/p

�	�

�
dX

`D1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
� Y

k6`�1



1 � qk.tp0 C .1 � t/p/

��
d

dt

�
q`

�
tp0 C .1 � t/p

�	�
:
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Now, we observe that:

� d

dt

� Y

k6`�1



1 � qk.tp0 C .1 � t/p/

��
q`

�
tp0 C .1 � t/p

��

D
`�1X

iD1

h Y

k6`�1;k 6Di



1 � qk.tp0 C .1 � t/p/

�i
q`

�
tp0 C .1 � t/p

� d

dt

�
qi

�
tp0C.1 � t/p

�	

�
h Y

k6`�1



1 � qk.tp0 C .1 � t/p/

�i d

dt

�
q`

�
tp0 C .1 � t/p

�	
;

so that:

lim
�&0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�

D �
dX

`D1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

� d

dt

� Y

k6`�1



1 � qk.tp0 C .1 � t/p/

��
q`

�
tp0 C .1 � t/p

���
:

Meanwhile, we also have, for any p 2 Sı

d :

h Y

k6`�1

�
1 � qk.p/

�i
q`.p/

D
h Y

k6`�1



1 � pk

1 � .p1 C � � � C pk�1/

�i p`
1 � .p1 C � � � C p`�1/

D
h Y

k6`�1

1 � .p1 C � � � C pk/

1 � .p1 C � � � C pk�1/

i p`
1 � .p1 C � � � C p`�1/

D p`;

where we used the convention that p0 D 0. So that, by differentiating the above identity along
the curve .0; 1/ 2 t 7! tp0 C .1 � t/p, we get:

d

dt

� Y

k6`�1



1 � qk.tp0 C .1 � t/p/

��
q`

�
tp0 C .1 � t/p

�� D p0

` � p`:
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We finally get:

lim
�&0

� Z

@.0;1/d�1

ıu

ım

�
L

�
��t

��
 dX

jD1

��j
�
tp0 C .1 � t/p;w

�
ej

�

�
h d

dt

�
q
�
tp0 C .1 � t/p

�	 � n.w/
i
ds.w/

�

D �
dX

`D1

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
p0

` � p`
��
:

Plugging into (5.72), we obtain:

u

 dX

iD1

p0

iıei

�
� u


 dX

iD1

piıei

�
D

dX

`D1

Z 1

0

�
ıu

ım


 dX

jD1

.tp0

j C .1 � t/pj/ıej

�
.e`/

�
p0

` � p`
��

dt;

from which the conclusion follows. ut

5.5 Convex Functions of Probability Measures

Most of the practical applications for which the theoretical results of the book
have been developed are concerned with optimizations of functions. So the fact
that sufficient conditions will often involve convexity assumptions should not come
as a surprise. For functions defined on flat linear spaces, the notion of convexity
based on the convexity of restrictions of the functions to lines, and the notion of
convexity based on the idea of graph sitting above the tangent hyperplane are easily
seen to be equivalent. This is not clear any longer for functions defined on curved
spaces like P2.Rd/. In most of the applications considered in this book, we shall use
convex functions whose graphs are above their tangents when the latter are defined
in terms of L-derivatives. So we first study this class of convex functions. For the
sake of completeness, we next define the class of functions which are convex when
restricted to geodesic curves, and we compare this form of convexity to the previous
one.

5.5.1 L-Convexity for Functions of Probability Measures

We first study the notion of convexity associated with the special notion of L-
differentiability introduced in this chapter. Using this notion of differentiability, the
notion of convexity coming from the above the tangent philosophy can be defined
as follows.
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Definition 5.70 A continuously differentiable function h from P2.Rd/ into R is said
to be L-convex (or just convex if the context is clear), if for every� and�0 in P2.Rd/,
we have:

h.�0/ � h.�/ � EŒ@�h.�/.X/ � .X0 � X/� > 0; (5.73)

whenever X and X0 are square integrable random variables with distributions �
and �0.

It is easily checked that the lifting of an L-convex function is convex on the
L2 space used for defining the lifting. The converse is true whenever the lifting is
continuously Fréchet differentiable.

More generally, a function h on R
n � P2.Rd/ which is jointly differentiable in

the above sense is said to be L-jointly convex, if for every .x; �/ and .x0; �0/ in
R

n � P2.Rd/, we have:

h.x0; �0/� h.x; �/� @xh.x; �/ � .x0 � x/�EŒ@�h.x; �/.X/ � .X0 � X/� > 0; (5.74)

whenever X and X0 are square integrable random variables with distributions � and
�0 respectively.

Example 1. Given a nondecreasing convex differentiable function g W R ! R

and a convex differentiable function � W R
d ! R, whose derivative is at most of

linear growth, the function P2.Rd/ 3 � 7! h.�/ D g.h�; �i/, is L-convex, where
h�; �i D R

Rd �.x/d�.x/.
Indeed, from the first example in Subsection 5.2.2, we know that the function h

is L-differentiable, with @�h.�/.x/ D g0.h�; �i/@�.x/, for � 2 P2.Rd/ and x 2 R
d.

Then, for any �;�0 2 P2.Rd/,

g
�h�; �0i� � g

�h�; �i� D g
�
EŒ�.X0/�

� � g
�
EŒ�.X/�

�
;

where X � � and X0 � �0. Since � is convex, it holds that �.X0/ > �.X/C @�.X/ �
.X0 � X/. Taking the expectation, we get EŒ�.X0/� > EŒ�.X/�CEŒ@�.X/ � .X0 � X/�.
Now, using the fact that g is nondecreasing and convex, we get:

g
�
EŒ�.X0/�

�
> g

�
EŒ�.X/�C EŒ@�.X/ � .X0 � X/�

�

> g
�
EŒ�.X/�

� C g0�
EŒ�.X/�

�
EŒ@�.X/ � .X0 � X/�

�
;

which completes the proof.



5.5 Convex Functions of Probability Measures 451

Example 2. Given a convex differentiable function g W R
d � R

d ! R, whose
derivative is at most of linear growth, the function:

P2.Rd/ 3 � 7! h.�/ D
Z

Rd

Z

Rd
g.x; x0/d�.x/d�.x0/

is L-convex. Indeed, we know from Example 4 in Subsection 5.2.2 that the function
h is L-differentiable, with:

@�h.�/.x/ D
Z

Rd
@xg.x; x0/d�.x0/C

Z

Rd
@x0g.x0; x/d�.x0/:

For �;�0 2 P2.Rd/, we consider a pair .X;X0/ of random variables constructed on
L2.˝;F ;PIRd/ with � and �0 as respective marginal distributions together with
the copy . QX; QX0/ constructed on the copy . Q̋ ; QF ; QP/ along the principles prescribed
in Example 3 in Subsection 5.2.2. Then,

h.�0/ D E QE�
g.X0; QX0/

	
; h.�/ D E QE�

g.X; QX/	:

Since g is convex, we have:

g.X0; QX0/ > g.X; QX/C @xg.X; QX/ � .X0 � X/C @x0g.X; QX/ � . QX0 � QX/:

In order to complete the proof, it suffices to take the expectation E QE and to notice
that:

E QE�
@xg.X; QX/ � .X0 � X/

	 D E

�� Z

Rd
@xg.X; x0/d�.x0/

�
� .X0 � X/

�
;

E QE�
@x0g.X; QX/ � . QX0 � QX/	 D QE

�� Z

Rd
@x0g.x0; QX/d�.x0/

�
� . QX0 � QX/

�

D E

�� Z

Rd
@x0g.x0;X/d�.x0/

�
� .X0 � X/

�
:

Example 3. As a particular case of Example 2, we may take g W R
d ! R a

convex differentiable function, whose derivative is at most of linear growth, then
the function:

P2.Rd/ 3 � 7! h.�/ D
Z

Rd

Z

Rd
g.x � x0/d�.x/d�.x0/

is L-convex.

A Sobering Counter-Example. We now prove that if �0 2 P2.E/ is fixed, the
square distance function:
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P2.E/ 3 � ! W2.�0; �/
2 2 R

may not be L-convex or even L-differentiable!
We first notice that if F W P2.Rd/ ! R is L-differentiable (resp. convex), then for

any R
d-valued square integrable random variables X0 and Y0, the function Œ0; 1� 3

t 7! F.L..1 � t/X0 C tY0// 2 R is differentiable (resp. convex).
Next, we remark that, if x1, x2, x3, and x4 are in R

d, � and � are defined by:

� D 1

2



ıx1 C ıx2

�
; and � D 1

2



ıx3 C ıx4

�
;

and X and Y are R
d-valued random variables such that L.X/ D � and L.Y/ D �,

then:

EŒjX � Yj2� D 1

2



jx1j2 C jx2j2 C jx3j2 C jx4j2

�

� �
x1 C x2

� � x4 � �
˛x1 C ˇx2

� � �
x3 � x4

�
;

(5.75)

where:

˛ D P
�
Y D x3jX D x1

	
; and ˇ D P

�
Y D x3jX D x2

	
;

so that:

W2.�; �/
2 D inf

˛;ˇ2Œ0;1�

�
1

2



jx1j2 C jx2j2 C jx3j2 C jx4j2

�
� .x1 C x2/ � x4

� .˛x1 C ˇx2/ � .x3 � x4/

�
:

(5.76)

Now, if x1 D .0; 0/, x2 D .2; 1/, x3 D .�2; 1/ and x4 D .0; 0/ and PŒX0 D x1;Y0 D
x3� D PŒX0 D x2;Y0 D x4� D 1=2, then, for any t 2 Œ0; 1�, we have:

�.t/ D 1

2



ı.�2t;t/ C ı.2�2t;1�t/

�
with �.t/ D L�

.1 � t/X0 C tY0
�
:

Finally, we set �0 D 1
2
.ı.0;0/ C ı.0;�2// and if X and Y are two other random

variables with distributions �0 and �.t/ respectively, using (5.75) we get:

EŒjX � Yj2� D 5t2 � 7t C 13

2
C 2ˇ.2t � 1/;

so that minimizing over ˇ we find:
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0.0 0.2 0.4 0.6 0.8 1.0

4.
1

4.
2

4.
3

4.
4

4.
5

t

di
st

^2

W2.�0; �
.t//2 D

8
ˆ̂<

ˆ̂:

5t2 � 3t C 9

2
if t 6 1

2

5t2 � 7t C 13

2
if t >

1

2
:

Clearly, the plot of the function t 7! W2.�0; �
.t//2 shows that the latter is not

convex, and not even differentiable because of the cusp at t D 1=2. This proves our
claims.

Of course, it should be noticed that, for any � 2 P2.Rd/, the map P2.Rd/ 3
� 7! W2.�; �/

2 is always convex for the structure inherited from the linear space of
measures. Precisely, for any t 2 Œ0; 1� and any �;�0 2 P2.Rd/,

W2

�
.1 � t/�C t�0; �

�2 6 .1 � t/W2.�; �/
2 C tW2.�

0; �/2:

The proof is readily seen. If � and � 0 belong to ˘
opt
2 .�; �/ and ˘

opt
2 .�0; �/

respectively, then the measure .1 � t/� C t� 0 belongs to ˘2..1 � t/� C t�0; �/
and

Z

Rd�Rd
jx � yj2d�

.1 � t/� C t� 0�.x; y/ D .1 � t/W2.�; �/
2 C tW2.�

0; �/2:

In the next paragraph, we discuss an even more striking example in which
convexity for the linear structure and L-convexity completely differ.



454 5 Spaces of Measures and Related Differential Calculus

An Intriguing Example
We return to the second example of L-convex function presented earlier. There
u.�/ D hg � �;�i, and we now choose the function g to be g.x/ D jxj2, so that
@h.x/ D 2x and @�u.�/.x/ D 4

R
Rd .x � y/d�.y/. Notice that:

u.�/ D E QEŒjX � QXj2�;

where X and QX are independent copies, constructed on .˝;F ;P/ and . Q̋ ; QF ; QP/
respectively, with the same distribution �. By developing the squared norm, we get
for any � > 0:

Qu.X C �Y/ D E QE�jX C �Y � . QX C � QY/j2	

D Qu.X/C 2� E QE�
.X � QX/ � .Y � QY/	 C �2E QE�jY � QYj2	

D Qu.X/C 4�E
�
.X � EŒX�/ � Y

	 C �2E QE�jY � QYj2	

D Qu.X/C �hDQu.X/;YiL2 C �2E QE�jY � QYj2	;

where we used Fubini’s theorem in order to pass from the second to the third line.
The second order term being nonnegative, we recover the fact that the function u is
convex in the sense of Definition 5.70.

We now explain why we find this example intriguing. The function u may be
rewritten:

u.m/ D
Z

Rd

Z

Rd
jx � yj2dm.x/ dm.y/; m 2 P2.Rd/:

Notice that, for any m;m0 2 P2.Rd/,

u
�
m0� D

Z

Rd

Z

Rd
jx � yj2dm.x/dm.y/

C 2

Z

Rd

Z

Rd
jx � yj2dm.x/d.m0 � m/.y/

C
Z

Rd

Z

Rd
jx � yj2d.m0 � m/.x/d.m0 � m/.y/:

(5.77)

Furthermore, the last integral may be simplified:
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Z

Rd

Z

Rd
jx � yj2d.m0 � m/.x/d.m0 � m/.y/

D
Z

Rd

Z

Rd
jxj2 d.m0 � m/.x/d.m0 � m/.y/

C
Z

Rd

Z

Rd
jyj2 d.m0 � m/.x/d.m0 � m/.y/

� 2
Z

Rd

Z

Rd
x � y d.m0 � m/.x/d.m0 � m/.y/

D �2
ˇ̌
ˇ̌
Z

Rd
x d.m0 � m/.x/

ˇ̌
ˇ̌
2

:

Obviously the absolute value of this expression is less than 2W2.m;m0/2. This says
that the absolute value of the last term in the right-hand side in (5.77) is less
than 2W2.m;m0/2. By Remark 5.47, this implies that u admits the following linear
functional derivative:

ıu

ım
.m/.x/ D 2

Z

Rd
jx � yj2dm.y/; .m; x/ 2 P2.Rd/ � R

d:

Now, using (5.77) to develop the function u near m along the ray from m to m0, we
find:

u
�
m C �.m0 � m/

�

D
Z

Rd

Z

Rd
jx � yj2 dm.x/dm.y/C 2�

Z

Rd

Z

Rd
jx � yj2 dm.x/d.m0 � m/.y/

C �2
Z

Rd

Z

Rd
jx � yj2 d.m0 � m/.x/d.m0 � m/.y/

D u.m/C �

Z

Rd

ıu

ım
.m/.y/ d.m0 � m/.y/ � 2�2

ˇ̌
ˇ̌
Z

Rd
x d.m0 � m/.x/

ˇ̌
ˇ̌
2

:

The second order correction is now negative, suggesting concavity instead of the
convexity argued earlier. The space of finite measures is flat, and this concavity can
be interpreted using the standard intuition associated with the shapes of surfaces
plotted above a flat space. However, the notion of convexity derived from an
expansion using L-derivatives cannot be interpreted in terms of Euclidean geometry.

We already encountered this example in Subsection 3.4.3. We shall appeal to it
again in the next subsection and in Section 5.7.1, when revisiting the uniqueness of
mean field game solutions.
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5.5.2 L-Convexity andMonotonicity

Already in Chapter 1, we used the notion of monotonicity in our first baby steps
toward the existence and uniqueness of Nash equilibria for mean field games. The
discussion of this notion culminated in Section 3.4 of Chapter 3 for general unique-
ness results, which we shall revisit in Subsection 5.7.1 below. In this subsection, we
derive a couple of simple properties relating monotonicity to convexity. First, we
define the notion of monotonicity for operators on Hilbert spaces (which will be L2-
spaces in all the examples considered below), which generalizes the Definition 3.31
of L-monotonicity:

Definition 5.71 A function U from a Hilbert space H into itself is said to be
monotone if, for all X;X0 2 H, we have:

˝
U.X/ � U.X0/; X � X0˛

H > 0;

where h�; �iH denotes the inner product in H.

Lemma 5.72 If a real valued function F on a Hilbert space H is Fréchet differen-
tiable with a continuous derivative, then:

F is convex ” DF is monotone:

Proof. If F is convex, then, for all X;X0 2 H, we have:

F.X0/ � F.X/ � hDF.X/;X0 � XiH > 0;

as well as:

F.X/ � F.X0/ � hDF.X0/;X � X0iH > 0;

and summing both inequalities gives the monotonicity condition for DF. Conversely, if DF
is assumed to be monotone, since F is continuously differentiable we have:

F.X0/ � F.X/ � hDF.X/;X0 � XiH

D
Z 1

0

˝
DF

�
.1 � t/X C tX0

�
;X0 � X

˛
Hdt � hDF.X/;X0 � XiH

D
Z 1

0

˝
DF

�
.1 � t/X C tX0

� � DF.X/;X0 � X
˛
Hdt

D
Z 1

0

˝
DF

�
.1 � t/X C tX0

� � DF.X/; .1 � t/X C tX0 � X
˛
H

dt

t
;

which is nonnegative because of the monotonicity assumption, proving that F is convex. ut
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The second result of this subsection makes the connection with the Lasry-Lions
monotonicity condition introduced in Chapter 3 to ensure uniqueness of mean field
game solutions. It is reminiscent of Example 5 of Section 5.2.2.

Lemma 5.73 If u is a real valued function on R
d � P2.Rd/ such that:

1. u is monotone in the sense of Definition 3.28;
2. for each fixed � 2 P2.Rd/, the function R

d 3 x 7! u.x; �/ is convex;
3. for each fixed � 2 P2.Rd/, the function R

d 3 x 7! u.x; �/ is differentiable and
the derivative R

d 3 x 7! @xu.x; �/ is at most of linear growth, uniformly in � in
bounded subsets of P2.�/;

then the function U from the Hilbert space L2.˝;F ;PIRd/ into itself defined by
U.X/ D @xu.X;L.X// is monotone.

Proof. For two random variables X and X0 in L2.˝;F ;PIRd/, we have:

˝
U.X/ � U.X0/;X � X0

˛
L2 D ˝

@xu
�
X;L.X/

� � @xu
�
X0;L.X0/

�
;X � X0

˛
L2 :

We use the convexity property:

u
�
X;L.X0/

�
> u

�
X0;L.X0/

� C ˝
@xu

�
X0;L.X0/

�
;X � X0

˛
L2 :

Similarly,

u
�
X0;L.X/

�
> u

�
X;L.X/

� C ˝
@xu

�
X;L.X/

�
;X0 � X

˛
L2 :

Summing term by term, we get:

u
�
X;L.X0/

� C u
�
X0;L.X/

�
> u

�
X0;L.X0/

� C u
�
X;L.X/

�

C ˝
@xu

�
X0;L.X0/

� � @xu
�
X;L.X/

�
;X � X0

˛
L2 :

Rearranging the terms and taking expectations, we get:

˝
@xu

�
X;L.X/

� � @xu
�
X0;L.X0/

�
;X � X0

˛
L2

> E

h
u
�
X;L.X/

� � u
�
X;L.X0/

�i � E

h
u
�
X0;L.X/

� � u
�
X0;L.X0/

�i

D
Z

Rd

�
u
�
x;L.X/

� � u
�
x;L.X0/

�	
d
�
L.X/ � L.X0/

	
.x/;

which is nonnegative by the monotonicity assumption. This completes the proof of the
monotonicity of U. ut

Remark 5.74 The converse of the implication proven in the above lemma is not
true, as shown by the following example. Indeed, consider the function
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u.x; �/ D 1

2

�
x � N��2

; x 2 R; � 2 P2.R/;

where N� denotes the mean of �. Then, @xu.x; �/ D x � N�; so that, with U.X/ D
@xu.X;L.X// D X � EŒX�, we get:

hU.X/ � U.X0/;X � X0iL2 D E

h�
U.X/ � U.X0/

�
.X � X0/

i

D E

h�
X � X0 � E.X � X0/

�
.X � X0/

i

D Var.X � X0/ > 0;

which proves that U is monotone as an operator on a Hilbert space. Moreover, u is
obviously convex in x for � fixed. However,

Z

R

h
u.x; �/ � u.x; �0/

i
d
�
� � �0�.x/ D 1

2

Z

R

h�
x � N��2 � �

x � N�0�2id
�
� � �0�.x/

D �� N� � N�0�
Z

R

�
x � N�C N�0

2

�
d
�
� � �0�.x/

D �� N� � N�0�2 6 0;

which shows that u is not monotone in the sense of Definition 3.28!

Remark 5.75 If the notion of convexity for smooth functions of measures is
understood with respect to the linear functional derivative, then convexity of a
function of measures should be defined by the property:

u.m0/ � u.m/ �
Z

Rd

ıu

ım
.m/.x/d.m0 � m/.x/ > 0;

for all m;m0 2 P2.Rd/. Then the result of Lemma 5.72 still holds in the sense
that u is convex in this sense if and only if Œıu=ım� is monotone in the sense of
Definition 3.28. The proof is exactly the same.

5.5.3 Displacement Convexity

We now introduce the notion of convexity most popular in the theory of optimal
transportation of measures, and we connect it to the notion of L-convexity studied
above.

Definition 5.76 A subset P of P2.Rd/ is said to be displacement convex if for any
�0 and �1 in P , any optimal transport plan � 2 ˘

opt
2 .�0; �1/, and any t 2 Œ0; 1�,

� ı .�t/
�1 2 P .
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Recall the definition (5.68) of the projection �t. With this definition of displacement
convex sets, the definition of displacement convex functions follows naturally.

Definition 5.77 If P � P2.Rd/ is displacement convex, a function h W P ! R

is said to be displacement convex (resp. strictly displacement convex) if for every
�0; �1 2 P and � 2 ˘ opt

2 .�0; �1/, the function Œ0; 1� 3 t 7! h.�ı .�t/
�1/ is convex

(resp. strictly convex). If 
 > 0, h is said to be 
-uniformly displacement convex if
for every �0; �1 2 P , we have:

h.� ı .�t/
�1/ 6 .1 � t/h.�0/C th.�1/ � 


2
t.1 � t/W2.�0; �1/

2: (5.78)

Notice that (5.78) can be proven by showing:

d2

dt2
h.� ı .�t/

�1/ > 
W2.�0; �1/
2:

We now revisit Example 3 introduced earlier in this section in the new framework
of displacement convexity.

Proposition 5.78 If g W R
d ! R is continuously differentiable and convex, then

the function P2.Rd/ 3 � 7! h.�/ D R
Rd

R
Rd g.x � y/d�.x/d�.y/ is displacement

convex. If g is strictly convex, then for every m 2 R
d, the restriction of h to the

set P .m/ D f	 2 P2.Rd/ W R
Rd x	.dx/ D mg is strictly convex. Finally, if g is 
-

uniformly convex (in the sense that the Hessian of g is bounded below by 
Id, with

 > 0, when g is twice differentiable), then the restriction of h to the set P .m/ is

-uniformly displacement convex.

Proof. The first claim is easy to check. Indeed, if �0; �1 2 P2.Rd/, � 2 ˘ opt
2 .�0; �1/, and

we use the notation �t for � ı .�t/
�1, then:

h.�t/ D
Z

Rd

Z

Rd
g.z � z0/d�t.z/d�t.z

0/

D
Z

.Rd/2

Z

.Rd/2
g
�
�t.x; y/ � �t.x

0; y0/
�
d�.x; y/d�.x0; y0/

D
Z

.Rd/2

Z

.Rd/2
g
�
.1 � t/.x � x0/C t.y � y0/

�
d�.x; y/d�.x0; y0/

6
Z

.Rd/2

Z

.Rd/2

�
.1 � t/g.x � x0/C tg.y � y0/

	
d�.x; y/d�.x0; y0/

D .1 � t/
Z

Rd

Z

Rd
g.x � x0/d�0.x/d�0.x

0/C t
Z

Rd

Z

Rd
g.y � y0/d�1.y/d�1.y

0/

D .1 � t/h.�0/C th.�1/:
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If we now assume that g is strictly convex, the above inequality can only be an equality if and
only if �˝2.f.x; y/; .x0; y0/ W x � y D x0 � y0g/ D �˝2.f.x; y/; .x0; y0/ W x � x0 D y � y0g/ D 1,
which is equivalent to the fact that there exists an element a 2 R

d such that �.f.x; y/I x�y D
ag/ D 1, which implies that �1 is merely a shift of �0. In that case, for each fixed m 2 R

d ,
the restriction of the function h to P .m/ is strictly convex.

Finally, if t 2 Œ0; 1� is fixed, the above computation shows that:

.1 � t/h.�0/C th.�1/ � h.�t/

D
Z

.Rd/2

Z

.Rd/2

�
.1 � t/g.x � x0/C tg.y � y0/

� g
�
.1 � t/.x � x0/C t.y � y0/

�	
d�.x; y/d�.x0; y0/:

For the sake of convenience, set x D x � x0 and y D y � y0. We have:

.1 � t/g.x/C tg.y/ � g
�
.1 � t/x C ty

�

D .1 � t/
�
g.x/ � g

�
.1 � t/x C ty

�	 C t
�
g.y/ � g

�
.1 � t/x C ty

�	

D .1 � t/
Z 1

0

rg
�
sx C .1 � s/..1 � t/x C ty/

� � �
x � ..1 � t/x C ty/

�
ds

C t
Z 1

0

rg
�
sy C .1 � s/..1 � t/x C ty/

� � �
y � ..1 � t/x C ty/

�
ds

D t.1 � t/
Z 1

0

Œrg
�
Œs C .1 � s/.1 � t/�x C .1 � s/ty

�

� rg
�
.1 � s/.1 � t/x C Œs C .1 � s/ty�

�
� � .x �y/ds

> t.1 � t/



2
jx �yj2;

because of the 
-uniform convexity of g. Consequently,

.1 � t/h.�0/C th.�1/ � h.�t/

> 


2
t.1 � t/

Z

.Rd/2

Z

.Rd/2
jx � x0 � .y � y0/j2d�.x; y/d�.x0; y0/:

Now, if we assume that
R
Rd xd�0.x/ D R

Rd yd�1.y/, we have:

Z

.Rd/2

Z

.Rd/2
jx � x0 � .y � y0/j2d�.x; y/d�.x0; y0/ D 2

Z

.Rd/2
jx � yj2d�.x; y/

D 2W2.�0; �1/
2:

This is exactly what we needed to complete the proof. ut

We close this subsection with a comparison of the notion of displacement
convexity and the concept of L-convexity introduced earlier.
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Proposition 5.79 Let us assume that the real valued function h is continuously L-
differentiable on P2.Rd/. Then h is L-convex if and only if it is displacement convex.

Proof. As usual we denote by Qh the lifting of h to an L2-space. Recall that saying that h is
L-convex means that the graph of Qh is above its tangent as given by its Fréchet derivative.
So if �0 and �1 are given in P2.Rd/, if � 2 ˘

opt
2 .�0; �1/, we denote by .X; Y/ a couple of

random variables in the L2-space over P2.Rd/ with joint distribution �, that is L.X; Y/ D �.
If we use the same notation �t D � ı .�t/

�1 for the optimal displacement from �0 to �1,
then �t D L.Xt/ with Xt D .1 � t/X C tY . Now:

h.�1/ � h.�0/ � d

dt
h.�t/

ˇ̌
ˇ
tD0

D h.�1/ � h.�0/ � d

dt
Qh.Xt/

ˇ̌
ˇ
tD0

D h.�1/ � h.�0/ � DQh.X/ � .Y � X/

D h.�1/ � h.�0/ � E
�
@�h.�0/.X/ � .Y � X/

	
:

From the definition of the L-convexity and the above the tangent formulation of displacement
convexity, we see that h is L-convex if and only if it is displacement convex. ut

Furthermore, if we assume that the Fréchet derivative of the lifting Qh is Lipschitz
continuous, we can use the result of Theorem 5.64 identifying the L-derivative and
the W-derivative (in the sense of Definition 5.62), namely that @�u.�/ D r�u.�/
for any � 2 P2.Rd/, and in this way, we can also identify the notion of displacement
convexity to the notion of convexity of functions whose graphs are above the
tangents when the latter are determined by the differential calculus on Wasserstein
space.

5.6 Itô’s Formula Along a Flow of Measures

The goal of this section is to provide a chain rule for the differentiation of functions
of t of the form .u.�t//t>0 when u is an R-valued smooth function defined on
the space P2.Rd/ of probability measures of order 2 on R

d, and � D .�t/t>0 is
the flow of marginal distributions of an R

d-valued Itô process X D .Xt/t>0. We
shall sometimes use the terminology Itô’s formula instead of chain rule because the
dynamics are driven by an Itô process.

5.6.1 Possible RoadMaps for the Proof

There are two obvious strategies to expand u.�t/ and derive an infinitesimal chain
rule for the differential in time.

For each given t > 0, a first strategy consists in dividing the interval Œ0; t� into
small intervals of length t D t=N for some integer N > 1, and writing the
difference u.�t/ � u.�0/ as a telescoping sum:
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u.�t/ � u.�0/ D
N�1X

iD0

�
u.�it/ � u.�.i�1/t/

	
:

One could then use an appropriate form of Taylor’s formula at the order 2
for functions of probability measures and expand each difference in the above
summation. Since the remainder terms are expected to be smaller than the step size
t, one should be able to derive the chain rule by collecting the terms and lettingt
tend to 0. This strategy fits the original proof of Itô’s formula in classical stochastic
differential calculus.

A different strategy consists in another approximation of the Itô dynamics.
Instead of discretizing in time as in the previous approach, it is tempting to reduce
the space dimension by approximating the flow � D .�t/t>0 by a flow of empirical
measures:

�
N�N

t D 1

N

NX

`D1
ıX`t

�

t�0
;

for N > 1, where X1 D .X1t /t>0, � � � , XN D .XN
t /t>0 are N independent copies of

X D .Xt/t>0 (constructed on an appropriate probability space .˝;F ;P/). Using the
empirical projection of u defined as the real valued function uN on R

Nd by:

uN.x1; � � � ; xN/ D u

�
1

N

NX

`D1
ıx`

�
; (5.79)

the strategy is then to expand uN.X1t ; � � � ;XN
t / using the standard version of Itô’s

formula in finite dimension, and try to control the limit when N tends to infinity.
Obviously, we should recover the same chain rule as the one obtained by the first
approach.

Whatever the strategy, it is necessary to pay special attention to the regularity
conditions needed to expand .u.�t//t>0 infinitesimally. As evidenced by (5.79), we
may expect that, not only, u has to be once differentiable in the measure argument,
but also to have second order derivatives in order to allow for the application of Itô’s
formula to the empirical projection uN . For instance, it would be quite tempting to
require the lifting Qu to be twice (continuously) Fréchet differentiable. However, as
we show in Remark 5.80 below, this is a very restrictive condition for our purpose.
We shall spend quite a bit of time in the next subsections identifying the right notion
of second order differentiability needed to perform the desired chain rule expansion.
See Remark 5.81 for a first account.

Remark 5.80 If u is a function on P2.Rd/ and if we assume that the lifting Qu on
some .˝;F ;P/ is twice continuously Fréchet differentiable at X, then the second
Fréchet derivative D2 Qu.X/ is a symmetric operator on L2.˝;F ;PIRd/, and we can
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use the quadratic form notation to denote the second order directional derivatives
D2 Qu.X/ŒY;Z� in the directions Y and Z of L2.˝;F ;PIRd/.

However, this notion of differentiability can have serious shortcomings for some
of our purpose. Indeed as we are about to show, there exist smooth functions h W
R

d ! R with compact supports for which the function Qu W L2.˝;F ;PIRd/ 3 X 7!
EŒh.X/� is not twice continuously Fréchet differentiable. For such a Qu, we already
know that DQu.X/ D @h.X/. Therefore, for any Y 2 L2.˝;F ;PIRd/,

lim
�!0

DQu.X C �Y/ � DQu.X/
�

D @2h.X/Y;

where @2h.X/Y is understood as .
Pd

jD1 @2xixj
h.X/Yj/16i6d, the limit being understood

pointwise or in L2.˝;F ;PIRd/ sense. Therefore, if it exists, the second order
Fréchet derivative must be given by the mapping L2.˝;F ;PIRd/ 3 X 7!
.L2.˝;F ;PIRd/ 3 Y 7! @2h.X/Y/. In particular, this second order Fréchet
derivative will be continuous if

lim
X0!L2X

sup
kYk261

k.@2h.X0/ � @2h.X//Yk2 D 0:

Now, choose d D 1, X � 0, PŒX0 D 1� D 1 � PŒX0 D 0� D � for some � 2 .0; 1/,
and assume that @2h equals to the identity on Œ0; 1�. Then,

sup
kYk261

k.@2h.X0/ � @2h.X//Yk2 D sup
kYk261

E
�
1fX0D1gY2

	1=2
:

Furthermore, if we choose Y D "�1=2X0, so that kYk2 D 1 and EŒ1fX0D1gY2� D 1,
we see that the above right-hand side cannot tend to 0 as " tend 0, while obviously,
X0 ! X in L2 as " tends to 0!

Remark 5.81 The first strategy mentioned above may appear to be most natural as
it mimics the proof of the standard Itô formula. However, the second approach seems
to be right in line with our desire to apply our tools to models of large populations
of individuals interacting through empirical measures. Indeed, the new perspective
provided by the second strategy of proof enlightens the choice we made for a form
of differential calculus on the space of probability measures. In any case, both
strategies require some smoothness conditions on u. As we just accounted for, u must
be twice differentiable (in some sense) in both cases. However, the strategy based
on approximations by empirical projections ends up being less demanding in terms
of assumptions. Indeed, by taking full advantage of the finite dimensional stochastic
calculus chain rule, it allows us to apply standard finite dimensional mollification
arguments, and in so doing, weaken the smoothness conditions required on the
coefficients. In particular, this approach works under a weak notion of second order
differentiability. See Theorem 5.99 below.
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5.6.2 Full C2-Regularity

We first establish the chain rule for .u.�t//t>0 when u satisfies a strong notion of C2
- regularity. We enumerate the properties we require for this notion to hold.

Assumption (Full C2 Regularity).

(A1) The function u is C1 in the sense of L-differentiation, and its first
derivative has a jointly continuous version P2.Rd/ � R

d 3 .�; v/ 7!
@�u.�/.v/ 2 R

d.
(A2) For each fixed � 2 P2.Rd/, the version of Rd 3 v 7! @�u.�/.v/ 2 R

d

used in (A1) is differentiable on R
d in the classical sense and its

derivative is given by a jointly continuous function P2.Rd/ � R
d 3

.�; v/ 7! @v@�u.�/.v/ 2 R
d�d.

(A3) For each fixed v 2 R
d, the version of P2.Rd/ 3 � 7! @�u.�/.v/ 2

R
d in (A1) is continuously L-differentiable component by component,

with a derivative given by a function .�; v; v0/ 7! @2�u.�/.v/.v0/ 2
R

d�d such that for any � 2 P2.Rd/ and any X 2 L2.˝;F ;PIRd/ with
L.X/ D � over a probability space .˝;F ;P/, @2�u.�/.v/.X/ gives the
Fréchet derivative at X of L2.˝;F ;PIRd/ 3 X0 7! @�u.L.X0//.v/,
for every v 2 R

d. Denoting @2�u.�/.v/.v0/ by @2�u.�/.v; v0/, the map
P2.Rd/ � R

d � R
d 3 .�; v; v0/ 7! @2�u.�/.v; v0/ is also assumed to be

continuous for the product topology.

Remark 5.82 The following observations may be useful.

1. Under (A1), there exists one and only one version of @�u.�/.�/ 2 L2.Rd; �IRd/

for each � 2 P2.Rd/ such that the mapping P2.Rd/ � R
d 3 .�; v/ 7!

@�u.�/.v/ 2 R
d is jointly continuous.

2. Under (A2), there exists one and only one version of @�u.�/.�/ for each � 2
P2.Rd/ such that Rd 3 v 7! @�u.�/.v/ is differentiable for each � 2 P2.Rd/

and the mapping P2.Rd/ � R
d 3 .�; v/ 7! @v@�u.�/.v/ is jointly continuous.

In particular, the values of the derivatives @�u.�/.v/ and @v@�u.�/.v/, for � 2
P2.Rd/ and v 2 R

d, are uniquely determined.
3. Under (A3), there exists one and only one continuous version of @�u.�/.�/ for

each � 2 P2.Rd/ such that for each fixed v 2 R
d, the mapping P2.Rd/ 3 � 7!

@�u.�/.v/ is L-continuously differentiable and the derivative P2.Rd/�R
d�R

d 3
.�; v; v0/ 7! @2�u.�/.v; v0/ is jointly continuous. Also, the values of @�u.�/.v/
and @2�u.�/.v; v0/ are uniquely determined.
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Proof.

First Step. The proof of the first claim in Remark 5.82 is straightforward. When the support
of � is the entire R

d, there exists at most one continuous version of the mapping R
d 3 v 7!

@�u.�/.v/ 2 R
d. By approximating any � 2 P2.Rd/ by a sequence of probability measures

with full supports, we deduce that @�u.�/.�/ is also uniquely determined when the mapping
.�; v/ 7! @�u.�/.v/ is jointly continuous, as required in (A1).

Second Step. The proof of the second claim is pretty similar. By the same argument as
above, we observe that the mapping .�; v/ 7! @v@�u.�/.v/ is uniquely determined under
(A2). Then, we use the fact that for any � 2 P2.Rd/, any v0 2 Supp.�/ and any v 2 R

d,

@vu.�/.v/ D @vu.�/.v0/C
Z 1

0

@v@�u.�/
�
tv C .1 � t/v0

� � .v � v0/dt:

The second term in the right-hand side is uniquely determined. Since @vu.�/.�/ is differen-
tiable, it is also continuous. Hence, the value of @vu.�/.v0/ is also uniquely determined since
v0 belongs to the support of �. As a result, the left-hand side is uniquely determined under
(A2).

Third Step. Proceeding as in the first two steps, we deduce that .�; v; v0/ 7! @2�u.�/.v; v0/

is uniquely determined under (A3). Then, we use the fact that for any v 2 R
d and any

� 2 P2.Rd/,

@�u
�
� � Nd.0; Id/

�
.v/ � @�u.�/.v/ D

Z 1

0

E
�
@2�u

�
L.X C tZ/

�
.v;X C tZ/ � Z

	
dt;

where Nd.0; Id/ denotes the d-dimensional Gaussian distribution with Id as covariance matrix
and X and Z are two independent random variables with values in R

d, with X � � and
Z � Nd.0; Id/. In the above equality, the right-hand side is uniquely determined while the
first term in the left-hand side is also uniquely determined since � � Nd.0; Id/ has the entire
R

d as support. We easily deduce that @�u.�/.v/ is uniquely determined. ut

As usual, the space P2.Rd/ is endowed with the 2-Wasserstein distance.

Definition 5.83 We say that a real valued function u on P2.Rd/ is fully C2 if it
satisfies the three conditions (A1), (A2) and (A3) of assumption Full C2 Regularity
above.

Notice that when the first derivative DQu exists and is Lipschitz, Proposition 5.36
(see also Corollary 5.38) guarantees the existence of a version P2.Rd/ � R

d 3
.�; v/ 7! @�u.�/.v/ which is Lipschitz in v uniformly in �. And if this function is
differentiable in � with a Lipschitz derivative, the same Proposition 5.36 guarantees
the existence of a regular version of the second derivative.

However, neither Proposition 5.36 nor Corollary 5.38 ensure the existence of
a jointly continuous version of @�u (and a fortiori of @v@�u or of @2�u). Indeed,
Corollary 5.38 just provides sufficient conditions ensuring that @�u is jointly
continuous at any point .�; v/ 2 P2.Rd/ � R

d such that v is in the support of �. In
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this regard, only Lemma 5.41 may be useful. So, the regularity conditions required
in the three bullet points of assumption Full C2 Regularity above appear as very
strong. Part of the objectives of this section will be precisely to relax them.

Remark 5.84 As announced in Subsection 5.3.4, we used the letter v (and not the
more common letter x) in order to denote the Euclidean variable in the derivative
@�u. This is especially useful when u is defined on the larger space Rd �P2.Rd/ (as
it will be often the case below) and thus reads u W Rd �P2.Rd/ 3 .x; �/ 7! u.x; �/:
In that case, our convention permits to distinguish @x@�u.x; �/.v/ (which is the
partial derivative of @�u with respect to the original Euclidean variable x) from
@v@�u.x; �/.v/ (which is the partial derivative of @�u with respect to the auxiliary
Euclidean variable appearing in the L-derivative).

Notation. Throughout the section, we use the following notations. For � 2
P2.Rd/, v; v0 2 R

d,

@v@�u.�/.v/ D


@vj Œ@�u.�/�i.v/

�

16i;j6d
;

@2�u.�/.v; v0/ D

�
@�Œ@�u.�/�i.v/

�
j.v

0/
�

16i;j6d
:

Moreover, for any y; z 2 R
d,

@v@�u.�/.v/y D
� dX

jD1
@vj Œ@�u.�/�i.v/yj

�

16i6d

2 R
d;

@2�u.�/.v; v0/y D
� dX

jD1

�
@�Œ@�u.�/�i.v/

�
j.v

0/yj

�

16i6d

2 R
d;

@v@�u.�/.v/ � .y ˝ z/ D
dX

i;jD1
@vj Œ@�u.�/�i.v/zjyi 2 R;

@2�u.�/.v; v0/ � .y ˝ z/ D
dX

i;jD1

�
@�Œ@�u.�/�i.v/

�
j.v

0/zjyi 2 R:

(5.80)

For a d � d matrix a, we shall also write:

@v@�u.�/.v/ � a D
dX

i;jD1
@vj Œ@�u.�/�i.v/ai;j D trace

˚
@v@�u.�/.v/a�

�
;

@2�u.�/.v; v0/ � a D
dX

i;jD1

�
@�Œ@�u.�/�i.v/

�
jai;j D trace

˚
@2�u.�/.v; v0/a�

�
:
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Connection with the Second-Order Differentiability of the Lifting
As we already alluded to in Remark 5.80, an assumption of the type “the lifting Qu
is twice continuously Fréchet differentiable” may not be well suited to our needs
for the purpose of the proof of the chain rule. However, whenever u is fully C2 and
its second-order derivatives satisfy suitable boundedness conditions, the first-order
Fréchet derivative DQu W L2.˝;F ;PIRd/ 3 X 7! @�u.L.X//.X/ 2 L2.˝;F ;PIRd/

is continuously Gâteaux differentiable:

Proposition 5.85 Assume that u is fully C2 and satisfies, for any compact subset
K � P2.Rd/:

sup
�2K

�
sup
v2Rd


ˇ̌
@v@�u.�/.v/

ˇ̌2 C
Z

Rd

ˇ̌
@2�u.�/.v; v0/

ˇ̌2
d�.v0/

��
< C1:

Then, for any X;Y 2 L2.˝;F ;PIRd/, the mapping:

R 3 t 7! DQu.X C tY/ 2 L2.˝;F ;PIRd/

is differentiable with:

d

dt jtD0
�
DQu.X C tY/

	

D @v@�u
�L.X/�.X/Y C

Z

Rd�Rd
@2�u

�L.X/�.X; x/y dP.X;Y/.x; y/;

the right-hand side being linear in the variable Y and defining a continuous function
from L2.˝;F ;PIRd/ � L2.˝;F ;PIRd/ into L2.˝;F ;PIRd/.

Proposition 5.85 allows us to say that DQu is continuously Gâteaux differentiable.

Remark 5.86 Observe that the linearity of the Gâteaux derivative in the direction
Y is best seen if we use a copy . Q̋ ; QF ; QP/ of the space .˝;F ;P/ and we write:

d

dt jtD0
�
DQu.X C tY/

	 D @v@�u
�L.X/�.X/Y C QE�

@2�u
�L.X/�.X; QX/ QY	

;

where, by convention, QX and QY are copies of X and Y on . Q̋ ; QF ; QP/.

Proof of Proposition 5.85. Consider X; Y 2 L2.˝;F ;PIRd/. Recalling that, for any t 2 R,
DQu.X C tY/ D @�u.L.X C tY//.X C tY/, it is clear, that for any realization ! 2 ˝, even if
we choose not to write ! like probabilists do:

d

dt

�
DQu.X C tY/

	

D @v@�u
�
L.X C tY/

�
.X C tY/Y C QE�

@2�u
�
L.X C tY/

�
.X C tY; QX C t QY/ QY	

:



468 5 Spaces of Measures and Related Differential Calculus

Under the growth conditions assumed in the statement of the proposition, the right-hand side
is in L2.˝;F ;PIRd/.

In order to prove that differentiability holds in L2.˝;F ;PIRd/, it suffices to prove that
the mapping:

�
L2.˝;F ;PIRd/

	2 3 .X; Y/ 7!
@v@�u

�
L.X/

�
.X/Y C QE�

@2�u
�
L.X/

�
.X; QX/ QY	 2 L2.˝;F ;PIRd/

is continuous. For two pairs .X; Y/ and .X0; Y 0/ in ŒL2.˝;F ;PIRd/�2, we have:

@v@�u
�
L.X0/

�
.X0/Y 0 C QE�

@2�u
�
L.X0/

�
.X0; QX0/ QY 0

	

� @v@�u
�
L.X/

�
.X/Y C QE�

@2�u
�
L.X/

�
.X; QX/ QY	

D
n
@v@�u

�
L.X0/

�
.X0/

�
Y 0 � Y

� C QE�
@2�u

�
L.X0/

�
.X0; QX0/

� QY 0 � QY�	o

C
n

@v@�u

�
L.X0/

�
.X0/ � @v@�u

�
L.X/

�
.X/

�
Y

C QE
h

@2�u

�
L.X0/

�
.X0; QX0/ � @2�u

�
L.X/

�
.X; QX/

� QY
io

D .i/C .ii/:

From the boundedness conditions imposed on @v@�u and on @2�u, it is clear that L2 �
lim.X0;Y0/!L2 .X;Y/

.i/ D 0. As for .ii/, observe that, as X0 !L2 X, the first term in .ii/
converges to 0 in probability. By a standard uniform integrability argument (using the fact
that @v@�u.L.X0//.�/ remains uniformly bounded as X0 !L2 X), the convergence also
holds in L2.˝;F ;PIRd/. Consider now the second term in .ii/. Observe that, without any
loss of generality, we may assume that L.X0/ and L.X/ belong to a compact subset K of
P2.Rd/. Then, for any R > 0, the function @2�u is bounded and uniformly continuous on
K � f.v; v0/ 2 R

dI jvj; jv0j 6 Rg. Consequently, by a new uniform integrability argument,
as X0 tends to X, we have:

E QE
hˇ̌
ˇ


@2�u

�
L.X0/

�
.X0; QX0/ � @2�u

�
L.X/

�
.X; QX/

� QY
ˇ̌
ˇ
2

1
fjX0

jCjQX0
jCjXjCjQXj 6 Rg

i
! 0:

In order to complete the proof, we notice that from Cauchy-Schwarz’ inequality and from
the a priori bound on @2�u, we have:

E

hˇ̌
ˇ QE

h

@2�u

�
L.X0/

�
.X0; QX0/ � @2�u

�
L.X/

�
.X; QX/

� QY1
fjX0

jCjQX0
jCjXjCjQXj>Rg

iˇ̌
ˇ
2i

6 E QE
h
j QYj21

fjX0
jCjQX0

jCjXjCjQXj>Rg

i
;

which tends to 0 as R tends to C1, uniformly in L.X0/;L.X/ 2 K. ut

The boundedness conditions imposed on the second-order derivatives of u in
the statement of Proposition 5.85 are rather strong. However, weaker forms of
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differentiability of the lifting Qu may be derived under weaker conditions. For
instance, the following result can be established using the arguments used in the
proof of Proposition 5.85.

Proposition 5.87 Assume that u is fully C2 and satisfies, for any compact subset
K � P2.Rd/,

sup
�2K

� Z

Rd

ˇ̌
@v@�u.�/.v/

ˇ̌2
d�.v/C

Z

Rd

Z

Rd
j@2�u.�/.v; v0/j2d�.v/d�.v0/

�
< 1:

Then, for any X 2 L2.˝;F ;PIRd/ and Y;Z 2 L1.˝;F ;PIRd/, the mapping:

R
2 3 .s; t/ 7! Qu.X C sY C tZ/;

is twice continuously differentiable. Moreover,

@2

@s@t j.s;t/D.0;0/
�Qu.X C sY C tZ/

	

D @

@s jsD0
˚
E

�
@�u

�L.X C sY/
�
.X C sY/ � Z

	�

D E

h
@v@�u

�L.X/�.X/ � Z ˝ Y
i

C E QE
h
@2�u

�L.X/�.X; QX/ � Z ˝ QY
i
;

where, as usual, we use the tilde notation to denote copies of the various objects at
hand.

Remark 5.88 Notice that, in the statement of Proposition 5.87, the variables Y and
Z are required to be in L1.˝;F ;PIRd/. Obviously, this requirement is stronger
than the condition used so far for defining the Gâteaux and Fréchet derivatives of
the lifting of u, which have been computed along directions in L2.˝;F ;PIRd/.

Observe also that we here address the differentiability of R 3 s 7! EŒDQu.X C
sY/.X C sY/ � Z� 2 R. This is in contrast with the statement of Proposition 5.85, in
which we addressed the differentiability of the mapping R 3 s 7! DQu.X C sY/.X C
sY/ 2 L2.˝;F ;PIRd/.

Symmetry of the Second-Order Derivatives. By Schwarz’ theorem, we can
exchange the roles of Y and Z in the above identity. With the same notation as
in the statement of Proposition 5.87, this shows that:

E

h
@v@�u

�L.X/�.X/ � Z ˝ Y
i

C E QE
h
@2�u

�L.X/�.X; QX/ � Z ˝ QY
i

D E

h
@v@�u

�L.X/�.X/ � Y ˝ Z
i

C E QE
h
@2�u

�L.X/�.X; QX/ � Y ˝ QZ
i
:

Choosing Y of the form " .X/ and Z of the form "�.X/, for two bounded Borel
measurable functions from R

d to R
d, with PŒ" D 1� D PŒ" D �1� D 1=2 and
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" independent of X, we get rid of the second-order derivatives @2�u in the above
identity, so that:

E

h
@v@�u

�L.X/�.X/ � �.X/˝  .X/
i

D E

h
@v@�u

�L.X/�.X/ �  .X/˝ �.X/
i
;

from which we deduce that @v@�u.L.X//.X/ takes values in the set of symmetric
matrices of size d. By continuity of @�u.�/.�/ in the variable v, where � D L.X/,
this shows that @v@�u.�/.v/ is a symmetric matrix for any v 2 R

d when the support
of� is the entire Rd. By continuity in�, we deduce that @v@�u.�/.v/ is a symmetric
matrix for any � 2 P2.Rd/ and any v 2 R

d.
Choosing Y and Z of the form  .X/ and �.X/ respectively, for two bounded

Borel measurable functions from R
d to R, we get, making use of the symmetry of

@v@�u:

E QE
h
@2�u

�L.X/�.X; QX/ � �.X/˝  . QX/
i

D E QE
h
@2�u

�L.X/�.X; QX/ �  .X/˝ �. QX/
i

D E QE
h
@2�u

�L.X/�. QX;X/ �  . QX/˝ �.X/
i

D E QE
h

@2�u

�L.X/�. QX;X/
�� � �.X/˝  . QX/

i
;

from which we deduce that @2�u.L.X//.X; QX/ D .@2�u.L.X//. QX;X//�. By the same
argument as above, we conclude that @2�u.�/.v; v0/ D .@2�u.�/.v0; v//�, for any
v; v0 2 R

d and � 2 P2.Rd/.
The following corollary summarizes our discussion.

Corollary 5.89 Assume that the function u is fully C2. Then, for any � 2 P2.Rd/

and any v; v0 2 R
d, @v@�u.�/.v/ is a symmetric matrix and @2�u.�/.v; v0/ D

.@2�u.�/.v0; v//�.

Proof. The proof is essentially identical to the above argument except for the integrability
assumptions on @v@�u and @2�u. However, we can repeat the argument when � has a bounded
support. Indeed, by continuity, @v@�u.�/ and @2�u.�/ are bounded on the support of �
whenever it is bounded, and the bounds remain uniform as long as the support of � remains
included in a prescribed bounded subset of Rd.

This shows that the symmetry relationships hold on the support of � when the latter
is bounded. By approximating any probability measure with R

d as support by a sequence of
probability measures with bounded supports, using the continuity of the derivatives, we show
that the symmetry relationships hold on the whole R

d when the support of � is the whole
R

d. By continuity again, we complete the proof as above in the case when the support of �
is merely a subset of Rd. ut
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Remark 5.90 Symmetry of @v@�u should not come as a surprise since Lemma 5.61
asserts that @�u is somehow a gradient.

Connection with the Differentiability of the Empirical Projection
Finally, we enlighten the notion of full C2-regularity by extending the connection
between the derivatives of uN and those of u given in Proposition 5.35 to the second
order. Recall that given a function u W P2.Rd/ ! R and an integer N > 1, the
empirical projection of u onto R

d was defined as the function:

uN W .Rd/N 3 .x1; � � � ; xN/ 7! u

�
1

N

NX

iD1
ıxi

�
:

Proposition 5.91 Assume that u is fully C2. Then, for any N > 1, the empirical
projection uN is C2 on .Rd/N and, for all x1; � � � ; xN 2 R

d,

@2xixj u
N.x1; � � � ; xN/

D 1

N
@v@�u

�
1

N

NX

`D1
ıx`

�
.xi/1iDj C 1

N2
@2�u

�
1

N

NX

`D1
ıx`

�
.xi; xj/:

(5.81)

Proof. The proof piggybacks on the computation of the first order derivatives given
in Proposition 5.35. When i 6D j, (5.81) can be obtained by applying the result of
Proposition 5.35 twice. A modicum of care is required when i D j as differentiability is
performed simultaneously in the directions of � and v in the first order derivative @�u.�/.v/.
However, the assumption of joint continuity of the second-order derivatives @2�u.�/.v/ and
@v@�u.�/.v; v0/ can be used to handle this minor difficulty. ut

5.6.3 Chain Rule Under Full C2-Regularity

Statement of the Chain Rule
On a complete probability space .˝;F ;P/ equipped with a right-continuous and
complete filtration F D .Ft/t>0, we now consider an R

d-valued Itô process:

dXt D btdt C �tdWt; X0 2 L2.˝;F ;P/; (5.82)

where W D .Wt/t>0 is an F-Brownian motion with values in R
d, and .bt/t>0

and .�t/t>0 are F-progressively measurable processes with values in R
d and R

d�d

respectively. We assume that they satisfy:

8T > 0; E

� Z T

0

�jbtj2 C j�tj4
�
dt

�
< C1: (5.83)
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The main result of this section is the form of Itô’s formula given by the following
chain rule.

Theorem 5.92 Under the above conditions, in particular assuming that (5.82)
and (5.83) hold, let us further assume that u is fully C2 and that, for any compact
subset K � P2.Rd/,

sup
�2K

� Z

Rd

ˇ̌
@v@�u.�/.v/

ˇ̌2
d�.v/

�
< C1: (5.84)

Then, if for any t > 0 we denote by �t the marginal distribution �t D L.Xt/ and we
let at D �t�

�
t , it holds that:

u.�t/ D u.�0/C
Z t

0

E
�
@�u.�s/.Xs/ � bs

	
ds

C 1

2

Z t

0

E
�
@v

�
@�u.�s/

�
.Xs/ � as

	
ds:

(5.85)

Remark 5.93 By symmetry, observe that:

@v@�u.�s/.Xs/ � as D trace
˚
@v@�u.�s/.Xs/a

�
s

� D trace
˚
@v@�u.�s/.Xs/as

�
:

Moreover, the lifting Qu of u being continuously Fréchet differentiable, the
bound (5.84) is obviously satisfied by @�u, namely:

sup
�2K

� Z

Rd

ˇ̌
@�u.�/.v/

ˇ̌2
d�.v/

�
< C1: (5.86)

Proof of the Chain Rule
The proof of Theorem 5.92 relies on a mollification argument of independent
interest.

Lemma 5.94 Let u W P2.Rd/ ! R be a fully C2 function and � W Rd ! R
d be a

smooth function with compact support (i.e., equal to 0 outside of a bounded subset
of Rd). Define the function u ? � on P2.Rd/ by:

�
u ? �

�
.�/ D u

�
� ı ��1�; � 2 P2.Rd/:

Then, u?� is fully C2. Moreover, u?� and its first and second order derivatives are
bounded and uniformly continuous on the whole space.

Proof. The lifted version of u ? � is nothing but Qu ı Q�, where Q� is defined as Q� W
L2.˝;F ;PIRd/ 3 X 7! Q�.X/ D �.X/. It is then plain to check that:
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@�
�
u ? �

	
.�/.v/

D

 dX

kD1

h
@�u

�
� ı ��1

��
�.v/

�i

k

@�k

@vi
.v/

�

iD1;��� ;d
;

@2�
�
u ? �

	
.�/.v; v0/

D

 dX

k;`D1

h
@2�u

�
� ı ��1

��
�.v/; �.v0/

�i

k;`

@�k

@vi
.v/

@�`

@vj
.v0/

�

i;jD1;��� ;d
;

@v@�
�
u ? �

	
.�/.v/

D

 dX

kD1

h
@�u

�
� ı ��1

��
�.v/

�i

k

@2�k

@vi@vj
.v/

C
dX

k;`D1

h
@v@�u

�
� ı ��1

��
�.v/

�i

k;`

@�k

@vi
.v/

@�`

@vj
.v/

�

i;jD1;��� ;d
:

(5.87)

Since � is compactly supported, the mapping P2.Rd/ 3 � 7! � ı ��1 has a relatively
compact range in P2.Rd/ by Theorem 5.5. By continuity of u and its derivatives, we deduce
that u? � and its first and second order derivatives are bounded and uniformly continuous on
the whole space. ut

As a consequence of Lemma 5.94, we get:

Lemma 5.95 Assume that the chain rule holds for any fully C2 function u with
bounded and uniformly continuous (with respect to the space and measure argu-
ments) first and second order derivatives. Then, it holds for any function u satisfying
the assumptions of Theorem 5.92.

Proof. Assume that the chain rule has been proved for any bounded and uniformly
continuous function u with bounded and uniformly continuous derivatives of orders 1 and
2. Then, for u satisfying the assumption of Theorem 5.92, we can apply the chain rule to
u ? �, for any � as in the statement of Lemma 5.94. In particular, we can apply the chain
rule to u ? �n for any n > 1, where .�n/n>1 is a sequence of compactly supported smooth
functions such that .�n; @�n; @

2�n/.v/ ! .v; Id; 0/ uniformly on compact sets as n ! 1,
where Id denotes the identity matrix of size d and 0 is here the zero of Rd�d. In order to pass
to the limit in the chain rule (5.85), the only thing we need to do is to verify some almost
sure (or pointwise) convergence in the underlying expectations, and to check that the relevant
uniform integrability arguments can be used.

Without any loss of generality, we can assume that there exists a constant C such that
j�n.v/j 6 Cjvj, j@�n.v/j 6 C and j@2�n.v/j 6 C for any n > 1 and v 2 R

d, and that
�n.v/ D v for any n > 1 and v with jvj 6 n. Then, for any � 2 P2.Rd/ and any random
variable X with � as distribution, it holds:

W2

�
� ı ��1

n ; �
�2 6 E

�j�n.X/ � Xj21fjXj>ng

	
6 CE

�jXj21fjXj>ng

	
;

which tends to 0 as n ! 1. By continuity of u and its partial derivatives, and by (5.87), it is
plain to deduce that almost surely,
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u ? �n.�/ ! u.�/; @�Œu ? �n�.�/.X/ ! @�u.�/.X/;

@v@�Œu ? �n�.�/.X/ ! @v@�u.�/.X/:
(5.88)

Moreover, we notice that:

sup
n>1

E

hˇ̌
@�Œu ? �n�.�/.X/

ˇ̌2 C ˇ̌
@v@�Œu ? �n�.�/.X/

ˇ̌2i
< 1: (5.89)

Indeed, by (5.87), it is enough to check that:

sup
n>1

� Z

Rd

ˇ̌
@�u

�
� ı ��1

n

�
.v/

ˇ̌2
d
�
� ı ��1

n

�
.v/

C
Z

Rd

ˇ̌
@v@�u

�
� ı ��1

n

�
.v/

ˇ̌2
d
�
� ı ��1

n

�
.v/

�
< 1;

which follows directly from (5.84) and (5.86), noticing that the sequence .� ı ��1
n /n>1 lives

in a compact subset of P2.Rd/ as it is convergent.
By (5.88) and (5.89) and by a standard uniform integrability argument, we deduce that,

for any t > 0 and any s 2 Œ0; t� such that EŒjbsj2 C j�sj4� < 1,

lim
n!C1

E
�
@�Œu ? �n�.L.X//.X/ � bs

	 D E
�
@�u.L.X//.X/ � bs

	
;

lim
n!C1

E
�
@v@�Œu ? �n�.L.X//.X/ � as

	 D E
�
@v@�u.L.X//.X/ � as

	
:

Recall that the above is true for any � 2 P2.Rd/ and any X 2 L2.˝;F ;PIRd/ with � as
distribution. We then choose X D Xs in the above limits. As the bound EŒjbsj2 C j�sj4� < 1
is satisfied for almost every s 2 Œ0; t�, we can pass to the limit inside the integrals appearing
in the chain rule applied to each of the .u ? �n/n>1. In order to pass to the limit in the chain
rule itself, we must exchange the pathwise limit which holds for almost every s 2 Œ0; t� and
the integral with respect to s. The argument is the same as in (5.89). Indeed, since the flow of
measures .L.Xs//06s6t is continuous for the 2-Wasserstein distance, the family of measures
..L.�n.Xs///06s6t/n>1 is relatively compact and thus:

sup
n>1

sup
s2Œ0;t�

E

hˇ̌
@�Œu ? �n�.L.Xs//.Xs/

ˇ̌2 C ˇ̌
@v@�Œu ? �n�.L.Xs//.Xs/

ˇ̌2i
< 1;

which is enough to prove that the functions:


Œ0; t� 3 s 7! E

h
@�Œu ? �n�

�
L.Xs/

�
.Xs/ � bs

i
C E

h
@v@�Œu ? �n�

�
L.Xs/

�
.Xs/ � as

i�

n>1

are uniformly integrable on Œ0; t�. ut

We now turn to the proof of Theorem 5.92. We just give a sketch as a complete
proof will be given for a refined version in Theorem 5.99 later in this section.

Proof of Theorem 5.92. By Lemma 5.95, we can replace u by u ? � for some compactly
supported smooth function � or equivalently, we can replace .Xt/t>0 by .�.Xt//t>0. In
other words, we can assume without any loss of generality that u and its first and second
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order derivatives are bounded and uniformly continuous, and that u and its derivatives are
uniformly continuous and that .Xt/t>0 is a bounded Itô process.

Repeating the proof of Lemma 5.95, we can even assume that .bt/t>0 and .�t/t>0 are
also bounded. Indeed, it suffices to prove the chain rule when .Xt/t>0 is driven by truncated
processes and pass to the limit along a sequence of truncations converging to .Xt/t>0.

Let us denote by ..X`t /t>0/`>1 a sequence of i.i.d. copies of .Xt/t>0. That is, for any ` > 1,

dX`t D b`t dt C �`t dW`
t ; t > 0;

where ..b`t ; �
`
t ;W

`
t /t>0;X

`
0/`>1 are i.i.d copies of ..bt; �t;Wt/t>0;X0/ constructed on an

extension of .˝;F ;P/. Recalling the definition of the flow of marginal empirical measures:

N�N
t D 1

N

NX

`D1

ıX`t
;

the classical Itô formula yields together with Proposition 5.91, P-a.s., for any t > 0:

uN
�
X1t ; � � � ;XN

t

� D uN
�
X10 ; � � � ;XN

0

�

C 1

N

NX

`D1

Z t

0

@�u
� N�N

s

�
.X`s / � b`s ds

C 1

N

NX

`D1

Z t

0

@�u
� N�N

s

�
.X`s / � �

�`s dW`
s

�

C 1

2N

NX

`D1

Z t

0

trace
˚
@v@�u

� N�N
s

�
.X`s /a

`
s

�
ds

C 1

2N2

NX

`D1

Z t

0

trace
˚
@2�u

� N�N
s

�
.X`s ;X

`
s /a

`
s

�
ds;

with a`s D �`s .�
`
s /
�. We take expectations on both sides of this equality and obtain, using

the fact that the stochastic integral has zero expectation thanks to the boundedness of the
coefficients:

E
�
u
� N�N

t

�	 D E
�
u
� N�N

0

�	 C 1

N

NX

`D1

E

� Z t

0

@�u
� N�N

s

�
.X`s / � b`s ds

�

C 1

2N

NX

`D1

E

� Z t

0

trace
h
@v@�u

� N�N
s

�
.X`s /a

`
s

i
ds

�

C 1

2N2

NX

`D1

E

� Z t

0

trace
h
@2�u

� N�N
s

�
.X`s ;X

`
s /a

`
s

i
ds

�
:

All the expectations are finite, thanks to the boundedness of the coefficients. Using the fact
that the processes ..a`s ; b

`
s ;X

`
s /06s6t/`2f1;��� ;Ng are i.i.d., we deduce that:
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E
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� N�N
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�	 D E
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� N�N
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�	 C
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io
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C 1

2N

Z t
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n
trace

h
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� N�N
s

�
.X1s ;X

1
s /a

1
s

io
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D E
�
u
� N�N

0

�	 C .i/C .ii/C .iii/:

In particular, because of the additional 1=N, .iii/ converges to 0. Moreover, we know
from (5.19) that, for any s 2 Œ0; t�,

P

h
lim

N!1

W2

� N�N
s ; �s

�2 D 0
i

D 1: (5.90)

This implies, together with the continuity of u with respect to the distance W2, that EŒu. N�N
t /�

(respectively EŒu. N�N
0 /�) converges to u.�t/ (respectively u.�0/). Combining the boundedness

and the uniform continuity of @�u on P2.Rd/ � R
d with the boundedness of .bs/06s6t, we

prove in the same way that .i/ converges to the first integral appearing in the right-hand side
of (5.85). Similar arguments lead to the convergence of .ii/. ut

5.6.4 Partial C2-Regularity

One of the most remarkable feature of equation (5.85) is the fact that the second
order derivative @2�u does not appear in the final form of the chain rule provided by
Theorem 5.92. Thus, it is quite natural to wonder if the chain rule could still hold
without assuming the existence of @2�u. Motivated by this quandary, we prove that
the chain rule does indeed hold under a weaker set of assumptions not requiring the
existence of @2�u. We shall refer to this set of assumptions as partial C2 regularity.

Assumption (Partial C2 Regularity). The lifting Qu is continuously Fréchet
differentiable, and, for any � 2 P2.Rd/, we can find a continuous version of
the mapping R

d 3 v 7! @�u.�/.v/ such that:

(A1) The mapping P2.Rd/ � R
d 3 .�; v/ 7! @�u.�/.v/ is locally bounded

(namely is bounded on any compact subset) and is continuous at any
.�; v/ such that v 2 Supp.�/.

(A2) For any � 2 P2.Rd/, the mapping R
d 3 v 7! @�u.�/.v/ 2 R

d is
continuously differentiable and its derivative is locally bounded and
is jointly continuous with respect to .�; v/ at any point .�; v/ such
that v 2 Supp.�/, the derivative being denoted by R

d 3 v 7!
@v@�u.�/.v/ 2 R

d�d.



5.6 Itô’s Formula Along a Flow of Measures 477

Above, we use the notation Supp.�/ for the support of �.

Definition 5.96 We say that u is partially C2 if it satisfies assumption Partial C2
Regularity.

Remark 5.97 Observe that, contrary to what we did in the Definition 5.83 of the
full C2 regularity, joint continuity of the first and second order derivatives is only
required at pairs .�; v/ such that v 2 Supp.�/. According to our discussion in
Corollary 5.38, this is much more satisfactory. Notice also that, on the support of �,
@�u.�/.�/ and @v@�u.�/.�/ are uniquely defined provided that they are continuous.

Remark 5.98 Following our discussion of the fully C2 case, we argue the symmetry
of @v@�u.�/.�/whenever u is partially C2. The only difficulty is that we cannot repeat
the proof of Corollary 5.89 (which applies to the fully C2 case) since it requires the
existence of @2�u.�/ explicitly.

We shall prove next (see the proof of Theorem 5.99 below) that whenever u,
@�u and @v@�u are bounded and uniformly continuous, there exists a family of
twice continuously differentiable functions .uN

n W .Rd/N ! R/n;N>1 together with
a sequence of reals ."p/p>1 converging to 0 as p tends to 1, such that, for any � 2
P2.Rd/ and any N-tuple .X1; � � � ;XN/ of independent random variables constructed
on some auxiliary probability space .˝;F ;P/, with common distribution �, it holds
for any i 2 f1; � � � ;Ng:

E

hˇ̌
N@2xixi u

N
n .X

1; � � � ;XN/ � @v@�u.�/.Xi/
ˇ̌i

6 "n C n"N :

Since uN
n is twice continuously differentiable, we have:

�
@2xixi u

N
n .X

1; � � � ;XN/
	� D @2xixi u

N
n .X

1; � � � ;XN/:

Therefore,

E

�ˇ̌
ˇ


@v@�u.�/.X1/

�� � @v@�u.�/.X1/
ˇ̌
ˇ
�

6 2
�
"n C n"N

�
:

Letting N and then n tend to 1, we deduce that @v@�u.�/.�/� D @v@�u.�/.�/ �-
almost everywhere and thus everywhere on the support of � since @v@�u.�/.�/ is
continuous.

This shows that @v@�u is symmetric whenever u and its derivatives are bounded
and uniformly continuous. In order to complete the proof, we need a new approxi-
mation argument. It relies on the fact that, as shown in the proof of Theorem 5.99,
for any � 2 P2.Rd/ and v 2 Supp.�/, @v@�u.�/.v/ is the limit of a sequence
.@v@�un.�/.v//n>1, where for any n > 1, un W P2.Rd/ ! R is partially C2 and un

and its derivatives are bounded and uniformly continuous. This completes the proof
that, for v 2 Supp.�/, @v@�u.�/.v/ is a symmetric matrix.
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Chain Rule Under Partial C2-Regularity
We now show that the chain rule still holds under the weaker assumption of partial
C2 regularity.

Theorem 5.99 Assume that u is partially C2 and that, for any compact subset K �
P2.Rd/, the bound (5.84) holds true. Then, the chain rule (5.85) holds for any Itô
process of the form (5.82) satisfying (5.83).

Remark 5.100 If we had to combine Remarks 5.97 and 5.98 in an informal
statement, we would say that “everything works exactly as in the fully C2 case
for @v@�u.�/.v/ as long as v is in the support of �.” Clearly, this suffices for our
purpose since, in Itô’s formula (5.85), the second-order derivative is only evaluated
at points .�; v/ such that v 2 Supp.�/.

Remark 5.101 Notice that, in (5.85), the mappings Œ0;T� 3 s 7! EŒ@�u.�s/.Xs/�bs�

and Œ0;T� 3 s 7! EŒ@v@�u.�s/.Xs/ � as� are measurable if we assume without any
loss of generality that as and bs are square integrable for any s 2 Œ0;T�. This follows
from the fact that for any t 2 Œ0;T�, the mappings:

L2.˝;F ;PIRd/ 3 X 7! E
�
@�u

�L.X/�.X/ � bt
	
;

L2.˝;F ;PIRd/ 3 X 7! E
�
@v@�u

�L.X/�.X/ � at
	
;

are continuous, which implies that:

E

h
@�u

�L.Xt/
�
.Xt/ � bt

i

D lim
N!1

N�1X

kD0
E

h
@�u

�L.XTk=N/
�
.XTk=N/ � bt

i
1Tk=N6t<T.kC1/=N

C E

h
@�u

�L.XT/
�
.XT/ � bT

i
1tDT ;

(5.91)

and similarly for .@v@�u.L.Xt//.Xt//06t6T and .at/06t6T .
The proof can be completed by noticing that for any Z 2 L2.˝;F ;PIRd/, the

mapping Œ0;T� 3 t 7! EŒZ � bt� is measurable by Fubini’s theorem. We deduce that
the right-hand side in (5.91) is measurable in t. Letting N tend to the infinity, we
complete the proof for Œ0;T� 3 t 7! EŒ@�u.L.Xt//.Xt/ � bt�. The same argument
works for Œ0;T� 3 t 7! EŒ@v@�u.L.Xt//.Xt/ � at�.

Proof of Theorem 5.99.

First Step. We start with the same mollification procedure as in the proof of Theorem 5.92,
see (5.87).

We consider again u?�. By local boundedness of @�u and @v@�u, the functions @�.u?�/
and @v@�.u ? �/ are bounded on the whole space. However, contrary to the argument in the
proof of Theorem 5.92, we cannot claim here that @�.u ? �/ and @v@�.u ? �/ are continuous
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on the whole space since @�u and @v@�u are only continuous at points .�; v/ such that v is
in the support of �. Still, from formulas (5.87), we notice that @�.u ? �/ and @v@�.u ? �/
are also continuous at points .�; v/ such that v is in the support of �, the reason being that
v 2 Supp.�/ implies �.v/ 2 Supp.� ı ��1/.

Next, we replace P2.Rd/ 3 � 7! .u ? �/.�/ by P2.Rd/ 3 � 7! .u ? �/.� � '/ where
' is the density of the standard normal (Gaussian) distribution Nd.0; Id/ on R

d, and � � ' is
the usual convolution product given by:

R
d 3 x 7!

Z

Rd
'.x � y/d�.y/:

Using the fact that a lifting of the map � 7! u.� � '/ is given by X 7! Qu.X C �/ where Qu is
the lifting of u and � is an Nd.0; Id/ Gaussian vector independent of X, we see that:

@�
�
u.� � '/	.v/ D

Z

Rd
@�u.� � '/.v � v0/'.v0/dv0:

Applying this formula to u ? � instead of u, we get:

@�
��

u ? �
�
.� � '/	.v/ D

Z

Rd
@�

�
u ? �

�
.� � '/.v � v0/'.v0/dv0:

Similarly, we get:

@v@�
��

u ? �
�
.� � '/	.v/ D

Z

Rd
@v@�

�
u ? �

�
.� � '/.v � v0/'.v0/dv0:

Since the support of � � ' is the whole R
d, for any v 2 R

d, .� � '; v/ is a continuity
point of both @�.u ? �/ and @v@�.u ? �/. Therefore, the mappings P2.Rd/ � R

d 3 .�; v/ 7!
@�.u ? �/.� � '/.v/ and P2.Rd/ � R

d 3 .�; v/ 7! @v@�.u ? �/.� � '/.v/ are continuous.
Since they are bounded, we deduce from Lebesgue’s theorem that the maps .�; v/ 7! @�Œ.u?
�/.���/�.v/ and .�; v/ 7! @v@�Œ.u?�/.���/�.v/ are continuous on the whole P2.Rd/�R

d.
Moreover, whenever ' is replaced by the density '� of Nd.0; �Id/ which converges to the

Dirac mass at 0 for the W2 distance when � & 0, it is easy to check that, for any � 2 P2.Rd/

and any v 2 Supp.�/, @�Œ.u ? �/.� � '�/�.v/ and @v@�Œ.u ? �/.� � '�/�.v/ converge to
@�.u?�/.�/.v/ and @v@�.u?�/.�/.v/. In particular, if Itô’s formula holds true for functionals
of the type P2.Rd/ 3 � 7! .u ? �/.� � '�/, it also holds true for functionals of the type
P2.Rd/ 3 � 7! .u ? �/.�/ and then for functionals of the type P2.Rd/ 3 � 7! u.�/ by
the same approximation argument as in the proof of Theorem 5.92, noticing in particular
that (5.88) remains true.

Therefore, without any loss of generality, we can assume that u and its first and partial
second order derivatives are bounded and continuous on the whole space. Then, repeating
once again the argument from Theorem 5.92, we can also assume that u and its derivatives
are uniformly continuous and that .Xt/t>0 is a bounded Itô process.

Second Step. As before, we use a mollification argument. For a smooth compactly supported
density � on R

d, and using the same notations as above, for each integer n > 1, we define the
mollified version uN

n of uN by:
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uN
n .x

1; � � � ; xN/ D nNd
Z

.Rd/N
uN.x1 � y1; � � � ; xN � yN/

NY

`D1

�
�
ny`

� NY

`D1

dy`

D E

�
u

�
1

N

NX

iD1

ıxi
�Yi=n

��
;

(5.92)

where Y1; � � � ; YN are N i.i.d. random variables with density �. From the estimate:

W2

�
1

N

NX

iD1

ıxi
�Yi=n;

1

N

NX

iD1

ıxi

�2
6 1

N

NX

iD1

ˇ̌ Yi

n

ˇ̌2
;

we deduce that:

W2

�
1

N

NX

iD1

ıxi
�Yi=n;

1

N

NX

iD1

ıxi

�2
6 C

n2
; (5.93)

the constant C depending upon the size of the support of �. Above and in the rest of the
proof, the constant C is a general constant which is allowed to increase from line to line.
Importantly, it does not depend on n or N.

Recalling that the function P2.Rd/�R
d 3 .�; x/ 7! @�u.�/.x/ is assumed to be bounded,

we deduce from Remark 5.27, 5.92, and 5.93 that:

ˇ̌
uN

n .x
1; � � � ; xN/ � uN.x1; � � � ; xN/

ˇ̌

D
ˇ̌
ˇ̌E

�
u

�
1

N

NX

iD1

ıxi
�Yi=n

�
� u

�
1

N

NX

iD1

ıxi

��ˇ̌
ˇ̌ 6 Cn�1:

(5.94)

Given a bounded random variable X with distribution �, we know from Theorem 5.8 that
EŒW2.�; N�N/2� tends to 0 as N tends to infinity, N�N denoting the empirical measure of a
sample of N independent random variables with the same law as X. Moreover, the rate
of convergence of .EŒW2.�; N�N/2�/N>1 towards 0 only depends upon the moments of X.
Together with (5.94), this implies that we can find a sequence ."`/`>1 independent of t,
converging to 0 as ` tends to 1, and such that, for any n;N > 1 and t > 0,

E

hˇ̌
uN

n .X
1
t ; � � � ;XN

t / � u
�
�t

�ˇ̌i

6 E

hˇ̌
uN

n .X
1
t ; � � � ;XN

t / � uN.X1t ; � � � ;XN
t /

ˇ̌i C E

hˇ̌
u
� N�N

t

� � u.�t/
ˇ̌i

6 "n C "N :

(5.95)

By boundedness of u, we deduce that, for any p > 1 and any t > 0,

E

hˇ̌
uN

n .X
1
t ; � � � ;XN

t / � u.�t/
ˇ̌p

i1=p
6 ".p/n C "

.p/
N ; (5.96)

for a sequence .".p/` /`>1 which tends to 0 as ` tends to 1.
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Using Proposition 5.91, we get:

@xi uN
n .x

1; � � � ; xN/ D nNd
Z

.Rd/N
@xi uN.x1 � y1; � � � ; xN � yN/

NY

`D1

�.ny`/
NY

`D1

dy`

D nNd

N

Z

.Rd/N
@�u

�
1

N

NX

`D1

ıx`�y`

�
.xi � yi/

NY

`D1

�.ny`/
NY

`D1

dy`

D 1

N
E

�
@�u

�
1

N

NX

`D1

ıx`�Y`=n

��
xi � Yi

n

��
:

Using the boundedness and the uniform continuity of @�u on the whole space and following
the proof of (5.95), we deduce that, for any t > 0,

E

hˇ̌
N@xi uN

n .X
1
t ; � � � ;XN

t / � @�u.�t/.X
i
t/

ˇ̌i
6 "n C "N : (5.97)

Again, by boundedness of @�u, we deduce that, for any p > 1 and any t > 0,

E

hˇ̌
N@xi uN

n .X
1
t ; � � � ;XN

t / � @�u.�t/.X
i
t/

ˇ̌p
i1=p

6 ".p/n C "
.p/
N : (5.98)

Now, we differentiate once more with respect to xi:

@2xixi u
N
n .x

1; � � � ; xN/

D nNdC1

N

Z

.Rd/N


@�u

�
1

N

NX

`D1

ıx`�y`

�
.xi � yi/

�
˝ r�.nyi/

Y

` 6Di

�.ny`/
NY

`D1

dy`;

the tensor product operating on elements of Rd. We then rewrite the derivative as:

N@2xixi uN
n .x

1; � � � ; xN/ D T1;Nn;i .x
1; � � � ; xN/C T2;Nn;i .x

1; � � � ; xN/;

with:

T1;Nn;i .x
1; � � � ; xN/

D nNdC1

Z

.Rd/N


@�u

�
1

N

X

` 6Di

ıx`�y` C 1

N
ıxi

�
.xi � yi/

�
˝ r�.nyi/

Y

` 6Di

�.ny`/
NY

`D1

dy`;
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and

T2;Nn;i .x
1; � � � ; xN/

D nNdC1

Z

.Rd/N

��
@�u

�
1

N

NX

`D1

ıx`�y`

�
� @�u

�
1

N

X

` 6Di

ıx`�y` C 1

N
ıxi

��
.xi � yi/

�

˝ r�.nyi/
Y

` 6Di

�.ny`/
NY

`D1

dy`:

By integration by parts (recall that Rd 3 x 7! @�u.�/.x/ is differentiable), we can split T1;Nn;i
into:

T1;Nn;i .x
1; � � � ; xN/ D T11;Nn;i .x1; � � � ; xN/C T12;Nn;i .x1; � � � ; xN/;

with:

T11;Nn;i .x1; � � � ; xN/ D nNd
Z

.Rd/N


@v@�u

�
1

N

NX

`D1

ıx`�y`

�
.xi � yi/

� NY

`D1

�.ny`/
NY

`D1

dy`

and

T12;Nn;i .x1; � � � ; xN/

D nNd
Z

.Rd/N


@v@�u

�
1

N

X

` 6Di

ıx`�y` C 1

N
ıxi

�

� @v@�u

�
1

N

NX

`D1

ıx`�y`

�
.xi � yi/

� NY

`D1

�.ny`/
NY

`D1

dy`:

The first term is treated as (5.95) and (5.97). Namely, we argue that, because of the uniform
continuity of @v@�u, we have for any t > 0:

E
�ˇ̌

T11;Nn;i .X1t ; � � � ;XN
t / � @v@�u.�t/.X

i
t/

ˇ̌	
6 "n C "N ; (5.99)

from which we get that for any p > 1 and any t > 0,

E
�ˇ̌

T11;Nn;i .X1t ; � � � ;XN
t / � @v@�u.�t/.X

i
t/

ˇ̌p	1=p 6 ".p/n C "
.p/
N : (5.100)

To handle the second term, we use once more the uniform continuity of @v@�u. Indeed, we
have:

jT12;Nn;i .x1; � � � ; xN/j 6 "N ;
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as implied by:

W2

�
1

N

X

` 6Di

ıx`�y` C 1

N
ıxi ;

1

N

NX

`D1

ıx`�y`

�2
6 1

N
jyij2 6 C

N
;

if, as in the definition of T12;Nn;i .x1; � � � ; xN/, the quantity nyi is restricted to the compact
support of �. This implies that, for any t > 0,

E

hˇ̌
T12;Nn;i .X1t ; � � � ;XN

t /
ˇ̌i

6 "N ; (5.101)

and consequently that, for any p > 1 and t > 0,

E

hˇ̌
T12;Nn;i .X1t ; � � � ;XN

t /
ˇ̌p

i1=p
6 "

.p/
N : (5.102)

We finally handle T2;Nn;i . Following the proof of (5.102), we have, for any p > 1 and any t > 0,

E
�ˇ̌

T2;Nn;i .X
1
t ; � � � ;XN

t /
ˇ̌p	1=p 6 n".p/N ; (5.103)

the additional n coming from the differentiation of the regularization kernel.

Third Step. In order to complete the proof, we apply Itô’s formula to .uN
n .X

1
t ; � � � ;XN

t //t>0
for given values of n and N. We obtain:

0 D uN
n

�
X1t ; � � � ;XN
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� � uN
n

�
X10 ; � � � ;XN
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0
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N
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X1s ; � � � ;XN
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� 1

N

NX

`D1
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0

@x`u
N
n

�
X1s ; � � � ;XN

s

� � �
�`s dW`

s

�

� 1

2N

NX

`D1

Z t

0

trace
�
@2x`x`u

N
n

�
X1s ; � � � ;XN

s

�
a`s

	
ds;

with a`s D �`s .�
`
s /
�. We compare with the expected result, by computing the difference:

N
t D u.�t/ � u.�0/ � 1

N

NX

`D1

Z t

0

@�u.�s/.X
`
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� 1

N

NX

`D1
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@�u.�s/.X
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�`s dW`
s

�

� 1

2N

NX

`D1

Z t

0

trace
�
@v@�u.�s/.X

`
s /a

`
s

	
ds:

(5.104)
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From (5.96), (5.98), (5.100), (5.102), and (5.103), we obtain, for any T > 0,

sup
06t6T

ˇ̌
E

�
N

t

	ˇ̌
6 "n C .1C n/"N ;

the sequence ."`/`>1 now depending on T . Using a straightforward exchangeability argument
and letting N tend to 1, we deduce that:

sup
06t6T

jtj 6 "n; (5.105)

where:

t D u.�t/ � u.�0/ �
Z t

0

E
�
@�u.�s/.Xs/ � bs

	
ds

� 1

2

Z t

0

E

h
trace

�
@v@�u.�s/.Xs/as

	i
ds:

Letting n tend 1 in (5.105), we conclude that  � 0, which completes the proof. ut

Extension of the Chain Rule
The chain rule formula (5.85) stated and proven in Theorem 5.92 and extended
in Theorem 5.99 was given for time independent functions u for the sake of
simplicity. Clearly a similar chain rule holds if u also depends upon time and
the state of a diffusion process. An even more general form will be proven in
Theorem 4.17 in Chapter 4 (second volume) to include conditional diffusions and
flows of conditional probability distributions. In order to avoid having to quote
ahead results from Chapter 4 (second volume), we state under the assumption below
a simpler form of this generalization which will be sufficient for the purpose of the
applications discussed in this chapter:

Assumption (Joint Chain Rule). For a given T > 0, the function u is a
continuous function from Œ0;T� � R

d � P2.Rd/ to R such that:

(A1) For any � 2 P2.Rd/, the function Œ0;T� � R
d 3 .t; x/ 7! u.t; x; �/ is of

class C1;2, the functions @tu, @xu and @2xxu being (jointly) continuous in
.t; x; �/.

(A2) For any .t; x/ 2 Œ0;T� � R
d, the function P2.Rd/ 3 � 7! u.t; x; �/ is

continuously L-differentiable and, for any � 2 P2.Rd/, we can find a
version of the mapping R

d 3 v 7! @�u.t; x; �/.v/ such that the mapping
Œ0;T� � R

d � P2.Rd/ � R
d 3 .t; x; �; v/ 7! @�u.t; x; �/.v/ is locally

bounded and is continuous at any .t; x; �; v/ such that v 2 Supp.�/.

(continued)
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(A3) For the version of @�u mentioned above and for any .t; x; �/ 2 Œ0;T� �
R

d � P2.Rd/, the mapping R
d 3 v 7! @�u.t; x; �/.v/ 2 R

d is
continuously differentiable and its derivative, denoted by R

d 3 v 7!
@v@�u.t; x; �/.v/ 2 R

d�d, is locally bounded and is jointly continuous
in .t; x; �; v/ at any point .t; x; �; v/ such that v 2 Supp.�/.

Proposition 5.102 If u satisfies assumption Joint Chain Rule and if for every
compact subset K � R

d � P2.Rd/, it holds that:

sup
.t;x;�/2Œ0;T��K

� Z

Rd

ˇ̌
@�u.t; x; �/.v/

ˇ̌2
d�.v/

C
Z

Rd

ˇ̌
ˇ@v@�u.t; x; �/.v/

ˇ̌
ˇ
2

d�.v/

�
< 1;

(5.106)

if we set �t D L.Xt/ for t 2 Œ0;T� for an Itô process .Xt/06t6T of the form (5.82)
satisfying (5.83) at time T, and if .�t/t2Œ0;T� is another d-dimensional Itô process
on the same filtered probability space .˝;F ;F;P/ with similar dynamics d�t D
�tdt C�tdWt, for two F-progressively measurable processes .�t/06t6T and .�t/06t6T

with values in R
d and R

d�d respectively such that:

P

� Z T

0

�j�tj C j�tj2
�
dt < 1

�
D 1;

then, P almost surely, for all t 2 Œ0;T�, it holds:

u.t; �t; �t/ D u.0; �0; �0/C
Z t

0

@xu.s; �s; �s/ � �
�sdWs

�

C
Z t

0



@tu.s; �s; �s/C @xu.s; �s; �s/ � �s

�
ds

C 1

2

Z t

0

trace
�
@2xxu.s; �s; �s/�s�

�
s

	�
ds

C
Z t

0

QE�
@�u.s; �s; �s/. QXs/ � Qbs

	
ds

C 1

2

Z t

0

QE�
trace

�
@v@�u.s; �s; �s/. QXs/ Q�s Q��s

�	
ds;

(5.107)

where the process . QXt; Qbt; Q�t/06t6T is a copy of the process .Xt; bt; �t/06t6T , on a
copy . Q̋ ; QF ; QP/ of the probability space .˝;F ;P/.
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Remark 5.103 Importantly, in full analogy with Remark 5.101, the processes

Œ0;T� �˝ 3 .s; !/ 7! QE�
@�u

�
s; �s.!/; �s

�
. QXs/ � Qbs

	
;

Œ0;T� �˝ 3 .s; !/ 7! QE�
trace

�
@v@�u

�
s; �s.!/; �s

�
. QXs/ Q�s Q��s

�	
;

are progressively measurable if we assume that as and �s�
�
s are square integrable

for any s 2 Œ0;T�. This is due to the fact that the functions:

Œ0;T� � R
d 3 .s; x/ 7! QE�

@�u
�
s; x; �s

�
. QXs/ � Qbs

	
;

Œ0;T� � R
d 3 .s; x/ 7! QE�

trace
�
@v@�u

�
s; x; �s

�
. QXs/ Q�s Q��s

�	
;

are jointly measurable. For the first of them, the measurability follows from the fact
that we can find a jointly measurable version of @�u W Œ0;T� � R

d � P2.Rd/ � R
d 3

.t; x; �; v/ 7! @�u.t; x; �/.v/, as explained in Subsection 5.3.4. For the second,
arguing the measurability is less straightforward. Still, we can use the fact (see
again Subsection 5.3.4) that the mapping:

Œ0;T� � R
d � L2. Q̋ ; QF ; QPIRd/ 3 .t; x; QX/
7! %d�d



@v@�u

�
t; x;L. QX/�. QX/

�
2 L2. Q̋ ; QF ; QPIRd�d/

is continuous for any compactly supported smooth function %d�d from R
d�d

into itself, see again Subsection 5.3.4. Then, the proof can be completed as in
Remark 5.101.

Proof of Proposition 5.102. As a preliminary remark, we observe that for any .t; x/ 2 Œ0; T��
R

d, the mapping P2.Rd/ 3 � 7! u.t; x; �/ is partially C2.
First Step. We first assume that the processes .bt/06t6T and .�t/06t6T have continuous paths
and satisfy:

E

h
sup
06t6T

�jbtj2 C j�tj4
�i
< 1:

We then define the function:

U.t; x/ D u.t; x; �t/; t 2 Œ0; T�; x 2 R
d:

Since the path Œ0; T� 3 t 7! �t 2 P2.Rd/ is continuous for the Wasserstein distance, U is
continuous. By a similar argument, U is twice differentiable in space and @xU and @2xxU are
jointly continuous in time and space.

We now prove that U is differentiable with respect to the time variable and that @tU is
continuous. For any t 2 Œ0; T/ and h > 0 such that t C h 2 Œ0; T� and for any x 2 R

d, we
have:
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U.t C h; x/ � U.t; x/

D



u
�
t C h; x; �tCh

� � u
�
t; x; �tCh

�� C



u.t; x; �tCh/ � u.t; x; �t/
�

D
Z tCh

t
@tu.s; x; �tCh/ds C

Z tCh

t
E

�
@�u.t; x; �s/.Xs/ � bs

	
ds

C 1

2

Z tCh

t
E

�
@v@�u.t; x; �s/.Xs/ � as

	
ds

D .i/C .ii/C .iii/;

where we used the chain rule for partially C2 functions. Using the joint continuity of @tu,
we clearly have limh&0.i/=h D @tu.t; x; �t/. Using the joint continuity of @�u (at points
.t; x; �; v/ such that v 2 Supp.�/) and the pathwise continuity of .bs/06s6T , we have, in
probability,

lim
s&t

@�u.t; x; �s/.Xs/ � bs D @�u.t; x; �t/.Xt/ � bt:

Obviously, by Cauchy-Schwarz’ inequality, we have, for any event A 2 F ,

E
�
1Aj@�u.t; x; �s/.Xs/ � bsj

	
6 E

�j@�u.t; x; �s/.Xs/j2
	1=2

E
�
1A sup

06s6T
jbsj2

	1=2
;

so that, by (5.106) the family .@�u.t; x; �s/.Xs//06s6T is uniformly integrable. We deduce
that:

lim
s&t

E
�
@�u.t; x; �s/.Xs/ � bs

	 D E
�
@�u.t; x; �t/.Xt/ � bt

	
;

and, subsequently:

lim
h&0

1

h
.ii/ D E

�
@�u.t; x; �t/.Xt/ � bt

	
:

Similarly, we also have:

lim
h&0

1

h
.iii/ D 1

2
E

�
@v@�u.t; x; �t/.Xt/ � at

	
;

showing that U is right-differentiable in time with:

@tU.t; x/ D @tu.t; x; �t/C E
�
@�u.t; x; �t/.Xt/ � bt

	 C 1

2
E

�
@v@�u.t; x; �t/.Xt/ � at

	
:

Using the same argument as the one used above to investigate the last two limits, we
can prove that @tU is jointly continuous in time and space. This shows that U is of class
C1;2 on Œ0; T� � R

d. Applying standard Itô’s formula to .U.t; �t/ D u.t; �t; �t//06t6T , we
obtain (5.107).

Second Step. We now get rid of the continuity assumption on the processes .bt/06t6T

and .�t/06t6T . Let ..bn
t /06t6T/n>0 and ..�n

t /06t6T/n>0 be sequences of F-progressively
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measurable processes such that, for each n > 0, .bn
t /06t6T and .�n

t /06t6T satisfy the
assumptions used in the first step, together with:

lim
n!1

E

Z T

0

�jbt � bn
t j2 C j�t � �n

t j4�dt D 0:

In particular, if for n > 0 and for t 2 Œ0; T�, we set:

Xn
t D X0 C

Z t

0

bn
s ds C

Z t

0

�n
s dWs;

and �n
t D L.Xn

t /, then we have:

lim
n!1

sup
06t6T

W2.�t; �
n
t /
2 D 0:

The goal is then to pass to the limit in (5.107). To do so, we use repeatedly (5.106) together
with the fact that the sequence ..�n

t /0�t�T/n�0 is relatively compact in P2.Rd/. By using a
localization sequence for the process .�s/06s6T , we may assume that it lives in a bounded
subset of R

d. Considering the penultimate line in (5.107), observe by Cauchy Schwarz’
inequality that:

sup
06t6T

ˇ̌
ˇ̌
Z t

0

QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbn

s

	
ds �

Z t

0

QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbs

	
ds

ˇ̌
ˇ̌

6 c

�
E

Z T

0

jbn
t � btj2dt

�1=2
:

Therefore, in order to pass to the limit (in the pathwise sense, uniformly in time) in the first
of the last two terms of (5.107), it suffices to focus on the limit of:

Z t

0

QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbs

	
ds:

Repeating the uniform integrability arguments used in the first step of the proof, we claim
that P almost surely, for almost every s 2 Œ0; T� (namely those for which EŒjbsj2� < 1),

lim
n!1

QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbs

	 D QE�
@�u.s; �s; �s/. QXs/ � Qbs

	
;

which, after we take advantage of the fact that .�t/06t6T takes values in a bounded subset of
R

d, of (5.106), and after we apply Lebesgue’s dominated convergence theorem, proves that
P almost surely:

lim sup
n!1

sup
06t6T

ˇ̌
ˇ̌
Z t

0

QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbs

	
ds �

Z t

0

QE�
@�u.s; �s; �s/. QXs/ � Qbs

	
ds

ˇ̌
ˇ̌

6 lim sup
n!1

Z T

0

ˇ̌
ˇ QE�
@�u.s; �s; �

n
s /.

QXn
s / � Qbs

	 � QE�
@�u.s; �s; �s/. QXs/ � Qbs

	ˇ̌
ˇds D 0:
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The last term of (5.107) is handled in the same way. The terms appearing in the second and
third lines of (5.107) are easily handled. Regarding the stochastic integral, it suffices to notice
that, for a universal constant C > 0,

E

�
sup
06t6T

ˇ̌
ˇ̌
Z t

0

@xu.s; �s; �
n
s / � .�sdWs/ �

Z t

0

@xu.s; �s; �s/ � .�sdWs/

ˇ̌
ˇ̌
2�

6 E

Z T

0

ˇ̌�
@xu.t; �t; �

n
t / � @xu.t; �t; �t/

�ˇ̌2j�tj2dt:

Since @xu is assumed to be (jointly) continuous and .�t/06t6T is assumed to take values in a
bounded subset of Rd, the right-hand side tends to 0 as n tends to 1, which completes the
proof. ut

5.6.5 Sufficient Condition for Partial C2-Regularity

The following set of assumptions provides a sufficient condition for C2 partial
regularity, which will be very useful in the sequel:

Assumption (Sufficiency for Partial C2). The function u W P2.Rd/ ! R is L-
continuously differentiable and, on an atomless probability space .˝;F ;P/,
its lifted version Qu W L2.˝;F ;PIRd/ 3 X 7! u.L.X// 2 R satisfies:

(A1) For any � 2 L2.˝;F ;PIRd/ and any continuously differentiable map
R 3 
 7! X
 2 L2.˝;F ;PIRd/ with the property that all the
.X
/
2R have the same distribution and that PŒjŒd=d
�X
j 6 1� D 1,
the mapping:

R 3 
 7! DQu.X
/ � � D E
�
@�u.L.X
//.X
/ � �	 2 R

is continuously differentiable, the derivative at 
 D 0 only depending
upon the family .X
/
2R through the values of X0 and Œd=d
�j
D0X
,
and being denoted by:

@2�;� Qu.X/ D d

d
 j
D0
�
DQu.X
/ � �	

;

whenever X D X0 and � D d

d
 j
D0
X
:

(A2) There exists a constant C such that, for any X, X0, � and � in
L2.˝;F ;PIRd/, with X � X0 and j�j 6 1 (with probability 1), it holds:

(continued)
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.i/ jDQu.X/ � �j C j@2�;�u.X/j 6 Ck�k2;

.ii/ jDQu.X/ � � � DQu.X0/ � �j C j@2�;� Qu.X/ � @2�;� Qu.X0/j
6 CkX � X0k2k�k2:

Actually, the fact that the derivative of DQu.X
/ � � at 
 D 0 only depends on X0

and � may be seen as a consequence of (A2). Indeed, by the Lipschitz property .ii/,
it holds that jDQu.X
/ � �� DQu.X0 C 
�/ � �j � kX
 � X0 � 
�k2k�k2 D o.
/k�k2,
which proves that Œd=d
�j
D0DQu.X
/ � � D Œd=d
�j
D0DQu.X0 C 
�/ � �.

Theorem 5.104 Under assumption Sufficiency for Partial C2, u is partially C2
and, for any compact subset K � P2.Rd/, we have:

sup
�2K

� Z

Rd

ˇ̌
@v@�u.�/.v/

ˇ̌2
d�.v/

�
< 1;

so that the chain rule applies to any Itô process satisfying (5.83).

Remark 5.105 The thrust of Theorem 5.104 is to focus on the smoothness of the
mapping R

d 3 v 7! @�u.�/.v/ independently of the smoothness in the direction �
by restricting the test random variables .X
/
2R to an identically distributed family.
One of the issue in the proof is precisely to construct such a family of test random
variables.

As a warm-up to the proof of Theorem 5.104, we discuss what Proposition 5.36
says in the framework of Theorem 5.104. Rewriting DQu.X/�� as EŒ@�u.L.X//.X/���,
we can write, for any X;X0 2 L2.˝;F ;PIRd/ with L.X/ D L.X0/ D � for some
� 2 P2.Rd/,

ˇ̌
ˇE

��
@�u.�/.X0/ � @�u.�/.X/

� � �	ˇ̌
ˇ 6 CE

�jX � X0j2	1=2E�j�j2	1=2;

which implies that, for any � 2 P2.Rd/, we can find a Lipschitz continuous version
of the map R

d 3 x 7! @�u.�/.x/, with C as Lipschitz constant (in particular,
the Lipschitz property holds true uniformly with respect to �). Therefore, for any
X 2 L2.˝;F ;PIRd/ with X � �, j@�u.�/.0/j 6 CEŒjXj� C EŒj@�u.�/.X/j�, the
last term being bounded thanks to .i/. Obviously the right-hand side is uniformly
bounded for � in bounded subsets of P2.Rd/, from which we deduce that @� is
locally bounded.

Actually, on the model of Corollary 5.38, we can say a little bit more. Indeed, by
the same arguments as in the proof of Corollary 5.38, we can prove that the function
P2.Rd/ � R

d 3 .�; v/ 7! @�u.�/.v/ is jointly continuous at any point .�; v/ such
that v 2 Supp.�/.
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We now proceed with the proof of Theorem 5.104. It relies on two main
ingredients. The first one is a new mollification argument. The second is a coupling
argument which permits to choose relevant versions of the random variables along
which the differentiation is performed.

Proof of Theorem 5.104.

First Step. Given a distribution� and a random variable X with distribution�, we introduce,
for each integer n > 1, the mollified version �n of � defined as:

�n D � � 'd;n;

where the function 'd;n denotes the density of the mean-zero d-dimensional Gaussian
distribution Nd.0; .1=n/Id/ with covariance matrix .1=n/Id , where as usual Id is the identity
matrix of dimension d. We then define the mapping:

Vn.�; v/ D
Z

Rd
@�u

�
�n

�
.v � x/nd=2'd

�
n1=2x/dx; (5.108)

where the function 'd D 'd;1 denotes the density of the standard d-dimensional Gaus-
sian distribution. The mapping Vn is given by the convolution of @�u.�n/.�/ with the
measure Nd.0; .1=n/Id/. According to the warm-up preceding the proof, the sequence
.@�u.�n/.0//n>1 is bounded and the functions .@�u.�n/ W R

d 3 v 7! @�u.�n/.v/ 2
R

d/n>1 are uniformly Lipschitz continuous. Thus, the sequence of functions .Vn.�; �//n>1 is
relatively compact for the topology of uniform convergence on compact subsets. Any limit
must coincide with @�u.�/.�/ at points v in the support of � or, put it differently, any limit
provides a version of @�u.�/.�/ which is Lipschitz continuous, the Lipschitz constant being
uniform in �. When � has full support, the sequence .Vn.�; �//n>1 converges to the unique
continuous version of @�u.�/, the convergence being uniform on compact subsets.

Let Xn D X C n�1=2G, where G is an Nd.0; Id/ Gaussian variable independent of X, so
that L.Xn/ D �n. We then observe that, for any R

d-valued square integrable random variable
� such that the pair .X; �/ is independent of G,

DQu.Xn/ � � D E
�
@�u.�n/.Xn/ � �	

D E

�� Z

Rd
@�u.�n/.X � x/nd=2'd.n

1=2x/dx

�
� �

�

D E
�
Vn.�;X/ � �	

:

(5.109)

The main advantage of this formula is the fact that the mapping R
d 3 v 7! Vn.�; v/ is

differentiable with respect to v, which is not known for Rd 3 x 7! @�u.�/.v/ at this stage of
the proof.

Second Step. We construct now, independently of the measure � considered above, a family
.Y
/
2R that is differentiable with respect to 
 in L2.˝;F ;PIR/ but which is, at the same
time, invariant in law, all the Y
, for 
 2 R, being uniformly distributed on Œ��=2; �=2�.

Given two independent N.0; 1/ random variables Z and Z0, for any 
 2 R, we set:

Z
 D cos.
/Z C sin.
/Z0; Z0;
 D � sin.
/Z C cos.
/Z0:
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For any 
 2 R, the pair .Z
; Z0;
/ has the same law as .Z; Z0/ (because of the invariance of
the Gaussian distribution by rotation). Next, we define the random variables Y
 by:

Y
 D arcsin
� Z

p
.Z
/2 C .Z0;
/2

� D arcsin
� Z

p

Z2 C .Z0/2

�
:

For any 
 2 R, Y
 is uniformly distributed over Œ��=2; �=2�. Pointwise (that is to say for
! 2 ˝ fixed), the mapping R 3 
 7! Y
 is differentiable at any 
 such that Z0;
 6D 0.
Noticing that Œd=d
�Z
 D Z0;
 pointwise, we get in that case:

d

d

Y
 D Z0;


p
Z2 C .Z0/2



1 � .Z
/2

.Z
/2 C .Z0;
/2

�
�1=2 D sign

�
Z0;


�
:

On the event fZ0;0 6D 0g D fZ0 6D 0g, which is of probability 1, the set of 
’s such that
Z0;
 D 0 is locally finite. The above derivative being bounded by 1, this says that pointwise,
the mapping R 3 
 7! Y
 is 1-Lipschitz continuous. Therefore, the random variables
.Y
 � Y0/=
, 
 6D 0, are bounded by 1. Moreover, still on the event fZ0 6D 0g, the above
computation shows that:

lim

!0

Y
 � Y0



D sign

�
Z0

�
: (5.110)

Therefore, by Lebesgue’s dominated convergence theorem, the mapping R 3 
 7! Y
 2
L2.˝;F ;PIR/ is differentiable at 
 D 0 with sign.Z0/ as derivative. In the sequel, we will
denote Y0 by Y .

Actually, by a rotation argument, differentiability holds at any 
 2 R, with Œd=d
�Y
 D
sign.Z0;
/. It is then clear that R 3 
 7! sign.Z0;
/ 2 L2.˝;A;PIRd/ is continuous. Indeed,
the path R 3 
 7! Z0;
 is continuous. Composition by the function sign preserves continuity
since, for any 
 2 R, the set of zeroes of Z0;
 is of zero probability.

Third Step. Assume now that � is a given distribution and that X is a random variable with
distribution �, X being independent of the pair .Z; Z0/. Given the same .Y
/
2R as above,
for ı > 0, we let:

X
 D .ı � Y
/e C X;

for each 
 2 R, where e is an arbitrary deterministic unit vector in R
d. We omit the

dependence upon ı in the notation X
. The mapping R 3 
 7! X
 is continuously
differentiable in L2.˝;F ;PIRd/, with:

d

d
 j
D0
X
 D .ı � sign.Z0//e:

Going back to (5.109), we get, for another random variable � 2 L2.˝;F ;PIRd/, with
.X; �; Z; Z0/ independent of G,

DQu



X
 C 1p
n

G
�

� � D E
�
Vn

�
L.X
/;X


� � �	
:
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As the mapping R 3 
 7! X
 is continuously differentiable in L2.˝;F ;PIRd/ and since
all the random variables .X
/
2R have the same distribution, we deduce from (A1) in the
standing assumption that (for .X; �; Z; Z0/ independent of G):

@2sign.Z0/e;� Qu



X C ıYe C 1p
n

G
�

D d

d
 j
D0

h
DQu



X
=ı C 1p

n
G

�
� �

i

D 1

ı

d

d
 j
D0

h
DQu



X
 C 1p

n
G

�
� �

i

D E

h
trace

n
@vVn



L

�
X C ıYe

�
;X C ıYe

��
.sign.Z0/�/˝ e

�oi
:

Observe in the above formula that @vVn takes values in the set of symmetric d � d matrices
since @�u.�/.�/ derives from a potential for all � 2 P2.Rd/, see Proposition 5.50.

Noticing that the random variable jsign.Z0/j is equal to 1 almost surely, we can replace �
by sign.Z0/� with .X; �/ independent of .Z; Z0/, so that:

@2sign.Z0/e;sign.Z0/� Qu



X C ıYe C 1p
n

G
�

D E

h
trace

n
@vVn



L

�
X C ıYe

�
;X C ıYe

��
�˝ e

�oi
:

Finally, we let:

Wn;ı.�; v/ D
Z

R

@vVn
�
� � pı; v C ıre

�
p.r/dr; (5.111)

where p is the uniform density on Œ��=2; �=2� and pı.�/ D p.�=ı/=ı is the uniform density
on Œ�ı�=2; ı�=2�. As usual, � � pı is an abbreviated notation for denoting the convolution
of � with the uniform distribution on the segment Œ�.ı�=2/e; .ı�=2/e�. Since the pair .X; �/
is independent of .Z; Z0/, we end up with the duality formula:

@2sign.Z0/e;sign.Z0/� Qu



X C ıYe C 1p
n

G
�

D E

h
trace

n
Wn;ı.�;X/

�
�˝ e

�oi
: (5.112)

By the smoothness assumption on @2�;� Qu (see (ii) in (A2) in assumption Sufficiency for
Partial C2), we deduce that, for another X0, with distribution � as well, such that the triple
.X;X0; �/ is independent of .Z; Z0/ and the 5-tuple .X;X0; �; Z; Z0/ is independent of G,

ˇ̌
ˇE

h
trace

n�
Wn;ı.�;X/�Wn;ı.�;X0/

��
�˝e

�oiˇ̌
ˇ 6 CE

�jX �X0j2	1=2E�j�j2	1=2; (5.113)

the constant C being independent of �, ı and n. The above is true for any �fX;X0g-
measurable � 2 L2.˝;F ;PIRd/. We deduce that, for any other e0 2 R

d with je0j D 1,
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E

hˇ̌
ˇtrace

n�
Wn;ı.�;X/ � Wn;ı.�;X0/

��
e0 ˝ e

�oˇ̌
ˇ
2i

6 CE
�jX � X0j2	1=2:

By Proposition 5.36, this says that Rd 3 v 7! tracef.Wn;ı.�; v//.e0 ˝ e/g has a C-Lipschitz
continuous version.

Fourth Step. From (5.108) and (5.111), we know that:

Wn;ı.�; v/ D
Z

R

@vVn
�
� � pı; v C ıre

�
p.r/dr

D n.dC1/=2

Z

R�Rd
@�u

�
� � pı � Nd.0;

1
n Id/;w C ıre

�
p.r/@'d

�
n1=2.v � w/

�
drdw:

Since � � Nd.0; .1=n/Id/ has full support, we know that @�u.� � pı � Nd.0; .1=n/Id/; �/
converges towards @�u.� � Nd.0; .1=n/Id/; �/ as ı tends to 0, uniformly on compact subsets
(see the warm-up). We deduce that, as ı tends to 0, Wn;ı.�; v/ converges to:

Wn.�; v/ D n.dC1/=2

Z

Rd
@�u

�
� � Nd.0;

1
n Id/;w

�
@'d

�
n1=2.v � w/

�
dw

D @v

�
nd=2

Z

Rd
@�u

�
� � Nd.0;

1
n Id/;w

�
'd

�
n1=2.v � w/

�
dw

�
D@vVn.�; v/:

Therefore, we deduce that the mappings .Rd 3 v 7! tracef.@vVn.�; v//.e0 ˝ e/g/n>1 are
Lipschitz continuous, uniformly in �. Since @vVn.�; v/ is independent of e and e0, this
implies that the mappings .Rd 3 v 7! @vVn.�; v//n>1 are Lipschitz continuous, uniformly
with respect to �.

By (5.112) and (ii) in (A2) in assumption Sufficiency for Partial C2,

sup
n>1;ı2Œ0;1�

E
�ˇ̌

trace
˚�
Wn;ı.�;X/

�
.e0 ˝ e/

�ˇ̌2	 6 C;

for a possibly new value of C. Above, X � �. Letting ı tend to 0, we deduce from Fatou’s
lemma that:

sup
n>1

E

hˇ̌
trace

˚�
@vVn.�;X/

�
.e0 ˝ e/

�ˇ̌2i 6 C;

and thus that supn>1 EŒj@vVn.�;X/j2� 6 C, which implies by Lipschitz property of
@vVn.�; �/, that:

8n > 1; j@xVn.�; 0/j 6 C.1C EŒjXj2��: (5.114)

This says that the sequence of mappings .Rd 3 v 7! @vVn.�; v//n>1 is relatively compact for
the topology of uniform convergence. Therefore, we can extract a convergent subsequence.
As the limit of Vn.�; �/ is @�u.�/.�/, we deduce that Rd 3 v 7! @�u.�/.v/ is differentiable
with respect to v. Passing to the limit in (5.112) (first on ı and then on n), we deduce that
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@2sign.Z0/e;sign.Z0/� Qu.X/ D E

h
trace

n�
@v@�u.�/.X/

��
�˝ e

�oi
: (5.115)

Again, by (ii) in (A2) in assumption Sufficiency for Partial C2, there exists a constant
C such that, for any � 2 P2.Rd/ and any X 2 L2.˝;F ;PIRd/ with � as distribution,
EŒj@v@�u.�/.X/j2� 6 C, which is a required condition for applying the chain rule. In order
to complete the proof, it remains to prove that the mapping P2.Rd/ � R

d 3 .�; v/ 7!
@v@�u.�/.v/ is jointly continuous at any point .�; v/ such that v 2 Supp.�/. We already
know that it is Lipschitz continuous with respect to v, uniformly in �. For a sequence
.�n/n>1 in P2.Rd/ converging for the 2-Wasserstein distance to some � 2 P2.Rd/, we
deduce from the Lipschitz property and by the same argument as in (5.114) that the sequence
of functions .Rd 3 v 7! @v@�u.�n/.v//n>1 is relatively compact for the topology of uniform
convergence on compact subsets. By means of the bound supn>1 EŒj@v@�u.�n/.Xn/j2� 6 C,
with Xn � �n, it is quite easy to pass to the limit in the right-hand side of (5.115). By (ii) in
(A2) in assumption Sufficiency for Partial C2, we can also pass to the limit in the left-hand
side. Equation (5.115) then permits to identify any limit with @v@�u.�/.�/ on the support
of �. Since the mappings .@v@�u.�n/.�//n>1 are uniformly continuous on compact subsets,
we deduce that, for an additional sequence .vn/n>1, with values in R

d , that converges to
some v 2 Supp.�/, the sequence .@v@�u.�n/.vn//n>1 converges, up to a subsequence, to
@v@�u.�/.v/. Now, by relative compactness of the sequence .Rd 3 v 7! @v@�u.�n/.v//n>1,
the sequence .@v@�u.�n/.vn//n>1 is bounded. By a standard compactness argument, the
sequence .@v@�u.�n/.vn//n>1 must be convergent with @v@�u.�/.v/ as limit. Arguing as
we did for @�u in the warm-up preceding the proof, we easily prove that @v@�u is locally
bounded. ut

5.7 Applications

5.7.1 Revisiting Uniqueness in MFG

We now comment more on Remark 5.75 within the framework of mean field games.

Revisiting the Lasry-Lions Monotonicity Condition
On a given complete probability space .˝;F ;P/, equipped with a right-continuous
and complete filtration F, with a F-Brownian motion .Wt/06t6T with values in R

d,
consider the mean field game associated with the parameterized stochastic control
problem:

inf
˛2AE

� Z T

0

f .t;Xt; �t; ˛t/dt C g.XT ; �T/

�
;

subject to dXt D b.t;Xt; ˛t/dt C �.t;Xt/dWtI X0 2 L2.˝;F0;PIRd/;

where b W Œ0;T��R
d � A ! R

d, � W Œ0;T��R
d ! R

d�d, f W Œ0;T��R
d �P2.Rd/�

A ! R and g W Rd � P2.Rd/ ! R, with A being a closed convex subset of Rk and
f having the same separated structure as in assumption Lasry-Lions Monotonicity
from Section 3.4, namely:
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f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

.t; x; �; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � A:

Assume further that there exist two functions F0 W Œ0;T� � P2.Rd/ ! R and G W
P2.Rd/ ! R such that, for any t 2 Œ0;T�, F0.t; �/ and G are differentiable for
the linear functional differentiation defined in Subsection 5.4.1, such that, for all
.t; x; �/ 2 Œ0;T� � R

d � P2.Rd/,

f0.t; x; �/ D ıF0
ı�

.t; �/.x/;

g.x; �/ D ıG

ı�
.t; �/.x/:

Then, f0 and g satisfy the Lasry-Lions monotonicity property in Definition 3.28 if
F0 and G are convex in the direction � in the sense of Remark 5.75. In other words,
the Lasry-Lions monotonicity condition (used in Theorem 3.29 for guaranteeing
uniqueness) can be interpreted as a convexity property (of F0 and G) in the direction
of the measure argument for the linear functional differentiation introduced in
Subsection 5.4.1.

Using the L-Differential Calculus
The connection between convexity and monotonicity is quite appealing as it
provides another interpretation of the Lasry-Lions condition. Actually, it becomes
even more intriguing if we recall from the discussion in Subsection 5.4.1 that the
notion of convexity for the L-differential calculus may differ from the notion of
convexity for the linear functional differentiation. It is thus a natural question to
wonder whether convexity, when regarded in the L-sense, could help for uniqueness.

In order to address this problem, we must recall the notion of L-monotonicity
introduced in Definition 3.31. From Lemma 5.72, we know that, if h is the L-
derivative of an L-differentiable and L-convex function H W P2.Rd/ ! R, namely:

8.x; �/ 2 R
d � P2.Rd/; h.x; �/ D @�H.�/.x/;

then h is L-monotone. Whenever Proposition 5.51 applies, this says that @xŒıH=ı��
is L-monotone when H is L-convex.

Returning to the mean field game described above, we deduce that @xf0.t; �/ and
@xg are L-monotone if F0.t; �/ and G are L-convex in the direction �. Therefore,
in full analogy with the above interpretation of the Lasry-Lions monotonicity
condition, the L-monotonicity condition in the statement of Theorem 3.32 (which
provides another sufficient condition for guaranteeing uniqueness) can be also
interpreted as a convexity condition (of F0 and G) in the direction of the measure
argument but for the L-differentiation!
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5.7.2 A Primer on theMaster Equation

As an application of the tools introduced in this chapter, we now provide a short
initiation to the seminal notion of master equation for mean field games. We give
a primer only since we shall dedicate the entire Part I of the second volume of the
book to it.

In short, the master equation is a partial differential equation set on the enlarged
state space Œ0;T��R

d �P2.Rd/. Generally speaking, it is associated with a McKean-
Vlasov forward-backward stochastic differential equation of the same type as those
introduced in Chapters 3 and 4 for characterizing equilibria to mean field games,
see for instance (4.49). The connection between the partial differential equation
and the forward-backward stochastic system proceeds in the same way as that
between a partial differential equation on the Euclidean space Œ0;T� � R

d and
a classical Markovian forward-backward stochastic differential equation and thus
works along the lines exposed in Subsection 4.1.2. Basically, the solution of the
master equation is the decoupling field (the so-called master field according to the
terminology introduced in Subsection 4.2.4) of the corresponding McKean-Vlasov
forward-backward stochastic differential equation.

On a complete filtered probability space .˝;F ;F D .Ft/t>0;P/, we thus
consider a system of the same type as (4.49) with the slight difference that m D 1:

(
dXt D B

�
t;Xt;L.Xt/;Yt;Zt

�
dt C˙

�
t;Xt;L.Xt/

�
dWt

dYt D �F
�
t;Xt;L.Xt/;Yt;Zt

�
dt C Zt � dWt; t 2 Œ0;T�; (5.116)

with YT D G.XT ;L.XT// as terminal condition. Here, we assume that B W Œ0;T� �
R

d�P2.Rd/�R�R
d ! R

d, F W Œ0;T��R
d�P2.Rd/�R�R

d ! R,˙ W Œ0;T��R
d�

P2.Rd/ ! R
d�d and G W Rd �P2.Rd/ ! R are Borel-measurable, locally bounded

and Lipschitz-continuous in the variables .x; �; y; z/ 2 R
d � P2.Rd/ � R � R

d,
uniformly in the time parameter t 2 Œ0;T�.

With (5.116), we associate the following partial differential equation on Œ0;T� �
R

d � P2.Rd/, with u W Œ0;T� � R
d � P2.Rd/ ! R as unknown:

@tu.t; x; �/C B
�
t; x; �; u.t; x; �/; .˙�@xu/.t; x; �/

� � @xu.t; x; �/

C 1

2
trace

h
.˙˙�/.t; x; �/@2xxu.t; x; �/

i

C
Z

Rd
B

�
t; v; �; u.t; v; �/; .˙�@xu/.t; v; �/

� � @�u.t; x; �/.v/d�.v/

C 1

2

Z

Rd
trace

h
.˙˙�/.t; v; �/@v@�u.t; x; �/.v/

i
d�.v/

C F
�
t; x; �; u.t; x; �/; .˙�@xu/.t; x; �/

� D 0;

(5.117)

for .t; x; �/ 2 Œ0;T��R
d �P2.Rd/, with u.T; x; �/ D G.x; �/ as terminal condition.
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The next statement consists of a verification argument that makes the connection
between (5.116) and (5.117):

Proposition 5.106 Assume that there exists a function u W Œ0;T��R
d�P2.Rd/ ! R

satisfying assumption Joint Chain Rule together with (5.106) and such that u and
@xu are Lipschitz continuous in .x; �/ uniformly in time. Assume further that ˙ is
bounded.

Then, for any initial condition X0 2 L2.˝;F0;PIRd/, the system (5.116) admits
a unique solution .Xt;Yt;Zt/06t6T satisfying:

E

�
sup
06t6T

�jXtj2 C jYtj2
� C

Z T

0

jZtj2dt

�
< 1:

It satisfies, P almost surely,

8t 2 Œ0;T�; Yt D u
�
t;Xt;L.Xt/

�
;

and, Leb1 ˝ P almost everywhere,

Zt D �
˙�@xu

��
t;Xt;L.Xt/

�
:

Remark 5.107 The master equation for mean field games is obtained by choosing
B, ˙ , F and G as in the statement of Theorem 4.44. We let the reader write the
corresponding form of (5.117). In that case, Proposition 5.106 shows that the
function Œ0;T� � R

d 3 .t; x/ 7! u.t; x;L.Xt// should coincide with the solution
of the HJB equation in the mean field game system (3.12), while .�t/06t6T therein
should coincide with .L.Xt//06t6T .

Proof.

First Step. We first prove the existence of a solution. To do so, we notice that, under our
assumption, the stochastic differential equation:

dXt D B



t;Xt;L.Xt/; u
�
t;Xt;L.Xt/

�
; .˙�@xu/

�
t;Xt;L.Xt/

��
dt C˙

�
t;Xt;L.Xt/

�
dWt;

for t 2 Œ0; T�, with X0 2 L2.˝;F0;PIRd/ as initial condition, is uniquely solvable, see
Theorem 4.21. The solution satisfies EŒsup06t6T jXtj2� < 1.

Let now:

Yt D u
�
t;Xt;L.Xt/

�
; Zt D �

˙�@xu
��

t;Xt;L.Xt/
�
; t 2 Œ0; T�:

Combining the PDE (5.117) with Proposition 5.102, we deduce that .Xt; Yt; Zt/06t6T is a
solution of (5.116).
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Second Step. We now consider another solution .X0

t ; Y
0

t ; Z
0

t /06t6T to (5.116), with the same
initial condition X0

0 D X0 as in the first step. We let:

Yt D u
�
t;X0

t ;L.X0

t /
�
; Zt D �

˙�@xu
��

t;X0

t ;L.X0

t /
�
; t 2 Œ0; T�:

Again, we can combine the PDE (5.117) with Proposition 5.102. We deduce that:

dYt D



B
�
t;L.X0

t /;X
0

t ; Y
0

t ; Z
0

t

� � B
�
t;L.X0

t /;X
0

t ;Yt;Zt
�� � @xu

�
t;X0

t ;L.X0

t /
�
dt

C QE
h


B
�
t;L.X0

t /;
QX0

t ;
QY 0

t ;
QZ0

t

� � B
�
t;L.X0

t /;
QX0

t ;
QYt; QZt

�� � @�u
�
t;X0

t ;L.X0

t /
�
. QX0

t /
i
dt

� F
�
t;L.X0

t /;X
0

t ;Yt;Zt
�
dt C Zt � dWt; t 2 Œ0; T�;

with the terminal boundary condition Y 0

T D G.X0

T ;L.X0

T//, and where we used the same
convention as above for the variables labeled with a tilde: They denote copies of the original
variables that are constructed on a copy of the original probability space.

In order to complete the proof, it suffices to regard the difference .Y 0

t �Yt; Z0

t �Zt/06t6T

as the solution of a backward SDE with random coefficients with 0 as terminal condition.
Notice then from the fact that u is Lipschitz continuous in �, that DX Qu takes values in a
bounded subset of L2.˝;F ;PIRd/, see Remark 5.27. In particular,

ˇ̌
ˇ QE

h

B

�
t;L.X0

t /;
QX0

t ;
QY 0

t ;
QZ0

t

� � B
�
t;L.X0

t /;
QX0

t ;
QYt; QZt

�� � @�u
�
t;X0

t ;L.X0

t /
�
. QX0

t /
iˇ̌
ˇ

6 C QE
h
j QY 0

t � QYtj2 C j QZ0

t � QZtj2
i1=2 QE

h
j@�u

�
t;X0

t ;L.X0

t /
�
. QX0

t /j2
i1=2

6 C QE
h
j QY 0

t � QYtj2 C j QZ0

t � QZtj2
i1=2

;

for a value of C, independent of t, that is allowed to increase from line to line. By adapting
the stability arguments used in the proof of Theorem 4.23, we get that:

sup
06t6T

E
�jY 0

t � Ytj2
	 C E

Z T

0

jZ0

t � Ztj2dt D 0:

Therefore, .X0

t /06t6T solves the same SDE as .Xt/06t6T , which proves uniqueness. ut

5.7.3 Application to a Nonstandard Control Problem

The purpose of this short section is to present an application of the chain rule to a
nonstandard control problem. In full analogy with the classical case and with the
previous subsection, we use a verification argument whereby the classical solution
of a partial differential equation, if it exists, provides a solution to the optimal control
problem. However, the control problem has to be of a very special nature to justify
the need for such a sophisticated form of the chain rule. Case in point, the application
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we propose to investigate is an example of the optimal control of McKean-Vlasov
dynamics studied in full generality in Chapter 6.

For the purpose of the current application, we seek to minimize the cost J.˛/
defined as

J.˛/ D E

� Z T

0

�
f
�L.X˛

t /
� C 1

2
j˛tj2

	
dt

�

D
Z T

0

f
�L.X˛

t /
�
dt C E

� Z T

0

1

2
j˛tj2dt

�
;

(5.118)

over the set A D H
2;d of admissible controls for the controlled dynamics:

dX˛
t D ˛tdt C dWt; t 2 Œ0;T�; (5.119)

where the initial condition X0 is in L2.˝;F0;PIRd/, and W D .Wt/06t6T is a
standard Wiener process in R

d defined on a filtered complete probability space
.˝;F ;F D .Ft/06t6T ;P/. The McKean-Vlasov nature of the problem comes from
the fact that the running cost is a function of the marginal distribution of the
controlled state. The function f can be quite general, but, for the sake of definiteness,
we shall assume that it is continuous on P2.Rd/ for the 2-Wasserstein distance W2.

Proposition 5.108 Let us assume that there exists a function u W Œ0;T��P2.Rd/ !
R, differentiable in t, with @tu being continuous in .t; �/, partially C2 in the
measure variable, with DX Qu W Œ0;T� � L2.˝;F ;PIRd/ 3 .t;X/ 7! DX Qu.t;X/ 2
L2.˝;F ;PIRd/ being Lipschitz continuous with respect to X, uniformly in time,
@�u W Œ0;T��P2.Rd/�R

d 3 .t; �; v/ 7! @�u.t; �/.v/ and @v@�u W Œ0;T��P2.Rd/�
R

d 3 .t; �; v/ 7! @v@�u.t; �/.v/ being continuous at any point .t; �; v/ such that
v 2 Supp.�/, satisfying u.T; � / � 0 and

sup
t2Œ0;T�

sup
�2K

� Z

Rd

ˇ̌
ˇ@v@�u.t; �/.v/

ˇ̌
ˇ
2

d�.v/

�
< 1; (5.120)

for all compact K � P2.Rd/. Furthermore, if we assume that u satisfies the infinite-
dimensional PDE:

@tu.t; �/ � 1

2

Z

Rd
j@�u.t; �/.v/j2d�.v/

C 1

2
trace

� Z

Rd
@v@�u.t; �/.v/d�.v/

�
C f .�/ D 0;

(5.121)

then, the McKean-Vlasov SDE

d OXt D �@�u
�
t;L. OXt/

�
. OXt/dt C dWt; 0 6 t 6 T; (5.122)



5.7 Applications 501

with X0 2 L2.˝;F0;PIRd/ as initial condition has a unique solution . OXt/06t6T

satisfying EŒsup06t6T j OXtj2� < 1 and this solution is the unique optimal path in the
sense that the control Ǫ D . Ǫ t/06t6T defined by Ǫ t D �@�u.t;L. OXt//. OXt/ minimizes
the cost:

J. Ǫ / D inf
˛2A J.˛/:

Of course, u must be interpreted as a value function. In particular, the terminal
condition u.T; � / is null because we did not include a terminal cost in the expression
for the cost functional J. The terminal condition would be set equal to g if, in the
definition J.˛/, we added g.L.X˛

T //.

Proof.

First Step. We first prove that (5.122) is uniquely solvable. We first recall from Subsec-
tion 5.3.4 that we can a find a version of each @�u.t; �/.�/ 2 L2.Rd; �/ such that the mapping
Œ0; T� � P2.Rd/ � R

d 3 .t; �; v/ 7! @�u.t; �/.v/ is measurable. Of course, for any t 2 Œ0; T�
and any random variable X 2 L2.˝;F ;PIRd/, @�u.t;L.X//.X/ is almost surely equal to
DX Qu.t;X/. In particular, the Lipschitz property of DX Qu in the variable X shows that, for any
X; Y 2 L2.˝;F ;PIRd/,

sup
06t6T

E

hˇ̌
@�u

�
t;L.X/

�
.X/ � @�u

�
t;L.Y/

�
.Y/

ˇ̌2i 6 CkX � Yk22:

Moreover, by choosing � D ı0 (Dirac point mass at 0), we have

sup
06t6T

j@�u.t; ı0/.0/j2 < 1:

This suffices to implement Picard’s fixed point theorem along the lines of the proof of
Theorem 4.21. As a byproduct of the above estimates, we also get that:

sup
t2Œ0;T�

sup
�2K

�Z

Rd

ˇ̌
@�u.t; �/.v/

ˇ̌2
d�.v/

�
< 1;

for all compact K � K2.R
d/, which is a necessary condition to apply the chain rule in the

second step below.

Second Step. Consider now a generic admissible control ˛ D .˛t/06t6T , denote by
X˛ D .X˛

t /06t6T the corresponding controlled state given by (5.119), and let us apply the
time dependent form of the chain rule of Theorem 5.99 discussed in Proposition 5.102 to
.u.t;L.X˛

t ///06t6T . We get:
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du
�
t;L.X˛

t /
�

D
�
@tu

�
t;L.X˛

t /
� C E

h
@�u

�
t;L.X˛

t /
��

X˛
t

� � ˛t

i

C 1

2
E

h
trace

�
@v@�u

�
t;L.X˛

t /
��

X˛
t

�	i�
dt

D
�

� f
�
L.X˛

t /
� C 1

2
E

hˇ̌
@�u

�
t;L.X˛

t /
��

X˛
t

�ˇ̌2i C E

h
@�u

�
t;L.X˛

t /
��

X˛
t

� � ˛t

i�
dt

D
�

� f
�
L.X˛

t /
� � 1

2
E

�j˛tj2
	 C 1

2
E

hˇ̌
˛t C @�u

�
t;L.X˛

t /
��

X˛
t

�ˇ̌2i
�

dt

where we used the PDE (5.121) satisfied by u before identifying a perfect square. If we
integrate both sides and use the definition of the cost J.˛/, we get:

J.˛/ D u
�
0;L.X0/

� C 1

2
E

� Z T

0

hˇ̌
˛t C @�u

�
t;L.X˛

t /
��

X˛
t

�ˇ̌2i
dt

�
;

which shows that . OXt/0�t�T is the unique optimal path. ut

Remark 5.109 Equation (5.121) is a simple form of the master equation for the
optimal control of McKean-Vlasov dynamics which we shall derive in Chapter 6.

Remark 5.110 Benamou and Brenier’s Theorem 5.53 provides a first variational
formula for the 2-Wasserstein distance W2. We shall show in Subsection 6.7.3 that
the 2-Wasserstein distance W2 can be viewed (up to a slight modification) as the
solution of an optimization problem of the type considered in this section.

5.7.4 Application toMcKean-Vlasov SDEs

As another application of the chain rule for the flow of marginals measures of an Itô
process, we revisit the propagation of chaos for McKean-Vlasov processes.

Semi-group Generated by aMcKean-Vlasov SDE
Given a complete probability space .˝;F ;P/, equipped with a filtration F D
.Ft/t>0 satisfying the usual assumptions, and with an R

d-valued F-Brownian motion
W D .Wt/t>0, we consider the McKean-Vlasov SDE:

dXt D b
�
t;Xt;L.Xt/

�
dt C �

�
t;Xt;L.Xt/

�
dWt; t > 0; (5.123)

where the coefficients:

.b; �/ W Œ0;T� � R
d � P2.Rd/ ! R

d � R
d�d
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are (jointly) continuous and satisfy the Cauchy-Lipschitz assumptions:

jb.t; x; �/j 6 c
�
1C jxj C M2.�/

�
; j�.t; x; �/j 6 c

�
1C M2.�/

�
;

jb.t; x; �/ � b.t; x0; �0/j C j�.t; x; �/ � �.t; x0; �0/j 6 c
�jx � x0j C W2.�; �

0/
�
;

for all t 2 Œ0;T�, x; x0 2 R
d and �;�0 2 P2.Rd/, for some constant c > 0. We

assume that .˝;F0;P/ is atomless so that, for any � 2 P2.Rd/, there exists a
random variable X0 2 L2.˝;F0;PIRd/ such that X0 � �.

Under these Cauchy-Lipschitz assumptions, Theorem 4.21 implies that, for any
initial random variable X0 2 L2.˝;F0;PIRd/, the McKean-Vlasov SDE (5.123) is
uniquely solvable. We emphasize that uniqueness must also hold in law. Indeed, for
any two solutions constructed on possibly different spaces, the standard Yamada-
Watanabe theorem permits to construct on the same probability space, two new
solutions, driven by the same initial condition and by the same random noise,
each one being distributed according to one of the two original laws. These
two new solutions also satisfy the McKean-Vlasov SDE, but on the same space.
Consequently, they must be equal. In particular, for any t > 0, the law of Xt only
depends upon the initial distribution of X0. This makes it possible to define, for any
t > 0 and any function � W P2.Rd/ ! R, the function Pt� by:

�
Pt�

	
.�/ D �

�L.XX0
t /

�
; � 2 P2.Rd/:

Here we denote by XX0
t the solution at time t of (5.123) with initial condition X0,

and we assume that X0 has distribution �.
As a side effect of the proof of existence and uniqueness of a solution of the

McKean-Vlasov SDE (5.123), we get that, for any time T > 0, there exists a
constant C > 0, such that, for any X0;X0

0 2 L2.˝;F0;PIRd/,

E
�

sup
06t6T

jXX0
t � X

X0

0
t j2	 6 C2

E
�jX0 � X0

0j2
	
:

This implies that, for any t > 0, Pt� W P2.Rd/ ! R is bounded and continuous
whenever � is bounded and continuous for the 2-Wasserstein distance W2. It also
shows that Pt� is Lipschitz continuous for the same Wasserstein distance W2

whenever � is Lipschitz continuous, and more generally, that Pt� is bounded
and uniformly continuous whenever � is bounded and uniformly continuous. In
particular, whenever b and � are time-independent, uniqueness implies that .Pt/t>0
is a one-parameter semigroup of operators on the Banach space Cb.P2.Rd/IR/
of bounded continuous functions on P2.Rd/ (equipped with the 2-Wasserstein
distance). It is also a one-parameter semigroup of operators on the Banach space
UCb.P2.Rd/IR/ of bounded uniformly continuous functions on P2.Rd/ and on
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the Banach space UC0.P2.Rd/IR/ of bounded uniformly continuous functions �
on P2.Rd/ such that �.�/ ! 0 as M2.�/ ! 1. The last claim follows from
the fact that, for any t > 0, there exists a constant Ct > 0 such that, for any
X0 2 L2.˝;F0;PIRd/, EŒjXX0

t j2� > exp.�Ct/.EŒjX0j2� � Ct/.
Notice that, for any � 2 UC0.P2.Rd/IR/, sup�2P2.Rd/ jPt�.�/ � �.�/j tends

to 0 as t tends to 0, proving that, whenever b and � are time-homogeneous, the
semi-group .Pt/t>0 is strongly continuous on UC0.P2.Rd/IR/. Indeed, there exists
a constant C > 0 such that, for any X0 2 L2.˝;F ;PIRd/ and any t 2 Œ0; 1�:

E
�jXX0

t � X0j2
	

6 Ct
�
1C E

�jX0j2
	�
;

EŒjXX0
t j2� > exp.�C/

�
EŒjX0j2� � C

�
:

Therefore, for a given � 2 UC0.P2.Rd/IR/, we have, for any initial condition X0 2
L2.˝;F0;PIRd/ and for any R > 0,

ˇ̌
ˇ�

�L.XX0
t /

� � ��L.X0/
�ˇ̌
ˇ D

ˇ̌
ˇ�

�L.XX0
t /

� � ��L.X0/
�ˇ̌
ˇ1fEŒjX0j2� 6 R2g

C
ˇ̌
ˇ�

�L.XX0
t /

� � ��L.X0/
�ˇ̌
ˇ1fEŒjX0j2�>R2g

6 sup
W2.�;�/ 6 Ct.1CR/2

ˇ̌
�.�/ � �.�/ˇ̌ C sup

M2.�/ > R
�.�/

C sup
M2.�/2 > exp.�C/R2�C

�.�/:

Choosing R large enough first, and then t small enough, we complete the proof of
the strong continuity of the semi-group.

Generator of the Semi-group
Now let us assume that � W P2.Rd/ ! R is partially C2 and satisfy, for any compact
subset K � P2.Rd/,

sup
�2K

� Z

Rd

ˇ̌
@v@��.�/.v/

ˇ̌2
d�.v/

�
< 1:

Then, for any initial condition X0 for the McKean-Vlasov SDE (5.123), we may
expand the function RC 3 t 7! �

Pt�
�
.�/ with L.X0/ D � using the chain rule.

From the bound EŒsup06t6T jXX0
t j2� < 1, which holds true for any T > 0, and from

the growth conditions on � and b we see that:

sup
06t6T

E

hˇ̌
b
�
t;XX0

t ;L.XX0
t /

�ˇ̌2 C ˇ̌
�

�
t;XX0

t ;L.XX0
t /

�ˇ̌4i
< 1;

where we used the fact that � is bounded in x. Therefore, Theorem 5.99 implies that
for all t > 0:
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d

dt

��
Pt�

�
.�/

	 D d

dt

�
�.�t/

	

D
Z

Rd
b.t; v; �t/ � @��.�t/.v/d�t.v/

C 1

2

Z

Rd
trace

��
���

�
.t; v; �t/@v@��.�t/.v/

	
d�t.v/;

with �t D L.XX0
t /. Actually, Theorem 5.99 just provides the right-differentiability

of the function RC 3 t 7! Pt�/.�/. Then, differentiability follows from the fact
that RC 3 t 7! �t 2 P2.Rd/ is continuous and that, by the same argument as in
the first step of the proof of Proposition 5.102, the above right-hand side is also
continuous in time. In particular, if we set:

�
Lt�

	
.�/ D

Z

Rd
b.t; v; �/ � @��.�/.v/d�.v/

C 1

2

Z

Rd
trace

��
���

�
.t; v; �/@v@��.�/.v/

	
d�.v/;

(5.124)

for � 2 P2.Rd/, we get:

d

dt

��
Pt�

�
.�/

	 D �
Pt

�
Lt�

�	
.�/; � 2 P2.Rd/; (5.125)

and thus:

d

dt

��
Pt�

�
.�/

	
jtD0 D �

L0�
�
.�/; � 2 P2.Rd/: (5.126)

Whenever b and � do not depend upon time, Lt is also independent of t, and will
be denoted by L . The above application of the chain rule then says that the domain
of the infinitesimal generator of the strongly continuous semi-group .Pt/t>0 on
UC0.P2.Rd// contains the intersection of UC0.P2.Rd// with the space of partially
C2 functions, intersection on which this generator coincides with L . As a result,
identity (5.125) can be interpreted as a forward Kolmogorov equation on P2.Rd/.
Observe also that the intersection of UC0.P2.Rd// and the space of partially C2
functions is not empty. Indeed, for any compactly supported smooth function � W
RC ! R, the function � W P2.Rd/ 3 � 7! �.M2.�/

2/ is in this intersection, with
@��.�/.v/ D 2v�0.M2.�/

2/ and @v@��.�/.v/ D 2�0.M2.�/
2/. Any multiplication

of � with a function of the same type as those described in the first step of the
proof of Theorem 5.99 also belongs to the intersection of UC0.Rd/ with the space
of partially C2 functions.
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Backward Equation
Assume now that there exists a subspace C of bounded smooth functions � W
P2.Rd/ ! R for which the mapping:

˚ W RC � P2.Rd/ 3 .t; �/ 7! �.L.XT�t;�	�
T // (5.127)

where XT�t;�	�
T is the value of the solution at time T starting from a random variable

� � � at time T � t, satisfies assumption Joint Chain Rule together with (5.106).
Notice that we shall only need the simplest form of the chain rule since ˚ is
independent of the space variable x.

Then, for any initial condition X0 2 L2.˝;F0;PIRd/ of the McKean-Vlasov
SDE (5.123), we get from the extended chain rule Proposition 5.102 that, for any
T > 0 and t 2 Œ0;T�,

d

dt

�
˚.T � t; �t/

	

D �@t˚.T � t; �t/C
Z

Rd
b.t; v; �t/ � @�˚.T � t; �t/.v/d�t.v/

C 1

2

Z

Rd
trace

��
���

�
.t; v; �t/@v@�˚.T � t; �t/.v/

	
d�t.v/;

(5.128)

where we used �t D L.XX0
t /. Observe that the left-hand side must be zero since, for

any t 2 Œ0;T�,

˚.T � t; �t/ D �
�L.Xt;�	�t

T /
� D �

�L.XX0
T /

�
: (5.129)

As a result, the right-hand side in (5.128) must be zero. Noticing that the dynamics
of the McKean-Vlasov SDE may be initialized from any � 2 P2.Rd/ at any time
t 2 Œ0;T�, we get the backward equation:

@t
�
˚.T � t; �/

	 C
Z

Rd
b.t; v; �/ � @�˚.T � t; �/.v/d�.v/

C 1

2

Z

Rd
trace

��
���

�
.t; v; �/@v@�˚.T � t; �/.v/

	
d�.v/ D 0;

(5.130)

with the terminal condition ˚.T � t; �/jtDT D �.�/, for � 2 P2.Rd/. Observe
that the above PDE reads as a simplified (linear) version of the (nonlinear) master
equation (5.117).

Propagation of Chaos Revisited
We now consider the standard particle system approximating the McKean-Vlasov
SDE (5.123), namely:

dXi
t D b

�
t;Xi

t ; N�N
t

�
dt C �

�
t;Xi

t ; N�N
t

�
dWi

t ; i D 1; � � � ;N
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for some integer N > 1, where .Xi
0/iD1;��� ;N are independent F0-measurable random

variables with the same distribution as some X0 2 L2.˝;F0;PIRd/ and .Wi/iD1;��� ;N
are independent Wiener processes of dimension d. Without any loss of generality,
we can work on the same probability space as above. As before, we use the empirical
measure:

N�N
t D 1

N

NX

iD1
ıXi

t
; t 2 Œ0;T�:

Assume, in addition to the previous assumptions, that � is bounded and that, for any
function � in the class C , the function ˚ also satisfies:

1. the functions Œ0;T� � P2.Rd/ � R
d 3 .t; �; v/ 7! @�˚.t; �/.v/ and Œ0;T� �

P2.Rd/ � R
d 3 .t; �; v/ 7! @vŒ@�˚.t; �/�.v/ are continuous;

2. the function P2.Rd/ 3 � 7! @�˚.t; �/.v/ is L-differentiable for any .t; v/ 2
Œ0;T� � R

d, the mapping:

Œ0;T� � P2.Rd/ � R
d � R

d 3 .t; �; v; v0/ 7! @2�˚.t; �/.v; v
0/

being continuous;
3. it holds that:

sup
t2Œ0;T�

sup
�2P2.Rd/

� Z

Rd


ˇ̌
@�˚.t; �/.v/

ˇ̌2 C ˇ̌
@2�˚.t; �/.v; v/

ˇ̌2�
d�.v/

�
< 1:

Notice in particular that, for any t 2 Œ0;T�, the function ˚.t; �/ is fully C2.
Then, Propositions 5.35 and 5.91 imply that the empirical projection function:

Œ0;T� � .Rd/N 3 �
t; .x1; � � � ; xN/

� 7! ˚



T � t;
1

N

NX

iD1
ıxi

�

is of class C1;2 with specific partial derivatives, so that we can apply standard Itô’s
formula. We get:
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Notice that the second and fourth terms in the right-hand side can be rewritten as:
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so that, using the PDE (5.130) satisfied by ˚ at .t; N�N
t /, and as before, the notation

�t D L.XX0
t /, we get:
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(5.131)

where we used the fact that˚.T�t; �t/ is constant in t, see (5.129). By assumption 3
above, there exists a constant C such that:

E

h
sup
06t6T

ˇ̌
˚

�
T � t; N�N

t

� � ˚�
T � t; �t

�ˇ̌2i 6 C

N
C CE

hˇ̌
˚

�
T; N�N

0

� � ˚�
T; �0

�ˇ̌2i
:

Since ˚.T; �/ is continuous and bounded, the right-hand side tends to 0. Choosing
t D T in the left-hand side, we get:

8� 2 C; lim
N!1E

hˇ̌
�

� N�N
T

� � ��
�T

�ˇ̌2i D 0; (5.132)
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which is another form of the propagation of chaos, at least when the class C is rich
enough.

Remark 5.111 We can specify the rate of convergence in (5.132). Basically, we
get, under the standing assumption on �, and on ˚.T; �/, the latter being Lipschitz
continuous in � thanks to assumption 3, that:

E

hˇ̌
�

� N�N
T

� � ��
�T

�ˇ̌2i1=2 6 Cp
N

C E
�
W2. N�N

0 ; �0/
2
	1=2

;

the normalization by the root of N in the right-hand side being reminiscent of that
appearing in the statement of the central limit theorem whilst the last term may be
estimated by means of Theorem 5.8.

Another way of quantifying the convergence is to take the expectation in (5.131).
Under the same assumption as above, we get:

ˇ̌
E

�
�

� N�N
T

�	 � ��
�T

�ˇ̌
6 C

N
C ˇ̌

EŒ˚.T; N�N
0 /� � ˚.T; �0/

ˇ̌
; (5.133)

which provides a bound on the rate of convergence of the semi-group generated
by the system of particles towards the limiting McKean-Vlasov flow. Obviously, the
order of the last term should depend on the smoothness of ˚.T; �/.

Back to the Chain Rule
We conclude this section with a remark regarding the statement of the chain rule.
Indeed, the family of differential operators .Lt/t>0 introduced in (5.124) allows for
a condensed form of the chain rule stated in Proposition 5.102. We state it here for
the sake of later reference.

Using the same kind of notation as in the statement of Proposition 5.102,
assume that .�t/06t6T is the solution of another d-dimensional stochastic differential
equation:

d�t D �.t; �t/dt C �.t; �t/dWt; t 2 Œ0;T� I �0 2 L2.˝;F0;PIRd/; (5.134)

where � W RC � R
d ! R

d and � W RC � R
d ! R

d�d are Borel functions satisfying
the usual growth and Lipschitz continuity conditions which guarantee existence and
uniqueness of the solutions for the above equation. As we already did several times
in the book, to the diffusion equation (5.134), we associate the family of differential
operators .Lt/t>0 serving as infinitesimal generators. They act on twice continuously
differentiable functions ' on R

d in the following way:

Lt' W Rd 3 x 7! ŒLt'�.x/ D �.t; x/�@'.x/C 1

2
trace

h�
�t�

�
t

�
.t; x/@2'.x/

i
; (5.135)
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for t 2 Œ0;T�. With these notations and definition (5.124) for .Lt/t>0, the chain
rule (5.107) now reads:

d u.t; �t; �t/ D
�
@tu.t; �t; �t/C �

Lt;xu
	
.t; �t; �t/C �

Lt;�u
	
.t; �t; �t/

�
dt

C @xu.t; �t; �t/ � �
�tdWt

�
; t 2 Œ0;T�;

where we used the convenient conventions:

ŒLt;xu�.t; x; �/ D ŒLtu.t; �; �/�.x/; and ŒLt;�u�.t; x; �/ D ŒLtu.t; x; �/�.�/:

5.8 Notes & Complements

The Lévy-Prokhorov distance dLP between probability measures on a separable
metric space was first introduced by Prokhorov in 1956 as a generalization to
metric spaces of a distance introduced by Lévy for probability measures on the real
line. This distance is not easy to compute in general. It is theoretically important
because it provides a metric for the weak convergence of probability measures.
The fact that dLP.�; �/ is precisely the minimum distance in probability between
random variables with distributions � and � respectively was proven by Strassen
for complete separable metric spaces and extended by Dudley to arbitrary separable
metric spaces, see Theorems 11.6.2 and 11.6.3 in Dudley’s book [143]. The equality
between the Wasserstein distance W1 and the Kantorovich-Rubinstein distance dKR

is known as the Kantorovich-Rubinstein theorem.
For more properties of these distances, as well as detailed references and a better

historical perspective, we refer the interested reader to Dudley’s book [143] and
Villani’s monograph [338]. The proof of Proposition 5.7 may be found in Bertsekas
and Shreve [56, Chapter 7].

Throughout the book, we need to control the distance between the empirical
distribution of a sample of independent identically distributed (i.i.d. for short)
random variables, and the common distribution of the variables in the sample.
This is painfully apparent, not only in this chapter, but in many other instances
throughout the text. This time honored problem is central both in probability,
statistics and theoretical computer science. For us, relevant applications include
Monte Carlo methods and estimates for particle systems, and approximations of
partial differential equations. While many distances can be used, the Wasserstein
distance is natural for particle approximations of PDEs. As for the moment estimates
of Theorem 5.8, preliminary results by Horowitz and Kandarikar can be found in
[198], and in book form in the text of Rachev and Rüschendorf [317]. While far
from optimal, the form of these results could have been sufficient for the purpose
of the book. However, we chose to give a sharper version in a self-contained
presentation. We followed the idea of Dereich, Scheutzow, and Schottstedt [135]
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as presented in the recent work of Fournier and Guillin [161]. The upper bounds
provided in the text for the rate of convergence of the empirical measures toward
the true distribution are essentially optimal. Indeed, the lower bound proved in [36]
by Barthe and Bordenave shows that the rate N�1=d cannot be improved for the
1-Wasserstein distance W1 in dimension d > 3.

There are many notions of differentiability for functions defined on spaces of
probability measures, and recent progress in the theory of optimal transportation
have put some of them in the limelight. We refer the interested reader to the books
of Ambrosio, Gigli and Savaré [21] and Villani [337, 338] for detailed exposés of
these geometric approaches in textbook form. The notion of differentiability used
in the text was introduced by P.L. Lions in his lectures at the Collège de France
[265], hence our terminology of L-differentiability. Our presentation benefited from
Cardaliaguet’s lucid and readable account [83]. In particular, the statements and
the strategies of the proofs of Propositions 5.24 and 5.25 are borrowed from [83].
The idea behind the connection between the L-derivative and the linear functional
derivative is from the paper by Cardaliaguet, Delarue, Lasry, and Lions [86].
Proposition 5.51 was already proven in that paper, though using a different strategy.
As for the various notions of differentiability in normed spaces used in the text, we
refer to any textbook on analysis and differential calculus, see for instance [308].

Subsections 5.3.1, 5.3.2, and 5.3.3 are essentially borrowed from the paper by
Carmona and Delarue [98]. The discussion of the Blackwell and Dubins’ theorem
is inspired from the original note by Blackwell and Dubins [63]. The connection
between monotonicity and convexity, as exposed in Subsection 5.5.2, was discussed
in Lions’ lectures at the Collège de France [265].

The reader interested in the theory of optimal transportation can complement the
results presented in this chapter, including Brenier’s theorem whose original proof
can be found in [69], and the transport along vector fields like in the Benamou
and Brenier’s theorem, with Villani’s book [337], and Ambrosio, Gigli and Savaré
textbook [21].

The sobering counter-example showing the lack of differentiability and convexity
of the square of the Wasserstein distance to a fixed measure is borrowed from
the book [21] by Ambrosio, Gigli, and Savaré. The remaining discussion about
the Wasserstein gradients is modeled after this book. Theorem 5.53 is a version
of a famous result by Benamou and Brenier [41] and Otto [295]. Once again, the
statement is taken from [21], but the proof given in the text, which requires the
probability measures to be absolutely continuous, follows the arguments used in
Villani’s monograph [337]. The properties of the inf-sup convolution, as used in the
proof of Lemma 5.61, may be found in the paper by Lasry and Lions [259].

The notions of full and partial C2 regularity presented in Section 5.6 are taken
from the papers by Buckdahn, Li, Peng, and Rainer [79] and by Chassagneux,
Crisan, and Delarue [114]. The various versions of Itô’s formula are taken from
the same work. The sufficient condition for ensuring the partial C2 regularity can
also be found in [114]. We shall use it in Chapter (Vol II)-5 in order to prove the
existence of a classical solution to the master equation.
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The verification argument for the master equation established in Subsection 5.7.2
is inspired by a similar result for classical FBSDEs which can be found in the paper
[271] by Ma, Protter, and Young, and from the introductory paper of Carmona and
Delarue [97] on the master equation. We shall provide an in-depth analysis of the
master equation in Chapters (Vol II)-4 and (Vol II)-5. The optimization problem
introduced in Subsection 5.7.3 will be revisited in Chapter 6. We refer to the paper
by Gangbo, Nguyen, and Tudorascu [167] for an analytic treatment of this example.
The analysis of the semi-group generated by a McKean-Vlasov diffusion process
on Cb.P2.Rd/IRd/ as well as the corresponding propagation chaos were inspired
by the analysis of the convergence of finite games toward mean field games, as
provided in the paper by Cardaliaguet, Delarue, Lasry, and Lions. We address these
questions of convergence in Chapter (Vol II)-6. Similar ideas to that exposed in
Subsection 5.7.4 have been developed by Kolokoltsov for investigating propagation
of chaos, see for instance the earlier article [233] together with the monograph [234];
in particular, the inequality (5.133) in Remark 5.111 plays a key role in [233, 234]
and in the subsequent works by the same author on mean field games, see the Notes
& Complements of Chapter (Vol II)-6 for precise references. Propagation of chaos
for standard McKean-Vlasov SDEs will be revisited in Chapter (Vol II)-2.



6Optimal Control of SDEs
of McKean-Vlasov Type

Abstract

The purpose of this chapter is to provide a detailed probabilistic analysis of
the optimal control of nonlinear stochastic dynamical systems of McKean-
Vlasov type. We tackle the characterization and construction of solutions of
this special type of optimal control problem by means of forward-backward
stochastic differential equations. Because of the presence of the distribution of
the controlled state in the coefficients, the approach based on the Pontryagin
stochastic maximum principle requires special attention. We provide a version
of this maximum principle based on the differential calculus for functions of
probability measures introduced and developed in Chapter 5. We test the results
of the analysis on linear quadratic models and a few other models already
considered in the framework of mean field games. Finally, we highlight the
similarities and the differences between this problem and MFG problems with
which it is often confused.

6.1 Introduction

Stochastic Differential Equations (SDEs) of McKean-Vlasov type are usually
referred to as nonlinear SDEs, the term nonlinear emphasizing the possible
dependence of the coefficients upon the marginal distributions of the solutions. This
terminology has no bearing on a possible nonlinear dependence of the coefficients
of the equations upon the state variable. This special feature of the coefficients, even
when the latter are nonrandom, creates nonlocal feedback effects which rule out the
standard Markov property. Including the marginal distribution in the state of the
system could restore the Markov property at the cost of a leap in complexity of the
state of the process. The latter would have to include a probability measure, and
subsequently become infinite dimensional. While the analysis of the infinitesimal
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generator could be done with tools developed for infinite dimensional differential
operators, the standard differential calculus, even in infinite dimension, would have
a hard time capturing the fact that the second component of the state process has to
match the marginal distribution of the first component. The chain rules developed
in Chapter 5 were introduced to handle these difficulties.

Because of the crucial role they play in the probabilistic approach to mean
field games, existence and uniqueness results for forward, backward, and forward-
backward stochastic differential equations of the McKean-Vlasov (MKV for short)
type were given in Section 4.2 and Section 4.3 of Chapter 4. While most of the
proofs benefited from an understanding of the metric structure of the spaces of
probability measures, they did not require any form of differential calculus on
these spaces. Here we concentrate on the optimal control of stochastic systems
whose dynamics are given by equations of the McKean-Vlasov type. This is where
the special differential calculus introduced in Chapter 5 comes handy. Strangely
enough, the optimal control of dynamics driven by McKean-Vlasov SDEs seems to
be a brand new problem, to a great degree ignored in the standard stochastic control
literature. See nevertheless the Notes & Complements at the end of the chapter for
exceptions.

As we saw in Chapter 4, solving a McKean-Vlasov SDE is done by a fixed point
argument. First one fixes a set of candidates for the distribution of the solution, then
one solves the resulting standard SDE, the fixed point argument being to demand
that the distribution of the solution be equal to the distribution we started from. A
stochastic control problem adds an extra optimization layer to the fixed point. This
formulation bears a lot of resemblance to the approach to mean field game problems
as formulated in Chapters 1 and 3, and it is of the utmost importance to understand
the extent of the similarities and differences between the two problems.

SDEs of McKean-Vlasov type were introduced to describe the asymptotic
behavior of a generic element of a large population of particles with mean field
interactions. The adjective large underscores the fact that the analysis is intended
to describe the asymptotic regime when the number of particles tends to infinity.
In this asymptotic regime, particles become independent of each others, and the
state of each single particle satisfies an SDE of McKean-Vlasov type. Such a
phenomenon is usually referred to as propagation of chaos. We already alluded to
it in the applications of Chapter 5 and we shall revisit it in a more detailed fashion
in Chapter (Vol II)-1. To see the relevance of this theory to the models of stochastic
differential games where players interact in a mean field way, we assume for the
sake of definiteness that the private states XN;i D .XN;i

t /06t6T of N players satisfy
the system of SDEs:

dXN;i
t D b

�
t;XN;i

t ; N�N
XN

t
; ˛i

t

�
dt C �

�
t;XN;i

t ; N�N
XN

t
; ˛i

t

�
dWi

t ; t 2 Œ0;T�; (6.1)

for some time horizon T > 0 and with a common (deterministic) initial con-
dition. Such a model is similar to those introduced in Chapter 2. However,
differently from Chapter 2, we assume that all the players use distributed controls
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.˛i
t D �.t;XN;i

t //06t6T given by the same feedback function � in order to minimize
an expected cost from running and terminal costs:

Ji.�/ D E

� Z T

0

f
�
t;XN;i

t ; N�N
XN

t
; ˛i

t

�
dt C g

�
XN;i

T ; N�N
XN

T

��
: (6.2)

Actually, Ji.�/ is in fact independent of i and is thus common to all the players since
all of them use the same feedback function.

In contrast with our approach to MFG problems, instead of optimizing over
the control right away, we assume that the common feedback function � is
momentarily kept fixed, and we first consider the large population limit. The theory
of propagation of chaos states that, in the limit N ! 1, for any fixed integer k,
the joint distribution of the k-dimensional process .XN;1

t ; � � � ;XN;k
t /06t6T converges

to a product distribution (in other words the k processes XN;i D .XN;i
t /06t6T

for i D 1; � � � ; k become independent in the limit) and the distribution of each
single marginal process converges toward the distribution of the unique solution
X D .Xt/06t6T of the McKean–Vlasov evolution equation:

dXt D b
�
t;Xt;L.Xt/; �.t;Xt/

�
dt

C �
�
t;Xt;L.Xt/; �.t;Xt/

�
dWt; t 2 Œ0;T�;

(6.3)

where W D .Wt/06t6T is a standard Wiener process. So if the common feedback
control function � is fixed, in the limit N ! 1, the private states of the players
become independent of each other, and for each given i, the distribution of the
private state process XN;i D .XN;i

t /06t6T evolving according to (6.1) converges
toward the distribution of the solution of (6.3). In this limit, the objective functions
that the players try to minimize become:

J.˛/ D E

� Z T

0

f
�
t;Xt;L.Xt/; �.t;Xt/

�
dt C g

�
XT ;L.XT/

��
; (6.4)

so if we choose to perform the optimization after taking the limit N ! 1, i.e.,
assuming that the limit has already been taken, the objective of each player becomes
the minimization of the functional (6.4) over a class of admissible feedback control
functions � under the dynamical constraint (6.3). This is a form of optimal stochastic
control of a state evolving according to the stochastic differential equation (6.3)
when the admissible controls are in closed loop feedback form. More generally,
such a problem can be stated for controls ˛ D .˛t/06t6T adapted to any specific
information structure. Such a formulation amounts to finding:

˛� D arg min
˛

E

�Z T

0

f
�
t;Xt;L.Xt/; ˛t

�
dt C g

�
XT ;L.XT/

��

subject to (6.5)

dXt D b
�
t;Xt;L.Xt/; ˛t

�
dt C �

�
t;Xt;L.Xt/; ˛t

�
dWt; t 2 Œ0;T�:
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We call this kind of problem the optimal control of stochastic McKean-Vlasov
dynamics or the mean field stochastic optimal control.

Summary. While similar in purpose to the MFG strategy used to identify equilibria
for large symmetric games, the above plan of action may lead to a different notion
of equilibrium. To emphasize this point, we rely on the following diagram which
illustrates the fact that there are two different paths to go from the North West corner
corresponding to the statement of a N player stochastic differential game, to the
South East corner where one should expect to find equilibria. For better or worse,
this diagram is not commutative and this chapter provides insight on the matter.
Accordingly, we demonstrate by examples that the choice of a particular path has
drastic consequences on the properties of the resulting equilibria.

SDE State Dynamics
for N players

Optimization Nash Equilibrium
for N players

Fixed Point

limN

Fixed Point

limN

McKean Vlasov
Dynamics

Optimization Mean Field Game?
Controlled McKean-Vlasov SDE?

∞ ∞

It is important to emphasize what we mean by the limit N ! 1. Our goal is to
identify properties of the solutions of the limiting problem which, when re-injected
into the formulation of the game with finitely many players, give approximate
solutions to the problem with N players. This interpretation suggests that taking
this limit is essentially the same as solving for a fixed point, hence the labels used
in the above diagram.

As we explain later on in Chapter (Vol II)-6, the solutions to both problems
provide approximate equilibrium states for large populations of individuals whose
interactions and objective functions are of mean field type. The differences between
these notions of equilibrium are subtle and depend upon the formulation of the
optimization component of the equilibrium model. We provide simple examples
of linear quadratic models illustrating these differences in Section 6.7.1 below.

Despite the fact that the above diagram is not commutative, mean field games
and mean field stochastic control problems are in fact connected. This is part of the
objectives of our introductory (and mostly heuristic) Section 6.2 below to show that,
in some cases, the optimal trajectories of a control problem of the McKean-Vlasov
type are given by the solution of a mean field game, possibly driven by different
coefficients. The typical example when this is indeed the case is the so-called class
of potential games, which we already alluded to in Chapters 1 and 2 and which we
revisit in Section 6.7 below.

Another objective of Section 6.2 is to provide a general review of the conceivable
strategies that may be implemented to solve mean field control problems. As
for mean field games, both analytic and probabilistic approaches may be used.
However, since the dynamics described by McKean-Vlasov SDEs are genuinely
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non-Markovian, it is natural to approach the optimization problem using suitable
probabilistic reformulations of the problem, as opposed to a contrived adaptation of
the Hamilton-Jacobi-Bellman paradigm. This is exactly what we shall do in most
of the remaining sections of the chapter. In full analogy with our discussion of the
MFG problem, our probabilistic approach is based upon a characterization of the
optimal trajectories as the solutions of a forward-backward SDE of the McKean-
Vlasov type. Precisely, we shall develop an appropriate version of the Pontryagin
maximum principle. As we explained in the previous chapters, the stochastic
maximum principle approach is based on the introduction (and the manipulation)
of adjoint processes defined as solutions of BSDEs. The formulation of the adjoint
equations requires the computation of partial derivatives of the Hamiltonian function
with respect to the variables defining the state of the system. In the case of McKean-
Vlasov dynamics, the marginal distributions of the solutions are full-fledged state
variables. As a consequence, the Hamiltonian function needs to be differentiated
with respect to these marginal distributions as well, and the Pontryagin system takes
the form of forward-backward SDE of the McKean-Vlasov type driven by the usual
derivative of the Hamiltonian with respect to the state variable but also by its L-
derivative, notion introduced in Chapter 5. We believe that the need for a differential
calculus over the Wasserstein space is the main reason why it took so long for the
problem to be studied in its full generality. Indeed, the early attempts at tackling this
problem were restricted to scalar interactions in which the dynamics depend solely
upon moments of the marginal distributions. For in those cases, differentiability with
respect to the measure can be done by standard calculus chain rules. In this chapter,
we consider the problem in its full generality taking full advantage of the notion of
differentiability presented in Chapter 5. It is worth mentioning that, in comparison,
the linear functional derivative is preferred to the L-derivative when the Pontryagin
principle is applied under the analytic formulation; as we shall see later on, the
resulting forward-backward system then takes a form which is reminiscent of the
MFG system (3.12).

The Pontryagin maximum principle is a very powerful tool. However, as we
already saw in Chapters 2 and 3, the insights it provides come at the price
of restrictive assumptions on the models, especially its sufficient condition for
optimality. So quite expectedly, the results of this chapter based on the Pontryagin
principle rely on a set of technical assumptions which limit the class of models to
dynamics given by coefficients which are essentially linear in the state, control and
measure variables, and costs which are convex in the state and the control variables.
While seemingly restrictive, these assumptions are typical in the applications of the
Pontryagin maximum principle to standard optimization problems. This prompts us
to provide in Section 6.6 a road map to a less demanding procedure for solving the
optimization problem by means of compactness arguments based upon the notion
of relaxed controls.

The necessary part of the Pontryagin stochastic maximum principle suggests that
one searches the control set for a candidate minimizing the Hamiltonian function,
while the sufficient part points to the insertion of the found minimizer into both
the forward equation governing the dynamics, and the backward equation providing
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the adjoint processes. The presence of the minimizer in both of these equations
creates a strong coupling between the forward and backward equations, and the
solution of the control problem reduces de facto to the solution of a Forward-
Backward Stochastic Differential Equation (FBSDE). In the present situation, the
marginal distributions of the solutions appear in the coefficients. These FBSDEs of
McKean-Vlasov type were studied in Section 4.3, but one of the assumptions used
there, typically the boundedness of the coefficients with respect to the state variable,
precludes the application of this result to the Linear Quadratic (LQ) models often
used as benchmarks in stochastic control. Like in Chapters 3 and 4, we extend the
basic results of Section 4.3 by taking advantage of the convexity of the Hamiltonian.
A strong form of this convexity assumption can be used to apply the continuation
method, providing existence and uniqueness of the solution of the FBSDE at hand.
Restoring the Markov property by extending the state space as alluded to earlier,
we identify the backward component of the solution of this FBSDE to a function of
the forward component and its marginal distribution. This function is known as the
decoupling field of the FBSDE. In the classical cases, it can be found by solving
a PDE. In the present set-up, such a PDE is infinite dimensional as it involves
differentiation with respect to the state of the forward dynamics as well as its
distribution. Precisely, it reads as the derivative of an infinite dimensional Hamilton-
Jacobi-Bellman equation, similar to that presented in the applications of Chapter 5.
This PDE is formulated in Section 6.5. Somehow, it is related to the master equation
for mean field games, which we shall address with care in the second volume of the
book.

6.2 Probabilistic and Analytic Formulations

In analogy with our presentation of mean field games in Chapter 3, we address the
optimal control of McKean-Vlasov diffusion processes in two different ways, based
on a direct analytic formulation and a probabilistic methodology respectively. In the
case of the analytic approach, we develop the Pontryagin and the HJB strategies for
the optimization problem, while we concentrate mostly on the Pontryagin approach
in the probabilistic case. Interestingly, we shall see that in both cases, the Pontryagin
systems can be linked to forward/backward systems of the types of those identified
in Chapters 3 and 4 for MFG problems. We shall take advantage of this unexpected
connection when we revisit the class of potential mean field game problems later in
the chapter.

6.2.1 Probabilistic Formulation of the Optimization Problem

As in Chapter 4, we assume that W D .Wt/06t6T is a d-dimensional standard
Wiener process defined on a complete filtered probability space .˝;F ;F;P/, where
the filtration F D .Ft/06t6T is complete and right-continuous. As before, for each
random variable/vector or stochastic process X, we denote by P ı X�1, PX or L.X/
the law (alternatively called the distribution) of X.
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Controlled Dynamics
For a given initial condition � 2 L2.˝;F0;PIRd/, the stochastic dynamics of
the controlled state are given by a stochastic process X D .Xt/06t6T satisfying a
nonlinear SDE of the form:

dXt D b.t;Xt;L.Xt/; ˛t/dt

C �.t;Xt;L.Xt/; ˛t/dWt; t 2 Œ0;T� I X0 D �;
(6.6)

where the drift and diffusion coefficients of the state Xt of the system at time t
are given by a pair of deterministic (measurable) functions .b; �/ W Œ0;T� � R

d �
P2.Rd/ � A ! R

d � R
d�d, see Proposition 5.7 for the description of the � -field

on P2.Rd/, and ˛ D .˛t/06t6T is a progressively measurable process with values
in a measurable space .A;A/. Typically, A will be a closed convex subset of the
Euclidean space R

k, for k 	 1, and A the � -field induced by the Borel � -field
of this Euclidean space. The fact that W and X are required to have the same
dimension d is for convenience only. As already explained in the introduction, the
term nonlinear used to qualify (6.6), does not refer to the fact that the coefficients
b and � could be nonlinear functions of x, but instead to the fact that they depend
not only on the value of the unknown process Xt at time t, but also on its marginal
distribution L.Xt/. Using the terminology introduced in Section 4.2, we call (6.6) a
controlled stochastic differential equation of the McKean-Vlasov type. Sometimes
the McKean-Vlasov dynamics posited in (6.6) are also called of mean field type,
in which case we use the terminology mean field stochastic control problem. This
is justified by the fact that the uncontrolled stochastic differential equations of
McKean-Vlasov type first appeared as the infinite particle limits of large systems
of particles with mean field interactions (see for instance Chapter 1 of Volume II).

Throughout the chapter, we assume that the drift coefficient b and the volatility
� satisfy the following assumptions:

Assumption (MKV Lipschitz Regularity).

(A1) The function Œ0;T� 3 t 7! .b; �/.t; 0; ı0; 0/ 2 R
d � R

d�m is bounded.
(A2) There exists c > 0 such that for all t 2 Œ0;T�, ˛; ˛0 2 A, x; x0 2 R

d and
�;�0 2 P2.Rd/,

jb.t; x; �; ˛/ � b.t; x0; �0; ˛0/j C j�.t; x; �; ˛/ � �.t; x0; �0; ˛0/j
6 c

�jx � x0j C j˛ � ˛0j C W2.�; �
0/

	
;

where W2.�; �
0/ denotes the 2-Wasserstein distance on the space P2.Rd/

(recall Section 5.1 of Chapter 5 for a definition).
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The set A of admissible control processes ˛ is defined as the set of A-valued
progressively measurable processes ˛ D .˛t/06t6T satisfying:

E

Z T

0

j˛tj2dt < 1: (6.7)

Remark 6.1 The above choice of admissibility is motivated by the search for
optimal controls in open loop forms. This class of controls is especially well suited to
the probabilistic approach based on the Pontryagin stochastic maximum principle.
However, we shall consider other classes of admissible controls from time to time.
Indeed, it will be convenient to work with Markovian controls in closed loop
feedback form ˛t D �.t;Xt/ for a deterministic function � W Œ0;T� � R

d ! A
when we introduce the value function of the optimization problem, and we search
for equations (typically PDEs) satisfied by this value function. We refer to the next
section for a first account in that direction.

Cost Functional
Under the above assumptions (A1) and (A2), Theorem 4.21 of Section 4.2.1 implies
that for every admissible control ˛ 2 A, there exists a unique solution X D X˛

of (6.6). Moreover for every p 2 Œ1; 2�, this solution satisfies:

E

�
sup
06t6T

jXtjp
�
< 1: (6.8)

In this chapter, we are interested in the minimization of the objective function:

J.˛/ D E

� Z T

0

f
�
t;Xt;L.Xt/; ˛t

�
dt C g

�
XT ;L.XT/

��
; (6.9)

over the set A of admissible control processes. The running cost function f is given
by a real valued deterministic (measurable) function on Œ0;T��R

d �P2.Rd/�A, and
the terminal cost function g by a real valued deterministic (measurable) function on
R

d �P2.Rd/. Assumptions on the cost functions f and g will be spelled out later on,
but typically we shall assume:

Assumption (MKV Quadratic Growth). There exists a constant C such that:

jf .t; x; �; ˛/j 6 C
�
1C jxj C M2.�/C j˛j�2;

jg.x; �/j 6 C
�
1C jxj C M2.�/

�2
;

for all .t; x; �; ˛/ 2 Œ0;T��R
d �P2.Rd/�A, where M2.�/ denotes the square

root of the second moment of �, see (3.26).
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For the sake of simplicity we assume that all the coefficients are deterministic.
Some of the results can be extended to random coefficients. See the Notes &
Complements at the end of the chapter for a discussion of some of these possible
generalizations.

First Comparison with MFG
We emphasize one more time that the optimization problem (6.9) differs from the
optimization problem encountered in the theory of mean field games. Indeed, when
solving a mean field game problem, the optimization of the cost functional (6.9) is
performed for a fixed flow of probability measures. In other words, the argument
.L.Xt//06t6T in (6.6) and (6.9) is kept fixed as ˛ varies, and the resulting controlled
processes are driven by the same flow of measures, which is not necessarily the flow
of marginal distributions of the process .Xt/06t6T , but merely an input. Solving the
mean field game then consists in identifying an input flow of probability measures
such that the optimal states have precisely the input as flow of marginal distributions.
This is different from the problem considered in this chapter since, throughout the
optimization process, the flow of probability measures used in (6.6) and (6.9) need
to be equal to the flow of marginal distributions .L.Xt//06t6T of the solution of (6.6).

6.2.2 Reformulation as a Deterministic Optimal Control Problem

As announced, we now reformulate the optimization problem analytically.

Reformulation of the ProblemOver Controls in Closed Loop Feedback
Form
As suggested by Remark 6.1, we may restrict ourselves to Markovian controls ˛ D
.�.t;Xt//06t6T given by feedback control functions, in which case (6.6) becomes
(at least formally):

dXt D b
�
t;Xt;L.Xt/; �.t;Xt/

�
dt

C �
�
t;Xt;L.Xt/; �.t;Xt/

�
dWt; t 2 Œ0;T� I X0 D �:

(6.10)

As before, we use a bold face character to indicate that we are working with a
function of t, and we use the notation .�/ to emphasize that we are dealing with a
function of x 2 R

d. In this way, we can distinguish the notation ˛.�/ D .�.t; �//06t6T

for the feedback function from the values ˛ 2 A in the range of this function
and, also, from the control process ˛ D .˛t D .�.t;Xt///06t6T obtained by
implementing the feedback function ˛.�/ in the SDE (6.6). Since we keep the
discussion in this section at an informal level only, we do not discuss the well
posedness of (6.10).
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We now rewrite the optimal control problem (6.3)–(6.4) in the form of a
deterministic control problem. Since the coefficients f and g are deterministic, we
can view the objective J.˛/ as a deterministic function of the marginal distributions
� D .�t D L.Xt//06t6T by writing:

J.�/ D
Z T

0

˝
f
�
t; �; �t; �.t; �/

�
; �t

˛
dt C ˝

g.�; �T/; �T
˛
; (6.11)

if we use the notation h'; �i for the integral of the function ' with respect to the
measure �.

Motivated by this (deterministic) form of the objective function, we rewrite
the dynamics of the controlled state in terms of its distribution only, replacing
the dynamical equation (6.3) given by a stochastic differential equation, by a
deterministic dynamical equation for the marginal distributions themselves. A
simple application of the classical form of Itô’s formula to the McKean-Vlasov
SDE (if well posed) shows that, similar to (3.12), the dynamics of the marginal
distributions are given by the nonlinear Kolmogorov-Fokker-Planck’s equation:

@t�t D L�.t;�/;�t �t; t 2 Œ0;T� I �0 � �; (6.12)

where the action of the operator L�.t;�/;�t on measures (in the sense of distributions)
is given by:

L�.t;�/;�t � D �divx
�
b.t; �; �; �.t; �//�	

C 1

2
trace

�
@2xx

�
�.t; �; �; �.t; �//��.t; �; �; �.t; �//�� ��	

:
(6.13)

So, instead of considering (6.3)–(6.4), we may want to focus on the deterministic
optimal control problem:

inf

� Z T

0

˝
f
�
t; �; �t; �.t; �/

�
; �t

˛
dt C ˝

g.�; �T/; �T
˛�
; (6.14)

the infimum being taken over the set of pairs .�t; �.t; �//06t6T , for which the
mappings Œ0;T� 3 t 7! �t 2 P2.Rd/ and Œ0;T� � R

d 3 .t; x/ 7! �.t; x/ are
measurable, and satisfy:

Z T

0

k�.t; �/k2L2.Rd ;�tIRk/
dt < 1;

and (6.12) in the sense of distributions. We refer to the discussion following
Proposition 5.7 for the time measurability properties of the integrand in (6.11).
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Example: Optimal Transportation as anMKV Control Problem
It is worth mentioning that Benamou-Brenier’s Theorem 5.53 of optimal transporta-
tion proven in Chapter 5, may be recast as a McKean-Vlasov control problem of the
form (6.14). Indeed, for a given target measure �1 2 P2.Rd/, choose T D 1 and the
coefficients:

b.t; x; �; ˛/ D ˛; �.t; x; �; ˛/ D 0;

f .t; x; �; ˛/ D j˛j2; g.x; �/ D

0 if � D �1
C1 otherwise

;
(6.15)

for .t; x; �; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � A. Notice that this control problem is

of the McKean-Vlasov type because the terminal cost function depends upon the
distribution of the controlled process. Now, for a given initial distribution �0, the
special form of the terminal cost function g should enforce the terminal value
�1 D �1 for the optimal flow � D .�t/06t61. If we optimize over closed loop
controls, the feedback functions � can be identified to the vector fields of the
theorem of Benamou and Brenier, and consequently, the minimal cost in (6.14) (with
�0 D �0) should coincide with W2.�0; �1/

2. We shall come back to this example in
Subsection 6.7.3 below.

6.2.3 The State Variable, the Hamiltonian, and the Adjoint
Variables

The present discussion being merely intended to compare the probabilistic and the
analytic approaches to the problem, we shall keep part of the presentation at a
heuristic level.

Following the approach to standard control problems reviewed in Chapter 3
we introduce a Hamiltonian with finite-dimensional variables. To wit, we call
Hamiltonian the function H defined by:

H.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C �.t; x; �; ˛/ � z C f .t; x; �; ˛/; (6.16)

for .t; x; �; y; z; ˛/ 2 Œ0;T��R
d �P2.Rd/�R

d �R
d�d � A, where the dot notation

stands for the inner product in the Euclidean space unambiguously determined
by the context. Although this definition will turn out to be useful throughout the
analysis, the function H so defined cannot stand for the Hamiltonian associated
with the original control problem stated in Subsection 6.2.1, nor can it stand for
the Hamiltonian of the reformulation as a deterministic control problem given in
Subsection 6.2.2. Indeed, the state variable is infinite dimensional in both cases, and
it is natural to expect the adjoint variable to be of infinite dimension as well.

Therefore, in order to understand the connection between H and the McKean-
Vlasov optimal control problem, we must discuss the choice of the state variable
and then discuss the form of the Hamiltonian.
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Using the Probabilistic Approach
We first start with the probabilistic approach proposed in Subsection 6.2.1 and
provide the relevant form of the corresponding Hamiltonian. Due to the very
nature of McKean-Vlasov stochastic differential equations, it is quite tempting to
choose .Xt;L.Xt// as the variable describing the state of the system at time t,
where the first coordinate is understood as the realization Xt.!/ of the random
variable Xt and the second as its distribution. In so doing, the state variable lives
in R

d �P2.Rd/. However, given the development of the notion of L-differentiability
on the Wasserstein space in Chapter 5, a more convenient strategy could be to lift
the measure component of the state variable into a random variable belonging to
L2.˝;F ;PIRd/. Of course, such a lifting procedure is absolutely trivial in the
probabilistic approach as we may choose the random variable Xt itself as the lift
of L.Xt/. This prompts us to define the Hamiltonian QH by:

QH.t; x; QX; y; z; ˛/ D H.t; x; �; y; z; ˛/ (6.17)

for any random variable QX with distribution �. Below, we shall use the following
convention: Whenever X is a random variable constructed on .˝;F ;P/, QX denotes
an independent copy on a clone . Q̋ ; QF ; QP/ of the space .˝;F ;P/, according to the
same principle as in Chapter 5. Now, for any t 2 Œ0;T�, we may regard the random
variable Xt, seen as an element of L2.˝;F ;PIRd/, as the state variable itself as it
encodes both the realization Xt.!/ of Xt and the copy QXt.

So we may regard the full-fledged adjoint variables of the mean field control
problem as random variables Y 2 L2.˝;F ;PIRd/ and Z 2 L2.˝;F ;PIRd�d/, in
which case the Hamiltonian should be given by:

QH.t;X;Y;Z; ˇ/ D E
� QH.t;X; QX;Y;Z; ˇ/	;

for t 2 Œ0;T�, X;Y 2 L2.˝;F ;PIRd/, Z 2 L2.˝;F ;PIRd�d/ and ˇ 2
L2.˝;F ;PI A/.
The following two observations are in order:

1. First, if Ǫ .t; x; �; y; z/ is a minimizer of A 3 ˛ 7! H.t; x; �; y; z; ˛/ in the sense
that:

Ǫ .t; x; �; y; z/ D argmin˛2AH.t; x; �; y; z; ˛/; (6.18)

then, for any ˇ 2 L2.˝;F ;PI A/,

QH



t;X;Y;Z; Ǫ�
t;X;L.X/;Y;Z��

6 QH.t;X;Y;Z; ˇ/; (6.19)

proving that Ǫ .t;X;L.X/;Y;Z/, when it is square integrable, is a minimizer of
L2.˝;F ;PI A/ 3 ˇ 7! QH.t;X;Y;Z; ˇ/.



6.2 Probabilistic and Analytic Formulations 525

2. Second, whenever the coefficients are smooth, the Fréchet derivative of QH in X
is given by:

DX QH.t;X;Y;Z; ˇ/ D @xH.t;X;L.X/;Y;Z/
C QE�

@�H.t; QX;L.X/; QY; QZ; Q̌/.X/	;
(6.20)

the second term in the right-hand side resulting from the definition of the L-
differential and from Fubini’s theorem, see Example 3 in Subsection 5.2.2.

Using the Analytic Approach
We now provide a similar discussion for the analytic approach. This will allow us to
compare both approaches.

Returning to the analytic formulation (6.12)–(6.14), we thus consider the deter-
ministic optimal control problem:

inf
�; @t�tDL

�.t;�/;�
t �t

J
�
�

�
;

the partial differential operator L�.t;�/;�t being defined in (6.13). Obviously, this partial
differential operator is unbounded but, for pedagogical reasons, we choose to ignore
the technical issues related to the definition of its domain and keep the discussion
rather informal.

First, we observe that the state variable is a probability measure in P2.Rd/ and
we shall regard it as an element of the space of signed measures � on R

d such thatR
Rd .1Cjxj/2dj�j.x/ < 1. So by duality, the adjoint variable should be a continuous

function u 2 C.RdIR/ with sub-quadratic growth. It is then natural to introduce the
(formal) Hamiltonian:

H
�
t; �; u; ˇ

� D
D
u.�/;�divx

�
b.t; � ; �; ˇ.�/��	 C 1

2
trace

h
@2xx



a
�
t; �; �; ˇ.�/��

�iE

C ˝
f
�
t; �; �; ˇ.�/�; �˛

;

for u 2 C.RdIR/ with sub-quadratic growth as dual variable of the state variable
� 2 P2.Rd/ and for ˇ 2 L2.Rd; �I A/. As always, we use the short notation a D
���. Whenever u is smooth enough, say C2, we can use integration by parts. We get:

H
�
t; �; u; ˇ

� D
D
b
�
t; �; �; ˇ.�/� � @xu.�/C 1

2
trace

h
a
�
t; �; �; ˇ.�/�@2xxu.�/

i
; �

E

C ˝
f
�
t; �; �; ˇ.�/�; �˛

:
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Writing out the integration with respect to �, we obtain:

H
�
t; �; u; ˇ

�

D
Z

Rd

�
b
�
t; x; �; ˇ.x/

� � @xu.x/

C 1

2
trace

�
a
�
t; x; �; ˇ.x/

�
@2xxu.x/

	 C f
�
t; x; �; ˇ.x/

��
d�.x/

D
Z

Rd
K

�
t; x; �; @xu.x/; @2xxu.x/; ˇ.x/

�
d�.x/;

(6.21)

if we use the notation K for the operator symbol:

K.t; x; �; y; z; ˛/ D b.t; x; �; ˛/ � y C 1

2
a.t; x; �; ˛/ � z C f .t; x; �; ˛/

D H



t; x; �; y; 1
2
z�.t; x; �; ˛/; ˛

�
;

(6.22)

for .t; x; �; y; z; ˛/ 2 Œ0;T�� R
d � P2.Rd/� R

d � R
d�d � A, with H as in (6.16). In

order to minimize the Hamiltonian H with respect to the control variable ˇ, namely
in order to compute:

H �.t; �; u/ D inf
ˇ2L2.Rd ;�IA/

H .t; �; u; ˇ/;

we assume that the operator symbol K has a minimum in ˛ 2 A for each t, x, �, y,
and z fixed. More precisely, we assume the existence of a function:

Œ0;T� � R
d � P2.Rd/ � R

d � R
d�d 3 .t; x; �; y; z/ 7! ˛�.t; x; �; y; z/ 2 A

such that:

K
�
t; x; �; y; z; ˛�.t; x; �; y; z/

� D inf
˛2A

K.t; x; �; y; z; ˛/; (6.23)

for all t, x, �, y and z fixed. Then,

H �.t; �; u/

D
Z

Rd
K

�
t; x; �; @xu.x/; @2xxu.x/; ˛�.t; x; �; @xu.x/; @2xxu.x//

�
d�.x/;

implying that the minimum in H �.t; �; u/ is achieved at the function ˇ.�/ D
˛�.t; �; �; @xu.�/; @2xxu.�//, when the latter is square-integrable. It is worth noticing
that the last two equations are the analogues of (6.18) and (6.19).

We now mimic (6.20) and compute the derivative of the Hamiltonian H
with respect to the measure argument � standing for the state variable of the
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optimization problem. Since we are using the standard duality between function
spaces and spaces of measures, we should use the functional derivative introduced
in Subsection 5.4.1 instead of the L-derivative in order to compute this derivative.
We get:

ıH

ım

�
t; �; u; ˇ

�
.�/

D b
�
t; �; �; ˇ.�/� � @xu.�/

C 1

2
trace

�
a
�
t; �; �; ˇ.�/� � @2xxu.�/	 C f

�
t; �; �; ˇ.�/�

C
D ıb
ım

�
t; �; �; ˇ.�/�.�/ � @xu.�/

C 1

2
trace

� ıa
ım

�
t; �; �; ˇ.�/�.�/ � @2xxu.�/	 C ıf

ım

�
t; �; �; ˇ.�/�.�/; �

E
;

(6.24)

for t, �, u and ˇ as above. In the duality products, the integration variable is � and �
is fixed.

In order to be consistent with the notations introduced in Chapter 5, we denote by
ı=ım the linear functional derivative with respect to the measure argument, although
the latter one is denoted by �. In this way, we avoid any confusion with the notation
@� for the L-derivative.

Remark 6.2 It is worth observing that Ǫ in (6.18) and ˛� in (6.23) coincide
whenever � is independent of the control variable.

Application: Writing an HJB Equation for theMcKean-Vlasov Control
Problem
The value function of the present deterministic control problem is the function:

v.t; �/ D inf
�

� Z T

t

˝
f
�
s; �; �s; �.s; �/

�
; �s

˛
ds C hg.�; �T/; �Ti

�
; (6.25)

where .�s/t6s6T has the dynamics (6.12) with the initial condition �t D � 2
P2.Rd/ at time t 2 Œ0;T�. The dynamic programming principle says that it should
satisfy (at least in some generalized sense) the HJB equation:

@tv.t; �/C H �

t; �;

ıv

ım
.t; �/

�
D 0; .t; �/ 2 Œ0;T� � P2.Rd/: (6.26)

The third argument in the Hamiltonian H � is the function u.�/ D Œıv=ım�.t; �/.�/
and the terminal condition is v.T; �/ D hg.�; �/; �i. For exactly the same reasons
as above, we use the standard Fréchet or Gateaux differentiation introduced in
Subsection 5.4.1 instead of the L-derivative in order to compute the derivative of
the value function with respect to the state variable �.



528 6 Optimal Control of SDEs of McKean-Vlasov Type

Example 6.3 Let us assume that the matrix � is equal to the identity, that the drift
is equal to the control, i.e., b.t; x; �; ˛/ D ˛ 2 A, with A D R

d, and that the running
cost is separable in the sense that:

f .t; x; �; ˛/ D 1

2
j˛j2 C f0.t; x; �/;

for some smooth function f0 defined on Œ0;T� � R
d � P2.Rd/. The minimizer of

K.t; x; �; y; z; �/ is simply given by ˛�.t; x; �; y; z/ D �y so that:

H �.t; �; u/ D
Z

Rd

h
� 1

2
j@xu.x/j2 C 1

2
xu.x/C f0.t; x; �/

i
d�.x/;

and the HJB equation (6.26) reads:

@tv.t; �/C
Z

Rd

�
� 1

2

ˇ̌
ˇ@x
ıv

ım
.t; �/.x/

ˇ̌
ˇ
2

C 1

2
x
ıv

ım
.t; �/.x/C f0.t; x; �/

�
d�.x/ D 0;

or equivalently:

@tv.t; �/C
Z

Rd

�
� 1

2

ˇ̌
ˇ@�v.t; �/.x/

ˇ̌
ˇ
2

C 1

2
trace

�
@v@�v.t; �/.x/

	 C f0.t; x; �/

�
d�.x/ D 0;

(6.27)

if we use the relationship between the L-derivative and the functional derivative
proven in Subsection 5.4.1 of Chapter 5.

Example 6.4 We now assume that the matrix � is equal to the identity, that the
drift does not depend upon the measure �, i.e., b.t; x; �; ˛/ D b.t; x; ˛/, and that the
running cost is separable in the sense that f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/ for
some smooth functions f0 and f1 defined on Œ0;T��R

d �P2.Rd/ and Œ0;T��R
d � A

respectively. In this case, the minimizer ˛� of K.t; x; �; y; z; �/ is the minimizer of
b.t; x; ˛/ � y C f1.t; x; ˛/ (and also of H.t; x; �; y; z/), and for that reason, it depends
neither on the measure� nor on z, i.e., ˛�.t; x; �; y; z/ D Ǫ .t; x; �; y; z/ D ˛�.t; x; y/
(which we shall also denote by Ǫ .t; x; y/). Consequently:

H �.t; �; u/ D
Z

Rd

h
b



t; x; Ǫ�
t; x; @xu.t; x/

�� � @xu.t; x/C 1

2
xu.t; x/

Cf0.t; x; �/C f1



t; x; Ǫ�
t; x; @xu.t; x/

��i
d�.x/;
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and if we replace the dual variable u by ıv=ım, as before, we can use the fact that
@xu becomes @�v andu becomes traceŒ@x@�v�. Therefore, the HJB equation reads:

@tv.t; �/C
Z

Rd

�
b



t; x; Ǫ�
t; x; @�v.t; �/.x/

�� � @�v.t; �/.x/

C 1

2
trace

�
@v@�v.t; �/.x/

	 C f0.t; x; �/

C f1



t; x; Ǫ�
t; x; @�v.t; �/.x/

���
d�.x/ D 0;

(6.28)

for .t; �/ 2 Œ0;T� � P2.Rd/. Making use of the shorten notation H.t; x; �; y; ˛/ for
the reduced Hamiltonian associated with the full Hamiltonian (6.16), (6.28) can also
be written:

@tv.t; �/C
Z

Rd

�
1

2
trace

�
@x@�v.t; �/.x/

	

C H



t; x; �; @�v.t; �/.x/; Ǫ�
t; x; @�v.t; �/.x/

���
d�.x/ D 0;

for .t; �/ 2 Œ0;T� � P2.Rd/.

6.2.4 Pontryagin Maximum Principles for Both Formulations

As in the previous subsection, the present discussion remains mostly at a heuristic
level. It is intended to compare the probabilistic and analytic approaches to the
problem of optimal control of McKean-Vlasov dynamics.

The thrust of this chapter is to develop and implement appropriate forms of
the Pontryagin maximum principle for the optimal control of McKean-Vlasov
equations. Since the discussion of the previous subsection led to two different
formulations of the problem, we shall need to work with two versions of the
maximum principle depending on whether the original control problem is recast as
a deterministic or stochastic control problem. In the present subsection, we provide
a brief account of the two approaches, discussing them side by side.

The Case of the Probabilistic Formulation
The following definition of the adjoint processes is imposed on us by the expres-
sion (6.20) obtained earlier for the derivative of the finite dimensional Hamiltonian.

Definition 6.5 In addition to assumption MKV Lipschitz Regularity, assume that
the coefficients b; �; f and g are jointly differentiable with respect to x and �.
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Then, for any admissible control ˛ D .˛t/06t6T 2 A, we denote by X D X˛ the
corresponding controlled state process, and whenever

E

Z T

0

�ˇ̌
@xf .t;Xt;L.Xt/; ˛t/

ˇ̌2 C QE
hˇ̌
@�f .t;Xt;L.Xt/; ˛t/. QXt/

ˇ̌2i
�

dt < 1; (6.29)

and

E

hˇ̌
@xg.XT ;L.Xt//

ˇ̌2 C QE�j@�g.XT ;L.Xt//. QXT/j2
	i
< 1; (6.30)

we call adjoint processes of X (or of the admissible control ˛), any couple .Y;Z/ of
progressively measurable stochastic processes Y D .Yt/06t6T and Z D .Zt/06t6T in
S
2;d � H

2;d�d satisfying the equation:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

dYt D �
h
@xH

�
t;Xt;L.Xt/;Yt;Zt; ˛t

�

C QE�
@�H

�
t; QXt;L.Xt/; QYt; QZt; Q̨ t/.Xt/

	i
dt

CZtdWt; t 2 Œ0;T�;
YT D @xg

�
XT ;L.XT/

� C QE�
@�g

� QXT ;L.XT/
�
.XT/

	
;

(6.31)

where . QX; QY; QZ; Q̨ / is an independent copy of .X;Y;Z;˛/ defined on the space
. Q̋ ; QF ; QP/ and QE denotes the expectation on . Q̋ ; QF ; QP/.

Equation (6.31) is referred to as the adjoint equation.

Remark 6.6 Beyond the mathematical rationale (6.20) for the form of the above
adjoint equation, its intuitive justification can be argued as follows. The search
for optimality goes through the computation of the variations of the cost J.˛/
for infinitesimal variations in the control process ˛. The main difference with the
classical case is that when ˛ varies, the variations of both the state .X˛t /06t6T and its
distribution .L.X˛t //06t6T have to be controlled. So it should not come as a surprise
that derivatives with respect to the state variable x and the measure � appear in the
right-hand sides of both the equation for .Yt/06t6T and its terminal condition YT.
The specific ways in which these derivatives enter formula (6.31) directly follow
from (6.20). However, they may not appear transparent in a first reading. They
are best understood from the proofs of the necessary and sufficient conditions
of the stochastic maximum principle given below. As in the proof of (6.20),
these derivatives are manipulated inside an expectation, and an interchange of
this expectation and the expectation over the space introduced for the lifting of
the functions of measures is the source of the special form of formula (6.31).
Fubini’s theorem is the reason for the special role played by the independent copies
appearing in (6.31).
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Notice that QEŒ@�H.t; QXt;L.Xt/; QYt; QZt; Q̨ t/.Xt/� is a (measurable) function of
the random variable Xt as it stands for QEŒ@�H.t; QXt;L.Xt/; QYt; QZt; Q̨ t/.x/�jxDXt .
Measurability can be proved by following the discussion in Subsection 5.3.4, which
shows that we can find a measurable version of the mapping .t; x; �; y; z; v/ 7!
@�H.t; x; �; y; z/.v/; measurability of QEŒ@�H.t; QXt;L.Xt/; QYt; QZt; Q̨ t/.x/�jx with
respect to .t; x/ is then a consequence of Fubini’s theorem. The same remark
applies to QEŒ@�g. QXT ;L.XT//.XT/�. Notice also that, when b, � , f and g do not
depend upon the marginal distributions of the controlled state process, the extra
terms appearing in the adjoint equation and its terminal condition disappear, and
this equation coincides with the classical adjoint equation of stochastic control.

We now expand the derivative of the Hamiltonian in (6.31). To do so, we make
the following observation: If h W P2.Rd/ ! R

` is differentiable, then, for each
p 2 R

`, the real valued function � 7! h.�/ � p is differentiable; its differential is a
function @�Œh.�/ � p�.�/ defined �-almost everywhere on R

d, and @�Œh.�/ � p�.x/ is
equal to .@�h.�/.x//�p, where @�h.�/.x/ is understood as a matrix of size ` � d.
For the sake of convenience, we shall use the notation @�h.�/.x/ˇ p for @�Œh.�/ �
p�.x/ D .@�h.�/.x//�p, with a similar notation for @xh.x/ˇ p D @xŒh.x/ � p� when
h W Rd ! R

`. Now, the adjoint equation rewrites:

dYt D �
�
@xb

�
t;Xt;L.Xt/; ˛t

� ˇ Yt C @x�
�
t;Xt;L.Xt/; ˛t

� ˇ Zt

C @xf
�
t;Xt;L.Xt/; ˛t

�

C QE
h
@�b.t; QXt;L.Xt/; Q̨ t/.Xt/ˇ QYt

C @��.t; QXt;L.Xt/; Q̨ t/.Xt/ˇ QZt

C @�f .t; QXt;L.Xt/; Q̨ t/.Xt/
i�

dt

C ZtdWt; t 2 Œ0;T�;

(6.32)

with the terminal condition YT D @xg.XT ;L.XT// C QEŒ@�g. QXT ;L.XT//.XT/�.
Notice that @xb and @x� are bounded since b and � are assumed to be Lipschitz
continuous in the variable x by (A2). Also, EŒj@�b.t; QXt;L.Xt/; Q̨ t/.Xt/j2�1=2 and
EŒj@��.t; QXt;L.Xt/; Q̨ t/.Xt/j2�1=2 are bounded by c since b and � are assumed to be
c-Lipschitz continuous in the variable � with respect to the 2-Wasserstein distance.
Indeed, Remark 5.27 ensures that, for a differentiable function h W P2.Rd/ ! R,
which is c-Lipschitz continuous in � with respect to the 2-Wasserstein distance, it
holds EŒj@�h.X/j2�1=2 6 c, for any � 2 P2.Rd/ and any random variable X having
distribution �.

Remark 6.7 The notation ˇ is especially convenient for terms of the form @x� ˇ z
or @�� ˇ z. In contrast, we did not introduce it in Chapter 4 since, in the various
applications of the stochastic maximum principle addressed therein, � is assumed
to be constant.
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Existence of the Adjoint Processes. Given an admissible control ˛ 2 A and the
corresponding controlled state process X D X˛, equation (6.32) is a BSDE of
the McKean-Vlasov type, as those introduced in Subsection 4.2.2. Whenever the
filtration F is generated by F0 and by W, the existence and uniqueness result for
mean field BSDEs given by Theorem 4.23 in Chapter 4 can be easily adapted to
the present needs up to a slight generalization for allowing the McKean-Vlasov
interaction to include the variable z and the dimension of � to differ from d. In
particular, the bound:

max
n
E QE�j@�b.t; QXt;L.Xt/; Q̨ t/.Xt/j2

	
;

E QE�j@��.t; QXt;L.Xt/; Q̨ t/.Xt/j2
	o
< 1;

guarantees existence and uniqueness of a solution of equation (6.32).

Optimality Condition. From the standard version of the stochastic Pontryagin
maximum principle, we infer that, if ˛ D .˛t/06t6T is an optimal control process
with X D .Xt/06t6T as optimal path, then it should be of the form:

˛t D Ǫ�
t;Xt;L.Xt/;Yt;Zt

�
; t 2 Œ0;T�; (6.33)

where Ǫ is the minimizer of H, as defined in (6.18) and .Y;Z/ D .Yt;Zt/06t6T

solves (6.31). The goal of Sections 6.3 and 6.4 below is to prove this claim
rigorously.

The Case of the Deterministic Formulation
We now return to the deterministic formulation of the McKean-Vlasov optimal con-
trol problem introduced in Subsection 6.2.2 and we aim at providing a heuristic for
the Pontryagin principle in that case. A natural infinite dimensional generalization of
the deterministic Pontryagin maximum principle suggests that, for each admissible
control in closed loop feedback form ˛ D .�.t; �//06t6T , the associated adjoint
variable u D .u.t; �//06t6T should be defined as the solution of the adjoint equation:

du.t; �/ D �ıH
ım

�
t; �t; u.t; �/; �.t; �/

�
.�/ dt;

uT.�/ D ı

ım

�Z

Rd
g.x; �/d�.x/

�

j�D�T

.�/;

where .�t/06t6T satisfies (6.12). Again, the fact that we use the standard duality
between function spaces and spaces of measures prompts us to compute the deriva-
tive of the Hamiltonian and the terminal condition using functional derivatives. So
the adjoint equation should read:
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dut

dt
.�/ D �

�
b
�
t; �; �t; �.t; �/

� � @xut.�/

C 1

2
trace

�
a
�
t; �; �t; �.t; �/

� � @2xxut.�/
	 C f

�
t; �; �t; �.t; �/

�

C
D ıb
ım

�
t; �; �t; �.t; �/

�
.�/ � @xut.�/

C 1

2
trace

�
ıa

ım

�
t; �; �t; �.t; �/

�
.�/ � @2xxut.�/

�

C ıf

ım

�
t; �; �t; �.t; �/

�
.�/; �t

E�
;

(6.34)

where we denoted u by .ut.�//06t6T instead of .u.t; �//06t6T and where we used �
as integration variable in the duality products. The terminal condition should be:

uT.�/ D g.�; �T/C
Z

Rd

ıg

ım
.x; �T/.�/d�T.x/:

Optimality Condition. Now, the maximum principle suggests that, if ˛ is an
optimal control with � D .�t/06t6T as optimal path, then it should be of the form:

�.t; x/ D ˛��
t; x; �t; @xu.t; x/; @2xxu.t; x/

�
; .t; x/ 2 Œ0;T� � R

d;

˛� being the minimizer of K defined in (6.23) and u D .u.t; �//06t6T solving (6.34).
Therefore, combining the Kolmogorov-Fokker-Planck equation (6.12) for � D
.�t/06t6T with the equation (6.34) for u D .u.t; �//06t6T , we deduce that the pair
.�;u/ should necessarily solve the forward-backward system:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

@t�t D L
˛�.t;�;�t ;@xu.t;�/;@2xxu.t;�//;�
t �t; t 2 Œ0;T� I �0 � �;

@tu.t; x/ D �ıH
ım



t; �t; u.t; �/; ˛��

t; �; �t; @xu.t; �/; @2xxu.t; �/�
�
.x/;

.t; x/ 2 Œ0;T� � R
d;

u.T; x/ D g.x; �T/C
Z

Rd

ıg

ım
.y; �T/.x/d�T.y/; x 2 R

d;

(6.35)

where ıH =ım can be computed as in (6.24), namely, with the same notation as
in (6.21):

ıH

ım

�
t; �; u; ˇ

�
.x/ D K

�
t; x; �; @xu.x/; @2xxu.x/; ˇ.x/

�

C
Z

Rd

ıK

ım

�
t; y; �; @xu.y/; @2xxu.y/; ˇ.y/

�
.x/d�.y/:
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In full analogy with Remark 3.26 for stochastic control in finite dimension, the
adjoint variable u should coincide with the derivative of the value function v D
.v.t; �//06t6T in (6.25) computed along the optimal path .�t/06t6T , namely we
should have:

u.t; x/ D ıv

ım
.t; �t/.x/; .t; x/ 2 Œ0;T� � R

d: (6.36)

Using the relationship between the L-derivative and the functional derivative, we
derive the following (formal) identification:

@xu.t; x/ D @�v.t; �t/.x/; @2xxu.t; x/ D @v@�v.t; �t/.x/;

for .t; x/ 2 Œ0;T� � R
d. Relationship (6.36) is nothing but the analogue of the

equation (4.8) for the decoupling field of a forward-backward system. Here, the
decoupling field is the mapping:

U W Œ0;T� � R
d � P2.Rd/ 3 .t; x; �/ 7! ıv

ım
.t; �/.x/:

Differentiating the HJB equation (6.26) with respect to �, we deduce that U should
satisfy (at least formally):

@tU.t; x; �/C ı

ım

h
H �


t; �;U.t; �; �/
�i
.x/ D 0; (6.37)

for .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, which is sometimes called the master equation

of the McKean-Vlasov control problem (6.12)–(6.14). Unfortunately, it is only fair
to say that the jury is still out on the use of the terminology master equation. See
nevertheless the discussion in Section 6.5. Here, the terminal boundary condition
for U.T; �; �/ is:

U.T; x; �/ D g.x; �/C
Z

Rd

ıg

ım
.y; �/.x/d�.y/; x 2 R

d; � 2 P2.Rd/:

We conclude this subsection by revisiting the two examples for which we derived
the HJB equations, and we write explicitly the corresponding master equations.

Example 6.8 Under the assumptions of Example 6.3 above, the master equation
takes the form:

@tU.t; x; �/C 1

2
xU.t; x; �/ � 1

2

ˇ̌
@xU.t; x; �/

ˇ̌2 C f0.t; x; �/

C
Z

Rd

h1
2
y
ıU

ım
.t; y; �/.x/ � @y

ıU

ım
.t; y; �/.x/ � @yU.t; y; �/

C ıf0
ım
.t; y; �/.x/

i
d�.y/ D 0;
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for .t; x; �/ 2 Œ0;T��R
d �P2.Rd/, where @yU.t; y; �/ and @yŒıU=ım�.t; y; �/.x/ are

seen as column vectors of dimension d. Notice that, on the first line, we recognize
the structure of a finite dimensional HJB equation.

Example 6.9 Under the assumptions of Example 6.4 above with A D R
k, we have:

@tU.t; x; �/C 1

2
xU.t; x; �/C H



t; x; �; @xU.t; x; �/; Ǫ�

t; x; @xU.t; x; �/
��

C
Z

Rd

h1
2
y
ıU

ım
.t; y; �/.x/

� b



t; y; Ǫ�
t; y; @yU.t; y; �/

�� � @y
ıU

ım
.t; y; �/.x/

C ıf0
ım
.t; y; �/.x/

i
d�.y/ D 0;

for .t; x; �/ 2 Œ0;T��R
d �P2.Rd/, where we used the fact that Ǫ .t; x; y/ is a zero of

@˛H.t; x; �; y; �/ since A D R
k. As in the case of Example 6.8, the first part of this

master equation has the structure of a finite dimensional HJB equation.

6.2.5 Connecting the Two Approaches with Mean Field Games

As in the two previous subsections, we try to keep most of the discussions at a
heuristic level.

In the previous subsections, we gave two distinct formulations for the optimal
control of stochastic differential equations of the McKean-Vlasov type, and for each
of them, we developed a dedicated form of the Pontryagin maximum principle.
However, it is not clear how these two forms relate to each other. Here, still in
an informal way, we explain the connections between these two versions of the
Pontryagin maximum principle. Then, we highlight how they can be linked to mean
field game problems.

For simplicity, and since we only accounted for mean field games in this specific
case, we shall assume that � does not depend upon the control ˛. In particular,
due to the relationship (6.22) between H and K, Ǫ in (6.18) and ˛� in (6.23)
coincide, see Remark 6.2. Moreover, Ǫ and thus ˛� as well, only depend upon the
variables .t; x; �; y/.

A NewOptimization Problem
Starting from the deterministic formulation of the control problem, the strategy is
to regard the backward equation in (6.35) as an HJB equation. To do so, we assume
throughout this subsection that the solution u D .u.t; �//06t6T of the equation:
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@tu.t; x/

D �K



t; x; �t; @xu.t; x/; @2xxu.t; x/; Ǫ�
t; x; �t; @xu.t; x/

��
(6.38)

�
Z

Rd

ıK

ım



t; y; �t; @yu.t; y/; @2yyu.t; y/; ˛��

t; y; �t; @yu.t; y/
��
.x/d�t.y/;

for .t; x/ 2 Œ0;T� � R
d, is smooth, where (see (6.23)):

K



t; x; �t; @xu.t; x/; @2xxu.t; x/; ˛��
t; x; �t; @xu.t; x/

��

D inf
˛2A

h
b.t; x; �t; ˛/ � @xu.t; x/

C 1

2
trace

�
a.t; x; �t/@

2
xxu.t; x/

	 C f .t; x; �t; ˛/
i
:

(6.39)

Therefore, this solution u D .u.t; �//06t6T may be understood as the value function
of a new stochastic control problem, set over controlled standard diffusion processes
of the form:

dX˛
t D b

�
t;X˛

t ; �t; ˛t
�
dt C �

�
t;X˛

t ; �t
�
dWt; t 2 Œ0;T� I X˛

0 D �; (6.40)

˛ standing for an A-valued control process as in (6.6), and associated with the cost
functional:

I.˛/ D E

�
g.X˛

T ; �T/C
Z

Rd

ıg

ım
.y; �T/.X

˛
T /d�T.y/

C
Z T

0

f
�
t;X˛

t ; �t; ˛t
�
dt

C
Z T

0

Z

Rd

ıK

ım



t; y; �t; @yu.t; y/; @2yyu.t; y/;

˛��
t; y; �t; @yu.t; y/

��
.X˛

t /d�t.y/dt

�
:

(6.41)

It is very important to observe that the flow of measures � D .�t/06t6T appearing
in the dynamics (6.40) of X and in the definition (6.41) of I.˛/ is not required
to coincide with the flow of marginal distributions of X. Instead, � is merely the
forward component of the solution to (6.35). This is in stark contrast with (6.6). In
particular, we stress the fact that the control problem (6.40)–(6.41) is not a McKean-
Vlasov control problem but a standard control problem.
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Optimal Path of the NewOptimization Problem
Return to (6.35) and consider an optimal flow � D .�t/06t6T . Assume also that we
can construct a process X D .Xt/06t6T having � D .�t/06t6T as flow of marginal
laws and solving the McKean-Vlasov SDE associated with the Kolmogorov-Fokker-
Planck equation (see the references at the end of the subsection) in (6.35), namely:

dXt D b



t;Xt;L.Xt/; ˛
��

t;Xt;L.Xt/; @xu.t;Xt/
��

dt

C �
�
t;Xt;L.Xt/

�
dWt;

(6.42)

for all t 2 Œ0;T�, with X0 D � and with:

8t 2 Œ0;T�; L.Xt/ D �t: (6.43)

Since L.Xt/ D �t for all t 2 Œ0;T�, we may regard X as a controlled diffusion
process of the same form as in (6.40), with ˛ equal to:

˛ D


˛t D ˛��

t;Xt; �t; @xu.t;Xt/
��

06t6T
; t 2 Œ0;T�:

Since u is the value function of the HJB equation (6.38) and ˛� is a minimizer of
the Hamiltonian K in ˛, see (6.39), the process X D .Xt/06t6T is an optimal path
for the optimal control problem (6.40)–(6.41), see Lemma 4.47.

Stochastic PontryaginMaximum Principle for the NewOptimization
Problem
We now apply the standard stochastic Pontryagin maximum principle to the
problem (6.40)–(6.41). The Hamiltonian associated with (6.40)–(6.41) is given by:

H0.t; x; y; z; ˛/

D H.t; x; �t; y; z; ˛/

C
Z

Rd

ıK

ım



t; y; �t; @yu.t; y/; @2yyu.t; y/; Ǫ�

t; y; �t; @yu.t; y/
��
.x/d�t.y/;

for .t; x; y; z; ˛/ 2 Œ0;T� � R
d � R

d � R
d�d � A, where we used the identity

Ǫ D ˛�. Clearly, the minimizer of H0.t; x; y; z; �/ with respect to ˛ is the minimizer
Ǫ .t; x; �t; y/ of H.t; x; �t; y; z; �/. See (6.18) and recall that � is independent of
the control. Therefore, making use of the connection between the L-derivative
and the functional derivative, the stochastic Pontryagin forward-backward system
associated with (6.40)–(6.41) is:
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

dX0
t D b

�
t;X0

t ; �t; Ǫ .t;X0
t ; �t;Y

0
t /

�
dt

C��
t;X0

t ; �t
�
dWt; t 2 Œ0;T� I X0

0 D �;

dY 0
t D �

�
@xH

�
t;X0

t ; �t;Y
0
t ;Z

0
t ; Ǫ .t;X0

t ; �t;Y
0
t /

�

C
Z

Rd
@�K

�
t; y; �t; @yu.t; y/; @2yyu.t; y/;

Ǫ�
t; y; �t; @yu.t; y/

��
.X0

t/d�t.y/

�
dt

CZ0
t dWt; t 2 Œ0;T�;

(6.44)

with terminal condition:

Y 0
T D @xg

�
X0

T ; �T
� C

Z

Rd
@�g.y; �T/.X

0
T/d�T.y/:

Since X in (6.42) is already known to be an optimal path of the optimal control
problem (6.40)–(6.41), the standard connection between the HJB equation (6.38)
and the Pontryagin system (6.44) prompts us to consider:

�
X0

t ;Y
0
t ;Z

0
t

�
06t6T D



Xt; @xu.t;Xt/; @

2
xxu.t;Xt/�

�
t;Xt; �t

��

06t6T
; (6.45)

as a possible candidate for the solution of (6.44). See Subsection 3.3.2 for the case �
constant, the generalization to the current setting being straightforward. The fact that
this triple is indeed a solution of (6.44) may be easily checked by writing the PDE
satisfied by @xu by differentiation of (6.38), and then by expanding .@xu.t;Xt//06t6T

using Itô’s formula.

Recovering the Stochastic Pontryagin System
Plugging the form of .X0;Y0;Z0/ given by (6.45) into the backward equation
in (6.44), we get:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

dX0
t D b

�
t;X0

t ; �t; Ǫ .t;X0
t ; �t;Y

0
t /

�
dt

C��
t;X0

t ; �t
�
dWt; t 2 Œ0;T� I X0

0 D �;

dY 0
t D �

�
@xH

�
t;X0

t ; �t;Y
0
t ;Z

0
t ; Ǫ .t;X0

t ; �t;Y
0
t /

�

C QE
h
@�K

�
t; QX0

t ; �t; QY 0
t ; @

2
yyu.t; QX0

t/; Ǫ .t; QX0
t ; �t; QY 0

t /
�
.X0

t/
i�

dt

CZ0
t dWt; t 2 Œ0;T�;

(6.46)

with terminal condition:

Y 0
T D @xg

�
X0

T ; �T
� C

Z

Rd
@�g.y; �T/.X

0
T/d�T.y/

D @xg
�
X0

T ; �T
� C QE�

@�g. QX0
T ; �T/.X

0
T/

	
:
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Using (6.22), we notice that:

@�K.t; x; �; y; z; ˛/.x0/

D @�H
�
t; x; �; y; ˛

�
.x0/C 1

2
@�

�
trace

�
�.t; x; �/�.t; x; �/�z�

�	
.x0/;

(6.47)

for .t; x; x0; �; y; z; ˛/ 2 Œ0;T� � R
d � R

d � P2.Rd/ � R
d � R

d�d � A, and with
H.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/ denoting the reduced Hamiltonian.
For a symmetric matrix z of size d � d and an integer i 2 f1; : : : ; dg, it holds:

@i
�

�
trace

�
�.t; x; �/�.t; x; �/�z�

�	
.x0/

D trace
��
@i
��.t; x; �/.x

0/
�
�.t; x; �/�z�

	

C trace
�
�.t; x; �/

�
@i
��.t; x; �/

�.x0/
�
z�

	

D trace
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��.t; x; �/.x

0/
�
�.t; x; �/�z�

	

C trace
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�.t; x; �/

�
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��.t; x; �/

�.x0/
�
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D trace
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��.t; x; �/.x

0/
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�.t; x; �/�z�

	

C trace
�
z�.t; x; �/

�
@i
��.t; x; �/

�.x0/
�	

D 2trace
��
@i
��.t; x; �/.x

0/
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z�.t; x; �/
��	

D 2
�
@i
��.t; x; �/.x

0/
� � �

z�.t; x; �/
�
;

(6.48)

where @i
� denotes the i coordinate of the derivative @�, that is @i

� D .@��/i with the
notations used in Chapter 5. Plugging this expression into (6.47), we deduce:

@�K.t; x; �; y; z; ˛/.x0/ D .@�H/
�
t; x; �; y; z�.t; x; �/; ˛

�
.x0/;

for .t; x; x0; �; y; z; ˛/ 2 Œ0;T� � R
d � R

d � P2.Rd/ � R
d � R

d�d � A, with z being
symmetric. Returning to (6.46), we finally obtain:
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CZ0
t dWt; t 2 Œ0;T�:
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This is remarkable as it shows that, starting from the deterministic formulation
of the optimal control of McKean-Vlasov dynamics, we were able to completely
recover the forward/backward system (6.32) given by the stochastic Pontryagin
principle applied to the probabilistic formulation as described in Subsection 6.2.4.
We summarize the above result.

The FBSDE system of McKean-Vlasov type derived from the version of the stochastic
Pontryagin maximum principle for the optimal control of McKean-Vlasov dynamics
can be identified with the FBSDE system for a standard optimal control problem
derived from the Pontryagin maximum principle for the deterministic formulation of
the original McKean-Vlasov optimal control problem!

Connection with Mean Field Games
The connection with mean field games should now be clear. The process X defined
in (6.42) is an optimal path of the stochastic control problem (6.40)–(6.41) set in the
environment � D .�t D L.Xt//06t6T . Because of the identity (6.43), it is a solution
of the mean field game defined over controlled processes of the form (6.40) with
respect to the cost functional I defined in (6.41). The flow � D .�t/06t6T therein is
now understood as an input. As above, we can reformulate this statement as follows:

The forward/backward PDE system issued from the application of the Pontryagin
maximum principle to the deterministic formulation of the McKean-Vlasov problem
may be identified with an auxiliary MFG problem. In fact, the FBSDE system given
by the Pontryagin principle for the McKean-Vlasov problem may be identified with
the FBSDE system given by the application of the Pontryagin principle (in the sense
described in Chapters 3 and 4) to this auxiliary MFG problem.

Although the above formulation is quite appealing, it is actually somewhat
deceiving. Indeed, the cost functional of the auxiliary MFG problem (6.40)–(6.41)
involves the value function u of the primary McKean-Vlasov control problem. Its
formulation is thus rather implicit.

However, it is possible to identify interesting cases for which the auxiliary MFG
problem has an explicit structure. For example, if we revisit Example 6.4 and assume
that b and � do not depend upon the measure parameter �, namely:

b.t; x; �; ˛/ D b.t; x; ˛/; �.t; x; �/ D �.t; x/;

and that the running cost f is separable in the sense that:

f .t; x; �; ˛/ D f0.t; x; ˛/C f1.t; x; �/;

for .t; x; �; ˛/ 2 Œ0;T� � R
d � P2.Rd/ � A then, by (6.22), it holds that:

ıK

ım
.t; x; �; y; z; ˛/ D ıf

ım
.t; x; �; ˛/ D ıf1

ım
.t; x; �/:
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Therefore, the auxiliary MFG problem consists in optimizing the cost functional:
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.y; �T/.X
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T /d�T.y/
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f
�
t;X˛

t ; �t; ˛t
� C ıf1

ım
.t; y; �t/.X

˛
t /

�
d�t.y/dt

�
;

(6.49)

where � D .�t/06t6T is a continuous trajectory with values in P2.Rd/, under the
dynamic constraint:

dX˛
t D b

�
t;X˛

t ; ˛t
�
dt C �

�
t;X˛

t

�
dWt; t 2 Œ0;T� I X˛

0 D �:

We shall revisit this example in Subsection 6.7.2 through the lenses of potential
games.

Direct Comparison of the Two Approaches
Instead of dealing with two different forms of the Pontryagin maximum principle
applied to the stochastic and deterministic formulations of the optimal control
of McKean-Vlasov dynamics, we may also invoke a direct argument in order to
connect the two approaches. This argument could be based on the following two
steps:

1. First, we could associate, with any controlled process X D X˛ as in (6.6), a
controlled process driven by a control in closed loop feedback form as in (6.10),
with the same marginal distributions as X˛, and a cost smaller than J.˛/ (recall
formula (6.9) for the cost). Since any controlled process, with a square-integrable
control in closed loop feedback form, induces a solution to the Kolmogorov-
Fokker-Planck equation (6.12), this would prove that the optimal cost under
the probabilistic approach is always greater than the optimal cost under the
deterministic formulation.

Such a construction can be achieved in the typical cases considered in
Chapters 3 and 4 where the drift b is linear in ˛ and the cost functional f is
convex in ˛. It suffices to consider, as a control in closed loop feedback form, the
conditional expectation, given the � -field �fXtg, of the original control ˛t, at any
time t 2 Œ0;T�.

2. In order to prove the converse bound, we could associate, with any controlled
flow of distributions .�t/06t6T solving the Kolmogorov-Fokker-Planck equa-
tion (6.12) for some Markovian control .�.t; �//06t6T with the appropriate
integrability properties, a diffusion process solving (6.10). This may be achieved
in the strong or weak sense, depending on whether the solution to (6.10) can
be constructed on the original probability space, or merely on some probability
space, say for instance the canonical setup. In the first case, we would deduce
that the optimal cost under the probabilistic approach cannot exceed the optimal
cost under the deterministic formulation, proving the desired converse bound. In
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the second case, we could reach the same conclusion provided that we allow, in
the probabilistic formulation, for controlled processes constructed on possibly
different spaces. This requires to redefine the cost functional as a function of the
joint law of the Brownian motion W, of the controlled process X D X˛ and of
the control ˛ (instead of a function of the realizations of ˛). We provide a short
account in that direction in Section 6.6.

Motivated by the example of the connection between optimal transportation and
stochastic control of McKean-Vlasov diffusion processes given in Subsection 6.2.1,
we shall implement the two steps described above in Subsection 6.7.3 in the
particular case when the coefficients are given by (6.15).

6.3 Stochastic Pontryagin Principle for Optimality

In this section, we derive a form of the stochastic Pontryagin maximum principle
for the optimal control of McKean-Vlasov dynamics in the framework introduced
in Subsection 6.2.1. We establish necessary conditions for optimality as well as
sufficient conditions when the Hamiltonian satisfies appropriate assumptions of
convexity. The role of convexity is twofold. On the one hand, convexity allows for
an elegant proof of the necessary part of the Pontryagin principle. On the other hand,
convexity plays a major role in the proof of the sufficient condition for optimality.
It is indeed mandatory to require the Hamiltonian H to be convex in x, � and ˛
in order to establish the sufficient part of the Pontryagin principle. As explained in
Section 6.4 below, typical examples of these assumptions include cases of drift and
volatility functions b and � being linear functions of x, � and ˛, these seemingly
restrictive assumptions imposing the same kind of limitation as in the classical (non-
McKean-Vlasov) case.

For the time being, we state two forms of the regularity assumptions which will
be used in this chapter. Given a filtered complete probability space .˝;F ;F;P/ as
in Subsection 6.2.1, they are:

Assumption (Pontryagin Optimality).

(A1) The functions b, � and f are differentiable with respect to .x; ˛/,
the mappings .x; �; ˛/ 7! @x.b; �; f /.t; x; �; ˛/ and .x; �; ˛/ 7!
@˛.b; �; f /.t; x; �; ˛/ being continuous for each t 2 Œ0;T�. The func-
tions b, � and f are also differentiable with respect to the vari-
able �, the mapping R

d � L2.˝;F ;PIRd/ � A 3 .x;X; ˛/ 7!
@�.b; �; f /.t; x;L.X/; ˛/.X/ 2 L2.˝;F ;PIRd�d �R

.d�d/�d �R
d/ being

continuous for each t 2 Œ0;T�. Similarly, the function g is differentiable
with respect to x, the mapping .x; �/ 7! @xg.x; �/ being continuous.

(continued)
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The function g is also differentiable with respect to the variable �,
the mapping R

d � L2.˝;F ;PIRd/ 3 .x;X/ 7! @�g.x;L.X//.X/ 2
L2.˝;F ;PIRd/ being continuous.

(A2) The function Œ0;T� 3 t 7! .b; �; f /.t; 0; ı0; 0/ is uniformly bounded.
The derivatives @x.b; �/ and @˛.b; �/ are uniformly bounded and the
mapping x0 7! @�.b; �/.t; x; �; ˛/.x0/ has an L2.Rd; �IRd/-norm which
is also uniformly bounded (i.e., uniformly in .t; x; �; ˛/). There exists
a constant L such that, for any R > 0 and any .t; x; �; ˛/ such that
jxj;M2.�/; j˛j 6 R, j@xf .t; x; �; ˛/j, j@xg.x; �/j, and j@˛f .t; x; �; ˛/j
are bounded by L.1 C R/ and the L2.Rd; �IRd/-norms of x0 7!
@�f .t; x; �; ˛/.x0/ and x0 7! @�g.x; �/.x0/ are bounded by L.1C R/.

Observe that our formulation of the joint differentiability is very much in the
spirit of Subsection 5.3.4. Also notice that we used the notation M2.�/

2 introduced
in (3.7) for the second moment of a measure:

M2.�/
2 D

Z

Rd
jxj2d�.x/; � 2 P2.Rd/:

Note that assumption Pontryagin Optimality implies assumption MKV Lipschitz
Regularity.

Throughout the section, . Q̋ ; QF ; QP/ denotes a copy of .˝;F ;P/. It will be used for
expanding the L-derivatives of the coefficients driving the optimal control problem.
The expectation under QP is denoted by QE.

6.3.1 A Necessary Condition

As before, we assume that the set A of control values is a closed convex subset of
R

k and we denote by A the set of admissible control processes and by X D X˛ the
controlled state process, namely the solution of (6.6) with a given initial condition
X0 D � 2 L2.˝;F0;PIRd/. The filtration F is assumed to be generated by F0 and
by W. Our first task is to compute the Gâteaux derivative of the cost functional J at
˛ in all directions. In order to do so, we choose ˇ 2 H

2;k such that ˛ C �ˇ 2 A for
� > 0 small enough. We then compute the variation of J at ˛ in the direction of ˇ

(think of ˇ as the difference between another element of A and ˛).

Derivative of the Controlled Process
Using the notation � D .	t D .Xt;L.Xt/; ˛t//06t6T , we define the variation process
V D .Vt/06t6T as the solution of the stochastic differential equation:

dVt D �
�tVt C �t.L.Xt;Vt//C �t

	
dt C � O�tVt C O�t.L.Xt;Vt//C O�t

	
dWt; (6.50)
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with V0 D 0, where the coefficients �t, ıt, �t, O�t, O�t, and O�t are defined by:

�t D @xb.t; 	t/; O�t D @x�.t; 	t/; �t D @˛b.t; 	t/ˇt; O�t D @˛�.t; 	t/ˇt:

They are progressively measurable bounded processes with values in the spaces
R

d�d, R.d�d/�d, Rd, and R
d�d respectively (the parentheses around d � d indicating

that O�t � u is seen as an element of Rd�d whenever u 2 R
d), and:

�t D QE�
@�b.t; 	t/. QXt/ QVt

	 D QE�
@�b.t; x;L.Xt/; ˛/. QXt/ QVt

	ˇ̌
ˇxDXt
˛D˛t

;

O�t D QE�
@��.t; 	t/. QXt/ QVt

	 D QE�
@��.t; x;L.Xt/; ˛/. QXt/ QVt

	ˇ̌
ˇxDXt
˛D˛t

;
(6.51)

which are progressively measurable processes with values in R
d and R

d�d respec-
tively, and where . QXt; QVt/ is a copy of .Xt;Vt/ defined on . Q̋ ; QF ; QP/. We refer
to Subsection 5.3.4 for a complete account of the measurability properties. As
expectations of functions of . QXt; QVt/, �t, and O�t depend upon the joint distribution
of Xt and Vt. In (6.50) we wrote �t.L.Xt;Vt// and O�t.L.Xt;Vt// in order to stress
this dependence upon the joint distribution of Xt and Vt. Even though we are
dealing with possibly random coefficients, the existence and uniqueness of the
variation process are guaranteed by a suitable version of Theorem 4.21 applied to
the couple .X;V/ and the system formed by (6.6) and (6.50). Our assumption on
the boundedness of the partial derivatives of the coefficients implies that V satisfies
EŒsup06t6T jVtjp� < 1 for every finite p > 1. In particular .�t/0�t�T and . O�t/0�t�T

are bounded.

Lemma 6.10 For � > 0 small enough, we denote by ˛� the admissible control
defined by ˛�t D ˛t C �ˇt, and by X� D X˛� the corresponding controlled state.
We have:

lim
�&0

E

�
sup
06t6T

ˇ̌
ˇ̌X�t � Xt

�
� Vt

ˇ̌
ˇ̌
2 �

D 0: (6.52)

Proof. For the purpose of this proof we set 	�t D .X�t ;L.X�t /; ˛�t / and V�
t D ��1.X�t �Xt/�Vt.

Notice that V�
0 D 0 and that:

dV�
t D

�
1

�

�
b.t; 	�t / � b.t; 	t/

	 � @xb.t; 	t/ � Vt � @˛b.t; 	t/ � ˇt

� QE�
@�b.t; 	t/. QXt/ � QVt

	�
dt

C
�
1

�

�
�.t; 	�t / � �.t; 	t/

	 � @x�.t; 	t/ � Vt � @˛�.t; 	t/ � ˇt

� QE�
@��.t; 	t/. QXt/ � QVt

	�
dWt

D V�;1
t dt C V�;2

t dWt:

(6.53)
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Now for each t 2 Œ0; T� and each � > 0, we have:

1

�

�
b.t; 	�t / � b.t; 	t/

	 D
Z 1

0

@xb
�
t; 	
;�t

� � .V�
t C Vt/ d
C

Z 1

0

@˛b
�
t; 	
;�t

� � ˇt d


C
Z 1

0

QE�
@�b

�
t; 	
;�t

�� QX
;�t

� � . QV�
t C QVt/

	
d
;

where, in order to simplify the notation, we set X
;�t D Xt C 
�.V�
t C Vt/, ˛


;�
t D ˛t C 
�ˇt

and 	
;�t D .X
;�t ;L.X
;�t /; ˛

;�
t /. Computing the ‘dt’-term, we get:

V�;1
t D

Z 1

0

@xb
�
t; 	
;�t

� � V�
t d
C

Z 1

0

QE�
@�b

�
t; 	
;�t

�
. QX
;�t / � QV�

t

	
d


C
Z 1

0

�
@xb

�
t; 	
;�t

��@xb.t; 	t/
	 � Vt d
C

Z 1

0

�
@˛b

�
t; 	
;�t

��@˛b.t; 	t/
	 � ˇt d


C
Z 1

0

QE��
@�b

�
t; 	
;�t

�
. QX
;�t / � @�b.t; 	t/. QXt/

� � QVt
	

d


D
Z 1

0

@xb
�
t; 	
;�t

� � V�
t d
C

Z 1

0

QE�
@�b

�
t; 	
;�t

�
. QX
;�t / � QV�

t

	
d


C I�;1t C I�;2t C I�;3t :

By (A2) in assumption Pontryagin Optimality, the last three terms of the above right-hand
side are bounded in L2.Œ0; T� �˝/, uniformly in �. Next, we treat the diffusion part V�;2 in
the same way using Jensen’s inequality and Burkholder-Davis-Gundy’s inequality to control
the quadratic variation of the stochastic integrals. Consequently, going back to (6.53), we see
that, for any S 2 Œ0; T�,

E
�

sup
06t6S

jV�
t j2	 6 c0 C c0

Z S

0

E
�

sup
06s6t

jV�
s j2	dt;

where as usual c0 > 0 is a generic constant whose value can change from line to line,
as long as it remains independent of �. Applying Gronwall’s inequality, we deduce that
EŒsup06t6T jV�

t j2� 6 c0. Therefore, we have:

lim
�&0

E
�

sup
06
61

sup
06t6T

ˇ̌
X
;�t � Xt

ˇ̌2	 D 0:

We then prove that I�;1, I�;2 and I�;3 converge to 0 in L2.Œ0; T� �˝/ as � & 0. Indeed,

E

Z T

0

jI�;1t j2dt D E

Z T

0

ˇ̌
ˇ̌
Z 1

0

�
Œ@xb

�
t; 	
;�t

� � @xb.t; 	t/� � Vt
�
d


ˇ̌
ˇ̌
2

dt

6 E

Z T

0

Z 1

0

j@xb
�
t; 	
;�t

� � @xb.t; 	t/j2jVtj2d
dt:
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Since the function @xb is bounded and continuous in x, �, and ˛, the above right-hand side
converges to 0 as � & 0. A similar argument applies to I�;2t and I�;3t . Again, we treat the
diffusion part V�;2 in the same way using Jensen’s inequality and Burkholder-Davis-Gundy’s
inequality. Consequently, going back to (6.53), we finally see that, for any S 2 Œ0; T�,

E
�

sup
06t6S

jV�
t j2	 6 c0

Z S

0

E
�

sup
06s6t

jV�
s j2	dt C c�;

where lim�&0 c� D 0. Finally, we get the desired result applying Gronwall’s inequality. ut

Gâteaux Derivative of the Objective Function
We now compute the Gâteaux derivative of the objective function.

Lemma 6.11 The function A 3 ˛ 7! J.˛/ is Gâteaux differentiable in the direction
ˇ and its derivative is given by:

d

d�
J.˛ C �ˇ/

ˇ̌
�D0

D E

Z T

0

�
@xf .t; 	t/ � Vt C QEŒ@�f .t; 	t/. QXt/ � QVt�C @˛f .t; 	t/ � ˇt

	
dt

C E
�
@xg.XT ;L.XT// � VT C QEŒ@�g.XT ;L.XT//. QXT/ � QVT �

	
:

(6.54)

Proof. We use freely the notation introduced in the proof of the previous lemma.

d

d�
J.˛ C �ˇ/

ˇ̌
�D0

D lim
�&0

1

�
E

� Z T

0

�
f
�
t; 	�t

� � f .t; 	t/
	
dt C �

g.X�T ;L.X�T// � g.XT ;L.XT//
	�
:

(6.55)

Computing the two limits separately we get:

lim
�&0

1

�
E

Z T

0

�
f
�
t; 	�t

� � f .t; 	t/
	
dt D lim

�&0

1

�
E

Z T

0

Z 1

0

d

d


˚
f .t; 	
;�t /

�
d
dt

D lim
�&0

E

Z T

0

Z 1

0

�
@xf

�
t; 	
;�t

� � .V�
t C Vt/

C QE�
@�f

�
t; 	
;�t

�
. QX
;�t / � . QV�

t C QVt/
	 C @˛f

�
t; 	
;�t

� � ˇt
	

d
dt

D E

Z T

0

�
@xf .t; 	t/ � Vt C QE�

@�f .t; 	t/. QXt/ � QVt
	 C @˛f .t; 	t/ � ˇt

	
dt;

where we used the hypothesis on the continuity and growth of the derivatives of f , the uniform
convergence proven in the previous lemma, and standard uniform integrability arguments.
The second term in (6.55) is handled in a similar way. ut
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Since conditions (6.29)–(6.30) are satisfied under assumption Pontryagin Optimal-
ity, the duality relationship is given by:

Lemma 6.12 Given .Yt;Zt/06t6T as in Definition 6.5, it holds:

EŒYT � VT � D E

Z T

0

�
Yt � �

@˛b.t; 	t/ˇt
� C Zt � �

@˛�.t; 	t/ˇt
�

� @xf .t; 	t/ � Vt � QE�
@�f .t; 	t/. QXt/ � QVt

		
dt: (6.56)

Proof. Letting �t D .Xt;L.Xt/; Yt; Zt; ˛t/ and using the definitions (6.50) of the variation
process V, and (6.31) or (6.32) of the adjoint process Y, integration by parts gives:

YT � VT

D Y0 � V0 C
Z T

0

Yt � dVt C
Z T

0

dYt � Vt C
Z T

0

dŒY;V�t

D MT C
Z T

0

�
Yt � �

@xb.t; 	t/Vt
� C Yt � QE�

@�b.t; 	t/. QXt/ QVt
	 C Yt � �

@˛b.t; 	t/ˇt
�

� @xH.t; �t/ � Vt � QE�
@�H.t; Q�t/.Xt/ � Vt

	

C Zt � �
@x�.t; 	t/Vt

� C Zt � QE�
@��.t; 	t/. QXt/ QVt

	

C Zt � �
@˛�.t; 	t/ˇt

��
dt;

where .Mt/06t6T is a mean zero integrable martingale. By taking expectations on both sides
and applying Fubini’s theorem:

E QE�
@�H.t; Q�t/.Xt/ � Vt

	

D E QE�
@�H.t; �t/. QXt/ � QVt

	

D E QE��
@�b.t; 	t/. QXt/ QVt

� � Yt C �
@��.t; 	t/. QXt/ QVt

� � Zt C @�f .t; 	t/. QXt/ � QVt
	
;

we get the desired equality (6.56) by handling in a similar way the derivatives in x. ut

Putting together the duality relation (6.56) and (6.54) we get:

Corollary 6.13 The Gâteaux derivative of J at ˛ in the direction ˇ can be
written as:

d

d�
J.˛ C �ˇ/

ˇ̌
�D0 D E

Z T

0

@˛H.t;Xt;L.Xt/;Yt;Zt; ˛t/ � ˇt dt: (6.57)



548 6 Optimal Control of SDEs of McKean-Vlasov Type

Proof. Using Fubini’s theorem, the second expectation appearing in the expression (6.54) of
the Gâteaux derivative of J given in Lemma 6.11 can be rewritten as:

E
�
@xg.XT ;L.XT// � VT C QE�

@�g.XT ;L.XT//. QXT/ � QVT
�	

D E
�
@xg.XT ;L.XT// � VT

	 C E QE�
@�g. QXT ;L.XT//.XT/ � VT

	

D EŒYT � VT �;

and using the expression derived in Lemma 6.12 for EŒYT � VT � in (6.54) we get the desired
result. ut

Main Statement
The main result of this subsection is the following:

Theorem 6.14 Under assumption Pontryagin Optimality, if we assume further
that F is generated by F0 and W, that the Hamiltonian H is convex in ˛ 2 A,
that the admissible control ˛ D .˛t/06t6T 2 A is optimal, that X D .Xt/06t6T is
the associated (optimally) controlled state, and that .Y;Z/ D .Yt;Zt/06t6T are the
associated adjoint processes solving (6.31), then we have:

8˛ 2 A; H
�
t;Xt;L.Xt/;Yt;Zt; ˛t

�
6 H

�
t;Xt;L.Xt/;Yt;Zt; ˛

�
; (6.58)

Leb1 ˝ P almost everywhere.

Proof. Since A is convex, given ˇ 2 A we can choose the perturbation ˛�t D ˛t C �.ˇt � ˛t/

which is still in A for 0 6 � 6 1. Since ˛ is optimal, we have the inequality

d

d�
J.˛ C �.ˇ � ˛//

ˇ̌
�D0

D E

Z T

0

�
@˛H

�
t;Xt;L.Xt/; Yt; Zt; ˛t

� � .ˇt � ˛t/
	

dt > 0:

By convexity of the Hamiltonian with respect to the control variable ˛ 2 A, we conclude that

E

Z T

0

�
H

�
t;Xt;L.Xt/; Yt; Zt; ˇt

� � H
�
t;Xt;L.Xt/; Yt; Zt; ˛t

�	
dt > 0;

for all ˇ. Now, if for a given (deterministic) ˛ 2 A we choose ˇ in the following way:

ˇt.!/ D
(
˛ if .t; !/ 2 C;

˛t.!/ otherwise;

for an arbitrary progressively measurable set C � Œ0; T��˝ (that is C\ Œ0; t� 2 B.Œ0; t�/˝Ft

for any t 2 Œ0; T�), we see that:

E

Z T

0

1C
�
H

�
t;Xt;L.Xt/; Yt; Zt; ˛

� � H
�
t;Xt;L.Xt/; Yt; Zt; ˛t

�	
dt > 0;
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from which we conclude that:

H
�
t;Xt;L.Xt/; Yt; Zt; ˛

� � H
�
t;Xt;L.Xt/; Yt; Zt; ˛t

�
> 0 Leb1 ˝ P a:e: ;

which is the desired conclusion. ut

When convexity of the set A does not hold, the following weaker version of the
necessary part of the stochastic Pontryagin principle holds:

Proposition 6.15 Under the same assumption Pontryagin Optimality as before,
without assuming that H is a convex function of ˛, but requiring now that A is
an open subset (not necessarily convex), if we still assume that the admissible
control ˛ D .˛t/06t6T 2 A is optimal, that X D .Xt/06t6T is the associated
(optimally) controlled state, and that .Y;Z/ D .Yt;Zt/06t6T are the associated
adjoint processes, then, we have:

@˛H
�
t;Xt;L.Xt/;Yt;Zt; ˛t

� D 0 Leb1 ˝ P a:e: :

Proof. Given �0 > 0, ˇ 2 R
k with jˇj D 1, and a progressively measurable set C �

Œ0; T� �˝, we let

ˇt D ˇ1C\fdist.˛t ;A{/>�0g
;

for t 2 Œ0; T�. By construction, ˛t C �ˇt 2 A for all t 2 Œ0; T� and � 2 .0; �0/. Following the
proof of Theorem 6.14, we claim:

E

Z T

0

�
@˛H

�
t;Xt;L.Xt/; Yt; Zt; ˛t

� � ˇt
	

dt > 0;

from which we deduce that:

1
fdist.˛t ;A{/>�0g

@˛H
�
t;Xt;L.Xt/; Yt; Zt; ˛t

� � ˇ > 0 Leb1 ˝ P a:e: :

As ˇ and �0 are arbitrary, we finally get:

1
fdist.˛t ;A{/>0g

@˛H
�
t;Xt;L.Xt/; Yt; Zt; ˛t

� D 0 Leb1 ˝ P a:e: :

Recalling that A is open, the result follows. ut

6.3.2 A Sufficient Condition

The necessary condition for optimality identified in the previous subsection can be
turned into a sufficient condition for optimality under some technical assumptions.
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Theorem 6.16 Under assumption Pontryagin Optimality as before, let ˛ 2 A be
an admissible control, X D .Xt/06t6T the corresponding controlled state process,
and .Y;Z/ D .Yt;Zt/06t6T the corresponding adjoint processes. Let us also assume
that:

1. R
d � P2.Rd/ 3 .x; �/ 7! g.x; �/ is convex;

2. R
d � P2.Rd/ � A 3 .x; �; ˛/ 7! H.t; x; �;Yt;Zt; ˛/ is convex Leb1 ˝ P almost

everywhere.

If

H.t;Xt;L.Xt/;Yt;Zt; ˛t/ D inf
˛2A

H.t;Xt;L.Xt/;Yt;Zt; ˛/; (6.59)

Leb1 ˝ P a.e., then ˛ is an optimal control, i.e., J.˛/ D inf˛02A J.˛0/.

We refer to Section 5.5 for definitions and properties of L-convex functionals.
Here, in analogy with (5.74), the convexity property of H takes the form:

H.t; x0; �0;Yt;Zt; ˛
0/ > H.t; x; �;Yt;Zt; ˛/

C @xH.t; x; �;Yt;Zt; ˛/ � .x0 � x/

C @˛H.t; x; �;Yt;Zt; ˛/ � .˛0 � ˛/
C QE�

@�H.t; x; �;Yt;Zt/ � . QX0 � QX/	;

(6.60)

Leb1 ˝ P almost surely, for all t 2 Œ0;T�, x; x0 2 R
d, �;�0 2 P2.Rd/ and ˛; ˛0 2 A,

when QX � � and QX0 � �0. A similar definition holds for g.

Remark 6.17 As made clear by the proof below, the optimal control ˛ is unique if
H is 
-strongly convex in ˛ for some 
 > 0, namely if there is an extra C
j˛ � ˛0j2
in the right-hand side of (6.60).

Also, the proof shows that J.˛/ 6 J.˛0/ for control processes ˛0 that are
progressively measurable for a larger filtration F

0 containing F such that W is an
F

0-Brownian motion. The fact that F is generated by F0 and W is just needed to
guarantee that the adjoint BSDE (6.31) is solvable when ˛ is given.

Proof. Let ˛0 2 A be a generic admissible control, and X0 D X˛0

the corresponding
controlled state. By definition of the objective function of the control problem we have:
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J.˛/ � J.˛0/

D E
�
g.XT ;L.XT// � g.X0

T ;L.X0

T//
	 C E

Z T

0

�
f .t; 	t/ � f .t; 	 0

t /
	
dt

D E
�
g.XT ;L.XT// � g.X0

T ;L.X0

T//
	 C E

Z T

0

�
H.t; �t/ � H.t; �0

t /
	
dt

� E

Z T

0

˚�
b.t; 	t/ � b.t; 	 0

t /
	 � Yt C �

�.t; 	t/ � �.t; 	 0

t /� � Zt
�
dt;

(6.61)

by definition of the Hamiltonian, where 	t D .Xt;L.Xt/; ˛t/ and �t D .Xt;L.Xt/; Yt; Zt; ˛t/

(and similarly for 	 0

t and �0

t , �
0

t relying on the same Yt and Zt as �t). The function g being
convex, we have:

g.x; �/ � g.x0; �0/ 6 .x � x0/ � @xg.x; �/C QE�
@�g.x; �/. QX/ � . QX � QX0/

	
;

so that:

E
�
g
�
XT ;L.XT/

� � g
�
X0

T ;L.X0

T/
�	

6 E
�
@xg.XT ;L.XT// � .XT � X0

T/

C QE�
@�g.XT ;L.XT//. QXT/ � . QXT � QX0

T/
		

D E
��
@xg.XT ;L.XT//C QEŒ@�g. QXT ;L.XT//.XT/�

� � .XT � X0

T/
	

D E
�
YT � .XT � X0

T/
	 D E

�
.XT � X0

T/ � YT
	
;

(6.62)

where we used Fubini’s theorem and the fact that the “tilde random variables” are indepen-
dent copies of the “non-tilde variables”. Using the adjoint equation and taking expectation,
we get:

E
�
.XT � X0

T/ � YT
	

D E

� Z T

0

.Xt � X0

t / � dYt C
Z T

0

Yt � dŒXt � X0

t �C
Z T

0

Œ�.t; 	t/ � �.t; 	 0

t /� � Ztdt

�

D �E

Z T

0

�
@xH.t; �t/ � .Xt � X0

t /C QE�
@�H.t; Q�t/.Xt/

	 � .Xt � X0

t /
	
dt

C E

Z T

0

�
Œb.t; 	t/ � b.t; 	 0

t /� � Yt C Œ�.t; 	t/ � �.t; 	 0

t /� � Zt
	
dt;

where we used integration by parts and the fact that Y D .Yt/06t6T solves the adjoint
equation. Using Fubini’s theorem and the fact that Q�t is an independent copy of �t, the
expectation of the second term in the second line can be rewritten as:
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E

Z T

0

QE�
@�H.t; Q�t/.Xt/

	 � .Xt � X0

t /dt

D E QE
Z T

0

�
Œ@�H.t; �t/. QXt/� � . QXt � QX0

t /
	
dt

D E

Z T

0

QE�
@�H.t; �t/. QXt/ � . QXt � QX0

t /
	
dt:

(6.63)

Consequently, using (6.61), (6.62), and (6.63), we obtain:

J.˛/ � J.˛0/

6 E

Z T

0

ŒH.t; �t/ � H.t; �0

t /�dt

� E

Z T

0

h
@xH.t; �t/ � .Xt � X0

t /C QE�
@�H.t; Q�t/. QXt/ � . QXt � QX0

t /
	i

dt 6 0;

(6.64)

because of the convexity assumption on H, see in particular (6.60), and because of the
criticality of the admissible control ˛ D .˛t/06t6T , see (6.59), which says .˛t � ˇ/ �
@˛H.t;Xt; �t; Yt; Zt; ˛t/ 6 0 for all ˇ 2 A, see (3.11) if needed. ut

6.3.3 Special Cases

We apply the general formalism developed in this chapter to a set of particular
cases which already appeared in the literature, and we provide the special forms
of the stochastic Pontryagin principle which apply in these cases. We discuss only
sufficient conditions for optimality for the sake of definiteness. The corresponding
necessary conditions can easily be derived from the results of Subsection 6.3.1.

Scalar Interactions
We first consider scalar interactions for which the dependence upon the probability
measure comes through functions of scalar moments of the measure. More specifi-
cally, we assume that:

b.t; x; �; ˛/ D Ob.t; x; h ;�i; ˛/; �.t; x; �; ˛/ D O�.t; x; h�;�i; ˛/;
f .t; x; �; ˛/ D Of .t; x; h�; �i; ˛/; g.x; �/ D Og.x; h�; �i/;

for some scalar continuously differentiable functions  , �, � and � with derivatives
at most of linear growth, functions Ob, O� and Of defined on Œ0;T� � R

d � R � A with
values in R

d, Rd�d and R respectively, and a real valued function Og defined on R
d �

R. As before, we use the bracket notation hh; �i to denote the integral of the function
h with respect to the measure �. The functions Ob, O� , Of and Og are similar in spirit to
the coefficients b, � , f and g except for the fact that the measure variable � is now
replaced by a numeric variable for which we shall use the notation r for the sake of
definiteness. Under these conditions, the Hamiltonian function H reads:
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H.t; x; �; y; z; ˛/ D Ob.t; x; h ;�i; ˛/ � y C O�.t; x; h�;�i; ˛/ � z C Of .t; x; h�; �i; ˛/:

We derive the particular form taken by the adjoint equation in the present situation.
We start with the terminal condition as it is easier to identify. According to (6.31),
it reads:

YT D @xg.XT ;L.XT//C QEŒ@�g. QXT ;L. QXT//.XT/�:

Since the terminal cost is of the form g.x; �/ D Og.x; h�; �i/, given our definition
of differentiability with respect to the variable �, we know, as a generalization
of (5.35), that @�g.x; �/. � / reads:

@�g.x; �/.x0/ D @r Og�
x; h�; �i�@�.x0/; x0 2 R

d:

Therefore, the terminal condition YT can be rewritten as:

YT D @x Og�
XT ;EŒ�.XT/�

� C QE�
@r Og� QXT ;EŒ�.XT/�

�	
@�.XT/:

Notice that the ‘tildes’ can be removed at this stage since QXT has the same
distribution as XT . Note also that if g and Og do not depend upon x, the function
P2.Rd/ 3 � 7! g.�/ D Og.h�; �i/ is convex if � is convex and Og is nondecreasing
and convex, see Example 1 in Subsection 5.5.1.

Similarly, @�H.t; x; �; y; z; ˛/ can be identified to the R
d-valued function

defined by:

@�H.t; x; �; y; z; ˛/.x0/ D �
@r Ob.t; x; h ;�i; ˛/ˇ y

	
@ .x0/

C �
@r O�.t; x; h�;�i; ˛/ˇ z

	
@�.x0/

C @r Of .t; x; h�; �i; ˛/ @�.x0/;

and the dynamic part of the adjoint equation (6.31) rewrites:

dYt D �
h
@x Ob.t;Xt;EŒ .Xt/�; ˛t/ˇ Yt C @x O�.t;Xt;EŒ�.Xt/�; ˛t/ˇ Zt

C @xOf .t;Xt;EŒ�.Xt/�; ˛t/
i
dt C ZtdWt

�
h QE�

@r Ob.t; QXt;EŒ .Xt/�; Q̨ t/ˇ QYt
	
@ .Xt/

C QE�
@r O�.t; QXt;EŒ�.Xt/�; Q̨ t/ˇ QZt

	
@�.Xt/

C QE�
@r Of .t; QXt;EŒ�.Xt/�; Q̨ t/

	
@�.Xt/

i
dt;

which again, can be slightly simplified by removing the ‘tildes’.
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First Order Interactions
In the case of first order interactions, the dependence upon the probability measure
is linear in the sense that the coefficients b, � , f , and g are given in the form:

b.t; x; �; ˛/ D hOb.t; x; � ; ˛/; �i; �.t; x; �; ˛/ D hO�.t; x; � ; ˛/; �i;
f .t; x; �; ˛/ D hOf .t; x; � ; ˛/; �i; g.x; �/ D hOg.x; � /; �i:

for some functions Ob, O� , and Of defined on Œ0;T��R
d �R

d �A with values in R
d, Rd�d

and R respectively and continuously differentiable with respect to .x; x0; ˛/ with
derivatives at most of linear growth, and a real valued function Og defined on R

d �R
d

and continuously differentiable with derivatives at most of linear growth. This form
of dependence comes from the original derivation of the McKean-Vlasov equation
as limit of large systems of particles whose dynamics are given by stochastic
differential equations with mean field interactions as in:

dXi
t D 1

N

NX

jD1
Ob.t;Xi

t ;X
j
t/dt

C 1

N

NX

jD1
O�.t;Xi

t ;X
j
t/dWj

t ; i D 1; � � � ;N; 0 6 t 6 T;

(6.65)

where the .Wj/16j6N’s are N independent standard Wiener processes in R
d. In the

present situation the linearity in � implies that @�g.x; �/.x0/ D @x0 Og.x; x0/ and
similarly:

@�H.t; x; �; y; z; ˛/.x0/

D @x0
Ob.t; x; x0; ˛/ˇ y C @x0 O�.t; x; x0; ˛/ˇ z C @x0

Of .t; x; x0; ˛/;

and the dynamic part of the adjoint equation (6.31) rewrites:

dYt D � QE�
@x OH.t;Xt; QXt;Yt;Zt; ˛t/C @x0

OH.t; QXt;Xt; QYt; QZt; Q̨ t/
	
dt C ZtdWt;

if we use the obvious notation:

OH.t; x; x0; y; z; ˛/ D Ob.t; x; x0; ˛/ � y C O�.t; x; x0; ˛/ � z C Of .t; x; x0; ˛/;

and the terminal condition is given by:

YT D QE�
@x Og.XT ; QXT/C @x0 Og. QXT ;XT/

	
:

Notice that g is convex if Og is convex in the usual sense, see Example 2 in
Subsection 5.5.1. Similarly, for all t 2 Œ0;T�, y 2 R

d and z 2 R
d�d, Rd � P2.Rd/ �

A 3 .x; �; ˛/ 7! H.t; x; �; y; z; ˛/ is convex if R
d � R

d � A 3 .x; x0; ˛/ 7!
OH.t; x; x0; y; z; ˛/ is convex in the usual sense.
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6.4 Solvability of the Pontryagin FBSDE

We now turn to the application of the Pontryagin stochastic maximum principle to
the solution of the optimal control of McKean-Vlasov dynamics. The strategy is
to identify a minimizer of the Hamiltonian, and to use it in the forward dynamics
and the adjoint equation. This creates a coupling between these equations, leading
to the study of an FBSDE of mean field type. As explained in the introduction,
the existence results of Chapters 3 and 4 do not cover some of the solvable
models such as the linear quadratic (LQ) models. Here we establish existence and
uniqueness by taking advantage of the specific structure of the equations inherited
from the underlying optimization problem. Assuming that the terminal cost and
the Hamiltonian satisfy the same convexity assumptions as in the statement of
Theorem 6.16, we prove that unique solvability holds by applying the continuation
method for FBSDEs.

Throughout the section, we use the same notation as in the previous one:
. Q̋ ; QF ; QP/ denotes a copy of .˝;F ;P/. The expectation under QP is denoted by QE.

6.4.1 Technical Assumptions

We state the conditions we shall use from now on. These assumptions subsume
assumption Pontryagin Optimality introduced in Section 6.3. As it is most often
the case in applications of the stochastic maximum principle, we choose the set A
of control values to be a closed convex subset of Rk and we consider a linear model
for the forward dynamics of the state.

Assumption (Control of MKV Dynamics). There exist two constants L > 0

and 
 > 0 such that:

(A1) The drift and volatility functions b and � are linear in x, � and ˛. To
wit, for all .t; x; �; ˛/ 2 Œ0;T� � R

d � P2.Rd/ � A, we assume that:

b.t; x; �; ˛/ D b0.t/C b1.t/x C Nb1.t/ N�C b2.t/˛;

�.t; x; �; ˛/ D �0.t/C �1.t/x C N�1.t/ N�C �2.t/˛;

for some bounded measurable deterministic functions b0, b1, Nb1 and
b2 with values in R

d, Rd�d, Rd�d and R
d�k, and �0, �1, N�1 and �2

with values in R
d�d, R

.d�d/�d, R
.d�d/�d and R

.d�d/�k (as usual, the
parentheses around d � d indicate that �.t/u is seen as an element of
R

d�d whenever u 2 R
`, with ` D k; d ), and where we use the notation

N� D R
x d�.x/ for the mean of a measure �.
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Regarding the regularity, we shall assume:

(A2) The functions f and g satisfy the same assumptions as in assumption
Pontryagin Optimality in Section 6.3. In particular, for all .t; x; �; ˛/ 2
Œ0;T� � R

d � P2.Rd/ � A,

ˇ̌
f .t; x0; �0; ˛0/ � f .t; x; �; ˛/

ˇ̌ C ˇ̌
g.x0; �0/ � g.x; �/

ˇ̌

6 L
�
1C jx0j C jxj C j˛0j C j˛j C M2.�/C M2.�

0/
	

� �j.x0; ˛0/ � .x; ˛/j C W2.�
0; �/

	
:

(A3) The derivatives of f and g with respect to .x; ˛/ and x respectively are
L-Lipschitz continuous with respect to .x; ˛; �/ and .x; �/ respectively,
the Lipschitz property in the variable � being understood in the sense
of the 2-Wasserstein distance. Moreover, for any t 2 Œ0;T�, any x; x0 2
R

d, any ˛; ˛0 2 R
k, any �;�0 2 P2.Rd/, and any R

d-valued random
variables X and X0 having � and �0 as distributions,

E
�j@�f .t; x0; �0; ˛0/.X0/ � @�f .t; x; �; ˛/.X/j2	

6 L
�j.x0; ˛0/ � .x; ˛/j2 C E

�jX0 � Xj2	�;
E

�j@�g.x0; �0/.X0/ � @�g.x; �/.X/j2	

6 L
�jx0 � xj2 C E

�jX0 � Xj2	�:

Finally,

(A4) The function f satisfies the L-convexity property:

f .t; x0; �0; ˛0/ � f .t; x; �; ˛/ � @.x;˛/f .t; x; �; ˛/ � .x0 � x; ˛0 � ˛/
� E

�
@�f .t; x; �; ˛/.X/ � .X0 � X/

	
> 
j˛0 � ˛j2;

for t 2 Œ0;T�, .x; �; ˛/ 2 R
d � P2.Rd/ � A and .x0; �0; ˛0/ 2 R

d �
P2.Rd/ � A, whenever X;X0 2 L2.˝;F ;PIRd/ with distributions �
and �0 respectively. The function g is also assumed to be L-convex in
.x; �/.

Comparing (5.43) with (A3), we notice that the liftings L2.˝;F ;PIRd/ 3 X 7!
f .t; x;L.X/; ˛/ and L2.˝;F ;PIRd/ 3 X 7! g.x;L.X// have Lipschitz continuous
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derivatives. As a consequence of Proposition 5.36, for any t 2 Œ0;T�, x 2 R
d, � 2

P2.Rd/ and ˛ 2 A, there exist versions of Rd 3 x0 7! @�f .t; x; �; ˛/.x0/ and R
d 3

x0 7! @�g.x; �/.x0/ which are L-Lipschitz continuous.

6.4.2 The Hamiltonian and the Adjoint Equations

The drift and the volatility being linear, the Hamiltonian takes the particular form:

H.t; x; �; y; z; ˛/ D �
b0.t/C b1.t/x C Nb1.t/ N�C b2.t/˛

	 � y

C �
�0.t/C �1.t/x C N�1.t/ N�C �2.t/˛

	 � z C f .t; x; �; ˛/;

for t 2 Œ0;T�, x; y 2 R
d, z 2 R

d�d, � 2 P2.Rd/ and ˛ 2 A. Given .t; x; �; y; z/ 2
Œ0;T��R

d �P2.Rd/�R
d �R

d�d, the function A 3 ˛ 7! H.t; x; �; y; z; ˛/ is strictly
convex so that there exists a unique minimizer Ǫ .t; x; �; y; z/:

Ǫ .t; x; �; y; z/ D argmin˛2AH.t; x; �; y; z; ˛/: (6.66)

Assumption Control of MKV Dynamics being slightly stronger than the assump-
tions used in Chapter 3, we can strengthen the conclusions of Lemma 3.3 while still
using the same arguments.

Lemma 6.18 The function Œ0;T� � R
d � P2.Rd/ � R

d � R
d�d 3 .t; x; �; y; z/ 7!

Ǫ .t; x; �; y; z/ 2 A is measurable, locally bounded and Lipschitz continuous with
respect to .x; �; y; z/, uniformly in t 2 Œ0;T�, the Lipschitz constant depending only
upon 
, the supremum norms of b2 and �2 and the Lipschitz constant of @˛f in .x; �/.

Proof. Except maybe for the Lipschitz property with respect to the measure argument, these
facts were explicitly proved in Lemma 3.3. Lemma 3.3 applies when � D 0, but the proof
may be easily adapted to the current setting. The regularity of Ǫ with respect to � follows
from the following remark. If .t; x; y; z/ 2 Œ0; T��R

d�R
d�R

d�d is fixed and�;�0 are generic
elements in P2.Rd/, Ǫ D Ǫ .t; x; �; y; z/ and Ǫ 0 D Ǫ .t; x; �0; y; z/ denoting the associated
minimizers, we deduce from the convexity condition (A4) in assumption Control of MKV
Dynamics:

2
j Ǫ 0 � Ǫ j2 6 . Ǫ 0 � Ǫ / � �
@˛f

�
t; x; �; Ǫ 0

� � @˛f
�
t; x; �; Ǫ�	

D . Ǫ 0 � Ǫ / � �
@˛H

�
t; x; �; y; z; Ǫ 0

� � @˛H
�
t; x; �; y; z; Ǫ�	

6 . Ǫ 0 � Ǫ / � �
@˛H

�
t; x; �; y; z; Ǫ 0

� � @˛H
�
t; x; �0; y; z; Ǫ 0

�	

D . Ǫ 0 � Ǫ / � �
@˛f

�
t; x; �; Ǫ 0

� � @˛f
�
t; x; �0; Ǫ 0

�	

6 Cj Ǫ 0 � Ǫ j W2.�
0; �/;

(6.67)
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the passage from the second to the third line following from the two inequalities:

8ˇ 2 A;
�
ˇ � Ǫ� � @˛H

�
t; x; �; y; z; Ǫ�

> 0;
�
ˇ � Ǫ 0

� � @˛H
�
t; x; �0; y; z; Ǫ 0

�
> 0;

from which we get:

�. Ǫ 0 � Ǫ / � @˛H
�
t; x; �; y; z; Ǫ�

6 0 6 � � Ǫ 0 � Ǫ� � @˛H
�
t; x; �0; y; z; Ǫ 0

�
:

This concludes the proof. ut

For each admissible control ˛ D .˛t/06t6T , if we denote the corresponding
solution of the state equation by X D .Xt/06t6T , then the adjoint BSDE (6.31)
introduced in Definition 6.5 reads:

dYt D �@xf
�
t;Xt;L.Xt/; ˛t

�
dt � b1.t/

�Ytdt � �1.t/�Ztdt

� QE�
@�f

�
t; QXt;L.Xt/; Q̨ t

�
.Xt/

	
dt � Nb1.t/�EŒYt�dt � N�1.t/�EŒZt�dt

C ZtdWt:

(6.68)

Given the necessary and sufficient conditions proven in the previous section, our
goal is to use the control Ǫ D . Ǫ t/06t6T defined by Ǫ t D Ǫ .t;Xt;L.Xt/;Yt;Zt/where
Ǫ is the minimizer function constructed above and .Xt;Yt;Zt/06t6T is a solution of
the FBSDE:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

dXt D �
b0.t/C b1.t/Xt C Nb1.t/EŒXt�

C b2.t/ Ǫ .t;Xt;L.Xt/;Yt;Zt/
	
dt

C �
�0.t/C �1.t/Xt C N�1.t/EŒXt�

C �2.t/ Ǫ .t;Xt;L.Xt/;Yt;Zt/
	
dWt;

dYt D ��
@xf

�
t;Xt;L.Xt/; Ǫ .t;Xt;L.Xt/;Yt;Zt/

�

C b1.t/
�Yt C �1.t/

�Zt
	
dt

�
h QE�

@�f
�
t; QXt;L.Xt/; Ǫ .t; QXt;L.Xt/; QYt; QZt/

�
.Xt/

	

C Nb1.t/�EŒYt�C N�1.t/�EŒZt�
i
dt

C ZtdWt;

(6.69)

with initial condition X0 D � 2 L2.˝;F0;PIRd/ and terminal condition YT D
@xg.XT ;L.XT//C QEŒ@�g. QXT ;L.XT//.XT/�.
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6.4.3 Main Existence and Uniqueness Result

The system (6.69) is a McKean-Vlasov FBSDE of the same type as (4.30) in
Chapter 4. We shall prove the following specific solvability result:

Theorem 6.19 Under assumption Control of MKV Dynamics and for any initial
condition � 2 L2.˝;F0;PIRd/, the forward-backward system (6.69) is uniquely
solvable.

Observe from Theorem 6.16 that, under the above assumption, the solution
of (6.69) is the unique optimal path of the mean field stochastic control problem
defined in (6.6)–(6.9).

The proof is an adaptation of the continuation method for FBSDEs. The idea is
to prove that existence and uniqueness are preserved under small perturbations of
the coefficients. Starting from a case for which existence and uniqueness are known
to hold, we then establish Theorem 6.19 by modifying iteratively the coefficients so
that (6.69) is eventually shown to belong to the class of uniquely solvable systems. A
simple strategy is to modify the coefficients in a linear way. The notations becoming
quickly unruly, we use the following conventions.

Parameterized Solutions
Like in Subsection 6.3.1, the notation .�t/06t6T stands for stochastic processes of
the form .Xt;L.Xt/;Yt;Zt; ˛t/06t6T with values in R

d � P2.Rd/ � R
d � R

d�d �
A. We will denote by S the space of processes � D .�t/06t6T such that
.Xt;Yt;Zt; ˛t/06t6T is F–progressively measurable, X D .Xt/06t6T and Y D
.Yt/06t6T have continuous sample paths, and

k�kS D E

�
sup
06t6T

�jXtj2 C jYtj2
	 C

Z T

0

�jZtj2 C j˛tj2
	
dt

�1=2
< 1: (6.70)

Similarly, the notation .	t/06t6T is generic for processes .Xt;L.Xt/; ˛t/06t6T with
values in R

d � P2.Rd/ � A. All the processes .	t/06t6T considered below will be
restrictions of extended processes .�t/06t6T 2 S .

An input for (6.69) will be a four-tuple I D ..Ib
t ; I�t ; I f

t /06t6T ; Ig
T/, .Ib

t /06t6T ,
.I�t /06t6T and .I f

t /06t6T being three square-integrable progressively measurable
processes with values in R

d, Rd�d and R
d respectively, and Ig

T denoting a square-
integrable FT -measurable random variable with values in R

d. Such an input is
specifically designed to be injected into the dynamics of (6.69), Ib being plugged
into the drift of the forward equation, I� into the volatility of the forward equation,
I f into the bounded variation term of the backward equation and Ig into the terminal
condition of the backward equation. The space of inputs is denoted by I. This
justifies their respective dimensions. It is endowed with the norm:
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kIkI D E

�
jIg

T j2 C
Z T

0

�jIb
t j2 C jI�t j2 C jI f

t j2	dt

�1=2
: (6.71)

Definition 6.20 For any � 2 Œ0; 1�, � 2 L2.˝;F0;PIRd/ and input I 2 I, the
FBSDE:

8
ˆ̂<

ˆ̂:

dXt D �
�b.t; 	t/C Ib

t

�
dt C �

��.t; 	t/C I�t
�
dWt;

dYt D ��
�

˚
@xH.t; �t/C QE�

@�H.t; Q�t/.Xt/
	� C I f

t

�
dt

CZtdWt; t 2 Œ0;T�;
(6.72)

with:

˛t D Ǫ .t;Xt;L.Xt/;Yt;Zt/; t 2 Œ0;T�; (6.73)

as optimality condition, X0 D � as initial condition, and

YT D �
˚
@xg.XT ;L.XT//C QEŒ@�g. QXT ;L.XT//.XT/�

� C Ig
T

as terminal condition, is referred to as E.�; �; I/.
Whenever .Xt;Yt;Zt/06t6T is a solution, the full process � D .�t/06t6T D

.Xt;L.Xt/;Yt;Zt; ˛t/06t6T is referred to as the associated extended solution.

Remark 6.21 The way the coupling between the forward and backward equations
enters (6.72) is a bit different from the way Equation (6.69) is written. In the
formulation used in the statement of Definition 6.20, the coupling between the
forward and the backward equations follows from the optimality condition (6.73).
Because of that optimality condition, the two formulations are equivalent in the
sense that, when � D 1 and I � 0, the pair (6.72)–(6.73) coincides with (6.69). The
formulation used above matches the one used in the statements of Theorems 6.14
and 6.16.

Induction Argument
The following definition is stated for the sake of convenience only. It will help
articulate concisely the induction step of the proof of Theorem 6.19.

Definition 6.22 For any � 2 Œ0; 1�, we say that property .S� / holds if, for any
� 2 L2.˝;F0;PIRd/ and any I 2 I, the FBSDE E.�; �; I/ has a unique extended
solution in S .

Lemma 6.23 Let � 2 Œ0; 1� such that .S� / holds. Then, there exists a constant C,
independent of � , such that, for any �; � 0 2 L2.˝;F0;PIRd/ and I; I 0 2 I, the
respective extended solutions � and � 0 of E.�; �; I/ and E.�; � 0; I 0/ satisfy:
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k� � � 0kS 6 C
�
E

�j� � � 0j2	1=2 C kI � I 0kI
�
:

Proof. We use a mere variation on the proof of the classical stochastic maximum principle.
With the same notation as in the statement, and using � for .Xt;L.Xt/; Yt; Zt; ˛t/06t6T and
.	t D .Xt;L.Xt/; ˛t//06t6T , we compute:

E
�
.X0

T � XT/ � YT
	

D E
�
.� 0 � �/ � Y0

	

� �

E

Z T

0

�
@xH.t; �t/ � .X0

t � Xt/C QE�
@�H.t; Q�t/.Xt/

	 � .X0

t � Xt/
	
dt

� E

Z T

0

�
Œb.t; 	 0

t / � b.t; 	t/� � Yt C Œ�.t; 	 0

t / � �.t; 	t/� � Zt
	
dt

�

�

E

Z T

0

�
.X0

t � Xt/ � I f
t C .Ib

t � Ib;0
t / � Yt C .I�t � I�;0t / � Zt

	
dt

�

D T0 � �T1 � T2:

Following (6.62),

E
�
.X0

T � XT/ � YT
	

D �E
��
@xg.XT ;L.XT//C QEŒ@�g. QXT ;L.XT//.XT/�

� � .X0

T � XT/
	

C E
�
.Ig;0

T � Ig
T/ � YT

	

6 �E
�
g.X0

T ;L. QX0

T// � g.XT ;L.XT//
	 C E

�
.Ig;0

T � Ig
T/ � YT

	
:

Identifying the two expressions above and repeating the proof of Theorem 6.16, we obtain:

�J.˛0/ � �J.˛/ > �
E

Z T

0

j˛t � ˛0

t j2dt C T0 � T2 C E
�
.Ig

T � Ig;0
T / � YT

	
: (6.74)

Now, we can reverse the roles of ˛ and ˛0 in (6.74). Denoting by T 0

0 and T 0

2 the corresponding
terms in the inequality and summing both inequalities, we deduce that:

2�
E

Z T

0

j˛t � ˛0

t j2dt C T0 C T 0

0 � .T2 C T 0

2/C E
�
.Ig

T � Ig;0
T / � .YT � Y 0

T/
	

6 0:

The sum T2 C T 0

2 reads:

T2C T 0

2 D E

Z T

0

�� .I f
t �I f ;0

t / � .Xt � X0

t /C .Ib
t �Ib;0

t / � .Yt � Y 0

t /C .I�t �I�;0t / � .Zt � Z0

t /
	
dt:

Similarly,

T0 C T 0

0 D �E
�
.� � � 0/ � .Y0 � Y 0

0/
	
:
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Therefore, using Young’s inequality, there exists a constant C (the value of which may change
from line to line), C being independent of � , such that, for any " > 0,

�E

Z T

0

j˛t � ˛0

t j2dt 6 "k� � � 0k2S C C

"

�
E

�j� � � 0j2	 C kI � I0k2
I

�
: (6.75)

From standard estimates for BSDEs, there exists a constant C, independent of � , such that:

E

�
sup
06t6T

jYt � Y 0

t j2 C
Z T

0

jZt � Z0

t j2dt

�

6 C�E

�
sup
06t6T

jXt � X0

t j2 C
Z T

0

j˛t � ˛0

t j2dt

�
C CkI � I0k2

I
:

(6.76)

Similarly,

E
�

sup
06t6T

jXt � X0

t j2
	

6 E
�j� � � 0j2	 C C�E

Z T

0

j˛t � ˛0

t j2dt C CkI � I0k2
I
: (6.77)

From (6.76), (6.77), and (6.75), we deduce that:

E

�
sup
06t6T

jXt � X0

t j2 C sup
06t6T

jYt � Y 0

t j2 C
Z T

0

jZt � Z0

t j2dt

�

6 C�E
Z T

0

j˛t � ˛0

t j2dt C C
�
E

�j� � � 0j2	 C kI � I0k2
I

�

6 C"k� � � 0k2S C C

"

�
E

�j� � � 0j2	 C kI � I0k2
I

�
:

(6.78)

Using (6.75) again and choosing " small enough, we complete the proof. ut

Lemma 6.24 There exists ı0 > 0 such that, if .S� / holds for some � 2 Œ0; 1/, then
.S�C�/ also holds for any � 2 .0; ı0� satisfying � C � 6 1.

Proof. The proof follows from a standard Picard’s contraction argument. Indeed, if � is such
that .S� / holds, for � > 0, � 2 L2.˝;F0;PIRd/ and I 2 I, we then define a mapping˚ from
S into itself whose fixed points coincide with the solutions of E.� C �; �;I/. The definition
of ˚ is as follows. Given a process � 2 S , we denote by � 0 the extended solution of the
FBSDE E.�; �;I0/ with:

Ib;0
t D �b.t; 	t/C Ib

t ;

I�;0t D ��.t; 	t/C Ib
t ;

I f ;0
t D �@xH.t; �t/C � QE�

@�H.t; Q�t/.Xt/
	 C I f

t ;

Ig;0
T D �@xg.XT ;L.XT//C � QE�

@�g. QXT ;L.XT//.XT/
	 C Ig

T :
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By assumption, it is uniquely defined and it belongs to S , so that the mapping ˚ W � 7! � 0

maps S into itself. It is then clear that a process � 2 S is a fixed point of ˚ if and only if
� is an extended solution of E.� C �; �;I/. So we only need to prove that ˚ is a contraction
when � is small enough. This is a consequence of Lemma 6.23 . Indeed, given �1 and �2

two processes in S , if we denote by � 0;1 and � 0;2 their respective images by˚ , Lemma 6.23
implies that:

k� 0;1 � � 0;2kS 6 C�k�1 � �2kS ;

which is enough to conclude he proof. ut

The proof of Theorem 6.19 follows a straightforward induction argument based
on Lemma 6.24 as .S0/ obviously holds.

TheMaster Field
Now that existence and uniqueness have been proven, the master field is constructed
following the argument used for Lemma 4.25 in Subsection 4.2.4.

Lemma 6.25 For any t 2 Œ0;T� and � 2 L2.˝;Ft;PIRd/, there exists a unique
solution .Xt;�

s ;Y
t;�
s ;Z

t;�
s /t6s6T , of the Pontryagin forward/backward system (6.69) on

Œt;T� with Xt;�
t D � as initial condition. Moreover, for any � 2 P2.Rd/, there exists

a measurable mapping U.t; �; �/ W Rd 3 x 7! U.t; x; �/ such that:

P

h
Yt;�

t D U�
t; �;L.�/�

i
D 1: (6.79)

Finally, there exists a constant C, depending only on the parameters in assumption
Control of MKV Dynamics, such that, for any t 2 Œ0;T� and any �1; �2 2
L2.˝;Ft;PIRd/,

E

hˇ̌U�
t; �1;L.�1/� � U�

t; �2;L.�2/�ˇ̌2
i1=2

6 CE
�j�1 � �2j2	1=2: (6.80)

We here use the letter U instead of U as in the statement of Lemma 4.25 in order to
distinguish from U in (6.37).

Proof. Given t 2 Œ0; T/ and � 2 L2.˝;Ft;PIRd/, existence and uniqueness of a solution
of (6.69) on Œt; T� with � as initial condition is a direct consequence of Theorem 6.19. The
construction of the decoupling field is done exactly, mutatis mutandis, as in the proof of
Lemma 4.25. Finally, the Lipschitz property (6.80) of U.0; �; �/ is a direct consequence of
Lemma 6.23 with � D 1. Shifting time if necessary, the same argument applies to U.t; �; �/.

ut

Remark 6.26 We shall revisit the notion of master field in the next section, see
Subsection 6.5.2. The notion of master field for mean field games will be addressed
in detail in Chapters (Vol II)-4 and (Vol II)-5.
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Also, observe that, from Proposition 5.36, for any � 2 P2.Rd/, there exists a
version of Rd 3 x 7! U.t; x; �/ in L2.RdI�/ that is Lipschitz-continuous with
respect to x, for the same Lipschitz constant C as in (6.80).

6.5 Several Forms of theMaster Equation

Our goal is now to provide a probabilistic derivation of the master equation (6.37)
obtained in Subsection 6.2.4 and to connect its solution U with the decoupling
field U identified in the statement of Lemma 6.25. In order to do so, we assume
throughout the section that assumption Control of MKV Dynamics introduced in
the previous section is in force, but with the restriction that � is uncontrolled. In
particular, Theorem 6.19 applies and guarantees that for any given initial condition
� 2 L2.˝;F0;PIRd/, the mean field stochastic control problem (6.6)–(6.9) has a
unique optimal path, which is characterized by the solution of the forward-backward
system (6.69).

Most of the discussion below could be generalized to more general forms of
drift and volatility coefficients, and running and terminal cost functions, as long as
existence and uniqueness of an optimal path remain true.

6.5.1 Dynamic Programming Principle

Recall that the objective is to minimize the quantity:

E

� Z T

0

f
�
t;X˛

t ;L.X˛
t /; ˛t

�
dt C g

�
X˛

T ;L.X˛
T /

��
; (6.81)

over the space of A-valued square integrable F-adapted controls ˛ D .˛t/06t6T

under the dynamic constraint:

dX˛
t D b

�
t;X˛

t ;L.X˛
t /; ˛t

�
dt C �

�
s;X˛

t ;L.X˛
t /

�
dWt; t 2 Œ0;T�; (6.82)

with the initial condition X˛
0 D � 2 L2.˝;F ;PIRd/.

The Value Function of the Optimal Control Problem
Our analysis relies on manipulations of several forms of the value function
associated with the optimal control problem.

Inspired by the analytic point of view introduced in (6.25) for the control of the
Fokker-Planck equation, we let:

Definition 6.27 Under the assumption prescribed above, for any t 2 Œ0;T� and
� 2 L2.˝;Ft;PIRd/, the quantity:
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inf
˛jŒt;T�

E

� Z T

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds C g

�
X˛

T ;L.X˛
T /

��
; (6.83)

under the prescription X˛
t D � , where the infimum is taken over A-valued square-

integrable .Fs/t6s6T-progressively measurable processes ˛jŒt;T� D .˛s/t6s6T , only
depends upon t and the distribution of � . For that reason, we can denote it by v.t; �/
if � is the law of � .

The function v is called the value function of the mean field stochastic control
problem.

Proof. Without any loss of generality, we can assume that t D 0. By Theorem 6.19, the mean
field stochastic control problem (6.6)–(6.9) with � as initial condition has a unique optimal
path, which is characterized by the solution of the forward-backward system (6.69).

We shall prove in Theorem (Vol II)-1.33 a relevant version of the Yamada and Watanabe
theorem for McKean-Vlasov forward-backward SDEs. It says that, the forward-backward
system (6.69) being uniquely solvable in the strong sense, the law of its solution only depends
on the law of the initial condition. ut

Remark 6.28 The definition of v in (6.83) is quite similar to that given in (6.25),
except that (6.83) is based upon the probabilistic formulation of the control problem
while (6.25) is based upon the analytic approach. In order to identify the two
definitions rigorously, it is necessary to connect first the two formulations of the
optimal control problem. We refer to the final discussion in Subsection 6.2.5 for a
short account.

We claim that v satisfies the following dynamic programming principle:

Proposition 6.29 The value function v, as defined above, satisfies, for all t 2 Œ0;T�,
h 2 Œ0;T � t� and � 2 P2.Rd/:

v.t; �/

D inf
˛jŒt;tCh�


E

� Z tCh

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds

�
C v

�
t C h;L.X˛

tCh/
��
;

(6.84)

under the prescription X˛
t D � 2 L2.˝;F ;PIRd/ with � � �, where the infimum

is taken over A-valued square-integrable .Fs/t6s6tCh-progressively measurable
processes ˛jŒt;tCh� D .˛s/t6s6tCh.

Notice that, despite the presence of the expectation in (6.84), the dynamic
programming principle is deterministic. Indeed, the underlying state variable is the
marginal law of the controlled process X˛.

Proof. The proof of (6.84) is pretty standard. For t, h and � as in the statement, we first prove
that v.t; �/ is greater than the right-hand side in (6.84). To do so, it suffices to start from the
definition of v.t; �/ in Definition 6.27 and observe that for any ˛jŒt;T�:
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E

� Z T

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds C g

�
X˛

T ;L.X˛
T /

��

D E

� Z tCh

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds

�

C E

� Z T

tCh
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds C g

�
X˛

T ;L.X˛
T /

��
;

but the last term in the right-hand side is greater than v.t C h;L.X˛
tCh//, which proves that

v.t; �/ is greater than the right-hand side in (6.84).
To prove the converse inequality, we consider a control ˛ D .˛s/t6s6tCh defined over

Œt; t C h� and a control ˛0 D .˛0

s/tCh6s6T defined over Œt C h; T�. We patch them together by
letting ˇs D ˛s for s 2 Œt; t C h� and ˇs D ˛0

s for s 2 .t C h; T�. Clearly, ˇ is an admissible
control over Œt; T�. Therefore,

v.t; �/ 6 E

� Z T

t
f
�
s;Xˇ

s ;L.Xˇ
s /; ˇs

�
ds C g

�
Xˇ

T ;L.X
ˇ
T /

��
;

with Xˇ
t D � 2 L2.˝;Ft;PIRd/, with � � �. It is pretty clear that:

Xˇ
s D X

˛0;X˛
tCh

s ; s 2 Œt C h; T�;

where .X
˛0;X˛

tCh
s /tCh6s6T is the solution of (6.6) with X˛

tCh as initial condition at time t C h.
By freezing ˛ and by minimizing over ˛0, we get:

v.t; �/ 6 E

� Z tCh

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds

�
C v

�
t C h;L.X˛

tCh/
�
;

which completes the proof. ut

Whenever v is smooth enough, this weak form of the DPP is sufficient to recover
the HJB equation (6.26), with the difference that computations are then based upon
the L-differential calculus instead of the linear functional derivative. Indeed, the use
of the L-derivative is very natural as .v.t C h;L.X˛

tCh///t6tCh6T may be expanded
in h by means of the chain rule proven in Chapter 5. We refer to Subsection 5.7.3
for a preliminary discussion of the same kind. We shall address this question again
below.

Whenever v is not smooth, the DPP may be used to derive the HJB equation in
the viscosity sense. We shall do so in Chapter (Vol II)-4, but for the master equation
associated with mean field games. As for mean field stochastic control, we refer to
citations in the Notes & Complements below.

The Value Function Over the Enlarged State Space
We now define another form of value function. Our goal is indeed to duplicate at
any time t 2 Œ0;T/ the form taken by the value function v.T; �/ at time T . The latter
one writes:
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v.T; �/ D
Z

Rd
g.x; �/d�.x/; � 2 P2.Rd/;

and, in a similar fashion, we would like to write:

v.t; �/ D
Z

Rd
V.t; x; �/d�.x/; t 2 Œ0;T�; � 2 P2.Rd/;

for some function V , in which case V would read as a value function defined over
the enlarged state space R

d � P2.Rd/.
A natural way to do so is to proceed by conditioning. Roughly speaking, for

each .t; x; �/ 2 Œ0;T��R
d �P2.Rd/, we should define V.t; x; �/ as the conditional

expected future costs:

V.t; x; �/

D E

� Z T

t
f
�
s;X Ǫ

s ;L.X Ǫ
s /; Ǫs

�
ds C g

�
X Ǫ

T ;L.X Ǫ
T /

� ˇ̌
X Ǫ

t D x

�
;

(6.85)

where Ǫ minimizes the quantity (6.83) under the constraint X˛
t D � � �. Notice

that, with this definition of the value function, for each t 2 Œ0;T� and � 2 P2.Rd/,
V.t; x; �/ is only defined for �-almost every x 2 R

d. Below, the ‘hat’ symbol always
refers to optimal quantities, and .X Ǫ

s /t6s6T is sometimes denoted by OX D . OXs/t6s6T .
Put differently, X Ǫ in (6.85) is understood as the optimal path minimizing the cost
functional (6.83) over McKean-Vlasov diffusion processes satisfying (6.82) with the
initial condition X˛

t D � 2 L2.˝;Ft;PIRd/, where � � �. We shall prove below
that the definition (6.85) is consistent in the sense that the right-hand side in (6.85)
is independent of the choice of the random variable � representing the distribution
�.

In order to reformulate (6.85) in a more proper fashion, we use the fact that the
minimizer . Ǫs/t6s6T has a feedback form, given by Lemma 6.25. Namely Ǫs reads
as N̨ .s;X Ǫ

s ;L.X Ǫ
s //, where:

N̨ .t; x; �/ D Ǫ�
t; x; �;U.t; x; �/�: (6.86)

Above, we wrote Ǫ .t; x; �; y/ for Ǫ .t; x; �; y; z/. Indeed, Ǫ is independent of z since
� is uncontrolled, which is a crucial fact at this stage of the proof. Therefore, for

t 2 Œ0;T� and � 2 L2.˝;Ft;PIRd/, the optimal path OXt;�
, with � as initial condition

at time t, is the solution of the McKean-Vlasov SDE:

d OXs D b
�
s;Xs;L. OXs/; N̨ .s;Xs;L. OXs//

�
ds C �

�
s;Xs;L.Xs/

�
dWs;

for s 2 Œt;T�, with the initial condition OXt D � 2 L2.˝;Ft;PIRd/. By Lemma 6.25,
L2.˝;Ft;PIRd/ 3 X 7! U.t;X;L.X// is Lipschitz continuous in X. Following the
last argument in the proof of Lemma 4.56, it is bounded on bounded subsets. Hence,
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the above SDE is uniquely solvable. As already explained, strong uniqueness for
McKean-Vlasov SDEs implies weak uniqueness, see the proof of Definition 6.27.
Therefore, the law of the path OX only depends on .t; �/, where � D L.�/. In
particular, we can write L. OXt;�

s / for L. OXt;�
s /, since the latter only depends on �

through �.
Now, in order to well define the conditioning in (6.85), we may define, for any

.t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, OXt;x;� D . OXt;x;�

s /t6s6T as the solution of the SDE:

d OXt;x;�
s D b



s; OXt;x;�

s ;L. OXt;�
s /; N̨�

s; OXt;x;�
s ;L. OXt;�

s /
��

dt

C �
�
s; OXt;x;�

s ;L. OXt;�
s /

�
dWs; s 2 Œt;T�;

(6.87)

with the initial condition OXt;x;�
t D x at time t. Observe that (6.87) is not a McKean-

Vlasov equation! Indeed, the measure argument input is not L. OXt;x;�
s / but L. OXt;�

s /.
Notice also that the use of the notation OXt;�

in this definition is perfectly legitimate
since only the law of OXt;�

is needed in (6.87), regardless of the choice of the
representative � of �. Also by combining Lemma 6.25 and Proposition 5.36, U
is Lipschitz in x, uniformly in t and �, which guarantees that (6.87) is uniquely
solvable.

As a conclusion, we have a more satisfactory definition of V .

Definition 6.30 If assumption Control of MKV Dynamics holds and � is uncon-
trolled, we call extended value function the function V defined by:

V.t; x; �/ D E

� Z T

t
f



s; OXt;x;�
s ;L. OXt;�

s /; N̨�
s; OXt;x;�

s ;L. OXt;�
s /

��
ds

C g
� OXt;x;�

T ;L. OXt;�
T /

��
;

(6.88)

for .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/. It satisfies:

v.t; �/ D
Z

Rd
V.t; x; �/d�.x/; .t; �/ 2 Œ0;T� � R

d:

Proof. The identification of v is a mere consequence of the Markov property for the
SDE (6.87), which holds since the equation is well posed. ut

Dynamic Programming Principle
Our goal is to characterize the function V as the solution of a partial differential
equation (PDE) on the space Œ0;T��R

d �P2.Rd/. In the classical theory of optimal
control problems, when the Dynamic Programming Principle (DPP for short) holds,
and the value function is computed along optimal paths, up to the accumulated
running costs, this value function is a martingale. So using the chain rule stated in
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Proposition 5.102, one may try to guess the kind of relationship it should satisfy in
order for the bounded variation part to vanish. The implementation of this approach
depends only upon the availability of a form of the dynamic programming principle
which is the basis for the martingale property of the value function along optimal
paths.

Following the approach used in finite dimension, a natural strategy is to use (6.88)
as a basis for the derivation of a dynamic programming principle for V . We shall
use the fact that the pair . OXt;x;�

s ;L. OXt;�
s //t6s6T is Markovian with values in R

d �
P2.Rd/. The Markov property states that for any t 6 t C h 6 T , the future states of
.L. OXt;�

s //tCh6s6T are uniquely determined by L. OXt;�
tCh/, namely:

L. OXt;�
s / D L


 OXtCh;L.Xt;�
tCh/

s

�
; s 2 Œt C h;T�;

and the conditional law of the future states of . OXt;x;�
s /tCh6s6T given the past before

t C h is uniquely determined by OXt;x;�
tCh and L. OXt;�

tCh/, namely:

OXt;x;�
s D OXtCh; OXt;�

tCh;L. OXt;�
tCh/

s ; s 2 Œt C h;T�;

It follows that:
Under the same assumption as before, V satisfies the dynamic programming

principle:

V
�
t C h; OXt;x;�

tCh ;L. OXt;�
tCh/

�

D E

� Z T

tCh
f



s; OXt;x;�
s ;L. OXt;�

s /; N̨�
s; OXt;x;�

s ;L. OXt;�
s /

��
ds

C g
� OXt;x;�

T ;L. OXt;�
T /

�ˇ̌FtCh

�
;

for t 6 t C h 6 T .
Taking expectations on both sides and using the definition (6.88), this shows that:

Proposition 6.31 Under the above assumption, V satisfies the following version of
the dynamic programming principle:

V.t; x; �/ D E

� Z tCh

t
f



s; OXt;x;�
s ;L. OXt;�

s /; N̨�
s; OXt;x;�

s ;L. OXt;�
s /

��
ds

C V
�
t C h; OXt;x;�

tCh ;L. OXt;�
tCh/

��
;

(6.89)

for t 6 t C h 6 T and � 2 P2.Rd/.



570 6 Optimal Control of SDEs of McKean-Vlasov Type

6.5.2 Derivation of theMaster Equation for the Value Function

According to the strategy we hinted at earlier, our derivation of the master equation
is based on the application of the chain rule stated in Proposition 5.102 to the
dynamics of V along optimal paths. Consequently, for the purpose of this derivation,
we assume that the value function V defined in (6.88) is smooth enough so that we
can apply the chain rule (5.107). In order to satisfy the integrability constraints in
the chain rule, we also require � to be bounded.

It would be possible to carry out the complete analysis of the regularity of V , but
the proof would be lengthy and would require a lot of technicalities. The interested
reader may have a look at the references at the end of the chapter. Also, she/he may
find in Chapter (Vol II)-5 a similar analysis, but for mean field games instead of
mean field stochastic control problems.

Form of the Equation
From (6.87), we get, for any .t; x; �/ 2 Œ0;T� � R

d � P2.Rd/:

dV
�
s; OXt;x;�

s ;L. OXt;�
s /

�

D
�
@tV

�
s; OXt;x;�

s ;L. OXt;�
s /

� C @xV
�
s; OXt;x;�

s ;L. OXt;�
s /

� � bs

C 1

2
trace

h
@2xxV

�
s; OXt;x;�

s ;L. OXt;�
s /

�
�s�

�
s

i

C QE
h
@�V

�
s; OXt;x;�

s ;L. OXt;�
s /

��
Af OXt;�

s g � � Qbs

i

C 1

2
QE
h
trace

�
@v@�V

�
s; OXt;x;�

s ;L. OXt;�
s /

��
Af OXt;�

s g � Q�s Q��s
�i�

ds

C @xV
�
s; OXt;x;�

s ;L. OXt;�
s /

� � �
�sdWs

�
;

where we wrote bs for b.s; OXt;x;�
s ;L. OXt;�

s /; Ǫs/, �s for �.s; OXt;x;�
s ;L. OXt;�

s //, and Ǫs for
N̨ .s; OXt;x;�

s ;L. OXt;�
s //, where N̨ is the optimal feedback function, as defined in (6.86).

As usual, .Qbs; Q�s/ is a copy of .bs; �s/ on the space . Q̋ ; QF ; QP/, the expectation over
which is denoted by QE. Similarly,

Af OXt;�
s g

is a copy of OXt;�
s .
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Inserting the above expansion in (6.89) in order to get the limit form of the left-
hand side as h tends to 0, we deduce that V satisfies the equation:

@tV.t; x; �/C b
�
t; x; �; N̨ .t; x; �/� � @xV.t; x; �/

C 1

2
trace

h
a.t; x; �/@2xxV.t; x; �/

i
C f

�
t; x; �; N̨ .t; x; �/�

C
Z

Rd

�
b
�
t; x0; �; N̨ .t; x0; �/

� � @�V.t; x; �/.x0/

C 1

2
trace



a
�
t; x0; �

�
@v@�V.t; x; �/.x0/

��
d�.x0/ D 0;

(6.90)

for .t; x; �/ 2 Œ0;T��R
d�P2.Rd/, with the terminal condition V.T; x; �/ D g.x; �/.

We call this equation the master equation for the value function of the problem.

Formal Identification of the Feedback Function
We conclude this subsection with the identification of the special form of the
minimizer N̨ . We go back to (6.84) and rewrite it as:

v.t; �/ D inf
˛jŒt;tCh�


E

� Z tCh

t
f
�
s;X˛

s ;L.X˛
s /; ˛s

�
ds

C V
�
t C h;X˛

tCh;L.X˛
tCh/

���
;

with the prescription X˛
t D � 2 L2.˝;Ft;PIRd/, where � � �. If V satisfies the

assumption of Proposition 5.102, then, for any admissible control ˛, we can expand
the quantity V.t C h;X˛

tCh;L.X˛
tCh// appearing in the right-hand side by using Itô’s

formula (5.107) and the PDE (6.90). Dividing by h, letting h tend to 0 and assuming
that ˛ is continuous at time t, we obtain:

E

h
b
�
t;X˛

t ;L.X˛
t /; ˛t

� � @xV
�
t;X˛

t ;L.X˛
t /

�

C QE�
b
�
t; QX˛

t ;L.X˛
t /; Q̨ t

� � @�V
�
t;X˛

t ;L.X˛
t /

�
. QX˛

t /
	

C f
�
t;X˛

t ;L.X˛
t /; ˛t

�i

> E

h
b
�
t;X˛

t ;L.X˛
t /; N̨ .t;X˛

t ;L.X˛
t //

� � @xV
�
t;X˛

t ;L.X˛
t /

�

C QE�
b
�
t; QX˛

t ;L.X˛
t /; N̨ .t; QX˛

t ;L.X˛
t //

� � @�V
�
t;X˛

t ;L.X˛
t /

�
. QX˛

t /
	

C f
�
t;X˛

t ;L.X˛
t /; N̨ .t;X˛

t ;L.X˛
t //

�i
:
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We deduce that, for any random variable � 2 L2.˝;Ft;PIRd/, N̨ .t; �;L.�// should
satisfy:

N̨�
t; �;L.�/�

D argmin
˛2L2.˝;Ft ;PIA/

E

h
b
�
t; �;L.�/; ˛� � @xV

�
t; �;L.�/�

C QE�
b
�
t; Q�;L.�/; Q̨� � @�V

�
t; �;L.�/�. Q�/	 C f

�
t; �;L.�/; ˛�i

:

Now, by Fubini’s theorem, the minimization can be reformulated as:

N̨�
t; �;L.�/� D argmin

˛2L2.˝;Ft ;PIA/
E

h
b
�
t; �;L.�/; ˛� �



@xV

�
t; �;L.�/�

C QE�
@�V

�
t; Q�;L.�/�.�/	

�

C f
�
t; �;L.�/; ˛�i

:

(6.91)

Recalling that the mapping Ǫ W Œ0;T��R
d�P2.Rd/�R

d 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/
minimizes the reduced Hamiltonian H, the minimizer in (6.91) must be:

N̨�
t; �; �

� D Ǫ



t; �; �; @xV.t; �; �/C QE�
@�V

�
t; Q�;��

.�/
	�

D Ǫ
�

t; �; �; @xV
�
t; �; �

� C
Z

Rd
@�V

�
t; x0; �

�
.�/d�.x0/

�
;

with � D L.�/, showing that:

N̨ .t; x; �/ D Ǫ



t; x; �; @xV.t; x; �/C
Z

Rd
@�V.t; x0; �/.x/d�.x0/

�
(6.92)

is an optimal feedback. Plugging this relationship into (6.90), we obtain the full-
fledged form to the master equation:
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@tV.t; x; �/C 1

2
trace
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a.t; x; �/@2xxV.t; x; �/

i
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t; x; �; Ǫ



t; x; �; @xV.t; x; �/C

Z

Rd
@�V.t; x0; �/.x/d�.x0/

��

� @xV.t; x; �/

C f
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t; x; �; Ǫ



t; x; �; @xV.t; x; �/C

Z

Rd
@�V.t; x0; �/.x/d�.x0/

��

C
Z

Rd

�
b

�
t; Qx; �; Ǫ



t; Qx; �; @xV.t; Qx; �/C

Z

Rd
@�V.t; x0; �/.Qx/d�.x0/

��

� @�V.t; x; �/.Qx/

C 1

2
trace



a
�
t; Qx; ��

@v@�V.t; x; �/.Qx/
��

d�.Qx/ D 0;

(6.93)

for .t; x; �/ 2 Œ0;T��R
d�P2.Rd/, with the terminal condition V.T; x; �/ D g.x; �/.

Also, the optimal path solving the optimal control of the McKean-Vlasov dynamics
is given by:

d OXs D b

�
s; OXs; O�s; Ǫ



s; OXs; O�s; @xV.s; OXs; O�s/

C
Z

Rd
@�V.s; x0; O�s/. OXs/d O�s.x

0/
��

ds

C �
�
s; OXs; O�s

�
dWs;

(6.94)

subject to the constraint O�s D L. OXs/ for s 2 Œt;T�, with L. OXt/ D �, for some
initial distribution � 2 P2.Rd/. Moreover, by comparing (6.86) and (6.92), we may
conjecture that:

U.t; x0; �/ D @xV.t; x; �/C
Z

Rd
@�V.t; x0; �/.x/d�.x0/;

.t; x; �/ 2 Œ0;T� � R
d � P2.Rd/:

(6.95)

The fact that the right-hand side contains two different terms is a perfect reflection
of the backward propagation of the terminal condition of the FBSDE (6.69). Indeed,
this terminal condition has two terms corresponding to the partial derivatives of the
terminal cost function g with respect to the state variable x and the distribution �.
Recalling Definition 6.30, this leads to us the formal identification:
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U.t; x; �/ D @�v.t; �/.x/; .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/:

The proof of the above relationship can be made rigorous. Observing from (6.88)
that:

v.t; �/ D E

� Z T

t
f



s; OXt;�
s ;L. OXt;�

s /; N̨�
s; OXt;�

s ;L. OXt;�
s /

��
ds

C g
� OXt;�

T ;L. OXt;�
T /

��
;

(6.96)

for � � �, the identity between U and @�v can be established under appropriate
regularity properties by differentiating the above right-hand side with respect to
� , seen as an element of L2.˝;Ft;PIRd/. This requires to investigate first the

derivative of OXt;�
with respect to � and more generally to address the differentiability

of the solution of (6.69) with respect to its initial condition, when seen as a random
variable. Such a program will be carried out in Chapter (Vol II)-5 in order to analyze
the master equation for mean field games.

Verification Argument
The relevance of the master equation (6.90) is contained in the following verification
result, which is an extension of Proposition 5.108 and which does not require
Control of MKV Dynamics to hold.

Proposition 6.32 On top of the assumptions MKV Lipschitz Regularity
and MKV Quadratic Growth, assume that � is uncontrolled and satisfy
j�.t; x; �/j 6 C.1 C M2.�//, for some C > 0 and for all .t; x; �/ 2
Œ0;T� � R

d � P2.Rd/. Assume also that the reduced Hamiltonian has a unique
minimizer Ǫ W Œ0;T� � R

d � P2.Rd/ � R
d 3 .t; x; �; y/ 7! Ǫ .t; x; �; y/ at most of

linear growth in .x; �; y/ uniformly in t 2 Œ0;T� and that there exists a solution V
to (6.90), satisfying the assumption of Proposition 5.102 together with:

j@xV.t; x; �/j C
� Z

Rd

ˇ̌
@�V.t; x0; �/.x/

ˇ̌2
d�.x0/

�1=2

6 C
�
1C jxj C M2.�/

�
:

(6.97)

Assume finally that, for any initial condition � 2 L2.˝;F0;PIRd/, equa-

tion (6.94) with OX0 D � as initial condition has a unique solution OX0;�
. Then

. Ǫ 0;�s D N̨ .s; OX0;�s ;L. OX0;�s ///06s6T , with N̨ as in (6.92), solves the minimization
problem (6.6)–(6.9).
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Proof. We first notice that because of the linear growth assumption and (6.97), the supremum
over Œ0; T� of the solution of (6.94) is square integrable and that, for any square integrable
control ˛, the supremum of X˛ (with X˛0 D �) is also square integrable. Next, we replace
g by V.T; �; �/ in (6.9), and apply the chain rule (5.107), the integrability condition (6.97)
ensuring that the expectation of the martingale part is zero. Using the same Fubini argument
as in (6.91), we deduce that the right-hand side is indeed greater than

R
Rd V.0; x; �/d�.x/,

with � D L.�/. Choosing ˛ D Ǫ 0;� , we see that equality must hold. ut

6.5.3 AMaster Equation for the Derivative of the Value Function

As explained earlier, the decoupling field U of the FBSDE (6.69). can be identified
with the L-derivative of the value function v, as defined in Definition 6.27. In full
analogy with the previous subsection, but also with Subsections 4.1.2 and 5.7.2,
the goal of this subsection is to derive informally an equation (most likely a PDE,
though possibly in infinite dimension) satisfied by U .

To do so, we assume that U satisfies the assumptions of the Itô chain rule stated
in Proposition 5.102. We start from the equality:

Yt D U�
t;Xt;L.Xt/

�
; (6.98)

where .Xt;Yt;Zt/06t6T solves (6.32). Since U is assumed to be jointly continuous
in all the variables, the above relationship should hold, with probability 1, for all
t 2 Œ0;T�.

Then, we identify the time-differentials of both sides, using the backward equa-
tion in (6.32) for dYt, the optimality condition (6.33), and Itô’s chain rule (5.107)
for dU.t;Xt;L.Xt//. Using (6.31), we get:

dYt D �
h
@xH

�
t;Xt;L.Xt/;Yt;Zt; Ǫ t

�

� QE�
@�H

�
t; QXt;L.Xt/;

ff Ǫ tg; QYt; QZt
�
.Xt/

	i
dt

C ZtdWt; t 2 Œ0;T�;

(6.99)

with the terminal condition YT D @xg.XT ;L.XT// C QEŒ@�g. QXT ;L.XT//.XT/�, and
with the optimality constraint:

Ǫ t D Ǫ�
t;Xt;L.Xt/;Yt

� D Ǫ�
t;Xt;L.Xt/;U.t;Xt;L.Xt//

�
; t 2 Œ0;T�:

In (6.99), ff Ǫ tg denotes the copy of Ǫ t on . Q̋ ; QF ; QP/. By the chain rule (5.107), we get:
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dU.t;Xt; �t/ D
�
@tU

�
t;Xt;L.Xt/

� C @xU
�
t;Xt;L.Xt/

�
bt

C 1

2

�
@2xxU

�
t;Xt;L.Xt/

�
�t�

�
t

	

C QE�
@�U.t;Xt;L.Xt//. QXt/Qbt

	

C 1

2
QE
h
@v@�U.t;Xt;L.Xt//. QXt/ Q�t Q��t

i�
dt

C @xU
�
t;Xt;L.Xt/

��
�tdWt

�
;

(6.100)

where we used the notation bt for b.t;Xt;L.Xt/; Ǫ t/ and �t for �.t;Xt;L.Xt//. As
usual, . QXt; Qbt; Q�t/ is a copy of .Xt; bt; �t/, the expectation over which is denoted by
QE. Notice also that @xU.t;Xt;L.Xt// and @�U.t;Xt;L.Xt//. QXt/ are d � d matrices
acting on the d-dimensional drifts bt and Qbt. Similarly, @2xxU.t;Xt;L.Xt// and
@v@�U.t;Xt;L.Xt//. QXt/ are of dimension d � .d � d/. The d � d components act

on �t�
�
t and Q�t Q��t .

Identifying the quadratic variation terms in (6.99) and (6.100), we get:

Zt D @xU
�
t;Xt;L.Xt/

�
�

�
t;Xt;L.Xt/

�
; t 2 Œ0;T�: (6.101)

We can now identify the bounded variation parts of the differentials of both sides
of (6.98) after replacing Ǫ t by the argument of the minimization of the Hamiltonian,
namely Ǫ .t;Xt;L.Xt/;Yt/, and Yt and Zt by (6.98) and (6.101) respectively. We get:

0 D @tU
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t;Xt;L.Xt/

� C @xU
�
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�
bt
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@2xxU
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C QE
h
@�U
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t;Xt;L.Xt/
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. QXt/Qbt

i

C 1
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QE
h
@v@�U

�
t;Xt;L.Xt/

�
. QXt/ Q�t Q��t

i

C @xH
�
t;Xt;L.Xt/;Yt;Zt; Ǫ t

�

C QE
h
@�H

�
t; QXt;L.Xt/; QYt; QZt;

ff Ǫ tg
�
.Xt/

i
:

(6.102)

Since . QXt; QYt; QZt;
ff Ǫ tg/ is an independent copy of .Xt;Yt;Zt; Ǫ t/, if we use formu-

las (6.98) and (6.101), since bt, �t and ˛t are also functions of Xt only, the above
expectations QE are nothing but mere integrals with respect to the measure L.Xt/. So
equality (6.102) will be satisfied along all the optimal paths Œ0;T� 3 t 7! .Xt;L.Xt//

if the function U satisfies the following system of PDEs:
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0 D @tU.t; x; �/C @xU.t; x; �/b
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t; x; �;U.t; x; �/

��

C 1

2
@2xxU.t; x; �/a.t; x; �/

C
Z

Rd
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@�U.t; x; �/.x0/b



t; x0; �; Ǫ�

t; x0; �;U.t; x0; �/
��
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@v@�U.t; x; �/.x0/a.t; x0; �/
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d�.x0/ (6.103)

C @xH



t; x; �;U.t; x; �/; @xU.t; x; �/�.t; x; �/; Ǫ�
t; x; �;U.t; x; �/

��

C
Z

Rd
@�H



t; x0; �;U.t; x0; �/; @xU.t; x0; �/�.t; x0; �/;

Ǫ�
t; x0; �;U.t; x0; �/

��
.x/d�.x0/;

for .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, with the terminal condition:

U.T; x; �/ D @xg.x; �/C
Z

Rd
@�g.x0; �/.x/d�.x0/; x 2 R

d; � 2 P2.Rd/;

where as usual, we used:

a.t; x; �/ D �
���

�
.t; x; �/; .t; x; �/ 2 Œ0;T� � R

d � P2.Rd/:

Example 6.33 If we revisit Example 6.3 for which b.t; x; �; ˛/ D ˛, � D Id, and
the running cost function f is of the form 1

2
j˛j2C f0.t; x; �/, since Ǫ .t; x; �; y/ D �y

in that case, the above master equation becomes:

0 D @tU.t; x; �/ � @xU.t; x; �/U.t; x; �/C 1

2
xU.t; x; �/

C
Z

Rd

h
� @�U.t; x; �/.x0/U.t; x0; �/
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@v@�U.t; x; �/.x0/

�i
d�.x0/

C @xf0.t; x; �/C
Z

Rd
@�f0.t; x

0; �/.x/d�.x0/:
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6.6 AWeak Formulation Bypassing Pontryagin Principle

The full analysis based on the stochastic maximum principle we provided earlier in
the chapter is very robust, in part because it describes the optimizers of the control
problem in quite a simple way. However, since it relies on a strong joint convexity
assumption in x, � and ˛, the conditions under which it can be applied may not be
satisfied in some practical examples.

The purpose of this section is to provide, at least in a particular case, an
alternative formulation of the control of McKean-Vlasov stochastic differential
equations for which existence of an optimizer can be proven without requiring the
Hamiltonian to be convex in the state variable.

6.6.1 Introduction of theWeak Formulation

In order to circumvent the lack of joint convexity in the cost functions, we introduce
a new formulation of the minimization problem inf˛ J.˛/ defined in (6.6) and (6.9).

Statement of the Problem
Throughout this section, we shall focus on the case where the dynamics of X˛ are
linearly controlled through the drift. More precisely, we assume that:

dX˛
t D .�X˛

t C B˛t/dt C˙dWt; t 2 Œ0;T�; (6.104)

with a prescribed initial condition X˛
0 D X0. Here, X˛ D .X˛

t /06t6T takes values
in R

d, �, B and ˙ are constant matrices of dimensions d � d, d � k and d � m
respectively, and W D .Wt/06t6T is a m-dimensional Wiener process. Motivated by
practical applications addressed in the next section, we assume that m ¤ d, which
differs from what we have done so far. Without any loss of generality we can assume
d > m, which is the only interesting case, and that ˙ is of rank m. The complete
probability space carrying W is denoted by .˝;F ;P/. It is equipped with a complete
and right-continuous filtration F and W is assumed to be a Brownian motion with
respect to F. Above, the control ˛ D .˛t/06t6T is a square-integrable and F-
progressively measurable process with values in a closed convex subset A � R

k.
Of course, whenever X0 is deterministic, F may be the complete (and thus right-
continuous) augmentation of the filtration generated by W, but, as we shall see
next, it may also be a larger filtration. In any case, for the purpose of the present
discussion, we remark that the dynamics (6.104) imply that:

dX˛
t D .�X˛

t C B˛t/dt C dMt; t 2 Œ0;T�; (6.105)

where M D .Mt/t>0 is a continuous martingale with quadratic variation ŒM;M�t D
˙˙�t. Notice also that, the state X˛

t in (6.104) satisfies:

X˛
t D et�X˛

0 C
Z t

0

e.t�s/�B˛s ds C Yt; t 2 Œ0;T�; (6.106)
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where the process Y D .Yt/t>0 is given by Yt D R t
0

e.t�s/�˙ dWs and satisfies:

dYt D �Ytdt C˙dWt D �Ytdt C dMt; Y0 D 0: (6.107)

For the analysis, it is important to observe that, starting from a state process given
by (6.106) with a continuous process Y with Y0 D 0 such that .Mt D Yt �R t
0
�Ysds/06t6T is a martingale with quadratic variation .ŒM;M�t D ˙˙�t/06t6T ,

we can recover the dynamics (6.104) in the following way. If ˙ D UDV is
the singular value decomposition of the matrix ˙ , the matrix U (resp. V) is an
orthogonal d � d (resp. m � m) matrix, and the matrix D is a d � m diagonal matrix
(i.e., the entries Di;i for i D 1; � � � ;m are the only nonzero entries). We then define
the process W D .Wt/t>0 by:

Wt D V�D�1U�Mt; t 2 Œ0;T�;

where D�1 denotes the m � d diagonal matrix with ŒD�1�i;i D ŒDi;i�
�1 for i D

1; � � � ;m. The process W is an m-dimensional Brownian motion for the same
filtration, because it is a continuous martingale with quadratic variation ŒW;W�t D
tIm. Moreover, by construction Mt D ˙Wt. While the computation of the quadratic
variation of W is straightforward given its definition, the fact that Mt D ˙Wt is less
obvious. It can be proven by checking that U�Mt D U�˙Wt which is equivalent to:

U�Mt D U�UDVV�D�1U�Mt D ŒDD�1�ŒU�Mt�; t 2 Œ0;T�:

Since ŒDD�1� is a d � d diagonal matrix with ones on the first m entries of the
diagonal, the desired inequality can be proven by showing that the last d � m entries
of the random vector U�Mt are identically zero. This is indeed the case because:

cov.U�Mt/ D U�
EŒMtM

�
t �U D U�˙˙�U t D DD�t; t 2 Œ0;T�:

Remark 6.34 For pedagogical reasons, we could have chosen a simpler model for
the dynamics of the state, typically something of the form dX˛

t D ˛tdtCdWt. Despite
the fact that it increases the technicalities of the proofs, the choice of (6.104) (and
in particular the assumption d > m) was made to accommodate applications such
as the flocking model discussed at the end of Subsection 6.7.2 below on potential
mean field games.

We begin our discussion of the weak formulation with a cost functional of the
type:

J.˛/ D E

� Z T

0

f
�
t;X˛

t ;L.X˛
t /; ˛t

�
dt C g

�
X˛

T ;L.X˛
T /

��
; (6.108)
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where f and g satisfy:

Assumption (MKV Weak Formulation). The coefficients f and g are real
valued measurable functions on Œ0;T� � R

d � P2.Rd/ � A and R
d � P2.Rd/

respectively satisfying:

(A1) g is continuous and, for any t 2 Œ0;T�, the function f .t; �; �; �/ is also
continuous;

(A2) there exist two constants C > 0 and 
 > 0 such that, for all .t; x; �; ˛/ 2
Œ0;T� � R

d � P2.Rd/ � A,

jf .t; x; �; ˛/j C jg.x; ˛/j 6 C
�
1C jxj2 C M2.�/

2 C j˛j2�;
f .t; x; �; ˛/ > 
j˛j2 � C

�
1C jxj C M2.�/

�
;

g.x; ˛/ > � C
�
1C jxj C M2.�/

�
:

(A3) For any t 2 Œ0;T�, x 2 R
d and � 2 P2.Rd/, the function A 3 ˛ 7!

f .t; x; �; ˛/ is convex.

In order to establish the existence of a control process minimizing the expected
cost, we could try to prove that J is lower-semicontinuous in ˛ with respect to some
topology and that, for the same topology, the sublevel sets of J are compact. Of
course, the main difficulty with such an approach is to find a convenient topology
for the investigation of the properties of J. This is where a new formulation may
help. This motivates us to reformulate the minimization problem in order to ease the
analysis of the cost functional.

Reformulation
A first step is to regard the cost functional as a mere function of the law of the control
process ˛ as opposed to a function of the actual realizations of ˛. This requires a new
definition of the optimization problem to dissociate it from the specific choice of the
probabilistic space .˝;F ;P/. Observe indeed that, instead of constructing control
processes on a prescribed probability space (as we did above), we may consider
a triple .X0;Y;˛/, defined on some complete probability space, still denoted by
.˝;F ;P/ for simplicity, such that:

1. X0 is distributed according to �0, originally given for the initial distribution;
2. ˛ D .˛t/06t6T is an A-valued process jointly measurable in .t; !/ such that:

a/ for any ! 2 ˝,
R T
0

j˛t.!/j2dt is finite,

b/ E
R T
0

j˛tj2dt < 1;
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3. Y is a d-dimensional continuous process such that Y0 D 0 and the process
.Mt D Yt ��

R t
0

Ysds/06t6T is a martingale with quadratic variation .ŒM;M�t D
˙˙�t/06t6T for the complete and right-continuous augmentation of the filtration
generated by the process .X0;Y; .

R t
0
˛sds/06t6T/.

The triple .X0;Y;˛/ is then said to be admissible. Quite remarkably, it is not
attached to an a priori prescribed probability space. This fact is in full analogy
with the notion of weak solution in the theory of stochastic differential equations.
Notice that 2:b/ implies 2:a/ on an event of probability 1. In particular, whenever
2:b/ holds, we can modify ˛ on a negligible event in such a way that 2:a/ holds as
well. The rationale for defining the filtration in terms of the indefinite integral of ˛

will be made clear below.
Under prescription 2, ˛ can be viewed as a random variable with values in the

Polish space L2.Œ0;T�I A/. On the probability space .˝;F ;P/ equipped with the
filtration defined in item 3 above, we can define X as in (6.106). By construction this
process satisfies the dynamics (6.105), and because of the reconstruction of W from
M, the dynamics (6.104) as well. We can then define the cost J.˛/ as in (6.108).
Clearly, the value of the cost only depends upon the law of the triple .X0;Y;˛/
on the canonical space ˝canon D R

d � C.Œ0;T�IRd/ � L2.Œ0;T�I A/. Indeed, by
construction, two admissible triples having the same law share the same cost. This
suggests to define directly the cost functional as a function on the space P.˝canon/

and subsequently, to transfer any admissible triple onto the canonical space ˝canon.
For this reason, we introduce the following definition.

Definition 6.35 A probability measure P on the space˝canon D R
d�C.Œ0;T�IRd/�

L2.Œ0;T�I A/ equipped with the P-completion of the Borel � -field is said to be
admissible for the optimal control problem (6.104)–(6.108) in the weak sense if
under P, the canonical process .�; y; a/ on ˝canon satisfies:

1. � is distributed according to �0,
2. the process

�
yt � �

R t
0

ysds
�
06t6T is a martingale with quadratic variation

.˙˙�t/06t6T for the complete and right-continuous augmentation F D

.Ft/06t6T of the filtration generated by the process .�; yt;
R t
0

asds/06t6T ,

3. E
R T
0

jatj2dt is finite.

On ˝canon, we define:

xt D et�� C
Z t

0

e.t�s/�Basds C yt; t 2 Œ0;T�;

and then:

J .P/ D E
P

� Z T

0

f
�
t; xt;P ı x�1

t ; at
�
dt C g

�
xT ;P ı x�1

T

��
;
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where E
P denotes the expectation under P. The collection of admissible probabili-

ties is denoted by A (which should not be confused with A which is the notation
we use for the Borel � -field of A).

Notice that neither the definition of x D .xt/06t6T nor that of J .P/ depend
upon the choice of the function representing the equivalence class of the realization
of a D .at/06t6T 2 L2.Œ0;T�I A/. However, if needed, we may choose, as a canonical
representative of the equivalence class of a, the process:

Qat.!/ D

8
<̂

:̂

lim
n!C1 n

Z t

.t�1=n/C

as.!/ds if the limit exists;

0 otherwise;

for all .t; !/ 2 Œ0;T� � ˝. By Lebesgue’s differentiation theorem, we know that,
in the above definition, the limit in the right-hand side exists for all ! 2 ˝ and for
almost every t 2 Œ0;T�. Moreover, for any ! 2 ˝, the function Œ0;T� 3 t 7! Qat.!/

is a representative of the equivalence class a.!/ 2 L2.Œ0;T�I A/. It is progressively
measurable with respect to the filtration generated by the process .

R t
0

asds/06t6T .
It is plain to see that this filtration contains the filtration generated by the process
.
R t
0

e.t�s/�Basds/06t6T .
Observe finally that, for any admissible triple .X0;Y;˛/ irrespective of the

probability space .˝;F ;P/ on which it is defined, the law of .X0;Y;˛/ is admissible
in the sense of Definition 6.35.

Remark 6.36 Any controlled trajectory in the original sense as described in
equations (6.104)–(6.108) induces an admissible probability measure in the sense
of Definition 6.35.

Main Statement
Here is the main result of this section.

Theorem 6.37 Under assumption MKV Weak Formulation, there exists a prob-
ability P

? on ˝canon such that J .P?/ is equal to the infimum of J over the set of
admissible probability measures on ˝canon.

6.6.2 Relaxed Controls

The advantage of the weak formulation is quite clear: it is much easier to establish
the relative compactness of a family of laws of random variables than the relative
compactness of the family formed by the random variables themselves. However,
although this fact makes the approach more appealing, it still does not answer the
need for a topology on the space of control processes for which one can prove
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tightness for sequences of controls whose costs are uniformly bounded. Indeed, this
is more or less what we should prove in order to establish the relative compactness
of the sublevel sets of J .

A way to bypass this difficulty is to relax the formulation of the control problem
using the notion of relaxed control, which has been widely used in the theory
of stochastic control. Roughly speaking, a relaxed control is a random measure
on Œ0;T� � A satisfying some conditions that are described below. Obviously,
standard controls ought to be relaxed controls. A natural way to make sure that
this is indeed the case is to associate, with each control process ˛ D .˛t/06t6T

defined on a complete filtered probability space .˝;F ;F;P/, the random measure
Q.!; dt; d˛/ D dtı˛t.!/.d˛/ rigorously defined as:

Q
�
!;B

� D
Z T

0

1B
�
t; ˛t.!/

�
dt; B 2 B.Œ0;T� � A/; ! 2 ˝:

Notice that the marginal distribution of Q on Œ0;T� is the Lebesgue measure. This
prompts us to introduce the following definition.

Definition 6.38 If we denote by Q the set of finite positive measures on Œ0;T� � A
whose first projection is the Lebesgue measure on Œ0;T�, then a relaxed control on
.˝;F/ is a random variable Q W ˝ 3 ! 7! Q.!; �/ 2 Q.

Recall also from Proposition 5.7 that, for any B 2 B.Œ0;T� � A/, the mapping
˝ 3 ! 7! Q.!;B/, which we sometimes denote by Q.B/, is a random variable. A
key observation is that every element q 2 Q may be normalized into a probability
measure q=T 2 P.Œ0;T�� A/. In this respect, the following simple result will come
handy in what follows.

Proposition 6.39 The set fq=T; q 2 Qg is a closed subset of P.Œ0;T��A/ equipped
with the topology of weak convergence.

Proof. Without any loss of generality, we assume that T D 1. We then consider a sequence
.qn/n>0, with values in Q, which converges in the weak sense to some q 2 P.Œ0; T� � A/,
and prove that for any B 2 B.Œ0; T�/, q.B � A/ D Leb1.B/, which will show that q belongs
to Q. Consider a continuous function ` from Œ0; T� to R. We have:

lim
n!1

Z T

0

Z

A
`.t/qn.dt; da/ D

Z T

0

Z

A
`.t/q.dt; da/:

Obviously, the fact that the left-hand side is equal to
R T
0
`.t/dt concludes the proof. ut

The fact that the first marginal of a relaxed control is fixed plays a key role. For
instance, we shall appeal several times to the following property, sometimes referred
to as stable convergence in law, see replace by Lemma (Vol II)-7.34 for a proof:
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Proposition 6.40 Let ` be a bounded jointly measurable function from Œ0;T� � A
such that, for any t 2 Œ0;T�, the mapping A 3 a 7! `.t; a/ is continuous, and .qn/n>0
be a sequence with values in Q converging weakly to q 2 Q. Then,

lim
n!C1

Z T

0

Z

A
`.t; a/qn.dt; da/ D

Z T

0

Z

A
`.t; a/q.dt; da/:

Disintegration of Relaxed Controls
For each t 2 Œ0;T�, we say that a relaxed control Q is F-adapted if, for any t 2
Œ0;T� and for any B 2 B.Œ0;T� � A/, the random variable Q.B \ .Œ0; t� � A// is
Ft-measurable.

Equivalently, denoting by F
Q;nat the filtration generated by the P.Œ0;T� � A/-

valued process ..1=t/Q.� \ .Œ0; t� � A///0<t6T (see Proposition 5.7 for the meaning
if needed), Q is F-adapted if FQ;nat

t � Ft for all t 2 Œ0;T�.
We shall learn from Theorem (Vol II)-1.1 that if Q is a relaxed control, for each

! 2 ˝, we can associate with Q.!; �/ a kernel .Qt.!; �//t2Œ0;T�, each Qt.!; �/ being
a probability measure on A, such that Q.!; �/ D dtQt.!; �/. Equivalently, for any
B 2 B.Œ0;T� � A/,

Q.!;B/ D
Z

Œ0;T��A

Z
1B.t; a/Qt.!; da/dt:

With the above notation, we can prove the following properties which will be helpful
in manipulating relaxed controls.

Proposition 6.41 If Q is an F-adapted relaxed control, we can redefine the process
.Qt.!; �//06t6T in such a way that:

1. for any t 2 Œ0;T�, the mapping Œ0; t� � ˝ 3 .s; !/ 7! Qs.!; �/ 2 P.A/ is
measurable when its domain Œ0; t��˝ is equipped with the � -field B.Œ0; t�/˝Ft

and its range P.A/ with the Borel � -field of the Lévy-Prokhorov metric;
2. for P-almost every ! 2 ˝, Q.!; �/ D dtQt.!; �/.

Proof. For any ! 2 ˝, t 2 Œ0; T� and h > 0, let:

Qh
t .!;B/ D h�1Q

�
!; Œ.t � h/C; t� � B

�
; B 2 B.A/:

For any t 2 Œ0; T�, Qh
t W ˝ 3 ! 7! Qh

t .!;B/ is a random variable. Moreover, for 0 6 s <
t 6 T ,

jQh
t .!;B/ � Qh

s .!;B/j 6 h�1



Q
�
!; Œs; t� � A/C Q

�
!; Œ.s � h/C; .t � h/C� � A

��

6 2
t � s

h
;

so that Qh
�
.�;B/ is continuous in t and is thus jointly measurable in .t; !/. We deduce that

Œh; T� �˝ 3 .t; !/ 7! Qh
t .!; �/ 2 P.A/ is measurable.
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Observe now that, for any ! 2 ˝ and for almost every t 2 Œ0; T�, for any ` in a countable
dense subset of the space of real valued continuous functions on R converging to 0 at infinity,
we have:

Z

A
`.a/Qt.!; da/

D lim
h&0

h�1

Z t

.t�h/C

Z

A
`.a/Q

�
!; .ds; da/

� D lim
h&0

Z

A
`.a/Qh

t .!; da/:

This follows from the fact that the path:

Œ0; T� 3 t 7!
Z t

0

Z

A
`.a/Qs.!; da/ds D

Z t

0

Z

A
`.a/Q

�
!; .ds; da/

�

is Lipschitz continuous. In particular, for any ! 2 ˝, " > 0 and almost every t 2 ."; T�, the
family .Qh

t .!; �//0<h<" converges weakly to Qt.!; �/ as h & 0.
For each fixed " > 0, let D" � Œ"; T��˝ be the set of points .t; !/ at which the sequence

.Q1=n
t .!; �//n>"�1 has a limit in P.A/ as n tends to 1. By joint measurability of the map

Œ"; T� � ˝ 3 .t; !/ 7! Q1=n
t .!; �/, we have D" 2 B.Œ"; T�/ ˝ F . Moreover, for all ! 2 ˝,

the set ft 2 Œ"; T� W .t; !/ 62 D"g has zero Lebesgue measure. Therefore, D" has full measure
in Œ"; T� � ˝. In particular, we can redefine Qt.!; �/ as the limit of .Q1=n

t .!; �//n>1 when
.t; !/ 2 [">0D" (each D" being regarded as an element of B.Œ0; T�/ ˝ F), and a fixed
arbitrary value otherwise.

By the same argument as above, for any " 6 h 6 t 6 T , the mapping Œ"; t��˝ 3 .s; !/ 7!
Qh

s .!; �/ is B.Œ"; t�/ ˝ Ft-measurable. In particular, the set f.s; !/ 2 Œ"; t� � ˝ W .s; !/ 2
D"g belongs to B.Œ"; t�/ ˝ Ft. Therefore, Œ0; t� � ˝ 3 .s; !/ 7! Qs.!; �/ is B.Œ0; t�/ ˝ Ft-
measurable. ut

6.6.3 Minimization Under theWeak Relaxed Formulation

We now provide a new formulation of the optimal control problem which accom-
modates relaxed controls.

Strong Relaxed Formulation of the Optimization Problem
We first implement the notion of relaxed control under the original strong formu-
lation (6.104)–(6.108) of the optimization problem. Given an underlying complete
filtered probability space .˝;F ;F;P/ supporting a F-Wiener process W, we define
Yt D R t

0
e.t�s/�˙dWs and Mt D Yt � R t

0
�Ysds as before, for t 2 Œ0;T�. Next, to any

F-adapted relaxed control Q such that:

E

Z T

0

Z

A
jaj2Q.dt; da/ < 1;
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we associate the process:

XQ
t D et�X0 C

Z t

0

Z

A
e.t�s/�Ba Q.ds; da/C Yt; t 2 Œ0;T�; (6.109)

for a given initial condition X0, as well as the cost functional:

J.Q/ D E

� Z T

0

Z

A
f
�
t;XQ

t ;L.XQ
t /; a

�
Q.dt; da/C g

�
XQ

T ;L.XQ
T /

��
: (6.110)

Observe that the two integrals with respect to Q may be rewritten in terms of
.Qt/0�t�T . Of course, the resulting writing does not depend upon the choice of the
kernel .Qt/0�t�T in Proposition 6.41.

Weak Relaxed Formulation
As in the introduction of the weak formulation in Subsection 6.6.1, observe that
instead of constructing the relaxed control on a prescribed probability space, we may
consider a triple .X0;Y;Q/, defined on some complete probability space .˝;F ;P/,
such that:

1. the law of X0 is the probability measure �0 originally chosen for the initial
distribution;

2. Q is a random variable with values in Q such that E
R T
0

R
A jaj2Q.dt; da/ is finite;

3. Y is a d-dimensional continuous process such that Y0 D 0 and the process M
defined by Mt D Yt � R t

0
�Ysds for 0 6 t 6 T is a martingale for the complete

and right-continuous augmentation of the filtration generated by .X0;Y;Q/ (see
the paragraph preceding the statement of Proposition 6.41 for the definition of
the filtration generated by Q) with quadratic variation ŒM;M�t D ˙˙�t.

According to the discussion of Subsection 6.6.1, the triple .X0;Y;Q/ is called
admissible. On the resulting filtered space, we can define XQ as in (6.109) and the
cost J.Q/ as in (6.110). Clearly, the value of the cost functional J.Q/ only depends
upon the law of .X0;Y;Q/ on R

d � C.Œ0;T�IRd/ � Q. We now state the analog of
Definition 6.35 for relaxed controls.

Definition 6.42 A probability measure P on ˝relax
canon D R

d � C.Œ0;T�IRd/ � Q,
equipped with the P-completion of the Borel � -field is said to be admissible for the
optimal control problem (6.104)–(6.108) in the weak relaxed sense if under P, the
canonical process .�; y; q/ on ˝relax

canon satisfies:

1. � is distributed according to �0;
2. y D .yt/06t6T is such that y0 D 0 and the process m D .mt/06t6T defined

by mt D yt � R t
0
�ysds is a martingale for the complete and right-continuous

augmentation F of the canonical filtration generated by the process .�; yt; q.� \
.Œ0; t� � A///06t6T with quadratic variation Œm;m�t D ˙˙�t;

3. E
R T
0

jaj2q.dt; da/ < 1.
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We denote by A relax the set of probability measures on ˝relax
canon which are

admissible in the weak relaxed sense. To any such P, we associate the cost J relax.P/

defined as the value of J.q/ in (6.110) computed on ˝relax
canon.

Proof Theorem 6.37
We prove Theorem 6.37 assuming that the same result holds for the relaxed
formulation. So, we momentarily assume the following result which will be proved
later on.

Theorem 6.43 Under assumption MKV Weak Formulation, the functional
J relax has a minimizer over the set A relax. In other words, there exists a probability
P
?;relax on ˝relax

canon such that J relax.P?;relax/ is equal to the infimum of J relax over
the set A relax of admissible probability measures on ˝relax

canon.

Taking for granted the conclusion of Theorem 6.43, the proof of Theorem 6.37
may be completed as follows:

Proof of Theorem 6.37: Consider a minimizing probability measure P
?;relax identified in the

statement of Theorem 6.43. It is a probability measure on the canonical space ˝relax
canon. With

each .�; y; q/ 2 ˝ relax
canon such that:

Z T

0

Z

A
jajq.dt; da/ < 1;

we associate the process x D .xt/06t6T defined by:

xt D et�� C
Z t

0

Z

A
e.t�s/�Ba q.ds; da/C yt; t 2 Œ0; T�: (6.111)

Under P
?;relax, the integral

R T
0

R
A jaj2q.ds; da/ is almost surely finite. In particular, x has

continuous sample paths. We call .qt.!; �//06t6T the kernel given by Proposition 6.41
satisfying q.!; �/ D dtqt.!; �/ for P?;relax almost every ! 2 ˝relax

canon. Then, by convexity of the
running cost in the variable ˛, we have:

J relax
�
P
?;relax

�

D E
P
?;relax

�
g
�
xT ;P

?;relax ı x�1
T

� C
Z T

0

Z

A
f
�
t; xt;P

?;relax ı x�1
t ; a

�
q.dt; da/

�

D E
P
?;relax

�
g
�
xT ;P

?;relax ı x�1
T

� C
Z T

0

Z

A
f
�
t; xt;P

?;relax ı x�1
t ; a

�
qt.da/dt

�

> E
P
?;relax

�
g
�
xT ;P

?;relax ı x�1
T

� C
Z T

0

f



t; xt;P
?;relax ı x�1

t ;

Z

A
aqt.da/

�
dt

�
:

(6.112)
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Notice that, P?;relax-almost surely, for almost every t 2 Œ0; T�,
R

A aqt.da/ makes sense and
belongs to A. Letting:

˛t.!/ D
8
<

:

Z

A
aqt.!; da/ if

Z

A
jajqt.!; da/ < 1;

0 otherwise;

for .t; !/ 2 Œ0; T� �˝, we have:

E

Z T

0

j˛tj2dt 6 E

Z T

0

Z

A
jaj2q.dt; da/ < 1:

Notice also that (6.111) may be rewritten:

xt D et�� C
Z t

0

e.t�s/�B˛sds C yt; t 2 Œ0; T�: (6.113)

Now we define P
? as the law of .�; y;˛/ on R

d � C.Œ0; T�IRd/ � L2.Œ0; T�I A/ under
P
?;relax. Also, with the same notations as in Definition 6.35 and by the very definition of

x D .xt/06t6T in (6.111), the law of .�; y; a; x/ under P? is the same as the law of .�; y;˛; x/
under P?;relax. By (6.112), we then have:

J
�
P
?
�

6 J relax
�
P
?;relax

�
:

Since any admissible probability measure for the weak formulation (see Definition 6.35)
is also an admissible probability measure for the weak relaxed formulation (see Defini-
tion 6.42), or equivalently since A � A relax, we deduce that, for any P 2 A relax,

J
�
P
?
�

6 J relax
�
P
?;relax

�
6 J

�
P

�
;

which completes the proof. ut

6.6.4 Proof of the Solvability Under theWeak Relaxed Formulation

The rest of the section is devoted to the proof of Theorem 6.43. Without any loss
of generality we assume that T D 1 which allows us to identify Q with a subset of
P.Œ0; 1� � A/.

In order to prove that the weak relaxed formulation admits a minimizer, we
proceed in two steps. First we prove that any nonempty sublevel set of the form
fP 2 A relax W J relax.P/ 6 Kg for K 2 R, is relatively compact for the
weak-topology. Next, we show that J relax is lower semi-continuous for the weak
topology.
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Compactness of the Sublevel Sets
In order to investigate the compactness of the sublevel sets, we start with the
following observation: any admissible probability measure P in the sense of
Definition 6.42 may be regarded as a probability measure on R

d � C.Œ0; 1�IRd/ �
.Q \ P�.Œ0; 1� � A//, for � 2 Œ1; 2�.

Lemma 6.44 Let K 2 R such that the sublevel set fP 2 A relax W J relax.P/ 6 Kg
is not empty. Then, for any � 2 Œ1; 2/, fP 2 A relax W J relax.P/ 6 Kg is
relatively compact for the weak topology on P.Rd �C.Œ0; 1�IRd/�Q�/, where Q� D
Q \ P�.Œ0; 1� � A/ is equipped with the �-Wasserstein distance on P�.Œ0; 1� � A/.
Moreover, any weak limit of sequences with values in fP 2 A relax W J relax.P/ 6 Kg
belongs to A relax.

Notice that Proposition 6.39 implies that Q� is a closed subset of P�.Œ0; 1� � A/ for
the �-Wasserstein distance.

Proof. Recall that we assume that T D 1 for simplicity. Throughout the proof, we work on
the canonical space ˝ relax

canon and the canonical random variable is denoted by .�; y; q/. With
each .�; y; q/ 2 ˝ relax

canon such that:

Z 1

0

Z

A
jajq.dt; da/ < 1;

we associate the process x D .xt/06t61 defined by (6.111) for t 2 Œ0; 1�. When P 2 A relax,
the integral

R 1
0

R
A jaj2q.ds; da/ is finite P-almost surely. In particular, x has continuous sample

paths.

First Step. Let us consider a sequence .Pn/n>1 with values in A relax such that
J relax.Pn/ 6 K for all n > 1. By assumption (A2), we have, for a possibly new value
of the constant C whose value is allowed to increase from line to line:


En
Z 1

0

Z

A
jaj2q.dt; da/ 6 J relax.Pn/C C



1C E

n
�

sup
06t61

jxtj
	�
:

We use the notation E
n to denote the expectation with respect to P

n. Observe now that by
definition (6.111) of x, we have:

E
n
�

sup
06t61

jxtj
	

6 C


1C E

n
Z 1

0

Z

A
jaj2q.dt; da/

�1=2
:

Consequently, there exists a constant cK , depending on K, such that:

E
n

Z 1

0

Z

A
jaj2q.dt; da/ 6 cK ; (6.114)
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from which we deduce that the sequence .Pn ıq�1/n>1 is tight on P.Œ0; 1��A/. In particular,
for any "; c > 0:

sup
n>1

P
n
h
q
�jaj > c

"

�
> 1

c

i
6 c sup

n>1
E

n
h
q
�jaj > c

"

�i
6 cK"

2

c
:

Therefore, for any " > 0 and any p 2 N:

sup
n>1

P
n
h
q
�jaj > 2p

"

�
> 1

2p

i
6 cK"

2

2p
:

Finally, by summing over p 2 N, we obtain:

sup
n>1

P
n
h [

p2N

n
q
�jaj > 2p

"

�
> 1

2p

oi
6

X

p2N

cK"
2

2p
D 2cK"

2: (6.115)

Since, for any " > 0, the set:

n
q 2 P.Œ0; 1� � A/I 8p 2 N; q

�jaj > 2p

"

�
6 1

2p

o
(6.116)

is a relatively compact subset of P.Œ0; 1�� A/ by Prokhorov’s theorem, we conclude that the
sequence .Pn ı q�1/n>1 is tight on P.Œ0; 1�� A/. Since Q is a closed subset of P.Œ0; 1�� A/,
it is also tight on Q.

Second Step. We now prove that, for any � 2 Œ1; 2/, the family .Pn ı q�1/n>1 is tight on
P�.Œ0; 1� � A/ equipped with the �-Wasserstein distance. In order to do so, we make use of
Corollary 5.6.

We first recall the bound (6.114), from which we get, for every R > 0:

E
n

Z 1

0

Z

A
1fjaj > Rgjaj�q.dt; da/ 6 1

R2��
E

n
Z 1

0

Z

A
jaj2q.dt; da/ 6 cK

R2��
:

Therefore, for any " > 0 and p 2 N, Markov’s inequality yields:

sup
n>1

P
n

 Z 1

0

Z

A
1fjaj>2p

gjaj�q.dt; da/ > 1

2.2��/p=2"

�
6 cK"

2.2��/p=2

2p.2��/

D cK"2
�.2��/p=2:

Summing over p 2 N, we finally have:

sup
n>1

P
n

� [

p2N

n Z 1

0

Z

A
1fjaj>2p

gjaj�q.dt; da/ > 1

2.2��/p=2"

o�
6 cK"

1 � 2�.2��/=2
: (6.117)

Now, using Corollary 5.6, the fact that the time component t runs through the compact
interval Œ0; 1�, and the relative compactness of the set (6.116) for the topology of weak
convergence, we conclude that, for any " > 0, the set:
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n
q 2 P.Œ0; 1� � A/I 8p 2 N; q

�jaj > 2p

"

�
6 1

2p
;

Z 1

0

Z

A
1fjaj>2p

gjaj�q.dt; da/ <
1

2.2��/p=2"

o

is relatively compact in P�.Œ0; 1� � A/. Since the bounds (6.115) and (6.117) control the
mass that Pn ı q�1 puts outside of this relatively compact set, the proof of the tightness of
.Pn ı q�1/n>1 on Q� is complete.

Third Step. Obviously, .Pn/n>1 is tight on ˝ relax
canon. Therefore, we can extract a subsequence

converging in the weak sense. Let P be a limit point. In order to complete the proof, we must
show that P satisfies the properties of Definition 6.42.

It is clear that under P, � has distribution �0. Moreover, it is standard to prove that under
P, the process m defined by .mt D yt � R t

0
�ysds/06t61 is a martingale for the complete

and right-continuous augmentation of the filtration of the canonical process .�; y; q/ with
quadratic variation .Œm;m�t D ˙˙�t/06t61.

Finally, observe that if we denote by E the expectation with respect to P we have:

E

Z 1

0

Z

A
jaj2q.dt; da/ D lim

p!1

E

Z 1

0

Z

A
jaj2'p.jaj/q.dt; da/;

where .'p/p2N is a nondecreasing sequence of continuous functions with values in Œ0; 1�,
equal to 1 on Œ�p; p� and vanishing outside Œ�2p; 2p�. Since the mapping Q 3 Q 7!R 1
0

R
A jaj2'p.jaj/Q.dt; da/ is continuous, we deduce that, for all p 2 N,

E

Z 1

0

Z

A
jaj2'p.jaj/q.dt; da/ D lim

n!1

E
n

Z 1

0

Z

A
jaj2'p.jaj/q.dt; da/

6 lim inf
n!1

E
n

Z 1

0

Z

A
jaj2q.dt; da/ 6 CK :

We conclude that:

E

Z 1

0

Z

A
jaj2q.dt; da/ 6 CK ;

which completes the proof ut

Lower Semicontinuity of the Cost Functional
We now prove that the cost functional J relax is lower semicontinuous. The
proof relies on the following fact about Polish spaces, which is a variant of
Proposition 6.40; for the sake of completeness, we show how to derive it as a
corollary of Proposition 6.40.

Lemma 6.45 Let .S; d/ be a Polish space and ' W Œ0; 1��S �A ! R be a bounded
measurable function, such that for any t 2 Œ0; 1�, the function S � A 3 .&; a/ 7!
'.t; &; a/ is continuous.



592 6 Optimal Control of SDEs of McKean-Vlasov Type

Then, for any sequence .&n; qn/n>1 converging to some .&; q/ for the product
topology on C.Œ0; 1�IS/ � P.Œ0; 1� � A/, we have:

lim inf
n!1

Z 1

0

Z

A
'.t; &n

t ; a/q
n.dt; da/ D

Z 1

0

Z

A
'.t; &t; a/q.dt; da/:

Proof.

First Step. We first assume that there exists c > 0 such that '.t; &; a/ D 0 if jaj > c. Then,
we write:

Z 1

0

Z

A
'.t; &n

t ; a/q
n.dt; da/ �

Z 1

0

Z

A
'.t; &t; a/q.dt; da/ (6.118)

D
Z 1

0

Z

A



'.t; &n

t ; a/ � '.t; &t; a/
�

qn.dt; da/C
Z 1

0

Z

A
'.t; &t; a/

�
qn � q

�
.dt; da/:

Since for any t 2 Œ0; 1�, the function S � A 3 .&; a/ 7! '.t; &; a/ is continuous in .&; a/ and
null when jaj > c, we conclude that for any t 2 Œ0; 1�:

lim
n!1

sup
a2A

ˇ̌
'.t; &n

t ; a/ � '.t; &t; a/
ˇ̌ D 0:

Now,

ˇ̌
ˇ̌
Z 1

0

Z

A



'.t; &n

t ; a/ � '.t; &t; a/
�

qn.dt; da/

ˇ̌
ˇ̌ 6

Z 1

0

sup
a2A

ˇ̌
ˇ'.t; &n

t ; a/ � '.t; &t; a/
ˇ̌
ˇdt;

and by Lebesgue’s dominated convergence theorem, we get:

lim
n!1

Z 1

0

Z

A



'.t; &n

t ; a/ � '.t; &t; a/
�

qn.dt; da/ D 0;

which takes care of the first term in the right-hand side of (6.118). As for the second term,
it tends to 0 as n tends to 1 when ' is jointly continuous in its three arguments. In order to
overcome the lack of continuity in the variable t, we use Proposition 6.40.

Second Step. We now turn to the general case when ' does not vanish anymore when jaj is
large. We consider a sequence of continuous functions . p/p2N, with values in Œ0; 1�, such
that each  p.x/ D 1 when jxj 6 p and  p.x/ D 0 whenever jxj > 2p. Then, the first step
applies to each function Œ0; 1� � S � A 3 .t; &; a/ 7! '.t; &; a/ p.a/. Therefore, in order to
complete the proof, it suffices to notice that:

sup
n>1

ˇ̌
ˇ̌
Z 1

0

Z

A
'.t; &t; a/

�
 p.a/ � 1�qn.dt; da/

ˇ̌
ˇ̌ 6 C sup

n>1

Z 1

0

Z

A

ˇ̌
 p.a/ � 1ˇ̌qn.dt; da/

6 C sup
n>1

Z 1

0

Z

A
1fjaj>2pgqn.dt; da/;
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where C depends upon the sup norm of '. Since the sequence of measures .qn/n>1 is
convergent, it is tight, so that the last term tends to 0 as p tends to 1. ut

We now prove the desired semi-continuity result.

Lemma 6.46 For any � 2 .1; 2/, the cost functional J relax W A relax ! R given
in Definition 6.42 is lower semicontinuous on any sublevel set with respect to the
weak topology on P.Rd � C.Œ0;T�IRd/ � Q�/, where Q� D Q \ P�.Œ0; 1� � A/ is
equipped with the �-Wasserstein distance.

Proof. Let us consider a sequence .Pn/n>1 in A relax such that supn>1J
relax.Pn/ 6 K, for

some K 2 R, and converging to P with respect to the weak topology on P.Rd�C.Œ0; T�IRd/�
Q�/. By Lemma 6.44, P belongs to A relax.

First Step. When x is defined on the canonical space ˝relax;�
canon D R

d � C.Œ0; 1�IRd/ � Q�,
with Q� D Q\P�.Œ0; 1�� A/ via formula (6.111), we view it as the image of .�; y; q/ under
the mapping X defined by:

˝ relax;�
canon 3 .�; y; q/ 7! X .�; y; q/

D



et�� C
Z t

0

Z

A
e.t�s/�Ba q.ds; da/C yt

�

06t61
2 C.Œ0; 1�IRd/:

We claim that X is continuous as the sum of three continuous functions. Obviously, it
is enough to check that .

R t
0

R
A e.t�s/�Ba q.ds; da//06t61 2 C.Œ0; 1�IRd/ is a continuous

function of q 2 Q�. Proposition 6.40 implies continuity for each fixed t 2 Œ0; 1�, the
uniformity following from the fact that, if 0 6 s 6 t, we have:

ˇ̌
ˇ̌
Z t

0

Z

A
e.t�u/�Ba q.du; da/ �

Z s

0

Z

A
e.s�u/�Ba q.du; da/

ˇ̌
ˇ̌

6
ˇ̌
ˇ̌
Z s

0

Z

A
Œet� � es��e�u�Ba q.du; da/

ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
Z t

s

Z

A
e.t�u/�Ba q.du; da/

ˇ̌
ˇ̌

6 C

�
jt � sj

Z 1

0

Z

A
jaj q.du; da/C jt � sj.��1/=�

h Z 1

0

Z

A
jaj� q.dt; da/

i1=��
:

for some constant C depending only upon the norms of the matrices � and B.

Second Step. From the first step, we have that .Pn ı .�; y; q; x/�1/n>1 converges to P ı
.�; y; q; x/�1 on ˝ relax;�

canon � C.Œ0; 1�IRd/. Therefore, letting, for each t 2 Œ0; 1� and n > 1,
�n

t D P
n ı x�1

t , we deduce that the sequence .�n
t /n>1 converges weakly to �t D P ı x�1

t .
Also,

sup
n>1

sup
06t61

jxtj 6 C

�
j�j C

Z 1

0

Z

A
jajq.dt; da/

�
C sup

06t61
jytj:

Now, (6.114) implies the existence of a constant CK such that:

sup
n>1

E
n

�ˇ̌
ˇ̌
Z 1

0

Z

A
jajq.dt; da/

ˇ̌
ˇ̌
2�

6 sup
n>1

�
E

n
Z 1

0

Z

A
jaj2q.dt; da/

�
6 CK ; (6.119)
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and allowing the value of CK to increase from line to line if needed,

sup
n>1

E
n
�

sup
06t61

jxtj2
	

6 CK :

Therefore, for any � 2 Œ1; 2/, the sequence of measures .Pn ı .sup06t61 jxtj�/�1/n>1 is �-
uniformly integrable. We deduce that, for any t 2 Œ0; 1�, the sequence .�n

t /n>1 converges to
�t in P�.Rd/. Moreover:

E

Z 1

0

Z

A
jaj2q.dt; da/ 6 CK ; and sup

06t61

�
M2.�t/

�2 6 E
�

sup
06t61

jxtj2
	

6 CK :

(6.120)

Third Step. By Skorohod’s representation theorem on the Polish space ˝
relax;�
canon �

C.Œ0; 1�IRd/, we get a sequence of random variables .�n;Yn;Qn;Xn/n>1;nD1, defined
on the same probability space .�;G;P/, such that, for all n > 1, .�n;Yn;Qn;Xn/ is
distributed according to P

n ı .�; y; q; x/�1, .�1;Y1;Q1;X1/ is distributed according
to P ı .�;w; q; x/�1 and, P-almost surely,

lim
n!1

�
�n;Yn;Qn;Xn

� D �
�1;Y1;Q1;X1

�
:

By Lemma 6.45, we deduce that for any p 2 N and P-almost surely:

Z 1

0

Z

A
f .t;X1

t ; �1

t ; a/ p.a/Q
1.dt; da/

D lim
n!1

Z 1

0

Z

A
f .t;Xn

t ; �
n
t ; a/ p.a/Q

n.dt; da/;

where  p is a continuous cut-off function from R
k to Œ0; 1�, which is equal to 1 on the ball of

center 0 and radius p, and 0 outside the ball of center 0 and radius 2p.
We now apply Fatou’s lemma to the sequence .

R 1
0

R
A f .t;Xn

t ; �
n
t ; a/ p.a/Qn.dt; da/ C

Cp
R 1
0
.1C jXn

t j C M2.�
n
t //dt/n�1, which is non-negative for a well-chosen constant Cp. By

uniform integrability of the random variables .
R 1
0
.1C jXn

t j C M2.�
n
t //dt/n�1, we get for any

p 2 N:

E
Z 1

0

Z

A
f .t;X1

t ; �1

t ; a/ p.a/Q
1.dt; da/

6 lim inf
n!1

E
Z 1

0

Z

A
f .t;Xn

t ; �
n
t ; a/ p.a/Q

n.dt; da/;

where we used the notation E for the expectation with respect to P over � . Returning to the
original sequence .Pn ı .�; y; q; x/�1/n>1, we deduce that:

E

Z 1

0

Z

A
f .t; xt; �t; a/ p.a/q.dt; da/

6 lim inf
n!1

E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/ p.a/q.dt; da/:
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Fourth Step. Since for any t 2 Œ0; 1� we have:

jf .t; xt; �t; a/j 6


1C sup

06t61
jxtj2 C sup

06t61

�
M2.�t/

�2 C jaj2
�
;

and since (6.120) implies:

E

Z 1

0

Z

A



1C sup

06t61
jxtj2 C sup

06t61

�
M2.�t/

�2 C jaj2
�

q.dt; da/ < 1;

we have:

lim
p!1

E

Z 1

0

Z

A
f .t; xt; �t; a/ p.a/q.dt; da/ D E

Z 1

0

Z

A
f .t; xt; �t; a/q.dt; da/:

The assumption on the running cost function implies that, for all n > 1, t 2 Œ0; 1� and a 2 A:

f .t; xt; �
n
t ; a/ > 
jaj2 � C

�
1C jxtj C M2.�

n
t /

�

> 
jaj2 � C
�
1C jxtj

�
;

where we used the fact the sequence .sup06t61 M2.�
n
t //n>1 is bounded, and allowed the

constant C to vary from line to line. Therefore,

E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/ p.a/q.dt; da/

D E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/q.dt; da/C E

n
Z 1

0

Z

A
f .t; xt; �

n
t ; a/

�
 p.a/ � 1�q.dt; da/

6 E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/q.dt; da/C CE

n
Z 1

0

Z

A

�
1C sup

06t61
jxtj

�
1fjaj>pgq.dt; da/:

By Cauchy Schwarz’ inequality, we get:

E
n

Z 1

0

Z

A

�
1C sup

06t61
jxtj

�
1fjaj>pgq.dt; da/

6
�
E

n
Z 1

0

Z

A

�
1C sup

06t61
jxtj

�2
q.dt; da/

�1=2�
E

n
Z 1

0

Z

A
1fjaj>pgq.dt; da/

�1=2

6 C

p
;

where we also used (6.120). Finally:
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lim sup
p!1

lim inf
n!1

E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/ p.a/q.dt; da/

6 lim inf
n!1

E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/q.dt; da/:

Taking the limit as p tends to 1 in the conclusion of the third step, we obtain:

E

Z 1

0

Z

A
f .t; xt; �t; a/q.dt; da/ 6 lim inf

n!1

E
n

Z 1

0

Z

A
f .t; xt; �

n
t ; a/q.dt; da/:

Handling the terminal cost as the running cost in the third step, we complete the proof. ut

Conclusion
The proof of Theorem 6.43 is easily completed, using the relative compactness of
the sublevel sets and the lower semi-continuity of the cost functional J relax.

6.7 Examples

This section may be viewed as a hodgepodge of extensions of the theory presented
in this chapter and discussions of models already introduced in earlier chapters.

6.7.1 Linear Quadratic (LQ) McKean Vlasov (Mean Field) Control

The treatment of this subsection parallels the discussion of Section 3.5 of Chapter 3
where we solved linear quadratic mean field games. As before, we start with the
multidimensional models before focusing on the one-dimensional case. We use the
same notation as in Section 3.5 for the purpose of comparison.

The Linear Quadratic (LQ) Model
As before, the drift is given by:

b.t; x; �; ˛/ D b1.t/x C Nb1.t/ N�C b2.t/˛;

the running cost function by:

f .t; x; �; ˛/ D 1

2

�
x�q.t/x C �

x � s.t/ N��� Nq.t/�x � s.t/ N�� C ˛�r.t/˛

�
;

and the terminal cost by:

g.x; �/ D 1

2

�
x�qx C �

x � s N��� Nq�
x � s N���

:

The volatility � is assumed to be constant.
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We assume that b1, Nb1 and b2 are deterministic continuous function on Œ0;T� with
values in R

d�d, Rd�d, and R
d�k respectively. Similarly, we assume that q, r, s and

Nq are deterministic continuous function on Œ0;T� with values in R
d�d, Rk�k, Rd�d

and R
d�d respectively, q.t/ and Nq.t/ being symmetric and nonnegative semi-definite,

and r.t/ symmetric and (strictly) positive definite (hence invertible). We also assume
that the d � d matrices q and Nq are symmetric and nonnegative semi-definite. The
set A is taken as the entire R

k.
In the present set-up, the stochastic control problem is to solve the optimization

problem:

inf
˛2AE

�
1

2

�
X�TqXT C .XT � sEŒXT �/

� Nq.XT � sEŒXT �/

�

C 1

2

Z T

0



X�t q.t/Xt C �

Xt � s.t/EŒXt�
�� Nq.t/�Xt � s.t/EŒXt�

�

C ˛
�
t r.t/˛t

�
dt

�
;

subject to

dXt D
h
b1.t/Xt C b2.t/˛t C Nb1.t/EŒXt�

i
dt C �dWt; X0 D x0:

(6.121)

It is easy to check that assumption Control of MKV Dynamics under which
Theorem 6.19 was proven is satisfied. However, like in the case of linear quadratic
mean field games studied in Section 3.5 of Chapter 3, we use the very special
structure of the model to show how a simple pedestrian approach can lead directly
to the solution of the problem. The reduced Hamiltonian is given by:

H.t; x; �; y; ˛/ D �
b1.t/x C Nb1.t/ N�C b2.t/˛

	 � y

C 1

2

�
x�q.t/x C �

x � s.t/ N��� Nq.t/�x � s.t/ N�� C ˛�r.t/˛

�
;

for .t; x; �; y; ˛/ 2 Œ0;T��R
d �P2.Rd/�R

d �R
k. This Hamiltonian is minimized

for:

Ǫ D Ǫ .t; x; �; y/ D �r.t/�1b2.t/�y; (6.122)

which is independent of the measure argument �. Its derivative with respect to � is
given by:

@�H.t; x; �; y/.x0/ D Nb1.t/�y � s.t/� Nq.t/.x � s.t/ N�/;

which is a constant function of the variable x0.
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TheMean Field FBSDE
The McKean-Vlasov FBSDE derived from the Pontryagin stochastic maximum
principle reads:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

dXt D
�

b1.t/Xt � b2.t/r.t/�1b2.t/�Yt C Nb1.t/EŒXt�

�
dt C �dWt;

dYt D �
�

b1.t/�Yt C Œq.t/C Nq.t/�Xt � Nq.t/s.t/EŒXt�

�
dt

�
�

Nb1.t/�EŒYt� � s.t/� Nq.t/ŒId � s.t/�EŒXt�

�
dt C ZtdWt;

(6.123)

for t 2 Œ0;T�, with initial condition X0 and terminal condition YT D Œq C Nq�XT C
Œs� Nqs � .Nqs C s� Nq/�EŒXT �. Above, Id denotes the identity matrix of dimension d.
By Theorems 6.14 and 6.16, the above system characterizes the optimal trajectories
of (6.121).

In order to proceed with the analysis of (6.123), we take the expectations of both
sides. Using the notation Nxt and Nyt for the expectations EŒXt� and EŒYt� respectively,
we find that:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

dNxt D
��

b1.t/C Nb1.t/
	Nxt � b2.t/r.t/�1b2.t/� Nyt

�
dt;

dNyt D
�� � q.t/ � Nq.t/C Nq.t/s.t/C s.t/� Nq.t/ � s.t/� Nq.t/s.t/	Nxt

��
b1.t/� C Nb1.t/�

	Nyt

�
dt; t 2 Œ0;T�;

x0 D EŒX0�; NyT D �
q C Nq C s� Nqs � .Nqs C s� Nq/	NxT :

(6.124)

Of course, any solution of (6.123) provides a solution to (6.124). Conversely,
if (6.124) is uniquely solvable and (6.123), when .EŒXt�/06t6T and .EŒYt�/06t6T

are replaced by frozen inputs .Nxt/06t6T and .Nyt/06t6T and the system (6.123)
is thus regarded as a non-McKean-Vlasov system, the original McKean-Vlasov
system (6.123) is also uniquely solvable. We already used similar arguments in
Section 3.5. In particular, we learnt from the analysis provided therein that, under
the standing assumption, the system (6.123), with .EŒXt�/06t6T and .EŒYt�/06t6T

regarded as frozen inputs, is uniquely solvable. Therefore, the analysis of (6.121)
boils down to that of (6.124).

As in the MFG case, we rewrite (6.124) in the form:

8
ˆ̂<

ˆ̂:

PNxt D at Nxt C bt Nyt;

PNyt D ct Nxt C dt Nyt; t 2 Œ0;T�;
Nx0 D EŒX0� NyT D eNxT ;

(6.125)
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with

at D b1.t/C Nb1.t/; bt D �b2.t/r.t/
�1b2.t/�;

ct D �q.t/ � Nq.t/C Nq.t/s.t/C s.t/� Nq.t/ � s.t/� Nq.t/s.t/;
dt D �b1.t/ � Nb1.t/; e D q C Nq C s� Nqs � .Nqs C s� Nq/;

for t 2 Œ0;T�. Pay attention to the fact that the notation bt does not stand for a drift
term. The drift coefficients are denoted by b1.t/, Nb1.t/ and b2.t/. We can solve the
system (6.125) if we are able to solve the matrix Riccati equation:

PN�t C N�tat � dt N�t C N�tbt N�t � ct D 0; N�T D e; (6.126)

in which case Nyt D N�t Nxt, for t 2 Œ0;T�. Clearly, (6.126) is similar to the MFG case
(see Section 3.5), except for the fact that the coefficients ct and dt are different,
and the terminal condition requires e D q C Nq C s� Nqs � .Nqs C s� Nq/. Assuming
momentarily that the matrix Riccati equation (6.126) has a unique solution N�t, the
solution of (6.125) is obtained by solving:

PNxt D Œat C bt N�t�Nxt; Nx0 D EŒX0�; (6.127)

and setting Nyt D N�t Nxt.
The solvability of the Riccati equation (6.126) may be addressed by the same

arguments as in Section 3.5. Indeed, as in the case of the linear quadratic mean field
game models, existence and uniqueness for a solution of this matrix Riccati equation
are equivalent to the unique solvability of a deterministic control problem. This
deterministic control problem has a convex Hamiltonian (with strong convexity in ˛)
whenever the matrix coefficients are continuous, q, Nq, q.t/ and Nq.t/ are nonnegative
definite, and r.t/ is strictly positive definite. This suffices to prove the solvability
of (6.126).

Returning to (6.123) and plugging EŒXt� D Nxt and EŒYt� D Nyt into the McKean-
Vlasov FBSDE (6.123), we reduce the problem to the solution of the affine FBSDE:

(
dXt D ŒatXt C btYt C ct�dt C �dWt; X0 D x0;

dYt D ŒmtXt � a
�
t Yt C dt�dt C ZtdWt; YT D qXT C r;

(6.128)

with:
8
ˆ̂̂
<̂

ˆ̂̂
:̂

at D b1.t/; bt D �b2.t/r.t/�1b2.t/�; ct D Nb1.t/Nxt;

mt D �Œq.t/C Nq.t/�;
dt D ŒNq.t/s.t/C s.t/� Nq.t/ � s.t/� Nq.t/s.t/�Nxt � Nb1.t/� Nyt;

q D q C Nq; r D Œs� Nqs � .Nqs C s� Nq/�NxT :
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As usual, the affine structure of the FBSDE suggests that the decoupling field will
be an affine function, so we search for deterministic differentiable functions t 7! �t

and t 7! �t such that:

Yt D �tXt C �t; t 2 Œ0;T�:
Computing dYt from this ansatz, using the expression of dXt given by the first
equation of (6.128), and identifying term by term with the expression of dYt given
in (6.128) we get:

8
ˆ̂<

ˆ̂:

P�t C �tbt�t C a
�
t �t C �tat � mt D 0; �T D q;

P�t C .a
�
t C �tbt/�t � dt C �tct D 0; �T D r;

Zt D �t�:

(6.129)

As before, the first equation is a matrix Riccati equation. If and when it can be
solved, the third equation becomes solved automatically, and the second equation
becomes a first order linear ODE, though not homogenous this time, which can be
solved by standard methods. Notice that the quadratic terms of the two Riccati equa-
tions (6.126) and (6.129) are the same since bt D bt D �b2.t/r.t/�1b2.t/�. However,
the terminal conditions are different since the terminal condition in (6.129) is given
by q D q C Nq, while it is given by e D q C Nq C s� Nqs � .Nqs C s� Nq/ in (6.125).
Notice also that the first order terms are different as well. Anyway, although it
differs from (6.126), (6.129) may be proved to be uniquely solvable by the same
argument, since existence and uniqueness of a solution to (6.129) are equivalent to
the unique solvability of a deterministic control problem with a convex Hamiltonian.
This proves once more that we have existence and uniqueness of a solution to the
LQ McKean-Vlasov control problem under the standing assumption.

When X0 is deterministic, the optimally controlled state is Gaussian despite the
nonlinearity due to the McKean-Vlasov nature of the dynamics, and because of the
linearity of the ansatz, the adjoint process Y D .Yt/06t6T is also Gaussian. Also,
using again the form of the ansatz, we see that the optimal control ˛ D .˛t/06t6T

which was originally expected to be an open loop control, is in fact in closed loop
feedback form Ǫ t D '.t;Xt/ since it can be rewritten as:

Ǫ t D �r.t/�1b2.t/��tXt � r.t/�1b2.t/��t; t 2 Œ0;T�;

which incidentally shows that the optimal control is also a Gaussian process.

Remark 6.47 The reader might notice that, within the linear-quadratic framework,
the conditions for the unique solvability of the adjoint equations are not the same
in the MFG approach and in the Control of MKV Dynamics. On the one hand, opti-
mization over controlled MKV dynamics reads as an optimization problem of purely
(strictly) convex nature, for which existence and uniqueness of an optimal state are
expected. On the other hand, the optimal states in the MFG approach appear as the
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fixed points of a matching problem. Without any additional assumptions, there is no
reason why this matching problem should derive from a convex optimization, even
if the original coefficients of the game are linear-quadratic.

Back to the Simple Example of Mean Field Game
We revisit the one-dimensional model introduced at the end of Section 3.5 in
Chapter 3 for the purpose of a mean field game analysis. The drift was chosen to be
b.t; x; �; ˛/ D ˛, so that b1.t/ D Nb1.t/ D 0, b2.t/ D 1, and the state equation read:

dXt D ˛tdt C �dWt; t 2 Œ0;T�I X0 D x0:

The running cost function was of the simple form f .t; x; �; ˛/ D ˛2=2, so that
r.t/ D 1 and q.t/ D Nq.t/ D 0. As before, we assume that the terminal cost
function is given by g.x; �/ D Nq.x � s N�/2=2 for some Nq > 0 and s 2 R. Using
the notation and the results above, we see that the McKean-Vlasov FBSDE derived
from the Pontryagin stochastic maximum principle is the same as (3.67), except for
its terminal conditions. Indeed, while q is the same since q D Nq, r is now given by
r D Nqs.s � 2/EŒxT �. Postulating again an affine relationship Yt D �tXt C �t and
solving for the two deterministic functions � and �, we find the same expression as
in (3.68):

Xt D x0
1C q.T � t/

1C qT
� rt

1C qT
C �Œ1C q.T � t/�

Z t

0

dWs

1C q.T � s/
:

This makes the computation of EŒXT � very simple. We find:

EŒXT � D x0
1C Nq.1 � s/2T

;

which always makes sense, and which is different from (3.69).

TheMaster Field
Quite remarkably, the master field U introduced in Lemma 6.25 has a very nice
structure in the linear-quadratic case. From the identity Yt D �tXtC�t, t 2 Œ0;T�, it is
tempting to identify U.t; x; �/with �txC�t. However, this guess is overly naive (and
false) since �t depends upon the distribution of Xt. Indeed, going back to (6.129),
one sees that dt depends on Nyt. Obviously, the mapping Œ0;T� � R

d 3 x 7! �tx C �t

identifies with u in the statement of Theorem 4.53.
However, it is worth mentioning that .�t/06t6T is defined autonomously. In

particular, we can rewrite the relationship between Yt and Xt under the form:

8t 2 Œ0;T�; Yt � Nyt D �t
�
Xt � Nxt

� C �t � Nyt C �t Nxt:

Taking expectations, we deduce that, necessarily,

8t 2 Œ0;T�; �t � Nyt C �t Nxt D 0;
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so that:

8t 2 Œ0;T�; Yt D �tXt C Nyt � �t Nxt:

Recalling from (6.126) and (6.127) that:

Nyt D N�t Nxt; t 2 Œ0;T�;

where . N�t/06t6T is also defined autonomously, we finally end up with the relation-
ship:

8t 2 Œ0;T�; Yt D �tXt C � N�t � �t
�
EŒXt�;

proving that the decoupling U is in fact given by:

8.t; x; �/ 2 Œ0;T� � R
d � P2.Rd/; U.t; x; �/ D �tx C � N�t � �t

� N�:

When t D T , the above decomposition is consistent with the writing of YT under the
form YT D Œq C Nq�XT C Œe � .q C Nq/�EŒXT �.

As an exercise, the reader may check that it solves the master equation (6.103).

6.7.2 Potential MFGs andMKVOptimization

We first revisit the discussion initiated in Subsection 2.3.3. Accordingly, our goal
is to identify the notion of potential game appropriate in the setting of mean field
games.

Informal Discussion

MFG Problem. We consider a mean field game of the form:

infE

� Z T

0

h1
2

j˛tj2 C f
�
t;X˛

t ; �t
�i

dt C g
�
X˛

T ; �T
��
; (6.130)

the infimum being taken over control processes ˛ D .˛t/06t6T , the process X˛ D
.X˛

t /06t6T denoting the controlled diffusion process:

Xt D � C
Z t

0

˛sds C �Wt; t 2 Œ0;T�: (6.131)

The problem is defined on a complete probability space .˝;F ;P/ equipped with an
R

d-valued F-Brownian motion W D .Wt/06t6T for a complete and right-continuous
filtration F, and with an initial condition � 2 L2.˝;F0;PIRd/. The control process
˛ D .˛t/06t6T is assumed to take values in the whole Euclidean space A D R

d. As
usual, it is required to be F-progressively measurable and to be square-integrable
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with respect to the product measure Leb1 ˝ P. The coefficients f W Œ0;T� � R
d �

P2.Rd/ ! R and g W Rd � P2.Rd/ ! R are assumed to satisfy suitable conditions,
which will be specified next. The volatility is given by a positive real number � .

As usual, � D .�t/06t6T denotes a continuous path with values in P2.Rd/.
According to the discussions of Chapters 3 and 4, the goal is to find a flow
� D .�t/06t6T such that the optimal path of the above optimal control problem
has exactly � as flow of marginal distributions.

MKV Optimization Problem. We further assume the existence of functions F W
Œ0;T� � P2.Rd/ ! R and G W P2.Rd/ ! R, L-differentiable in the measure
argument, such that:

@xf .t; x; �/ D @�F.t; �/.x/ and @xg.x; �/ D @�G.�/.x/ (6.132)

for �-almost every x 2 R
d. We then consider the central planner optimization

problem:

inf

 Z T

0


1
2
E

�j˛tj2
	 C F

�
t;L.Xt/

��
dt C G

�L.XT/
��
; (6.133)

the infimum being taken over the same class of control processes ˛ D .˛t/06t6T

as above, and X˛ denoting the same controlled diffusion process as in (6.131).
Obviously, the optimization problem (6.133) is a special case of the class of
McKean-Vlasov optimal control problems considered in this chapter.

Comparison of the Two Problems. Pursuing the discussion initiated in Subsec-
tion 6.2.5, we compare the two problems (6.130) and (6.133).

Assume now that F and G admit linear functional derivatives with respect to the
measure argument, see for instance Proposition 5.51 for conditions under which the
existence of the L-derivative implies the existence of the linear functional derivative.
Using the same notation as in (6.133), we notice that in the present situation, the cost
functional I which we introduced in (6.49) to associate an auxiliary MFG problem
to an MKV optimal control problem, takes the form:

I.˛/ D E

� Z T

0


1
2

j˛tj2 C F.t; �t/C ıF

ım
.t; �t/.X

˛
t /

�
dt

C



G.�T/C ıG

ım
.�T/.X

˛
T /

��
;

for a given continuous path � D .�t/06t6T with values in P2.Rd/, where, as above,

X˛
t D � C

Z t

0

˛sds C �Wt; t 2 Œ0;T�:
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Consequently, we can find a nonrandom quantity C.�/, depending upon the flow �

and independent of the control ˛, such that:

I.˛/ D E

� Z T

0


1
2

j˛tj2 C ıF

ım
.t; �t/.X

˛
t /

�
dt C ıG

ım
.�T/.X

˛
T /

�
C C.�/:

By Proposition 5.48 and (6.132), we know that, up to an additive constant
depending on t and �t, f .t; �; �t/ is equal to ŒıF=ım�.t; �t/.�/ and, up to an additive
constant depending on �T , g.�; �T/ is equal to ŒıG=ım�.�T/.�/. Therefore, up to a
modification of C.�/, we have:

I.˛/ D E

� Z T

0


1
2

j˛tj2 C f
�
t;X˛

t ; �t
��

dt C g
�
X˛

T ; �T
�� C C.�/:

Up to the constant C.�/, we recognize the same cost functional as in the def-
inition of the MFG problem (6.130). Since the constant C.�/ plays no role
when optimizing with respect to ˛ while keeping � frozen, we deduce that the
auxiliary MFG problem associated with (6.133) through the procedure defined in
Subsection 6.2.5 coincides with the MFG problem (6.130). Moreover, the analysis
provided in Subsection 6.2.5 shows that the Pontryagin forward-backward systems
associated with the mean field game (6.130) and with the mean field stochastic
control problem (6.133) are the same.

Generic Model
We now specialize the choice of F and G and make the above discussion rigorous in
that case. To do so, let us assume that ` is an even and continuously differentiable
function on R

d and that its derivative is at most of linear growth, and similarly that
for any t 2 Œ0;T�, h.t; �/ is also even and continuously differentiable on R

d, with a
derivative at most of linear growth. Then, we define the functions F and G by:

F.t; �/ D 1

2

Z

Rd

Z

Rd
h.t; x � x0/d�.x/d�.x0/;

G.�/ D 1

2

Z

Rd

Z

Rd
`.x � x0/d�.x/d�.x0/;

(6.134)

for .t; �/ 2 Œ0;T� � P2.Rd/. By Example 2 in Subsection 5.2.2 and by Proposi-
tion 5.51, these functions have functional derivatives with respect to the measure
argument which are given by:

ıF

ım
.t; �/.x/ D

Z

Rd
h.t; x � x0/d�.x0/;

ıG

ım
.�/.x/ D

Z

Rd
`.x � x0/d�.x0/;

(6.135)

for .t; x; �/ 2 Œ0;T� � R
d � P2.Rd/, so they can be used in the present setup.



6.7 Examples 605

Rigorous Existence and Uniqueness Result
Proposition 6.48 Let h W Œ0;T� � R

d ! R be a jointly measurable function,
even, twice continuously differentiable and convex in the space variable, with
bounded second-order derivatives uniformly in time, and ` W Rd ! R be an even,
twice continuously differentiable and convex function with bounded second-order
derivatives. For F and G defined via (6.134) above, the McKean-Vlasov optimal
control problem (6.131)–(6.133) has a unique optimal path OX D X Ǫ D .X Ǫ

t /06t6T

given by a specific control process Ǫ D . Ǫ t/06t6T .
Moreover, its flow of marginal distributions � D .�t D L. OXt//06t6T is the

unique solution to the MFG problem (6.130)–(6.131), with:

f .t; x; �/ D
Z

Rd
h.t; x � x0/d�.x0/; g.x; �/ D

Z

Rd
`.x � x0/d�.x0/;

for .t; x/ 2 Œ0;T� � R
d.

Proof. From (6.135), we have:

@�F.t; �/.x/ D
Z

Rd
@xh.t; x � x0/d�.x0/; @�G.�/.x/ D

Z

Rd
@x`.x � x0/d�.x0/:

It is straightforward to check that assumption Control of MKV Dynamics holds, the
convexity property of F and G in (A4) following from the convexity property of h and `.

Therefore, by Theorem 6.19, the Pontryagin system for the McKean-Vlasov control
problem has a unique solution. Also, the unique solution of the Pontryagin system is the
unique optimal path of the McKean-Vlasov control problem. In the present situation, the
Pontryagin system has the form:

8
ˆ̂<

ˆ̂:

dXt D �Ytdt C �dWt;

dYt D � QE�
@xh

�
t;Xt � QXt

�	
dt C ZtdWt; t 2 Œ0; T�;

X0 D �; YT D QE�
@x`

�
XT � QXT

�	
:

(6.136)

Letting � D .�t D L.Xt//06t6T , we may rewrite the above system as:

8
ˆ̂<

ˆ̂:

dXt D �Ytdt C �dWt;

dYt D �@xf .t;Xt; �t/dt C ZtdWt; t 2 Œ0; T�;
X0 D �; YT D @xg.XT ; �T/;

which is exactly the Pontryagin system for the standard optimal control problem (6.130).
Observing that f and g are convex in the Euclidean space variable, we deduce from
Theorem 3.17 that X D .Xt/06t6T is an optimal path of the optimal control problem (6.130).
Therefore, � D .�t/06t6T is an MFG equilibrium, and Theorem 6.19 again shows that
it is the unique one since the MFG equilibria are characterized by the McKean-Vlasov
FBSDE (6.136). ut
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The property of potential mean field games which we identified above says
that the solution (via the Pontryagin stochastic maximum principle) of the mean
field game problem (6.130)–(6.131) reduces to the solution of a central planner
optimization problem. This much was expected on the basis of previous discussions
of potential games. However, what is remarkable is the fact that this central planner
optimization problem is in fact an optimal control of McKean-Vlasov dynamics.

Flocking as a Potential Mean Field Game
The MFG flocking model introduced in Chapter 1 was solved in Chapter 4 under the
extra assumption that the running cost function was bounded. We revisit the model
based on the cost function (4.180) in light of the present discussion of potential
games. Recall that the model is based on the assumption that the dynamics of a
typical bird in the population are given by controlled kinetic equations:

dxt D vtdt; dvt D ˛tdt C �dWt; t > 0;

where xt denotes the position of a bird at time t, and vt its velocity. Here,
W D .Wt/t>0 is a three-dimensional Wiener process and ˛ D .˛t/t>0 is a
three-dimensional progressively measurable process with respect to the filtration
generated by the initial position and by W. The process ˛ plays the role of the
control of the bird on its velocity.

With the rationale of mean field games as a framework for the search for a large
population consensus, the finite player game formulation of Chapter 1 suggests that
we consider the following cost functional:

J�.˛/ D E

� Z T

0

�1
2

j˛tj2 C �
h � �t

�
.xt; vt/

	
dt

�
; (6.137)

for a given time horizon T > 0, a continuous flow � D .�t/t>0 of measures
on R

6 and an even function h of the variables x and v. Notice that the special
convolution form of the running cost function is covered by the second example
of N-player potential game in Subsection 2.3.3. In the context of the limit N ! 1
of large populations, the convolution form appearing in the cost functional (6.137)
is reminiscent of that used to define f and g in the statement of Proposition 6.48.

Unfortunately, Proposition 6.48, as stated above, cannot apply directly to (6.137)
because of the degeneracy of the equation for the position .xt/06t6T .

However, we can easily recast (6.137) in a more tractable setting, as done in
Section 6.6. Indeed, with .X˛

t D .x˛
t ; v

˛
t //06t6T , the flocking controlled dynamics

can be written as:

dX˛
t D .�X˛

t C B˛t/dt C˙dWt; t 2 Œ0;T�; (6.138)
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with:

� D
�
0d Id

0d 0d

�
B D

�
0d

Id

�
and ˙ D

�
0d 0d

0d � Id

�
:

Then, it is pretty easy to reformulate the statement of Proposition 6.48 by
using (6.138) in lieu of (6.131) as controlled dynamics. For instance, (6.136) in
the proof of the proposition becomes:

8
ˆ̂<

ˆ̂:

dXt D


�Xt � B�Yt

�
dt C˙dWt;

dYt D �


��Yt C QE�

@xh
�
Xt � QXt

�	�
dt C ZtdWt; t 2 Œ0;T�;

X0 D �; YT D QE�
@x`

�
XT � QXT

�	
:

So, when h in (6.137) is convex, Proposition 6.48 applies up to a slight modification
of the argument in the proof.

Therefore, the flocking problem reduces to the minimization of the functional:

J.˛/ D
Z T

0

h1
2
E

�j˛tj2
	 C F

�L.xt; vt/
�i

dt; (6.139)

where:

F.�/ D 1

2

Z

R6

�
h � ��

.x; v/d�.x; v/; (6.140)

and, when h is convex, the mean field game can be solved by solving the central
planner optimization problem, the latter being an optimal control problem of the
McKean-Vlasov type.

Still, the typical form for h in the flocking model is:

h.x; v/ D jvj2
.1C jxj2/ˇ ; (6.141)

for some ˇ > 0, see (4.180) with � D p
2 therein. Except for the case ˇ D 0,

the function h is not convex! Therefore Proposition 6.48 does not apply. Still we can
solve the central planner optimization and regard its solutions as possible candidates
for solving the MFG problem. Indeed, although the running cost function F is not
convex – which prevents us from applying the results of Section 6.4 – assumption
MKV Weak Formulation is satisfied and we can appeal to Theorem 6.37 to prove
existence of a solution of the McKean-Vlasov central planner optimization in the
weak formulation.
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6.7.3 Optimal Transportation as anMKV Control Problem

The purpose of this section is to revisit the example introduced at the very end
of Subsection 6.2.2. There, starting from the statement of Benamou-Brenier’s
Theorem 5.53, we gave an informal argument to show that the 2-Wasserstein
distance could appear as the value function of an optimal control problem of the
McKean-Vlasov type formulated in an analytic way. By analytic formulation, we
mean that the controlled trajectories were not regarded as controlled stochastic
processes, as we did in most of the chapter, but as deterministic flows of probability
measures satisfying a Kolmogorov-Fokker-Planck equation of the form (6.12).

The fact that two approaches, a probabilistic one and an analytic one, are
conceivable for handling mean field stochastic control problems was already
explained in the introductory Section 6.2. However, there, we just gave a few
indications on the strategies that could be used to pass from one formulation to
another. Motivated by the statement of Benamou-Brenier’s theorem, our goal is here
to address these questions more properly in the framework of optimal transportation.

As mentioned at the end of Section 6.2, one difficulty for passing from the
analytic to the probabilistic approach is to reconstruct, for a given flow � of
probability measures satisfying a continuity equation of the Kolmogorov-Fokker-
Planck type, a stochastic process X admitting � as flow of marginal laws. This
is exactly the purpose of the following statement, which is taken from Ambrosio-
Gigli-Savaré’s monograph:

Theorem 6.49 Let � D .�t/06t6T be a flow of probability measures on R
d,

continuous with respect to the topology of weak convergence, such that:

Z T

0

Z

Rd

�
@t�.t; x/C b.t; x/ � @x�.t; x/

�
d�t.x/dt D 0; (6.142)

for all real valued smooth function � from Œ0;T��R
d with compact support included

in .0;T/�R
d, and for some measurable vector field b W Œ0;T��R

d ! R
d satisfying

Z T

0

Z

Rd
jb.t; x/j2d�t.x/dt < 1:

Then, there exists a probability measure P on the canonical space ˝ D R
d �

C.Œ0;T�IRd/ such that under P, the canonical process .�; x D .xt/06t6T/ satisfies:

xt D � C
Z t

0

b.s; xs/ds; t 2 Œ0;T�; (6.143)

and, for all t 2 Œ0;T�, �t D L.xt/. In particular, the trajectories of .xt/06t6T belong
to the so-called Cameron-Martin space of absolutely continuous trajectories whose
derivative is square integrable on Œ0;T�; they satisfy:
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E
P

Z T

0

jPxtj2dt < 1;

where E
P denotes the expectation under P.

Conversely, any probabilistic measure P under which the canonical process
has trajectories in the Cameron-Martin space such that (6.143) holds for some
measurable velocity field b W Œ0;T� � R

d ! R
d satisfying:

E
P

Z T

0

jb.t; xt/jdt < 1;

induces, via its flow of marginal measures � D .P ı x�1
t /06t6T , a solution to the

Kolmogorov-Fokker-Planck equation (6.142).

In our terminology, the process .xt/06t6T , as written in (6.143), is a controlled
process with a Markovian control. Obviously, Theorem 6.49 permits to reformulate
Benamou-Brenier’s Theorem 5.53 in a more probabilistic fashion. We deduce that
the square Wasserstein distance W2.�0; �1/

2 between two measures �0 and �1 in
P2.Rd/ reads as the infimum of the kinetic energy:

infEP

Z 1

0

jPxtj2dt;

the infimum being taken over probability measures P on the canonical space ˝
under which � � �0, x1 � �1, and .xt/06t61 satisfies (6.143) for T D 1 and for
some Borel vector field b satisfying E

R 1
0

jb.t; xt/jdt < 1.
In this regard, observe that the fact that the infimum is taken over probability

measures and not over control processes is reminiscent of the weak formulation
used in Section 6.6.

Interestingly, we may wonder about a similar formulation of Benamou-Brenier’s
theorem using open loop instead of Markovian controls in (6.143). This prompts us
to quote another result, which we already alluded to at the end of Section 6.2:

Theorem 6.50 For some time horizon T > 0, let X D .Xt/06t6T be an R
d-valued

absolutely continuous process defined on some probability space .�;G;P/ with
dynamics of the form:

Xt D X0 C
Z t

0

˛sds; (6.144)

where EŒjX0j2� < 1 and ˛ D .˛t/06t6T is a jointly measurable process satisfying
E

R T
0

j˛tj2dt < 1, where E is the expectation under P.
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Then, there exist a vector field b W Œ0;T� � R
d ! R

d and a probability measure
P on the canonical space ˝ D R

d � C.Œ0;T�IRd/ satisfying:

E

Z T

0

jb.s; xs/j2ds < 1;

and P almost-surely:

xt D � C
Z t

0

b.s; xs/ds; t 2 Œ0;T�;

where .�; x D .xt/06t6T/ is the canonical process on˝, such that for any t 2 Œ0;T�,
the law of xt under P is the same as the law of Xt under P.

We refer to the Notes & Complements for precise references.
Combining Theorems 6.49 and 6.50, we can replace the closed loop formulation

in Benamou-Brennier’s theorem by an open loop version. We obtain a new
formulation of Benamou-Brennier’s theorem which reads as follows. Given two
probability measures �0 and �1 in P2.Rd/, the square Wasserstein distance between
�0 and �1 may be expressed as:

W2.�0; �1/
2 D infEP

Z 1

0

jPxtj2dt;

where the infimum is taken over all the probability measures P on the canonical
space ˝ D R

d � C.Œ0; 1�IRd/ under which the canonical process .�; x D .xt/06t61/
satisfies:

1. x0 D � ,
2. x is absolutely continuous and E

P
R 1
0

jPxtj2dt < 1,
3. the law of x0 is �0,
4. the law of x1 is �1.

Of course, this may be rewritten as a mean field stochastic control problem, but
formulated in the weak sense as in Section 6.6. To any probability P on the canonical
space such that the three (and not four) first items above are satisfied, we may indeed
associate the cost:

J .P/ D E
P

Z 1

0

jPxtj2dt C g
�L.x1/

�
; (6.145)

where:

g.�/ D
(
0 if � D �1;

C1 if � 6D �1:
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We now face a control problem of the McKean-Vlasov type as the cost functional
depends upon the marginal distribution of the process x at the terminal time.

Mollification of the Control Problem
In contrast with (6.144), we often considered in the text nondegenerate dynamics of
the form:

dXt D ˛tdt C �dWt; t 2 Œ0;T�; (6.146)

where .Wt/06t6T is a d-dimensional Brownian motion on a filtered probability
space .˝;F ;F;P/ satisfying the usual assumption, ˛ is an R

d-valued and square-
integrable progressively measurable process, and � is a d � d-matrix. In what
follows, we assume that � is a diagonal matrix of the form � Id for � > 0,

In such a framework, it is natural to wonder about the analogue of (6.145), in
which case the minimization problem takes the form:

inf J.˛/;

with:

J.˛/ D E

� Z 1

0

j˛tj2dt

�
C g

�L.X1/
�
;

and as above:

g.�/ D
(
0 if � D �1;

C1 if � 6D �1:

In (6.146), the volatility � provides some form of mollification. For that reason,
it may sound convenient to regularize �1 as well in the terminal condition and to
replace g by:

g� .�/ D
(
0 if � D �1 � Nd.0; �

2Id/;

C1 if � 6D �1 � Nd.0; �
2Id/:

We denote the new cost functional by:

J� .˛/ D E

� Z 1

0

j˛tj2dt

�
C g�

�L.X1/
�
;
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Under these conditions one can prove:

Theorem 6.51 Let �0; �1 2 P2.Rd/, �0 being absolutely continuous with respect
to the Lebesgue measure, then,

lim
�&0

inf
˛

J� .˛/ D W2.�0; �1/
2:

See the Notes & Complements below for precise references.

6.7.4 Back to the Diffusion Form of Aiyagari’s GrowthModel

We revisit the diffusion version of Aiyagari’s growth model solved in Subsec-
tion 3.6.3 of Chapter 3 as a mean field game problem. We remark that the argument
we used in Subsection 3.6.3 of Chapter 3 to make the connection between the MFG
solution and a standard control problem strongly suggests that the equilibrium we
found may also solve the optimal control problem for the corresponding McKean-
Vlasov dynamics. The purpose of this subsection is to revisit this fact.

The MKV analogue of the diffusion form of the Aiyagari’s growth model solved
in Subsection 3.6.3 of Chapter 3 requires the analysis of the forward dynamical
system:

(
dZt D �.Zt � 1/ dt C dWt;

dAt D �
.1 � ˛/EŒAt�

˛Zt C �
˛EŒAt�

˛�1 � ı�At � ct
	
dt; t 2 Œ0;T�;

driven by a square-integrable and F-adapted control process c D .ct/06t6T with
nonnegative values. Notice that this is exactly the forward system used in (3.74) for
the formulation of the MFG model provided N�t is replaced by EŒAt�. As explained
several times, the fact that the flow of measures � D .�t/06t6T is not frozen before
the optimization is the main difference between the MFG and the MKV problems.
Whenever the solution is well defined (which is equivalent to the fact that EŒAt� > 0

for any t 2 Œ0;T�), we can consider the same cost functional:

J.c/ D E

� Z T

0

.�U/.ct/dt � QU.AT/

�
;

where U.c/ D .c1���1/=.1��/ for � > 0, with U.c/ D ln.c/ if � D 1, and QU is the
identity function. As in the MFG version of the problem, the (time-homogeneous)
reduced Hamiltonian has the form:

H.z; a; �; yz; ya; c/

D Œ1 � z�yz C
h
.1 � ˛/ N�˛z C �

˛ N�˛�1 � ı�a � c
i
ya � U.c/;



6.7 Examples 613

where N� D R
R2

a�.dz; da/ is the mean of the second marginal of �. Also,
we denoted the control by a; here, ˛ is a constant exponent. Obviously,
H.z; a; �; yz; ya; c/ makes sense only if N� > 0. A first difference with the analysis
performed for the MFG version of the problem is the fact that we keep the variable
z in the expression of the Hamiltonian, but, as in the MFG case, its adjoint process
does enter the equation for the optimal trajectories. An obvious reason for keeping
z is that the measure argument is now part of the state of the forward dynamics, and
we need to compute exactly the value of @�H. In the present situation,

@�H.a; z; �; ya; yz; c/.v/ D �
.1 � ˛/˛ N�˛�1z C ˛.˛ � 1/ N�˛�2a

i
ya;

if N� > 0. Since the first adjoint process Yz D .Yz;t/06t6T has no influence on the
value of the optimal trajectory, we can focus on the dynamics of the adjoint of
the wealth process A D .At/06t6T for which we use the notation Y D .Yt/06t6T

instead of Ya D .Ya;t/06t6T for the sake of simplicity. The McKean-Vlasov forward-
backward system derived from the Pontryagin maximum principle proved in this
chapter for MKV diffusion processes (see Definition 6.5) writes:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dAt D �
.1 � ˛/EŒAt�

˛Zt C Œ˛EŒAt�
˛�1 � ı�At � .�Yt/

�1=� 	dt

dYt D �Yt
�
˛EŒAt�

˛�1 � ı	dt � .1 � ˛/˛EŒAt�
˛�1

EŒZtYt�dt

�˛.˛ � 1/EŒAt�
˛�2

EŒAtYt�dt C QZtdWt; t 2 Œ0;T�;
YT D �1;

(6.147)

and it requires .EŒAt�/06t6T to be positive-valued.
Like in the analysis of the MFG equilibrium, the solution of the backward

equation is deterministic. Therefore, recalling that EŒZt� D 1 for any t 2 Œ0;T�,

dYt

D �Yt
�
˛EŒAt�

˛�1 � ı	dt � .1 � ˛/˛EŒAt�
˛�1Ytdt � ˛.˛ � 1/EŒAt�

˛�1Ytdt

D �Yt
�
˛EŒAt�

˛�1 � ı	dt;

which is the same backward equation as in (3.76). Taking the mean in the forward
equation of (6.147), we then deduce that the pair .EŒAt�;Yt/06t6T solves (3.76),
which makes it possible to repeat the analysis of the case of the MFG version of the
problem, provided that N�0 is large enough. In such a case, the system (6.147) has a
unique solution such that EŒAt� > 0 for all t 2 Œ0;T�.
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6.8 Notes & Complements

We claimed in the introduction that the problem of the optimal control of SDEs of
McKean-Vlasov type has notoriously been ignored in the mathematical literature.
However, it is fair to mention that some special cases such as the mean variance
portfolio selection problem have been considered by Anderson and Djehiche in [24]
and Fischer and Livieri in [155] in the spirit of this chapter. The linear quadratic
case was discussed (though quite recently) by two groups of authors in [53] and
[99]. Bensoussan, Sung, Yam, and Yung on one hand and Carmona, Delarue, and
Lachapelle on the other hand, simultaneously and independently of each other,
discussed the linear quadratic case. However, the technical analysis presented in
this chapter follows the approach of Carmona and Delarue as originally developed in
[98] which is similar to, though different from, the one presented in the monograph
[50] by Bensoussan, Frehse, and Yam. Also, inspired by the surge of interest for
the theory of optimal control, several works have been published on the analysis of
Hamilton-Jacobi-Bellman equations on the Wasserstein space, see for instance Feng
and Katsoulakis [152], Gangbo, Nguyen, and Tudorascu [167] and Pham and Wei
[311]. As explained in the chapter, see also the additional comments right below,
HJB equations on the Wasserstein space play a central role in the deterministic
analysis of mean field stochastic control problems.

Several versions of the stochastic maximum principle for optimization problems
over systems with mean field interactions exist in the literature. For example,
Hosking derives in [201] a maximum principle for a finite player game with mean
field interactions. Also, Brandis-Meyer, Oksendal, and Zhou [281] use Malliavin
calculus to derive a stochastic maximum principle for a mean field control problem
including jumps.

The discussion of models with scalar interactions in Subsection 5.2.2 shows how
the model treated by Anderson and Djehiche in [24] appears as an example of our
more general formulation of the Pontryagin stochastic maximum principle. In fact,
the mean variance portfolio optimization example discussed in [24] as well as the
solution proposed in [53] and [99] of the optimal control of linear-quadratic (LQ)
McKean-Vlasov dynamics are based on the general form of the Pontryagin principle
proven in this chapter as applied to models with scalar interactions.

The continuation method alluded to in the proof of Theorem 6.19 was originally
introduced for the analysis of forward-backward stochastic differential equations,
by Peng and Wu in [307].

Throughout the chapter, we assumed that the space A of controls was convex.
This assumption was only made for the sake of simplicity. More general spaces can
be handled at the cost of using spike variation techniques, and adding one extra
adjoint equation. See for example [343, Chapter 3] for a discussion of the classical
(i.e., non-McKean-Vlasov) case. Without the motivation from specific applications,
we chose to refrain from providing this level of generality and avoid an excessive
overhead in notation and technicalities.
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The interpretation of mean field games as a criticality for some McKean-Vlasov
control problem was noticed in the earlier articles by Lasry and Lions [260–
262]. It was used in theoretical works on mean field games, see for instance
the papers [85, 87, 88, 92] cited in the Notes & Complements of Chapter 3, but
also for numerical purposes, see Benamou and Carlier [42]. The similarities and
the differences between mean field games and McKean-Vlasov problems when
driven by the same dynamics and the same cost functionals were first identified
and discussed by Carmona, Delarue, and Lachapelle in [99], where it is clearly
emphasized that optimizing first and searching for a fixed point afterwards leads to
the solution of a mean field game problem, while finding the fixed point first and
then optimizing afterwards leads to the solution of the optimal control of McKean-
Vlasov SDEs.

The discussion of Section 6.2 comparing the probabilistic approach to the control
of McKean-Vlasov dynamics advocated and developed in this chapter, to a possible
deterministic infinite dimensional control problem, is part of the folklore on the
subject, see for instance Bensoussan, Frehse, and Yam [50], Gangbo, Nguyen, and
Tudorascu [167], Laurière and Pironneau [263], and Pham and Wei [311]. We here
provide a systematic presentation based on the differential calculus developed in
Chapter 5 and with a strong bent on the use of master equations as they will play
a crucial role in the second volume of the book. The argument proposed at the end
of Section 6.2 to condition open loop controls to end up with controls in closed
loop feedback form is similar to the argument used in the construction of diffusion
processes with marginal laws given by an Itô process, as in Gyongy’s original paper
[191]. Motivated by problems in financial mathematics, the same idea was used
more recently, for instance in the paper [72] by Brunick and Shreve. We refer to
Carlen [93], Mikami [282] and Quastel and Varadhan [316] for the construction
of weak solutions with marginal laws satisfying the Kolmogorov-Fokker-Planck
equation (6.12). We may invoke the paper by Zvonkin [346] and Veretennikov [336]
in order to guarantee (under suitable assumptions) that the solutions are strong.

An interesting challenge is to investigate rigorously the infinite-dimensional
Hamilton-Jacobi-Bellman equation (6.28). Existence and uniqueness of a viscosity
solution were addressed by Pham and Wei [311]. As highlighted by Section 6.5,
the problem can be formulated in the enlarged space R

d � P2.Rd/, the resulting
equation (6.90) being of the same nature as the master equation for mean field
games introduced in Chapter (Vol II)-4, except that N̨ therein has a different
interpretation. The differences between the two classes of master equations are
borne by the following fundamental distinction. The master equation for controlled
McKean-Vlasov processes should be a form of Hamilton-Jacobi-Bellman equation
as it derives from an optimization problem. However, the master equation for
mean field games does not have to be an equation of the Hamilton-Jacobi-Bellman
type since the fixed point condition describing equilibria in a mean field game
does not derive from an optimization criterion. This important distinction was
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first emphasized by Carmona and Delarue in [97]. Existence and uniqueness of a
classical solution to (6.90) were investigated by Chassagneux, Crisan, and Delarue
[114]. The arguments developed in [114] will be revisited in Chapter (Vol II)-5
when addressing the existence and uniqueness of a classical solution to the master
equation for mean field games.

As suggested in the text, a natural question concerns the possible extension of the
results of this chapter to equations with random coefficients. It is indeed well known
that the classical Pontryagin stochastic maximum principle also applies to systems
with random coefficients. The same should hold in the McKean-Vlasov case, though
proofs should require a modicum of care.

To be more specific, Theorems 6.14 (necessary condition in the Pontryagin
principle), 6.16 (sufficient condition in the Pontryagin principle) and 6.19 are still
valid for random coefficients. Allowing random coefficients means that b, � and
f may depend upon the realization ! 2 ˝ in a progressively measurable way
with respect to the filtration F D .Ft/06t6T , and that g may also depend upon
the randomness in a measurable way with respect to the � -field FT . The various
assumptions, which may differ from one theorem to another, are then supposed to
hold path by path. The form of the adjoint BSDE is the same as (6.31), provided
that the independent copy made from the space .˝;F ;P/ to the space . Q̋ ; QF ; QP/
also takes into account the dependence upon the randomness. This means that,
in (6.31), the value of @�H in @�H.t; QXt;L.Xt/; QYt; QZt; Q̨ t/ must be computed along
the corresponding realization Q! 2 Q̋ (as QXt, QYt, QZt and Q̨ t actually stand for QXt. Q!/,
QYt. Q!/, QZt. Q!/ and Q̨ t. Q!/). This principle holds for all the copies considered in the
computations reported in the text.

Still, it is not clear how the results on the decoupling field can be extended to the
case of random coefficients. Indeed Yt;�

t is already random, so that the decoupling
field u� introduced in the proof of Lemma 6.25 is also random. Following the proof
of Lemma 6.25, we can write it as u� .!; t; x/, but u� cannot be entirely determined
by the law of � , as it must also depend upon the joint law of � and .b; f ; �; g/.
Unfortunately, the proofs of Lemma 6.25 and Proposition 6.32 rely on a coupling
argument which fails when the decoupling field depends on the joint distribution of
� and .b; f ; �; g/.

We already alluded to the theory of relaxed controls, as used in Section 6.6, in
the Notes & Complements of Chapter 3. As already explained, the theory goes back
to the earlier works by Young [344] and Fleming [158] and we refer to the survey
by Borkar [65] and to the monograph by Yong and Zhou [343] for an overview of
controlled diffusion processes with relaxed controls. Relaxed controls for mean field
games were introduced by Lacker [254], but to the best of our knowledge, the theory
has never been used for solving mean field stochastic control problems. Section 6.6
is a first step in this direction. The notion of stable convergence used in Section 6.6,
see Lemma 6.40, is due to Jacod and Mémin [216], see the original paper together
with the monograph [196] by Häusler and Luschgy.
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The goal of the discussion of Subsection 6.7.3 is to highlight the possible
interpretation of the Monge-Kantorovich problem of optimal transportation as an
optimal control problem of the McKean-Vlasov type. Theorem 6.49 is proved in
Section 8.2 of the monograph by Ambrosio, Gigli, and Savaré [21]. As mentioned
earlier, switching from the closed loop to the open loop formulation can be justified
by Gyongy’s conditioning trick which can be found in the papers [191] and [72]
already cited above. In particular, Theorem 6.50 is explicitly taken from [72].
Theorem 6.51 in this subsection is taken from the paper [283] of Mikami, in
which the connection between optimal transportation and optimal control is already
present. The terminal constraint which we view as a McKean-Vlasov feature in
this book was circumvented in [283] by a form of duality provided by classical
HJB equations. Motivated by applications to finance, a lot of attention has recently
been paid to similar stochastic optimization problems with a prescribed constraint
for the law of the terminal condition but in the case when not only the drift but
also the volatility is controlled. These problems are usually called semimartingale
transportation problems, see for instance Tan and Touzi [328]. Last, observe that
in the reference [2] by Achdou, Camilli, and Capuzzo-Dolcetta, the authors address
mean field games in which both the initial and terminal states of the population are
prescribed; these are referred to as mean field planning problems.

Our discussion of the differentiability of functions of measures on a finite state
space in Subsection 5.4.4 of Chapter 5 was motivated in part by the second half
of Guéant’s analysis [185] of MFGs on a finite graph. There, the author shows
that, in the case of potential games on a finite graph, the master equation is
solved by the derivative of the value function of the deterministic control problem
naturally associated with the dynamic evolution of the distribution given by the
forward Kolmogorov equation. By considering Markov controls in feedback form
and rewriting the optimization problem of the central planner as a deterministic
control problem for the distribution of the state instead of a stochastic control
problem for the state, the author does not have to acknowledge the fact that the
optimization problem of the central planner is in fact a stochastic control problem
of the McKean-Vlasov type.

In Chapter (Vol II)-6, we provide a particle interpretation of mean field stochastic
control problems. In contrast with mean field games for which players choose
individually their response to other players’ actions, mean field stochastic control
corresponds to controlled particle systems obeying a central planner, who decides of
a common strategy in order to minimize some common cost. Somehow, this justifies
the alternative terminology central planner optimization problem used throughout
the chapter for naming mean field stochastic control problems.

Similar to mean field games, other types of mean field stochastic control
problems may be considered. For instance, the analogue of mean field stochastic
control, but for games, is presented in Chapter 7; it consists of games between a
finite number of infinite homogenous populations, each population having its own
central planner. We also refer to Djehiche, Tembine, and Tempone [138] for control
problems with risk-sensitive cost functionals.
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7Extensions for Volume I

Abstract

The goal of this chapter is to follow-up on some of the examples introduced in
Chapter 1, especially those which are not directly covered by the probabilistic
theory of stochastic differential mean field games developed so far. Indeed,
Chapter 1 included a considerable amount of applications hinting at mathe-
matical models with distinctive features which were not accommodated in the
previous chapters. We devote this chapter to presentations, even if only informal,
of extensions of the Mean Field Game paradigm to these models. They include
extensions to several homogenous populations, infinite horizon optimization, and
finite state space models. These mean field game models have a great potential
for the quantitative analysis of very important practical applications, and we
show how the technology developed in this book can be brought to bear on their
solutions.

7.1 First Extensions

To start with, we present in this section two natural extensions of the class of mean
field games we have studied so far.

The first extension concerns mean field games with several populations or,
equivalently, with multiclass agents. The second one is about mean field games with
infinite time horizon.

7.1.1 Mean Field Games with Several Populations

From a modeling perspective, one of the major shortcomings of the standard mean
field game theory is the strong symmetry requirement that all the players in the game
are statistically identical. A first way to break this symmetry is to assume that the
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players belong to a finite number of homogeneous groups in which the mean field
asymptotic theory can be carried out, group by group. Another way is to assume that
one of the players dominates the others in the sense that it directly influences the
states of the other players while it only feels the others through their collective state.
This subsection is devoted to the former approach only. The latter, which is more
demanding from the technical point of view, will be addressed in the last chapter of
the next volume.

For the sake of simplicity, we restrict ourselves to the case of two homogeneous
subgroups in the population. Clearly, the discussion below can be easily adapted to
cover cases with a higher number of subgroups.

Finite-Player Game
The generic N-player stochastic differential games leading to mean field games were
introduced in Chapter 2. See in particular Subsection 2.3. A key feature was the fact
that the dynamics of the states of the players were driven by the same drift and
volatility coefficients b and � from Œ0;T� � R

d � P.Rd/ � A into R
d and R

d�m,
where A is the set of admissible actions, d the dimension of the state space of the
players, and m the dimension of the noise. Recall that m was chosen equal to d in
Chapters 3 and 4.

Accordingly, when the population is divided into two homogeneous subgroups,
we shall consider two sets of drift and volatility coefficients .b1; �1/ and .b2; �2/.
Obviously, .b1; �1/ denotes the drift and volatility coefficients of players from the
first group, and similarly for .b2; �2/. Observe that the set A and the dimension
parameters d and m can be chosen to be proper to each of the two subgroups,
in which case .A; d;m/ becomes .A1; d1;m1/ and .A2; d2;m2/. Also, due to the
mean field hypothesis, we now require that each .bl; �l/, for l 2 f1; 2g, is a function
defined on Œ0;T��R

dl �P.Rd1 /�P.Rd2 /� Al, which accounts for the fact that the
dynamics of the state of any player in the game now feel the collective states of the
two subgroups. In the end, the dynamics of players from the group 1 take the form:

dX1;it D b1
�
t;X1;it ; N�N1�1

X1;�i
t
; N�N2

X2t
; ˛1;it

�
dt C �1

�
t;X1;it ; N�N1�1

X1;�i
t
; N�N2

X2t
; ˛1;it

�
dW1;i

t ;

for i 2 f1; � � � ;N1g, while, for players from the second group, they take the form:

dX2;it D b2
�
t;X2;it ; N�N1

X1t
; N�N2�1

X2;�i
t
; ˛2;it

�
dt C �2

�
t;X2;it ; N�N1

X1t
; N�N2�1

X2;�i
t
; ˛2;it

�
dW2;i

t ;

for i 2 f1; � � � ;N2g, where N1 and N2 denote the respective numbers of players
in populations 1 and 2 and .W1;i/iD1;��� ;N1 and .W2;i/iD1;��� ;N2 are independent
families of independent Rm1 and R

m2 -valued Wiener processes constructed on some
filtered probability space .˝;F ;F;P/. Each ˛1;i (resp. ˛2;i) is required to be F-
progressively measurable and to take values in A1 (resp. A2). Depending upon the
nature of the equilibria we are looking for, we may demand that these controls
satisfy more restrictive measurability properties, or even be of a special feedback
form. However, for the purpose of the present discussion, we shall not address these
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technicalities here. Also, we use the same notations as in Chapter 2 for the empirical
distributions, namely:

N�N1�1
X1;�i

t
D 1

N1 � 1
N1X

jD1;j6Di

ı
X
1;j
t
; N�N2

X2t
D 1

N2

N2X

jD1
ı

X
2;j
t
;

N�N1
X1t

D 1

N1

N1X

jD1
ı

X
1;j
t
; N�N2�1

X2;�i
t

D 1

N2 � 1
N2X

jD1;j6Di

ı
X
2;j
t
:

The costs to players of each of the subgroups are defined in a similar manner.
For tuples of strategies .˛1;i/iD1;��� ;N1 and .˛2;i/iD1;��� ;N2 , the cost to any player
i 2 f1; : : : ;N1g from the first group is:

J1;i
�
.˛1;j/jD1;��� ;N1 ; .˛2;j/jD1;��� ;N2

�

D E

� Z T

0

f1
�
t;X1;it ; N�N1�1

X1;�i
t
; N�N2

X2t
; ˛1;it

�
dt C g1

�
X1;iT ; N�N1�1

X1;�i
T

; N�N2
X2T

��
;

and, similarly, for any player i 2 f1; � � � ;N2g from the second group:

J2;i
�
.˛1;j/jD1;��� ;N1 ; .˛2;j/jD1;��� ;N2

�

D E

� Z T

0

f2
�
t;X2;it ; N�N1

X1t
; N�N2�1

X2;�i
t
; ˛2;it

�
dt C g2

�
X2;iT ; N�N1

X1T
; N�N2�1

X2T ;�i

��
:

Obviously, f1 is a function from Œ0;T��R
d1 �P.Rd1 /�P.Rd2 /� A1 into R and g1

is a function R
d1 � P.Rd1 / � P.Rd2 / into R, and similarly for f2 and g2.

Remark 7.1 Obviously, the model is not as general as what we could think of. For
instance, we could incorporate common noises, in analogy with mean field games
with a common noise investigated in Part I in the second volume. In that case, we
could use either the same common noise for the two subgroups or two different
common noises, one for each subgroup.

Also, in this presentation, the way the coefficients are required to depend upon
the empirical distributions of the two subgroups is somewhat restrictive. Indeed, it
would be more realistic to allow the coefficients to depend upon the proportions
of players from each of the two subgroups in the population. However, although
this would make sense from a modeling standpoint, the mathematical significance
would be rather limited. Indeed, the proportions N1=.N1CN2/ and N2=.N1CN2/ of
each of the two subgroups would be regarded as fixed, since there is no way, in this
model, for a player to switch from one subgroup to another. This observation will
become especially clear in the next paragraph: We shall take the mean field limit
N1;N2 ! 1 with the prescription that:
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N1
N1 C N2

! �1;
N2

N1 C N2
! �2; (7.1)

�1 and �2 representing the limiting proportion of players from each subgroup in the
limiting population. In this approach, �1 and �2 are a priori prescribed.

Asymptotic Formulation
We now present the limiting formulation of the game when N1 and N2 tend to infinity
in such a way that (7.1) is satisfied, �1 and �2 representing the limiting proportion
of players from each subgroup in the limiting population.

The intuition leading to the definition of an asymptotic Nash equilibrium is
exactly the same as in standard mean field games. Asymptotically, any unilateral
change of strategy decided by one of the players cannot affect the global states of any
of the two populations. So, in the limiting framework, everything works as if the best
response of any player was computed as the solution of a standard optimal control
problem within the environment determined by the equilibrium distributions of the
two populations. So, the search for an asymptotic equilibrium should comprise the
following two-steps:

1. For any two deterministic flows of probability measures �1 D .�1t /06t6T and
�2 D .�2t /06t6T given on R

d1 and R
d2 respectively, solve the two optimal control

problems:

inf
˛1

J1;�
1;�2 .˛1/ and inf

˛2
J2;�

1;�2 .˛2/;

over F1-progressively measurable processes ˛1 and F
2-progressively measurable

processes ˛2, where F
1 and F

2 are the complete filtrations generated by two
independent Rd1 and R

d2 -valued Brownian motions W1 and W2 constructed on
some probability space .˝;F ;P/, and where:

J1;�
1;�2 .˛1/ D E

� Z T

0

f1
�
t;X1t ; �

1
t ; �

2
t ; ˛

1
t

�
dt C g1

�
X1T ; �

1
T ; �

2
T

��
;

J2;�
1;�2 .˛2/ D E

� Z T

0

f2
�
t;X2t ; �

1
t ; �

2
t ; ˛

2
t

�
dt C g2

�
X2T ; �

1
T ; �

2
T

��
;

with

dX1t D b1
�
t;X1t ; �

1
t ; �

2
t ; ˛

1
t

�
dt C �1

�
t;X1t ; �

1
t ; �

2
t ; ˛

1
t

�
dW1

t ;

dX2t D b2
�
t;X2t ; �

1
t ; �

2
t ; ˛

2
t

�
dt C �2

�
t;X2t ; �

1
t ; �

2
t ; ˛

2
t

�
dW2

t ;

for t 2 Œ0;T�, and X10 D x10 2 R
d1 and X20 D x20 2 R

d2 as initial conditions.
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2. Find flows �1 D .�1t /06t6T and �2 D .�2t /06t6T such that:

8t 2 Œ0;T�; �1t D L� OX1;�1;�2t

�
; �12 D L� OX2;�1;�2t

�
;

if OX1;�1;�2

and OX2;�1;�2

are solutions of the above optimal control problems.

We assume that the initial conditions X10 and X20 are deterministic for convenience
only. The above procedure can be easily extended to cases when X10 and X20 are
random.

Each optimization problem articulated in step 1 above can be handled using the
tools introduced for the analysis of standard mean field games. For instance, both
problems can be reformulated by means of either: (i) a Hamilton-Jacobi-Bellman
equation, (ii) or an FBSDE for the value function, (iii) or the stochastic maximum
principle, which relies on another FBSDE.

Below, we review these three approaches when �1 and �2 are independent of the
control variables.

PDE Formulation. In this approach, the optimization problems of step 1 are
formulated in terms of HJB equations and the fixed point conditions of step 2 in
terms of Fokker-Planck-Kolmogorov equations. Consequently, the PDE approach
to mean field games with two populations consists in solving a system of four
coupled PDEs: two backward Hamilton-Jacobi-Bellman equations describing the
value functions of the two optimization problems, and two forward Fokker-Planck-
Kolmogorov equations describing the state laws of each of the two subgroups. In
analogy with (3.12), the resulting system takes the form:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

@tVl.t; x/C 1

2
trace

h�
�l�

�
l

�
.t; x; �1t ; �

2
t /@

2
xxVl.t; x/

i

CH.r/
l



t; x; �1t ; �

2
t ; @xVl.t; x/; Ǫ l.t; x; �1t ; �

2
t ; @xVl.t; x//

�
D 0;

@t�
l
t � 1

2
trace

h
@2xx


�
�l�

�
l

�
.t; x; �1t ; �

2
t /�

l
t

�i

Cdivx



bl

�
t; x; �1t ; �

2
t ; Ǫ l.t; x; �1t ; �

2
t ; @xVl.t; x//

�
�l

t

�
D 0;

in Œ0;T� � R
dl , with Vl.T; �/ D gl.�; �1T ; �2T/ as terminal condition for the first

equation, and �l
0 D ıxl

0
as initial condition for the second, and for l D 1; 2. Above

H.r/
l is the reduced Hamiltonian associated with .bl; �l; fl/:

H.r/
l .t; xl; �1; �2; yl; ˛l/ D bl.t; xl; �1; �2; ˛l/ � yl C fl.t; xl; �1; �2; ˛l/; (7.2)

for t 2 Œ0;T�, xl 2 R
dl , �l 2 P.Rdl/, yl 2 R

dl and ˛l 2 Al, while Ǫ l.t; xl; �1; �2; yl/

is a minimizer:

Ǫ l.t; xl; �1; �2; yl/ 2 argmin˛l2Al
H.r/

l .t; xl; �1; �2; yl; ˛l/:
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First FBSDE Formulation. When using an FBSDE, instead of a HJB equation,
for describing the value function, we end up with a McKean-Vlasov FBSDE of the
same type as (4.54):

8
ˆ̂<

ˆ̂:

dXl
t D bl

�
t;Xl

t ;L.X1t /;L.X2t /; Ǫ l
t

� C �l
�
t;Xl

t ;L.X1t /;L.X2t /
�
dWl

t ;

dYl
t D �fl

�
t;Xl

t ;L.X1t /;L.X2t /; Ǫ l
t

�
dt C Zl

tdWl
t ;

where Ǫ l
t D Ǫ l

�
t;Xl

t ;L.X1t /;L.X2t /; �l.t;Xl
t ;L.X1t /;L.X2t //�1�Zl

t

�
;

(7.3)

for t 2 Œ0;T�, with Yl
T D gl.Xl

T ;L.X1T/;L.X2T// as terminal condition, for l D 1; 2.

Second FBSDE Formulation. When using the stochastic Pontryagin principle, we
obtain an FBSDE of the same type as (4.70):

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXl
t D bl

�
t;Xl

t ;L.X1t /;L.X2t /; Ǫ l
t

�
dt

C�l
�
t;Xl

t ;L.X1t /;L.X2t /
�
dWl

t ;

dYl
t D �@xHl

�
t;Xl

t ;L.X1t /;L.X2t /;Yl
t ;Z

l
t ; Ǫ l

t

�
dt C Zl

tdWl
t ;

where Ǫ l
t D Ǫ l

�
t;Xl

t ;L.X1t /;L.X2t /;Yl
t

�
;

(7.4)

for t 2 Œ0;T�, with the terminal condition Yl
T D @xgl.Xl

T ;L.X1T/;L.X2T//, for l D
1; 2. Above, Hl stands for the full-fledged Hamiltonian:

Hl.t; xl; �1; �2; yl; zl; ˛l/ D bl.t; xl; �1; �2; ˛l/ � yl C fl.t; xl; �1; �2; ˛l/

C trace
�
�l.t; xl; �1; �2/z

�
l

	
:

In contrast with (4.70), observe that �l may not be constant, which explains why the
backward equation involves the full Hamiltonian instead of the reduced one.

The analysis of FBSDEs of the McKean-Vlasov type (7.3) and (7.4) can be
carried out as the analysis of (4.54) and (4.70). In the latter case, �1 and �2 need to be
assumed to be constant. We shall revisit the Pontryagin principle for processes with
nonconstant volatility coefficients in Chapter (Vol II)-1, see Subsection (Vol II)-
1.4.4.

A Practical Example
As a practical application, we revisit the crowd congestion model discussed in
Subsection 1.5.3.

Instead of one representative individual, we consider two sub-populations with
R as state space for the individuals, and with the same dynamics as in (1.50):

dX1t D ˛1t dt C �dW1
t ;

dX2t D ˛2t dt C �dW2
t ;

(7.5)
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for t 2 Œ0;T�, where � > 0 and W1 and W2 are two independent Wiener processes.
Here, ˛1 and ˛2 are F1 and F

2-progressively measurable square integrable processes
with values in A1 D A2 D R. As in (1.51), we then choose:

f1.t; x; �1; �2; ˛/ (7.6)

D 1

2
j˛j2

� Z

R

�.x � x0/d�1.x0/
�a1� Z

R

�.x � x0/d�2.x0/
�a2

C e�rtk.t; x/;

as running cost for the representative player of the first group, and similarly for the
representative player of the second group. Here � is a smooth density with a support
concentrated around 0.

As explained in Chapter 1, the function k models the effect of panic depending
upon where the player is. Also, powers a1 > 0 and a2 > 0 are intended to penalize
congestion. Whenever a2 > a1, individuals from group 1 primarily avoid congestion
with people from group 2, which may be typical of a xenophobic behavior.

We refer to the Notes & Complements below for references on this model.

Potential Games
As another example, we consider the analogue of potential games, but for models
with two homogeneous subpopulations. We consider two R

d1 and R
d2 -valued

representative players with state dynamics of the form:

dX1t D ˛1t dt C �dW1
t ;

dX2t D ˛2t dt C �dW2
t ; t 2 Œ0;T�;

where, as above, W1 and W2 are two independent Wiener processes with values
in R

d1 and R
d2 respectively, and ˛1 and ˛2 are two F

1 and F
2 square-integrable

progressively measurable processes with values in A1 � R
d1 and A2 � R

d2 . Their
cost functionals are of the form:

Jl.˛1;˛2/ D
Z T

0



Fl

�
t;L.X1t /;L.X2t /

� C 1

2
EŒj˛l

t j2�
�

dt C Gl
�L.X1T/;L.X2T/

�
;

where Fl W Œ0;T� � P.Rd1 / � P.Rd2 / ! R and Gl W P.Rd1 / � P.Rd2 / ! R. A pair
of strategies . Ǫ 1; Ǫ 2/ is said to be a Nash equilibrium if for any l D 1; 2 and any
other admissible strategy ˛l, it holds:

Jl.˛l; Ǫ �l/ > Jl. Ǫ 1; Ǫ 2/;

where, as usual, .˛l; Ǫ �l/ D .˛1; Ǫ 2/ if l D 1 and .˛l; Ǫ �l/ D . Ǫ 1;˛2/ if l D 2.
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Remark 7.2 As explained above, whenever X10 and X20 are deterministic, F1 and F
2

may be chosen as the complete filtration generated by W1 and W2. Whenever X10
and X20 are random, both F

1 and F
2 have to be augmented in an obvious manner.

Notice that in contrast with the notion of equilibrium defined for mean field
games with two subgroups, the Nash equilibrium is here regarded as an equilibrium
between the two populations. The formulation is in fact reminiscent of the mean
field stochastic control problems investigated in Chapter 6, since the marginal laws
appearing in the cost functionals are directly influenced by the strategies.

In order to find a Nash equilibrium, we can follow the arguments developed in
Chapter 6 and implement the stochastic Pontryagin principle, except that we have to
use the version of the stochastic maximum principle for games instead of the version
for control problems. Based upon our experience from Chapter 6, we expect that the
resulting adjoint equations depend upon the differential calculus used on the space
of probability measures of order 2.

If we choose the L-differential calculus introduced in Chapter 5 and if we
assume that the coefficients satisfy suitable differentiability assumptions, then in
full analogy with Definition 6.5, we associate with each couple .˛1;˛2/ two pairs
of backward SDEs:

8
ˆ̂<

ˆ̂:

dYi;j
t D � QE�

@�j H
i
�
t;L.X1t /;L.X2t /; QYi;1

t ; QYi;2
t ; Q̨ 1t ; Q̨ 2t /.Xj

t/
	
dt

CZi;j
t dWj

t ; t 2 Œ0;T�;
Yi;j

T D @�j Gi
�L.X1T/;L.X2T/

�
.Xj

T/;

(7.7)

for i; j 2 f1; 2g, where, as usual, the tuple . QYi;1
; QYi;2

; Q̨ 1; Q̨ 2/ is a copy of
.Yi;1;Yi;2;˛1;˛2/ defined on . Q̋ ; QF ; QP/ and QE denotes the expectation on . Q̋ ; QF ; QP/.
Here, the Hamiltonians H1 and H2 are defined as reduced Hamiltonians for games
(observe that the index is in exponent in order to distinguish these equations
from (7.3)):

Hi.t; �1; �2; y1; y2; ˛1; ˛2/ D
2X

jD1
˛j � yj C 1

2
j˛ij2 C Fi.t; �1; �2/:

We here use the reduced Hamiltonians because the volatility is uncontrolled. Also,
in (7.7), we represent the martingale part with respect to the sole Wj because
the randomness in the equation only comes from Xj, which is F

j-progressively
measurable.

Computing @�j H
i given the current assumptions, we get:

(
dYi;j

t D �@�j Fi
�
t;L.X1t /;L.X2t /

�
.Xj

t/dt C Zi;j
t dWj

t ; t 2 Œ0;T�;
Yi;j

T D @�j Gi
�L.X1T/;L.X2T/

�
.Xj

T/:



7.1 First Extensions 629

Since the first order optimality condition given by the stochastic maximum principle
takes the form ˛i

t D �Yi;i
t , this yields the following McKean-Vlasov FBSDE:

8
ˆ̂<

ˆ̂:

dXi
t D �Yi;i

t dt C �dWi
t ;

dYi;j
t D �@�j Fi

�
t;L.X1t /;L.X2t /

�
.Xj

t/dt C Zi;j
t dWj

t ; t 2 Œ0;T�;
Yi;j

T D @�j Gi
�L.X1T/;L.X2T/

�
.Xj

T/:

In particular, if we can find functions fl W Œ0;T��R
dl �P2.Rd1 /�P2.Rd2 / ! R and

gl W Rdl � P2.Rd1 / � P2.Rd2 / ! R for l D 1; 2, such that:

@xfl.t; x; �1; �2/ D @�l Fl.t; �1; �2/.x/;

@xgl.x; �1; �2/ D @�l Gl.�1; �2/.x/; l D 1; 2;

then we can identify .Y1;1;Y2;2/ with .Y1;Y2/ in (7.4) with .t; xl; ˛l/ 7!
fl.t; xl; �1; �2/ C 1

2
j˛lj2 as running cost for player l. Formally, this identifies the

Nash equilibrium between the two subgroups with the solution of a mean field game
set over the two subpopulations.

Note that we used P2 instead of P when we specified the domains of fl and gl as
L-differentiation requires to work on P2,

Example. In the spirit of the congestion cost functions (7.6), we may choose, with
the same dynamics as in (7.5),

Fl D F0.�l/C 


Z

R

� Z

R

�.x � x0/d�1.x0/
�� Z

R

�.x � x0/d�2.x0/
�

dx;

for 
 > 0 and a smooth density � with a small support containing 0. As above, 
 can
be interpreted as a xenophobia parameter. In particular, we may expect some forms
of segregation for 
 large, suggesting that the supports of the state distributions of
the two populations might separate from one another in equilibrium. We refer to the
bibliography in the Notes & Complements for references to further discussions on
this issue.

7.1.2 Infinite HorizonMFGs

Some of the examples discussed in Chapter 1 were presented with an infinite time
horizon: see for instance the economic growth model in Subsection 1.4.2, the model
of production of exhaustible resources in Subsection 1.4.4 and the Cucker-Smale
model of flocking in Subsection 1.5.1. However, the mathematical theory covered
in the book has been limited to mean field games with a finite time horizon. The
goal of this subsection is to provide information on the methodology which could
be implemented to solve infinite horizon models.
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In order to do so, we distinguish two cases: (i) Mean field games with an
infinite time horizon and a discounted running cost, which cover the aforementioned
economic growth model and model of production of exhaustible resources; (ii)
Ergodic mean field games, which appeared in the presentation of the Cucker-Smale
model.

Mean Field Games with Infinite Time Horizon and Discounted Running
Cost
Following the presentation of mean field games given in Chapter 3, we consider a
player in interaction with a homogeneous population and with controlled dynamics
of the form:

dXt D b.t;Xt; �t; ˛t/dt C �.t;Xt; �t; ˛t/dWt; t > 0;

with X0 D x0 as initial condition for some x0 2 R
d. Here, W D .Wt/t>0 is

an m-dimensional Brownian motion constructed on a probability space .˝;F ;P/,
� D .�t/t>0 is a flow of probability measures on R

d accounting for the state of
the population and ˛ D .˛t/t>0 is an A-valued F-progressively measurable control
process. The set A is a Borel subset of Rk and F is the complete filtration generated
by W. The functions b and � are defined on Œ0;1/ � R

d � P2.Rd/ � A and take
values in R

d and R
d�m respectively. Roughly speaking, the set-up is the same as in

Chapter 3 except for the fact that the dynamics are now defined on the entire time
interval Œ0;1/.

Accordingly, we associate with each ˛ an expected cost given by the integral
from 0 to 1 of some running cost. With an instantaneous cost function f W Œ0;1/�
R

d � P.Rd/ � A ! R of the type used in Chapter 3, we let:

J�.˛/ D E

� Z 1

0

e�ˇtf .t;Xt; �t; ˛t/dt

�
;

where ˇ > 0 is an actualization factor, most often a discount factor as in the financial
applications. In some sense, one may think of a zero terminal cost function g.

Formally, the search for an equilibrium within the population should follow the
same procedure as that defined for mean field games with a finite time horizon:

1. For any deterministic flow of probability measures � D .�t/t>0 on R
d, solve the

infinite horizon optimal control problem:

inf
˛

J�.˛/;

over F-progressively measurable A-valued processes ˛.
2. Find a flow � and a solution OX�

to the above optimization problem such that:

8t > 0; �t D L� OX�
t

�
: (7.8)
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Remark 7.3 Obviously, we could consider a more general version of the model,
including for example a common noise, or a random initial condition. We leave it to
the reader to adapt the above definition of an equilibrium accordingly.

When comparing with the analysis of mean field games with a finite time horizon
presented in Chapters 3 and 4, the main difference lies in the optimal control
problem defined in step 1. Indeed, since the cost functional is defined via an integral
over an unbounded interval, this integral may not make sense under the regularity
and integrability assumptions used in Chapters 3 and 4, and additional conditions
may be needed to make the whole machinery work.

In this subsection, we do not address this question in detail, though we provide
references in the Notes & Complements to works where results addressing this issue
can be found. Still, we observe that whenever f is bounded, the cost is obviously well
defined. However, since it is often convenient to assume that f is strictly convex
in ˛, in order to accommodate these two seemingly contradictory constraints, it
then makes sense to require that A is bounded. Also, notice that more generally,
when f is bounded from below, the cost is well defined, although it may be infinite.
Furthermore, whenever f is neither bounded from above nor from below, special
properties of the drift function b and the volatility � can still make it possible for the
cost to still be well defined. Indeed, some of these properties can be used to control
the growth of the solution .Xt/t>0 and its moments which may grow exponentially,
polynomially, or could be bounded.

As oftentimes in this book, we assume that � is uncontrolled.

Value Function and HJB Equation. When the cost functional is well defined
for a sufficiently large class A of admissible control processes ˛, one can try to
characterize the solutions to the optimal control problem inf˛2A J�.˛/ by means of
similar equations to those used when the time horizon is finite. A common way to
do so is to introduce the analogue of the value function:

V.t; x/ D eˇt inf
˛2At

E

� Z 1

t
e�ˇsf .s;Xs; �s; ˛s/ds j Xt D x

�
; (7.9)

where A
t is the class of admissible controls starting from time t. Here, the

exponential pre-factor is a normalization accounting for the fact that the system is
initialized at time t. By a formal application of the dynamic programming principle,
we expect that:

V.t; x/ D inf
˛2At

E

�
eˇt

Z tCh

t
e�ˇsf .s;Xs; �s; ˛s/ds C e�ˇhV.t C h;XtCh/ j Xt D x

�
:

(7.10)
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Whenever V is smooth, Itô’s formula yields:

@tV.t; x/C 1

2
trace

h�
���

�
.t; x; �t/@

2
xxV.t; x/

i

� ˇV.t; x/C inf
˛2A

H.r/
�
t; x; �t; @xV.t; x/; ˛

� D 0;

(7.11)

for .t; x/ 2 Œ0;1/ � R
d, where H.r/ is the reduced Hamiltonian:

H.r/.t; x; �; y; ˛/ D b.t; x; �; ˛/ � y C f .t; x; �; ˛/:

Obviously, (7.11) has the same form as the HJB equation appearing in the statement
of Lemma 4.47, except for the presence of an additional zero-order term and the
apparent lack of a terminal condition. The terminal condition should be replaced by
a condition on the asymptotic behavior of V.t; �/ as t tends to 1. The need for such
an additional condition on the growth of V.t; �/ for t ! 1, becomes especially clear
when implementing the analog of the verification argument used in Lemma 4.47 in
the case of finite horizon models. Following the statement of this lemma, assume
indeed that V is a classical solution to (7.11), and for an admissible control process
˛, expand .e�ˇtV.t;Xt//t>0 using Itô’s formula. Taking expectation in the resulting
expansion (provided this is permissible), we get for any t > 0,

E
�
e�ˇtV.t;Xt/

	 C E

� Z t

0

e�ˇsf .s;Xs; �s; ˛s/ds

�

D V.0; x0/C E

� Z t

0

e�ˇs
h
H.r/

�
s;Xs; �s; @xV.s;Xs/; ˛s

�

� inf
˛2A

H.r/
�
s;Xs; �s; @xV.s;Xs/; ˛

�i
ds

�
:

If EŒe�ˇtV.t;Xt/� tends to 0 as t tends to 1, we obtain:

E

� Z 1

0

e�ˇsf .s;Xs; �s; ˛s/ds

�
> V.0; x0/;

with equality if

8t > 0; ˛t D Ǫ�
t;Xt; @xV.t;Xt/

�
;

where:

Ǫ .t; x; �; y/ 2 argmin˛2AH.r/.t; x; �; y; ˛/;
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and with strict inequality if the above identity for ˛ is not satisfied on some
measurable subset of Œ0;1/ �˝ with a nonzero measure for Leb1 ˝ P. Therefore,
if the minimizer Ǫ is well defined, if the SDE:

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t; @xV.t;Xt//

�
dt C �.t;Xt; �t/dWt; t > 0;

with X0 D x0, is solvable, and if Ǫ D . Ǫ .t;Xt; �t; @xV.t;Xt///06t6T is admissible,
then V is the value function of the optimal control problem defined by inf˛2A J�.˛/,
and X is an optimal path. If the minimizer Ǫ is strict and the above SDE is uniquely
solvable, then X is the unique optimal path.

When the running cost f is bounded, it makes sense to require V to be uniformly
bounded in lieu of a terminal condition for (7.11). In this case e�ˇt

EŒV.t;Xt/� tends
to 0 as t ! 1 for all F-progressively measurable processes ˛ with values in A.

A standard procedure to construct a solution to (7.11) is to implement the
following: 1) for each integer n > 1, find a solution Vn to the equation restricted
to Œ0; n� � R

d with Vn.n; �/ D 0 as explicit terminal condition; 2) prove that the
sequence .Vn/n>1 converges in some sense towards a solution V to (7.11) with an
admissible behavior at infinity.

Uniqueness of classical solutions may be proved by implementing the above
verification argument that demonstrates the optimality of the feedback function
Œ0;1/ � R

d 3 .t; x/ 7! Ǫ .t; x; �t; @xV.t; x//.

FBSDE Formulation. We just argued that the optimal control problem
inf˛2A J�.˛/ could be handled by means of the same HJB equation as in the
finite horizon case, but with an additional zero-order term, and with an asymptotic
terminal condition. In fact, it can also be handled with the same FBSDEs as those
used in the finite horizon case.

Based on the above discussion on the HJB equation (7.11), we can reasonably
expect that the FBSDE representing the value function (7.9) should be:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

dXt D b
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
�
dt

C�.t;Xt; �t/dWt;

dYt D ��
f
�
t;Xt; �t; Ǫ .t;Xt; �t; �.t;Xt; �t/

�1�Zt/
� � ˇYt

	
dt

CZtdWt;

(7.12)

for all t > 0, with X0 D x0 as initial condition. Like (7.11), (7.12) has no explicit
terminal condition. Instead, it is necessary to impose conditions on the behavior of
Yt as t tends to 1. As above, a standard strategy for constructing a solution is to
solve the approximating problem on the interval Œ0; n� instead of Œ0;1/, with 0 as
explicit terminal condition at time n, and then let n tend to 1. Also, uniqueness of
the solution may be proved by combining, as in the above verification argument,
the condition imposed on the asymptotic behavior of the solution together with the
strategy used in Proposition 4.51 to prove uniqueness of the optimal paths on finite
intervals.
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The strategy is the same when dealing with the stochastic Pontryagin principle.
The corresponding FBSDE should be of the form:

(
dXt D b

�
t;Xt; �t; Ǫ .t;Xt; �t;Yt/

�
dt C �.t;Xt; �t/dWt;

dYt D ��
@xH

�
t;Xt; �t;Yt;Zt; Ǫ .t;Xt; �t;Yt/

� � ˇYt
	
dt C ZtdWt;

(7.13)

for t > 0, with appropriate conditions on the behavior of the solution as t tends
to 1. Above, H stands for the full Hamiltonian of the problem.

We refer to the Notes & Complements at the end of the chapter for further
references on these kinds of equations, including results on the choice of the
asymptotic boundary condition, and on practical applications.

The Fixed Point Condition. Generally speaking, step 2 in the definition of an
equilibrium can be solved by means of the same fixed point argument as in the
finite horizon case. For instance, one may look for a fixed point on each interval
Œ0; n�, and extract a converging subsequence as n tends to 1, convergence being
then understood as convergence on each C.Œ0;T�;P2.Rd//, T > 0, equipped with
the uniform topology.

Ergodic Mean Field Games

Revisiting Infinite Horizon MFGs with a Discounted Running Cost. Within
the same infinite horizon framework as above, another fixed point condition is
conceivable when the coefficients are time independent. In such a case, the dynamics
take the following form:

dXt D b.Xt; �t; ˛t/dt C �.Xt; �t/dWt; t > 0 I X0 D x0;

with

J�.˛/ D E

� Z 1

0

e�ˇtf .Xt; �t; ˛t/dt

�

as cost functional. If we now require that the flow � D .�t/t>0 remains constant
over time, that is �t D � for all t > 0 for some � 2 P.Rd/, then the optimization
problem becomes the minimization of the cost functional:

J�.˛/ D E

� Z 1

0

e�ˇtf .Xt; �; ˛t/dt

�
; (7.14)

under the dynamical constraint:

dXt D b.Xt; �; ˛t/dt C �.Xt; �/dWt; t > 0:
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Notice that we denoted J� by J� with the superscript � in a regular font (as opposed
to the boldface �) to emphasize the fact that the flow is now constant. Accordingly
the value function in (7.9) is expected to become time independent. It reads:

V.x/ D inf
˛2AE

� Z 1

0

e�ˇsf .Xs; �; ˛s/ds j X0 D x

�
:

In this case, the HJB equation (7.11) becomes stationary:

1

2
trace

h�
���

�
.x; �/@2xxV.x/

i
� ˇV.x/C inf

˛2A
H.r/

�
x; �; @xV.x/; ˛

� D 0; (7.15)

H.r/ being now independent of t. Then, minimizers Ǫ of H.r/ merely write Ǫ .x; �; y/
and optimal paths are given by time-homogeneous diffusion processes:

d OX�t D b
� OX�t ; �; Ǫ . OX�t ; �; @xV. OX�t //

�
dt C �. OX�t ; �/dWt; t > 0:

As a new fixed point condition in the definition of an equilibrium, we now require
in step 2 that � is an invariant measure of . OX�t /t>0 instead of (7.8).

Of course, there is no real reason why . OX�t /t>0 should be in stationary regime.
In other words, we should not expect that L. OX�t / D � for all t > 0. The rationale
behind the choice of � as the (or an) invariant distribution of . OX�t /t>0 is the fact
that in this framework, and under suitable assumptions, L. OX�t / should be close to
� when t is large. So everything works as if, in the original cost functional J� with
a time-dependent flow �, the large-time limit � D limt!1 �t, the limit being for
instance taken in the sense of weak convergence, was substituted for the entire flow
� D .�t/t>0.

Ergodic Cost. In order to fully legitimize the substitution of � by its long-run limit
�, a convenient strategy is to provide a formulation of the cost functional J� which
is independent of the initial condition of X D .Xt/t>0. A natural candidate is:

J�;erg.˛/ D lim
T!1

1

T
E

� Z T

0

f .Xt; �t; ˛t/dt

�
; (7.16)

for a flow � D .�t/t>0 with values in P.Rd/, where as above, we assume that b and
� are independent of t and also of �, that is:

dXt D b.Xt; ˛t/dt C �.Xt/dWt; t > 0I X0 D x0: (7.17)

When �t converges to some � 2 P.Rd/ as t tends to 1 and f satisfies suitable
regularity assumptions, J�.˛/ should be the same as:

J�;erg.˛/ D lim
T!1

1

T
E

� Z T

0

f .Xt; �; ˛t/dt

�
: (7.18)
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Actually, if we restrict (7.17) to control processes ˛ D .˛t/t>0 in stationary Markov
feedback form ˛ D .˛t D �.Xt//t>0 for functions � such that the diffusion process
.Xt/t>0 is an irreducible strong Feller Markov process with an invariant measure (in
which case the latter is unique), then J�;erg.˛/ becomes:

J�;erg.˛/ D
Z

Rd
f
�
x; �; �.x/

�
d�.x/; (7.19)

where � is the invariant measure of X D .Xt/t>0.
Now, for a given � 2 P.Rd/, the optimization problem inf˛2A J�;erg.˛/ is

expected to be connected with inf˛2A J�;ˇ.˛/, for ˇ > 0, where J�;ˇ stands for the
same cost functional as before, but with the additional superscript ˇ in the notation
in order to distinguish it from the new J�;erg:

J�;ˇ.˛/ D E

� Z 1

0

e�ˇtf .Xt; �; ˛t/dt

�
:

This is the same cost functional as in (7.14). We now emphasize the dependence
upon the actualization rate ˇ. It is natural to expect:

inf
˛2A J�;erg.˛/ D lim

ˇ!0
ˇ inf

˛2A J�;ˇ.˛/;

or, reformulated in terms of value functions,

inf
˛2A J�;erg.˛/ D lim

ˇ!0
ˇVˇ.x0/;

where:

Vˇ.x/ D inf
˛2AE

� Z 1

0

e�ˇsf .Xs; �; ˛s/ds j X0 D x

�
:

Since inf˛2A J�;erg.˛/ is expected to be independent of the starting point x0, we
should have:

inf
˛2A J�;erg.˛/ D lim

ˇ!0
ˇVˇ.x/;

for any x 2 R
d.

Letting 
 D inf˛2A J�;erg.˛/ and passing to the limit in a formal way in (7.15),
we derive the HJB equation:

1

2
trace

h�
���

�
.x/@2xxV.x/

i
� 
C inf

˛2A
H.r/

�
x; �; @xV.x/; ˛

� D 0: (7.20)
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From this equation, V can only be determined up to an additive constant, and the
constant 
 needs to be part of the solution. For this reason, V is usually constructed
as the limit of Vˇ � Vˇ.0/. In that case, optimal paths are given by:

d OX�t D b
� OX�t ; Ǫ . OX�t ; �; @xV. OX�t //

�
dt C �. OX�t /dWt; t > 0;

and, at least formally, 
 is given by the integral:


 D
Z

Rd
f
�
x; �; Ǫ .x; �; @xV.x//

�
d O�.x/;

where O� is the unique invariant measure of OX�
. This identification of 
 follows

from (7.19) when OX�
is irreducible, strong Feller and has an invariant measure.

In this framework, the fixed point condition for mean field games merely writes
O� D �, that is � is the invariant measure of OX�

. Therefore, for an ergodic mean field
game, the search for an equilibrium consists in the following two-step procedure:

1. For any deterministic probability measure � on R
d, solve the ergodic optimal

control problem:

inf
˛

J�;erg.˛/;

over F-progressively measurable A-valued processes ˛.
2. Find a probability measure � such that � is an invariant measure of the diffusion

process OX�
where OX�

is a solution of the optimal control problem in step 1.

Observe that in step 1, we can choose whether or not to reduce the analysis to
controls ˛ in stationary Markov feedback form. In any case, a reasonable guess
is that the optimal control should be in stationary Markov feedback form. The
requirement that OX�

has an invariant measure for any� 2 P.Rd/ is a very restrictive
condition. In order to satisfy it, one usually imposes specific conditions on the
coefficients b and � . For example, denoting by � the optimal stationary feedback
function, one may want to require that the diffusion process OX�

solving the SDE:

d OX�t D b
� OX�t ; �. OX�t /

�
dt C �. OX�t /dWt; t > 0;

has suitable non-degeneracy and positive recurrence properties, this being the case if
the set A is bounded, the coefficient � is bounded from above and uniformly elliptic,
and the drift b is dissipative in the x-direction. We refer to the Notes & Complements
below for standard references on the subject.

Obviously, if the analysis is reduced to controlled processes which are irreducible
and strong Feller, the measure � in step 2 is the unique invariant measure of OX�

.
Also, once a fixed point � in step 2 is found, the two formulations (7.16) and (7.18)
coincide if the marginals .�t D L. OX�t //t>0 converge to �, which is an invariant
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measure of OX�
because of the fixed point condition. For instance, if OX�

is irreducible
and strong Feller, in which case � is the unique invariant measure of OX�

, then
�t converges in law to � as t ! 1. Depending on the smoothness of f in the
measure argument, convergence may be investigated with respect to other topologies
or distances, such as the 2-Wasserstein distance.

PDE Formulation. Accounting for the HJB equation (7.20) together with the
standard Poisson equation for the invariant measure of a diffusion process, we end
up describing ergodic mean field games with a system of two stationary PDEs:

8
<̂

:̂

1

2
trace

h�
���

�
.x/@2xxV.x/

i
� 
C inf

˛2A
H

�
x; �; @xV.x/; ˛

� D 0;

�1
2

trace
h
@2xx


�
���

�
.x/�

�i
C divx



b
�
x; Ǫ .x; �; @xV.t; x//

�
�

�
D 0;

for x 2 R
d, with the constraint that � is a probability distribution. As noticed

for (7.20), we stress the fact that 
 is part of the solution.
We shall not address the solvability of the above system. We refer to the Notes &

Complements below for references on that question.

Ergodic BSDE. In analogy with (7.12), the stationary HJB equation may be
represented by means of an ergodic BSDE, which can be obtained by replacing ˇYt

in (7.12) by 
. Once again, we refer to the end of the chapter for further discussion
of that point.

The N-Player Game. At the risk of indulging in anticipation of Chapter (Vol II)-6,
we cannot resist the temptation to describe the connection with finite-players games.
The reason is that, as explained in the Notes & Complements of Chapter (Vol II)-
6, the first published results on the convergence of finite-player games equilibria to
mean field games were obtained for ergodic mean field games. In this last paragraph,
we follow the presentation used in these early papers to explain the differences with
the strategy that we shall adopt in Chapter (Vol II)-6.

With coefficients of the same form as above, consider N states with dynamics:

dXN;i
t D b.XN;i

t ; ˛N;i
t /dt C �.XN;i

t /dWi
t ; t > 0; Xi

0 D xi
0 2 R

d;

for i D 1; � � � ;N, where as usual, W1; � � � ;WN are N independent Wiener processes
with values in R

m and ˛N;1; � � � ;˛N;N are progressively measurable processes with
values in A. With each player i 2 f1; � � � ;Ng, we associate the ergodic cost:

JN;i
�
˛N;1; � � � ;˛N;N

� D lim
T!1

1

T
E

� Z T

0

f
�
Xi

t ; N�N;i
t ; ˛i

t

�
dt

�
;
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where:

N�N;i
t D 1

N � 1
NX

jD1;j6Di

ı
X

N;j
t
; t > 0:

If we force player i 2 f1; � � � ;Ng to use a strategy ˛i adapted to the sole
Wiener process Wi, then the states of the players are independent. In particular,
if we restrict ourselves to stationary Markovian equilibria of the form ˛N;i D
.˛

N;i
t D �N;i.XN;i

t //t>0, for some function �N;i W R
d ! A, then the best

response of player i 2 f1; � � � ;Ng to the other players using feedback functions
�N;1; � � � ; �N;i�1; �N;iC1; � � � ; �N;N , consists, at least under reasonable assumptions,
in minimizing the ergodic cost:

JN;i.˛i/

D lim
T!1

1

T
E

� Z T

0

� Z

R.N�1/d
f



Xi
t ;
1

N

NX

jD1;j6Di

ızj ; ˛i
t

� NY

jD1;j6Di

d�j.zj/

�
dt

�
;

where �1; � � � ; �i�1; �iC1; � � � ; �N are the invariant measures of the diffusion
processes:

dXj
t D b

�
Xj

t ; �
N;j.Xj

t/
�
dt C �.Xj

t/dWj
t ; t > 0 I Xj

0 D xj
0;

for j D 1; � � � ; i � 1; i C 1; � � � ;N respectively. Letting:

��i D .�1; � � � ; �i�1; �iC1; � � � ; �N/;

the reduced Hamiltonian reads:

Hi.x; ��i; y; ˛/

D b.x; ˛/ � y C
Z

R.N�1/d
f



x;
1

N

NX

jD1;j6Di

ızj ; ˛
� NY

jD1;j6Di

d�j.zj/;

for x; y 2 R
d, and ˛ 2 A. This prompts us to let, as the analogue of the Nash

system (2.17) for the N-player game with a finite time horizon, the following system
of equations:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

2
trace

h�
���

�
.x/@2xxv

N;i.x/
i

� 
i C inf
˛2A

Hi
�
x; ��i; @xv

N;i.x/; ˛
� D 0;

�1
2

trace
h
@2xx


�
���

�
.x/�i

�i

Cdivx



b
�
x; Ǫ i.x; ��i; @xv

N;i.t; x//
�
�i

�
D 0;

(7.21)
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for x 2 R
d and i D 1; � � � ;N, each �i being a probability measure on R

d, and
Ǫ i.x; ��i; y/ denoting argmin˛2AHi.x; ��i; y; ˛/. The second equation guarantees
that �i is the invariant measure of XN;i when computed over the feedback function
�N;i W R

d 3 x 7! Ǫ i.x; ��i; @xv
N;i.x// 2 A. The finite time horizon analogue

of (7.21) will be studied in Chapter (Vol II)-6, see (Vol II)-(6.94).
The system (7.21) is a system of N forward-backward equations over R

d,
these equations being coupled by the measures �1; � � � ; �N . In contrast with the
aforementioned Nash system (Vol II)-(6.94) that we shall study in Chapter (Vol II)-
6, the functions .vN;i/iD1;��� ;N are defined over R

d and not over R
Nd. Obviously,

this makes a big difference when investigating the convergence of the equilibria
as N tends to 1. It is indeed much easier to prove compactness properties of the
functions .vN;i/iD1;��� ;N when defined on R

d. Of course, the crucial point here is the
fact that each control ˛N;i is required to be Wi-adapted. As already emphasized, this
forces the states of the different players to be independent! In Chapter (Vol II)-6, the
system (Vol II)-(6.94) corresponds to the more general case when the controls are
allowed to be adapted with respect to all the noises. This is one of the main objective
of Chapter (Vol II)-6 to address the convergence of the solution of the system in this
much more challenging regime.

We refer to the Notes & Complements below for references.

7.2 Mean Field Games with Finitely Many States

This section is devoted to the analysis of models for which the state space of the
system is finite. The methods can be adjusted to handle countable discrete state
spaces like the set of integers N used in the example Searching for Knowledge of
Section 1.6 of Chapter 1. We refrain from working at this level of generality to
avoid having to deal with heavier notations and most importantly, to add technical
conditions to guarantee that all the quantities (which would typically involve infinite
sums) are actually finite and well defined. Moreover, and even though we still work
with continuous time, the stochastic analysis tools developed throughout the book
for solutions of stochastic differential mean field games can no longer be used in
their original forms. The solutions and implementations need to be ported from the
framework of stochastic differential games to a discrete game set-up.

In this section, we assume that the possible states of the system comprise a finite
set E D fe1; � � � ; edg. Even though this will not play a major role in this section,
we can always assume, as we did in Subsection 5.4.4 of Chapter 5, that the set E is
embedded in R

d by regarding its elements as the vectors of the canonical basis of
R

d formed by the unit coordinate vectors e1 D .1; 0; � � � ; 0/, � � � , ed D .0; � � � ; 0; 1/.
Before we introduce the specifics of the finite player games from which we

derive mean field game models, we review some of the features of the basic
stochastic differential mean field games studied in the first part of the book. At any
given time, players choose their actions from a Borel set A � R

k. The dynamics
of the state of the system are completely determined by the drift and volatility
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functions b and � which depend upon time, the value of the state of a given player,
a probability measure serving as a proxy for the distribution of the states of the
other players, and a possible action. For each � 2 P2.Rd/ and ˛ 2 A, the functions
Œ0;T� � R

d 3 .t; x/ 7! b.t; x; �; ˛/ and Œ0;T� � R
d 3 .t; x/ 7! �.t; x; �; ˛/

determine the local means and standard deviations of the changes of the state in
infinitesimally small time intervals. Put more mathematically, they determine the
infinitesimal generator .L�;˛t /06t6T of a Markov diffusion process for the dynamics
of the states from time t on. Replacing � by a deterministic flow � D .�t/06t6T of
measures, or ˛ by a feedback function �.t; x/ would change the dynamics without
affecting the Markovian character of these dynamics. However, replacing � by a
stochastic flow of measures, or ˛ by an adapted process with values in A, would
prevent us from constructing the controlled dynamics of the states as a Markov
process. Nevertheless, such dynamics could still be constructed from the local mean
and standard deviation characteristics (now random processes) by solving stochastic
differential equations with random coefficients. We now explain why and how the
situation is different, and possibly more delicate, when the state space is a finite set
E instead of Rd.

We first recall the characterization of the infinitesimal generators of continuous
time Markovian dynamics on a finite state space E:

Definition 7.4 A real valued function q on E � E satisfying the two properties:

(i) q.x; x0/ > 0; x; x0 2 E; x ¤ x0;
(ii) q.x; x/ D � P

x0¤x q.x; x0/; x 2 E.

is called a Q-matrix.

Such Q-matrices determine the infinitesimal generators of E-valued continuous time
Markov chains by providing the rates of change of the state in infinitesimally small
time intervals. For this reason, they will play the roles played by the drift and
volatility coefficients b and � . So in analogy with the framework of stochastic
differential mean field games recalled above, we fix the set-up of our game models
in the following way.

Assumption (Discrete MFG Rates).

(A1) For each ˛ 2 A, � 2 P.E/, and t 2 Œ0;T�,
�

t.x; x0; �; ˛/

�
x;x02E is a

Q-matrix and there exists a positive constant c
 such that:

j
t.x; x
0; �; ˛/j �c
.1C j˛j/;

t 2 Œ0;T�; x; x0 2 E; � 2 P.E/; ˛ 2 A:

(continued)
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Also, for each x; x0 2 E, the mapping Œ0;T� � P.E/ � A 3 .t; �; ˛/ 7!

t.x; x0; �; ˛/ is continuous, P.E/ being equipped with the weak con-
vergence topology, which is here equivalent to the Wasserstein topology
since E is finite.

(A2) The rates .
t/06t6T are linear in ˛, namely:


t.x; x
0; �; ˛/ D �t.x; x

0; �/ � ˛; x; x0 2 E; � 2 P.E/;

where, for each x; x0 2 E0, the mapping Œ0;T� � P.E/ 3 .t; �/ 7!
�t.x; x0; �/ 2 R

k is bounded and continuous and satisfies:

8
ˆ̂<

ˆ̂:

�t.x; x
0; �/ � ˛ > 0; for x ¤ x0 and ˛ 2 A;

�t.x; x; �/ D �
X

x02E;x0 6Dx

�t.x; x
0; �/:

:

The linearity assumption (A2) will only be needed later on for some specific
technical results. We included it here for the sake of completeness as it is an
assumption on the form of the jump rates after all. Observe however that it is
rather restrictive as the sign constraint 
t.x; x0; �; ˛/ > 0 for x 6D x0 becomes
�t.x; x0; �/ � ˛ > 0, which precludes A to contains opposite vectors. We let the
reader check that a more general affine, instead of linear, condition would in fact
suffice to implement the arguments used below.

Our first task is to show that the rates 
t.x; x0; �; ˛/ can be used to construct
dynamics controlled by the players when � is replaced by �t for a flow � D
.�t/06t6T of measures which is either deterministic or Markovian in the sense that
�t is a function of time and the state Xt at time t, and similarly when ˛ is replaced
by a feedback function �.t;Xt/ of the state Xt at time t.

Constructing state dynamics when the flow of measures and the controls are only
assumed to be adapted to a given filtration is much more involved mathematically.
It requires the construction of point processes from their local characteristics as
given by their dual predictable projections. Indeed, the jump intensities are the
only characteristics which can be controlled. More details on what is actually
needed, at least in the mean field game formulation, will be given at the beginning
of Subsection 7.2.2 below. So for the sake of simplicity, we restrict ourselves to
models without common noise, and we only consider Markovian control strategies.
References to specific texts containing elements of the control theory of point
processes are given in the Notes & Complements at the end of the chapter.
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7.2.1 N Player Symmetric Games in a Finite State Space

For pedagogical reasons, we first describe, though in a rather informal way, the finite
player games leading to the mean field game models considered in this section.
Complete hypotheses and precise and rigorous statements will be given in the
following subsections.

The state of player i 2 f1; � � � ;Ng is given at time t by an element Xi
t of the finite

set E. Intuitively, the way player i acts on the system is by choosing, or at least
influencing, the rate at which its own state will switch from its current value Xi

t D x
to another possible value x0 2 E. So even if this choice were to depend upon other
quantities such as the current or past values Xj

s for j ¤ i and 0 6 s 6 t of the states
of the other players, the action of player i at time t should only affect directly the
value of the rates at which its own state will jump to other states x0 2 E. Again, these
rates can and will depend upon the current value of the state of player i, as well as
other quantities like the current values of the states of the other players.

Uncontrolled Transition Rates with Mean Field Interaction
In order to model the symmetry and the mean field nature of the interactions, we
ask the rates of change of the state of a given player i to depend upon the state of
the system only through the current value of the state of player i and the empirical
distribution of the states of the other players. To be more specific, if we assume that
the dynamics of the states of the players are not controlled, and that the state of the
system at time t is Xt D .X1t ; � � � ;XN

t /, then the individual states of the N players
jump independently of each other with transition probabilities of the form:

P

h
Xi

tCt D x0 j Xi
t D x; N�N�1

X�i
t

D �
i

D 
i
t.x; x

0; �/t C o.t/; (7.22)

for i D 1; � � � ;N, whenever x0 6D x, where as usual, N�N�1
X�i

t
D 1

N�1
PN

jD1;j6Di ıX
j
t

is the

empirical distribution of the states X�i
t of the other players.

The rate 
i
t.x; x

0; �/ is here to give the small t asymptotic behavior of the
probability at time t that the state of player i changes from x to x0 when the empirical
distribution of the states of all the other players is �. The formulation of this
requirement is inspired by the properties of continuous time Markov chains in finite
state spaces.

Controlled Transition Rates
Let us now see how we could include the control strategies of the players in our list
of desiderata.

We fix a filtered probability space .˝;F ;F;P/ together with an adapted process
˛ D .˛1; � � � ;˛N/ with values in AN D A � � � � � A. Here, ˛i D .˛i

t/06t6T for
i D 1; � � � ;N, and we should think of ˛i

t as the control exerted at time t by player
i. Notice that we require the control strategies to be adapted despite the presence of
jumps in the sample paths of the state process.
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If we denote by Xi D .Xi
t/06t6T the time evolution of the state of player i

for i D 1; � � � ;N, as a result of the strategy profile ˛, we ask the state of the
system to be a EN D E � � � � � E-valued process X D .X1; � � � ;XN/ with a law
characterized by the transition probabilities PŒXtCt D x0jFt;Xt D x�, which
we would like to specify from the transition rates 
t.xi; x0i; N�N�1

x�i ; ˛
i
t/ whenever

x D .x1; � � � ; xN/ and x0 D .x01; � � � ; x0N/ are elements of EN . This would allow
us to work with control strategies which depend upon the history of the system in
a non-anticipative way, opening the door to searches for open loop Nash equilibria
based on appropriate forms of the stochastic maximum principle. However, as we
explained in the informal introduction to this section, the construction of such state
processes is rather involved, and in order to avoid having to develop and present
too many technical tools which would distract us from our main objective, we shall
restrict ourselves to Markovian control strategies.

To be more specific, we shall only consider control strategies of the form ˛i
t D

� i.t;Xt/ for some deterministic measurable A-valued function � i on Œ0;T�� EN . We
denote by A

i D A this set of strategies. For the time being, it will serve as the set
of admissible control strategies for each player i. We may add extra conditions for a
control strategy to be admissible later on.

In any case, the controlled state evolves as a Markov process in EN , with càd-làg
trajectories, and its distribution is entirely determined by the transitions:

PŒXtCt D x0jXt D x; Ft�

D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1 �
NX

jD1

t

�
xj; x0j; �N�1

x�j ; �
j.t; x/

�
t C o.t/ if x0 D x;


t
�
xi; x0i; �N�1

x�i ; �
i.t; x/

�
t C o.t/ if x0i ¤ xi and x0�i D x�i;

for some i 2 f1; : : : ;Ng;

(7.23)

for x; x0 2 EN . Clearly, the above definition implies that in an infinitesimal time
interval of length t, at most one player’s state will change.

Recall from Subsection 5.4.4 of Chapter 5 that a probability measure � 2 P.E/
can be identified with the set of weights p D .p`/16`6d 2 Sd it gives to each of
the elements of the set E. In other words, we can identify the measure � with the
element p of the simplex given by its components p` D �.fe`g/ for ` D 1; � � � ; d
so that � D P

16`6d p`ıe` . Notice that when � D N�N
x is the empirical measure of a

sample x D .x1; � � � ; xN/ of elements of E, we have:

N�N
x D 1

N

NX

iD1
ıxi D

dX

`D1
p`ıe`

where p` D #fiI 1 6 i 6 N; xi D e`g=N is the proportion of elements xi of the
sample which are equal to e`.
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Cost Functionals
The goal of player i is to minimize its expected cost as given by:

Ji.˛1; � � � ;˛N/ D E

� Z T

0

f .t;Xi
t ; N�N�1

X�i
t
; ˛i

t/ dt C g.Xi
T ; N�N�1

X�i
T
/

�
;

where the strategies ˛j belong to A for j D 1; � � � ;N, and where the running cost
function f and the terminal cost function g are real valued functions defined on the
sets Œ0;T� � E � P.E/ � A and E � P.E/ respectively.

7.2.2 Mean Field Game Formulation

We emphasize the similarities and the differences between the present analysis
and the stochastic differential models studied throughout the book by using similar
notations and formulating hypotheses and results in as close a manner as possible.

General Formulation

The reader may skip this short subsection in a first reading. Indeed, it will not
be used in the remainder part of this section where we consider only Markovian
games. Still, we thought it would be useful to hint at the technicalities we would
have to face should we want to consider models with common noise or games with
major and minor players as we do in Subsection (Vol II)-7.1.9.

In its most abstract form, a general formulation of the problem would involve
a filtered probability space .˝;F ;F;P/ together with two predictable processes
˛ D .˛t/06t6T and � D .�t/06t6T with values in A and P.E/ respectively. We
should think of�t as a random input serving as proxy for the conditional distribution
of the state of a generic player, the conditioning being with respect to a random
environment external to the game and common to all the players. We should think
of ˛t as the control exerted at time t by a generic player. Given the environment
� and the control strategy ˛, the state of the process should be a continuous time
process X D .Xt/06t6T with values in E. We shall assume that it is càd-làg by
which we mean right continuous and with left limits. Because E is finite, this process
determines a random point measure on Œ0;T� � E:

�.dt; dx/ D
X

06t6T
Xt�¤Xt

ı.t;Xt/.dt; dx/ D
X

n>0
ı.Tn;Xn/.dt; dx/;

if we think of X as a marked point process .Tn;Xn/n>0 where Tn denotes the time of
the n-th jump of the process and Xn the landing point of the jump. The mathematical
formulation of the fact that a generic player controls the state in the random
environment � with the strategy ˛ would state that the dual predictable projection
N� of the measure � is given by:
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N�.dt; fx0g/ D 
t.Xt�; x0; �t; ˛t/dt;

which appears as the data from which the state evolution needs to be constructed.
Such a level of generality raises questions which could distract us from the main
thrust of this section. Indeed, reconstructing the point measure � from its dual
predictable projection N� is rather involved, and even when this can be done, the
measure � does not always determine uniquely the state process X if the filtration
F is larger than the filtration F

X generated by the process X. This difficulty can be
resolved by working on the canonical space on which we can construct the marked
point process, but this can prevent us from capturing natural models for important
applications. See the Notes & Complements at the end of the chapter for references
to textbooks and articles providing the necessary material needed to tackle these
subtle issues.

MarkovianMean Field Games
Given the technical issues raised in the above discussion, we restrict ourselves to the
case of deterministic flows � D .�t/0t6T in P.E/ and Markovian control strategies
˛ D .˛t/06t6T given by feedback functions in the form ˛t D �.t;Xt/. As above,
we denote by A the set of these strategies. Notice that the predictable version of ˛

we alluded to in the previous paragraph should be thought of as .�.t�;Xt�//0�t�T ,
which coincides Leb1 ˝ P almost-everywhere with .�.t;Xt//0�t�T , where as usual
Leb1 is the Lebesgue measure on Œ0;T�.

Naturally, the mean field game problem associated with the finite player game
formulated above can be stated as the following set of two successive steps:

1. For each fixed deterministic flow � D .�t/06t6T of probability measures on E,
solve the optimal control problem:

inf
˛2AE

� Z T

0

f .t;Xt; �t; ˛t/dt C g.XT ; �T/

�

where for each ˛ 2 A, the process X D .Xt/06t6T is a nonhomogeneous E-
valued Markov chain with transition probabilities determined by the Q-matrix of
rates qt given by the formula:

qt.x; x
0/ D 
t.x; x

0; �t; �.t; x//; t 2 Œ0;T�; x; x0 2 E:

2. Find � D .�t/06t6T such that the flow of marginal distributions of a solution
X D .Xt/06t6T to the above optimal control problem coincides with the flow we
started from in the sense that L.Xt/ D �t for all t 2 Œ0;T�.

Before we even start formulating assumptions and specifying regularity properties,
we reiterate the fact that, since the space E is finite, the space P.E/ can be
identified to the simplex Sd, and because of the equivalence of the norms proved
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in Lemma 5.65, the regularity properties such as continuity or Lipschitz regularity
can be equivalently formulated in terms of the ambient Euclidean norm of Sd instead
of the Wasserstein distance used in the previous chapters. For this reason, we shall
not specify which metric structure we use on P.E/. Differentiability issues will not
come up until we discuss the master equation later in this section.

Assumptions on the Cost Functions
We first identify the set of cost functions we shall use in this section.

Assumption (Discrete MFG Cost Functions).

(A1) The function f is jointly continuous in .t; �; ˛/. For each fixed
.t; x; �/ 2 Œ0;T� � E � P.E/, it is differentiable with respect to the
control parameter ˛, with a derivative @˛f which is jointly continuous
in .t; �; ˛/.

(A2) The set A is closed and convex and the function f is uniformly � -convex
in ˛ 2 A for some strictly positive constant � > 0, uniformly in
.t; x; �/ 2 Œ0;T� � E � P.E/, in the sense that:

f .t; x; �; ˛0/ � f .t; x; �; ˛/ � @˛f .t; x; �; ˛/ � .˛0 � ˛/ > � j˛ � ˛0j2;
(7.24)

for all .t; x; �/ 2 Œ0;T� � E � P.E/ and ˛ and ˛0 in A.
(A3) The terminal cost function g W E � P.E/ 3 .x; �/ 7! g.x; �/ 2 R is

continuous in � for each x 2 E.

Notice that the assumptions made above are automatically uniform with respect
to the state variable x since the state space E is finite.

The Hamiltonian
For each x 2 E we define the difference operatorx acting on functions on E by the
formula:

Œxh�.x0/ D h.x0/ � h.x/; x; x0 2 E; (7.25)

whenever h is a real valued function on E. If E D fe1; � � � ; edg, such a function h
can be identified to the element y 2 R

d defined by yi D h.ei/ for i D 1; � � � ; d,
and in this way, if x D ei, the difference operator x can be viewed as well as the
transformation i of Rd given by:

iy D .y1 � yi; � � � ; yd � yi/; y D .y1; � � � ; yd/ 2 R
d; i D 1; � � � ; d: (7.26)



648 7 Extensions for Volume I

The introduction of this definition is justified by the fact that the action of the
infinitesimal generators .Lt/t>0 of a nonhomogeneous continuous time Markov
chain in E with Q-matrix (or transition rates) .qt/t>0 is given by, for each function h
on E:

ŒLth�.x/ D qt.x; �/ � h D
X

x02E

qt.x; x
0/h.x0/ D

X

x02E

qt.x; x
0/Œh.x0/ � h.x/�

D qt.x; �/ �xh:

(7.27)

We shall use the notation x for the difference operator when convenient.
In any case, the Kolmogorov or Fokker-Planck equation for a flow of probability

measures � D .�t/t>0 governed by .qt/t>0 is given by @t�t D L�t �t where we use the
notation L�t to denote the adjoint/transpose of the operator/matrix Lt. In developed
form, the Kolmogorov equation reads:

@t�t.fxg/ D
X

x02E

qt.x
0; x/�t.fx0g/; x 2 E; t > 0: (7.28)

Notice in particular that, for any x 2 E, .�t.fxg//t>0 is time continuous.
Coming back to our control problem, and using h 2 R

E for the adjoint variable,
the Hamiltonian is defined as the real valued function H on Œ0;T��E�P.E/�R

E �A
given by:

H.t; x; �; h; ˛/ D ŒL�;˛t h�.x/C f .t; x; �; ˛/

D
X

x02E


t.x; x
0; �; ˛/h.x0/ C f .t; x; �; ˛/: (7.29)

We use the obvious notation L�;˛t for the infinitesimal generator Lt defined above for
the Q-matrix qt.x; x0/ D 
t.x; x0; �; ˛/.

Using (A2) in Discrete MFG Rates and (A2) in Discrete MFG Cost Functions
and following the steps of the proof of Lemma 3.3 in Chapter 3, we can prove the
existence of a unique minimizer Ǫ defined by:

Ǫ .t; x; �; h/ D argmin˛2AH.t; x; �; h; ˛/: (7.30)

It is jointly continuous in .t; �; h/ and Lipschitz continuous and at most of linear
growth in h.

In this framework, the minimized Hamiltonian is the real valued function H�
defined on Œ0;T� � E � P.E/ � R

E by:

H�.t; x; �; h/ D inf
˛2A

H.t; x; �; h; ˛/ D H
�
t; x; �; h; Ǫ .t; x; �; h/�: (7.31)

It is jointly continuous and locally Lipschitz continuous in h.
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For the sake of convenience, we implicitly assume below that (A1) and (A2) in
assumption Discrete MFG Cost Functions and assumption Discrete MFG Rates
are satisfied. However, in some specific cases, we shall still use the notations Ǫ and
H� even though 
t is not linear in ˛.

The HJB Equation and a Verification Theorem
The flow � D .�t/06t6T being fixed, we define the value function of the
optimization problem of the generic player by:

u�.t; x/ D inf
˛2At

E

� Z T

t
f .s;Xs; �s; ˛s/ds C g.XT ; �T/

ˇ̌
Xt D x

�
; (7.32)

where the set of admissible controls At comprises only feedback functions on
Œt;T� � E. Since we are in a fully Markovian setup, the dynamic programming
principle holds and the HJB equation reads:

@tu
�.t; x/C H��

t; x; �t; u
�.t; �/� D 0; t 2 Œ0;T�; x 2 E; (7.33)

with terminal condition u�.T; x/ D g.x; �T/. Thanks to (7.27), (7.33) can be
rewritten in a form very similar to that used before in the book, compare for instance
with (3.12):

@tu
�.t; x/C H��

t; x; �t; xu�.t; �/� D 0; t 2 Œ0;T�; x 2 E: (7.34)

Since E is finite, observe that (7.33) appears as a vector ordinary differential
equation. Under the above assumptions on the running cost function, the coefficients
of this ordinary differential equation are locally Lipschitz continuous, which
guarantees existence and uniqueness of a local solution.

As usual, this local solution can be extended in a unique manner to the entire
Œ0;T�whenever we can prove an a priori bound. In order to establish such an a priori
bound, we proceed in two steps. The first one reads as an analog of the verification
argument proven in Lemma 4.47:

Proposition 7.5 If the function u W Œ0;T� � E 3 .t; x/ 7! u.t; x/ 2 R is
a continuously differentiable solution of the HJB equation (7.33) with terminal
condition u.T; x/ D g.x; �T/ for x 2 E, then u is the value function of the optimal
control problem when the flow � is given, and the feedback function:

O�.t; x/ D Ǫ�
t; x; �t; u.t; �/

�
(7.35)

gives the unique optimal Markovian control.
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Proof. As usual, the verification argument can be proved by writing:

E

�
u.t;Xt/C

Z t

0

f .s;Xs; �s; ˛s/ds

�
;

as the integral of its derivative between t and T , when X D .Xt/06t6T is driven by a control
˛. This can be achieved by means of (7.27). We then get that the cost to ˛ is greater than
EŒu.0;X0/�, with equality if � D O�. ut

Obviously, the verification argument still applies when u is just defined on
ŒS;T� � E, for some S 2 Œ0;T�, instead of the whole Œ0;T��E. In particular, it applies
to the local solution u to (7.33); in such a case, ŒS;T� is the largest subinterval of
Œ0;T� on which the local solution is known to be defined. As a byproduct, the local
solution coincides with the value function u� on ŒS;T� � E and it suffices to prove
that supt2Œ0;T�;x2E ju�.t; x/j is finite to have an a priori bound for the local solution
to (7.33). The latter follows from:

Lemma 7.6 Under the standing assumptions, there exists a constant C such
that, for any S 2 Œ0;T� for which the HJB equation (7.33) has a continuously
differentiable solution u on ŒS;T� � E with terminal condition u.T; x/ D g.x; �T/,
it holds:

sup
t2ŒS;T�;x2E

ju�.t; x/j D sup
t2ŒS;T�;x2E

ju.t; x/j 6 C:

Proof. We consider S as in the statement. Thanks to the preliminary discussion before the
statement of Lemma 7.6, we know that u� and u coincides on ŒS; T�.

For t 2 Œ0; T� and ˛0 2 A, we can use .˛s D ˛0/t6s6T in the right-hand side of (7.32), we
easily get an upper bound for u� and thus for u on ŒS; T� � E, the bound being independent
of S.

In order to establish the lower bound, we make use of the convexity of f :

u�.t; x/

> E

� Z T

t



f .s;Xs; �s; ˛0/C @˛f .s;Xs; �s; ˛0/ � � Ǫ .s;Xs; �s; u

�.s; �// � ˛0
��

ds

C g.XT ; �T/
ˇ̌
Xt D x

�

> � C

�
1C E

� Z T

t

ˇ̌ Ǫ�
s;Xs; �s; u

�.s; �/�ˇ̌ds
ˇ̌
Xt D x

��
;

where C > 0 depends upon ˛0, and the three maxima maxt2Œ0;T�;x0
2E jf .t; x0; �t; ˛0/j,

maxt2Œ0;T�;x0
2E j@˛f .t; x0; �t; ˛0/j, and maxx0

2E jg.x0; �T/j.
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Allowing C to increase from line to line and using the fact j Ǫ .s;Xs; �s; u�.s; �//j 6 C.1C
ju�.s; �/j/, see Lemma 3.3, we finally get:

u�.t; x/ > � C

�
1C

Z T

t
ju�.s; �/jds

�
:

Recalling that we already have an upper bound for u�, we deduce that:

ju�.t; �/j 6 C

�
1C

Z T

t
ju�.s; �/jds

�
:

We conclude by Gronwall’s lemma. ut

The Fixed-Point Step and Kolmogorov’s Equation
The second step of the mean field game problem as articulated above in the
introduction of the subsection corresponds to the search for a fixed point of the best
response function in the classical case of Nash equilibria for finite player games.
A flow � D .�t/06t6T provides such a fixed point if �0 D L.X0/, which is
usually prescribed as the state initial condition, and if .�t/06t6T satisfies the forward
Kolmogorov equation for the marginal law .L.Xt//06t6T of the optimally controlled
path .Xt/06t6T in environment �. Indeed, because of the Markov property, the
forward Kolmogorov equation characterizes the marginal law .L.Xt//06t6T . In the
present situation, if we recall the form (7.28) of the Kolmogorov equation, and if we
use the optimal control identified in Proposition 7.5 above, this equation reads:

@t�t.fxg/ D
X

x02E

�t.fx0g/Oqt.x
0; x/

D
X

x02E;x0¤x

�t.fx0g/Oqt.x
0; x/ �

X

x02E; x0¤x

�t.fxg/Oqt.x; x
0/;

(7.36)

where we use the notation .Oqt/t>0 for the Q-matrix of transition rates of the optimal
continuous time Markov chain identified in the above verification theorem. In other
words:

Oqt.x; x
0/ D Oq�

t .x; x
0/ D 
t

�
x; x0; �t; Ǫ .t; x; �t; u

�.t; �//�: (7.37)

As for the stochastic differential games studied in this book, mean field game Nash
equilibria are then identified to the solutions of the system of Kolmogorov and
Hamilton-Jacobi-Bellman equations (7.33) and (7.36).

Existence of a Mean Field Game Equilibrium
Let us denote by Cd D C.Œ0;T�IP.E// the space of continuous flows � D
.�t/06t6T of probability measures on E. Clearly, C.Œ0;T�IP.E// can be identified
with C.Œ0;T�ISd/, and can be naturally embedded into C.Œ0;T�IRd/. For each
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fixed � 2 Cd, we denote by u� the unique solution of the HJB equation (7.33).
Using the optimal control identified in the verification result of Proposition 7.5, we
construct the flow (7.37) of Q-matrices. Using this flow of transition rates, we solve
the forward Kolmogorov equation (7.36) with initial condition �0. We denote the
resulting flow of measure by �.�/. It is plain to see that �.�/ 2 Cd and proving
existence of a solution of the mean field game problem as stated above can now be
done by proving that this map � has a fixed point in Cd. The continuity of � is due
to the fact that the minimizer Ǫ is continuous in the variables � and h. Notice that
the transition rates .Oq�

t /06t6T given by the minimizer Ǫ are uniformly bounded so
that the solution of the corresponding Kolmogorov equation is time Lipschitz with
a Lipschitz constant independent of �. Using Arzela-Ascoli’s theorem to identify
relatively compact subsets of Cd we conclude using Schauder’s fixed-point theorem.

Monotonicity and Uniqueness of the Solution
In order to prove uniqueness of the solution, we may follow the same strategy as
for stochastic differential mean field games. Indeed, as in the case of assumption
Lasry-Lions Monotonicity of Section 3.4, we may assume that the terminal cost
function g is monotone in the sense that:

Z

E
Œg.x; �/ � g.x; �0/�d.� � �0/.x/

D
X

x2E

Œg.x; �/ � g.x; �0/�
�
�.fxg/ � �0.fxg/� > 0;

for all �;�0 2 P.E/, and that the running cost function f has a decomposition of
the form:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/

with f0.t; �; �/ monotone for each fixed t 2 Œ0;T�. A crucial ingredient in the proof of
Theorem 3.29 is the fact that the drift and the volatility are independent of the flow
�, so that, given an admissible control strategy ˛, the law of the control process is
entirely determined, irrespective of the flow �. This is still the case in the present
situation if, on the top of the above conditions, we assume that:

the Q-matrices .
t/06t6T are independent of �:

Under these conditions, we can repeat the proof of Theorem 3.29 mutatis mutandis
in the present situation and prove uniqueness.

TheMaster Equation
The master equation is the subject of the second part of the second volume of the
book. However, instances of this equation were already mentioned in Chapter 5 and
Chapter 6. The self-contained nature of this section on mean field games with finite
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states makes it possible to discuss the master equation without the heavy lifting of
the second part of the second volume.

We consider a real valued function U defined on Œ0;T� � E � P.E/ which is
assumed to be functionally differentiable in the variable � 2 P.E/ for every fixed
.t; x/ 2 Œ0;T� � E. Recall that P.E/ can be identified with the simplex Sd via the
correspondence � $ p D .p1; � � � ; pd/ with pi D �.feig/ for i D 1; � � � ; d, or in
other words, � D Pd

iD1 piıei . Given this identification, Proposition 5.66 explains
how one goes from the standard Euclidean partial derivatives @U=@pi to the linear
functional derivative ıU=ı� when U is defined on the whole P2.Rd/. If that were
to be the case, we would be able to use this identification to express the master
equation in terms of this functional derivative.

In the present context of finite state mean field games, and in analogy with
the master equation (5.117) for stochastic differential mean field games without
common noise introduced in Chapter 5, the master equation here takes the form:

@tU.t; x; �/C H��
t; x; �;U.t; �; �/�

C
X

x02E

h��
t; �;U.t; �; �/�.x0/

@U.t; x; �/
@�.fx0g/ D 0;

(7.38)

for .t; x; �/ 2 Œ0;T� � E � P.E/, with U.T; x; �/ D g.x; �/ as terminal condition.
The R

E-valued function h� is defined on Œ0;T� � P.E/ � R
E � E by:

h�.t; �; u/.x0/ D
Z

E

t

�
x; x0; �; Ǫ .t; x; �; u/�d�.x/

D
X

x2E


t
�
x; x0; �; Ǫ .t; x; �; u/��.fxg/:

(7.39)

While it is convenient to identify P.E/ with the simplex Sd, we need to specify
the kind of derivative we use when we take derivatives with respect to measure
arguments. In (7.38), @U.t; x; �/=@�.fx0g/ is understood as the derivative of U with
respect to the weight �.fx0g/ whenever U.t; x; �/ itself is regarded as a differentiable
function of the d-tuple .�.fx0g//x02E on an open neighborhood of Sd. However, it is
important to notice that the choice of the derivative is not an issue in the statement
of the master equation (7.38). Indeed, we can think of h�.t; �; u/ as a function of
x0 2 E. Since it is an integral of a Q-matrix with respect to its first variable, the
values of h�.t; �; u/.x0/ sum up to 0. Consequently, we can add a constant to the
partial derivatives of U in the right-hand side of (7.38) without changing its value.
Namely, (7.38) may be rewritten as:

@tU.t; x; �/C H��
t; x; �;U.t; �; �/�

C
X

x02E

h��
t; �;U.t; �; �/�.x0/


@U.t; x; �/
@�.fx0g/ � @U.t; x; �/

@�.fxg/
�

D 0:
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It is worth noticing that the above summation is also equal to:

X

x0 6Dx

h��
t; �;U.t; �; �/�.x0/


@U.t; x; �/
@�.fx0g/ � @U.t; x; �/

@�.fxg/
�
: (7.40)

Now, using Proposition 5.66 and Corollary 5.67, we can identify:

@U.t; x; �/
@�.fx0g/ � @U.t; x; �/

@�.fxg/ ;

for x0 6D x, with the partial derivative of U.t; x; �/ with respect to �.fx0g/ whenever
U.t; x; �/ is regarded as a smooth function of the .d�1/ tuple .�.fx0g//x02Enfxg, which
we can see as an element of the .d � 1/-dimensional domain:

Sd�1;6 D

.p1; � � � ; pd�1/ 2 Œ0; 1�d�1 W

d�1X

iD1
pi 6 1

�
:

This implies that whether we use partial derivatives on the .d � 1/-dimensional
domain Sd�1;6 or linear functional derivatives, the master equation remains the
same. From a numerical point of view, this implies that, in order to compute the
sum in (7.40), it suffices to compute the derivatives with respect to .�.fx0g//x02Enfxg,
regarded as an element of the .d�1/-dimensional domain Sd�1;6, and then compute
the inner product with .h�.t; �;U.t; �; �//.x0//x02E with the convention that the entry
h�.t; �;U.t; �; �//.x/ is multiplied by zero.

As in the general theory of stochastic differential mean field games, the interest
in the master equation (7.38), when it can be solved, is to encapsulate both the
Kolmogorov and HJB equations, (7.36) and (7.33) respectively, in one single
equation, see for instance Remark 5.107. In the present situation, the general
procedure used to check this claim goes as follows:

Proposition 7.7 Let us assume that U is a real valued function defined on Œ0;T� �
E�P.E/ which solves equation (7.38) with terminal condition U.T; x; �/ D g.x; �/
for .x; �/ 2 E �P.E/. If � W Œ0;T� 3 t 7! �t 2 P.E/ is the solution of the ordinary
differential equation:

@t�t.fxg/ D h��
t; �t;U.t; �; �t/

�
.x/; x 2 E; (7.41)

with a given initial condition�0, then the function u W Œ0;T��E 3 .t; x/ 7! u.t; x/ D
U.t; x; �t/ 2 R solves the HJB equation (7.33) for the flow �, and appears as the
value function of the optimization problem in the environment �. Also, (7.41) can be
identified with the Kolmogorov equation (7.36). Consequently, � is an equilibrium.

The proof is immediate in the present situation. We can use the chain rule to
compute @tu.t; x/, and the fact that U satisfies the master equation (7.38), and �
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satisfies (7.41), imply the desired result. The claim that (7.41) identifies with the
Kolmogorov equation (7.36) is justified by (7.37).

7.2.3 A First Form of the Cyber-Security Model

For the sake of illustration, we propose a first analysis of the Botnet defense model
alluded to in Subsection 1.6.2 of Chapter 1. There, we introduced the model as an
instance of a game with major and minor players. Here, we exogenize the behavior
of the major player and we concentrate on the population of potential victims
assuming that the hacker has already chosen its strategy, and that all the players
know it. We shall consider the full model with an attacker and a field of targets in
Subsection (Vol II)-7.1.9 of Chapter (Vol II)-7.

We first specify the state space and the transition rates for the dynamics of
the states of the potential victims, as well as their cost functions. We refer to the
bibliography cited in the Notes & Complements below for a complete account on
this model. We assume that each vulnerable computer can be in one of the following
d D 4 states:

• DI: defended infected;
• DS: defended and susceptible to infection;
• UI: unprotected infected;
• US: unprotected and susceptible to infection.

So E D fDI;DS;UI;USg. In this simplistic model, the rate 
t is independent of t
and each network computer owner can choose one of two actions, that is A D f0; 1g.
Action 0means that the computer owner is happy with its level of defense (Defended
or Unprotected) and does not try to change its own state, while action 1 means that
the computer owner is willing to update the level of protection of its computer and
switch to the other state (Unprotected or Defended). In the latter case, updating
occurs after an exponential time with parameter 
 > 0, which accounts for the
speed of the response of the defense system.

When infected, a computer may recover at a rate depending on its protection
level: the recovery rate is denoted by qD

rec for a protected computer and by qU
rec for

an unprotected one.
Conversely, a computer may become infected in two ways, either directly from

the attacks of the hacker or indirectly from infected computers that spread out the
infection. The rate of direct infection depends upon the intensity of the attacks,
as fixed by the botnet herder. This intensity is denoted by vH and the rate of
direct infection of a protected computer is vHqD

inf while the rate of direct infection
of an unprotected computer is vHqU

inf. Also, the rates of infection spreading from
infected to susceptible computers depend upon the distribution of states � within
the population of computers. The rate of infection of an unprotected susceptible
computer by other unprotected infected computers is ˇUU�fUIg, the rate of infection
of a protected susceptible computer by other unprotected infected computers is
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ˇUD�fUIg, the rate of infection of an unprotected susceptible computer by other
protected infected computers is ˇDU�fDIg, and the rate of infection of a protected
susceptible computer by other protected infected computers is ˇDD�fDIg.

Finally, the rate of transition 
t.x; x0; �; vH; ˛/ for the state of a computer in the
network is given by:


t.�; �; �; vH; 0/ D

2

664

DI DS UI US

DI � � � qD
rec 0 0

DS vHqD
inf C ˇDD�.fDIg/C ˇUD�.fUIg/ � � � 0 0

UI 0 0 � � � qU
rec

US 0 0 vHqU
inf C ˇUU�.fUIg/C ˇDU�.fDIg/ � � �

3

775

and:


t.�; �; �; vH; 1/ D

2

664

DI DS UI US

DI � � � qD
rec 
 0

DS vHqD
inf C ˇDD�.fDIg/C ˇUD�.fUIg/ � � � 0 


UI 
 0 � � � qU
rec

US 0 
 vHqU
inf C ˇUU�.fUIg/C ˇDU�.fDIg/ � � �

3

775

where all the instances of � � � should be replaced by the negative of the sum of the
entries of the row in which � � � appears on the diagonal.

As explained earlier, we do not specify the dynamics nor the state of the attacker
in this first form of the model. For the present purposes, it suffices to known the
value of the intensity of the attacks, here given by vH. Notice also that, in the current
form of the model, the rate 
t not only depends on the action of the typical computer
owner, but also on the intensity of the attacks. Each computer owner pays a fee kD

per unit of time for the defense of its system, and kI per unit of time for losses
resulting from infection. So, if we denote by Xt the state of its computer at time t,
and by ˛ D .˛t/06t6T its control, the expected cost to a typical computer owner is
given by:

J.˛/ D E

� Z T

0

�
kD1D C kI1I

�
.Xt/dt

�
;

where we use the notation D D fDI;DSg and I D fDI;UIg.
Notice that, like for the counter-example investigated in Subsection 7.2.5 below,

the control of the minor player is of bang-bang type.

Numerical Implementation
For the purpose of illustration, we provide numerical results from a straightforward
implementation of the solution of the mean field game of cyber security described
above. We chose a time interval Œ0;T� with T D 10 (see comments below
for a discussion of this particular choice) which we covered by a regular mesh
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Fig. 7.1 Time evolution in equilibrium, of the distribution �t of the states of the computers in the
network for different initial conditions �0: �0 D .0:25; 0:25; 0:25; 0:25/ in the left plot on the top
row; �0 D .1; 0; 0; 0/ in the right plot on the top row; and �0 D .0; 0; 0; 1/ in the bottom plot.

ftigiD0;��� ;Ns with Ns D 104 and ti D it for t D 10�3. We implemented the
solutions of the HJB equation (7.33) and the Kolmogorov equation (7.36)–(7.37)
with straightforward explicit Euler schemes, and we iterated the solutions of these
equations to find the fixed point. In the numerical experiments we conducted, the
process converged in a very small number of iterations.

We used the following parameters to produce the plots of Figures 7.1 and 7.2:
ˇfUUg D 0:3, ˇfUDg D 0:4, ˇfDUg D 0:3, and ˇfDDg D 0:4 for the rates of
infection; vH D 0:6 for the attack intensity of the hacker, and 
 D 0:8 for the speed
of response, qD

rec D 0:5 and qU
rec D 0:4, for the rates of recovery, and qD

inf D 0:4 and
qU

inf D 0:3 for the rates of infection.
Finally, the constants appearing in the definition of the expected cost were chosen

as kD D 0:3 for the cost of being defended, and kI D 0:5 for the cost of being
infected.
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Fig. 7.2 Time evolution of the optimal feedback function �.t; �/ in equilibrium. From left to right
and from top to bottom, �.t;DI/, �.t;DS/, �.t;UI/, and �.t;US/.

These numerical experiments seem to indicate that, no matter which initial
distribution �0 we start from, in equilibrium, the distribution of the states converges
as time evolves toward a specific distribution in which the proportion of computers
being defended is zero, the proportion of computers being unprotected and infected
is approximately 0:44 and the proportion of computers unprotected and susceptible
to be infected is 0:56. In order to check that O� D .0; 0; 0:44; 0:56/ is indeed an
invariant measure one can use it as initial condition by choosing �0 D O� and check
that the graphs of the four functions t 7! �t.i/ for i 2 E D fDI;DS;UI;USg are
horizontal. We do not reproduce the plots, but this is indeed the case. We chose the
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value of T in order to see that the proportions become constant. Larger values of T
confirm this fact. We kept T to a reasonably small value to still see the patterns in
the left-hand side of the plots. Varying the parameters of the model gives different
values for the limiting levels of �t.UI/ and �t.US/while �t.DI/ and �t.DS/ remain
constant and equal to 0.

While the interpretation of this invariant distribution is not clear, its existence,
and the strong evidence for the convergence suggest that a strong ergodicity exists
in the model and that a search for stationary solutions in an analysis of an infinite
horizon model in the spirit of Subsection 7.1.2 is reasonable. See the Notes &
Complements at the end of the chapter for references to such an analysis.

For the sake of completeness, we computed and plotted the time evolution of the
optimal feedback function �.t; �/. Interestingly, irrespective of our choice of initial
condition �0, or even of the parameters of the model, we found that the function
�.t; �/ is constant over time, and given by �.t;DI/ D �.t;DS/ D 1 and �.t;UI/ D
�.t;US/ D 0 for all t 2 Œ0;T�.

The strong ergodicity which made us believe in the convergence over time of the
distribution �t and the optimal feedback control function �.t; �/ toward unique well
specified limits, does not always hold. There exist combinations of parameters for
which several stationary limits are possible, or no stationary limit exists.

For the purpose of illustration, we used the following parameters: ˇfUUg D
ˇfUDg D 5, ˇfDUg D ˇfDDg D 2, for the rates of infection; qD

rec D qU
rec D 0:3,

for the rates of recovery, and qD
inf D 0:3 and qU

inf D 0:4 for the rates of infection.
Finally, we kept the same attack intensity vH D 0:6, the same time horizon T D 10,
kI D 1 for the cost of being infected, but we chose kD D 0:5385 for the cost of being
defended and 
 D 1000 for the speed of response. We explain these choices in the
Notes & Complements at the end of the chapter.

With these parameters, the iterations of the successive solutions of the HJB
equation and the Kolmogorov Fokker Planck equation do not behave the same way.
Instead of a very fast convergence to what we took as the equilibrium measure
flow, we see oscillations questioning the convergence toward a unique equilibrium
accepted before as a fact. We do not plot the time evolution of the optimal feedback
function �.t; �/ because it appears to be the same as before. However, we illustrate
the behavior of the measure flow through these iterations in Figure 7.3.

For the sake of completeness, we also solved numerically the master equa-
tion (7.38). For the purpose of comparison, we still work on the interval Œ0;T� with
T D 10, but we now use a coarser grid with Ns D 10 time steps only. We discretize
the simplex S3 with the grid:

G D ˚
.

k1
M
;

k2
M
;

k3
M
/I ki integer ; 0 6 ki 6 M; for i D 1; 2; 3;

k1
M

C k2
M

C k3
M

6 1
�
;

with M D 25 and we use backward derivatives. While we do not know how to
provide an instructive plot of the values of the solution of the master equation (7.38),
we checked the consistency of our results by using this solution to derive the equi-
librium measure flow � D .�t/ by solving the ordinary differential equation (7.41)
from Proposition 7.7. The results are reproduced in Figure 7.4. They were obtained
with the parameters used to produce Figure 7.1.
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Fig. 7.3 From left to right and from top to bottom, time evolution of the distribution �t for the
parameters given in the text, after 1, 5, 20, and 100 iterations of the successive solutions of the HJB
equation and the Kolmogorov Fokker Planck equation.

7.2.4 Special Cases of MFGs with Finite State Spaces

We now concentrate on the finite state space analog of a model frequently
considered in the book. To do so, recall the formulation of the L-monotonicity
property above, and assume accordingly that the contributions to the running cost
function of the control and the marginal distribution are split apart in the sense that:

f .t; x; �; ˛/ D f0.t; x; �/C f1.t; x; ˛/;

where for each t 2 Œ0;T� and x 2 E, the function ˛ 7! f1.t; x; ˛/ is a strictly
convex function for a convexity constant independent of t (and x since E is finite).
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Fig. 7.4 Time evolution of the distribution �t as computed as the solution of the ordinary differ-
ential equation (7.41) from Proposition 7.7 using the numerical solution of the master equation.
For the purpose of comparison, we used the initial conditions �0: �0 D .0:25; 0:25; 0:25; 0:25/ on
the left and �0 D .1; 0; 0; 0/ on the right.

As above, we assume that A is a closed convex subset of the Euclidean space Rk. The
typical example we have in mind is the analog of the model used in Subsection 6.7.2
provided by:

f1.t; x; ˛/ D 1

2
j˛j2; t 2 Œ0;T�; x 2 E; ˛ 2 A: (7.42)

For the sake of convenience, we recall the important definitions and equations. The
Hamiltonian H is still given by the same formula:

H.t; x; �; h; ˛/ D ŒL�;˛t h�.x/C f0.t; x; �/C f1.t; x; ˛/;

and the minimizer Ǫ can be defined as:

Ǫ .t; x; �; h/ D argmin˛2AH1.t; x; �; h; ˛/; (7.43)

which is uniquely defined when the rate 
t.x; x0; �; ˛/ is linear in ˛, where the
reduced Hamiltonian H1 is defined by:

H1.t; x; �; h; ˛/ D ŒL�;˛t h�.x/C f1.t; x; ˛/:

So, for a given flow � D .�t/06t6T of measures on E, the HJB equation (7.33)
reads:

0 D @tu.t; x/C H�
1 .t; x; �t; u.t; �//C f0.t; x; �t/;

where the minimized Hamiltonian H�
1 is defined as:

H�
1 .t; x; �; h/ D 
t

�
x; �; �; Ǫ .t; x; �; h/� � h C f1

�
t; x; Ǫ .t; x; �; h/�:
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Now, the master equation (7.38) can be rewritten as:

@tU.t; x; �/C H�
1

�
t; x; �t;U.t; �; �/

� C f0.t; x; �/

C
X

x0;x002E


t
�
x00; x0; �; Ǫ�

t; x00; �;U.t; �; �/���.fx00g/@U.t; x; �/
@�.fx0g/ D 0;

with the same terminal condition as before. Now, since the sum of the jump rates
.
t.x00; x0; �; Ǫ .t; x00; �;U.t; �; �////x02E is null, this may be also written:

@tU.t; x; �/C H�
1

�
t; x; �t;U.t; �; �/

� C f0.t; x; �/

C
X

x0;x002E


t
�
x00; x0; �; Ǫ�

t; x00; �;U.t; �; �/���.fx00g/

h
x00

@U.t; x; �/
@�.f�g/

i
.x0/

�

D 0:

A Form of Linear Quadratic Model
In order to get more explicit formulas, we consider the special case (7.42) to which
we add an assumption on the dependence of the jump rates upon the control ˛.
Although all the arguments extend to other cases, we shall assume, in order to
simplify the notation, that k D d � 1 and A D Œ0;1/d�1. Assume also that for
any x 2 E, we are given a one-to-one mapping �x from E n fxg onto f1; : : : ; d � 1g
and, for any ˛ 2 A, let:

˛.x; x0/ D

8
ˆ̂<

ˆ̂:

˛
�
�x.x

0/
�

if x0 ¤ x;

�
X

x002E;x00¤x

˛
�
�x.x

00/
�

if x0 D x;
(7.44)

where ˛.i/ is the ith coordinate of ˛ D .˛.1/; � � � ; ˛.d � 1// 2 Œ0;1/d�1, for
i 2 f1; : : : ; d � 1g.

In agreement with assumption Discrete MFG Rates, we then assume that the
rate function has the following linear form:


t.x; x
0; �; ˛/ D ˛.x; x0/; t 2 Œ0;T�; x; x0 2 E; � 2 P.E/; ˛ 2 A:

while f1 in (7.42) is equal to:

f1.t; x; ˛/ D 1

2

X

x02E;x0¤x

j˛.x; x0/j2; t 2 Œ0;T�; x 2 E; ˛ 2 A:

Hence,

H1.t; x; �; h; ˛/ D
X

x02E;x0¤x

˛
�
x; x0/Œxh�.x0/C 1

2

X

x02E;x0¤x

j˛.x; x0/j2;
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and the minimizer Ǫ is given by:

Ǫ .t; x; �; h/ D ��
Œxh�.x0/

	
�

�
x02��1

x .f1;��� ;d�1g/;

where as usual we use the notation y� D .�y/C D max.�y; 0/ for y 2 R. The
minimized Hamiltonian is now equal to:

H�
1 .t; x; �; h/ D �1

2

X

x02E;x0 6Dx

��
Œxh�.x0/

	
�

�2

D �1
2

X

x02E;x0 6Dx

�
Œh.x/ � h.x0/�C

�2

D �1
2

X

x02E

�
Œh.x/ � h.x0/�C

�2
:

As a result, for any given flow � D .�t/06t6T of measures on E, the HJB
equation (7.33) reads:

@tu
�.t; x/ � 1

2

X

x02E

��
u�.t; x/ � u�.t; x0/

	
C

�2 C f0.t; x; �t/ D 0;

and the master equation becomes:

@tU.t; x; �/ � 1

2

X

x02E

��U.t; x; �/ � U.t; x0; �/
	

C
�2 C f0.t; x; �t/

C
X

x0;x002E

�.fx00g/

�
x00

@U.t; x; �/
@�.f�g/

	
.x0/

�h�
x00U.t; �; �/	.x0/

i

� D 0;

or, equivalently,

@tU.t; x; �/ � 1

2

X

x02E

��U.t; x; �/ � U.t; x0; �/
	

C
�2 C f0.t; x; �t/ (7.45)

�
X

x0;x002E

�.fx00g/

@U.t; x; �/
@�.fx00g/ � @U.t; x; �/

@�.fx0g/
��U.t; x00; �/ � U.t; x0; �/

	
C D 0:

Potential Mean Field Games
As in the case of stochastic differential mean field games, we identify potential
games through special characteristics of the running and terminal cost functions.
Motivated by the analysis in Subsection 6.7.2, we assume the existence of real
valued functions F and G defined on Œ0;T� � P.E/ and P.E/ respectively, which
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admit linear functional derivatives giving the running and terminal cost functions of
the game in the sense that:

f0.t; x; �/ D @F.t; �/

@�.fxg/ ; and g.x; �/ D @G.�/

@�.fxg/ ;

for t 2 Œ0;T�, x 2 E and � 2 P.E/. In the present context, the central planner
problem is the following optimal control problem of the McKean-Vlasov type:

inf
˛2A

� Z T

0

h
E

�
f1.t;Xt; ˛t/

� C F
�
t;L.Xt/

�i
dt C G

�L.XT/
��
;

with f1 as in (7.42) and where the infimum is taken over the set of admissible Markov
strategies ˛t D �.t;Xt/ D .�1.t;Xt/; � � � ; �d�1.t;Xt// with values in Œ0;1/d�1 and
X D X˛ D .Xt/06t6T is the inhomogeneous continuous time E-valued Markov
process with transition rates given by (7.44), namely by the Q-matrices:

qt.x; x
0/ D

8
ˆ̂<

ˆ̂:

��x.x0/.t; x/ if x0 ¤ x;

�
X

x002E

��x.x00/.t; x/ if x0 D x;

which we denote by �.t; x; x0/. Here, we do not invoke the machinery developed in
Chapter 6 for the optimal control of stochastic McKean-Vlasov equations. Indeed,
since we use only Markovian strategies given in feedback forms, we rewrite the
problem as a deterministic control problem over P.E/ involving the minimization
of the functional:

J.	/ D
Z T

0

h
hf1.t; �; �.t; �//; �ti C F.t; �t/

i
dt C G.�T/

D
Z T

0

h1
2

X

x2E

X

x02E;x0¤x

�t.fxg/j�.t; x; x0/j2 C F.t; �t/
i
dt C G.�T/;

under the dynamic constraint:

d�t.fxg/ D �
.L�t /

��t
	
.x/ D

X

x02E

�t.fx0g/�.t; x0; x/; x 2 E:

Motivated by the result of Subsection 6.7.2, we try to prove that the solution of
this optimal control problem provides a solution to the mean field game problem
considered in this section.

We solve the McKean-Vlasov control problem by writing its HJB equation and
identifying the optimal control. Once this is done, we check that the optimal control
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provides the solution of the original mean field game problem defined by the running
and terminal cost functions f and g. The Hamiltonian H of the McKean-Vlasov
control problem is given by:

H .t; �; h; �/

D �
.L�t /

��
	 � h C hf1.t; �; �.�//; �i C F.t; �/

D
X

x2E

�.fxg/
h X

x02E;x0¤x



�.t; x; x0/Œxh�.x0/C 1

2
j�.t; x; x0/j2

�i
C F.t; �/;

and, since we can minimize term by term, the minimized Hamiltonian is given by:

H �.t; �; h/ D
X

x2E

�.fxg/
�

� 1

2

X

x02E;x0¤x

Œh.x/ � h.x0/�2C
�

C F.t; �/: (7.46)

Using the notation v.t; �/ for the value function of the deterministic control
problem, the HJB equation is given by:

@tv.t; �/ � 1

2

X

x2E

�.fxg/
X

x02E

�
@v.t; �/

@�.fxg/ � @v.t; �/

@�.fx0g/
�2

C
C F.t; �/ D 0: (7.47)

Again, using Proposition 5.66 and Corollary 5.67, we see that, instead of the
standard derivative of functions defined on R

d, we could as well use the linear
functional derivatives of functions defined on P2.Rd/ if we assume that the function
v.t; �/ has a smooth extension to P2.Rd/.

We now prove that the solution of this deterministic control problem can provide
a solution to the original mean field game problem.

Proposition 7.8 Let us assume that the function Œ0;T� � P.E/ 3 .t; �/ 7!
v.t; �/ 2 R is twice differentiable with respect to the weights .�.fxg//x2E and
solves equation (7.47) with terminal condition v.T; �/ D G.�/. Then the function
Œ0;T� � E � P.E/ 3 .t; x; �/ 7! U.t; x; �/ D Œ@v=@�.fxg/�.t; �/ 2 R solves the
master equation (7.38) with terminal condition U.T; x; �/ D g.x; �/.

Here and below, we use the same rules of differentiation as in the writing of the
master equation (7.38).

Proof. We give the proof in broad strokes only. The interested reader can easily fill in the
technical details. Notice first that a standard verification argument can be used to show
that v, as a solution of equation (7.47), is indeed the value function of the deterministic
McKean-Vlasov control problem of interest here. Next, exchanging freely the order of partial
derivatives, we differentiate both sides of (7.47) with respect to �.fx0g/ for some x0 2 E and
obtain:
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@t
@v.t; �/

@�.fx0g/ � 1

2

X

x0
2E

�
@v.t; �/

@�.fx0g/ � @v.t; �/

@�.fx0g/
�2

C

C @F.t; �/

@�.fx0g/

�
X

x2E

�.fxg/
X

x0
2E

��
@2v.t; �/

@�.fxg/@�.fx0g/ � @2v.t; �/

@�.fx0g/@�.fx0g/
�

�
�
@v.t; �/

@�.fxg/ � @v.t; �/

@�.fx0g/
�

C

�
D 0:

Setting:

U.t; x; �/ D @v.t; �/

@�.fxg/ ; f0.t; x; �/ D @F.t; �/

@�.fxg/ ; and x D x0;

we recover (7.45). ut

Mean Field Games on a Directed Graph
In many practical applications, specific forms for the state transitions are suggested
by the very nature of the problem at hand. In particular, the transition from a given
state can often be restricted to a predetermined subset of states identified as the set
of states which can be reached from the current state. As we explain below, this
restriction is typical of Markovian evolutions on directed graphs. Even though the
notations and the statements are different, we argue that the spirit of the less specific
model studied above can easily be recast in the framework of Markov processes on
a directed graph.

To be more specific, let us assume that the state space of the system is the set of
nodes of a directed graph. To be consistent with the previous discussion, we denote
by E D fe1; � � � ; edg the set of nodes, and for each node x 2 E, we define VC.x/ as
the subset of E n fxg of nodes x0 for which there exists a directed edge from x to x0.
The number of these nodes is denoted by dx and is called the out-degree of x. The
main difference with the assumptions used so far is that we now force the dynamics
of the state to respect the directed graph structure by demanding that the transition
rate Q-matrices satisfy:

qt.x; x
0/ D 0 whenever x0 62 VC.x/: (7.48)

Similarly, we denote by V�.x/ the subset of E n fxg of nodes x0 for which there
exists a directed edge from x0 to x. Notice that the case studied earlier corresponds to
VC.x/ D V�.x/ D Enfxg for all x 2 E. It is plain to port all the results proven above
to the set-up of mean field games on directed graphs (including potential games and
central planer optimization problems) using (7.48). For example, the Kolmogorov
equation (7.36) rewrites:

@t�t.fxg/ D
X

x02V�.x/

�t.fx0g/qt.x
0; x/ �

X

x02VC.x/

�t.fxg/qt.x; x
0/: (7.49)

We leave the details to the interested reader.
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7.2.5 Counter-Example to the Convergence of Markovian
Equilibria

The goal of this subsection is to provide an example of a mean field game with
finitely many states for which the associated N-player game has a Nash equilibrium
that does not converge to the solution of the mean field game.

Throughout the subsection, we consider the following example with T D 1,
E D A D f0; 1g and, for t 2 Œ0; 1�, x; x0; ˛ 2 E and � 2 P.E/,

(

t.x; x0; �; ˛/ D ˇ1fx0D˛g; x0 ¤ x;


t.x; x; �; ˛/ D �ˇ1fxD1�˛g;

for some ˇ > 0, which has a simple interpretation: the next state x0 coincides with
the action ˛. Also, we let:

f .t; x; �; ˛/ D 1fxD0g and g D 2�.f1g/:
In that case, the dynamics of the representative player may be easily described

by means of a Poisson process with intensity ˇ. At any occurrence t of the Poisson
process, the player jumps to the state ˛t� if different from its current position and,
otherwise, stays in its current state. Here, .˛t/06t61 denotes the control process
chosen by the representative player.

Equilibria to theMean Field Game
For a flow of distributions � D .�t/06t61 in P.E/ and for the state of a
representative player .Xt/06t61, the cost functional reads:

J.˛/ D E

� Z 1

0

1fXtD0gdt C 2�1.f1g/
�

D E

� Z 1

0

1fXtD0gdt

�
C 2�1.f1g/:

Obviously, for a given flow of probability distributions, the minimum of J is attained
for strategies ˛ spending the least amount of time in state 0. So, the best strategy is
to choose Ǫ t D 1, for all t 2 Œ0; 1�. In that case, the transition rates have the form:

�

t.0; 0; �t; Ǫ t/ 
t.0; 1; �t; Ǫ t/


t.1; 0; �t; Ǫ t/ 
t.1; 1; �t; Ǫ t/

�
D

��ˇ ˇ

0 0

�
:

Denoting by . OXt/06t6T the corresponding path, we have:

P
� OXt D 1

	 D P
� OX0 D 0

	�
1 � exp.�ˇt/

� C P
� OX0 D 1

	
;

which shows that, for a given initial condition �0 2 P.E/, the flow � D .�t/06t61
is solution to the mean field problem if and only if

�t.f1g/ D �0.f0g/
�
1 � exp.�ˇt/

� C �0.f1g/
D 1 � �0.f0g/ exp.�ˇt/; t 2 Œ0; 1�: (7.50)
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Then, the value function, under the equilibrium �, reads:

u�.t; 0/ D 1

ˇ

�
1 � exp.�ˇ.1 � t//

� C 2�1.f1g/;

u�.t; 1/ D 2�1.f1g/:

HJB Equation. The value function may be retrieved by writing down the HJB
equation. Here the Hamiltonian is independent of � and reads:

H.t; 0; h; ˛/ D ˇ
�
h.1/ � h.0/

�
1f˛D1g C 1;

H.t; 1; h; ˛/ D ˇ
�
h.0/ � h.1/

�
1f˛D0g:

Therefore,

Ǫ .t; 0; h/ D
(
1 if h.1/ � h.0/ < 0;

0 if h.1/ � h.0/ > 0;
(7.51)

and

Ǫ .t; 1; h/ D
(
0 if h.0/ � h.1/ < 0;

1 if h.0/ � h.1/ > 0;
(7.52)

so that, using the same notation as in (7.31),

H�.t; 0; h/ D �ˇ�
h.0/ � h.1/

�
C C 1;

H�.t; 1; h/ D �ˇ�
h.1/ � h.0/

�
C:

(7.53)

Since u�.t; 0/ > u�.t; 1/, it is easily checked that:

d

dt
u�.t; 0/C H��

t; 0; u�.t; �/�

D d

dt
u�.t; 0/ � ˇ�

u�.t; 0/ � u�.t; 1/
� C 1

D � exp.�ˇ.1 � t// � �
1 � exp.�ˇ.1 � t//

� C 1

D 0;

and

d

dt
u�.t; 1/C H��

t; 1; u�.t; �/� D d

dt
u�.t; 1/ D 0:

Observing in particular that u�.t; 0/ > u�.t; 1/ for all t 2 Œ0;T/, we recover
from (7.51) and (7.52) the fact that, whatever the initial point and the initial
distribution, the optimal strategy is given by the constant control strategy 1.
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Master Equation. By adapting (7.50) to games initialized at arbitrary times t 2
Œ0; 1�, we compute the master field:

U.t; 0; �/ D 1

ˇ

�
1 � exp.�ˇ.1 � t//

� C 2 � 2�.f0g/ exp.�ˇ.1 � t//;

U.t; 1; �/ D 2 � 2�.f0g/ exp.�ˇ.1 � t//;

(7.54)

for .t; �/ 2 Œ0; 1� � P.E/, so that:

@U.t; 0; �/
@�.f0g/ � @U.t; 0; �/

@�.f1g/ D �2 exp.�ˇ.1 � t//;

@U.t; 1; �/
@�.f0g/ � @U.t; 1; �/

@�.f1g/ D �2 exp.�ˇ.1 � t//;

while, with the same notation as in (7.38),

h�.�/.0/ D �ˇ�.f0g/;
h�.�/.1/ D ˇ�.f0g/:

Therefore,

h�.�/.0/
@U.t; 0; �/
@�.f0g/ C h�.�/.1/

@U.t; 0; �/
@�.f1g/

D h�.�/.0/

@U.t; 0; �/
@�.f0g/ � @U.t; 0; �/

@�.f1g/
�

D 2ˇ�.f0g/ exp.�ˇ.1 � t//;

and, similarly,

h�.�/.0/
@U.t; 1; �/
@�.f0g/ C h�.�/.1/

@U.t; 1; �/
@�.f1g/

D h�.�/.0/

@U.t; 1; �/
@�.f0g/ � @U.t; 1; �/

@�.f1g/
�

D 2ˇ�.f0g/ exp.�ˇ.1 � t//;

and then, with the same computation as above, we have:

d

dt
U.t; 0; �/C H��

t; 0;U.t; �; �/�

C h�.�/.0/
@U.t; 0; �/
@�.f0g/ C h�.�/.1/

@U.t; 0; �/
@�.f1g/

D � exp.�ˇ.1 � t// � 2ˇ�.f0g/ exp.�ˇ.1 � t//

� �
1 � exp.�ˇ.1 � t//

� C 1C 2ˇ�.f0g/ exp.�ˇ.1 � t//

D 0;
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and, similarly,

d

dt
U.t; 1; �/C H��

t; 1;U.t; �; �/�

C h�.�/.0/
@U.t; 1; �/
@�.f0g/ C h�.�/.1/

@U.t; 1; �/
@�.f1g/

D �2ˇ�.f0g/ exp.�ˇ.1 � t//C 2ˇ�.f0g/ exp.�ˇ.1 � t//

D 0;

which shows that the master equation is indeed satisfied.

Equilibria for the N-Player Game
We now turn to the analysis of the N-player game and search for Nash equilibria
over Markovian strategies.

The dynamics of the N players are given by (7.23). They can also be described
in a simple way: assuming that players choose Markov feedback functions
.�N;i/iD1;��� ;N , each of them may jump at the occurrences of a Poisson process
with intensity ˇ, the Poisson processes being denoted by ..Ti

n/n>1/iD1;��� ;N and
being assumed to be independent. At each t D Ti

n 2 Œ0; 1�, for some n > 1, the
i-th player switches to �N;i.t�;X.N/t� / if different from XN;i

t� and stays in XN;i
t� if not,

where .X.N/t D .XN;1
t ; � � � ;XN;N

t //06t61 is the state of the system.
The cost functional to player i reads:

JN;i.�N;1; � � � ; �N;N/ D E

�Z 1

0

1fXN;i
t D0gdt C 2 NXN;�i

1

�
;

where NXN;�i
t D 1

N�1
PN

jD1;j6Di XN;j
t .

Notice first that the constant strategies �N;i � 1 for i D 1; � � � ;N form a
Markovian Nash equilibrium. Indeed, if all the players j ¤ i use such a constant
strategy, then .EŒ NXN;�i

t �/06t61 is independent of �N;i, so that the expected cost to
player i is, up to an additive constant which is independent of �N;i, its expected time
spent in state 0 which is minimized by using the strategy �N;i � 1, proving that we
indeed have identified a Nash equilibrium.

However, this example is especially interesting because one can identify in some
cases, another explicit Nash equilibrium. Consider the strategy profiles:

��N;i.x1; � � � ; xN/ D

1 if NxN;�i > 0;

0 if NxN;�i D 0;

for x D .x1; : : : ; xN/ 2 f0; 1gN , where, as usual,
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NxN;�i D 1

N � 1
NX

jD1;j¤i

xj;

which gives the proportion of players different from i in state 1 in the system
described by the state .x1; : : : ; xN/ 2 f0; 1gN .

We claim:

Lemma 7.9 There exists ˇ0 > 0 such that, for ˇ > ˇ0, there exists N0.ˇ/ > 2 such
that, for N > N0.ˇ/, the functions .��N;i/16i6N form a Markovian Nash equilibrium.

Proof: Throughout the proof, ˇ is assumed to be greater than 1.
Our first goal is to compute the cost to player 1 when all the players including player

1 itself use the feedback functions .��N;i/iD1;��� ;N . In order to do so, we shall compute the
cost when the game is initialized at any time t 2 Œ0; 1/. The controlled state of the system
should then be denoted by ..X�N;i

s /iD1;��� ;N/t6s61, but, for simplicity, we shall use the notation
..XN;i

s /iD1;��� ;N/t6s61. Letting NXN;�1
t D 1

N�1

PN
iD2 XN;i

t , for t 2 Œ0; 1�, the cost to player 1
reads:

JN;1
�
��N

� D E

� Z 1

t
1

fXN;1
s D0g

ds C 2 NXN;�1
1

�
:

We write vN;1.t; x/ for JN;1.��N/ when the initial condition at time t of the system is a
deterministic tuple x D .x1; � � � ; xN/ 2 f0; 1gN .

Throughout the proof, we denote by .%n/n>0 a Poisson process with intensity Nˇ and
modeling the possible jumping times in the game, at least up until time 1. Precisely, players
cannot jump at any time s 62 f%n; n > 1g. At any time %n, an index In 2 f1; � � � ;Ng is selected
and player In jumps if allowed by its own control strategy.

Obviously, the sequences .In/n>1 and .%n/n>0 are independent and the variables .In/n>1
are also independent. For any n > 1, In is uniformly distributed on f1; � � � ;Ng.

Also, throughout the proof, we denote by ..YN;i
s /16i6N/t6s61 a family of N independent

Markov processes with values in f0; 1g, with the prescription that each .YN;i
s /t6s61 starts

from XN;i
t , cannot exit from state 1, and jumps from state 0 to state 1 at the first time �n with

In D i. In words, the jumping times of YN;i, for i D 1; � � � ;N, are dictated by the same Poisson
process as the jumping times of XN;i. For any s 2 Œt; 1�, we let NYN;�1

s D 1
N�1

PN
jD2 YN;j

s .
The strategy is to compare vN;1.t; .1; x�1// and vN;1.t; .0; x�1// for all the possible values

of x�1, where x�1 is a shorter notation for xN;�1.

First Case. Assume that there are at least two players in f2; � � � ;Ng starting from state 1 at
time t, that is Nx�1 > 2

N . Then all the players implement strategy 1 up until the end of the
game.

a. If player 1 starts from 1 at time t, that is x1 D 1, then:

vN;1
�
t; .1; x�1/

� D 2E
� NXN;�1

1

	 D 2E
� NYN;�1
1

	
:
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b. If player 1 starts from 0 at time t, it will stay in 0 up until �1, where �1 is the first jumping
time of player 1. Since all the players implement strategy 1, we get:

vN;1
�
t; .0; x�1/

� D E

� Z 1

t
1

fXN;1
s D0g

ds C 2 NXN;�1
1

�
> E

h
.1 ^ �1 � t/C 2 NYN;�1

1

i
;

which is strictly greater than vN;1.t; .1; x�1//. As a result, we have:

��N;1.1; x�1/ D 1 D sign
�
vN;1

�
t; .0; x�1/

� � vN;1
�
t; .1; x�1/

��
;

��N;1.0; x�1/ D 1 D sign
�
vN;1

�
t; .0; x�1/

� � vN;1
�
t; .1; x�1/

��
;

where sign.r/ is 1 if r > 0, �1 if r < 0, and 0 if r D 0, and then:

��N;1.x1; x�1/ D 1 � x1 , vN;1
�
t; .1 � x1; x�1/

� � vN;1
�
t; .x1; x�1/

�
< 0; (7.55)

at least when x�1 > 2
N .

Second Case. Assume now that there is exactly one player, say I0, different from 1 that starts
from state 1 at time t, that is Nx�1 D 1.

a. If player 1 starts from 1, that is x1 D 1, then all the players implement strategy 1 up
until the end of the game. As a result, we have as before:

vN;1
�
t; .1; x�1/

� D 2E
� NXN;�1

1

	 D 2E
� NYN;�1
1

	
;

which, in that case, is equal to:

vN;1
�
t; .1; x�1/

� D 2

N � 1 C 2
N � 2
N � 1

�
1 � exp.�ˇ.1 � t//

�
:

b. If player 1 starts from 0 at time t, then all the players except player I0 implement
strategy 1 up until the first jumping time %1, while player I0 implements strategy 0. At time
%1, the system restarts with two particles in state 1 provided that %1 < 1 and I1 6D I0. So,
on the event f%1 < 1; I1 6D I0g, the process . NXN;�1

s /t6s6T coincides with . NYN;�1
s /t6s6T .

Therefore,

vN;1
�
t; .0; x�1/

�
> 2E

� 1

N � 11f%1>1g C 1f%1<1; I1 6DI0g
NYN;�1
1

	 C E
�
1 ^ �1 � t

	
;

where we used that NXN;�1
1 D 1

N�1
on the event f%1 > 1g. Importantly, since PŒ%1 D 1� D 0

and since Yj
1 D 0 for all j 6D I0 when %1 > 1, we have with probability 1:

1

N � 11f%1>1g C 1f%1<1; I1 6DI0g
NYN;�1
1

D 1

N � 1
�
1 � 1f%1<1;I1DI0g

� C �
1 � 1f%1<1; I1DI0g

� 1

N � 1
N�1X

jD2;j 6DI0

Yj
1:

(7.56)
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Then, we have the following bounds:

1

N � 1P
�
%1 < 1; I1 D I0

	 D 1

N.N � 1/
�
1 � exp.�Nˇ.1 � t//

� D .1 � t/O
�ˇ

N
/;

and

E

�
1f%1<1; I1DI0g

1

N � 1
N�1X

jD2;j 6DI0

Yj
1

�
6 1

N
E

�
1

N � 1
N�1X

jD2;j 6DI0

Yj
1 j %1 < 1; I1 D I0

�

6 1

N � 1
�
1 � exp.�ˇ.1 � t//

� D .1 � t/O
�ˇ

N

�
;

where we used the Markov property for the Poisson process in the second line.
Inserting the two previous bounds in (7.56) and comparing with vN;1.t; .1; x�1// obtained

in part a, we deduce that:

2E
� 1

N � 11f%1>1g C 1f%1<1; I1 6DI0g
NYN;�1
1

	
> vN;1

�
t; .1; x�1/

� � .1 � t/O
�ˇ

N

�
:

Thus, returning to the lower bound for vN;1.t; .0; x�1//, we get:

vN;1
�
t; .0; x�1/

�
> vN;1

�
t; .1; x�1/

� � .1 � t/O
�ˇ

N

� C
Z

1

0

ˇ
�
.1 � t/ ^ r

�
exp

� � ˇr
�
dr

> vN;1
�
t; .1; x�1/

� � .1 � t/O
�ˇ

N

� C .1 � t/ exp
� � ˇ�

;

which shows that, for each fixed ˇ > 1, we can choose N large enough so that
vN;1.t; .0; x�1// > vN;1.t; .1; x�1//. Hence the conclusion is the same as in the first case,
see (7.55).

Third Case. We now assume that Nx�1 D 0.

a. If player 1 starts from 0, then all the players implement strategy 0 and thus remain in 0.
In particular, vN;1.t; .0; x�1// D 1 � t.

b. Now, if player 1 starts from 1, then all the players except player 1 implement strategy 1,
at least up until %1. If %1 < 1 and I1 > 2, then there are two players in state 1 at time %1;
after %1, all of them implement strategy 1. If %1 < 1 and I1 D 1, then player 1 switches to
0 at time %1 and then all the players remain in 0. So, the cost to player 1 is greater than:

2E
h
1f%1<1; I1>2g

NYN;�1
1

i
D 2E

h
1fI1>2g

NYN;�1
1

i

D 2E
h NYN;�1

1

i
� 2E

h
1f%1<1; I1D1g

NYN;�1
1

i
;

where, as in the second case, we used the fact that 1f%1<1g
NYN;�1
1 D NYN;�1

1 with probability
1. Now, following the second case again,

2E
h
1f%1<1; I1D1g

NYN;�1
1

i
6 2

N
E

h NYN;�1
1 j %1 < 1; I1 D 1

i
6 2

N

�
1 � exp.�ˇ.1 � t//

�
:
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So, we end up with:

vN;1
�
t; .1; x�1/

�
> 2

�
1 � 1

N

��
1 � exp.�ˇ.1 � t//

�

D 2
�
1 � 1

N

� Z ˇ.1�t/

0

exp.�r/dr:

If ˇ.1 � t/ > ln 3, then:

vN;1
�
t; .1; x�1/

�
> 2

�
1 � 1

N

� Z ln 3

0

exp.�r/dr D 2
2

3

�
1 � 1

N

�
;

which is greater than 1 and thus than vN;1.t; .0; x�1// for N large enough. If ˇ.1� t/ < ln 3,
then:

vN;1
�
t; .1; x�1/

�
> 2

�
1 � 1

N

� Z .1�t/

0

exp.�r/dr > 2
�
1 � 1

N

�
exp

� � ln 3

ˇ

�
.1 � t/:

So, choosing ˇ and N large enough, it is also greater than vN;1.t; .0; x�1//. In any case, the
conclusion (7.55) of the first step remains true for well-chosen values of ˇ and N.

Conclusion. For ˇ and N as in the statement, we get that (7.55) is always satisfied, whatever
the value of x. Also, recall from its definition that vN;1 satisfies the backward ODE:

d

dt
vN;1.t; x/C

NX

iD1

ˇ
�
vN;1

�
t; .1 � xi; x�i/

� � vN;1
�
t; .xi; x�i/

��
1

f��N;i.xi;x�i/D1�xi
g

C 1
fx1D0g D 0;

with vN;1.1; x/ D 2Nx�1 as terminal condition. Using (7.55), this may be rewritten as:

d

dt
vN;1.t; x/C 1

fx1D0g

C ˇ
�
vN;1

�
t; .1 � x1; x�1/

� � vN;1
�
t; .x1; x�1/

��
1

fvN;1.t;.1�x1;x�1//�v.t;.x1;x�1//<0g

C
NX

iD2

ˇ
�
vN;1

�
t; .1 � xi; x�i/

� � vN;1
�
t; .xi; x�i/

��
1

f��N;i.xi;x�i/D1�xi
g

D 0:

We then recognize on the first two lines the Hamiltonian structure generated by the
Hamiltonian H� in (7.53). This shows that vN;1 is the value function of the optimal control
problem characterizing the best response of player 1 when all the others play the strategies
.��N;i/26i6N . ut

Conclusion
Remarkably, Lemma 7.9 shows that, whenever the N-player game is initialized
with .0; � � � ; 0/, the strategy profiles .��N;i/16i6N force all the players to stay in
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state 0, while, in the limiting mean field game, the Dirac mass ı0 at point 0 is not an
equilibrium.

Obviously, what happens is that the mean field limit captures the trivial Nash
equilibrium obtained by letting all the players in the N-player game play strategy
1. In contrast, the mean field formulation cannot keep track of the strategies
.��N;i/1�i�N because, in the asymptotic regime, it is no longer possible for the whole
population to optimize its response when a single player is deviating. In this regard,
it is worth observing that the limiting optimal cost in the mean field problem, when
initialized at 0, is 2 � O.1=ˇ/, while, when all the players start from 0 and play
strategy 0 in the N-player game, the cost to any player is 1, which shows that the
equilibrium captured by the mean field limit is not the one with the minimal cost.

It is also worth mentioning that, in appearance, the limiting mean field game
possesses all the properties that we shall use in Chapter (Vol II)-6 to prove the
convergence of games with finitely many players to mean field games. Notice
in particular that the mean field game is uniquely solvable for any initial dis-
tribution and that the master equation has a smooth solution. This may seem
contradictory with the existence of the extra Nash equilibrium .��N;i/16i6N since
the latter facts are basically the main ingredients used in the analysis performed in
Chapter (Vol II)-6.

We now explain why the master equation cannot capture the additional Nash
equilibrium exhibited in the statement of Lemma 7.9.

The Nash System. Following the analysis performed in Chapter (Vol II)-6, we first
write down the Nash system for the N-player game.

Similar to (2.17), see also (Vol II)-(6.94) together with the proof of Lemma 7.9,
the Nash system reads as a system of differential equations with a tuple of functions
.vN;i W Œ0;T� � EN ! R/iD1;��� ;N as unknown:

d

dt
vN;i.t; x/C H��

t; xi; vN;i.t; �; x�i/
�

(7.57)

C
NX

jD1;j6Di

ˇ
�
vN;i

�
t; .1 � xj; x�j/

� � vN;i.t; x/
�
1f�N;j.t;x/D1�xjg D 0;

where x D .x1; � � � ; xN/ and .1� xj; x�j/ D .x1; � � � ; xj�1; 1� xj; xjC1; � � � /, with the
property, inherited from (7.51) and (7.52), that:

�N;j.t; x/ D
(
1 � xj if vN;j

�
t; .1 � xj; x�j/

� � vN;j.t; x/ < 0;

xj if vN;j
�
t; .1 � xj; x�j/

� � vN;j.t; x/ > 0:

Now, the analysis performed in Chapter (Vol II)-6 prompts us to let:

uN;i.t; x/ D U.t; xi; N�N�1
x�i /:

The goal is to check:
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Lemma 7.10 The functions .uN;i/16i6N are solutions of the Nash system (7.57).

Of course, Lemma 7.10 should not come as a surprise: It is a just way to rephrase
the fact that the constant strategy profile 1 is a Nash equilibrium of the N-player
game. Actually, its interest is mostly pedagogical as it provides a clear parallel with
the statement of Proposition (Vol II)-(6.31) in Chapter (Vol II)-6.

Proof. By (7.54),

uN;i
�
t; .0; x�i/

� D 1

ˇ

�
1 � exp.�ˇ.1 � t//

�

C 2 � 2

N � 1
NX

jD1;j 6Di

.1 � xj/ exp.�ˇ.1 � t//;

uN;i
�
t; .1; x�i/

� D 2 � 2

N � 1
NX

jD1;j 6Di

.1 � xj/ exp.�ˇ.1 � t//:

Therefore, for j 6D i,

uN;i
�
t; .1 � xj; x�j/

� � uN;i
�
t; .xj; x�j/

� D 2

.N � 1/ .1 � 2xj/ exp.�ˇ.1 � t//;

while, for j D i,

uN;i
�
t; .0; x�i/

� � uN;i
�
t; .1; x�i/

� D 1

ˇ

�
1 � exp.�ˇ.1 � t//

�
;

so that, letting:

 N;i.t; x/ D
8
<

:
1 � xi if uN;i

�
t; .1 � xi; x�i/

� � uN;i.t; x/ < 0;

xi if uN;i
�
t; .1 � xi; x�i/

� � uN;i.t; x/ > 0;

we get that  N;i.t; x/ D 1.
Therefore, for a given i 2 f1; � � � ;Ng, the last term in (7.57) reads:

NX

jD1;j 6Di

ˇ
�
uN;i

�
t; .1 � xj; x�j/

� � uN;i.t; x/
�
1

f N;j.t;x/D1�xj
g

D 2ˇ

N � 1 exp.�ˇ.1 � t//
NX

jD1;j 6Di

.1 � 2xj/1
fxj

D0g

D 2ˇ

N � 1 exp.�ˇ.1 � t//
NX

jD1;j 6Di

.1 � xj/:
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Now, thanks to (7.53), the Hamiltonian H� in (7.57) reads:

H�
�
t; 0; uN;i

�
t; .�; x�i/

�� D ��
1 � exp.�ˇ.1 � t//

� C 1 D exp
�
ˇ.1 � t/

�
;

H�
�
t; 1; uN;i

�
t; .�; x�i/

�� D 0;

Computing the time derivatives of .uN;i/16i6N , we easily complete the proof. ut

Now, if we perform the same computation with the strategy .��N;i/16i6N given
by Lemma 7.9, then we find that:

��N;i.t; x/ D 0 if x D 0;

which amounts to say that:

v�N;i
�
t; .1; 0�i/

� � v�N;i.t; 0/ > 0;

.v�N;i/16i6N being defined as the corresponding value functions. Actually, the above
inequality is precisely what we checked in the proof of Lemma 7.9. Of course, it is
false if v�N;i is replaced by uN;i.

So, the explanation is now clear: The control strategy profile is of bang-bang type
as it oscillates from state 0 or 1 to state 1 or 0 according to the sign of the discrete
derivative of the value function of the game. Rephrased with the notation used in the
book, the minimizer Ǫ .t; x; h/ in (7.51) and (7.52) is not continuous with respect to h
and this explains why the master equation fails to capture the equilibrium identified
in Lemma 7.10. In comparison, the minimizer of the Hamiltonian appearing in
the analysis of Chapter (Vol II)-6 is regular, which makes a big difference when
investigating the convergence property.

7.3 Notes & Complements

Mean field games models with several groups of players were already part of the
original contribution of Huang, Caines, and Malhamé, see [211]. Another earlier
paper on the subject is due to Lachapelle and Wolfram [253], who introduced
models for groups of pedestrians with crowd aversion and xenophobia, that is
aversion of an ingroup towards outgroups. One of this model was revisited by
Cirant and Verzini in the more recent work [119], with a more detailed analysis
of the segregation phenomenon. General well posedness of stationary mean field
games with two populations was addressed by Feleqi in [151] under periodic
boundary conditions and by Cirant in [117] under Neumann boundary conditions.
Convergence of the N-player game was investigated by Feleqi in [151]. A synthetic
presentation is also given in Chapter 8 of the textbook by Bensoussan, Frehse, and
Yam [50].
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The derivation of the HJB equation for stochastic optimal control problems with
an infinite horizon and a discounted running cost may be found in Chapter III of
the monograph by Fleming and Soner [157]. However, the exposition therein is
limited to time homogeneous coefficients, in which case the resulting HJB equation
becomes stationary. Obviously, the stationary case is not well fitted to infinite
horizon mean field games unless we modify the fixed point condition as explained
in the introduction of ergodic mean field games: Under the standard fixed point
condition, the distribution of the population may depend on time and, subsequently,
the coefficients of the underlying control problem are not time homogeneous. It
is only when addressing mean field games with an ergodic cost that the problem
becomes time independent.

Regarding the probabilistic approach to this kind of optimal control problems,
earlier results on decoupled FBSDEs in infinite horizon were obtained by Peng
[303] and Buckdahn and Peng [80] under appropriate monotonicity conditions,
which were relaxed by Briand and Hu [70] and Royer [321]. Peng and Shi, in
[306], implemented a continuation argument to prove an existence and uniqueness
result for fully coupled FBSDEs in infinite horizon. Connection between FBSDEs
and optimal control problems in infinite horizon was addressed by Fuhrman and
Tessitore [166] and Hu and Tessitore [205]. The corresponding version of the
stochastic maximum principle was investigated by Haadem, Øksendal, and Proske
[192] and by Maslowski and Veverka [276].

Examples of infinite horizon mean field games may be found in Huang, Caines,
and Malhamé [212], Huang [208] and Huang [209]. We refer to Chapter 7 in
the monograph by Bensoussan, Frehse, and Yam [50] and to the article by Priuli
[314] for other considerations on mean field games with an infinite horizon and a
discounted running cost.

Ergodic mean field games, including the convergence of the N-player game,
were addressed by Lasry and Lions in their first works on the subject. We refer
to the two seminal papers [260,262] for a complete account of the available results.
Refinements were obtained by Cirant in [118], where special attention is paid to cost
functionals favoring congestion phenomena, in [153] by Ferreira and Gomes whose
analysis allows for degenerate cases, and in [313] by Pimentel and Voskanyan who
address the existence of classical solutions. The extended mean field games models
introduced and studied in Subsection 4.6 of Chapter 4 were studied in the ergodic
case by Gomes, Patrizi, and Voskanyan in [127] where they are called extended
ergodic mean fields games. The linear quadratic case was considered by Bardi
and Priuli in [35]. The note by Borkar [66] provides a pedagogical introduction
to the theory of ergodic optimal control (without mean field interactions). The
HJB equations used to solve ergodic control problems and ergodic games were
investigated by Bensoussan and Frehse [46, 47]. We refer to the monographs [228]
by Khasminskii and [128] by Da Prato and Zabczyk for a general presentation of the
ergodic properties of Markov and diffusion processes. Ergodic BSDEs, which we
alluded to in Subsection 7.1.2, were investigated by Debussche, Hu, and Tessitore
in [131] and Fuhrman, Hu, and Tessitore in [270].
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The connection between ergodic mean field games and the large time limit of
mean field games with finite time horizon was addressed by Cardaliaguet, Lasry,
Lions, and Porretta in [90, 91] for mean field games with nondegenerate diffusion
coefficients, and by Cardaliaguet in [84] for degenerate first order mean field games.
For numerical methods on ergodic mean field games, we refer the interested reader
to the paper [19] of Almulla, Ferreira, and Gomes and to [4] by Achdou and
Capuzzo-Dolcetta. In [82], Camilli and Marchi study a class of stationary mean
field games on networks.

Our introductory discussion of mean field games with finite state spaces empha-
sizes the fact that we refrain from considering the equivalent of a common noise,
and that we restrict our presentation to Markovian dynamics as given by control
strategies in feedback closed loop form. For the construction of state dynamics as
marked point processes from their dual predictable projections and the discussion
of a few examples of control of queuing systems, the interested reader is referred
to the book [231] of Kitaev and Rykov. For the theory of point processes we refer
the reader to Brémaud’s monograph [67], and to Cinlar’s textbook [116] for a clear
pedagogical introduction. All these treatises rely heavily on the fundamental work of
Jacod [214] on the theory of the predictable projection of a random measure. We also
refer to the monograph [173] of Gihman and Skorohod for a general overview of
the theory of controlled processes and to the textbook [190] of Guo and Hernández-
Lerma for a more specific focus on Markov decision processes.

The bulk of the technical results presented in our discussion of the mean field
games with finite state spaces was inspired by the works of Guéant [185, 188] and
Gomes, Mohr, and Souza [175]. The earlier publication [174] by the same authors
investigates the discrete time case which we did not consider in the text. These
works are very similar. The dynamics of the states are given for an evolution on
a directed graph in [185, 188], emphasizing the possibility to restrict transitions
to and from specific sets of nodes. However, except for a clear emphasis in the
notation which could help the intuition regarding the time evolution of the state,
this directed graph structure is not really used when it comes to theoretical results
and proofs, so the set-up of [175] could be used as well to describe the dynamics.
The main difference is that from the start of [185, 188], the contributions of the
control ˛ and the marginal distribution � to the running cost function are split
apart and appear in two different additive components of the cost. Even though the
form of the contribution of the control is more general than the quadratic function
which we use in the text, the strict convexity assumption of [185, 188] ends up
playing the same role as our quadratic assumption, and for the sake of exposition,
we decided to use the quadratic function instead of carrying around Legendre
transforms. Finally, while [175] does not assume that the running cost function splits
into parts containing the contributions of the control and the marginal distribution,
technical assumptions and dedicated a priori estimates lead to similar arguments and
proofs.

The four state model for the behavior of computer owners facing cyber attacks
by hackers which we chose for the purpose of illustration is borrowed from the
paper [235] by Kolokoltsov and Bensoussan. There, the authors consider the infinite
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time horizon version of the model, and search for stationary equilibria. They give
a complete characterization of the state of affair, i.e., nonexistence, existence and
uniqueness, and even existence of two equilibria in the asymptotic regime 
 D 1.
Obviously, the numerical illustrations given in the text are for T and 
 finite. We
chose the parameters of the model for our numerical results to be consistent with
the asymptotic properties expected from their results. This cyber-security model
will be revisited in Chapter 7 of Volume II where we extend the framework of finite
state mean field games to include major and minor players, generalization which
makes the model more realistic for the analysis of cyber attack applications.

The counter-example presented in Subsection 7.2.5 is inspired by the note [139]
of Doncel, Gast, and Gaujal. See also the expanded version [140] by the same
authors. It may be regarded as a dynamic variant of the classical prisoner’s dilemma
game. In the finite player version, a strategy for constructing an equilibrium is
given by the tit-for-tat principle: any player which defects from the cooperation is
punished by the others. Intuitively, such a strategy cannot be implemented anymore
in the limiting setting since the mass of one defecting player is zero.

We refer to Gast and Gaujal [169, 170], Gast, Gaujal, and LeBoudec [169, 170],
and Kolokolstov [239] for a study of mean field control problems, very much in
the spirit of Chapter 6, on a finite state space. Some of these articles treat only the
discrete time case. Finally, we refer to Basna, Hilbert, and Kolokoltsov [37] for a
discussion of mean field games when the dynamics of the states of the players are
given by pure jump Markov processes in a continuous state space.
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