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PREFACE

Changes to the Fourth Edition

* I have reorganized many main results that were included in the body of the

text by labeling them as theorems in order to facilitate students in finding and
referencing these results.

I have pulled the important defintions and assumptions out of the body of the
text and labeled them as such so that they stand out better.

When a new topicis introduced, I introduce it with a motivating example before
delving into the mathematical formalities. Then I return to the example to
illustrate the newly introduced material.

I moved the material on the law of large numbers and the central limit theorem
to a new Chapter 6. It seemed more natural to deal with the main large-sample
results together.

I moved the section on Markov chains into Chapter 3. Every time I cover this
material with my own students, I stumble over not being able to refer to random
variables, distributions, and conditional distributions. I have actually postponed
this material until after introducing distributions, and then gone back to cover
Markov chains. I feel that the time has come to place it in a more natural
location. I also added some material on stationary distributions of Markov
chains.

I have moved the lengthy proofs of several theorems to the ends of their
respective sections in order to improve the flow of the presentation of ideas.

I rewrote Section 7.1 to make the introduction to inference clearer.

I rewrote Section 9.1 as a more complete introduction to hypothesis testing,
including likelihood ratio tests. For instructors not interested in the more math-
ematical theory of hypothesis testing, it should now be easier to skip from
Section 9.1 directly to Section 9.5.

Some other changes that readers will notice:

I have replaced the notation in which the intersection of two sets A and B had
been represented A B with the more popular A N B. The old notation, although
mathematically sound, seemed a bit arcane for a text at this level.

I added the statements of Stirling’s formula and Jensen’s inequality.

I moved the law of total probability and the discussion of partitions of a sample
space from Section 2.3 to Section 2.1.

I define the cumulative distribution function (c.d.f.) as the prefered name of
what used to be called only the distribution function (d.f.).

I added some discussion of histograms in Chapters 3 and 6.

Irearranged the topics in Sections 3.8 and 3.9 so that simple functions of random
variables appear first and the general formulations appear at the end to make
it easier for instructors who want to avoid some of the more mathematically
challenging parts.

I emphasized the closeness of a hypergeometric distribution with a large num-
ber of available items to a binomial distribution.

xi
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¢ I gaveabriefintroduction to Chernoff bounds. These are becoming increasingly
important in computer science, and their derivation requires only material that
is already in the text.

¢ I changed the definition of confidence interval to refer to the random interval
rather than the observed interval. This makes statements less cumbersome, and
it corresponds to more modern usage.

¢ ] added a brief discussion of the method of moments in Section 7.6.

¢ I added brief introductions to Newton’s method and the EM algorithm in
Chapter 7.

¢ Tintroduced the concept of pivotal quantity to facilitate construction of confi-
dence intervals in general.

¢ [ added the statement of the large-sample distribution of the likelihood ratio
test statistic. I then used this as an alternative way to test the null hypothesis
that two normal means are equal when it is not assumed that the variances are
equal.

* I moved the Bonferroni inequality into the main text (Chapter 1) and later
(Chapter 11) used it as a way to construct simultaneous tests and confidence
intervals.

How to Use This Book

The text is somewhat long for complete coverage in a one-year course at the under-
graduate level and is designed so that instructors can make choices about which topics
are most important to cover and which can be left for more in-depth study. As an ex-
ample, many instructors wish to deemphasize the classical counting arguments that
are detailed in Sections 1.7-1.9. An instructor who only wants enough information
to be able to cover the binomial and/or multinomial distributions can safely dis-
cuss only the definitions and theorems on permutations, combinations, and possibly
multinomial coefficients. Just make sure that the students realize what these values
count, otherwise the associated distributions will make no sense. The various exam-
ples in these sections are helpful, but not necessary, for understanding the important
distributions. Another example is Section 3.9 on functions of two or more random
variables. The use of Jacobians for general multivariate transformations might be
more mathematics than the instructors of some undergraduate courses are willing
to cover. The entire section could be skipped without causing problems later in the
course, but some of the more straightforward cases early in the section (such as con-
volution) might be worth introducing. The material in Sections 9.2-9.4 on optimal
tests in one-parameter families is pretty mathematics, but it is of interest primarily
to graduate students who require a very deep understanding of hypothesis testing
theory. The rest of Chapter 9 covers everything that an undergraduate course really
needs.

In addition to the text, the publisher has an Instructor’s Solutions Manual, avail-
able for download from the Instructor Resource Center at www.pearsonhighered
.com/irc, which includes some specific advice about many of the sections of the text.
I have taught a year-long probability and statistics sequence from earlier editions of
this text for a group of mathematically well-trained juniors and seniors. In the first
semester, I covered what was in the earlier edition but is now in the first five chap-
ters (including the material on Markov chains) and parts of Chapter 6. In the second
semester, I covered the rest of the new Chapter 6, Chapters 7-9, Sections 11.1-11.5,
and Chapter 12. I have also taught a one-semester probability and random processes
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course for engineers and computer scientists. I covered what was in the old edition
and is now in Chapters 1-6 and 12, including Markov chains, but not Jacobians. This
latter course did not emphasize mathematical derivation to the same extent as the
course for mathematics students.

A number of sections are designated with an asterisk (*). This indicates that
later sections do not rely materially on the material in that section. This designation
is not intended to suggest that instructors skip these sections. Skipping one of these
sections will not cause the students to miss definitions or results that they will need
later. The sections are 2.4, 3.10, 4.8, 7.7, 7.8, 7.9, 8.6, 8.8, 9.2, 9.3, 9.4, 9.8, 9.9, 10.6,
10.7, 10.8, 11.4, 11.7, 11.8, and 12.5. Aside from cross-references between sections
within this list, occasional material from elsewhere in the text does refer back to
some of the sections in this list. Each of the dependencies is quite minor, however.
Most of the dependencies involve references from Chapter 12 back to one of the
optional sections. The reason for this is that the optional sections address some of
the more difficult material, and simulation is most useful for solving those difficult
problems that cannot be solved analytically. Except for passing references that help
put material into context, the dependencies are as follows:

¢ The sample distribution function (Section 10.6) is reintroduced during the
discussion of the bootstrap in Section 12.6. The sample distribution function
is also a useful tool for displaying simulation results. It could be introduced as
early as Example 12.3.7 simply by covering the first subsection of Section 10.6.

* The material on robust estimation (Section 10.7) is revisited in some simulation
exercises in Section 12.2 (Exercises 4, 5, 7, and 8).

* Example 12.3.4 makes reference to the material on two-way analysis of variance
(Sections 11.7 and 11.8).

Supplements

The text is accompanied by the following supplementary material:

¢ Instructor’s Solutions Manual contains fully worked solutions to all exercises
in the text. Available for download from the Instructor Resource Center at
www.pearsonhighered.com/irc.

¢ Student Solutions Manual contains fully worked solutions to all odd exercises in
the text. Available for purchase from MyPearsonStore at www.mypearsonstore
.com. (ISBN-13: 978-0-321-71598-2; ISBN-10: 0-321-71598-5)
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[.I The History of Probability

The use of probability to measure uncertainty and variability dates back hundreds
of years. Probability has found application in areas as diverse as medicine, gam-
bling, weather forecasting, and the law.

The concepts of chance and uncertainty are as old as civilization itself. People have
always had to cope with uncertainty about the weather, their food supply, and other
aspects of their environment, and have striven to reduce this uncertainty and its
effects. Even the idea of gambling has a long history. By about the year 3500 B.c.,
games of chance played with bone objects that could be considered precursors of
dice were apparently highly developed in Egypt and elsewhere. Cubical dice with
markings virtually identical to those on modern dice have been found in Egyptian
tombs dating from 2000 B.c. We know that gambling with dice has been popular ever
since that time and played an important part in the early development of probability
theory.

Itis generally believed that the mathematical theory of probability was started by
the French mathematicians Blaise Pascal (1623-1662) and Pierre Fermat (1601-1665)
when they succeeded in deriving exact probabilities for certain gambling problems
involving dice. Some of the problems that they solved had been outstanding for about
300 years. However, numerical probabilities of various dice combinations had been
calculated previously by Girolamo Cardano (1501-1576) and Galileo Galilei (1564—
1642).

The theory of probability has been developed steadily since the seventeenth
century and has been widely applied in diverse fields of study. Today, probability
theory is an important tool in most areas of engineering, science, and management.
Many research workers are actively engaged in the discovery and establishment of
new applications of probability in fields such as medicine, meteorology, photography
from satellites, marketing, earthquake prediction, human behavior, the design of
computer systems, finance, genetics, and law. In many legal proceedings involving
antitrust violations or employment discrimination, both sides will present probability
and statistical calculations to help support their cases.
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References

The ancient history of gambling and the origins of the mathematical theory of prob-
ability are discussed by David (1988), Ore (1960), Stigler (1986), and Todhunter
(1865).

Some introductory books on probability theory, which discuss many of the same
topics that will be studied in this book, are Feller (1968); Hoel, Port, and Stone (1971);
Meyer (1970); and Olkin, Gleser, and Derman (1980). Other introductory books,
which discuss both probability theory and statistics at about the same level as they
will be discussed in this book, are Brunk (1975); Devore (1999); Fraser (1976); Hogg
and Tanis (1997); Kempthorne and Folks (1971); Larsen and Marx (2001); Larson
(1974); Lindgren (1976); Miller and Miller (1999); Mood, Graybill, and Boes (1974);
Rice (1995); and Wackerly, Mendenhall, and Schaeffer (2008).

[.2 Interpretations of Probability

This section describes three common operational interpretations of probability.
Although the interpretations may seem incompatible, it is fortunate that the calcu-
lus of probability (the subject matter of the first six chapters of this book) applies
equally well no matter which interpretation one prefers.

In addition to the many formal applications of probability theory, the concept of
probability enters our everyday life and conversation. We often hear and use such
expressions as “It probably will rain tomorrow afternoon,” “It is very likely that
the plane will arrive late,” or “The chances are good that he will be able to join us
for dinner this evening.” Each of these expressions is based on the concept of the
probability, or the likelihood, that some specific event will occur.

Despite the fact that the concept of probability is such a common and natural
part of our experience, no single scientific interpretation of the term probability is
accepted by all statisticians, philosophers, and other authorities. Through the years,
each interpretation of probability that has been proposed by some authorities has
been criticized by others. Indeed, the true meaning of probability is still a highly
controversial subject and is involved in many current philosophical discussions per-
taining to the foundations of statistics. Three different interpretations of probability
will be described here. Each of these interpretations can be very useful in applying
probability theory to practical problems.

The Frequency Interpretation of Probability

In many problems, the probability that some specific outcome of a process will be
obtained can be interpreted to mean the relative frequency with which that outcome
would be obtained if the process were repeated a large number of times under similar
conditions. For example, the probability of obtaining a head when a coin is tossed is
considered to be 1/2 because the relative frequency of heads should be approximately
1/2 when the coin is tossed a large number of times under similar conditions. In other
words, it is assumed that the proportion of tosses on which a head is obtained would
be approximately 1/2.

Of course, the conditions mentioned in this example are too vague to serve as the
basis for a scientific definition of probability. First, a “large number” of tosses of the
coin is specified, but there is no definite indication of an actual number that would
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be considered large enough. Second, it is stated that the coin should be tossed each
time “under similar conditions,” but these conditions are not described precisely. The
conditions under which the coin is tossed must not be completely identical for each
toss because the outcomes would then be the same, and there would be either all
heads or all tails. In fact, a skilled person can toss a coin into the air repeatedly and
catch it in such a way that a head is obtained on almost every toss. Hence, the tosses
must not be completely controlled but must have some “random” features.
Furthermore, it is stated that the relative frequency of heads should be “approx-
imately 1/2,” but no limit is specified for the permissible variation from 1/2. If a coin
were tossed 1,000,000 times, we would not expect to obtain exactly 500,000 heads.
Indeed, we would be extremely surprised if we obtained exactly 500,000 heads. On
the other hand, neither would we expect the number of heads to be very far from
500,000. It would be desirable to be able to make a precise statement of the like-
lihoods of the different possible numbers of heads, but these likelihoods would of
necessity depend on the very concept of probability that we are trying to define.
Another shortcoming of the frequency interpretation of probability is that it
applies only to a problem in which there can be, atleast in principle, a large number of
similar repetitions of a certain process. Many important problems are not of this type.
For example, the frequency interpretation of probability cannot be applied directly
to the probability that a specific acquaintance will get married within the next two
years or to the probability that a particular medical research project will lead to the
development of a new treatment for a certain disease within a specified period of time.

The Classical Interpretation of Probability

The classical interpretation of probability is based on the concept of equally likely
outcomes. For example, when a coin is tossed, there are two possible outcomes: a
head or a tail. If it may be assumed that these outcomes are equally likely to occur,
then they must have the same probability. Since the sum of the probabilities must
be 1, both the probability of a head and the probability of a tail must be 1/2. More
generally, if the outcome of some process must be one of n different outcomes, and
if these n outcomes are equally likely to occur, then the probability of each outcome
is1/n.

Two basic difficulties arise when an attempt is made to develop a formal defi-
nition of probability from the classical interpretation. First, the concept of equally
likely outcomes is essentially based on the concept of probability that we are trying
to define. The statement that two possible outcomes are equally likely to occur is the
same as the statement that two outcomes have the same probability. Second, no sys-
tematic method is given for assigning probabilities to outcomes that are not assumed
to be equally likely. When a coin is tossed, or a well-balanced die is rolled, or a card is
chosen from a well-shuffled deck of cards, the different possible outcomes can usually
be regarded as equally likely because of the nature of the process. However, when the
problem is to guess whether an acquaintance will get married or whether a research
project will be successful, the possible outcomes would not typically be considered
to be equally likely, and a different method is needed for assigning probabilities to
these outcomes.

The Subjective Interpretation of Probability

According to the subjective, or personal, interpretation of probability, the probability
that a person assigns to a possible outcome of some process represents her own
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judgment of the likelihood that the outcome will be obtained. This judgment will be
based on each person’s beliefs and information about the process. Another person,
who may have different beliefs or different information, may assign a different
probability to the same outcome. For this reason, it is appropriate to speak of a
certain person’s subjective probability of an outcome, rather than to speak of the
true probability of that outcome.

As an illustration of this interpretation, suppose that a coin is to be tossed once.
A person with no special information about the coin or the way in which it is tossed
might regard a head and a tail to be equally likely outcomes. That person would
then assign a subjective probability of 1/2 to the possibility of obtaining a head. The
person who is actually tossing the coin, however, might feel that a head is much
more likely to be obtained than a tail. In order that people in general may be able
to assign subjective probabilities to the outcomes, they must express the strength of
their belief in numerical terms. Suppose, for example, that they regard the likelihood
of obtaining a head to be the same as the likelihood of obtaining a red card when one
card is chosen from a well-shuffled deck containing four red cards and one black card.
Because those people would assign a probability of 4/5 to the possibility of obtaining
a red card, they should also assign a probability of 4/5 to the possibility of obtaining
a head when the coin is tossed.

This subjective interpretation of probability can be formalized. In general, if
people’s judgments of the relative likelihoods of various combinations of outcomes
satisfy certain conditions of consistency, then it can be shown that their subjective
probabilities of the different possible events can be uniquely determined. However,
there are two difficulties with the subjective interpretation. First, the requirement
that a person’s judgments of the relative likelihoods of an infinite number of events
be completely consistent and free from contradictions does not seem to be humanly
attainable, unless a person is simply willing to adopt a collection of judgments known
to be consistent. Second, the subjective interpretation provides no “objective” basis
for two or more scientists working together to reach a common evaluation of the
state of knowledge in some scientific area of common interest.

On the other hand, recognition of the subjective interpretation of probability
has the salutary effect of emphasizing some of the subjective aspects of science. A
particular scientist’s evaluation of the probability of some uncertain outcome must
ultimately be that person’s own evaluation based on all the evidence available. This
evaluation may well be based in part on the frequency interpretation of probability,
since the scientist may take into account the relative frequency of occurrence of this
outcome or similar outcomes in the past. It may also be based in part on the classical
interpretation of probability, since the scientist may take into account the total num-
ber of possible outcomes that are considered equally likely to occur. Nevertheless,
the final assignment of numerical probabilities is the responsibility of the scientist
herself.

The subjective nature of science is also revealed in the actual problem that a
particular scientist chooses to study from the class of problems that might have
been chosen, in the experiments that are selected in carrying out this study, and
in the conclusions drawn from the experimental data. The mathematical theory of
probability and statistics can play an important part in these choices, decisions, and
conclusions.

Note: The Theory of Probability Does Not Depend on Interpretation. The math-
ematical theory of probability is developed and presented in Chapters 1-6 of this
book without regard to the controversy surrounding the different interpretations of
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the term probability. This theory is correct and can be usefully applied, regardless of
which interpretation of probability is used in a particular problem. The theories and
techniques that will be presented in this book have served as valuable guides and
tools in almost all aspects of the design and analysis of effective experimentation.

[.3 Experiments and Events

Probability will be the way that we quantify how likely something is to occur (in
the sense of one of the interpretations in Sec. 1.2). In this section, we give examples
of the types of situations in which probability will be used.

Types of Experiments

The theory of probability pertains to the various possible outcomes that might be
obtained and the possible events that might occur when an experiment is performed.

Experiment and Event. An experiment is any process, real or hypothetical, in which
the possible outcomes can be identified ahead of time. An event is a well-defined set
of possible outcomes of the experiment.

The breadth of this definition allows us to call almost any imaginable process an
experiment whether or not its outcome will ever be known. The probability of each
event will be our way of saying how likely it is that the outcome of the experiment is
in the event. Not every set of possible outcomes will be called an event. We shall be
more specific about which subsets count as events in Sec. 1.4.

Probability will be most useful when applied to a real experiment in which the
outcome is not known in advance, but there are many hypothetical experiments that
provide useful tools for modeling real experiments. A common type of hypothetical
experiment is repeating a well-defined task infinitely often under similar conditions.
Some examples of experiments and specific events are given next. In each example,
the words following “the probability that” describe the event of interest.

1. Inanexperimentin which a coinis to be tossed 10 times, the experimenter might
want to determine the probability that at least four heads will be obtained.

2. In an experiment in which a sample of 1000 transistors is to be selected from
a large shipment of similar items and each selected item is to be inspected, a
person might want to determine the probability that not more than one of the
selected transistors will be defective.

3. In an experiment in which the air temperature at a certain location is to be
observed every day at noon for 90 successive days, a person might want to
determine the probability that the average temperature during this period will
be less than some specified value.

4. From information relating to the life of Thomas Jefferson, a person might want
to determine the probability that Jefferson was born in the year 1741.

5. Inevaluating an industrial research and development project at a certain time,
a person might want to determine the probability that the project will result
in the successful development of a new product within a specified number of
months.
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The Mathematical Theory of Probability

As was explained in Sec. 1.2, there is controversy in regard to the proper meaning
and interpretation of some of the probabilities that are assigned to the outcomes
of many experiments. However, once probabilities have been assigned to some
simple outcomes in an experiment, there is complete agreement among all authorities
that the mathematical theory of probability provides the appropriate methodology
for the further study of these probabilities. Almost all work in the mathematical
theory of probability, from the most elementary textbooks to the most advanced
research, has been related to the following two problems: (i) methods for determining
the probabilities of certain events from the specified probabilities of each possible
outcome of an experiment and (ii) methods for revising the probabilities of events
when additional relevant information is obtained.

These methods are based on standard mathematical techniques. The purpose of
the first six chapters of this book is to present these techniques, which, together, form
the mathematical theory of probability.

[.4 Set Theory

This section develops the formal mathematical model for events, namely, the theory
of sets. Several important concepts are introduced, namely, element, subset, empty
set, intersection, union, complement, and disjoint sets.

The Sample Space

Sample Space. The collection of all possible outcomes of an experiment is called the
sample space of the experiment.

The sample space of an experiment can be thought of as a set, or collection, of
different possible outcomes; and each outcome can be thought of as a point, or an
element, in the sample space. Similarly, events can be thought of as subsets of the
sample space.

Rolling a Die. When a six-sided die is rolled, the sample space can be regarded as
containing the six numbers 1, 2, 3, 4, 5, 6, each representing a possible side of the die
that shows after the roll. Symbolically, we write

§=1{1,2,3,4,5,6}.

One event A is that an even number is obtained, and it can be represented as the
subset A = {2, 4, 6}. The event B that a number greater than 2 is obtained is defined
by the subset B = {3, 4, 5, 6}. <

Because we can interpret outcomes as elements of a set and events as subsets
of a set, the language and concepts of set theory provide a natural context for the
development of probability theory. The basic ideas and notation of set theory will
now be reviewed.
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Relations of Set Theory

Let S denote the sample space of some experiment. Then each possible outcome s
of the experiment is said to be a member of the space S, or to belong to the space S.
The statement that s is a member of S is denoted symbolically by the relation s € S.

When an experiment has been performed and we say that some event E has
occurred, we mean two equivalent things. One is that the outcome of the experiment
satisfied the conditions that specified that event E. The other is that the outcome,
considered as a point in the sample space, is an element of E.

To be precise, we should say which sets of outcomes correspond to events as de-
fined above. In many applications, such as Example 1.4.1, it will be clear which sets of
outcomes should correspond to events. In other applications (such as Example 1.4.5
coming up later), there are too many sets available to have them all be events. Ide-
ally, we would like to have the largest possible collection of sets called events so that
we have the broadest possible applicability of our probability calculations. However,
when the sample space is too large (as in Example 1.4.5) the theory of probability
simply will not extend to the collection of all subsets of the sample space. We would
prefer not to dwell on this point for two reasons. First, a careful handling requires
mathematical details that interfere with an initial understanding of the important
concepts, and second, the practical implications for the results in this text are min-
imal. In order to be mathematically correct without imposing an undue burden on
the reader, we note the following. In order to be able to do all of the probability cal-
culations that we might find interesting, there are three simple conditions that must
be met by the collection of sets that we call events. In every problem that we see in
this text, there exists a collection of sets that includes all the sets that we will need to
discuss and that satisfies the three conditions, and the reader should assume that such
a collection has been chosen as the events. For a sample space § with only finitely
many outcomes, the collection of all subsets of S satisfies the conditions, as the reader
can show in Exercise 12 in this section.

The first of the three conditions can be stated immediately.

The sample space S must be an event.

That is, we must include the sample space S in our collection of events. The other two
conditions will appear later in this section because they require additional definitions.
Condition 2 is on page 9, and Condition 3 is on page 10.

Containment. It is said that a set A is contained in another set B if every element
of the set A also belongs to the set B. This relation between two events is expressed
symbolically by the expression A C B, which is the set-theoretic expression for saying
that A is a subset of B. Equivalently, if A C B, we may say that B contains A and may
write B D A.

For events, to say that A C B means that if A occurs then so does B.
The proof of the following result is straightforward and is omitted.

Let A, B, and C be events. Then AC S.If ACBand BC A,then A=B.If ACB
and B C C,then A CC. [}

Rolling a Die. In Example 1.4.1, suppose that A is the event that an even number
is obtained and C is the event that a number greater than 1 is obtained. Since
A={2,4,6}and C ={2, 3, 4, 5, 6}, it follows that A C C. <
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The Empty Set Some events are impossible. For example, when a die is rolled, it
is impossible to obtain a negative number. Hence, the event that a negative number
will be obtained is defined by the subset of S that contains no outcomes.

Empty Set. The subset of S that contains no elements is called the empty set, or null
set, and it is denoted by the symbol ¢.

In terms of events, the empty set is any event that cannot occur.
Let A be an event. Then ¢ C A.

Proof Let A be an arbitrary event. Since the empty set ¢ contains no points, it is
logically correct to say that every point belonging to ¢ also belongs to A, or ¥ C A.
|

Finite and Infinite Sets Some sets contain only finitely many elements, while others
have infinitely many elements. There are two sizes of infinite sets that we need to
distinguish.

Countable/Uncountable. An infinite set A is countable if there is a one-to-one corre-
spondence between the elements of A and the set of natural numbers {1, 2, 3, .. .}. A
set is uncountable if it is neither finite nor countable. If we say that a set has at most
countably many elements, we mean that the set is either finite or countable.

Examples of countably infinite sets include the integers, the even integers, the odd
integers, the prime numbers, and any infinite sequence. Each of these can be put
in one-to-one correspondence with the natural numbers. For example, the following
function f puts the integers in one-to-one correspondence with the natural numbers:

Fn) = % Tfn ¥s odd,
—5 ifniseven.

Every infinite sequence of distinct items is a countable set, as its indexing puts it in
one-to-one correspondence with the natural numbers. Examples of uncountable sets
include the real numbers, the positive reals, the numbers in the interval [0, 1], and the
set of all ordered pairs of real numbers. An argument to show that the real numbers
are uncountable appears at the end of this section. Every subset of the integers has
at most countably many elements.

Operations of Set Theory

Complement. The complement of a set A is defined to be the set that contains all
elements of the sample space S that do not belong to A. The notation for the
complement of A is A€.

In terms of events, the event A€ is the event that A does not occur.

Rollinga Die. In Example 1.4.1, suppose again that A is the event that an even number
is rolled; then A€ = {1, 3, 5} is the event that an odd number is rolled. <

We can now state the second condition that we require of the collection of events.
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COO

If A is an event, then A€ is also an event.

That is, for each set A of outcomes that we call an event, we must also call its
complement A€ an event.

A generic version of the relationship between A and A€ is sketched in Fig. 1.1.
A sketch of this type is called a Venn diagram.

Some properties of the complement are stated without proof in the next result.

Let A be an event. Then
(A=A, 0 =S, S¢=0.

The empty event @ is an event. ]

Union of Two Sets. If A and B are any two sets, the union of A and B is defined to be
the set containing all outcomes that belong to A alone, to B alone, or to both A and
B. The notation for the union of A and Bis AU B.

The set AU B is sketched in Fig. 1.2. In terms of events, A U B is the event that either
A or B or both occur.
The union has the following properties whose proofs are left to the reader.

For all sets A and B,
AUB=BUA, AUA=A, AUA =S,
AU =A, AUS=S.
Furthermore, if A C B, then AU B = B. [

The concept of union extends to more than two sets.

Union of Many Sets. The union of n sets Ay, ..., A, is defined to be the set that
contains all outcomes that belong to at least one of these n sets. The notation for this
union is either of the following:
n
AjUAU---UA4, or | A,
i=1
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Similarly, the union of an infinite sequence of sets Aq, A, . .. is the set that contains
all outcomes that belong to at least one of the events in the sequence. The infinite
union is denoted by [ J;2, A;.

In terms of events, the union of a collection of events is the event that at least
one of the events in the collection occurs.

We can now state the final condition that we require for the collection of sets
that we call events.

If Ay, A,, .. .is a countable collection of events, then | J7~, 4, is also an event.

In other words, if we choose to call each set of outcomes in some countable collection
an event, we are required to call their union an event also. We do not require that
the union of an arbitrary collection of events be an event. To be clear, let / be an
arbitrary set that we use to index a general collection of events {A; :i € I}. The union
of the events in this collection is the set of outcomes that are in at least one of the
events in the collection. The notation for this union is | J;_.; A;. We do not require
that | J;.; A; be an event unless [ is countable.

Condition 3 refers to a countable collection of events. We can prove that the
condition also applies to every finite collection of events.

iel

The union of a finite number of events Aq, ..., A, is an event.

Proof Foreachm =n+1,n+2, ..., define A,, = ). Because ¢ is an event, we now
have a countable collection Ay, A,, ... of events. It follows from Condition 3 that
Up>_; A, is an event. But it is easy to see that [ >, A, =" _; A,. [

m=1"*"m m=1"*"m

The union of three events A, B, and C can be constructed either directly from the
definition of A U B U C or by first evaluating the union of any two of the events and
then forming the union of this combination of events and the third event. In other
words, the following result is true.

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

AUBUC=(AUB)UC=AU(BUC). n

Intersection of Two Sets. If A and B are any two sets, the intersection of A and B is
defined to be the set that contains all outcomes that belong both fo A and to B. The
notation for the intersection of A and B is A N B.

The set A N B is sketched in a Venn diagram in Fig. 1.3. In terms of events, A N B is
the event that both A and B occur.

The proof of the first part of the next result follows from Exercise 3 in this section.
The rest of the proof is straightforward.

D
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If A and B are events, then so is A N B. For all events A and B,

ANB=BNA, ANA=A, ANA =0,
ANP=0, ANS=A.
Furthermore, if A C B, then AN B = A. [

The concept of intersection extends to more than two sets.

Intersection of Many Sets. The intersection of n sets Ay, ..., A, is defined to be the
set that contains the elements that are common to all these n sets. The notation for
this intersection is Ay N A, N...N A, or (/_, A;. Similar notations are used for the
intersection of an infinite sequence of sets or for the intersection of an arbitrary
collection of sets.

In terms of events, the intersection of a collection of events is the event that every
event in the collection occurs.

The following result concerning the intersection of three events is straightfor-
ward to prove.

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

ANBNC=(ANB)NC=AN(BNC). [ |

Disjoint/Mutually Exclusive. It is said that two sets A and B are disjoint, or mutually
exclusive, if A and B have no outcomes in common, that is, if A N B = ). The sets
Ay, ..., A, orthesets Ay, A,, ... are disjoint if for every i # j, we have that A; and
Aj are disjoint, thatis, A; N A; =@ for all i # j. The events in an arbitrary collection
are disjoint if no two events in the collection have any outcomes in common.

In terms of events, A and B are disjoint if they cannot both occur.

As an illustration of these concepts, a Venn diagram for three events A{, A,, and
Aj is presented in Fig. 1.4. This diagram indicates that the various intersections of
A4, Ay, and A5 and their complements will partition the sample space S into eight
disjoint subsets.

ANASNAS

ASNANAS

ASNASNAS
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Figure 1.5 Sample space for
water and electric demand in
Example 1.4.5

Tossing a Coin. Suppose that a coin is tossed three times. Then the sample space S

contains the following eight possible outcomes sy, . . ., sg:

si:  HHH,
sy THH,
s32  HTH,
s4: HHT,
ss: HTT,
sq: THT,
s72 TTH,
sg: TTT.

In this notation, H indicates a head and T indicates a tail. The outcome s3, for
example, is the outcome in which a head is obtained on the first toss, a tail is obtained
on the second toss, and a head is obtained on the third toss.

To apply the concepts introduced in this section, we shall define four events as
follows: Let A be the event that at least one head is obtained in the three tosses; let
B be the event that a head is obtained on the second toss; let C be the event that a
tail is obtained on the third toss; and let D be the event that no heads are obtained.
Accordingly,

A ={s1, 52, 53, 54 55, 565 57}
B ={s1, 52, 54, s6}

C = {s4, 55, 56, 53},

D = {sg}.

Various relations among these events can be derived. Some of these relations
are BCA,A°=D,BND=y,AUC =S, BNC ={sy, ¢}, (BUC) = {s3, 57}, and
AN(BUC) ={sy, 52, 84, 55, S6}- <

Demands for Utilities. A contractor is building an office complex and needs to plan
for water and electricity demand (sizes of pipes, conduit, and wires). After consulting
with prospective tenants and examining historical data, the contractor decides that
the demand for electricity will range somewhere between 1 million and 150 million
kilowatt-hours per day and water demand will be between 4 and 200 (in thousands
of gallons per day). All combinations of electrical and water demand are considered
possible. The shaded region in Fig. 1.5 shows the sample space for the experiment,
consisting of learning the actual water and electricity demands for the office complex.
We can express the sample space as the set of ordered pairs {(x, y) :4 <x <200, 1<
y <150}, where x stands for water demand in thousands of gallons per day and y

Electric

150 +

t > Water
0] 4 200
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CO

stands for the electric demand in millions of kilowatt-hours per day. The types of sets
that we want to call events include sets like

{water demand is at least 100} = {(x, y) : x > 100}, and

{electric demand is no more than 35} = {(x, y) : y < 35},

along with intersections, unions, and complements of such sets. This sample space
has infinitely many points. Indeed, the sample space is uncountable. There are many
more sets that are difficult to describe and which we will have no need to consider as
events. <

Additional Properties of Sets The proof of the following useful result is left to
Exercise 3 in this section.

De Morgan’s Laws. For every two sets A and B,
(AUB)=A°NB° and (AN B)"=A°UB". |
The generalization of Theorem 1.4.9 is the subject of Exercise 5 in this section.

The proofs of the following distributive properties are left to Exercise 2 in this
section. These properties also extend in natural ways to larger collections of events.

Distributive Properties. For every three sets A, B, and C,
AN(BUC)=(ANB)U(ANC) and AU(BNC)=(AUB)N(AUC). m

The following result is useful for computing probabilities of events that can be

partitioned into smaller pieces. Its proof is left to Exercise 4 in this section, and is

illuminated by Fig. 1.6.

Partitioning a Set. For every two sets A and B, AN B and A N B¢ are disjoint and

A=(ANB)U (AN BY.
In addition, B and A N B¢ are disjoint, and

AUB=BU (AN B°. "

Proof That the Real Numbers Are Uncountable

We shall show that the real numbers in the interval [0, 1) are uncountable. Every
larger set is a fortiori uncountable. For each number x € [0, 1), define the sequence
{a,(x)}72 | as follows. First, a;(x) = [10x |, where |y] stands for the greatest integer
less than or equal to y (round nonintegers down to the closest integer below). Then
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023071 3.
1992100 .
2736011 .
8021279 .
701601 3.
1515151 .
2345678 .
01732098 .

Figure 1.7 An array of a countable
collection of sequences of digits with the
diagonal underlined.

set by(x) = 10x — aq(x), which will again be in [0, 1). For n > 1, a,,(x) = [10b,,_1(x)]
and b, (x) =10b,_1(x) — a,(x). It is easy to see that the sequence {a,(x)}77 gives a
decimal expansion for x in the form

x=)a,(x)107" (1.4.1)

n=1

By construction, each number of the form x = k/10™ for some nonnegative
integers k and m will have a,(x) =0 for n > m. The numbers of the form k/10™
are the only ones that have an alternate decimal expansion x =2 ¢,(x)107".
When £ is not a multiple of 10, this alternate expansion satisfies c¢,(x) = a,(x) for
n=1...,m—1.¢,x)=a,(x)—1,andc,(x) =9forn >m.Let C ={0, 1, ..., 9}*
stand for the set of all infinite sequences of digits. Let B denote the subset of C
consisting of those sequences that don’t end in repeating 9’s. Then we have just
constructed a function a from the interval [0, 1) onto B that is one-to-one and whose
inverse is given in (1.4.1). We now show that the set B is uncountable, hence [0, 1)
is uncountable. Take any countable subset of B and arrange the sequences into a
rectangular array with the kth sequence running across the kth row of the array for
k=1,2,....Figure 1.7 gives an example of part of such an array.

In Fig. 1.7, we have underlined the kth digit in the kth sequence for each k. This
portion of the array is called the diagonal of the array. We now show that there must
exist a sequence in B that is not part of this array. This will prove that the whole set
B cannot be put into such an array, and hence cannot be countable. Construct the
sequence {d,}>° ; as follows. For each n, let d,, = 2 if the nth digit in the nth sequence
is 1, and d,, = 1 otherwise. This sequence does not end in repeating 9’s; hence, it is
in B. We conclude the proof by showing that {d,}>° ; does not appear anywhere in
the array. If the sequence did appear in the array, say, in the kth row, then its kth
element would be the kth diagonal element of the array. But we constructed the
sequence so that for every n (including n = k), its nth element never matched the
nth diagonal element. Hence, the sequence can’t be in the kth row, no matter what
k is. The argument given here is essentially that of the nineteenth-century German
mathematician Georg Cantor.
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We will use set theory for the mathematical model of events. Outcomes of an exper-
iment are elements of some sample space S, and each event is a subset of S. Two
events both occur if the outcome is in the intersection of the two sets. At least one of
a collection of events occurs if the outcome is in the union of the sets. Two events can-
not both occur if the sets are disjoint. An event fails to occur if the outcome is in the
complement of the set. The empty set stands for every event that cannot possibly oc-
cur. The collection of events is assumed to contain the sample space, the complement
of each event, and the union of each countable collection of events.

Exercises

1. Suppose that A C B. Show that B¢ C A°.

2. Prove the distributive properties in Theorem 1.4.10.
3. Prove De Morgan’s laws (Theorem 1.4.9).

4. Prove Theorem 1.4.11.

5. For every collection of events A; (i € I), show that

c C

(U A,) =()A¢ and (ﬂ A,-) =JAs
iel iel iel iel

6. Suppose that one card is to be selected from a deck of
20 cards that contains 10 red cards numbered from 1 to
10 and 10 blue cards numbered from 1 to 10. Let A be
the event that a card with an even number is selected,
let B be the event that a blue card is selected, and let
C be the event that a card with a number less than 5 is
selected. Describe the sample space S and describe each
of the following events both in words and as subsets of S:

b. BNC* c. AUBUC
e. AN B°NCE.

a. ANBNC
d. AN(BUC)
7. Suppose that a number x is to be selected from the real
line S, andlet A, B, and C be the events represented by the
following subsets of S, where the notation {x: - - -} denotes
the set containing every point x for which the property
presented following the colon is satisfied:
A={x:1<x <5},
B={x:3<x<T7},
C={x:x<0}.
Describe each of the following events as a set of real
numbers:
a. A¢
d. A°NB°NCe

b. AUB c. BNC*
e. AUB)NC.
8. A simplified model of the human blood-type system

has four blood types: A, B, AB, and O. There are two
antigens, anti-A and anti-B, that react with a person’s

blood in different ways depending on the blood type. Anti-
A reacts with blood types A and AB, but not with B and
O. Anti-B reacts with blood types B and AB, but not with
A and O. Suppose that a person’s blood is sampled and
tested with the two antigens. Let A be the event that the
blood reacts with anti-A, and let B be the event that it
reacts with anti-B. Classify the person’s blood type using
the events A, B, and their complements.

9. Let S be a given sample space and let Ay, Aj, ... be
an infinite sequence of events. Forn =1,2, ..., let B, =
Urs, Aiandlet C, =72, A;.
a. Showthat ByD B, D---andthatC{C C, C - - -.
b. Show that an outcome in S belongs to the event
(o2, B, if and only if it belongs to an infinite number
of the events Ay, Ay, .. ..

c¢. Show that an outcome in S belongs to the event
U2 C, if and only if it belongs to all the events
A4, Ay, ... except possibly a finite number of those
events.

10. Three six-sided dice are rolled. The six sides of each
die are numbered 1-6. Let A be the event that the first
die shows an even number, let B be the event that the
second die shows an even number, and let C be the event
that the third die shows an even number. Also, for each
i=1,...,6,let A; be the event that the first die shows the
number i, let B; be the event that the second die shows
the number i, and let C; be the event that the third die
shows the number i. Express each of the following events
in terms of the named events described above:

a. The event that all three dice show even numbers

b. The event that no die shows an even number

c¢. The event that at least one die shows an odd number

d. The event that at most two dice show odd numbers

e. The event that the sum of the three dices is no greater
than 5

11. A power cell consists of two subcells, each of which
can provide from 0 to 5 volts, regardless of what the other
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subcell provides. The power cell is functional if and only
if the sum of the two voltages of the subcells is at least 6
volts. An experiment consists of measuring and recording
the voltages of the two subcells. Let A be the event that
the power cell is functional, let B be the event that two
subcells have the same voltage, let C be the event that the
first subcell has a strictly higher voltage than the second
subcell, and let D be the event that the power cell is
not functional but needs less than one additional volt to

d. Express the following event in terms of A, B, C,
and/or D: the event that the power cell is not func-
tional and the second subcell has a strictly higher
voltage than the first subcell.

12. Suppose that the sample space S of some experiment
is finite. Show that the collection of all subsets of S satisfies
the three conditions required to be called the collection of
events.

become functional.

a. Define a sample space S for the experiment as a set
of ordered pairs that makes it possible for you to
express the four sets above as events.

b. Express each of the events A, B, C, and D as sets of
ordered pairs that are subsets of S.

c. Express the following set in terms of A, B, C, and/or
D:{(x,y):x=yandx +y <5}.

Axiom

Axiom

13. Let S be the sample space for some experiment. Show
that the collection of subsets consisting solely of S and ¢
satisfies the three conditions required in order to be called
the collection of events. Explain why this collection would
not be very interesting in most real problems.

14. Suppose that the sample space S of some experiment
is countable. Suppose also that, for every outcome s € S,
the subset {s} is an event. Show that every subset of S must
be an event. Hint: Recall the three conditions required of
the collection of subsets of S that we call events.

[.5 The Definition of Probability

We begin with the mathematical definition of probability and then present some
useful results that follow easily from the definition.

Axioms and Basic Theorems

In this section, we shall present the mathematical, or axiomatic, definition of proba-
bility. In a given experiment, it is necessary to assign to each event A in the sample
space S a number Pr(A) that indicates the probability that A will occur. In order to
satisfy the mathematical definition of probability, the number Pr(A) that is assigned
must satisfy three specific axioms. These axioms ensure that the number Pr(A) will
have certain properties that we intuitively expect a probability to have under each
of the various interpretations described in Sec. 1.2.
The first axiom states that the probability of every event must be nonnegative.

For every event A, Pr(A) > 0.

The second axiom states that if an event is certain to occur, then the probability
of that event is 1.

Pr(S) = 1.

Before stating Axiom 3, we shall discuss the probabilities of disjoint events. If two
events are disjoint, it is natural to assume that the probability that one or the other
will occur is the sum of their individual probabilities. In fact, it will be assumed that
this additive property of probability is also true for every finite collection of disjoint
events and even for every infinite sequence of disjoint events. If we assume that this
additive property is true only for a finite number of disjoint events, we cannot then be
certain that the property will be true for an infinite sequence of disjoint events as well.
However, if we assume that the additive property is true for every infinite sequence
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of disjoint events, then (as we shall prove) the property must also be true for every
finite number of disjoint events. These considerations lead to the third axiom.

For every infinite sequence of disjoint events Aq, A,, .. .,
oo oo
Pr(U A,-) =Y Pr(A).
i=1 i=1

Rolling a Die. In Example 1.4.1, for each subset A of S ={1, 2, 3, 4, 5, 6}, let Pr(A) be
the number of elements of A divided by 6. It is trivial to see that this satisfies the first
two axioms. There are only finitely many distinct collections of nonempty disjoint
events. It is not difficult to see that Axiom 3 is also satisfied by this example. <

A Loaded Die. In Example 1.5.1, there are other choices for the probabilities of events.
For example, if we believe that the die is loaded, we might believe that some sides
have different probabilities of turning up. To be specific, suppose that we believe that
6 is twice as likely to come up as each of the other five sides. We could set p; = 1/7 for
i=1,2,3,4,5and pg =2/7. Then, for each event A, define Pr(A) to be the sum of
all p; such thati € A. For example, if A = {1, 3, 5}, then Pr(A) = p; + p3 + p5s =3/7.
It is not difficult to check that this also satisfies all three axioms. |

We are now prepared to give the mathematical definition of probability.

Probability. A probability measure, or simply a probability, on a sample space S is a
specification of numbers Pr(A) for all events A that satisfy Axioms 1, 2, and 3.

We shall now derive two important consequences of Axiom 3. First, we shall
show that if an event is impossible, its probability must be 0.

Pr(@) =0.
Proof Consider the infinite sequence of events Ay, A,, ... such that A; =@ for
i =1,2,....In other words, each of the events in the sequence is just the empty set

¢@. Then this sequence is a sequence of disjoint events, since ¥ N @ = . Furthermore,
U2, A; = 9. Therefore, it follows from Axiom 3 that

Pr(9) = Pr(U A,.> = Z Pr(A;) = Z Pr(%).
i=1 i=1

i=1
This equation states that when the number Pr(9) is added repeatedly in an infinite
series, the sum of that series is simply the number Pr(#). The only real number with
this property is zero. ]

We can now show that the additive property assumed in Axiom 3 for an infinite
sequence of disjoint events is also true for every finite number of disjoint events.

For every finite sequence of n disjoint events Aq, ..., A,
n n
Pr(U Ai> = Z Pr(4;).
i=1 i=1

Proof Consider the infinite sequence of events Ay, A,, ..., in which Ay, ..., A,
are the n given disjoint events and A; = for i > n. Then the events in this infinite
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in the proof of Theorem 1.5.4.

sequence are disjoint and [ J7°, A; = J/_; A;. Therefore, by Axiom 3,
n o oo
Pr(U A,-> = Pr(U Ai) =Y Pr(4)
i=1 i=1 i=1

=Y Pr(Ap+ > Pr(4)
i=1

i=n+1

=Y Pr(A)+0

i=1

- Xn:Pr(A,-). n
i=1

Further Properties of Probability

From the axioms and theorems just given, we shall now derive four other general
properties of probability measures. Because of the fundamental nature of these four
properties, they will be presented in the form of four theorems, each one of which is
easily proved.

For every event A, Pr(A€) =1 — Pr(A).

Proof Since A and A° are disjoint events and A U A° =S, it follows from Theo-
rem 1.5.2 that Pr(S) = Pr(A) + Pr(A°). Since Pr(S) =1 by Axiom 2, then Pr(A¢) =
1—Pr(A). [
If A C B, then Pr(A) < Pr(B).

Proof As illustrated in Fig. 1.8, the event B may be treated as the union of the
two disjoint events A and B N A¢. Therefore, Pr(B) = Pr(A) + Pr(B N A€). Since
Pr(B N A°) > 0, then Pr(B) > Pr(A). [
For every event A,0 <Pr(A) <1.

Proof It is known from Axiom 1 that Pr(A) > 0. Since A C S for every event A,
Theorem 1.5.4 implies Pr(A) < Pr(S) = 1, by Axiom 2. [

For every two events A and B,

Pr(A N B°) = Pr(A) — Pr(A N B).

BNAC¢
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Proof According to Theorem 1.4.11, the events A N B and A N B are disjoint and
A=(ANB)U (AN B°).
It follows from Theorem 1.5.2 that
Pr(A) =Pr(A N B) + Pr(A N B°).

Subtract Pr(A N B) from both sides of this last equation to complete the proof. =

For every two events A and B,

Pr(A U B) = Pr(A) + Pr(B) — Pr(A N B). (1.5.1)

Proof From Theorem 1.4.11, we have
AUB=BU(ANB"),
and the two events on the right side of this equation are disjoint. Hence, we have

Pr(A U B) =Pr(B) + Pr(A N B°)
=Pr(B) + Pr(A) — Pr(AN B),

where the first equation follows from Theorem 1.5.2, and the second follows from
Theorem 1.5.6. n

Diagnosing Diseases. A patient arrives at a doctor’s office with a sore throat and low-
grade fever. After an exam, the doctor decides that the patient has either a bacterial
infection or a viral infection or both. The doctor decides that there is a probability of
0.7 that the patient has a bacterial infection and a probability of 0.4 that the person
has a viral infection. What is the probability that the patient has both infections?

Let B be the event that the patient has a bacterial infection, and let V be the
event that the patient has a viral infection. We are told Pr(B) = 0.7, that Pr(V) = 0.4,
andthat S = B U V. We are asked to find Pr(B N V). We will use Theorem 1.5.7, which
says that

Pr(BUV)=Pr(B)+Pr(V) —Pr(BNYV). (1.5.2)

Since § = B UV, the left-hand side of (1.5.2) is 1, while the first two terms on the
right-hand side are 0.7 and 0.4. The result is

1=0.7+04—-Pr(BNYV),

which leads to Pr(B N V) = 0.1, the probability that the patient has both infections.
<

Demands for Utilities. Consider, once again, the contractor who needs to plan for
water and electricity demands in Example 1.4.5. There are many possible choices
for how to spread the probability around the sample space (pictured in Fig. 1.5 on
page 12). One simple choice is to make the probability of an event E proportional to
the area of E. The area of S (the sample space) is (150 — 1) x (200 — 4) =29,204,
so Pr(E) equals the area of E divided by 29,204. For example, suppose that the
contractor is interested in high demand. Let A be the set where water demand is
at least 100, and let B be the event that electric demand is at least 115, and suppose
that these values are considered high demand. These events are shaded with different
patterns in Fig. 1.9. The area of A is (150 — 1) x (200 — 100) = 14,900, and the area
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Figure 1.9 The two events
of interest in utility demand
sample space for Exam-
ple 1.5.4.

Theorem
1.5.8

Electric

150 +

ANB

115+

} } —> Water

of B is (150 — 115) x (200 — 4) = 6,860. So,

= 14,900 =0.5102, Pr(B)= 6,860 = (.2349.

29,204 29,204
The two events intersect in the region denoted by A N B. The area of this region
is (150 — 115) x (200 — 100) = 3,500, so Pr(A N B) = 3,500/29,204 = 0.1198. If the
contractor wishes to compute the probability that at least one of the two demands
will be high, that probability is

Pr(A U B) = Pr(A) + Pr(B) — Pr(A N B) = 0.5102 + 0.2349 — 0.1198 = 0.6253,

Pr(A)

according to Theorem 1.5.7. <

The proof of the following useful result is left to Exercise 13.

Bonferroni Inequality. For all events Ay, ..., 4,
n n n n
Pr(U A,) < Z Pr(A;) and Pr(ﬂ Ai> >1— Z Pr(A9).
i=1 i=1 i=1 i=1
(The second inequality above is known as the Bonferroni inequality.) ]

Note: Probability Zero Does Not Mean Impossible. When an event has probability
0, it does not mean that the event is impossible. In Example 1.5.4, there are many
events with 0 probability, but they are not all impossible. For example, for every x, the
event that water demand equals x corresponds to a line segment in Fig. 1.5. Since line
segments have 0 area, the probability of every such line segment is 0, but the events
are not all impossible. Indeed, if every event of the form {water demand equals x}
were impossible, then water demand could not take any value at all. If € > 0, the
event

{water demand is between x — € and x + €}

will have positive probability, but that probability will go to 0 as € goes to 0.

Summary

We have presented the mathematical definition of probability through the three
axioms. The axioms require that every event have nonnegative probability, that the
whole sample space have probability 1, and that the union of an infinite sequence
of disjoint events have probability equal to the sum of their probabilities. Some
important results to remember include the following:
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., Ag are disjoint, Pr (UF_ 4;) = Y5 Pr(A)).

* A C B implies that Pr(A) < Pr(B).
* Pr(AU B) =Pr(A) + Pr(B) — Pr(AN B).

It does not matter how the probabilities were determined. As long as they satisfy the
three axioms, they must also satisfy the above relations as well as all of the results
that we prove later in the text.

Exercises

1. One ball is to be selected from a box containing red,
white, blue, yellow, and green balls. If the probability that
the selected ball will be red is 1/5 and the probability that
it will be white is 2/5, what is the probability that it will be
blue, yellow, or green?

2. A student selected from a class will be either a boy or
a girl. If the probability that a boy will be selected is 0.3,
what is the probability that a girl will be selected?

3. Consider two events A and B such that Pr(A) =1/3
and Pr(B) = 1/2. Determine the value of Pr(B N A€) for
each of the following conditions: (a) A and B are disjoint;
(b)) ACB;(c)Pr(ANnB)=1/8.

4. If the probability that student A will fail a certain statis-
tics examination is 0.5, the probability that student B will
fail the examination is 0.2, and the probability that both
student A and student B will fail the examination is 0.1,
what is the probability that at least one of these two stu-
dents will fail the examination?

5. For the conditions of Exercise 4, what is the probability
that neither student A nor student B will fail the examina-
tion?

6. For the conditions of Exercise 4, what is the probability
that exactly one of the two students will fail the examina-
tion?

7. Consider two events A and B with Pr(A) = 0.4 and
Pr(B) =0.7. Determine the maximum and minimum pos-
sible values of Pr(A N B) and the conditions under which
each of these values is attained.

8. If 50 percent of the families in a certain city subscribe
to the morning newspaper, 65 percent of the families sub-
scribe to the afternoon newspaper, and 85 percent of the
families subscribe to at least one of the two newspapers,
what percentage of the families subscribe to both newspa-
pers?

9. Prove thatfor every two events A and B, the probability
that exactly one of the two events will occur is given by the
expression

Pr(A) + Pr(B) — 2 Pr(A N B).
10. For two arbitrary events A and B, prove that
Pr(A) =Pr(AN B) +Pr(A N BY).

11. A point (x, y) is to be selected from the square S
containing all points (x, y) suchthat0 <x <land0 <y <
1. Suppose that the probability that the selected point will
belong to each specified subset of S is equal to the area of
that subset. Find the probability of each of the following
subsets: (a) the subset of points such that (x — %)2 + (-
%)2 > %; (b) the subset of points such that % <x+y< %;
(¢) the subset of points such that y <1 — x2; (d) the subset
of points such that x = y.

12. Let Ay, A,, ... be an arbitrary infinite sequence of
events, and let By, By, ... be another infinite sequence
of events defined as follows: By = Ay, B, = A{N Ay, B3 =
A{NASN Az, By=A]NASNASN Ay, .. .. Prove that

Pr(LnJ Al-> = i Pr(B;) forn=1,2,...,
i=1

i=1

and that

PI(G Al) = i Pr(Bl)
i=1 i=1

13. Prove Theorem 1.5.8. Hint: Use Exercise 12.

14. Consider, once again, the four blood types A, B, AB,
and O described in Exercise 8 in Sec. 1.4 together with
the two antigens anti-A and anti-B. Suppose that, for a
given person, the probability of type O blood is 0.5, the
probability of type A blood is 0.34, and the probability of
type B blood is 0.12.

a. Find the probability that each of the antigens will
react with this person’s blood.

b. Find the probability that both antigens will react with
this person’s blood.
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[.6 Finite Sample Spaces

The simplest experiments in which to determine and derive probabilities are those
that involve only finitely many possible outcomes. This section gives several ex-
amples to illustrate the important concepts from Sec. 1.5 in finite sample spaces.

Current Population Survey. Every month, the Census Bureau conducts a survey of
the United States population in order to learn about labor-force characteristics.
Several pieces of information are collected on each of about 50,000 households.
One piece of information is whether or not someone in the household is actively
looking for employment but currently not employed. Suppose that our experiment
consists of selecting three households at random from the 50,000 that were surveyed
in a particular month and obtaining access to the information recorded during the
survey. (Due to the confidential nature of information obtained during the Current
Population Survey, only researchers in the Census Bureau would be able to perform
the experiment just described.) The outcomes that make up the sample space S for
this experiment can be described as lists of three three distinct numbers from 1 to
50,000. For example (300, 1, 24602) is one such list where we have kept track of the
order in which the three households were selected. Clearly, there are only finitely
many such lists. We can assume that each list is equally likely to be chosen, but we
need to be able to count how many such lists there are. We shall learn a method for
counting the outcomes for this example in Sec. 1.7. |

Requirements of Probabilities

In this section, we shall consider experiments for which there are only a finite number
of possible outcomes. In other words, we shall consider experiments for which the
sample space S contains only a finite number of points sy, . . ., s,. In an experiment of
this type, a probability measure on S is specified by assigning a probability p; to each
point s; € S. The number p; is the probability that the outcome of the experiment

will be s; (i =1, ..., n). In order to satisfy the axioms of probability, the numbers
P1s - - - » p, must satisfy the following two conditions:

p;i>0 fori=1,...,n
and

n
Z pi=1
i=1

The probability of each event A can then be found by adding the probabilities p; of
all outcomes s; that belong to A. This is the general version of Example 1.5.2.

Fiber Breaks. Consider an experiment in which five fibers having different lengths are
subjected to a testing process to learn which fiber will break first. Suppose that the
lengths of the five fibers are 1, 2, 3, 4, and 5 inches, respectively. Suppose also that
the probability that any given fiber will be the first to break is proportional to the
length of that fiber. We shall determine the probability that the length of the fiber
that breaks first is not more than 3 inches.

In this example, we shall let s; be the outcome in which the fiber whose length is
i inches breaks first (i =1,...,5). Then S ={sy,...,ss}and p; =i fori=1,...,5,
where « is a proportionality factor. It must be true that p;+ - - -+ ps =1, and we
know that p; + - - -+ ps = 15«, so @ = 1/15. If A is the event that the length of the
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fiber that breaks first is not more than 3 inches, then A = {sy, s,, s3}. Therefore,

1 2 3 2
Prid)=pitmtp=r+ st =5 <

Simple Sample Spaces

A sample space S containing n outcomes sy, . . ., s, is called a simple sample space
if the probability assigned to each of the outcomes sy, . . ., s, is 1/n. If an event A in
this simple sample space contains exactly m outcomes, then

Pr(a)=".
n

Tossing Coins. Suppose that three fair coins are tossed simultaneously. We shall
determine the probability of obtaining exactly two heads.

Regardless of whether or not the three coins can be distinguished from each
other by the experimenter, it is convenient for the purpose of describing the sample
space to assume that the coins can be distinguished. We can then speak of the result
for the first coin, the result for the second coin, and the result for the third coin; and
the sample space will comprise the eight possible outcomes listed in Example 1.4.4
on page 12.

Furthermore, because of the assumption that the coins are fair, it is reasonable
to assume that this sample space is simple and that the probability assigned to each
of the eight outcomes is 1/8. As can be seen from the listing in Example 1.4.4, exactly
two heads will be obtained in three of these outcomes. Therefore, the probability of
obtaining exactly two heads is 3/8. |

It should be noted that if we had considered the only possible outcomes to be
no heads, one head, two heads, and three heads, it would have been reasonable to
assume that the sample space contained just these four outcomes. This sample space
would not be simple because the outcomes would not be equally probable.

Genetics. Inherited traits in humans are determined by material in specific locations
on chromosomes. Each normal human receives 23 chromosomes from each parent,
and these chromosomes are naturally paired, with one chromosome in each pair
coming from each parent. For the purposes of this text, it is safe to think of a gene
as a portion of each chromosome in a pair. The genes, either one at a time or in
combination, determine the inherited traits, such as blood type and hair color. The
material in the two locations that make up a gene on the pair of chromosomes
comes in forms called alleles. Each distinct combination of alleles (one on each
chromosome) is called a genotype.

Consider a gene with only two different alleles A and a. Suppose that both
parents have genotype Aa, that is, each parent has allele A on one chromosome
and allele a on the other. (We do not distinguish the same alleles in a different order
as a different genotype. For example, a A would be the same genotype as Aa. But it
can be convenient to distinguish the two chromosomes during intermediate steps in
probability calculations, just as we distinguished the three coins in Example 1.6.3.)
What are the possible genotypes of an offspring of these two parents? If all possible
results of the parents contributing pairs of alleles are equally likely, what are the
probabilities of the different genotypes?

To begin, we shall distinguish which allele the offspring receives from each
parent, since we are assuming that pairs of contributed alleles are equally likely.
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Afterward, we shall combine those results that produce the same genotype. The
possible contributions from the parents are:

Mother
Father A a
A AA Aa
a aA aa

So, there are three possible genotypes AA, Aa, and aa for the offspring. Since we
assumed that every combination was equally likely, the four cells in the table all
have probability 1/4. Since two of the cells in the table combined into genotype Aa,
that genotype has probability 1/2. The other two genotypes each have probability
1/4, since they each correspond to only one cell in the table. <

Rolling Two Dice. We shall now consider an experiment in which two balanced dice
are rolled, and we shall calculate the probability of each of the possible values of the
sum of the two numbers that may appear.

Although the experimenter need not be able to distinguish the two dice from
one another in order to observe the value of their sum, the specification of a simple
sample space in this example will be facilitated if we assume that the two dice are
distinguishable. If this assumption is made, each outcome in the sample space S can
be represented as a pair of numbers (x, y), where x is the number that appears on the
first die and y is the number that appears on the second die. Therefore, S comprises
the following 36 outcomes:

By 2 1,3 1,49 1,5 d,6)
2,1 2,2) 2,3 2,49 2,5 (2,6
3, ) 3.2 (3,3 (3,49 35 @G0
4,1 42 43 449 45 @96
G, D 5,2 5,3 5,4 (5,5 5,6)
6,1) (6,2) (6,3) (6,4) (6,5 (6,6)

Itis natural to assume that S is a simple sample space and that the probability of each
of these outcomes is 1/36.

Let P; denote the probability that the sum of the two numbers is i for i =
2,3,...,12. The only outcome in S for which the sum is 2 is the outcome (1, 1).
Therefore, P, = 1/36. The sum will be 3 for either of the two outcomes (1, 2) and (2, 1).
Therefore, Py =2/36 = 1/18. By continuing in this manner, we obtain the following
probability for each of the possible values of the sum:

1 4
P=Pa=72, PBs=P=x,
5
Py=P =—, Pg=Py=—,
3=Pu=+ 6="Ps= ¢
6
P4=P10=%, P7=% <«
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A simple sample space is a finite sample space S such that every outcome in S has the
same probability. If there are n outcomes in a simple sample space S, then each one
must have probability 1/n. The probability of an event E in a simple sample space is
the number of outcomes in E divided by n. In the next three sections, we will present
some useful methods for counting numbers of outcomes in various events.

Exercises

1. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be odd?

2. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be even?

3. If two balanced dice are rolled, what is the probability
that the difference between the two numbers that appear
will be less than 3?

4. A school contains students in grades 1, 2, 3, 4, 5, and
6. Grades 2, 3, 4, 5, and 6 all contain the same number of
students, but there are twice this number in grade 1. If a
student is selected at random from a list of all the students
in the school, what is the probability that she will be in
grade 3?

5. For the conditions of Exercise 4, what is the probabil-
ity that the selected student will be in an odd-numbered
grade?

6. Ifthree fair coins are tossed, what is the probability that
all three faces will be the same?

7. Consider the setup of Example 1.6.4 on page 23. This
time, assume that two parents have genotypes Aa and aa.
Find the possible genotypes for an offspring and find the
probabilities for each genotype. Assume that all possi-
ble results of the parents contributing pairs of alleles are
equally likely.

8. Consider an experiment in which a fair coin is tossed
once and a balanced die is rolled once.

a. Describe the sample space for this experiment.

b. What is the probability that a head will be obtained
on the coin and an odd number will be obtained on
the die?

[.7 Counting Methods

In simple sample spaces, one way to calculate the probability of an event involves
counting the number of outcomes in the event and the number of outcomes in
the sample space. This section presents some common methods for counting the
number of outcomes in a set. These methods rely on special structure that exists in
many common experiments, namely, that each outcome consists of several parts
and that it is relatively easy to count how many possibilities there are for each of

the parts.

We have seen that in a simple sample space S, the probability of an event A is the
ratio of the number of outcomes in A to the total number of outcomes in S. In many
experiments, the number of outcomes in § is so large that a complete listing of these
outcomes is too expensive, too slow, or too likely to be incorrect to be useful. In such
an experiment, it is convenient to have a method of determining the total number
of outcomes in the space S and in various events in S without compiling a list of all
these outcomes. In this section, some of these methods will be presented.
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Figure 1.10 Three cities . 4
with routes between them in
Example 1.7.1. B
A 2 6 C
7
3
8
Multiplication Rule
Example Routes between Cities. Suppose that there are three different routes from city A to
1.7.1 city B and five different routes from city B to city C. The cities and routes are depicted

in Fig. 1.10, with the routes numbered from 1 to 8. We wish to count the number of
different routes from A to C that pass through B. For example, one such route from
Fig. 1.10s 1 followed by 4, which we can denote (1, 4). Similarly, there are the routes
1,5, d,6),...,(3,8). It is not difficult to see that the number of different routes
3x5=15. |

Example 1.7.1 is a special case of a common form of experiment.

Example Experiment in Two Parts. Consider an experiment that has the following two charac-
1.7.2 teristics:

i. The experiment is performed in two parts.

ii. The first part of the experiment has m possible outcomes xy, ..., x,,, and,
regardless of which one of these outcomes x; occurs, the second part of the
experiment has n possible outcomes yy, ..., y,.

Each outcome in the sample space S of such an experiment will therefore be a pair
having the form (x;, y;), and S will be composed of the following pairs:

(x1, Yy (X1, y2) -+ (X1, ¥)
(x2, YD (x2, ¥2) - - - (x2, V)

(xm’ yl)(xm’ y2) e (xm’ yn) <

Since each of the m rows in the array in Example 1.7.2 contains n pairs, the
following result follows directly.

Theorem Multiplication Rule for Two-Part Experiments. In an experiment of the type described
1.7.1 in Example 1.7.2, the sample space S contains exactly mn outcomes. ]

Figure 1.11 illustrates the multiplication rule for the case of n =3 and m =2 with a
tree diagram. Each end-node of the tree represents an outcome, which is the pair
consisting of the two parts whose names appear along the branch leading to the end-

node.
Example Rolling Two Dice. Suppose that two dice are rolled. Since there are six possible
1.7.3 outcomes for each die, the number of possible outcomes for the experiment is
6 x 6 =36, as we saw in Example 1.6.5. |

The multiplication rule can be extended to experiments with more than two parts.
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Multiplication Rule. Suppose that an experiment has k parts (k > 2), that the ith
part of the experiment can have n; possible outcomes (i =1, ..., k), and that all
of the outcomes in each part can occur regardless of which specific outcomes have
occurred in the other parts. Then the sample space S of the experiment will contain

all vectors of the form (uy, . . ., uy), where u; is one of the n; possible outcomes of part
i i=1,...,k). The total number of these vectors in S will be equal to the product
niny - - - Ng. ]

Tossing Several Coins. Suppose that we toss six coins. Each outcome in S will consist
of a sequence of six heads and tails, such as HTTHHH. Since there are two possible
outcomes for each of the six coins, the total number of outcomes in S will be 20 = 64.
If head and tail are considered equally likely for each coin, then S will be a simple
sample space. Since there is only one outcome in S with six heads and no tails, the
probability of obtaining heads on all six coins is 1/64. Since there are six outcomes
in S with one head and five tails, the probability of obtaining exactly one head is
6/64 =3/32. <

Combination Lock. A standard combination lock has a dial with tick marks for 40
numbers from 0 to 39. The combination consists of a sequence of three numbers that
must be dialed in the correct order to open the lock. Each of the 40 numbers may
appear in each of the three positions of the combination regardless of what the other
two positions contain. It follows that there are 40° = 64,000 possible combinations.
This number is supposed to be large enough to discourage would-be thieves from
trying every combination. |

Note: The Multiplication Rule Is Slightly More General. In the statements of The-
orems 1.7.1 and 1.7.2, it is assumed that each possible outcome in each part of the
experiment can occur regardless of what occurs in the other parts of the experiment.
Technically, all that is necessary is that the number of possible outcomes for each
part of the experiment not depend on what occurs on the other parts. The discussion
of permutations below is an example of this situation.

Permutations

Sampling without Replacement. Consider an experiment in which a card is selected
and removed from a deck of n different cards, a second card is then selected and
removed from the remaining n — 1 cards, and finally a third card is selected from the
remaining n — 2 cards. Each outcome consists of the three cards in the order selected.
A process of this kind is called sampling without replacement, since a card that is
drawn is not replaced in the deck before the next card is selected. In this experiment,
any one of the n cards could be selected first. Once this card has been removed, any
one of the other n — 1 cards could be selected second. Therefore, there are n(n — 1)
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possible outcomes for the first two selections. Finally, for every given outcome of
the first two selections, there are n — 2 other cards that could possibly be selected
third. Therefore, the total number of possible outcomes for all three selections is
nn — 1 —2). |

The situation in Example 1.7.6 can be generalized to any number of selections
without replacement.

Permutations. Suppose that a set has n elements. Suppose that an experiment consists
of selecting k of the elements one at a time without replacement. Let each outcome
consist of the k elements in the order selected. Each such outcome is called a per-
mutation of n elements taken k at a time. We denote the number of distinct such
permutations by the symbol P, .

By arguing as in Example 1.7.6, we can figure out how many different permutations
there are of n elements taken k at a time. The proof of the following theorem is simply
to extend the reasoning in Example 1.7.6 to selecting k cards without replacement.
The proof is left to the reader.

Number of Permutations. The number of permutations of n elements taken & at a time
isP,y=nmn—1---(n—-k+1). [

Current Population Survey. Theorem 1.7.3 allows us to count the number of points in
the sample space of Example 1.6.1. Each outcome in S consists of a permutation of
n = 50,000 elements taken k£ = 3 at a time. Hence, the sample space S in that example
consisits of

50,000 x 49,999 x 49,998 = 1.25 x 104

outcomes. <

When k = n, the number of possible permutations will be the number P, , of
different permutations of all n cards. It is seen from the equation just derived that

P, ,=nn—-1)---1=n!

The symbol n!is read n factorial. In general, the number of permutations of n differ-
ent items is n.

The expression for P, ; can be rewritten in the following alternate form for
k=1,...,n—1:
n—kn—k—-1---1  n!
n—kmn—k—1---1 m—k!
Here and elsewhere in the theory of probability, it is convenient to define 0! by the
relation

Py=nn—-1)---(n—k+1

0'=1.
With this definition, it follows that the relation P, , =n!/(n — k)! will be correct for
the value k = n as well as for the valuesk =1, ..., n — 1. To summarize:

Permutations. The number of distinct orderings of k items selected without replace-
ment from a collection of n different items (0 < k <n) is

n!
=k

Pn,k
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Choosing Officers. Suppose that a club consists of 25 members and that a president
and a secretary are to be chosen from the membership. We shall determine the total
possible number of ways in which these two positions can be filled.

Since the positions can be filled by first choosing one of the 25 members to be
president and then choosing one of the remaining 24 members to be secretary, the
possible number of choices is Pp5 , = (25)(24) = 600. |

Arranging Books. Suppose that six different books are to be arranged on a shelf. The
number of possible permutations of the books is 6! = 720. <

Sampling with Replacement. Consider a box that contains n balls numbered 1, . . ., n.
First, one ball is selected at random from the box and its number is noted. This ball
is then put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this way.
This process is called sampling with replacement. 1t is assumed that each of the n
balls is equally likely to be selected at each stage and that all selections are made
independently of each other.

Suppose that a total of k selections are to be made, where k is a given positive
integer. Then the sample space S of this experiment will contain all vectors of the form
(x1, ..., xz), where x; is the outcome of the ith selection (i =1, ..., k). Since there
are n possible outcomes for each of the k selections, the total number of vectors in S
is nk. Furthermore, from our assumptions it follows that S is a simple sample space.
Hence, the probability assigned to each vector in S is 1/n. |

Obtaining Different Numbers. For the experiment in Example 1.7.10, we shall deter-
mine the probability of the event E that each of the & balls that are selected will have
a different number.

If k > n, it is impossible for all the selected balls to have different numbers be-
cause there are only n different numbers. Suppose, therefore, that k < n. The number
of outcomes in the event E is the number of vectors for which all k components are
different. This equals P, , since the first component x; of each vector can have n pos-
sible values, the second component x, can then have any one of the other n — 1 values,
and so on. Since S is a simple sample space containing n* vectors, the probability p
that k different numbers will be selected is

Py n!
nk T (n—k)nk’

Note: Using Two Different Methods in the Same Problem. Example 1.7.11 illus-
trates a combination of techniques that might seem confusing at first. The method
used to count the number of outcomes in the sample space was based on sampling
with replacement, since the experiment allows repeat numbers in each outcome. The
method used to count the number of outcomes in the event E was permutations (sam-
pling without replacement) because E consists of those outcomes without repeats. It
often happens that one needs to use different methods to count the numbers of out-
comes in different subsets of the sample space. The birthday problem, which follows,
is another example in which we need more than one counting method in the same
problem.
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The Birthday Problem

In the following problem, which is often called the birthday problem, it is required to
determine the probability p that at least two people in a group of k people will have
the same birthday, that is, will have been born on the same day of the same month but
not necessarily in the same year. For the solution presented here, we assume that the
birthdays of the k people are unrelated (in particular, we assume that twins are not
present) and that each of the 365 days of the year is equally likely to be the birthday
of any person in the group. In particular, we ignore the fact that the birth rate actually
varies during the year and we assume that anyone actually born on February 29 will
consider his birthday to be another day, such as March 1.

When these assumptions are made, this problem becomes similar to the one
in Example 1.7.11. Since there are 365 possible birthdays for each of k people, the
sample space S will contain 365% outcomes, all of which will be equally probable. If
k > 365, there are not enough birthdays for every one to be different, and hence at
least two people must have the same birthday. So, we assume that k£ < 365. Counting
the number of outcomes in which at least two birthdays are the same is tedious.
However, the number of outcomes in S for which all £ birthdays will be different is
P35, 1., since the first person’s birthday could be any one of the 365 days, the second
person’s birthday could then be any of the other 364 days, and so on. Hence, the
probability that all k£ persons will have different birthdays is

P36, i
365k
The probability p that at least two of the people will have the same birthday is
therefore
Pusk _y_ (69!
365k (365 — k)!1365k°

p=1-

Numerical values of this probability p for various values of k are given in Table 1.1.
These probabilities may seem surprisingly large to anyone who has not thought about
them before. Many persons would guess that in order to obtain a value of p greater
than 1/2, the number of people in the group would have to be about 100. However,
according to Table 1.1, there would have to be only 23 people in the group. As a
matter of fact, for k = 100 the value of p is 0.9999997.

Table 1.1 The probability p that at least two
people in a group of k people will
have the same birthday

k p k p

5 0.027 25 0.569
10 0.117 30 0.706
15 0.253 40 0.891
20 0.411 50 0.970
22 0.476 60 0.994

23 0.507
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The calculation in this example illustrates a common technique for solving prob-
ability problems. If one wishes to compute the probability of some event A, it might
be more straightforward to calculate Pr(A¢) and then use the fact that Pr(A) =
1 — Pr(A°). This idea is particularly useful when the event A is of the form “at least
n things happen” where n is small compared to how many things could happen.

Theorem
1.7.5

Example
1.7.12

For large values of n, it is nearly impossible to compute n!. For n > 70, n! > 10'%

and cannot be represented on many scientific calculators. In most cases for which
n!is needed with a large value of n, one only needs the ratio of n! to another large
number g,,. A common example of this is P, ; with large n and not so large k, which
equals n!/(n — k)!. In such cases, we can notice that

I’l_! — elog(n!)—log(an)_

ai’l
Compared to computing n!, it takes a much larger n before log(n!) becomes difficult
to represent. Furthermore, if we had a simple approximation s, to log(n!) such that
lim,_, , |s, — log(n!)| =0, then the ratio of n!/a, to s, /a, would be close to 1 for large
n. The following result, whose proof can be found in Feller (1968), provides such an
approximation.

Stirling’s Formula. Let
1 1
$, = 3 log2m) + {n+ 5 log(n) — n.

Then lim,,_, o |s,, — log(n!)| = 0. Put another way,
12, n+1/2 ,—n
lim ZDTTET .

n—00 n!

Approximating the Number of Permutations. Suppose that we want to compute Py 9 =
70!/50!. The approximation from Stirling’s formula is
' 1/27(y70.5,,—~70
TN IO "e 3940 % 10%,
50! (27)1/25030-3¢—-50

The exact calculation yields 3.938 x 10%. The approximation and the exact calcula-
tion differ by less than 1/10 of 1 percent. |

Summary

Suppose that the following conditions are met:

* Each element of a set consists of k distinguishable parts xy, . . ., x.

* There are n; possibilities for the first part x;.

e Foreachi =2, ..., kandeach combination (xy, ..., x;_1) of the firsti — 1parts,
there are n; possibilities for the ith part x;.

Under these conditions, there are ny - - - n; elements of the set. The third condition
requires only that the number of possibilities for x; be n; no matter what the earlier
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parts are. For example, for i = 2, it does not require that the same n, possibilities
be available for x, regardless of what x; is. It only requires that the number of
possibilities for x, be n, no matter what x; is. In this way, the general rule includes the
multiplication rule, the calculation of permutations, and sampling with replacement
as special cases. For permutations of m items k at a time, we have n; =m — i + 1 for
i=1,...,k, and the n; possibilities for part i are just the n; items that have not yet
appeared in the first i — 1 parts. For sampling with replacement from m items, we
have n; = m for all i, and the m possibilities are the same for every part. In the next
section, we shall consider how to count elements of sets in which the parts of each
element are not distinguishable.

Exercises

1. Each year starts on one of the seven days (Sunday
through Saturday). Each year is either a leap year (i.c.,
it includes February 29) or not. How many different cal-
endars are possible for a year?

2. Three different classes contain 20, 18, and 25 students,
respectively, and no student is a member of more than one
class. If a team is to be composed of one student from each
of these three classes, in how many different ways can the
members of the team be chosen?

3. In how many different ways can the five letters a, b, c,
d, and e be arranged?

4. If a man has six different sportshirts and four different
pairs of slacks, how many different combinations can he
wear?

5. If four dice are rolled, what is the probability that each
of the four numbers that appear will be different?

6. If six dice are rolled, what is the probability that each
of the six different numbers will appear exactly once?

7. If 12 balls are thrown at random into 20 boxes, what
is the probability that no box will receive more than one
ball?

8. An elevator in a building starts with five passengers
and stops at seven floors. If every passenger is equally
likely to get off at each floor and all the passengers leave
independently of each other, what is the probability that
no two passengers will get off at the same floor?

9. Suppose that three runners from team A and three run-
ners from team B participate in a race. If all six runners
have equal ability and there are no ties, what is the prob-
ability that the three runners from team A will finish first,
second, and third, and the three runners from team B will
finish fourth, fifth, and sixth?

10. A box contains 100 balls, of which r are red. Suppose
that the balls are drawn from the box one at a time, at ran-
dom, without replacement. Determine (a) the probability
that the first ball drawn will be red; (b) the probability that
the 50th ball drawn will be red; and (c) the probability that
the last ball drawn will be red.

11. Let n and k be positive integers such that both » and
n — k are large. Use Stirling’s formula to write as simple
an approximation as you can for P, ;.

.8 Combinatorial Methods

Many problems of counting the number of outcomes in an event amount to
counting how many subsets of a certain size are contained in a fixed set. This section
gives examples of how to do such counting and where it can arise.

Combinations

Example

Choosing Subsets. Consider the set {a, b, ¢, d} containing the four different letters.

1.8.1 We want to count the number of distinct subsets of size two. In this case, we can list

all of the subsets of size two:

{a, b},

{a’ C}?

{a,d}, {b,c}, {b,d}, and {c,d}.
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We see that there are six distinct subsets of size two. This is different from counting
permutaions because {a, b} and {b, a} are the same subset. |

For large sets, it would be tedious, if not impossible, to enumerate all of the
subsets of a given size and count them as we did in Example 1.8.1. However, there
is a connection between counting subsets and counting permutations that will allow
us to derive the general formula for the number of subsets.

Suppose that there is a set of n distinct elements from which it is desired to
choose a subset containing k elements (1 < k < n). We shall determine the number of
different subsets that can be chosen. In this problem, the arrangement of the elements
in a subset is irrelevant and each subset is treated as a unit.

Combinations. Consider a set with n elements. Each subset of size k chosen from this
set is called a combination of n elements taken k at a time. We denote the number of
distinct such combinations by the symbol C,, ;.

No two combinations will consist of exactly the same elements because two
subsets with the same elements are the same subset.

At the end of Example 1.8.1, we noted that two different permutations (a, b)
and (b, a) both correspond to the same combination or subset {a, b}. We can think of
permutations as being constructed in two steps. First, a combination of k elements is
chosen out of n, and second, those k elements are arranged in a specific order. There
are C, , ways to choose the k elements out of n, and for each such choice there are
k!'ways to arrange those k elements in different orders. Using the multiplication rule
from Sec. 1.7, we see that the number of permutations of n elements taken k at a time
is P, , = C, k!; hence, we have the following.

Combinations. The number of distinct subsets of size k that can be chosen from a set
of size n is
P !
Cn k= nk = n .
’ k! k'(n —k)!

In Example 1.8.1, we see that Cy, = 4!/[212!] =6.

Selecting a Committee. Suppose that a committee composed of eight people is to be
selected from a group of 20 people. The number of different groups of people that
might be on the committee is

20!
Cop s = —— =125.,970. <
2087 g1121

Choosing Jobs. Suppose that, in Example 1.8.2, the eight people in the committee
each get a different job to perform on the committee. The number of ways to choose
eight people out of 20 and assign them to the eight different jobs is the number of
permutations of 20 elements taken eight at a time, or

Pygs = Cagg x 8! = 125,970 x 8! = 5,078,110,400. <

Examples 1.8.2 and 1.8.3 illustrate the difference and relationship between com-
binations and permutations. In Example 1.8.3, we count the same group of people in
a different order as a different outcome, while in Example 1.8.2, we count the same
group in different orders as the same outcome. The two numerical values differ by a
factor of 8!, the number of ways to reorder each of the combinations in Example 1.8.2
to get a permutation in Example 1.8.3.
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Binomial Coefficients

Binomial Coefficients. The number C, ; is also denoted by the symbol (}). That is, for
k=0,1,...,n,

n n!
(k> TCET (1.8.1)

When this notation is used, this number is called a binomial coefficient.

The name binomial coefficient derives from the appearance of the symbol in the
binomial theorem, whose proof is left as Exercise 20 in this section.

Binomial Theorem. For all numbers x and y and each positive integer n,
n
n\ k. n—k
x+ "= ( )x Yy ]

There are a couple of useful relations between binomial coefficients.
(6)=C)="
0 n
()=G"0)
k) \n—k/)

Proof The first equation follows from the fact that 0! = 1. The second equation
follows from Eq. (1.8.1). The second equation can also be derived from the fact that

selecting k elements to form a subset is equivalent to selecting the remaining n — k
elements to form the complement of the subset. ]

For all n,

Forallnandallk=0,1, ..., n,

It is sometimes convenient to use the expression “n choose k” for the value of
C,. - Thus, the same quantity is represented by the two different notations C,, ; and
(1), and we may refer to this quantity in three different ways: as the number of
combinations of n elements taken k at a time, as the binomial coefficient of n and
k, or simply as “n choose k.”

Blood Types. In Example 1.6.4 on page 23, we defined genes, alleles, and genotypes.
The gene for human blood type consists of a pair of alleles chosen from the three
alleles commonly called O, A, and B. For example, two possible combinations of
alleles (called genotypes) to form a blood-type gene would be BB and AO. We will
not distinguish the same two alleles in different orders, so OA represents the same
genotype as AO. How many genotypes are there for blood type?

The answer could easily be found by counting, but it is an example of a more
general calculation. Suppose that a gene consists of a pair chosen from a set of
n different alleles. Assuming that we cannot distinguish the same pair in different
orders, there are n pairs where both alleles are the same, and there are (5) pairs
where the two alleles are different. The total number of genotypes is

ny nn—=1) nn+1) (n+1
n~|—<2>—n~|— 5 = 5 —< ) >
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For the case of blood type, we have n = 3, so there are

(4)=4x3=6
2 2

genotypes, as could easily be verified by counting. <

Note: Sampling with Replacement. The counting method described in Exam-
ple 1.8.4 is a type of sampling with replacement that is different from the type
described in Example 1.7.10. In Example 1.7.10, we sampled with replacement, but
we distinguished between samples having the same balls in different orders. This
could be called ordered sampling with replacement. In Example 1.8.4, samples con-
taining the same genes in different orders were considered the same outcome. This
could be called unordered sampling with replacement. The general formula for the
number of unordered samples of size k with replacement from n elements is ("+,'§_1),
and can be derived in Exercise 19. It is possible to have k larger than n» when sampling
with replacement.

Selecting Baked Goods. You go to a bakery to select some baked goods for a dinner
party. You need to choose a total of 12 items. The baker has seven different types
of items from which to choose, with lots of each type available. How many different
boxfuls of 12 items are possible for you to choose? Here we will not distinguish the
same collection of 12 items arranged in different orders in the box. This is an example
of unordered sampling with replacement because we can (indeed we must) choose
the same type of item more than once, but we are not distinguishing the same items
in different orders. There are (7+g_1) = 18,564 different boxfuls. <

Example 1.8.5 raises an issue that can cause confusion if one does not carefully
determine the elements of the sample space and carefully specify which outcomes
(if any) are equally likely. The next example illustrates the issue in the context of
Example 1.8.5.

Selecting Baked Goods. Imagine two different ways of choosing a boxful of 12 baked
goods selected from the seven different types available. In the first method, you
choose one item at random from the seven available. Then, without regard to what
item was chosen first, you choose the second item at random from the seven available.
Then you continue in this way choosing the next item at random from the seven
available without regard to what has already been chosen until you have chosen 12.
For this method of choosing, it is natural to let the outcomes be the possible sequences
of the 12 types of items chosen. The sample space would contain 72 = 1.38 x 10'°
different outcomes that would be equally likely.

In the second method of choosing, the baker tells you that she has available
18,564 different boxfuls freshly packed. You then select one at random. In this case,
the sample space would consist of 18,564 different equally likely outcomes.

In spite of the different sample spaces that arise in the two methods of choosing,
there are some verbal descriptions that identify an event in both sample spaces. For
example, both sample spaces contain an event that could be described as {all 12 items
are of the same type} even though the outcomes are different types of mathematical
objects in the two sample spaces. The probability that all 12 items are of the same
type will actually be different depending on which method you use to choose the
boxful.

In the first method, seven of the 7! equally likely outcomes contain 12 of the
same type of item. Hence, the probability that all 12 items are of the same type is
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7/7'% =5.06 x 10719, In the second method, there are seven equally liklely boxes
that contain 12 of the same type of item. Hence, the probability that all 12 items are
of the same type is 7/18,564 = 3.77 x 10~*. Before one can compute the probability
for an event such as {all 12 items are of the same type}, one must be careful about
defining the experiment and its outcomes. <

Arrangements of Elements of Two Distinct Types When a set contains only el-
ements of two distinct types, a binomial coefficient can be used to represent the
number of different arrangements of all the elements in the set. Suppose, for ex-
ample, that k similar red balls and n — k similar green balls are to be arranged in a
row. Since the red balls will occupy k positions in the row, each different arrangement
of the n balls corresponds to a different choice of the k positions occupied by the red
balls. Hence, the number of different arrangements of the n balls will be equal to
the number of different ways in which k positions can be selected for the red balls
from the n available positions. Since this number of ways is specified by the bino-
mial coefficient (Z), the number of different arrangements of the » balls is also (’Z)
In other words, the number of different arrangements of n objects consisting of k
similar objects of one type and n — k similar objects of a second type is (7).

Tossing a Coin. Suppose that a fair coin is to be tossed 10 times, and it is desired
to determine (a) the probability p of obtaining exactly three heads and (b) the
probability p’ of obtaining three or fewer heads.

(a) The total possible number of different sequences of 10 heads and tails is 21°,
and it may be assumed that each of these sequences is equally probable. The
number of these sequences that contain exactly three heads will be equal to
the number of different arrangements that can be formed with three heads and
seven tails. Here are some of those arrangements:

HHHTTTTTTT, HHTHTTTTTT, HHTTHTTTTT, TTHTHTHTTT, etc.

Each such arrangement is equivalent to a choice of where to put the 3 heads
among the 10 tosses, so there are (130) such arrangements. The probability of

obtaining exactly three heads is then

10
p= <2?0> —=0.1172.

(b) Using the same reasoning as in part (a), the number of sequences in the sample
space that contain exactly k heads (k =0, 1, 2, 3) is (1k0). Hence, the probability
of obtaining three or fewer heads is

. (100)+(110);0<120)+(130)

_ 14104454120 176 _ oo )
210 210

Note: Using Two Different Methods in the Same Problem. Part (a) of Exam-
ple 1.8.7 is another example of using two different counting methods in the same
problem. Part (b) illustrates another general technique. In this part, we broke the
event of interest into several disjoint subsets and counted the numbers of outcomes
separately for each subset and then added the counts together to get the total. In
many problems, it can require several applications of the same or different counting
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methods in order to count the number of outcomes in an event. The next example is
one in which the elements of an event are formed in two parts (multiplication rule),
but we need to perform separate combination calculations to determine the numbers
of outcomes for each part.

Sampling without Replacement. Suppose that a class contains 15 boys and 30 girls,
and that 10 students are to be selected at random for a special assignment. We shall
determine the probability p that exactly three boys will be selected.

The number of different combinations of the 45 students that might be obtained

in the sample of 10 students is (‘1‘(5)), and the statement that the 10 students are selected

at random means that each of these (‘1‘(5)) possible combinations is equally probable.
Therefore, we must find the number of these combinations that contain exactly three
boys and seven girls.

When a combination of three boys and seven girls is formed, the number of
different combinations in which three boys can be selected from the 15 available boys
is (135), and the number of different combinations in which seven girls can be selected

from the 30 available girls is (370). Since each of these combinations of three boys
can be paired with each of the combinations of seven girls to form a distinct sample,
the number of combinations containing exactly three boys is (7) (). Therefore, the

desired probability is
15130
,-BIE) (>(> ) o

Playing Cards. Suppose that a deck of 52 cards containing four aces is shuffled thor-
oughly and the cards are then distributed among four players so that each player
receives 13 cards. We shall determine the probability that each player will receive
one ace.

The number of possible different combinations of the four positions in the deck
occupied by the four aces is (%), and it may be assumed that each of these (%))
combinations is equally probable. If each player is to receive one ace, then there
must be exactly one ace among the 13 cards that the first player will receive and one
ace among each of the remaining three groups of 13 cards that the other three players
will receive. In other words, there are 13 possible positions for the ace that the first
player is to receive, 13 other possible positions for the ace that the second player is to
receive, and so on. Therefore, among the (542) possible combinations of the positions
for the four aces, exactly 13* of these combinations will lead to the desired result.
Hence, the probability p that each player will receive one ace is

134
(%)

Ordered versus Unordered Samples Several of the examples in this section and
the previous section involved counting the numbers of possible samples that could
arise using various sampling schemes. Sometimes we treated the same collection of
elements in different orders as different samples, and sometimes we treated the same
elements in different orders as the same sample. In general, how can one tell which
is the correct way to count in a given problem? Sometimes, the problem description
will make it clear which is needed. For example, if we are asked to find the probability

=(.1055. <

p:
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that the items in a sample arrive in a specified order, then we cannot even specify the
event of interest unless we treat different arrangements of the same items as different
outcomes. Examples 1.8.5 and 1.8.6 illustrate how different problem descriptions can
lead to very different calculations.

However, there are cases in which the problem description does not make it clear
whether or not one must count the same elements in different orders as different
outcomes. Indeed, there are some problems that can be solved correctly both ways.
Example 1.8.9 is one such problem. In that problem, we needed to decide what we
would call an outcome, and then we needed to count how many outcomes were in the
whole sample space S and how many were in the event E of interest. In the solution
presented in Example 1.8.9, we chose as our outcomes the positions in the 52-card
deck that were occupied by the four aces. We did not count different arrangements
of the four aces in those four positions as different outcomes when we counted the
number of outcomes in S. Hence, when we calculated the number of outcomes in E,
we also did not count the different arrangements of the four aces in the four possible
positions as different outcomes. In general, this is the principle that should guide the
choice of counting method. If we have the choice between whether or not to count
the same elements in different orders as different outcomes, then we need to make
our choice and be consistent throughout the problem. If we count the same elements
in different orders as different outcomes when counting the outcomes in S, we must
do the same when counting the elements of E. If we do not count them as different
outcomes when counting S, we should not count them as different when counting E.

Playing Cards, Revisited. We shall solve the problem in Example 1.8.9 again, but this
time, we shall distinguish outcomes with the same cards in different orders. To go
to the extreme, let each outcome be a complete ordering of the 52 cards. So, there
are 52! possible outcomes. How many of these have one ace in each of the four sets
of 13 cards received by the four players? As before, there are 13* ways to choose
the four positions for the four aces, one among each of the four sets of 13 cards. No
matter which of these sets of positions we choose, there are 4! ways to arrange the
four aces in these four positions. No matter how the aces are arranged, there are 48!
ways to arrange the remaining 48 cards in the 48 remaining positions. So, there are
13* x 4! x 48! outcomes in the event of interest. We then calculate
13% x 41 x 48!

_ 1 XX 1055 <
P 521

In the following example, whether one counts the same items in different orders
as different outcomes is allowed to depend on which events one wishes to use.

Lottery Tickets. In alottery game, six numbers from 1 to 30 are drawn at random from
a bin without replacement, and each player buys a ticket with six different numbers
from 1 to 30. If all six numbers drawn match those on the player’s ticket, the player
wins. We assume that all possible draws are equally likely. One way to construct a
sample space for the experiment of drawing the winning combination is to consider
the possible sequences of draws. That is, each outcome consists of an ordered subset
of six numbers chosen from the 30 available numbers. There are P53 5 = 30!/24!such
outcomes. With this sample space S, we can calculate probabilities for events such as

A = {the draw contains the numbers 1, 14, 15, 20, 23, and 27},
B = {one of the numbers drawn is 15}, and
C = {the first number drawn is less than 10}.
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There is another natural sample space, which we shall denote §’, for this experiment.
It consists solely of the different combinations of six numbers drawn from the 30
available. There are (360 ) =30!/(6!24!) such outcomes. It also seems natural to consider
all of these outcomes equally likely. With this sample space, we can calculate the
probabilities of the events A and B above, but C is not a subset of the sample space
S’, so we cannot calculate its probability using this smaller sample space. When the
sample space for an experiment could naturally be constructed in more than one way,
one needs to choose based on for which events one wants to compute probabilities.

<

Example 1.8.11 raises the question of whether one will compute the same prob-
abilities using two different sample spaces when the event, such as A or B, exists
in both sample spaces. In the example, each outcome in the smaller sample space
S’ corresponds to an event in the larger sample space S. Indeed, each outcome s’
in S’ corresponds to the event in S containing the 6! permutations of the single
combination s’. For example, the event A in the example has only one outcome
s’ =(1, 14, 15, 20, 23, 27) in the sample space §’, while the corresponding event in
the sample space S has 6! permutations including

(1, 14, 15, 20, 23, 27), (14, 20, 27, 15, 23, 1), (27, 23, 20, 15, 14, 1), etc.
In the sample space S, the probability of the event A is

Pr(4) = 6l 64l 1
© Pype 300 (360)'

In the sample space §’, the event A has this same probability because it has only one
of the (360) equally likely outcomes. The same reasoning applies to every outcome in
S’. Hence, if the same event can be expressed in both sample spaces S and §’, we
will compute the same probability using either sample space. This is a special feature
of examples like Example 1.8.11 in which each outcome in the smaller sample space
corresponds to an eventin the larger sample space with the same number of elements.
There are examples in which this feature is not present, and one cannot treat both
sample spaces as simple sample spaces.

Tossing Coins. An experiment consists of tossing a coin two times. If we want to
distinguish H followed by T from T followed by H, we should use the sample space
S={HH, HT, T H, TT}, which might naturally be assumed a simple sample space.
On the other hand, we might be interested solely in the number of H’s tossed. In this
case, we might consider the smaller sample space S’ = {0, 1, 2} where each outcome
merely counts the number of H’s. The outcomes 0 and 2 in S’ each correspond to
a single outcome in S, but 1 € S’ corresponds to the event {HT, TH} C S with two
outcomes. If we think of S as a simple sample space, then S’ will not be a simple
sample space, because the outcome 1 will have probability 1/2 while the other two
outcomes each have probability 1/4.

There are situations in which one would be justified in treating S’ as a simple
sample space and assigning each of its outcomes probability 1/3. One might do this
if one believed that the coin was not fair, but one had no idea how unfair it was or
which side were more likely to land up. In this case, S would not be a simple sample
space, because two of its outcomes would have probability 1/3 and the other two
would have probabilities that add up to 1/3. |
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Example 1.8.6 is another case of two different sample spaces in which each
outcome in one sample space corresponds to a different number of outcomes in the
other space. See Exercise 12 in Sec. 1.9 for a more complete analysis of Example 1.8.6.

The Tennis Tournament

We shall now present a difficult problem that has a simple and elegant solution.
Suppose that n tennis players are entered in a tournament. In the first round, the
players are paired one against another at random. The loser in each pair is eliminated
from the tournament, and the winner in each pair continues into the second round.
If the number of players n is odd, then one player is chosen at random before the
pairings are made for the first round, and that player automatically continues into
the second round. All the players in the second round are then paired at random.
Again, the loser in each pair is eliminated, and the winner in each pair continues
into the third round. If the number of players in the second round is odd, then one
of these players is chosen at random before the others are paired, and that player
automatically continues into the third round. The tournament continues in this way
until only two players remain in the final round. They then play against each other,
and the winner of this match is the winner of the tournament. We shall assume that
all n players have equal ability, and we shall determine the probability p that two
specific players A and B will ever play against each other during the tournament.

We shall first determine the total number of matches that will be played during
the tournament. After each match has been played, one player—the loser of that
match—is eliminated from the tournament. The tournament ends when everyone
has been eliminated from the tournament except the winner of the final match. Since
exactly n — 1 players must be eliminated, it follows that exactly n — 1 matches must
be played during the tournament.

The number of possible pairs of players is (g) Each of the two players in every
match is equally likely to win that match, and all initial pairings are made in a random
manner. Therefore, before the tournament begins, every possible pair of players is
equally likely to appear in each particular one of the n — 1 matches to be played
during the tournament. Accordingly, the probability that players A and B will meet
in some particular match that is specified in advance is 1/ (g) If A and B do meet in
that particular match, one of them will lose and be eliminated. Therefore, these same
two players cannot meet in more than one match.

It follows from the preceding explanation that the probability p that players A
and B will meet at some time during the tournament is equal to the product of the
probability 1/ (g) that they will meet in any particular specified match and the total
number n — 1 of different matches in which they might possibly meet. Hence,

n—1_12

(3)

p

Summary

We showed that the number of size k subsets of a set of size n is (’,Z) =n!/[k(n —
k)!]. This turns out to be the number of possible samples of size k drawn without
replacement from a population of size n as well as the number of arrangements of n
items of two types with k of one type and n — k of the other type. We also saw several
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examples in which more than one counting technique was required at different points
in the same problem. Sometimes, more than one technique is required to count the

elements of a single set.

Exercises

1. Two polisters will canvas a neighborhood with 20
houses. Each pollster will visit 10 of the houses. How many
different assignments of pollsters to houses are possible?

2. Which of the following two numbers is larger: (gg) or

93
(1)?
3. Which of the following two numbers is larger: (2(3)) or
93
(63)?
4. A box contains 24 light bulbs, of which four are defec-
tive. If a person selects four bulbs from the box at random,

without replacement, what is the probability that all four
bulbs will be defective?

5. Prove that the following number is an integer:

4155 x 4156 x - - - x 4250 x 4251
2x3x---%x96 x97 '

6. Suppose that n people are seated in a random manner
in a row of n theater seats. What is the probability that
two particular people A and B will be seated next to each
other?

7. If k people are seated in a random manner in a row
containing n seats (n > k), what is the probability that the
people will occupy k adjacent seats in the row?

8. If k people are seated in a random manner in a circle
containing n chairs (n > k), what is the probability that the
people will occupy k adjacent chairs in the circle?

9. If n people are seated in a random manner in a row
containing 2n seats, what is the probability that no two
people will occupy adjacent seats?

10. A box contains 24 light bulbs, of which two are de-
fective. If a person selects 10 bulbs at random, without
replacement, what is the probability that both defective
bulbs will be selected?

11. Suppose that a committee of 12 people is selected in
arandom manner from a group of 100 people. Determine
the probability that two particular people A and B will
both be selected.

12. Suppose that 35 people are divided in a random man-
ner into two teams in such a way that one team contains
10 people and the other team contains 25 people. What is
the probability that two particular people A and B will be
on the same team?

13. A box contains 24 light bulbs of which four are de-
fective. If one person selects 10 bulbs from the box in
a random manner, and a second person then takes the
remaining 14 bulbs, what is the probability that all four
defective bulbs will be obtained by the same person?

14. Prove that, for all positive integers n and k (n > k),
n n n+1
+ = .
()+()-C1)
15.

a. Prove that

RRONAESAES

b. Prove that

(-0

Hint: Use the binomial theorem.

16. The United States Senate contains two senators from
each of the 50 states. (a) If a committee of eight senators
is selected at random, what is the probability that it will
contain at least one of the two senators from a certain
specified state? (b) What is the probability that a group
of 50 senators selected at random will contain one senator
from each state?

17. A deck of 52 cards contains four aces. If the cards
are shuffled and distributed in a random manner to four
players so that each player receives 13 cards, what is the
probability that all four aces will be received by the same
player?

18. Suppose that 100 mathematics students are divided
into five classes, each containing 20 students, and that
awards are to be given to 10 of these students. If each
student is equally likely to receive an award, what is the
probability that exactly two students in each class will
receive awards?

19. A restaurant has n items on its menu. During a partic-
ular day, k customers will arrive and each one will choose
one item. The manager wants to count how many dif-
ferent collections of customer choices are possible with-
out regard to the order in which the choices are made.
(For example, if k =3 and a4, . . ., a, are the menu items,
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then ajasa; is not distinguished from a;aqasz.) Prove that
the number of different collections of customer choices is
(”Hlfl). Hint: Assume that the menuitems are ay, . . . , a,.
Show that each collection of customer choices, arranged
with the a;’s first, the a,’s second, etc., can be identified
with a sequence of k zeros and n — 1 ones, where each 0
stands for a customer choice and each 1 indicates a point
in the sequence where the menu item number increases
by 1. For example, if k =3 and n =5, then aja,a3 becomes
0011011.

20. Prove the binomial theorem 1.8.2. Hint: You may use
an induction argument. That is, first prove that the result
is true if n = 1. Then, under the assumption that there is

ng such that the result is true for all n < n(, prove that it is
also true for n = ny + 1.

21. Return to the birthday problem on page 30. How
many different sets of birthdays are available with k peo-
ple and 365 days when we don’t distinguish the same
birthdays in different orders? For example, if £k =3, we
would count (Jan. 1, Mar. 3, Jan.1) the same as (Jan. 1,
Jan. 1, Mar. 3).

22. Let n be a large even integer. Use Stirlings’ formula
(Theorem 1.7.5) to find an approximation to the binomial
coefficient (n72). Compute the approximation with n =
500.

Example
1.9.1

.9 Multinomial Coefficients

We learn how to count the number of ways to partition a finite set into more than
two disjoint subsets. This generalizes the binomial coefficients from Sec. 1.8. The
generalization is useful when outcomes consist of several parts selected from a
fixed number of distinct types.

We begin with a fairly simple example that will illustrate the general ideas of this
section.

Choosing Committees. Suppose that 20 members of an organization are to be divided
into three committees A, B, and C in such a way that each of the committees A and
B is to have eight members and committee C is to have four members. We shall
determine the number of different ways in which members can be assigned to these
committees. Notice that each of the 20 members gets assigned to one and only one
committee.

One way to think of the assignments is to form committee A first by choosing its
eight members and then split the remaining 12 members into committees B and C.
Each of these operations is choosing a combination, and every choice of committee
A can be paired with every one of the splits of the remaining 12 members into
committees B and C. Hence, the number of assignments into three committees is
the product of the numbers of combinations for the two parts of the assignment.
Specifically, to form committee A, we must choose eight out of 20 members, and this

can be done in (255)) ways. Then to split the remaining 12 members into committees B
and C there are are () ways to do it. Here, the answer is
112! !
(20> (12) _ 2012 200 6 55 150, <
8/\8 8112!1814!  8!814!

Notice how the 12! that appears in the denominator of (280) divides out with the 12!

that appears in the numerator of (182). This fact is the key to the general formula that
we shall derive next.

In general, suppose that n distinct elements are to be divided into & different
groups (k >2) in such a way that, for j =1, ..., k, the jth group contains exactly
n; elements, where ny +ny + - -+ +n, =n. It is desired to determine the number
of different ways in which the n elements can be divided into the k& groups. The
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ny elements in the first group can be selected from the n available elements in (:])
different ways. After the n; elements in the first group have been selected, the n,
elements in the second group can be selected from the remaining n — n; elements
in (”;2"1) different ways. Hence, the total number of different ways of selecting the
elements for both the first group and the second group is (:1) (";2”1). After the ny + n,
elements in the first two groups have been selected, the number of different ways in
which the n; elements in the third group can be selected is (”7';1;”2). Hence, the total

number of different ways of selecting the elements for the first three groups is

)CC™)

It follows from the preceding explanation that, for each j =1, ..., k — 2 after
the first j groups have been formed, the number of different ways in which the n;
elements in the next group (j + 1) can be selected from the remainingn —ny — - - - —
n; elements is ("7”‘,1;'1'7”-/). After the elements of group k — 1 have been selected,
the remaining n; elements must then form the last group. Hence, the total number
of different ways of dividing the n elements into the k groups is

(n)(n—nl)(n—nl—n2> <n—n1—--~—nk_2>_ n!
ny ny nj ng_q nylny!- - - my!

where the last formula follows from writing the binomial coefficients in terms of
factorials.

Multinomial Coefficients. The number
n! . n
——— ,  which we shall denote by ,
nylny!- - - ny! ny, ny, s R

is called a multinomial coefficient.

The name multinomial coefficient derives from the appearance of the symbol in the
multinomial theorem, whose proof is left as Exercise 11 in this section.

Multinomial Theorem. For all numbers xq, . . ., x; and each positive integer n,

n
N
ny, Ny, ..., Ny

where the summation extends over all possible combinations of nonnegative integers
ni, ..., ngsuchthatny+ny)+---+n,=n. ]

A multinomial coefficient is a generalization of the binomial coefficient discussed
in Sec. 1.8. For k = 2, the multinomial theorem is the same as the binomial theorem,
and the multinomial coefficient becomes a binomial coefficient. In particular,

<k, . k) B <Z>

Choosing Committees. In Example 1.9.1, we see that the solution obtained there is the
same as the multinomial coefficient for which n =20,k =3,n; =n, =8, and ny =4,

namely,

!

( 20 ) = 20 = 62,355,150. <
8,8,4 (824!
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1.9.3

Example
1.9.4

Arrangements of Elements of More Than Two Distinet Types Just as binomial
coefficients can be used to represent the number of different arrangements of the
elements of a set containing elements of only two distinct types, multinomial coeffi-
cients can be used to represent the number of different arrangements of the elements
of a set containing elements of & different types (k > 2). Suppose, for example, that
n balls of k different colors are to be arranged in a row and that there are n; balls
ofcolor j (j=1,...,k),where ny +n, + - - - + n;, = n. Then each different arrange-
ment of the n balls corresponds to a different way of dividing the n available positions
in the row into a group of n; positions to be occupied by the balls of color 1, a second
group of n, positions to be occupied by the balls of color 2, and so on. Hence, the
total number of different possible arrangements of the n balls must be

n _ n!
Ny, Ry, oo vy Ny nilny!omg!

Rolling Dice. Suppose that 12 dice are to be rolled. We shall determine the probability
p that each of the six different numbers will appear twice.

Each outcome in the sample space S can be regarded as an ordered sequence
of 12 numbers, where the ith number in the sequence is the outcome of the ith roll.
Hence, there will be 6!2 possible outcomes in S, and each of these outcomes can
be regarded as equally probable. The number of these outcomes that would contain
each of the six numbers 1, 2, ..., 6 exactly twice will be equal to the number of
different possible arrangements of these 12 elements. This number can be determined
by evaluating the multinomial coefficient for whichn =12,k =6,andn;=n, =-- - =
ne = 2. Hence, the number of such outcomes is

( 12 )_ 12!
2,2,2,2,2,2)  @ne’

and the required probability p is

12!
T 06612

» = 0.0034. <

Playing Cards. A deck of 52 cards contains 13 hearts. Suppose that the cards are
shuffled and distributed among four players A, B, C, and D so that each player
receives 13 cards. We shall determine the probability p that player A will receive
six hearts, player B will receive four hearts, player C will receive two hearts, and
player D will receive one heart.

The total number N of different ways in which the 52 cards can be distributed
among the four players so that each player receives 13 cards is

( 52 ) 52!
N = =—.
13,13, 13,13 (1314

It may be assumed that each of these ways is equally probable. We must now calculate
the number M of ways of distributing the cards so that each player receives the
required number of hearts. The number of different ways in which the hearts can
be distributed to players A, B, C, and D so that the numbers of hearts they receive
are 6, 4, 2, and 1, respectively, is

( 13 )_ 13!
6,4,2,1) 64N
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Also, the number of different ways in which the other 39 cards can then be distributed
to the four players so that each will have a total of 13 cards is

( 39 )_ 39!
7,9,11,12) 7191112

M 13! 39!
CoeuR! 791112
and the required probability p is

M 131391(13)*

N 64RNIT7ON112152!
There is another approach to this problem along the lines indicated in Exam-

ple 1.8.9 on page 37. The number of possible different combinations of the 13 posi-

tions in the deck occupied by the hearts is (ig) If player A is to receive six hearts,

Therefore,

= 0.00196.

p:

there are (163) possible combinations of the six positions these hearts occupy among
the 13 cards that A will receive. Similarly, if player B is to receive four hearts, there
are (143) possible combinations of their positions among the 13 cards that B will re-

ceive. There are (123) possible combinations for player C, and there are (113) possible
combinations for player D. Hence,

. (163> (143) (123> (113>
(3
which produces the same value as the one obtained by the first method of solution.
<

Summary

Multinomial coefficients generalize binomial coefficients. The coefficient (nbﬁ ’ ”k) is
the number of ways to partition a set of n items into distinguishable subsets of sizes
ni ..., n; where ny + - - - + n; = n. It is also the number of arrangements of n items
of k different types for which n; are of type i fori =1, . . ., k. Example 1.9.4 illustrates
another important point to remember about computing probabilities: There might
be more than one correct method for computing the same probability.

Exercises

1. Three pollsters will canvas a neighborhood with 21
houses. Each pollster will visit seven of the houses. How
many different assignments of pollsters to houses are pos-
sible?

2. Suppose that 18 red beads, 12 yellow beads, eight blue
beads, and 12 black beads are to be strung in a row. How
many different arrangements of the colors can be formed?

3. Suppose that two committees are to be formed in an
organization that has 300 members. If one committee is

to have five members and the other committee is to have
eight members, in how many different ways can these
committees be selected?

4. If the letters s, s, s, ¢, ¢, t, i, i, a, ¢ are arranged in a
random order, what is the probability that they will spell
the word “statistics”?

5. Suppose that n balanced dice are rolled. Determine the
probability that the number j will appear exactly n ; times
(j=1,...,6),wheren;+ny,+...+ng=n.
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6. Ifsevenbalanced dice are rolled, what is the probability
that each of the six different numbers will appear at least
once?

7. Suppose that a deck of 25 cards contains 12 red cards.
Suppose also that the 25 cards are distributed in a random
manner to three players A, B, and C in such a way that
player A receives 10 cards, player B receives eight cards,
and player C receives seven cards. Determine the proba-
bility that player A will receive six red cards, player B will
receive two red cards, and player C will receive four red
cards.

8. A deck of 52 cards contains 12 picture cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive three
picture cards?

9. Suppose that a deck of 52 cards contains 13 red cards,
13 yellow cards, 13 blue cards, and 13 green cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive 13
cards of the same color?

10. Suppose that two boys named Davis, three boys
named Jones, and four boys named Smith are seated at
random in a row containing nine seats. What is the prob-
ability that the Davis boys will occupy the first two seats
in the row, the Jones boys will occupy the next three seats,
and the Smith boys will occupy the last four seats?

11. Prove the multinomial theorem 1.9.1. (You may wish
to use the same hint as in Exercise 20 in Sec. 1.8.)

12. Return to Example 1.8.6. Let S be the larger sample
space (first method of choosing) and let S’ be the smaller
sample space (second method). For each element s’ of S,
let N (s") stand for the number of elements of S that lead to
the same boxful s’ when the order of choosing is ignored.

a. For each s’ € &, find a formula for N(s"). Hint: Let
n; stand for the number of items of type i in s’ for
i=1...,7.

b. Verify that }",_¢ N(s') equals the number of out-
comes in S.

[.10 The Probability of a Union of Events

The axioms of probability tell us directly how to find the probability of the union
of disjoint events. Theorem 1.5.7 showed how to find the probability for the union
of two arbitrary events. This theorem is generalized to the union of an arbitrary

finite collection of events.

We shall now consider again an arbitrary sample space S that may contain either a
finite number of outcomes or an infinite number, and we shall develop some further
general properties of the various probabilities that might be specified for the events
in S. In this section, we shall study in particular the probability of the union [ J?_, A;

of nevents Ay, ..., A,.
If the events Ay, ..

., A, are disjoint, we know that

Pr(LnJ Ai) = Xn: Pr(A)).
i=1 i=1

Furthermore, for every two events A; and A,, regardless of whether or not they are
disjoint, we know from Theorem 1.5.7 of Sec. 1.5 that

Pr(A1 @) Az) = Pr(Al) + Pr(Az) — Pr(Al N A2)

In this section, we shall extend this result, first to three events and then to an arbitrary

finite number of events.

The Union of Three Events

Theorem
1.10.1

For every three events Ay, A,, and As,
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PI'(Al U Az U A3) = PI'(Al) + PI'(Az) + PI'(A3)
—[Pr(A; N A) + Pr(A; N Az) + Pr(A; N Az)]

Proof By the associative property of unions (Theorem 1.4.6), we can write
AjUA,UA3= (AU Ay U Az
Apply Theorem 1.5.7 to the two events A = A; U A, and B = A5 to obtain
Pr(A{U A, U A3) = Pr(AUB)
=Pr(A) + Pr(B) — Pr(AN B). (1.10.2)

We next compute the three probabilities on the far right side of (1.10.2) and combine
them to get (1.10.1). First, apply Theorem 1.5.7 to the two events A; and A, to obtain

Pr(A) =Pr(A;) + Pr(A,) — Pr(A; N Ay). (1.10.3)
Next, use the first distributive property in Theorem 1.4.10 to write
ANB=(A]UA) NA3=(A1NA3) U (A; N A3). (1.104)
Apply Theorem 1.5.7 to the events on the far right side of (1.10.4) to obtain
Pr(ANB)=Pr(A;NA3) + Pr(A, N A3) — Pr(A;NA; N Az).  (1.10.5)

Substitute (1.10.3), Pr(B) = Pr(A3), and (1.10.5) into (1.10.2) to complete the proof.
[

Student Enroliment. Among a group of 200 students, 137 students are enrolled in a
mathematics class, 50 students are enrolled in a history class, and 124 students are
enrolled in a music class. Furthermore, the number of students enrolled in both the
mathematics and history classes is 33, the number enrolled in both the history and
music classes is 29, and the number enrolled in both the mathematics and music
classes is 92. Finally, the number of students enrolled in all three classes is 18. We
shall determine the probability that a student selected at random from the group of
200 students will be enrolled in at least one of the three classes.

Let A denote the event that the selected student is enrolled in the mathematics
class, let A, denote the event that he is enrolled in the history class, and let A3
denote the event that he is enrolled in the music class. To solve the problem, we
must determine the value of Pr(A; U A, U As). From the given numbers,

137 50 124
Pr(A)=—, Pr(A))=—, Pr(43)=—,
r(Ayp) 200 1(Az) 200 r(A3) 200
33 29 92
Pr(A{NA)=—, Pr(A;NA3))=—, Pr(AjNA3)=—,
r(A;NAy) 200 1(A; N Az) 200 (A1 N A3) 200
Pr(A; N A, N Ay = 45
1420043 =250
It follows from Eq. (1.10.1) that Pr(A; U A, U A3) = 175/200 = 7/8. <

The Union of a Finite Number of Events

A result similar to Theorem 1.10.1 holds for any arbitrary finite number of events, as
shown by the following theorem.



48

Chapter 1 Introduction to Probability

Theorem
1.10.2

For everyn events Ay, ..., A,,
n n
Pr(U A,-) = > Pr(A)— > Pr(A4;NA)+ > Pr(4;NA;N Ay
i=1 i=1 i<j i<j<k

- Z Pr(A;NA;NANA)+--- (1.10.6)

i<j<k<l

+ (=D Pr(A;N AN - NAY.

Proof The proof proceeds by induction. In particular, we first establish that (1.10.6)
is true for n = 1 and n = 2. Next, we show that if there exists m such that (1.10.6) is
true for all n < m, then (1.10.6) is also true for n = m + 1. The case of n = 1 is trivial,
and the case of n = 2 is Theorem 1.5.7. To complete the proof, assume that (1.10.6)
istrue foralln <m.Let Ay, ..., A, beevents. Define A={J"  A;and B=A4,, .
Theorem 1.5.7 says that

Pr(U Ai) =Pr(A U B) = Pr(A) + Pr(B) — Pr(AN B). (1.10.7)
i=1

We have assumed that Pr(A) equals (1.10.6) with n = m. We need to show that when
we add Pr(A) to Pr(B) — Pr(A N B), we get (1.10.6) with n = m + 1. The difference
between (1.10.6) with n =m + 1 and Pr(A) is all of the terms in which one of the
subscripts (i, j, k, etc.) equals m + 1. Those terms are the following:

m
Pr(A, ) — ) Pr(A;N A, )+ Y Pr(A;NA;N A,
i=1 i<j
— Y Pr(ANANA N A, )+
i<j<k
+ (=D Pr(A;NAyN - N Ay, N Ay
The first term in (1.10.8) is Pr(B) = Pr(A,,,1). All that remains is to show that
— Pr(A N B) equals all but the first term in (1.10.8).

Use the natural generalization of the distributive property (Theorem 1.4.10) to
write

(1.10.8)

ANB= <U A,) N A= J@A N AL (1.10.9)
i=1 i=1

The union in (1.10.9) contains m events, and hence we can apply (1.10.6) withn =m

and each A; replaced by A; N A,,, 1. The result is that — Pr(A N B) equals all but the

first term in (1.10.8). ]

The calculation in Theorem 1.10.2 can be outlined as follows: First, take the
sum of the probabilities of the n individual events. Second, subtract the sum of the
probabilities of the intersections of all possible pairs of events; in this step, there
will be () different pairs for which the probabilities are included. Third, add the
probabilities of the intersections of all possible groups of three of the events; there
will be (3) intersections of this type. Fourth, subtract the sum of the probabilities
of the intersections of all possible groups of four of the events; there will be (Z)
intersections of this type. Continue in this way until, finally, the probability of the
intersection of all n events is either added or subtracted, depending on whether # is
an odd number or an even number.
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The Matching Problem

Suppose that all the cards in a deck of n different cards are placed in a row, and that
the cards in another similar deck are then shuffled and placed in a row on top of the
cards in the original deck. It is desired to determine the probability p, that there
will be at least one match between the corresponding cards from the two decks. The
same problem can be expressed in various entertaining contexts. For example, we
could suppose that a person types n letters, types the corresponding addresses on n
envelopes, and then places the n letters in the n envelopes in a random manner. It
could be desired to determine the probability p,, that at least one letter will be placed
in the correct envelope. As another example, we could suppose that the photographs
of n famous film actors are paired in a random manner with n photographs of the
same actors taken when they were babies. It could then be desired to determine the
probability p, that the photograph of at least one actor will be paired correctly with
this actor’s own baby photograph.

Here we shall discuss this matching problem in the context of letters being placed
in envelopes. Thus, we shall let A; be the event that letter i is placed in the correct
envelope (i =1, ..., n), and we shall determine the value of p, =Pr (U/_, A;) by
using Eq. (1.10.6). Since the letters are placed in the envelopes at random, the
probability Pr(4;) that any particular letter will be placed in the correct envelope
is 1/n. Therefore, the value of the first summation on the right side of Eq. (1.10.6) is

- 1
ZPr(Ai)zn = =1
i=1 n

Furthermore, since letter 1 could be placed in any one of n envelopes and letter
2 could then be placed in any one of the other n — 1 envelopes, the probability
Pr(A; N A,) that both letter 1 and letter 2 will be placed in the correct envelopes
is 1/[n(n — 1)]. Similarly, the probability Pr(A; N A;) that any two specific letters i
and j (i # j) will both be placed in the correct envelopes is 1/[n(n — 1)]. Therefore,
the value of the second summation on the right side of Eq. (1.10.6) is

n 1 1
D Pr(A;NA) = (2>n(n 5=

i<j

By similar reasoning, it can be determined that the probability Pr(4; N A; N Ay)
that any three specific letters i, j, and k (i < j < k) will be placed in the correct
envelopes is 1/[n(n — 1)(n — 2)]. Therefore, the value of the third summation is

n 1 1
Y rananan=(3) o5 =5

i<j<k
This procedure can be continued until it is found that the probability Pr(A; N
A, ---NA,) that all n letters will be placed in the correct envelopes is 1/(n!). It now
follows from Eq. (1.10.6) that the probability p, that at least one letter will be placed
in the correct envelope is

R (1.10.10)

This probability has the following interesting features. As n — oo, the value of
p,, approaches the following limit:
1 1 1

Am py=l-s+5- 7
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It is shown in books on elementary calculus that the sum of the infinite series on
the right side of this equationis 1 — (1/e), where e =2.71828. . . . Hence, 1 — (1/¢) =
0.63212. ... It follows that for a large value of n, the probability p, that at least one
letter will be placed in the correct envelope is approximately 0.63212.

The exact values of p,, as givenin Eq. (1.10.10), will form an oscillating sequence
as n increases. As n increases through the even integers 2, 4, 6, . . ., the values of p,
will increase toward the limiting value 0.63212; and as » increases through the odd
integers 3, 5, 7, . . ., the values of p, will decrease toward this same limiting value.

The values of p, converge to the limit very rapidly. In fact, for n =7 the exact
value p; and the limiting value of p, agree to four decimal places. Hence, regardless
of whether seven letters are placed at random in seven envelopes or seven million
letters are placed at random in seven million envelopes, the probability that at least
one letter will be placed in the correct envelope is 0.6321.

Summary

We generalized the formula for the probability of the union of two arbitrary events
to the union of finitely many events. As an aside, there are cases in which it is
easier to compute Pr(A;U...UA,) as 1 —Pr(A{N---N A?) using the fact that

(A U...UA) = ASN---NAC

Exercises

1. Three players are each dealt, in a random manner, five
cards from a deck containing 52 cards. Four of the 52
cards are aces. Find the probability that at least one person
receives exactly two aces in their five cards.

2. In a certain city, three newspapers A, B, and C are
published. Suppose that 60 percent of the families in the
city subscribe to newspaper A, 40 percent of the families
subscribe to newspaper B, and 30 percent subscribe to
newspaper C. Suppose also that 20 percent of the families
subscribe to both A and B, 10 percent subscribe to both
A and C, 20 percent subscribe to both B and C, and 5
percent subscribe to all three newspapers A, B, and C.
What percentage of the families in the city subscribe to at
least one of the three newspapers?

3. For the conditions of Exercise 2, what percentage of
the families in the city subscribe to exactly one of the three
newspapers?

4. Suppose that three compact discs are removed from
their cases, and that after they have been played, they are
put back into the three empty cases in a random manner.
Determine the probability that at least one of the CD’s
will be put back into the proper cases.

5. Suppose that four guests check their hats when they
arrive at a restaurant, and that these hats are returned to

them in a random order when they leave. Determine the
probability that no guest will receive the proper hat.

6. A box contains 30 red balls, 30 white balls, and 30 blue
balls. If 10 balls are selected at random, without replace-
ment, what is the probability that at least one color will be
missing from the selection?

7. Suppose that a school band contains 10 students from
the freshman class, 20 students from the sophomore class,
30 students from the junior class, and 40 students from the
senior class. If 15 students are selected at random from
the band, what is the probability that at least one student
will be selected from each of the four classes? Hint: First
determine the probability that at least one of the four
classes will not be represented in the selection.

8. If n letters are placed at random in n envelopes, what
is the probability that exactly n — 1 letters will be placed
in the correct envelopes?

9. Suppose that n letters are placed at random in n en-
velopes, and let g, denote the probability that no letter is
placed in the correct envelope. For which of the follow-
ing four values of n is g, largest: n =10, n =21, n =53, or
n =300?
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10. If three letters are placed at random in three en- Hint: Let the sequence By, By, . .. be defined as in Exer-
velopes, what is the probability that exactly one letter will cise 12 of Sec. 1.5, and show that
be placed in the correct envelope?

o] n
11. Suppose that 10 cards, of which five are red and five Pr <U A,») = lim Pr (U B,») = lim Pr(4,).
. . n—0o0 n—0o0
are green, are placed at random in 10 envelopes, of which i=1 i=1

five are red and five are green. Determine the probability
that exactly x envelopes will contain a card with a match-
ing color (x =0, 1, ..., 10).

13. Let Ay, Ay, ... be an infinite sequence of events such
that A{ D A, D - - -. Prove that

12. Let Ay, Ay, ... be an infinite sequence of events such pa .
that A; C A, C - - -. Prove that Pr ﬂ Aj | = lim Pr(A,).
i=1
o0
Pr U A; )| = lim Pr(A,) Hint: Consider the sequence Af, A5, ..., and apply Exer-
i1 l n—o0 " cise 12.

[.I'l Statistical Swindles

This section presents some examples of how one can be misled by arguments that
require one to ignore the calculus of probability.

Misleading Use of Statistics

The field of statistics has a poor image in the minds of many people because there is
a widespread belief that statistical data and statistical analyses can easily be manip-
ulated in an unscientific and unethical fashion in an effort to show that a particular
conclusion or point of view is correct. We all have heard the sayings that “There
are three kinds of lies: lies, damned lies, and statistics” (Mark Twain [1924, p. 246]
says that this line has been attributed to Benjamin Disraeli) and that “you can prove
anything with statistics.”

One benefit of studying probability and statistics is that the knowledge we gain
enables us to analyze statistical arguments that we read in newspapers, magazines,
or elsewhere. We can then evaluate these arguments on their merits, rather than
accepting them blindly. In this section, we shall describe three schemes that have been
used to induce consumers to send money to the operators of the schemes in exchange
for certain types of information. The first two schemes are not strictly statistical in
nature, but they are strongly based on undertones of probability.

Perfect Forecasts

Suppose that one Monday morning you receive in the mail a letter from a firm
with which you are not familiar, stating that the firm sells forecasts about the stock
market for very high fees. To indicate the firm’s ability in forecasting, it predicts that a
particular stock, or a particular portfolio of stocks, will rise in value during the coming
week. You do not respond to this letter, but you do watch the stock market during the
week and notice that the prediction was correct. On the following Monday morning
you receive another letter from the same firm containing another prediction, this one
specifying that a particular stock will drop in value during the coming week. Again
the prediction proves to be correct.
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This routine continues for seven weeks. Every Monday morning you receive a
prediction in the mail from the firm, and each of these seven predictions proves to
be correct. On the eighth Monday morning, you receive another letter from the firm.
This letter states that for a large fee the firm will provide another prediction, on
the basis of which you can presumably make a large amount of money on the stock
market. How should you respond to this letter?

Since the firm has made seven successive correct predictions, it would seem that
it must have some special information about the stock market and is not simply
guessing. After all, the probability of correctly guessing the outcomes of seven
successive tosses of a fair coin is only (1/2)” = 0.008. Hence, if the firm had only been
guessing each week, then the firm had a probability less than 0.01 of being correct
seven weeks in a row.

The fallacy here is that you may have seen only a relatively small number of the
forecasts that the firm made during the seven-week period. Suppose, for example,
that the firm started the entire process with a list of 27 = 128 potential clients. On
the first Monday, the firm could send the forecast that a particular stock will rise in
value to half of these clients and send the forecast that the same stock will drop in
value to the other half. On the second Monday, the firm could continue writing to
those 64 clients for whom the first forecast proved to be correct. It could again send
a new forecast to half of those 64 clients and the opposite forecast to the other half.
At the end of seven weeks, the firm (which usually consists of only one person and a
computer) must necessarily have one client (and only one client) for whom all seven
forecasts were correct.

By following this procedure with several different groups of 128 clients, and
starting new groups each week, the firm may be able to generate enough positive
responses from clients for it to realize significant profits.

Guaranteed Winners

There is another scheme that is somewhat related to the one just described but that is
even more elegant because of its simplicity. In this scheme, a firm advertises that for
a fixed fee, usually 10 or 20 dollars, it will send the client its forecast of the winner of
any upcoming baseball game, football game, boxing match, or other sports event that
the client might specify. Furthermore, the firm offers a money-back guarantee that
this forecast will be correct; that is, if the team or person designated as the winner in
the forecast does not actually turn out to be the winner, the firm will return the full
fee to the client.

How should you react to such an advertisement? At first glance, it would appear
that the firm must have some special knowledge about these sports events, because
otherwise it could not afford to guarantee its forecasts. Further reflection reveals,
however, that the firm simply cannot lose, because its only expenses are those for
advertising and postage. In effect, when this scheme is used, the firm holds the client’s
fee until the winner has been decided. If the forecast was correct, the firm keeps the
fee; otherwise, it simply returns the fee to the client.

On the other hand, the client can very well lose. He presumably purchases the
firm’s forecast because he desires to bet on the sports event. If the forecast proves to
be wrong, the client will not have to pay any fee to the firm, but he will have lost any
money that he bet on the predicted winner.

Thus, when there are “guaranteed winners,” only the firm is guaranteed to win.
In fact, the firm knows that it will be able to keep the fees from all the clients for
whom the forecasts were correct.
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Improving Your Lottery Chances

State lotteries have become very popular in America. People spend millions of
dollars each week to purchase tickets with very small chances of winning medium
to enormous prizes. With so much money being spent on lottery tickets, it should not
be surprising that a few enterprising individuals have concocted schemes to cash in
on the probabilistic naiveté of the ticket-buying public. There are now several books
and videos available that claim to help lottery players improve their performance.
People actually pay money for these items. Some of the advice is just common sense,
but some of it is misleading and plays on subtle misconceptions about probability.

For concreteness, suppose that we have a game in which there are 40 balls num-
bered 1 to 40 and six are drawn without replacement to determine the winning
combination. A ticket purchase requires the customer to choose six different num-
bers from 1 to 40 and pay a fee. This game has (460) = 3,838,380 different winning
combinations and the same number of possible tickets. One piece of advice often
found in published lottery aids is not to choose the six numbers on your ticket too far
apart. Many people tend to pick their six numbers uniformly spread out from 1 to 40,
but the winning combination often has two consecutive numbers or at least two num-
bers very close together. Some of these “advisors” recommend that, since it is more
likely that there will be numbers close together, players should bunch some of their
six numbers close together. Such advice might make sense in order to avoid choosing
the same numbers as other players in a parimutuel game (i.e., a game in which all
winners share the jackpot). But the idea that any strategy can improve your chances
of winning is misleading.

To see why this advice is misleading, let £ be the event that the winning com-
bination contains at least one pair of consecutive numbers. The reader can calculate
Pr(E) in Exercise 13 in Sec. 1.12. For this example, Pr(E) = 0.577. So the lottery aids
are correct that E has high probability. However, by claiming that choosing a ticket in
E increases your chance of winning, they confuse the probability of the event E with
the probability of each outcome in E. If you choose the ticket (5, 7, 14, 23, 24, 38),
your probability of winning is only 1/3,828,380, just as it would be if you chose any
other ticket. The fact that this ticket happens to be in E doesn’t make your probabil-
ity of winning equal to 0.577. The reason that Pr(E) is so big is that so many different
combinations are in E. Each of those combinations still has probability 1/3,828,380
of winning, and you only get one combination on each ticket. The fact that there are
so many combinations in £ does not make each one any more likely than anything
else.

[.12 Supplementary Exercises

1. Suppose that a coin is tossed seven times. Let A denote
the event that a head is obtained on the first toss, and let B
denote the event that a head is obtained on the fifth toss.
Are A and B disjoint?

2. If A, B, and D are three events such that Pr(A U BU
D) = 0.7, what is the value of Pr(A° N B N D¢)?

3. Suppose that a certain precinct contains 350 voters, of
which 250 are Democrats and 100 are Republicans. If 30
voters are chosen at random from the precinct, what is the
probability that exactly 18 Democrats will be selected?

4. Suppose that in a deck of 20 cards, each card has one
of the numbers 1, 2, 3, 4, or 5 and there are four cards
with each number. If 10 cards are chosen from the deck at
random, without replacement, what is the probability that
each of the numbers 1, 2, 3, 4, and 5 will appear exactly
twice?

5. Consider the contractor in Example 1.5.4 on page 19.
He wishes to compute the probability that the total utility
demand is high, meaning that the sum of water and elec-
trical demand (in the units of Example 1.4.5) is at least
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215. Draw a picture of this event on a graph like Fig. 1.5
or Fig. 1.9 and find its probability.

6. Suppose that a box contains r red balls and w white
balls. Suppose also that balls are drawn from the box one
at a time, at random, without replacement. (a) What is the
probability that all r red balls will be obtained before any
white balls are obtained? (b) What is the probability that
all r red balls will be obtained before two white balls are
obtained?

7. Suppose that a box contains r red balls, w white balls,
and b blue balls. Suppose also that balls are drawn from
the box one at a time, at random, without replacement.
What is the probability that all » red balls will be obtained
before any white balls are obtained?

8. Suppose that 10 cards, of which seven are red and three
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k=0,1,...,10).

9. Suppose that 10 cards, of which five are red and five
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k=0,1,...,10).

10. Suppose that the events A and B are disjoint. Under
what conditions are A€ and B¢ disjoint?

11. Let Ay, A,, and A5 be three arbitrary events. Show that
the probability that exactly one of these three events will
occur is

Pr(A)) + Pr(A;) + Pr(A45)
-2 PI(A1 N Az) -2 PI’(A] N A3) -2 PI'(A2 N A3)
+3 PI'(A[ N A2 N A3)

12. Let Ay, ..., A, be n arbitrary events. Show that the
probability that exactly one of these n events will occur is

n
D Pr(A) —2) Pr(A;NA)+3 > Pr(4;NA;N Ay
i=1 i<j i<j<k

— e+ (D" Pr(A; N Ay - N Ay).

13. Consider a state lottery game in which each winning
combination and each ticket consists of one set of k num-
bers chosen from the numbers 1 to n without replacement.
We shall compute the probability that the winning combi-
nation contains at least one pair of consecutive numbers.

a. Prove that if n <2k — 1, then every winning combi-
nation has at least one pair of consecutive numbers.
For the rest of the problem, assume that n > 2k — 1.

b. Let iy <--- <i; be an arbitrary possible winning
combination arranged in order from smallest to
largest. For s =1, ..., k, let j, =i, — (s — 1). That
is,

=1t
Ja=ir—1
Je=ig— (k=1).

Prove that (i, ..., i) contains at least one pair of
consecutive numbers if and only if (ji, ..., j;) con-
tains repeated numbers.

c¢. Provethatl<j; <..--<j, <n—k+1and that the

number of (ji, . . ., j;) sets withnorepeatsis ("7]]?1).

d. Find the probability that there is no pair of consecu-
tive numbers in the winning combination.

e. Find the probability of at least one pair of consecu-
tive numbers in the winning combination.
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2.1 The Definition of Conditional Probability

A major use of probability in statistical inference is the updating of probabilities
when certain events are observed. The updated probability of event A after we
learn that event B has occurred is the conditional probability of A given B.

Lottery Ticket. Consider a state lottery game in which six numbers are drawn without
replacement from a bin containing the numbers 1-30. Each player tries to match the
set of six numbers that will be drawn without regard to the order in which the numbers
are drawn. Suppose that you hold a ticket in such a lottery with the numbers 1, 14,
15,20, 23, and 27. You turn on your television to watch the drawing but all you see is
one number, 15, being drawn when the power suddenly goes off in your house. You
don’t even know whether 15 was the first, last, or some in-between draw. However,
now that you know that 15 appears in the winning draw, the probability that your
ticket is a winner must be higher than it was before you saw the draw. How do you
calculate the revised probability? <

Example 2.1.1 is typical of the following situation. An experiment is performed
for which the sample space S is given (or can be constructed easily) and the proba-
bilities are available for all of the events of interest. We then learn that some event B
has occuured, and we want to know how the probability of another event A changes
after we learn that B has occurred. In Example 2.1.1, the event that we have learned
is B = {one of the numbers drawn is 15}. We are certainly interested in the probabil-
ity of

A = {the numbers 1, 14, 15, 20, 23, and 27 are drawn},

and possibly other events.

If we know that the event B has occurred, then we know that the outcome of
the experiment is one of those included in B. Hence, to evaluate the probability that
A will occur, we must consider the set of those outcomes in B that also result in
the occurrence of A. As sketched in Fig. 2.1, this set is precisely the set A N B. It is
therefore natural to calculate the revised probability of A according to the following
definition.

55



56  Chapter 2 Conditional Probability

Figure 2.1 The outcomes in
the event B that also belong
to the event A.

Definition
2.1.1

Example
2.1.2

S

ANB

Conditional Probability. Suppose that we learn that an event B has occurred and that
we wish to compute the probability of another event A taking into account that
we know that B has occurred. The new probability of A is called the conditional
probability of the event A given that the event B has occurred and is denoted Pr(A|B).
If Pr(B) > 0, we compute this probability as

Pr(AN B)
Pr(B)
The conditional probability Pr(A|B) is not defined if Pr(B) = 0.

Pr(A|B) = (2.1.1)

For convenience, the notation in Definition 2.1.1 is read simply as the conditional
probability of A given B. Eq. (2.1.1) indicates that Pr(A|B) is computed as the
proportion of the total probability Pr(B) that is represented by Pr(A N B), intuitively
the proportion of B that is also part of A.

Lottery Ticket. In Example 2.1.1, you learned that the event
B = {one of the numbers drawn is 15}

has occurred. You want to calculate the probability of the event A that your ticket
is a winner. Both events A and B are expressible in the sample space that consists of
the (360) = 30!/(6124!) possible combinations of 30 items taken six at a time, namely,
the unordered draws of six numbers from 1-30. The event B consists of combinations
thatinclude 15. Since there are 29 remaining numbers from which to choose the other

five in the winning draw, there are (259) outcomes in B. It follows that

Pr(B) = @ 29460 02
T (@) 301241 T

The event A that your ticket is a winner consists of a single outcome that is also in B,
so ANB=A,and
124!
Pr(An B) =Pr(A) = + = 2 _ 168107,
(30) 30!
6
It follows that the conditional probability of A given B is

61241
Pr(A|B) = 3% =84 x 107°.
0.2

This is five times as large as Pr(A) before you learned that B had occurred. <
Definition 2.1.1 for the conditional probability Pr(A|B) is worded in terms of

the subjective interpretation of probability in Sec. 1.2. Eq. (2.1.1) also has a simple
meaning in terms of the frequency interpretation of probability. According to the
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frequency interpretation, if an experimental process is repeated a large number of
times, then the proportion of repetitions in which the event B will occur is approx-
imately Pr(B) and the proportion of repetitions in which both the event A and the
event B will occur is approximately Pr(A N B). Therefore, among those repetitions
in which the event B occurs, the proportion of repetitions in which the event A will
also occur is approximately equal to

Pr(A|B) = M

Pr(B)
Rolling Dice. Suppose that two dice were rolled and it was observed that the sum 7 of
the two numbers was odd. We shall determine the probability that 7" was less than 8.
If we let A be the event that T < 8 and let B be the event that T is odd, then

AN Bisthe event that T is 3, 5, or 7. From the probabilities for two dice given at the
end of Sec. 1.6, we can evaluate Pr(A N B) and Pr(B) as follows:

2 4 6 12 1

PrAN D) =3+ 36" 3636 3
4 6 4 2 18 1

2
PrB)=—+ —+—+—+—-=—=—.
B =36"36136 3% 3% 36 2

Hence,

Pr(AlB):%:%. <

A Clinical Trial. It is very common for patients with episodes of depression to have
a recurrence within two to three years. Prien et al. (1984) studied three treatments
for depression: imipramine, lithium carbonate, and a combination. As is traditional
in such studies (called clinical trials), there was also a group of patients who received
a placebo. (A placebo is a treatment that is supposed to be neither helpful nor
harmful. Some patients are given a placebo so that they will not know that they
did not receive one of the other treatments. None of the other patients knew which
treatment or placebo they received, either.) In this example, we shall consider 150
patients who entered the study after an episode of depression that was classified
as “unipolar” (meaning that there was no manic disorder). They were divided into
the four groups (three treatments plus placebo) and followed to see how many had
recurrences of depression. Table 2.1 summarizes the results. If a patient were selected
at random from this study and it were found that the patient received the placebo
treatment, what is the conditional probability that the patient had a relapse? Let
B be the event that the patient received the placebo, and let A be the event that

Table 2.1 Results of the clinical depression study in Example 2.1.4

Treatment group

Response Imipramine Lithium Combination Placebo Total

Relapse 18 13 22 24 77
No relapse 22 25 16 10 73

Total 40 38 38 34 150
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the patient had a relapse. We can calculate Pr(B) = 34/150 and Pr(A N B) =24/150
directly from the table. Then Pr(A|B) =24/34 = (0.706. On the other hand, if the
randomly selected patient is found to have received lithium (call this event C) then
Pr(C) =38/150, Pr(A N C) =13/150, and Pr(A|C) = 13/38 = 0.342. Knowing which
treatment a patient received seems to make a difference to the probability of relapse.
In Chapter 10, we shall study methods for being more precise about how much of a
difference it makes. <

Rolling Dice Repeatedly. Suppose that two dice are to be rolled repeatedly and the
sum 7 of the two numbers is to be observed for each roll. We shall determine the
probability p that the value T = 7 will be observed before the value T = 8 is observed.

The desired probability p could be calculated directly as follows: We could
assume that the sample space S contains all sequences of outcomes that terminate as
soon as either the sum 7 =7 or the sum 7 = 8 is obtained. Then we could find the
sum of the probabilities of all the sequences that terminate when the value T =7 is
obtained.

However, there is a simpler approach in this example. We can consider the simple
experiment in which two dice are rolled. If we repeat the experiment until either the
sum T =7 or the sum T = 8 is obtained, the effect is to restrict the outcome of the
experiment to one of these two values. Hence, the problem can be restated as follows:
Given that the outcome of the experiment is either 7 =7 or T =8, determine the
probability p that the outcome is actually 7 = 7.

If we let A be the event that T =7 and let B be the event that the value of T is
either 7 or 8, then AN B = A and

Pr(ANB) _ Pr(A)
Pr(B)  Pr(B)’

p=Pr(A|B) =

From the probabilities for two dice given in Example 1.6.5, Pr(A) =6/36 and
Pr(B) = (6/36) + (5/36) = 11/36. Hence, p = 6/11. <

The Multiplication Rule for Conditional Probabilities

In some experiments, certain conditional probabilities are relatively easy to assign
directly. In these experiments, it is then possible to compute the probability that both
of two events occur by applying the next result that follows directly from Eq. (2.1.1)
and the analogous definition of Pr(B|A).

Multiplication Rule for Conditional Probabilities. Let A and B be events. If Pr(B) > 0,
then

Pr(A N B) =Pr(B) Pr(A|B).
If Pr(A) > 0, then
Pr(A N B) = Pr(A) Pr(B|A). n

Selecting Two Balls. Suppose that two balls are to be selected at random, without
replacement, from a box containing » red balls and b blue balls. We shall determine
the probability p that the first ball will be red and the second ball will be blue.

Let A be the event that the first ball is red, and let B be the event that the second
ball is blue. Obviously, Pr(A) = r/(r + b). Furthermore, if the event A has occurred,
then one red ball has been removed from the box on the first draw. Therefore, the



Theorem
2.1.2

Example
2.1.7

Theorem
2.1.3

2.1 The Definition of Conditional Probability =~ 59

probability of obtaining a blue ball on the second draw will be
Pr(B|A) = ——.
(BIA) r+b—-1
It follows that
r b
r+b r+b-1

Pr(ANnB)= <

The principle that has just been applied can be extended to any finite number of
events, as stated in the following theorem.

Multiplication Rule for Conditional Probabilities. Suppose that Aq, A,, ..., A, are
events such that Pr(A;NA,N---NA,_7) > 0. Then

= Pr(A;) Pr(A,]A;) Pr(As]A; N Ay) -+ Pr(A,|A{ N Ay N---N A,_1).

Proof The product of probabilities on the right side of Eq. (2.1.2) is equal to
Pr(A;N Ay Pr(A{NA;NA3)  Pr(4;NA;N---NA4A,)

Pr(A;) Pr(A; N A,) Pr(A;NA,---NA, 1)
Since Pr(A1N A, N---NA,_y) >0, each of the denominators in this product must be

positive. All of the terms in the product cancel each other except the final numerator
Pr(A{NA,N---NA,), which is the left side of Eq. (2.1.2). |

Pr(Ay)

Selecting Four Balls. Suppose that four balls are selected one at a time, without
replacement, from a box containing » red balls and » blue balls (r > 2, b > 2). We
shall determine the probability of obtaining the sequence of outcomes red, blue, red,
blue.

If we let R; denote the event that a red ball is obtained on the jth draw and let

B; denote the event that a blue ball is obtained on the jthdraw (j =1, ..., 4), then
Pr(R1 n Bz N R3 N B4) = PI'(Rl) Pr(B2|R1) PI'(R3|R1 N B2) Pr(B4|R1 N BZ N R3)
r b r—1 b—1
|

:r+b.r+b—1.r+b—2.r+b—3'

Note: Conditional Probabilities Behave Just Like Probabilities. In all of the sit-
uations that we shall encounter in this text, every result that we can prove has a
conditional version given an event B with Pr(B) > 0. Just replace all probabilities by
conditional probabilities given B and replace all conditional probabilities given other
events C by conditional probabilities given C N B. For example, Theorem 1.5.3 says
that Pr(A€) =1 — Pr(A). Itis easy to prove that Pr(A¢|B) =1 — Pr(A|B) if Pr(B) > 0.
(See Exercises 11 and 12 in this section.) Another example is Theorem 2.1.3, which
is a conditional version of the multiplication rule Theorem 2.1.2. Although a proof is
given for Theorem 2.1.3, we shall not provide proofs of all such conditional theorems,
because their proofs are generally very similar to the proofs of the unconditional
versions.

Suppose that A, A,, ..., A,, BareeventssuchthatPr(B) > 0andPr(A;NA,N---N
A,_1|B) > 0. Then

Pr(Al N A2 Nn---N An|B) = Pr(A1|B) PI'(A2|A1 N B) cee

(2.1.3)
x Pr(A,JA;NAyN---NA, ;N B).
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Figure 2.2 The inter-
sections of A with events
By, ..., Bs of a partition in
the proof of Theorem 2.1.4.

Proof The product of probabilities on the right side of Eq. (2.1.3) is equal to
Pr(A;NB) Pr(A;NA;NB)  Pr(AiNAyN---NA,B)
Pr(B) Pr(A;N B) Pr(AjNAy---NA,_{NB)
Since Pr(A{NA,N---NA,_1|B) > 0, each of the denominators in this product must
be positive. All of the terms in the product cancel each other except the first denom-

inator and the final numerator to yield Pr(A; N A, N---N A, N B)/ Pr(B), which is
the left side of Eq. (2.1.3). |

Conditional Probability and Partitions

Theorem 1.4.11 shows how to calculate the probability of an event by partitioning
the sample space into two events B and B€. This result easily generalizes to larger
partitions, and when combined with Theorem 2.1.1 it leads to a very powerful tool
for calculating probabilities.

Partition. Let S denote the sample space of some experiment, and consider k events
B, ..., Byin Ssuchthat By, . .., By are disjoint and Ule B; = §. Itis said that these
events form a partition of S.

Typically, the events that make up a partition are chosen so that an important
source of uncertainty in the problem is reduced if we learn which event has occurred.

Selecting Bolts. Two boxes contain long bolts and short bolts. Suppose that one box
contains 60 long bolts and 40 short bolts, and that the other box contains 10 long bolts
and 20 short bolts. Suppose also that one box is selected at random and a bolt is then
selected at random from that box. We would like to determine the probability that
this bolt is long. |

Partitions can facilitate the calculations of probabilities of certain events.

Law of total probability. Suppose that the events By, ..., B, form a partition of the
space S and Pr(Bj) >0for j=1, ..., k. Then, for every event A in S,
k
Pr(A) =) Pr(B;) Pr(A|B)). (2.1.4)
j=1
Proof Theevents BiN A, B,NA, ..., BN Awillform apartition of A, asillustrated

in Fig. 2.2. Hence, we can write

A=(BiNA)UB,NA)U---U(B,NA).
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Furthermore, since the k events on the right side of this equation are disjoint,

k
Pr(A) = Z Pr(B; N A).
j=1
Finally, if Pr(B;) > 0 for j =1, ..., k, then Pr(B; N A) = Pr(B)) Pr(A|B;) and it
follows that Eq. (2.1.4) holds. |

Selecting Bolts. In Example 2.1.8, let B; be the event that the first box (the one with
60 long and 40 short bolts) is selected, let B, be the event that the second box (the
one with 10 long and 20 short bolts) is selected, and let A be the event that a long
bolt is selected. Then

Pr(A) = Pr(B,) Pr(A|By) + Pr(B,) Pr(A|B,).

Since a box is selected at random, we know that Pr(B;) = Pr(B,) = 1/2. Fur-
thermore, the probability of selecting a long bolt from the first box is Pr(A|B;) =
60/100 = 3/5, and the probability of selecting a long bolt from the second box is
Pr(A|B,) =10/30 = 1/3. Hence,

Pr(A) = - -

+ =—. <

15

Dl W
N =
W | =

N | —

Achieving a High Score. Suppose that a person plays a game in which his score must be
one of the 50 numbers 1, 2, . . ., 50 and that each of these 50 numbers is equally likely
to be his score. The first time he plays the game, his score is X. He then continues to
play the game until he obtains another score Y such that ¥ > X. We will assume that,
conditional on previous plays, the 50 scores remain equally likely on all subsequent
plays. We shall determine the probability of the event A that ¥ = 50.

For each i =1, ..., 50, let B; be the event that X =i. Conditional on B;, the
value of Y is equally likely to be any one of the numbersi,i + 1, ..., 50. Since each
of these (51 — i) possible values for Y is equally likely, it follows that

1
51—i
Furthermore, since the probability of each of the 50 values of X is 1/50, it follows that
Pr(B;) =1/50 for all i and

Pr(A|B;) = Pr(Y =50|B,) =

50
1 1 1 1 1 1
Pr(A) = —. =—(1+-4+-+.--4+4 — ) =0.0900. <
(A4) i=150 51— 50( 2 3 50)

Note: Conditional Version of Law of Total Probability. The law of total probability
has an analog conditional on another event C, namely,
k
Pr(A|C) =) Pr(B,|C) Pr(A|B; N C). (2.1.5)
j=1
The reader can prove this in Exercise 17.

Augmented Experiment In some experiments, it may not be clear from the initial
description of the experiment that a partition exists that will facilitate the calculation
of probabilities. However, there are many such experiments in which such a partition
exists if we imagine that the experiment has some additional structure. Consider the
following modification of Examples 2.1.8 and 2.1.9.
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Selecting Bolts. There is one box of bolts that contains some long and some short
bolts. A manager is unable to open the box at present, so she asks her employees
what is the composition of the box. One employee says that it contains 60 long bolts
and 40 short bolts. Another says that it contains 10 long bolts and 20 short bolts.
Unable to reconcile these opinions, the manager decides that each of the employees
is correct with probability 1/2. Let By be the event that the box contains 60 long and
40 short bolts, and let B, be the event that the box contains 10 long and 20 short
bolts. The probability that the first bolt selected is long is now calculated precisely as
in Example 2.1.9. <

In Example 2.1.11, there is only one box of bolts, but we believe that it has one
of two possible compositions. We let the events B; and B, determine the possible
compositions. This type of situation is very common in experiments.

A Clinical Trial. Consider a clinical trial such as the study of treatments for depression
in Example 2.1.4. As in many such trials, each patient has two possible outcomes,
in this case relapse and no relapse. We shall refer to relapse as “failure” and no
relapse as “success.” For now, we shall consider only patients in the imipramine
treatment group. If we knew the effectiveness of imipramine, that is, the proportion
p of successes among all patients who might receive the treatment, then we might
model the patients in our study as having probability p of success. Unfortunately, we
do not know p at the start of the trial. In analogy to the box of bolts with unknown
composition in Example 2.1.11, we can imagine that the collection of all available
patients (from which the 40 imipramine patients in this trial were selected) has two or
more possible compositions. We can imagine that the composition of the collection of
patients determines the proportion that will be success. For simplicity, in this example,
we imagine that there are 11 different possible compositions of the collection of
patients. In particular, we assume that the proportions of success for the 11 possible
compositions are 0, 1/10, ..., 9/10, 1. (We shall be able to handle more realistic
models for p in Chapter 3.) For example, if we knew that our patients were drawn
from a collection with the proportion 3/10 of successes, we would be comfortable
saying that the patients in our sample each have success probability p = 3/10. The
value of p is an important source of uncertainty in this problem, and we shall partition
the sample space by the possible values of p. For j =1, ..., 11, let B; be the event
that our sample was drawn from a collection with proportion (j — 1)/10 of successes.
We can also identify B; as the event {p = (j —1)/10}.

Now, let E; be the event that the first patient in the imipramine group has a
success. We defined each event B; so that Pr(Eq|B;) = (j — 1)/10. Supppose that,
prior to starting the trial, we believe that Pr(B;) = 1/11 for each j. It follows that

11
1j-1 5 1
Pr(E) = — ==, 2.1.6
(&0 ;1110 10~ 2 216)
where the second equality uses the fact that Z';: 1 J=nn+1)/2. <
The events By, By, ..., By; in Example 2.1.12 can be thought of in much the

same way as the two events By and B, that determine the mixture of long and short
bolts in Example 2.1.11. There is only one box of bolts, but there is uncertainty about
its composition. Similarly in Example 2.1.12, there is only one group of patients,
but we believe that it has one of 11 possible compositions determined by the events
Bji, By, . .., By;. To call these events, they must be subsets of the sample space for the
experiment in question. That will be the case in Example 2.1.12 if we imagine that
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the experiment consists not only of observing the numbers of successes and failures
among the patients but also of potentially observing enough additional patients to
be able to compute p, possibly at some time very far in the future. Similarly, in
Example 2.1.11, the two events By and B, are subsets of the sample space if we
imagine that the experiment consists not only of observing one sample bolt but also
of potentially observing the entire composition of the box.

Throughout the remainder of this text, we shall implicitly assume that experi-
ments are augmented to include outcomes that determine the values of quantities
such as p. We shall not require that we ever get to observe the complete outcome of
the experiment so as to tell us precisely what p is, but merely that there is an exper-
iment that includes all of the events of interest to us, including those that determine
quantities like p.

Definition Augmented Experiment. If desired, any experiment can be augmented to include the
2.1.3 potential or hypothetical observation of as much additional information as we would
find useful to help us calculate any probabilities that we desire.

Definition 2.1.3 is worded somewhat vaguely because it is intended to cover a
wide variety of cases. Here is an explicit application to Example 2.1.12.

Example A Clinical Trial. In Example 2.1.12, we could explicitly assume that there exists an
2.1.13 infinite sequence of patients who could be treated with imipramine even though
we will observe only finitely many of them. We could let the sample space consist

of infinite sequences of the two symbols S and F such as (S, S, F, S, F, F, F, .. .).

Here S in coordinate i means that the ith patient is a success, and F stands for

failure. So, the event E; in Example 2.1.12 is the event that the first coordinate

is S. The example sequence above is then in the event E;. To accommodate our
interpretation of p as the proportion of successes, we can assume that, for every

such sequence, the proportion of S’s among the first n coordinates gets close to one

of the numbers 0, 1/10, ..., 9/10, 1 as n increases. In this way, p is explicitly the limit

of the proportion of successes we would observe if we could find a way to observe
indefinitely. In Example 2.1.12, B, is the event consisting of all the outcomes in which

the limit of the proportion of S’s equals 1/10, Bs is the set of outcomes in which

the limit is 2/10, etc. Also, we observe only the first 40 coordinates of the infinite

sequence, but we still behave as if p exists and could be determined if only we could

observe forever. <

In the remainder of the text, there will be many experiments that we assume
are augmented. In such cases, we will mention which quantities (such as p in Exam-
ple 2.1.13) would be determined by the augmented part of the experiment even if we
do not explicitly mention that the experiment is augmented.

The Game of Craps

We shall conclude this section by discussing a popular gambling game called craps.
One version of this game is played as follows: A player rolls two dice, and the sum
of the two numbers that appear is observed. If the sum on the first roll is 7 or 11,
the player wins the game immediately. If the sum on the first roll is 2, 3, or 12, the
player loses the game immediately. If the sum on the first roll is 4, 5, 6, §, 9, or 10,
then the two dice are rolled again and again until the sum is either 7 or the original
value. If the original value is obtained a second time before 7 is obtained, then the
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player wins. If the sum 7 is obtained before the original value is obtained a second
time, then the player loses.

We shall now compute the probability Pr(W), where W is the event that the
player will win. Let the sample space S consist of all possible sequences of sums from
the rolls of dice that might occur in a game. For example, some of the elements of S are
4,7),01),4,3,4),12),10,8,2,12, 6,7), etc. We see that (11) € W but (4, 7) € W€,
etc.. We begin by noticing that whether or not an outcome is in W depends in a crucial
way on the first roll. For this reason, it makes sense to partition W according to the
sum on the first roll. Let B; be the event that the first rollis i fori =2, ..., 12.

Theorem 2.1.4 tells us that Pr(W) = Z,liz Pr(B;) Pr(W|B,;). Since Pr(B;) for each
i was computed in Example 1.6.5, we need to determine Pr(W|B;) for each i. We
begin with i = 2. Because the player loses if the first roll is 2, we have Pr(W|B,) = 0.
Similarly, Pr(W|Bsz) = 0 = Pr(W|By,). Also, Pr(W|B;) =1 because the player wins if
the first roll is 7. Similarly, Pr(W|By;) = 1.

For each first roll i € {4, 5, 6, 8, 9, 10}, Pr(W|B;) is the probability that, in a
sequence of dice rolls, the sum i will be obtained before the sum 7 is obtained. As
described in Example 2.1.5, this probability is the same as the probability of obtaining
the sum i when the sum must be either i or 7. Hence,

lmmm=_ﬁﬁiﬁ
Pr(B; U B,)
We compute the necessary values here:
3 1 4 )
Pr(WiB) =55 =5, PWIB)=""¢ =1,
3% 1 3% 3% 1 3
% _5 % _S
3%+ 3 11 %+ 36 11
4 2 3 1
PMWHBQ=:4366 =3 Pr(W|Byg) = 3366 =3
3% 1 3 3% 13

Finally, we compute the sum Z,liz Pr(B;) Pr(W|B;):

12
31,42 55 6
Pr(W) = Pr(B) PrWIB) =0+ 04+ oz 4 o2 >
T ; () Pr(wiBn) 363 " 365 ' 3611 ' 36

55 42 31 2 0_292820.493'

3611 365 363 36 5940
Thus, the probability of winning in the game of craps is slightly less than 1/2.

Summary

The revised probability of an event A after learning that event B (with Pr(B) > 0)
has occurred is the conditional probability of A given B, denoted by Pr(A|B) and
computed as Pr(A N B)/ Pr(B). Often it is easy to assess a conditional probability,
such as Pr(A|B), directly. In such a case, we can use the multiplication rule for con-
ditional probabilities to compute Pr(A N B) = Pr(B) Pr(A|B). All probability results
have versions conditional on an event B with Pr(B) > 0: Just change all probabili-
ties so that they are conditional on B in addition to anything else they were already
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conditional on. For example, the multiplication rule for conditional probabilities be-
comes Pr(A; N Ay|B) =Pr(A;|B) Pr(A,|A; N B). A partition is a collection of disjoint
events whose union is the whole sample space. To be most useful, a partition is cho-
sen so that an important source of uncertainty is reduced if we learn which one of
the partition events occurs. If the conditional probability of an event A is available
given each event in a partition, the law of total probability tells how to combine these
conditional probabilities to get Pr(A).

Exercises

1. If A C B with Pr(B) > 0, what is the value of Pr(A|B)?

2. If A and B are disjoint events and Pr(B) > 0, what is
the value of Pr(A|B)?

3. If S is the sample space of an experiment and A is any
event in that space, what is the value of Pr(A|S)?

4. Each time a shopper purchases a tube of toothpaste,
he chooses either brand A or brand B. Suppose that for
each purchase after the first, the probability is 1/3 that he
will choose the same brand that he chose on his preceding
purchase and the probability is 2/3 that he will switch
brands. If he is equally likely to choose either brand A
or brand B on his first purchase, what is the probability
that both his first and second purchases will be brand A
and both his third and fourth purchases will be brand B?

5. A box contains r red balls and b blue balls. One ball
is selected at random and its color is observed. The ball
is then returned to the box and k additional balls of the
same color are also put into the box. A second ball is then
selected at random, its color is observed, and it is returned
to the box together with & additional balls of the same
color. Each time another ball is selected, the process is
repeated. If four balls are selected, what is the probability
that the first three balls will be red and the fourth ball will
be blue?

6. A box contains three cards. One card is red on both
sides, one card is green on both sides, and one card is red
on one side and green on the other. One card is selected
from the box at random, and the color on one side is
observed. If this side is green, what is the probability that
the other side of the card is also green?

7. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
newspaper A, what is the probability that the family also
subscribes to newspaper B?

8. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
at least one of the three newspapers A, B, and C, what is
the probability that the family subscribes to newspaper A?

9. Suppose that a box contains one blue card and four red
cards, which are labeled A, B, C, and D. Suppose also that

two of these five cards are selected at random, without
replacement.

a. If it is known that card A has been selected, what is
the probability that both cards are red?

b. If it is known that at least one red card has been
selected, what is the probability that both cards are
red?

10. Consider the following version of the game of craps:
The player rolls two dice. If the sum on the first roll is
7 or 11, the player wins the game immediately. If the
sum on the first roll is 2, 3, or 12, the player loses the
game immediately. However, if the sum on the first roll
is4,5,6,8,9,or 10, then the two dice are rolled again and
again until the sum is either 7 or 11 or the original value. If
the original value is obtained a second time before either
7 or 11 is obtained, then the player wins. If either 7 or 11
is obtained before the original value is obtained a second
time, then the player loses. Determine the probability that
the player will win this game.

11. For any two events A and B with Pr(B) > 0, prove that
Pr(A¢|B) = 1 — Pr(A|B).

12. For any three events A, B, and D, such that Pr(D) > 0,
prove that Pr(A U B|D) =Pr(A|D) + Pr(B|D) — Pr(AN
B|D).

13. A box contains three coins with a head on each side,
four coins with a tail on each side, and two fair coins. If
one of these nine coins is selected at random and tossed
once, what is the probability that a head will be obtained?

14. A machine produces defective parts with three differ-
ent probabilities depending on its state of repair. If the
machine is in good working order, it produces defective
parts with probability 0.02. If it is wearing down, it pro-
duces defective parts with probability 0.1. If it needs main-
tenance, it produces defective parts with probability 0.3.
The probability that the machine is in good working order
is 0.8, the probability that it is wearing down is 0.1, and the
probability that it needs maintenance is 0.1. Compute the
probability that a randomly selected part will be defective.
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15. The percentages of voters classed as Liberals in three
different election districts are divided as follows: in the
first district, 21 percent; in the second district, 45 percent;
and in the third district, 75 percent. If a district is selected
at random and a voter is selected at random from that
district, what is the probability that she will be a Liberal?

16. Consider again the shopper described in Exercise 4.
On each purchase, the probability that he will choose the

same brand of toothpaste that he chose on his preced-
ing purchase is 1/3, and the probability that he will switch
brands is 2/3. Suppose that on his first purchase the proba-
bility that he will choose brand A is 1/4 and the probability
that he will choose brand B is 3/4. What is the probability
that his second purchase will be brand B?

17. Prove the conditional version of the law of total prob-
ability (2.1.5).

Example
2.2.1

Definition
2.2.1

2.2 Independent Events

If learning that B has occurred does not change the probability of A, then we say
that A and B are independent. There are many cases in which events A and B
are not independent, but they would be independent if we learned that some other
event C had occurred. In this case, A and B are conditionally independent given C.

Tossing Coins. Suppose that a fair coin is tossed twice. The experiment has four
outcomes, HH, HT, TH, and TT, that tell us how the coin landed on each of the
two tosses. We can assume that this sample space is simple so that each outcome has
probability 1/4. Suppose that we are interested in the second toss. In particular, we
want to calculate the probability of the event A = {H on second toss}. We see that A =
{HH,TH}, so that Pr(A) =2/4 = 1/2. If we learn that the first coin landed T, we might
wish to compute the conditional probability Pr(A|B) where B = {T on first toss}.
Using the definition of conditional probability, we easily compute
Pr(A|B)=Pr(AmB) 2%21,
Pr(B) 12 2

because A N B = {T H} has probability 1/4. We see that Pr(A|B) = Pr(A); hence, we
don’t change the probability of A even after we learn that B has occurred. <

Definition of Independence

The conditional probability of the event A given that the event B has occurred is
the revised probability of A after we learn that B has occurred. It might be the case,
however, that no revision is necessary to the probability of A even after we learn that
B occurs. This is precisely what happened in Example 2.2.1. In this case, we say that
A and B are independent events. As another example, if we toss a coin and then roll
a die, we could let A be the event that the die shows 3 and let B be the event that the
coin lands with heads up. If the tossing of the coin is done in isolation of the rolling
of the die, we might be quite comfortable assigning Pr(A|B) = Pr(A) = 1/6. In this
case, we say that A and B are independent events.

In general, if Pr(B) > 0, the equation Pr(A|B) = Pr(A) can be rewritten as Pr(A N
B)/ Pr(B) = Pr(A). If we multiply both sides of this last equation by Pr(B), we obtain
the equation Pr(A N B) = Pr(A) Pr(B). In order to avoid the condition Pr(B) > 0, the
mathematical definition of the independence of two events is stated as follows:

Independent Events. Two events A and B are independent if

Pr(A N B) = Pr(A) Pr(B).
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Suppose that Pr(A) > 0 and Pr(B) > 0. Then it follows easily from the definitions
of independence and conditional probability that A and B are independent if and only
if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B).

Independence of Two Events

If two events A and B are considered to be independent because the events are
physically unrelated, and if the probabilities Pr(A) and Pr(B) are known, then the
definition can be used to assign a value to Pr(A N B).

Machine Operation. Suppose that two machines 1 and 2 in a factory are operated in-
dependently of each other. Let A be the event that machine 1 will become inoperative
during a given 8-hour period, let B be the event that machine 2 will become inopera-
tive during the same period, and suppose that Pr(A) = 1/3 and Pr(B) = 1/4. We shall
determine the probability that at least one of the machines will become inoperative
during the given period.

The probability Pr(A N B) that both machines will become inoperative during

the period is
Pr(A N B) = Pr(A) Pr(B) = (1> (1) _1
B IACYAVYARET)

Therefore, the probability Pr(A U B) that at least one of the machines will become
inoperative during the period is
Pr(AU B) =Pr(A) + Pr(B) — Pr(AN B)
1 1 1 1

= — _—— = —, )
3+4 12 2

The next example shows that two events A and B, which are physically related,
can, nevertheless, satisfy the definition of independence.

Rolling a Die. Suppose that a balanced die is rolled. Let A be the event that an even
number is obtained, and let B be the event that one of the numbers 1, 2, 3, or 4 is
obtained. We shall show that the events A and B are independent.

In this example, Pr(A) = 1/2 and Pr(B) =2/3. Furthermore, since A N B is the
event that either the number 2 or the number 4 is obtained, Pr(A N B) = 1/3. Hence,
Pr(A N B) =Pr(A) Pr(B). It follows that the events A and B are independent events,
even though the occurrence of each event depends on the same roll of a die. <

The independence of the events A and B in Example 2.2.3 can also be interpreted
as follows: Suppose that a person must bet on whether the number obtained on the
die will be even or odd, that is, on whether or not the event A will occur. Since three
of the possible outcomes of the roll are even and the other three are odd, the person
will typically have no preference between betting on an even number and betting on
an odd number.

Suppose also that after the die has been rolled, but before the person has learned
the outcome and before she has decided whether to bet on an even outcome or on an
odd outcome, she is informed that the actual outcome was one of the numbers 1, 2, 3,
or 4,i.e., that the event B has occurred. The person now knows that the outcome was
1, 2, 3, or 4. However, since two of these numbers are even and two are odd, the
person will typically still have no preference between betting on an even number
and betting on an odd number. In other words, the information that the event B has
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occurred is of no help to the person who is trying to decide whether or not the event
A has occurred.

Independence of Complements In the foregoing discussion of independent events,
we stated that if A and B are independent, then the occurrence or nonoccurrence of
A should not be related to the occurrence or nonoccurrence of B. Hence, if A and
B satisfy the mathematical definition of independent events, then it should also be
true that A and B¢ are independent events, that A° and B are independent events,
and that A€ and B¢ are independent events. One of these results is established in the
next theorem.

If two events A and B are independent, then the events A and B¢ are also indepen-
dent.

Proof Theorem 1.5.6 says that
Pr(A N B =Pr(A) — Pr(AN B).
Furthermore, since A and B are independent events, Pr(A N B) = Pr(A) Pr(B). It
now follows that
Pr(A N BY) =Pr(A) — Pr(A) Pr(B) = Pr(A)[1 — Pr(B)]
= Pr(A) Pr(B°).

Therefore, the events A and B¢ are independent. ]

The proof of the analogous result for the events A€ and B is similar, and the proof
for the events A€ and B¢ is required in Exercise 2 at the end of this section.

Independence of Several Events

The definition of independent events can be extended to any number of events,
Aq, ..., A;. Intuitively, if learning that some of these events do or do not occur does
not change our probabilities for any events that depend only on the remaining events,
we would say that all k£ events are independent. The mathematical definition is the
following analog to Definition 2.2.1.

(Mutually) Independent Events. The k events Ay, . .., A, are independent (or mutually
independent) if, for every subset Ail, e, A,-j of j of these events (j =2, 3, ..., k),

Pr(A; N---NA;) =Pr(A;)---Pr(A;).

As an example, in order for three events A, B, and C to be independent, the following
four relations must be satisfied:

Pr(AN B) =Pr(A) Pr(B),
Pr(ANC)=Pr(A) Pr(C), (2.2.1)
Pr(B N C) = Pr(B) Pr(C),

and

Pr(A N BN C) = Pr(A) Pr(B) Pr(C). (2.2.2)

It is possible that Eq. (2.2.2) will be satisfied, but one or more of the three rela-
tions (2.2.1) will not be satisfied. On the other hand, as is shown in the next example,
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itis also possible that each of the three relations (2.2.1) will be satisfied but Eq. (2.2.2)
will not be satisfied.

Pairwise Independence. Suppose that a fair coin is tossed twice so that the sample
space S = {HH, HT, TH, TT} is simple. Define the following three events:

A = {H on first toss} = {HH, HT},
B = {H on second toss} = {HH, TH}, and
C = {Both tosses the same} = {HH, TT}.

ThenANB=ANC=BNC=ANBNC ={HH}. Hence,
Pr(A) =Pr(B) =Pr(C)=1/2
and
Pr(ANB)=Pr(ANC)=Pr(BNC)=Pr(ANBNC)=1/4.

It follows that each of the three relations of Eq. (2.2.1) is satisfied but Eq. (2.2.2) is
not satisfied. These results can be summarized by saying that the events A, B, and C
are pairwise independent, but all three events are not independent. <

We shall now present some examples that will illustrate the power and scope of
the concept of independence in the solution of probability problems.

Inspecting Items. Suppose that a machine produces a defective item with probability
p (0 < p <1) and produces a nondefective item with probability 1 — p. Suppose
further that six items produced by the machine are selected at random and inspected,
and that the results (defective or nondefective) for these six items are independent.
We shall determine the probability that exactly two of the six items are defective.

It can be assumed that the sample space S contains all possible arrangements
of six items, each one of which might be either defective or nondefective. For j =
1,...,6,weshalllet D i denote the event that the jth item in the sample is defective
so that D¢ is the event that this item is nondefective. Since the outcomes for the six
different items are independent, the probability of obtaining any particular sequence
of defective and nondefective items will simply be the product of the individual
probabilities for the items. For example,

Pr(DS N D, N DS N DEN Ds N DE) = Pr(DS) Pr(D,) Pr(DS) Pr(DS) Pr(Ds) Pr(DY)

=1 -ppd-pAd-ppd-p=pl-p
It can be seen that the probability of any other particular sequence in S containing
two defective items and four nondefective items will also be p2(1 - p)4. Hence, the
probability that there will be exactly two defectives in the sample of six items can be
found by multiplying the probability p>(1 — p)* of any particular sequence containing
two defectives by the possible number of such sequences. Since there are (g) distinct
arrangements of two defective items and four nondefective items, the probability of

obtaining exactly two defectives is (§) p?(1 — p)*. <

Obtaining a Defective Item. For the conditions of Example 2.2.5, we shall now deter-
mine the probability that at least one of the six items in the sample will be defective.

Since the outcomes for the different items are independent, the probability that
all six items will be nondefective is (1 — p)%. Therefore, the probability that at least
one item will be defective is 1 — (1 — p)®. <
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Tossing a Coin Until a Head Appears. Suppose that a fair coin is tossed until a head
appears for the first time, and assume that the outcomes of the tosses are independent.
We shall determine the probability p, that exactly n tosses will be required.

The desired probability is equal to the probability of obtaining n — 1 tails in
succession and then obtaining a head on the next toss. Since the outcomes of the
tosses are independent, the probability of this particular sequence of n outcomes is
Pn= a/2)".

The probability that a head will be obtained sooner or later (or, equivalently,
that tails will not be obtained forever) is

i _14_1_"_14_...—1
=TTy -

Since the sum of the probabilities p,, is 1, it follows that the probability of obtaining
an infinite sequence of tails without ever obtaining a head must be 0. <

Inspecting ltems One at a Time. Consider again a machine that produces a defective
item with probability p and produces a nondefective item with probability 1 — p.
Suppose that items produced by the machine are selected at random and inspected
one at a time until exactly five defective items have been obtained. We shall deter-
mine the probability p, that exactly » items (n > 5) must be selected to obtain the
five defectives.

The fifth defective item will be the nth item that is inspected if and only if there
are exactly four defectives among the first » — 1 items and then the nth item is
defective. By reasoning similar to that given in Example 2.2.5, it can be shown that
the probability of obtaining exactly four defectives and n — 5 nondefectives among
the first n — 1 items is (";") p*(1 — p)"~>. The probability that the nth item will be
defective is p. Since the first event refers to outcomes for only the first n — 1 items
and the second event refers to the outcome for only the nth item, these two events
are independent. Therefore, the probability that both events will occur is equal to
the product of their probabilities. It follows that

n—1 _
pn=< 4 )Ps(l_P)n 5- <4

People v. Collins. Finkelstein and Levin (1990) describe a criminal case whose verdict
was overturned by the Supreme Court of California in part due to a probability cal-
culation involving both conditional probability and independence. The case, People
v. Collins, 68 Cal. 2d 319, 438 P.2d 33 (1968), involved a purse snatching in which wit-
nesses claimed to see a young woman with blond hair in a ponytail fleeing from the
scene in a yellow car driven by a black man with a beard. A couple meeting the de-
scription was arrested a few days after the crime, but no physical evidence was found.
A mathematician calculated the probability that a randomly selected couple would
possess the described characteristics as about 8.3 x 1078, or 1 in 12 million. Faced
with such overwhelming odds and no physical evidence, the jury decided that the
defendants must have been the only such couple and convicted them. The Supreme
Court thought that a more useful probability should have been calculated. Based
on the testimony of the witnesses, there was a couple that met the above descrip-
tion. Given that there was already one couple who met the description, what is the
conditional probability that there was also a second couple such as the defendants?

Let p be the probability that a randomly selected couple from a population of n
couples has certain characteristics. Let A be the event that at least one couple in the
population has the characteristics, and let B be the event that at least two couples
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have the characteristics. What we seek is Pr(B|A). Since B C A, it follows that
Pr(BNA) Pr(B)
Pr(A)  Pr(A)
We shall calculate Pr(B) and Pr(A) by breaking each event into more manageable
pieces. Suppose that we number the n couples in the population from 1 to n. Let A;
be the event that couple number i has the characteristics in question fori =1, ..., n,
and let C be the event that exactly one couple has the characteristics. Then
A=(ATNAS---NA),
C=(A1NAS- - NAYUASN A NAS - NADU---U(A{N---NAS  NA,,
B=AnNC".
Assuming that the n couples are mutually independent, Pr(A¢) = (1 — p)”, and
Pr(A) =1— (1 — p)". The n events whose union is C are disjoint and each one has
probability p(1 — p)"1, so Pr(C) =np(1 — p)"~ . Since A= B UC with B and C
disjoint, we have

Pr(B|A) =

Pr(B) =Pr(A) —Pr(C)=1—(1— p)" —np(1 — p)" .
So,

1-(—p" —npd—p"!
1—(=p)y '
The Supreme Court of California reasoned that, since the crime occurred in a
heavily populated area, n would be in the millions. For example, with p = 8.3 x 108
and n = 8,000,000, the value of (2.2.3) is 0.2966. Such a probability suggests that there
is a reasonable chance that there was another couple meeting the same description
as the witnesses provided. Of course, the court did not know how large n was, but the
fact that (2.2.3) could easily be so large was grounds enough to rule that reasonable
doubt remained as to the guilt of the defendants. <

Pr(B|A) =

(2.2.3)

Independence and Conditional Probability Two events A and B with positive
probability are independent if and only if Pr(A|B) = Pr(A). Similar results hold for
larger collections of independent events. The following theorem, for example, is
straightforward to prove based on the definition of independence.

Let Ay, ..., Ay be events such that Pr(A;N---NA;) >0. Then Ay, ..., Ay are
independent if and only if, for every two disjoint subsets {iy, . .., i, } and {jy, - . ., J,}
of {1, ..., k}, we have

I)I‘(IAI'1 ﬂ R ﬂ Aim|Ajl ﬂ ce ﬁ AJE) == I)I‘(14i1 ﬂ R ﬂ Aim)' |
Theorem 2.2.2 says that k events are independent if and only if learning that
some of the events occur does not change the probability that any combination of

the other events occurs.

The Meaning of Independence We have given a mathematical definition of inde-
pendent events in Definition 2.2.1. We have also given some interpretations for what
it means for events to be independent. The most instructive interpretation is the one
based on conditional probability. If learning that B occurs does not change the prob-
ability of A, then A and B are independent. In simple examples such as tossing what
we believe to be a fair coin, we would generally not expect to change our minds
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about what is likely to happen on later flips after we observe earlier flips; hence, we
declare the events that concern different flips to be independent. However, consider
a situation similar to Example 2.2.5 in which items produced by a machine are in-
spected to see whether or not they are defective. In Example 2.2.5, we declared that
the different items were independent and that each item had probability p of being
defective. This might make sense if we were confident that we knew how well the
machine was performing. But if we were unsure of how the machine were perform-
ing, we could easily imagine changing our mind about the probability that the 10th
item is defective depending on how many of the first nine items are defective. To be
specific, suppose that we begin by thinking that the probability is 0.08 that an item
will be defective. If we observe one or zero defective items in the first nine, we might
not make much revision to the probability that the 10th item is defective. On the
other hand, if we observe eight or nine defectives in the first nine items, we might be
uncomfortable keeping the probability at 0.08 that the 10th item will be defective. In
summary, when deciding whether to model events as independent, try to answer the
following question: “If I were to learn that some of these events occurred, would I
change the probabilities of any of the others?” If we feel that we already know ev-
erything that we could learn from these events about how likely the others should be,
we can safely model them as independent. If, on the other hand, we feel that learning
some of these events could change our minds about how likely some of the others
are, then we should be more careful about determining the conditional probabilities
and not model the events as independent.

Mutually Exclusive Events and Mutually Independent Events Two similar-sound-
ing definitions have appeared earlier in this text. Definition 1.4.10 defines mutually
exclusive events, and Definition 2.2.2 defines mutually independent events. It is
almost never the case that the same set of events satisfies both definitions. The reason
is that if events are disjoint (mutually exclusive), then learning that one occurs means
that the others definitely did not occur. Hence, learning that one occurs would change
the probabilities for all the others to 0, unless the others already had probability 0.
Indeed, this suggests the only condition in which the two definitions would both apply
to the same collection of events. The proof of the following result is left to Exercise 24
in this section.

Letn >1andlet Ay, ..., A, be events that are mutually exclusive. The events are
also mutually independent if and only if all the events except possibly one of them
has probability 0. ]

Conditionally Independent Events

Conditional probability and independence combine into one of the most versatile
models of data collection. The idea is that, in many circumstances, we are unwilling
to say that certain events are independent because we believe that learning some of
them will provide information about how likely the others are to occur. But if we
knew the frequency with which such events would occur, we might then be willing
to assume that they are independent. This model can be illustrated using one of the
examples from earlier in this section.

Inspecting Items. Consider again the situation in Example 2.2.5. This time, however,
suppose that we believe that we would change our minds about the probabilities
of later items being defective were we to learn that certain numbers of early items
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were defective. Suppose that we think of the number p from Example 2.2.5 as the
proportion of defective items that we would expect to see if we were to inspect a very
large sample of items. If we knew this proportion p, and if we were to sample only a
few, say, six or 10 items now, we might feel confident maintaining that the probability
of a later item being defective remains p even after we inspect some of the earlier
items. On the other hand, if we are not sure what would be the proportion of defective
items in a large sample, we might not feel confident keeping the probability the same
as we continue to inspect.

To be precise, suppose that we treat the proportion p of defective items as
unknown and that we are dealing with an augmented experiment as described in
Definition 2.1.3. For simplicity, suppose that p can take one of two values, either 0.01
or 0.4, the first corresponding to normal operation and the second corresponding to
a need for maintenance. Let By be the event that p =0.01, and let B, be the event
that p = 0.4. If we knew that B; had occurred, then we would proceed under the
assumption that the events Dy, D,, . .. were independent with Pr(D;|B;) = 0.01 for
all i. For example, we could do the same calculations as in Examples 2.2.5 and 2.2.8
with p =0.01. Let A be the event that we observe exactly two defectives in a random
sample of six items. Then Pr(A|B;) = (3)0.0120.994 =1.44 x 1073, Similarly, if we
knew that B, had occurred, then we would assume that Dy, D,, . . . were independent
with Pr(D;| B,) = 0.4. In this case, Pr(A|B,) = ()0.420.6* = 0.311. <

In Example 2.2.10, there is no reason that p must be required to assume at most
two different values. We could easily allow p to take a third value or a fourth value,
etc. Indeed, in Chapter 3 we shall learn how to handle the case in which every number
between 0 and 1 is a possible value of p. The point of the simple example is to illustrate
the concept of assuming that events are independent conditional on another event,
such as B; or B, in the example.

The formal concept illustrated in Example 2.2.10 is the following:

Conditional Independence. We say that events Ay, ..., A, are conditionally inde-
pendent given B if, for every subcollection A, , ..., A;; of j of these events (j=
2,3, ..., k), ‘

Pr(A,-1 n---NA4;

B) = Pr(A,|B) - Pr(A; |B).

Definition 2.2.3 is identical to Definition 2.2.2 for independent events with the mod-
ification that all probabilities in the definition are now conditional on B. As a note,
even if we assume that events Ay, ..., A; are conditionally independent given B, it
is not necessary that they be conditionally independent given B¢. In Example 2.2.10,
the events Dy, D,, ... were conditionally independent given both By and B, = By,
which is the typical situation. Exercise 16 in Sec. 2.3 is an example in which events are
conditionally independent given one event B but are not conditionally independent
given the complement B°.

Recall that two events A; and A, (with Pr(A;) > 0) are independent if and only
if Pr(A;|A;) = Pr(A,). A similar result holds for conditionally independent events.

Suppose that A, A,, and B are events such that Pr(A; N B) > 0. Then A and A, are
conditionally independent given B if and only if Pr(A,|A; N B) = Pr(A,|B). ]

This is another example of the claim we made earlier that every result we can prove
has an analog conditional on an event B. The reader can prove this theorem in
Exercise 22.
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The Collector’s Problem

Suppose that n balls are thrown in a random manner into r boxes (r < n). We shall
assume that the n throws are independent and that each of the r boxes is equally
likely to receive any given ball. The problem is to determine the probability p that
every box will receive at least one ball. This problem can be reformulated in terms of
a collector’s problem as follows: Suppose that each package of bubble gum contains
the picture of a baseball player, that the pictures of r different players are used, that
the picture of each player is equally likely to be placed in any given package of gum,
and that pictures are placed in different packages independently of each other. The
problem now is to determine the probability p that a person who buys n packages of
gum (n > r) will obtain a complete set of r different pictures.

Fori=1,...,r,let A; denote the event that the picture of player i is missing
from all n packages. Then | J;_, A; is the event that the picture of at least one player
is missing. We shall find Pr(|J;_, A;) by applying Eq. (1.10.6).

Since the picture of each of the r players is equally likely to be placed in any
particular package, the probability that the picture of player i will not be obtained in
any particular package is (r — 1)/r. Since the packages are filled independently, the
probability that the picture of player i will not be obtained in any of the n packages
is [(r — 1)/r]". Hence,

r—1

r

n
Pr(A,»):( > fori=1,...,r.

Now consider any two players i and j. The probability that neither the picture of
player i nor the picture of player j will be obtained in any particular package is
(r — 2)/r. Therefore, the probability that neither picture will be obtained in any of
the n packages is [(r — 2)/r]". Thus,

Pr(A;NA;) = (’ _2> .
r

If we next consider any three players i, j, and k, we find that

Pr(A,-mAijk)z(r_3) :

r

By continuing in this way, we finally arrive at the probability Pr(A; N A, N--- N A,)
that the pictures of all r players are missing from the n packages. Of course, this
probability is 0. Therefore, by Eq. (1.10.6) of Sec. 1.10,

e () = (1) - () (52) () ()

r—1 N
_ Z(—l)f“(r) (1 - i).
j=1 J "
Since the probability p of obtaining a complete set of r different pictures is equal to
1—Pr(J;_, A, it follows from the foregoing derivation that p can be written in the

form
r—l r j n
= (_1)J( ) (1 — —).
p ,Z:;) ; ;
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Summary

A collection of events is independent if and only if learning that some of them occur
does not change the probabilities that any combination of the rest of them occurs.
Equivalently, a collection of events is independent if and only if the probability of the
intersection of every subcollection is the product of the individual probabilities. The
concept of independence has a version conditional on another event. A collection
of events is independent conditional on B if and only if the conditional probability
of the intersection of every subcollection given B is the product of the individual
conditional probabilities given B. Equivalently, a collection of events is conditionally
independent given B if and only if learning that some of them (and B) occur does
not change the conditional probabilities given B that any combination of the rest of
them occur. The full power of conditional independence will become more apparent
after we introduce Bayes’ theorem in the next section.

Exercises

1. If A and B are independent events and Pr(B) < 1, what
is the value of Pr(A€|B¢)?

2. Assuming that A and B are independent events, prove
that the events A€ and B¢ are also independent.

3. Suppose that A is an event such that Pr(A) = 0 and that
B is any other event. Prove that A and B are independent
events.

4. Suppose that a person rolls two balanced dice three
times in succession. Determine the probability that on
each of the three rolls, the sum of the two numbers that
appear will be 7.

5. Suppose that the probability that the control system
used in a spaceship will malfunction on a given flight is
0.001. Suppose further that a duplicate, but completely in-
dependent, control system is also installed in the spaceship
to take control in case the first system malfunctions. De-
termine the probability that the spaceship will be under
the control of either the original system or the duplicate
system on a given flight.

6. Suppose that 10,000 tickets are sold in one lottery and
5000 tickets are sold in another lottery. If a person owns
100 tickets in each lottery, what is the probability that she
will win at least one first prize?

7. Two students A and B are both registered for a certain
course. Assume that student A attends class 80 percent of
the time, student B attends class 60 percent of the time,
and the absences of the two students are independent.

a. What is the probability that at least one of the two
students will be in class on a given day?

b. If atleast one of the two studentsis in class on a given
day, what is the probability that A is in class that day?

8. Ifthree balanced dice are rolled, what is the probability
that all three numbers will be the same?

9. Consider an experiment in which a fair coin is tossed
until a head is obtained for the first time. If this experiment
is performed three times, what is the probability that ex-
actly the same number of tosses will be required for each
of the three performances?

10. The probability that any child in a certain family will
have blue eyes is 1/4, and this feature is inherited indepen-
dently by different children in the family. If there are five
children in the family and it is known that at least one of
these children has blue eyes, what is the probability that
at least three of the children have blue eyes?

11. Consider the family with five children described in
Exercise 10.

a. Ifitis known that the youngest child in the family has
blue eyes, what is the probability that at least three
of the children have blue eyes?

b. Explain why the answer in part (a) is different from
the answer in Exercise 10.

12. Suppose that A, B, and C are three independent
events such that Pr(A) =1/4, Pr(B) =1/3, and Pr(C) =
1/2. (a) Determine the probability that none of these three
events will occur. (b) Determine the probability that ex-
actly one of these three events will occur.

13. Suppose that the probability that any particle emitted
by a radioactive material will penetrate a certain shield
is 0.01. If 10 particles are emitted, what is the probability
that exactly one of the particles will penetrate the shield?
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14. Consider again the conditions of Exercise 13. If 10
particles are emitted, what is the probability that at least
one of the particles will penetrate the shield?

15. Consider again the conditions of Exercise 13. How
many particles must be emitted in order for the probability
to be at least 0.8 that at least one particle will penetrate
the shield?

16. In the World Series of baseball, two teams A and B
play a sequence of games against each other, and the first
team that wins a total of four games becomes the winner
of the World Series. If the probability that team A will
win any particular game against team B is 1/3, what is the
probability that team A will win the World Series?

17. Two boys A and B throw a ball at a target. Suppose
that the probability that boy A will hit the target on any
throw is 1/3 and the probability that boy B will hit the
target on any throw is 1/4. Suppose also that boy A throws
first and the two boys take turns throwing. Determine the
probability that the target will be hit for the first time on
the third throw of boy A.

18. For the conditions of Exercise 17, determine the prob-
ability that boy A will hit the target before boy B does.

19. A box contains 20 red balls, 30 white balls, and 50
blue balls. Suppose that 10 balls are selected at random
one at a time, with replacement; that is, each selected ball
is replaced in the box before the next selection is made.
Determine the probability that at least one color will be
missing from the 10 selected balls.

20. Suppose that Ay, ..., A; form a sequence of k inde-
pendent events. Let By, ..., By be another sequence of k
events such that for each value of j (j =1, ..., k), either
Bj=AjorB;= A?. Prove that By, ..., By are also inde-
pendent events. Hint: Use an induction argument based
on the number of events B; for which B; = Aj

21. Prove Theorem 2.2.2 on page 71. Hint: The “only if ”
direction is direct from the definition of independence on
page 68. For the “if ” direction, use induction on the value
of j in the definition of independence. Let m = j — 1 and
let € =1 with j; =1i;.

22. Prove Theorem 2.2.4 on page 73.

23. A programmer is about to attempt to compile a se-
ries of 11 similar programs. Let A; be the event that the
ith program compiles successfully fori =1, ..., 11. When
the programming task is easy, the programmer expects
that 80 percent of programs should compile. When the
programming task is difficult, she expects that only 40 per-
cent of the programs will compile. Let B be the event that
the programming task was easy. The programmer believes
that the events Ay, . .., Ayj are conditionally independent
given B and given B€.

a. Compute the probability that exactly 8 out of 11
programs will compile given B.

b. Compute the probability that exactly 8 out of 11
programs will compile given B€.

24. Prove Theorem 2.2.3 on page 72.

2.3 Bayes’ Theorem

Suppose that we are interested in which of several disjoint events By, . .

. Bk will

occur and that we will get to observe some other event A. If Pr(A|B;) is available
for each i, then Bayes’ theorem is a useful formula for computing the conditional
probabilities of the B; events given A.

We begin with a typical example.

Example
2.3.1

Test for a Disease. Suppose that you are walking down the street and notice that the
Department of Public Health is giving a free medical test for a certain disease. The
test is 90 percent reliable in the following sense: If a person has the disease, there is a
probability of 0.9 that the test will give a positive response; whereas, if a person does
not have the disease, there is a probability of only 0.1 that the test will give a positive
response.

Data indicate that your chances of having the disease are only 1 in 10,000.
However, since the test costs you nothing, and is fast and harmless, you decide to
stop and take the test. A few days later you learn that you had a positive response to
the test. Now, what is the probability that you have the disease? |
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The last question in Example 2.3.1 is a prototype of the question for which Bayes’
theorem was designed. We have at least two disjoint events (“you have the disease”
and “you do not have the disease”) about which we are uncertain, and we learn a
piece of information (the result of the test) that tells us something about the uncertain
events. Then we need to know how to revise the probabilities of the events in the light
of the information we learned.

We now present the general structure in which Bayes’ theorem operates before
returning to the example.

Statement, Proof, and Examples of Bayes’ Theorem

Selecting Bolts. Consider again the situation in Example 2.1.8, in which a bolt is
selected at random from one of two boxes. Suppose that we cannot tell without
making a further effort from which of the two boxes the one bolt is being selected. For
example, the boxes may be identical in appearance or somebody else may actually
select the box, but we only get to see the bolt. Prior to selecting the bolt, it was
equally likely that each of the two boxes would be selected. However, if we learn that
event A has occurred, that s, along bolt was selected, we can compute the conditional
probabilities of the two boxes given A. To remind the reader, B is the event that the
box is selected containing 60 long bolts and 40 short bolts, while B, is the event that
the box is selected containing 10 long bolts and 20 short bolts. In Example 2.1.9, we
computed Pr(A) =7/15, Pr(A|B;) = 3/5, Pr(A|B,) = 1/3, and Pr(B;) = Pr(B,) = 1/2.
So, for example,

Pr(ANB) _Pr(BPPr(AlB) 3%3 9
Pr(A) Pr(A) L4

Pr(Bj|A) =

Since the first box has a higher proportion of long bolts than the second box, it seems
reasonable that the probability of B; should rise after we learn that a long bolt was
selected. It must be that Pr(B,|A) = 5/14 since one or the other box had to be selected.

<

In Example 2.3.2, we started with uncertainty about which of two boxes would
be chosen and then we observed a long bolt drawn from the chosen box. Because the
two boxes have different chances of having a long bolt drawn, the observation of a
long bolt changed the probabilities of each of the two boxes having been chosen. The
precise calculation of how the probabilities change is the purpose of Bayes’ theorem.

Bayes’ theorem. Let the events By, ..., B, form a partition of the space S such that
Pr(Bj) >0for j=1,...,k, and let A be an event such that Pr(A) > 0. Then, for
i=1...,k,

Pr(B;) Pr(A|B))
Zl}zl Pr(B;) Pr(A|B))

Pr(B;|A) = (2.3.1)
Proof By the definition of conditional probability,
Pr(B; N A)

Pr(A)

The numerator on the right side of Eq. (2.3.1) isequal to Pr(B; N A) by Theorem 2.1.1.
The denominator is equal to Pr(A) according to Theorem 2.1.4. ]

Pr(B;|A) =
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2.3.3

Example
2.3.4

Test for a Disease. Let us return to the example with which we began this section.
We have just received word that we have tested positive for a disease. The test was
90 percent reliable in the sense that we described in Example 2.3.1. We want to know
the probability that we have the disease after we learn that the result of the test is
positive. Some readers may feel that this probability should be about 0.9. However,
this feeling completely ignores the small probability of 0.0001 that you had the disease
before taking the test. We shall let B; denote the event that you have the disease, and
let B, denote the event that you do not have the disease. The events B; and B, form
a partition. Also, let A denote the event that the response to the test is positive.
The event A is information we will learn that tells us something about the partition
elements. Then, by Bayes’ theorem,

Pr(A|By) Pr(By)
Pr(A|B;) Pr(By) + Pr(A|B,) Pr(B,)
B (0.9)(0.0001)

~(0.9)(0.0001) + (0.1)(0.9999)

Pr(Bj|A) =

=0.00090.

Thus, the conditional probability that you have the disease given the test result
is approximately only 1 in 1000. Of course, this conditional probability is approxi-
mately 9 times as great as the probability was before you were tested, but even the
conditional probability is quite small.

Another way to explain this result is as follows: Only one person in every 10,000
actually has the disease, but the test gives a positive response for approximately one
person in every 10. Hence, the number of positive responses is approximately 1000
times the number of persons who actually have the disease. In other words, out of
every 1000 persons for whom the test gives a positive response, only one person
actually has the disease. This example illustrates not only the use of Bayes’ theorem
but also the importance of taking into account all of the information available in a
problem. <

Identifying the Source of a Defective Item. Three different machines M, M,, and M5
were used for producing a large batch of similar manufactured items. Suppose that
20 percent of the items were produced by machine M, 30 percent by machine M,,
and 50 percent by machine M5. Suppose further that 1 percent of the items produced
by machine M; are defective, that 2 percent of the items produced by machine M,
are defective, and that 3 percent of the items produced by machine M5 are defective.
Finally, suppose that one item is selected at random from the entire batch and it is
found to be defective. We shall determine the probability that this item was produced
by machine M,.

Let B; be the event that the selected item was produced by machine M; (i =
1,2, 3), and let A be the event that the selected item is defective. We must evaluate
the conditional probability Pr(B;|A).

The probability Pr(B;) that an item selected at random from the entire batch was
produced by machine M; is as follows, fori =1, 2, 3:

Pr(Bl) =0.2, PI'(Bz) =0.3, Pr(B:;) =0.5.

Furthermore, the probability Pr(A|B;) that an item produced by machine M; will be
defective is

Pr(A|B;) =0.01, Pr(A|By) =0.02, Pr(A|Bs) =0.03.

It now follows from Bayes’ theorem that
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Pr(B,) Pr(A|By)

>3_ Pr(B;) Pr(A|B))

_ (0.3)(0.02) 026
(0.2)(0.01) + (0.3)(0.02) + (0.5)(0.03)

Pr(B,|A) =

Identifying Genotypes. Consider a gene that has two alleles (see Example 1.6.4 on
page 23) A and a. Suppose that the gene exhibits itself through a trait (such as
hair color or blood type) with two versions. We call A dominant and a recessive
if individuals with genotypes AA and Aa have the same version of the trait and
the individuals with genotype aa have the other version. The two versions of the
trait are called phenotypes. We shall call the phenotype exhibited by individuals
with genotypes AA and Aa the dominant trait, and the other trait will be called the
recessive trait. In population genetics studies, it is common to have information on the
phenotypes of individuals, but it is rather difficult to determine genotypes. However,
some information about genotypes can be obtained by observing phenotypes of
parents and children.

Assume that the allele A is dominant, that individuals mate independently of
genotype, and that the genotypes AA, Aa, and aa occur in the population with prob-
abilities 1/4, 1/2, and 1/4, respectively. We are going to observe an individual whose
parents are not available, and we shall observe the phenotype of this individual. Let
E be the event that the observed individual has the dominant trait. We would like
to revise our opinion of the possible genotypes of the parents. There are six possible
genotype combinations, By, . . ., Bg, for the parents prior to making any observations,
and these are listed in Table 2.2.

The probabilities of the B; were computed using the assumption that the parents
mated independently of genotype. For example, B; occurs if the father is AA and the
mother is aa (probability 1/16) or if the father is aa and the mother is AA (probability
1/16). The values of Pr(E|B;) were computed assuming that the two available alleles
are passed from parents to children with probability 1/2 each and independently for
the two parents. For example, given By, the event E occurs if and only if the child
does not get two a’s. The probability of getting a from both parents given B, is 1/4,
so Pr(E|By) =3/4.

Now we shall compute Pr(B;|E) and Pr(Bs|E). We leave the other calculations
to the reader. The denominator of Bayes’ theorem is the same for both calculations,
namely,

5
Pr(E) = Z Pr(B;) Pr(E|B;)
i=1
1 1 1 1 3 1 1 1 3

e Xl - xl4oxlfox ot -x—d—x0="2.
T T R R R S T

Table 2.2 Parental genotypes for Example 2.3.5

(AA, AA) (AA, Aa) (AA,aa) (Aa, Aa) (Aa,aa) (aa,aa)

Name of event By B, By By Bs Bg
Probability of B; 1/16 1/4 1/8 1/4 1/4 1/16
Pr(E|B;) 1 1 1 3/4 12 0
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Applying Bayes’ theorem, we get

R
X
BN —
| =

_ % x 1 1 _
Pr(By|E) = 5T Pr(Bs|E) =

el
Al

Note: Conditional Version of Bayes’ Theorem. There is also a version of Bayes’
theorem conditional on an event C:
Pr(B;|C) Pr(A|B; N C)

Z']‘-:l Pr(B,|C) Pr(A|B; N C)

Pr(B;|JANC) = (232)

Prior and Posterior Probabilities

In Example 2.3.4, a probability like Pr(B,) is often called the prior probability that
the selected item will have been produced by machine M,, because Pr(B,) is the
probability of this event before the item is selected and before it is known whether
the selected item is defective or nondefective. A probability like Pr(B;|A) is then
called the posterior probability that the selected item was produced by machine M,,
because it is the probability of this event after it is known that the selected item is
defective.

Thus, in Example 2.3.4, the prior probability that the selected item will have been
produced by machine M, is 0.3. After an item has been selected and has been found
to be defective, the posterior probability that the item was produced by machine
M, is 0.26. Since this posterior probability is smaller than the prior probability that
the item was produced by machine M,, the posterior probability that the item was
produced by one of the other machines must be larger than the prior probability that
it was produced by one of those machines (see Exercises 1 and 2 at the end of this
section).

Computation of Posterior Probabilities in More Than One Stage

Suppose that a box contains one fair coin and one coin with a head on each side.
Suppose also that one coin is selected at random and that when it is tossed, a head is
obtained. We shall determine the probability that the coin is the fair coin.

Let B; be the event that the coin is fair, let B, be the event that the coin has two
heads, and let H; be the event that a head is obtained when the coin is tossed. Then,
by Bayes’ theorem,

Pr(By) Pr(H;|By)
Pr(B;) Pr(H;|By) + Pr(B,) Pr(H;|B,)

202 1 (233)

1/21/2) + /1) 3
Thus, after the first toss, the posterior probability that the coin is fair is 1/3.

Now suppose that the same coin is tossed again and we assume that the two
tosses are conditionally independent given both By and B,. Suppose that another
head is obtained. There are two ways of determining the new value of the posterior
probability that the coin is fair.

The first way is to return to the beginning of the experiment and assume again
that the prior probabilities are Pr(B) = Pr(B,) = 1/2. We shall let H; N H, denote the
event in which heads are obtained on two tosses of the coin, and we shall calculate the
posterior probability Pr(B|H; N H,) that the coin is fair after we have observed the

Pr(B,|Hy) =
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event Hy N H,. The assumption that the tosses are conditionally independent given
B; means that Pr(Hy N Hy|B;) =1/2 x 1/2 =1/4. By Bayes’ theorem,

Pr(By) Pr(H; N Hy|By)
Pr(By) Pr(H; N Hy| By) + Pr(By) Pr(H, N Hy|B)

(1/2)(1/4) L 234

A/21/4H+ @/ 5
The second way of determining this same posterior probability is to use the
conditional version of Bayes’ theorem (2.3.2) given the event H;. Given Hj, the
conditional probability of By is 1/3, and the conditional probability of B, is therefore
2/3. These conditional probabilities can now serve as the prior probabilities for the
next stage of the experiment, in which the coin is tossed a second time. Thus, we
can apply (2.3.2) with C = Hy, Pr(B;|H;) = 1/3, and Pr(B,|H;) =2/3. We can then
compute the posterior probability Pr(B;|H; N H,) that the coin is fair after we have
observed a head on the second toss and a head on the first toss. We shall need
Pr(H,|B; N Hy), which equals Pr(H,|B;) = 1/2 by Theorem 2.2.4 since H; and H, are
conditionally independent given Bj. Since the coin is two-headed when B, occurs,
Pr(H,|B, N Hy) = 1. So we obtain

Pr(By|H, N Hy) =

Pr(B|Hy) Pr(H,|By N Hy)
Pr(B;|Hy) Pr(H,|B; N Hy) + Pr(B,|Hy) Pr(H,|B, N Hy)
B (1/3)(1/2) 1
1312+ 2/3(1) 5

The posterior probability of the event By obtained in the second way is the same
as that obtained in the first way. We can make the following general statement: If an
experiment is carried out in more than one stage, then the posterior probability of
every event can also be calculated in more than one stage. After each stage has been
carried out, the posterior probability calculated for the event after that stage serves
as the prior probability for the next stage. The reader should look back at (2.3.2)
to see that this interpretation is precisely what the conditional version of Bayes’
theorem says. The example we have been doing with coin tossing is typical of many
applications of Bayes’ theorem and its conditional version because we are assuming
that the observable events are conditionally independent given each element of the
partition By, ..., B, (in this case, k = 2). The conditional independence makes the
probability of H; (head on ith toss) given B; (or given B,) the same whether or not
we also condition on earlier tosses (see Theorem 2.2.4).

Pr(By|H| N Hy) =

(2.3.5)

Conditionally Independent Events

The calculations that led to (2.3.3) and (2.3.5) together with Example 2.2.10 illustrate
simple cases of a very powerful statistical model for observable events. It is very
common to encounter a sequence of events that we believe are similar in that they
all have the same probability of occurring. It is also common that the order in which
the events are labeled does not affect the probabilities that we assign. However,
we often believe that these events are not independent, because, if we were to
observe some of them, we would change our minds about the probability of the
ones we had not observed depending on how many of the observed events occur.
For example, in the coin-tossing calculation leading up to Eq. (2.3.3), before any
tosses occur, the probability of H, is the same as the probability of H;, namely, the
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denominator of (2.3.3), 3/4, as Theorem 2.1.4 says. However, after observing that
the event H; occurs, the probability of H, is Pr(H,|H,), which is the denominator of
(2.3.5), 5/6, as computed by the conditional version of the law of total probability
(2.1.5). Even though we might treat the coin tosses as independent conditional
on the coin being fair, and we might treat them as independent conditional on
the coin being two-headed (in which case we know what will happen every time
anyway), we cannot treat them as independent without the conditioning information.
The conditioning information removes an important source of uncertainty from
the problem, so we partition the sample space accordingly. Now we can use the
conditional independence of the tosses to calculate joint probabilities of various
combinations of events conditionally on the partition events. Finally, we can combine
these probabilities using Theorem 2.1.4 and (2.1.5). Two more examples will help to
illustrate these ideas.

Learning about a Proportion. In Example 2.2.10 on page 72, a machine produced
defective parts in one of two proportions, p = 0.01 or p = 0.4. Suppose that the prior
probability that p = 0.01is 0.9. After sampling six parts at random, suppose that we
observe two defectives. What is the posterior probability that p = 0.01?

Let B; = {p =0.01} and B, = {p = 0.4} as in Example 2.2.10. Let A be the event
that two defectives occur in a random sample of size six. The prior probability of
By is 0.9, and the prior probability of B, is 0.1. We already computed Pr(A|B;) =
1.44 x 1073 and Pr(A|B,) = 0.311 in Example 2.2.10. Bayes’ theorem tells us that

0.9 x 1.44 x 1073 _
0.9 x 144 x 1073+ 0.1 x 0.311

Even though we thought originally that B; had probability as high as 0.9, after we
learned that there were two defective items in a sample as small as six, we changed
our minds dramatically and now we believe that B; has probability as small as 0.04.
The reason for this major change is that the event A that occurred has much higher
probability if B, is true than if By is true. |

0.04.

Pr(By|A) =

A Clinical Trial. Consider the same clinical trial described in Examples 2.1.12 and
2.1.13. Let E; be the event that the ith patient has success as her outcome. Recall
that B; is the event that p = (j — 1)/10for j =1, ..., 11, where p is the proportion
of successes among all possible patients. If we knew which B; occurred, we would
say that Eq, E,, ... were independent. That is, we are willing to model the patients
as conditionally independent given each event B;, and we set Pr(E;|B;) = (j — 1)/10
for all i, j. We shall still assume that Pr(B;) = 1/11 for all j prior to the start of the
trial. We are now in position to express what we learn about p by computing posterior
probabilities for the B; events after each patient finishes the trial.

For example, consider the first patient. We calculated Pr(E;) = 1/2 in (2.1.6). If

E occurs, we apply Bayes’ theorem to get

Pr(E(|B) Pr(B) 2(j—1) j—1
12 S 10x11 55

Pr(B,|E)) = (2.3.6)
After observing one success, the posterior probabilities of large values of p are higher
than their prior probabilities and the posterior probabilities of low values of p are
lower than their prior probabilities as we would expect. For example, Pr(B;|E;) =0,
because p = 0is ruled out after one success. Also, Pr(B,|E;) = 0.0182, which is much
smaller than its prior value 0.0909, and Pr(Bq;|E;) = 0.1818, which is larger than its
prior value 0.09009.
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Figure 2.3 The posterior probabilities of partition
elements after 40 patients in Example 2.3.7.

We could check how the posterior probabilities behave after each patient is
observed. However, we shall skip ahead to the point at which all 40 patients in the
imipramine column of Table 2.1 have been observed. Let A stand for the observed
event that 22 of them are successes and 18 are failures. We can use the same reasoning
as in Example 2.2.5 to compute Pr(A|B;). There are (gg) possible sequences of 40
patients with 22 successes, and, conditional on B, the probability of each sequence
is ([j — 1)/10)2(1 — [j — 1)/10)18,

So,

40
Pr(A|B;) = (zz)m — 1102~ [ - 1/10)1%, (237)

for each j. Then Bayes’ theorem tells us that

LGN — /10021 — [ — 1]/10)'8
YL L) - 1/1002(1 — [i — 1]/10)18°

Figure 2.3 shows the posterior probabilities of the 11 partition elements after observ-
ing A. Notice that the probabilities of Bg and By are the highest, 0.42. This corresponds
to the fact that the proportion of successes in the observed sample is 22/40 = 0.55,
halfway between (6 — 1)/10 and (7 — 1)/10.

We can also compute the probability that the next patient will be a success both
before the trial and after the 40 patients. Before the trial, Pr(E4) = Pr(E;), which
equals 1/2, as computed in (2.1.6). After observing the 40 patients, we can compute
Pr(E4;|A) using the conditional version of the law of total probability, (2.1.5):

11
Pr(Eq|A) = Z Pr(E4|B; N A) Pr(B;|A). (2.3.8)
j=1
Using the values of Pr(B;|A) in Fig. 2.3 and the fact that Pr(E4|B; N A) = Pr(E4|B;)

= (j — 1)/10 (conditional independence of the E; given the B;), we compute (2.3.8)
to be 0.5476. This is also very close to the observed frequency of success. |

Pr(B,|A) =

The calculation at the end of Example 2.3.7 is typical of what happens after ob-
serving many conditionally independent events with the same conditional probability
of occurrence. The conditional probability of the next event given those that were
observed tends to be close to the observed frequency of occurrence among the ob-
served events. Indeed, when there is substantial data, the choice of prior probabilities
becomes far less important.
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Figure 2.4 The posterior probabilities of partition
elements after 40 patients in Example 2.3.8. The X
characters mark the values of the posterior probabilities
calculated in Example 2.3.7.

The Effect of Prior Probabilities. Consider the same clinical trial as in Example 2.3.7.
This time, suppose that a different researcher has a different prior opinion about the
value of p, the probability of success. This researcher believes the following prior
probabilities:

Event Bl BZ B3 B4 BS Bé B7 Bg Bg BlO Bll

p 00 01 02 03 04 05 06 07 08 09 1.0
Prior prob. 0.00 0.19 0.19 0.17 0.14 0.11 0.09 0.06 0.04 0.01 0.00

We can recalculate the posterior probabilities using Bayes’ theorem, and we get
the values pictured in Fig. 2.4. To aid comparison, the posterior probabilities from
Example 2.3.7 are also plotted in Fig. 2.4 using the symbol X. One can see how
close the two sets of posterior probabilities are despite the large differences between
the prior probabilities. If there had been fewer patients observed, there would have
been larger differences between the two sets of posterior probabilites because the
observed events would have provided less information. (See Exercise 12 in this
section.) <

Exercises

Summary

Bayes’ theorem tells us how to compute the conditional probability of each eventin a
partition given an observed event A. A major use of partitions is to divide the sample
space into small enough pieces so that a collection of events of interest become
conditionally independent given each event in the partition.

1. Suppose that k events By, ..

., By form a partition of  of B; given that the event A has occurred. Prove that if

the sample space S.Fori =1, ..., k, let Pr(B;) denote the Pr(By|A) < Pr(By), then Pr(B;|A) > Pr(B;) for atleast one
prior probability of B;. Also, for each event A such that value of i (i =2, ..., k).
Pr(A) > 0, let Pr(B;]A) denote the posterior probability



2. Consider again the conditions of Example 2.3.4 in this
section, in which an item was selected at random from
a batch of manufactured items and was found to be de-
fective. For which values of i (i =1, 2, 3) is the posterior
probability that the item was produced by machine M;
larger than the prior probability that the item was pro-
duced by machine M;?

3. Suppose that in Example 2.3.4 in this section, the item
selected at random from the entire lot is found to be non-
defective. Determine the posterior probability that it was
produced by machine M,.

4. A new test has been devised for detecting a particular
type of cancer. If the testis applied to a person who has this
type of cancer, the probability that the person will have a
positive reaction is 0.95 and the probability that the person
will have a negative reaction is 0.05. If the test is applied to
a person who does not have this type of cancer, the prob-
ability that the person will have a positive reaction is 0.05
and the probability that the person will have a negative re-
action is 0.95. Suppose that in the general population, one
person out of every 100,000 people has this type of can-
cer. If a person selected at random has a positive reaction
to the test, what is the probability that he has this type of
cancer?

5. In a certain city, 30 percent of the people are Conser-
vatives, 50 percent are Liberals, and 20 percent are Inde-
pendents. Records show that in a particular election, 65
percent of the Conservatives voted, 82 percent of the Lib-
erals voted, and 50 percent of the Independents voted. If
a person in the city is selected at random and it is learned
that she did not vote in the last election, what is the prob-
ability that she is a Liberal?

6. Suppose that when a machine is adjusted properly, 50
percent of the items produced by it are of high quality
and the other 50 percent are of medium quality. Suppose,
however, that the machine is improperly adjusted during
10 percent of the time and that, under these conditions, 25
percent of the items produced by it are of high quality and
75 percent are of medium quality.

a. Suppose that five items produced by the machine at
a certain time are selected at random and inspected.
If four of these items are of high quality and one item
is of medium quality, what is the probability that the
machine was adjusted properly at that time?

b. Suppose that one additional item, which was pro-
duced by the machine at the same time as the other
five items, is selected and found to be of medium
quality. What is the new posterior probability that
the machine was adjusted properly?

7. Suppose that a box contains five coins and that for
each coin there is a different probability that a head will
be obtained when the coin is tossed. Let p; denote the
probability of a head when the ith coin is tossed (i =
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1,...,5), and suppose that p; =0, p, =1/4, p3=1/2,
ps=3/4,and ps=1.

a. Suppose that one coin is selected at random from the
box and when it is tossed once, a head is obtained.
Whatis the posterior probability that the ith coin was
selected (i =1,...,5)?

b. If the same coin were tossed again, what would be
the probability of obtaining another head?

c. If a tail had been obtained on the first toss of the
selected coin and the same coin were tossed again,
what would be the probability of obtaining a head
on the second toss?

8. Consider again the box containing the five different
coins described in Exercise 7. Suppose that one coin is
selected at random from the box and is tossed repeatedly
until a head is obtained.

a. If the first head is obtained on the fourth toss, what
is the posterior probability that the ith coin was se-
lected (i=1,...,5)?

b. If we continue to toss the same coin until another
head is obtained, what is the probability that exactly
three additional tosses will be required?

9. Consider again the conditions of Exercise 14in Sec. 2.1.
Suppose that several parts will be observed and that the
different parts are conditionally independent given each
of the three states of repair of the machine. If seven parts
are observed and exactly one is defective, compute the
posterior probabilities of the three states of repair.

10. Consider again the conditions of Example 2.3.5, in
which the phenotype of an individual was observed and
found to be the dominant trait. For which values of i
(i=1,...,6)is the posterior probability that the parents
have the genotypes of event B; smaller than the prior
probability that the parents have the genotyes of event

11. Suppose thatin Example 2.3.5 the observed individual
has the recessive trait. Determine the posterior probabil-
ity that the parents have the genotypes of event Bj,.

12. In the clinical trial in Examples 2.3.7 and 2.3.8, sup-
pose that we have only observed the first five patients and
three of the five had been successes. Use the two different
sets of prior probabilities from Examples 2.3.7 and 2.3.8
to calculate two sets of posterior probabilities. Are these
two sets of posterior probabilities as close to each other
as were the two in Examples 2.3.7 and 2.3.8? Why or why
not?

13. Suppose that a box contains one fair coin and one coin
with a head on each side. Suppose that a coin is drawn at
random from this box and that we begin to flip the coin.
In Egs. (2.3.4) and (2.3.5), we computed the conditional
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probability that the coin was fair given that the first two
flips both produce heads.

a. Suppose that the coin is flipped a third time and
another head is obtained. Compute the probability
that the coin is fair given that all three flips produced
heads.

b. Suppose that the coin is flipped a fourth time and the
result is tails. Compute the posterior probability that
the coin is fair.

14. Consider again the conditions of Exercise 23 in Sec.
2.2. Assume that Pr(B) = 0.4. Let A be the event that ex-
actly 8 out of 11 programs compiled. Compute the condi-
tional probability of B given A.

15. Use the prior probabilities in Example 2.3.8 for the
events By, ..., Byy. Let Eq be the event that the first pa-
tient is a success. Compute the probability of E; and ex-
plain why it is so much less than the value computed in
Example 2.3.7.

16. Consider a machine that produces items in sequence.
Under normal operating conditions, the items are

independent with probability 0.01 of being defective.
However, it is possible for the machine to develop a
“memory” in the following sense: After each defective
item, and independent of anything that happened earlier,
the probability that the next item is defective is 2/5. Af-
ter each nondefective item, and independent of anything
that happened earlier, the probability that the next item
is defective is 1/165.

Assume that the machine is either operating normally
for the whole time we observe or has a memory for the
whole time that we observe. Let B be the event that the
machine is operating normally, and assume that Pr(B) =
2/3. Let D; be the event that the ith item inspected is
defective. Assume that D, is independent of B.

a. Prove that Pr(D;) =0.01 for all i. Hint: Use induc-
tion.

b. Assume that we observe the first six items and the
event that occurs is £ = D] N D; N D3N DyN DN
D¢. That is, the third and fourth items are defective,
but the other four are not. Compute Pr(B|D).

* 2.4 The Gambler’s Ruin Problem

Consider two gamblers with finite resources who repeatedly play the same game
against each other. Using the tools of conditional probability, we can calculate the
probability that each of the gamblers will eventually lose all of his money to the

opponent.

Statement of the Problem

Suppose that two gamblers A and B are playing a game against each other. Let p
be a given number (0 < p < 1), and suppose that on each play of the game, the
probability that gambler A will win one dollar from gambler B is p and the probability
that gambler B will win one dollar from gambler A is 1 — p. Suppose also that the
initial fortune of gambler A is i dollars and the initial fortune of gambler B is k — i
dollars, where i and k — i are given positive integers. Thus, the total fortune of the
two gamblers is k dollars. Finally, suppose that the gamblers play the game repeatedly
and independently until the fortune of one of them has been reduced to 0 dollars.
Another way to think about this problem is that B is a casino and A is a gambler who
is determined to quit as soon he wins k — i dollars from the casino or when he goes
broke, whichever comes first.

We shall now consider this game from the point of view of gambler A. His initial
fortuneisi dollars and on each play of the game his fortune will either increase by one
dollar with a probability of p or decrease by one dollar with a probability of 1 — p.
If p > 1/2, the game is favorable to him; if p < 1/2, the game is unfavorable to him;
and if p = 1/2, the game is equally favorable to both gamblers. The game ends either
when the fortune of gambler A reaches k dollars, in which case gambler B will have
no money left, or when the fortune of gambler A reaches 0 dollars. The problem is to
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determine the probability that the fortune of gambler A will reach k dollars before
it reaches 0 dollars. Because one of the gamblers will have no money left at the end
of the game, this problem is called the Gambler’s Ruin problem.

Solution of the Problem

We shall continue to assume that the total fortune of the gamblers A and B is k dollars,
and we shall let ¢; denote the probability that the fortune of gambler A will reach k
dollars before it reaches 0 dollars, given that his initial fortune is i dollars. We assume
that the game is the same each time it is played and the plays are independent of each
other. It follows that, after each play, the Gambler’s Ruin problem essentially starts
over with the only change being that the initial fortunes of the two gamblers have
changed. In particular, for each j =0, ..., k, each time that we observe a sequence
of plays that lead to gambler A’s fortune being j dollars, the conditional probability,
given such a sequence, that gambler A wins is ;. If gambler A’s fortune ever reaches
0, then gambler A is ruined, hence gy = 0. Similarly, if his fortune ever reaches &,
then gambler A has won, hence a; = 1. We shall now determine the value of g; for
i=1,...,k—1

Let A, denote the event that gambler A wins one dollar on the first play of the
game, let By denote the event that gambler A loses one dollar on the first play of the
game, and let W denote the event that the fortune of gambler A ultimately reaches
k dollars before it reaches 0 dollars. Then

Pr(W) = Pr(A;) Pr(W|A,) + Pr(B;) Pr(W|B;)
= pPr(W|A)) + (1 — p)Pr(W|By). (2.4.1)

Since the initial fortune of gambler A isi dollars (i =1, ..., k — 1), then Pr(W) =a;.
Furthermore, if gambler A wins one dollar on the first play of the game, then his
fortune becomes i + 1 dollars and the conditional probability Pr(W|A;) that his
fortune will ultimately reach k dollars is therefore g; 1. If A loses one dollar on the
first play of the game, then his fortune becomes i — 1 dollars and the conditional
probability Pr(W|B;) that his fortune will ultimately reach k dollars is therefore a;_;.
Hence, by Eq. (2.4.1),

a; =paiy1+ (1= pla; 4. (24.2)

We shall let i =1, ...,k —1in Eq. (2.4.2). Then, since ay =0 and a; =1, we
obtain the following k — 1 equations:
ay =pay,
ay =paz + (1 — p)ay,
a3 =pas+ (1 — p)ay,
(2.43)
ar— =par_1+ (1 — p)ag_3,
a1 =p+ 1A - pa;_,.

If the value of @; on the left side of the ith equation is rewritten in the form pa; +
(1 — p)a; and some elementary algebra is performed, then these k — 1 equations can
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Example
24.1

be rewritten as follows:

1 —
a) —ay = ai,
2
1 _
az—ay = » (a — ay) = (Tp) ay,
—p 1-p\’
MmB= @-a) = (T) a (2.4.4)
1 L— p\k2
ap_1— A= P (ag—2 — ar_3) = <—p) ay,

1= 1=\
l—a 4= (a1 —ar2) = <—> aj.
p p

By equating the sum of the left sides of these k — 1 equations with the sum of the
right sides, we obtain the relation

k—1 1—]7 i
l—aj=a; ) _ - ) (2.4.5)
i=1

Solution for a Fair Game Suppose first that p =1/2. Then (1 — p)/p =1, and it
follows from Eq. (2.4.5) that 1 — a; = (k — 1)ay, from which a; = 1/k. In turn, it follows
from the first equation in (2.4.4) that a, = 2/ k, it follows from the second equation in
(2.4.4) that az = 3/ k, and so on. In this way, we obtain the following complete solution
when p =1/2:

a»:i fori=1,...,k—1. (2.4.6)

L

The Probability of Winning in a Fair Game. Suppose that p = 1/2, in which case the
game is equally favorable to both gamblers; and suppose that the initial fortune of
gambler A is 98 dollars and the initial fortune of gambler B is just two dollars. In
this example, i = 98 and k = 100. Therefore, it follows from Eq. (2.4.6) that there
is a probability of 0.98 that gambler A will win two dollars from gambler B before
gambler B wins 98 dollars from gambler A. |

Solution for an Unfair Game Suppose now that p # 1/2. Then Eq. (2.4.5) can be

rewritten in the form
<1—_P)k _ <1—_P)
P 14
. (2.4.7)

Hence,

_ <1_Tp> __1 , (2.4.8)
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Each of the other values of g; fori =2, ..., k — 1 can now be determined in turn
from the equations in (2.4.4). In this way, we obtain the following complete solution:

(7) -
(5)

The Probability of Winning in an Unfavorable Game. Suppose that p = 0.4, in which
case the probability that gambler A will win one dollar on any given play is smaller
than the probability that he will lose one dollar. Suppose also that the initial fortune
of gambler A is 99 dollars and the initial fortune of gambler B is just one dollar. We
shall determine the probability that gambler A will win one dollar from gambler B
before gambler B wins 99 dollars from gambler A.

In this example, the required probability g; is given by Eq. (2.4.9), in which
(1—=p)/p=3/2,i =99, and k = 100. Therefore,

-

1
NI
() -1
Hence, although the probability that gambler A will win one dollar on any given play
is only 0.4, the probability that he will win one dollar before he loses 99 dollars is
approximately 2/3. |

(2.4.9)

ai=

_2
>

Summary

We considered a gambler and an opponent who each start with finite amounts of
money. The two then play a sequence of games against each other until one of them
runs out of money. We were able to calculate the probability that each of them would
be the first to run out as a function of the probability of winning the game and of how

much money each has at the start.

Exercises

1. Consider the unfavorable game in Example 2.4.2. This
time, suppose that the initial fortune of gambler A is i
dollars with i < 98. Suppose that the initial fortune of
gambler B is 100 — i dollars. Show that the probability
is greater than 1/2 that gambler A losses i dollars before
winning 100 — i dollars.

2. Consider the following three different possible condi-
tions in the gambler’s ruin problem:

a. The initial fortune of gambler A is two dollars, and
the initial fortune of gambler B is one dollar.

b. The initial fortune of gambler A is 20 dollars, and the
initial fortune of gambler B is 10 dollars.

c. The initial fortune of gambler A is 200 dollars, and
the initial fortune of gambler B is 100 dollars.

Suppose that p = 1/2. For which of these three condi-
tions is there the greatest probability that gambler A will
win the initial fortune of gambler B before he loses his
own initial fortune?

3. Consider again the three different conditions (a), (b),
and (c) given in Exercise 2, but suppose now that p < 1/2.
For which of these three conditions is there the greatest
probability that gambler A will win the initial fortune of
gambler B before he loses his own initial fortune?

4. Consider again the three different conditions (a), (b),
and (c) given in Exercise 2, but suppose now that p > 1/2.
For which of these three conditions is there the greatest
probability that gambler A will win the initial fortune of
gambler B before he loses his own initial fortune?
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5. Suppose that on each play of a certain game, a person is
equally likely to win one dollar or lose one dollar. Suppose
also that the person’s goal is to win two dollars by playing
this game. How large an initial fortune must the person
have in order for the probability to be at least 0.99 that she
will achieve her goal before she loses her initial fortune?

6. Suppose that on each play of a certain game, a person
will either win one dollar with probability 2/3 or lose one
dollar with probability 1/3. Suppose also that the person’s
goal is to win two dollars by playing this game. How large
an initial fortune must the person have in order for the
probability to be at least 0.99 that he will achieve his goal
before he loses his initial fortune?

7. Suppose that on each play of a certain game, a person
will either win one dollar with probability 1/3 or lose one
dollar with probability 2/3. Suppose also that the person’s
goal is to win two dollars by playing this game. Show that
no matter how large the person’s initial fortune might be,

the probability that she will achieve her goal before she
loses her initial fortune is less than 1/4.

8. Suppose that the probability of a head on any toss of
a certain coin is p (0 < p < 1), and suppose that the coin
is tossed repeatedly. Let X, denote the total number of
heads that have been obtained on the first n tosses, and
let Y, =n — X,, denote the total number of tails on the
first n tosses. Suppose that the tosses are stopped as soon
as a number 7 is reached such that either X, =Y, + 3 or
Y, = X, + 3. Determine the probability that X, =Y, +3
when the tosses are stopped.

9. Suppose that a certain box A contains five balls and an-
other box B contains 10 balls. One of these two boxes is
selected at random, and one ball from the selected box is
transferred to the other box. If this process of selecting a
box at random and transferring one ball from that box to
the other box is repeated indefinitely, what is the probabil-
ity that box A will become empty before box B becomes
empty?

2.5 Supplementary Exercises

1. Suppose that A, B, and D are any three events such that
Pr(A|D) > Pr(B|D) and Pr(A|D¢) > Pr(B|D¢). Prove that
Pr(A) > Pr(B).

2. Suppose that a fair coin is tossed repeatedly and inde-
pendently until both a head and a tail have appeared at
least once. (a) Describe the sample space of this experi-
ment. (b) What is the probability that exactly three tosses
will be required?

3. Suppose that A and B are events such that Pr(A) =
1/3,Pr(B) =1/5, and Pr(A|B) + Pr(B|A) = 2/3. Evaluate
Pr(A€ U B°).

4. Suppose that A and B are independent events such that
Pr(A) =1/3 and Pr(B) > 0. What is the value of Pr(A U
B¢|B)?

5. Suppose that in 10 rolls of a balanced die, the number 6
appeared exactly three times. What is the probability that
the first three rolls each yielded the number 6?

6. Suppose that A, B, and D are events such that A and
B are independent, Pr(AN BN D)=0.04,Pr(D|ANB) =
0.25, and Pr(B) =4 Pr(A). Evaluate Pr(A U B).

7. Suppose that the events A, B, and C are mutually in-
dependent. Under what conditions are A€, B¢, and C*
mutually independent?

8. Suppose that the events A and B are disjoint and that
each has positive probability. Are A and B independent?

9. Suppose that A, B, and C are three events such that A
and B are disjoint, A and C are independent, and B and

C are independent. Suppose also that 4Pr(A) =2Pr(B) =
Pr(C) >0 and Pr(AU B U C) =5Pr(A). Determine the
value of Pr(A).

10. Suppose that each of two dice is loaded so that when
either die is rolled, the probability that the number & will
appearis0.1 fork =1, 2,5, or 6 and is 0.3 for k =3 or 4. If
the two loaded dice are rolled independently, what is the
probability that the sum of the two numbers that appear
will be 7?

11. Suppose that there is a probability of 1/50 that you
will win a certain game. If you play the game 50 times,
independently, what is the probability that you will win at
least once?

12. Suppose that a balanced die is rolled three times, and
let X; denote the number that appears on the ith roll
(i =1, 2, 3). Evaluate Pr(X; > X, > X3).

13. Three students A, B, and C are enrolled in the same
class. Suppose that A attends class 30 percent of the time,
B attends class 50 percent of the time, and C attends
class 80 percent of the time. If these students attend class
independently of each other, what is (a) the probability
that at least one of them will be in class on a particular
day and (b) the probability that exactly one of them will
be in class on a particular day?

14. Consider the World Series of baseball, as described in
Exercise 16 of Sec. 2.2. If there is probability p that team
A will win any particular game, what is the probability



that it will be necessary to play seven games in order to
determine the winner of the Series?

15. Suppose that three red balls and three white balls are
thrown at random into three boxes and and that all throws
are independent. What is the probability that each box
contains one red ball and one white ball?

16. If five balls are thrown at random into n boxes, and all
throws are independent, what is the probability that no
box contains more than two balls?

17. Bus tickets in a certain city contain four numbers, U,
V, W, and X. Each of these numbers is equally likely to
be any of the 10 digits 0, 1, . . ., 9, and the four numbers
are chosen independently. A bus rider is said to be lucky if
U + V =W + X. What proportion of the riders are lucky?

18. A certain group has eight members. In January, three
members are selected at random to serve on a commit-
tee. In February, four members are selected at random
and independently of the first selection to serve on an-
other committee. In March, five members are selected at
random and independently of the previous two selections
to serve on a third committee. Determine the probability
that each of the eight members serves on at least one of
the three committees.

19. For the conditions of Exercise 18, determine the prob-
ability that two particular members A and B will serve
together on at least one of the three committees.

20. Suppose that two players A and B take turns rolling a
pair of balanced dice and that the winner is the first player
who obtains the sum of 7 on a given roll of the two dice.
If A rolls first, what is the probability that B will win?

21. Three players A, B, and C take turns tossing a fair
coin. Suppose that A tosses the coin first, B tosses second,
and C tosses third; and suppose that this cycle is repeated
indefinitely until someone wins by being the first player
to obtain a head. Determine the probability that each of
three players will win.

22. Suppose that a balanced die is rolled repeatedly until
the same number appears on two successive rolls, and let
X denote the number of rolls that are required. Determine
the value of Pr(X =x),forx=2,3, ....

23. Suppose that 80 percent of all statisticians are shy,
whereas only 15 percent of all economists are shy. Suppose
also that 90 percent of the people at a large gathering are
economists and the other 10 percent are statisticians. If
you meet a shy person at random at the gathering, what is
the probability that the person is a statistician?

24. Dreamboat cars are produced at three different fac-
tories A, B, and C. Factory A produces 20 percent of the
total output of Dreamboats, B produces 50 percent, and
C produces 30 percent. However, 5 percent of the cars
produced at A are lemons, 2 percent of those produced
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at B are lemons, and 10 percent of those produced at C
are lemons. If you buy a Dreamboat and it turns out to be
a lemon, what is the probability that it was produced at
factory A?

25. Suppose that 30 percent of the bottles produced in
a certain plant are defective. If a bottle is defective, the
probability is 0.9 that an inspector will notice it and re-
move it from the filling line. If a bottle is not defective,
the probability is 0.2 that the inspector will think that it is
defective and remove it from the filling line.

a. Ifabottle is removed from the filling line, what is the
probability that it is defective?

b. Ifacustomer buys abottle that has not been removed
from the filling line, what is the probability that it is
defective?

26. Suppose that a fair coin is tossed until a head is ob-
tained and that this entire experiment is then performed
independently a second time. What is the probability that
the second experiment requires more tosses than the first
experiment?

27. Suppose that a family has exactly n children (n > 2).
Assume that the probability that any child will be a girl
is 1/2 and that all births are independent. Given that the
family has at least one girl, determine the probability that
the family has at least one boy.

28. Suppose that a fair coin is tossed independently n
times. Determine the probability of obtaining exactly n —
1 heads, given (a) that at least n — 2 heads are obtained
and (b) that heads are obtained on the first n — 2 tosses.

29. Suppose that 13 cards are selected at random from a
regular deck of 52 playing cards.

a. Ifitis known that at least one ace has been selected,
what is the probability that at least two aces have
been selected?

b. Ifitis known that the ace of hearts has been selected,
what is the probability that at least two aces have
been selected?

30. Suppose that n letters are placed at random in n en-
velopes, as in the matching problem of Sec. 1.10, and let g,
denote the probability that no letter is placed in the cor-
rect envelope. Show that the probability that exactly one
letter is placed in the correct envelope is g,,_1.

31. Consider again the conditions of Exercise 30. Show
that the probability that exactly two letters are placed in
the correct envelopes is (1/2)g,,_».

32. Consider again the conditions of Exercise 7 of Sec. 2.2.
If exactly one of the two students A and B is in class on a
given day, what is the probability that it is A?

33. Consider again the conditions of Exercise 2 of Sec.
1.10. If a family selected at random from the city
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subscribes to exactly one of the three newspapers A, B,
and C, what is the probability that it is A?

34. Three prisoners A, B, and C on death row know that
exactly two of them are going to be executed, but they do
not know which two. Prisoner A knows that the jailer will
not tell him whether or not he is going to be executed. He
therefore asks the jailer to tell him the name of one pris-
oner other than A himself who will be executed. The jailer
responds that B will be executed. Upon receiving this re-
sponse, Prisoner A reasons as follows: Before he spoke to
the jailer, the probability was 2/3 that he would be one of
the two prisoners executed. After speaking to the jailer,
he knows that either he or prisoner C will be the other
one to be executed. Hence, the probability that he will be
executed is now only 1/2. Thus, merely by asking the jailer
his question, the prisoner reduced the probability that he
would be executed from 2/3 to 1/2, because he could go
through exactly this same reasoning regardless of which
answer the jailer gave. Discuss what is wrong with prisoner
A’s reasoning.

35. Suppose that each of two gamblers A and B has an
initial fortune of 50 dollars, and that there is probability
p that gambler A will win on any single play of a game
against gambler B. Also, suppose either that one gambler
can win one dollar from the other on each play of the game
or that they can double the stakes and one can win two
dollars from the other on each play of the game. Under
which of these two conditions does A have the greater
probability of winning the initial fortune of B before losing
her own for each of the following conditions: (a) p < 1/2;
) p>1/2;(c) p=1/2?

36. A sequence of n job candidates is prepared to inter-
view for a job. We would like to hire the best candidate,
but we have no information to distinguish the candidates

before we interview them. We assume that the best candi-
date is equally likely to be each of the n candidates in the
sequence before the interviews start. After the interviews
start, we are able to rank those candidates we have seen,
but we have no information about where the remaining
candidates rank relative to those we have seen. After each
interview, it is required that either we hire the current can-
didate immediately and stop the interviews, or we must let
the current candidate go and we never can call them back.
We choose to interview as follows: We select a number
0 <r < n and we interview the first r candidates without
any intention of hiring them. Starting with the next can-
didate r + 1, we continue interviewing until the current
candidate is the best we have seen so far. We then stop
and hire the current candidate. If none of the candidates
from r + 1 to n is the best, we just hire candidate n. We
would like to compute the probability that we hire the best
candidate and we would like to choose r to make this prob-
ability as large as possible. Let A be the event that we hire
the best candidate, and let B; be the event that the best
candidate is in position i in the sequence of interviews.

a. Leti > r.Find the probability that the candidate who
is relatively the best among the first i interviewed
appears in the first r interviews.

b. Prove that Pr(A|B;) =0 for i <r and Pr(A|B;) =
r/(i —1)fori >r.

c. For fixed r, let p, be the probability of A using that
value of r. Prove that p, = (r/n) Y/_ (i — 1)~

d. Letg.=p,—p,_yforr=1,...,n—1, and prove
that g, is a strictly decreasing function of r.

e. Show that a value of r that maximizes p, is the last r
such that g, > 0. (Hint: Write p, = pg+q1+ - -+ ¢,
forr >0.)

f. Forn =10, find the value of r that maximizes p,, and
find the corresponding p, value.
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3.1 Random Variables and Discrete Distributions

A random variable is a real-valued function defined on a sample space. Random
variables are the main tools used for modeling unknown quantities in statistical
analyses. For each random variable X and each set C of real numbers, we could
calculate the probability that X takes its value in C. The collection of all of these
probabilities is the distribution of X. There are two major classes of distributions
and random variables: discrete (this section) and continuous (Sec. 3.2). Discrete
distributions are those that assign positive probability to at most countably many
different values. A discrete distribution can be characterized by its probability
function (p.f.), which specifies the probability that the random variable takes each
of the different possible values. A random variable with a discrete distribution will
be called a discrete random variable.

Definition of a Random Variable

Tossing a Coin. Consider an experiment in which a fair coin is tossed 10 times. In this
experiment, the sample space S can be regarded as the set of outcomes consisting of
the 210 different sequences of 10 heads and/or tails that are possible. We might be
interested in the number of heads in the observed outcome. We can let X stand for the
real-valued function defined on S that counts the number of heads in each outcome.
For example, if s is the sequence HHTTTHTTTH, then X (s) = 4. For each possible
sequence s consisting of 10 heads and/or tails, the value X (s) equals the number of
heads in the sequence. The possible values for the function X are 0, 1, ...,10. <«

Random Variable. Let S be the sample space for an experiment. A real-valued func-
tion that is defined on S is called a random variable.

For example, in Example 3.1.1, the number X of heads in the 10 tosses is a random
variable. Another random variable in that example is ¥ = 10 — X, the number of
tails.

93



94  Chapter 3 Random Variables and Distributions

Figure 3.1 The event that
at least one utility demand is
high in Example 3.1.3.

Example
3.1.2

Example
3.1.3

Definition
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Electric

150 +
AUB

115+

} } —> Water

Measuring a Person’s Height. Consider an experiment in which a person is selected at
random from some population and her height in inches is measured. This height is a
random variable. |

Demands for Utilities. Consider the contractor in Example 1.5.4 on page 19 who is
concerned about the demands for water and electricity in a new office complex. The
sample space was pictured in Fig. 1.5 on page 12, and it consists of a collection of
points of the form (x, y), where x is the demand for water and y is the demand
for electricity. That is, each point s € S is a pair s = (x, y). One random variable
that is of interest in this problem is the demand for water. This can be expressed
as X (s) = x when s = (x, y). The possible values of X are the numbers in the interval
[4, 200]. Another interesting random variable is Y, equal to the electricity demand,
which can be expressed as Y (s) = y when s = (x, y). The possible values of Y are the
numbers in the interval [1, 150]. A third possible random variable Z is an indicator of
whether or not at least one demand is high. Let A and B be the two events described
in Example 1.5.4. That is, A is the event that water demand is at least 100, and B is
the event that electric demand is at least 115. Define

1 ifse AUB,
Z(s) = .
0 ifsgAUB.
The possible values of Z are the numbers 0 and 1. The event A U B is indicated in
Fig. 3.1. <

The Distribution of a Random Variable

When a probability measure has been specified on the sample space of an experiment,
we can determine probabilities associated with the possible values of each random
variable X. Let C be a subset of the real line such that {X € C} is an event, and let
Pr(X € C) denote the probability that the value of X will belong to the subset C.
Then Pr(X € C) is equal to the probability that the outcome s of the experiment will
be such that X (s) € C. In symbols,

Pr(XeC)=Pr({s: X(s) € C}). (3.1.1)
Distribution. Let X be a random variable. The distribution of X is the collection of all

probabilities of the form Pr(X € C) for all sets C of real numbers such that {X € C}
is an event.

It is a straightforward consequence of the definition of the distribution of X that
this distribution is itself a probability measure on the set of real numbers. The set



Figure 3.2 The event that
water demand is between 50
and 175 in Example 3.1.5.

Example
3.14

Example
3.1.5

Definition
3.1.3

3.1 Random Variables and Discrete Distributions 95

Electric

150 +

115+

- - - - > Water
0l 4 100 175 200

{X € C} will be an event for every set C of real numbers that most readers will be
able to imagine.

Tossing a Coin. Consider again an experiment in which a fair coin is tossed 10 times,
and let X be the number of heads that are obtained. In this experiment, the possible
values of X are 0, 1, 2, ..., 10. For each x, Pr(X = x) is the sum of the probabilities
of all of the outcomes in the event {X = x}. Because the coin is fair, each outcome
has the same probability 1/2'°, and we need only count how many outcomes s have
X (s) = x. We know that X (s) = x if and only if exactly x of the 10 tosses are H. Hence,
the number of outcomes s with X (s) = x is the same as the number of subsets of size
x (to be the heads) that can be chosen from the 10 tosses, namely, (1)(0), according to
Definitions 1.8.1 and 1.8.2. Hence,

10\ 1
Pr(X:x):(x)ﬁ forx=0,1,2,...,10. <

Demands for Utilities. In Example 1.5.4, we actually calculated some features of the
distributions of the three random variables X, Y, and Z defined in Example 3.1.3.
For example, the event A, defined as the event that water demand is at least 100, can
be expressed as A = {X > 100}, and Pr(A) = 0.5102. This means that Pr(X > 100) =
0.5102. The distribution of X consists of all probabilities of the form Pr(X € C) for all
sets C such that {X € C} is an event. These can all be calculated in a manner similar
to the calculation of Pr(A) in Example 1.5.4. In particular, if C is a subinterval of the
interval [4, 200], then

(150 — 1) x (length of interval C)
29,204 '

For example, if C is the interval [50,175], then its length is 125, and Pr(X € C) =
149 x 125/29,204 = 0.6378. The subset of the sample space whose probability was
just calculated is drawn in Fig. 3.2. <

Pr(Xe(C) = (3.1.2)

The general definition of distribution in Definition 3.1.2 is awkward, and it will
be useful to find alternative ways to specify the distributions of random variables. In
the remainder of this section, we shall introduce a few such alternatives.

Discrete Distributions

Discrete Distribution/Random Variable. We say that a random variable X has a discrete
distribution or that X is a discrete random variable if X can take only a finite number
k of different values xq, . . ., x; or, at most, an infinite sequence of different values
X1 X025 v v
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Random variables that can take every value in an interval are said to have continuous
distributions and are discussed in Sec. 3.2.

Probability Function/p.f./Support. If a random variable X has a discrete distribution,
the probability function (abbreviated p.f) of X is defined as the function f such that
for every real number x,

fx)=Pr(X =x).
The closure of the set {x : f(x) > 0} is called the support of (the distribution of) X.

Some authors refer to the probability function as the probability mass function, or
p-m.f. We will not use that term again in this text.

Demands for Utilities. The random variable Z in Example 3.1.3 equals 1 if at least one
of the utility demands is high, and Z = 0 if neither demand is high. Since Z takes only
two different values, it has a discrete distribution. Note that {s: Z(s) =1} =AU B,
where A and B are defined in Example 1.5.4. We calculated Pr(A U B) = 0.65253 in
Example 1.5.4. If Z has p.f. f, then

0.65253 ifz=1,
f(2)=170.34747 ifz=0,
0 otherwise.
The support of Z is the set {0, 1}, which has only two elements. <

Tossinga Coin. The random variable X in Example 3.1.4 has only 11 different possible
values. Its p.f. f is given at the end of that example for the values x =0, .. ., 10 that
constitute the support of X; f(x) =0 for all other values of x. <

Here are some simple facts about probability functions

Let X be a discrete random variable with p.f. f. If x is not one of the possible values

of X, then f(x) =0. Also, if the sequence xy, x,, . . . includes all the possible values

of X, then 3" f(x;) =1 (]
A typical p.f. is sketched in Fig. 3.3, in which each vertical segment represents

the value of f(x) corresponding to a possible value x. The sum of the heights of the
vertical segments in Fig. 3.3 must be 1.

J)

(=]
J;k
=
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Theorem 3.1.2 shows that the p.f. of a discrete random variable characterizes its
distribution, and it allows us to dispense with the general definition of distribution
when we are discussing discrete random variables.

If X has a discrete distribution, the probability of each subset C of the real line can
be determined from the relation

Pr(X € C) = Z f(x). n

x;eC

Some random variables have distributions that appear so frequently that the
distributions are given names. The random variable Z in Example 3.1.6 is one such.

Bernoulli Distribution/Random Variable. A random variable Z that takes only two
values 0 and 1 with Pr(Z = 1) = p has the Bernoulli distribution with parameter p.
We also say that Z is a Bernoulli random variable with parameter p.

The Z in Example 3.1.6 has the Bernoulli distribution with parameter 0.65252. It
is easy to see that the name of each Bernoulli distribution is enough to allow us to
compute the p.f., which, in turn, allows us to characterize its distribution.

We conclude this section with illustrations of two additional families of discrete
distributions that arise often enough to have names.

Uniform Distributions on Integers

Daily Numbers. A popular state lottery game requires participants to select a three-
digit number (leading Os allowed). Then three balls, each with one digit, are chosen at
random from well-mixed bowls. The sample space here consists of all triples (i1, i5, i3)
wherei; € {0, ..., 9} for j =1, 2, 3. 1f s = (iy, iy, i3), define X (s) = 100i; + 105 + i3.
For example, X (0, 1, 5) = 15. It is easy to check that Pr(X = x) = 0.001 for each
integer x € {0, 1, ..., 999}. <

Uniform Distribution on Integers. Let a < b be integers. Suppose that the value of a
random variable X is equally likely to be each of the integers a, . . ., b. Then we say
that X has the uniform distribution on the integers a, . . ., b.

The X in Example 3.1.8 has the uniform distribution on the integers 0, 1, ..., 999.
A uniform distribution on a set of k integers has probability 1/k on each integer.
If b > a, there are b — a + 1 integers from a to b including a and b. The next result
follows immediately from what we have just seen, and it illustrates how the name of
the distribution characterizes the distribution.

If X has the uniform distribution on the integers a, . . ., b, the p.f. of X is

1
—  f =a,...,b
Fo=15"ax1 orx =a, , b,

0 otherwise. [}

The uniform distribution on the integers a, . . ., b represents the outcome of an
experiment thatis often described by saying that one of the integersa, . . ., bis chosen
at random. In this context, the phrase “at random” means that each of the b —a + 1
integers is equally likely to be chosen. In this same sense, it is not possible to choose
an integer at random from the set of all positive integers, because it is not possible
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to assign the same probability to every one of the positive integers and still make the
sum of these probabilities equal to 1. In other words, a uniform distribution cannot
be assigned to an infinite sequence of possible values, but such a distribution can be
assigned to any finite sequence.

Note: Random Variables Can Have the Same Distribution without Being the
Same Random Variable. Consider two consecutive daily number draws as in Ex-
ample 3.1.8. The sample space consists of all 6-tuples (iy, - .., i), where the first
three coordinates are the numbers drawn on the first day and the last three are the
numbers drawn on the second day (all in the order drawn). If s = (i3, . . ., ig), let
X4(s) =100i; + 10i, + i3 and let X,(s) = 100i4 4+ 10i5 + is. It is easy to see that X;
and X, are different functions of s and are not the same random variable. Indeed,
there is only a small probability that they will take the same value. But they have
the same distribution because they assume the same values with the same probabil-
ities. If a businessman has 1000 customers numbered O, . . ., 999, and he selects one
at random and records the number Y, the distribution of Y will be the same as the
distribution of X; and of X,, but Y is not like X or X, in any other way.

Binomial Distributions

Defective Parts. Consider again Example 2.2.5 from page 69. In that example, a ma-
chine produces a defective item with probability p (0 < p < 1) and produces a non-
defective item with probability 1 — p. We assumed that the events that the different
items were defective were mutually independent. Suppose that the experiment con-
sists of examining n of these items. Each outcome of this experiment will consist of
a list of which items are defective and which are not, in the order examined. For ex-
ample, we can let 0 stand for a nondefective item and 1 stand for a defective item.
Then each outcome is a string of n digits, each of which is 0 or 1. To be specific, if,
say, n = 6, then some of the possible outcomes are

010010, 100100, 000011, 110000, 100001, 000000, etc. (3.1.3)

We will let X denote the number of these items that are defective. Then the random
variable X will have a discrete distribution, and the possible values of X will be
0,1,2,...,n. For example, the first four outcomes listed in Eq. (3.1.3) all have
X (s) = 2. The last outcome listed has X (s) = 0. |

Example 3.1.9 is a generalization of Example 2.2.5 with n items inspected rather
than just six, and rewritten in the notation of random variables. For x =0, 1, ..., n,
the probability of obtaining each particular ordered sequence of n items containing
exactly x defectives and n — x nondefectives is p*(1 — p)"~*, just as it was in Ex-
ample 2.2.5. Since there are (Z) different ordered sequences of this type, it follows
that

Pr(X =1x)= (z)pxa — p)" .

Therefore, the p.f. of X will be as follows:

n X1 _ o \1—X _
f(x):{(x)p 1-p forx=0,1,...,n, (3.1.4)
0 otherwise.

Binomial Distribution/Random Variable. The discrete distribution represented by the
p.f. in (3.1.4) is called the binomial distribution with parameters n and p. A random
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variable with this distribution is said to be a binomial random variable with parame-
ters n and p.

The reader should be able to verify that the random variable X in Example 3.1.4,
the number of heads in a sequence of 10 independent tosses of a fair coin, has the
binomial distribution with parameters 10 and 1/2.

Since the name of each binomial distribution is sufficient to construct its p.f., it
follows that the name is enough to identify the distribution. The name of each distri-
bution includes the two parameters. The binomial distributions are very important in
probability and statistics and will be discussed further in later chapters of this book.

A short table of values of certain binomial distributions is given at the end
of this book. It can be found from this table, for example, that if X has the bino-
mial distribution with parameters n = 10 and p = 0.2, then Pr(X = 5) = 0.0264 and
Pr(X > 5) =0.0328.

As another example, suppose that a clinical trial is being run. Suppose that the
probability that a patient recovers from her symptoms during the trial is p and that
the probability is 1 — p that the patient does not recover. Let Y denote the number of
patients who recover out of n independent patients in the trial. Then the distribution
of Y is also binomial with parameters n and p. Indeed, consider a general experiment
that consists of observing n independent repititions (trials) with only two possible
results for each trial. For convenience, call the two possible results “success” and
“failure.” Then the distribution of the number of trials that result in success will be
binomial with parameters n and p, where p is the probability of success on each trial.

Note: Names of Distributions. In this section, we gave names to several families
of distributions. The name of each distribution includes any numerical parameters
that are part of the definition. For example, the random variable X in Example 3.1.4
has the binomial distribution with parameters 10 and 1/2. It is a correct statement to
say that X has a binomial distribution or that X has a discrete distribution, but such
statements are only partial descriptions of the distribution of X. Such statements
are not sufficient to name the distribution of X, and hence they are not sufficient as
answers to the question “What is the distribution of X?” The same considerations
apply to all of the named distributions that we introduce elsewhere in the book. When
attempting to specify the distribution of a random variable by giving its name, one
must give the full name, including the values of any parameters. Only the full name
is sufficient for determining the distribution.

Summary

A random variable is a real-valued function defined on a sample space. The distri-
bution of a random variable X is the collection of all probabilities Pr(X € C) for all
subsets C of the real numbers such that {X € C} is an event. A random variable X is
discrete if there are at most countably many possible values for X. In this case, the
distribution of X can be characterized by the probability function (p.f.) of X, namely,
f(x) =Pr(X = x) for x in the set of possible values. Some distributions are so famous
that they have names. One collection of such named distributions is the collection of
uniform distributions on finite sets of integers. A more famous collection is the col-
lection of binomial distributions whose parameters are n and p, where n is a positive
integer and 0 < p < 1, having p.f. (3.1.4). The binomial distribution with parameters
n =1and p is also called the Bernoulli distribution with parameter p. The names of
these distributions also characterize the distributions.
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Exercises

1. Suppose that a random variable X has the uniform dis-
tribution on the integers 10, . . ., 20. Find the probability
that X is even.

2. Suppose that a random variable X has a discrete distri-
bution with the following p.f.:

f(x)_{cx forx=1,...,5,

0  otherwise.
Determine the value of the constant c.

3. Suppose that two balanced dice are rolled, and let X
denote the absolute value of the difference between the
two numbers that appear. Determine and sketch the p.f.
of X.

4. Suppose that a fair coin is tossed 10 times indepen-
dently. Determine the p.f. of the number of heads that will
be obtained.

5. Suppose that a box contains seven red balls and three
blue balls. If five balls are selected at random, without
replacement, determine the p.f. of the number of red balls
that will be obtained.

6. Suppose that arandom variable X has the binomial dis-
tribution with parametersn = 15and p = 0.5. Find Pr(X <
6).

7. Suppose that arandom variable X has the binomial dis-
tribution with parameters n =8 and p = 0.7. Find Pr(X >
5) by using the table given at the end of this book. Hint:

Use the fact that Pr(X > 5) = Pr(Y < 3), where Y has the
binomial distribution with parameters n =8 and p =0.3.

8. If 10 percent of the balls in a certain box are red, and
if 20 balls are selected from the box at random, with re-
placement, what is the probability that more than three
red balls will be obtained?

9. Suppose that a random variable X has a discrete distri-
bution with the following p.f.:

£ {f forx=0,1,2,...,
X)=

0  otherwise.

Find the value of the constant c.

10. A civil engineer is studying a left-turn lane that is
long enough to hold seven cars. Let X be the number
of cars in the lane at the end of a randomly chosen red
light. The engineer believes that the probability that X =
x is proportional to (x + 1)(8 — x) for x =0, ..., 7 (the
possible values of X).

a. Find the p.f. of X.
b. Find the probability that X will be at least 5.

11. Show that there does not exist any number ¢ such that
the following function would be a p.f.:

% forx=1,2,...,
f) = ,
0 otherwise.

3.2 Continuous Distributions

Next, we focus on random variables that can assume every value in an interval
(bounded or unbounded). If a random variable X has associated with it a function
f such that the integral of f over each interval gives the probability that X is in the
interval, then we call f the probability density function (p.d.f) of X and we say
that X has a continuous distribution.

The Probability Density Function

Example
3.2.1

Demands for Utilities. In Example 3.1.5, we determined the distribution of the de-
mand for water, X. From Fig. 3.2, we see that the smallest possible value of X is 4

and the largest is 200. For each interval C = [cy, ¢1] C [4, 200], Eq. (3.1.2) says that

PI'(CO <X< Cl) =

149(c; —cp) _c1—cp / LN
29204 196 J,, 196
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So, if we define

1 if 4 < x <200,

F =1 19 (32.1)
0 otherwise,
we have that
1
Pr(cp <X <¢y) =/ f(x)dx. (3.2.2)
[40]

Because we defined f(x) to be 0 for x outside of the interval [4, 200], we see that Eq.
(3.2.2) holds for all ¢y < ¢y, even if ¢) = —oo and/or ¢; = 0. <

The water demand X in Example 3.2.1 is an example of the following.

Continuous Distribution/Random Variable. We say that a random variable X has a
continuous distribution or that X is a continuous random variable if there exists a
nonnegative function f, defined on the real line, such that for every interval of real
numbers (bounded or unbounded), the probability that X takes a value in the interval
is the integral of f over the interval.

For example, in the situation described in Definition 3.2.1, for each bounded closed
interval [a, b],

b
Pr(a <X <b) =/ f(x)dx. (3.2.3)

Similarly, Pr(X > a) = [ f(x) dx and Pr(X <b) = [*_ f(x) dx.

We see that the function f characterizes the distribution of a continuous ran-
dom variable in much the same way that the probability function characterizes the
distribution of a discrete random variable. For this reason, the function f plays an
important role, and hence we give it a name.

Probability Density Function/p.d.f./Support. If X has a continuous distribution, the
function f described in Definition 3.2.1 is called the probability density function
(abbreviated p.d.f) of X. The closure of the set {x : f(x) > 0} is called the support
of (the distribution of) X.

Example 3.2.1 demonstrates that the water demand X has p.d.f. given by (3.2.1).
Every p.d.f. f must satisfy the following two requirements:

f(x)>0, forallx, (3.2.4)

and
/mfuwu=1 (3.2.5)

A typical p.d.f. is sketched in Fig. 3.4. In that figure, the total area under the curve
must be 1, and the value of Pr(a < X < b) is equal to the area of the shaded region.

Note: Continuous Distributions Assign Probability 0 to Individual Values. The
integral in Eq. (3.2.3) also equals Pr(a < X < b) as well as Pr(a < X < b) and Pr(a <
X < b). Hence, it follows from the definition of continuous distributions that, if X
has a continuous distribution, Pr(X = a) = 0 for each number a. As we noted on
page 20, the fact that Pr(X = a) = 0 does not imply that X = a is impossible. If it did,
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Figure 3.4 An example of a
p.d.f

f)

=Y

all values of X would be impossible and X couldn’t assume any value. What happens
is that the probability in the distribution of X is spread so thinly that we can only see
it on sets like nondegenerate intervals. It is much the same as the fact that lines have
0 area in two dimensions, but that does not mean that lines are not there. The two
vertical lines indicated under the curve in Fig. 3.4 have 0 area, and this signifies that
Pr(X = a) = Pr(X = b) = 0. However, for each € > 0 and each « such that f(a) >0,
Pr@a—e<X <a+¢€)=2f(a)>0.

Nonuniqueness of the p.d.f.

If a random variable X has a continuous distribution, then Pr(X = x) = 0 for every
individual value x. Because of this property, the values of each p.d.f. can be changed
at a finite number of points, or even at certain infinite sequences of points, without
changing the value of the integral of the p.d.f. over any subset A. In other words,
the values of the p.d.f. of a random variable X can be changed arbitrarily at many
points without affecting any probabilities involving X, that is, without affecting the
probability distribution of X. At exactly which sets of points we can change a p.d.f.
depends on subtle features of the definition of the Riemann integral. We shall not
deal with this issue in this text, and we shall only contemplate changes to p.d.f.’s at
finitely many points.

To the extent just described, the p.d.f. of arandom variable is not unique. In many
problems, however, there will be one version of the p.d.f. that is more natural than
any other because for this version the p.d.f. will, wherever possible, be continuous on
the real line. For example, the p.d.f. sketched in Fig. 3.4 is a continuous function over
the entire real line. This p.d.f. could be changed arbitrarily at a few points without
affecting the probability distribution that it represents, but these changes would
introduce discontinuities into the p.d.f. without introducing any apparent advantages.

Throughout most of this book, we shall adopt the following practice: If a random
variable X has a continuous distribution, we shall give only one version of the p.d.f.
of X and we shall refer to that version as the p.d.f. of X, just as though it had been
uniquely determined. It should be remembered, however, that there is some freedom
in the selection of the particular version of the p.d.f. that is used to represent each
continuous distribution. The most common place where such freedom will arise is
in cases like Eq. (3.2.1) where the p.d.f. is required to have discontinuities. Without
making the function f any less continuous, we could have defined the p.d.f. in that
example so that f(4) = f(200) = 0 instead of f(4) = f(200) = 1/196. Both of these
choices lead to the same calculations of all probabilities associated with X, and they
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are both equally valid. Because the support of a continuous distribution is the closure
of the set where the p.d.f. is strictly positive, it can be shown that the support is unique.
A sensible approach would then be to choose the version of the p.d.f. that was strictly
positive on the support whenever possible.

The reader should note that “continuous distribution” is not the name of a
distribution, just as “discrete distribution” is not the name of a distribution. There are
many distributions that are discrete and many that are continuous. Some distributions
of each type have names that we either have introduced or will introduce later.

We shall now present several examples of continuous distributions and their
p.d.f’s.

Uniform Distributions on Intervals

Temperature Forecasts. Television weather forecasters announce high and low tem-
perature forecasts as integer numbers of degrees. These forecasts, however, are the
results of very sophisticated weather models that provide more precise forecasts that
the television personalities round to the nearest integer for simplicity. Suppose that
the forecaster announces a high temperature of y. If we wanted to know what tem-
perature X the weather models actually produced, it might be safe to assume that X
was equally likely to be any number in the interval from y — 1/2 to y + 1/2. |

The distribution of X in Example 3.2.2 is a special case of the following.

Uniform Distribution on an Interval. Let a and b be two given real numbers such that
a < b. Let X be a random variable such that it is known that ¢ < X < b and, for
every subinterval of [a, b], the probability that X will belong to that subinterval is
proportional to the length of that subinterval. We then say that the random variable
X has the uniform distribution on the interval [a, b].

A random variable X with the uniform distribution on the interval [a, b] represents
the outcome of an experiment that is often described by saying that a point is chosen
at random from the interval [a, b]. In this context, the phrase “at random” means
that the point is just as likely to be chosen from any particular part of the interval as
from any other part of the same length.

Uniform Distribution p.d.f. If X has the uniform distribution on an interval [a, b], then
the p.d.f. of X is

1 fi <x<b
foy={,-, Ore=x=" (3.2.6)
0 otherwise.

Proof X must take a value in the interval [a, b]. Hence, the p.d.f. f(x) of X must
be 0 outside of [a, b]. Furthermore, since any particular subinterval of [a, b] having
a given length is as likely to contain X as is any other subinterval having the same
length, regardless of the location of the particular subinterval in [a, b], it follows that
f(x) must be constant throughout [a, b], and that interval is then the support of the
distribution. Also,

) b
/ f(x)dx = / fx)dx =1. (3.2.7)

Therefore, the constant value of f(x) throughout [a, b] must be 1/(b — a), and the
p.d.f. of X must be (3.2.6). |
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Figure 3.5 The p.d.f. for the
uniform distribution on the

interval [a, b].

Example

3.2.3

S

[y S
[
=

Thp.d.f. (3.2.6) is sketched in Fig. 3.5. As an example, the random variable X (demand
for water) in Example 3.2.1 has the uniform distribution on the interval [4, 200].

Note: Density Is Not Probability. The reader should note that the p.d.f.in (3.2.6) can
be greater than 1, particularly if » — a < 1. Indeed, p.d.f’s can be unbounded, as we
shall see in Example 3.2.6. The p.d.f. of X, f(x), itself does not equal the probability
that X is near x. The integral of f over values near x gives the probability that X is
near x, and the integral is never greater than 1.

It is seen from Eq. (3.2.6) that the p.d.f. representing a uniform distribution on
a given interval is constant over that interval, and the constant value of the p.d.f.
is the reciprocal of the length of the interval. It is not possible to define a uniform
distribution over an unbounded interval, because the length of such an interval is
infinite.

Consider again the uniform distribution on the interval [a, b]. Since the proba-
bility is O that one of the endpoints a or b will be chosen, it is irrelevant whether the
distribution is regarded as a uniform distribution on the closed interval a < x < b, or
as a uniform distribution on the open interval a < x < b, or as a uniform distribution
on the half-open and half-closed interval (a, b] in which one endpoint is included and
the other endpoint is excluded.

For example, if a random variable X has the uniform distribution on the interval
[—1, 4], then the p.d.f. of X is

1/5 for—-1<x <4,
0 otherwise.

f(X)={

Furthermore,

2 2
Pr(O§X<2):/ fx)dx =-.
0 5

Notice that we defined the p.d.f. of X to be strictly positive on the closed interval
[—1, 4] and 0 outside of this closed interval. It would have been just as sensible to
define the p.d.f. to be strictly positive on the open interval (—1, 4) and 0 outside of this
open interval. The probability distribution would be the same either way, including
the calculation of Pr(0 < X < 2) that we just performed. After this, when there are
several equally sensible choices for how to define a p.d.f., we will simply choose one
of them without making any note of the other choices.

Other Continuous Distributions

Incompletely Specified p.d.f. Suppose that the p.d.f. of a certain random variable X
has the following form:
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cx for0<x <4,

f(X)={

0  otherwise,

where c is a given constant. We shall determine the value of c.
For every p.d.f., it must be true that ffooo f(x) = 1. Therefore, in this example,

4
/ cxdx =8c=1.
0

Hence, ¢ =1/8. <

Note: Calculating Normalizing Constants. The calculation in Example 3.2.3 illus-
trates an important point that simplifies many statistical results. The p.d.f. of X was
specified without explicitly giving the value of the constant c. However, we were able
to figure out what was the value of ¢ by using the fact that the integral of a p.d.f. must
be 1. It will often happen, especially in Chapter 8§ where we find sampling distribu-
tions of summaries of observed data, that we can determine the p.d.f. of a random
variable except for a constant factor. That constant factor must be the unique value
such that the integral of the p.d.f. is 1, even if we cannot calculate it directly.

Calculating Probabilities from a p.d.f. Suppose that the p.d.f. of X is asin Example 3.2.3,
namely,

X
— for0<x <4,
fx) = { 8
0 otherwise.
We shall now determine the values of Pr(1 < X <2) and Pr(X > 2). Apply Eq. (3.2.3)
to get

21 3
1 8 16

and

4
Pr(X>2)=/ 1xdx:é. <
2 8 4

Unbounded Random Variables. It is often convenient and useful to represent a con-
tinuous distribution by a p.d.f. that is positive over an unbounded interval of the real
line. For example, in a practical problem, the voltage X in a certain electrical system
might be a random variable with a continuous distribution that can be approximately
represented by the p.d.f.

0 for x <0,
fo=y_1 for x > 0. (3.2.8)
1+ x)?
It can be verified that the properties (3.2.4) and (3.2.5) required of all p.d.f’s are

satisfied by f(x).

Even though the voltage X may actually be bounded in the real situation, the
p.d.f. (3.2.8) may provide a good approximation for the distribution of X over its full
range of values. For example, suppose that it is known that the maximum possible
value of X is 1000, in which case Pr(X > 1000) = 0. When the p.d.f. (3.2.8) is used,
we compute Pr(X > 1000) = 0.001. If (3.2.8) adequately represents the variability
of X over the interval (0, 1000), then it may be more convenient to use the p.d.f.
(3.2.8) than a p.d.f. that is similar to (3.2.8) for x < 1000, except for a new normalizing
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constant, and is 0 for x > 1000. This can be especially true if we do not know for sure

that the maximum voltage is only 1000. |
Example Unbounded p.d.f.’s. Since a value of a p.d.f. is a probability density, rather than a
3.2.6 probability, such a value can be larger than 1. In fact, the values of the following
p.d.f. are unbounded in the neighborhood of x = 0:
Fx713 1 1
fay=13" or<x<l, (32.9)
0 otherwise.
It can be verified that even though the p.d.f. (3.2.9) is unbounded, it satisfies the
properties (3.2.4) and (3.2.5) required of a p.d.f. <

Mixed Distributions

Example
3.2.7

Most distributions that are encountered in practical problems are either discrete or
continuous. We shall show, however, that it may sometimes be necessary to consider a
distribution that is a mixture of a discrete distribution and a continuous distribution.

Truncated Voltage. Suppose that in the electrical system considered in Example 3.2.5,
the voltage X is to be measured by a voltmeter that will record the actual value of
X if X <3 but will simply record the value 3 if X > 3. If we let Y denote the value
recorded by the voltmeter, then the distribution of Y can be derived as follows.
First, Pr(Y =3) = Pr(X > 3) = 1/4. Since the single value Y = 3 has probability
1/4, it follows that Pr(0 < Y < 3) = 3/4. Furthermore, since Y = X for 0 < X < 3, this
probability 3/4 for Y is distributed over the interval (0, 3) according to the same p.d.f.
(3.2.8) as that of X over the same interval. Thus, the distribution of Y is specified by
the combination of a p.d.f. over the interval (0, 3) and a positive probability at the
point Y = 3. <

Summary

A continuous distribution is characterized by its probability density function (p.d.f.).
A nonnegative function f is the p.d.f. of the distribution of X if, for every interval
[a,b],Pra<X <b)= fab f (x) dx. Continuous random variables satisfy Pr(X = x) =
0 for every value x. If the p.d.f. of a distribution is constant on an interval [a, b] and
is 0 off the interval, we say that the distribution is uniform on the interval [a, b].

Exercises

1. Let X be a random variable with the p.d.f. specified in
Example 3.2.6. Compute Pr(X < §/27).

2. Suppose that the p.d.f. of a random variable X is as
follows:

f(x):{%(l_XS) forO0<x <1,
0

otherwise.

Sketch this p.d.f. and determine the values of the fol-
lowing probabilities: a. Pr (X < %) b. Pr <4_11 <X < 3)

c Pr <X> %)

3. Suppose that the p.d.f. of a random variable X is as
follows:



1 2
Flx) = 369 —x) for-3<x<3,
0 otherwise.
Sketch this p.d.f. and determine the values of the following
probabilities: a. Pr(X <0) b.Pr(-1<X <1)
c. Pr(X > 2).

4. Suppose that the p.d.f. of a random variable X is as
follows:

2
f(x)=:cx forl<x <2,

0 otherwise.
a. Find the value of the constant ¢ and sketch the p.d.f.
b. Find the value of Pr(X > 3/2).

5. Suppose that the p.d.f. of a random variable X is as
follows:

Fory = dx for0<x<4,
0 otherwise.

a. Find the value of ¢ such that Pr(X <) =1/4.
b. Find the value of ¢ such that Pr(X >1¢) =1/2.

6. Let X be a random variable for which the p.d.f. is as
given in Exercise 5. After the value of X has been ob-
served, let Y be the integer closest to X. Find the p.f. of
the random variable Y.

7. Suppose that a random variable X has the uniform
distribution on the interval [—2, 8]. Find the p.d.f. of X and
the value of Pr(0 < X < 7).

8. Suppose that the p.d.f. of a random variable X is as
follows:
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a. Find the value of the constant ¢ and sketch the p.d.f.
b. Find the value of Pr(1 < X < 2).

9. Show that there does not exist any number ¢ such that
the following function f(x) would be a p.d.f.:

£y = { T forx >.0,

0 otherwise.
10. Suppose that the p.d.f. of a random variable X is as
follows:

C

f) = { (=07

0 otherwise.

forO0<x <1,

a. Find the value of the constant ¢ and sketch the p.d.f.
b. Find the value of Pr(X < 1/2).

11. Show that there does not exist any number c such that
the following function f(x) would be a p.d.f.:

C

fox) = { x

0 otherwise.

forO<x <1,

12. In Example 3.1.3 on page 94, determine the distri-
bution of the random variable Y, the electricity demand.
Also, find Pr(Y < 50).

13. An ice cream seller takes 20 gallons of ice cream in
her truck each day. Let X stand for the number of gallons
that she sells. The probability is 0.1 that X =20. If she
doesn’t sell all 20 gallons, the distribution of X follows a
continuous distribution with a p.d.f. of the form

cx for0<x <20,

-]

0  otherwise,

where c is a constant that makes Pr(X < 20) = 0.9. Find the
constant ¢ so that Pr(X < 20) = 0.9 as described above.

3.3 The Cumulative Distribution Function

Although a discrete distribution is characterized by its p.f. and a continuous distri-
bution is characterized by its p.d.f., every distribution has a common characteriza-
tion through its (cumulative) distribution function (c.d.f.). The inverse of the c.d.f.
is called the quantile function, and it is useful for indicating where the probability

—2x
ce for x > 0,
fx) = { )
0 otherwise.
is located in a distribution.
Example
3.3.1

Voltage. Consider again the voltage X from Example 3.2.5. The distribution of X
is characterized by the p.d.f. in Eq. (3.2.8). An alternative characterization that is

more directly related to probabilities associated with X is obtained from the following

function:
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X 0 for x <0,
Foo=Prx=n = [ 70y = [
o 0o (14y)? ’ (33.1)
0 for x <0,
= { 1- for x > 0.
+x
So, for example, Pr(X < 3) = F(3) =3/4. <

Definition and Basic Properties

(Cumulative) Distribution Function. The distribution function or cumulative distribu-
tion function (abbreviated c.d.f) F of a random variable X is the function

F(x)=Pr(X <x) for —oco <x < o0. (3.3.2)

It should be emphasized that the cumulative distribution function is defined as above
for every random variable X, regardless of whether the distribution of X is discrete,
continuous, or mixed. For the continuous random variable in Example 3.3.1, the c.d.f.
was calculated in Eq. (3.3.1). Here is a discrete example:

Bernoulli c.d.f. Let X have the Bernoulli distribution with parameter p defined in
Definition 3.1.5. Then Pr(X =0) =1 — p and Pr(X =1) = p. Let F be the c.d.f. of X.
Itis easy to see that F(x) =0 for x < 0 because X > 0 for sure. Similarly, F(x) = 1 for
x >1because X <1forsure. ForO0<x <1,Pr(X <x)=Pr(X =0) =1— p because
0 is the only possible value of X that is in the interval (—oo, x]. In summary,

0 for x <0,
Fx)=171—p forO<x <1,
1 for x > 1. <

We shall soon see (Theorem 3.3.2) that the c.d.f. allows calculation of all interval
probabilities; hence, it characterizes the distribution of a random variable. It follows
from Eq. (3.3.2) that the c.d.f. of each random variable X is a function F defined on
the real line. The value of F at every point x must be a number F(x) in the interval
[0, 1] because F(x) is the probability of the event {X < x}. Furthermore, it follows
from Eq. (3.3.2) that the c.d.f. of every random variable X must have the following
three properties.

Nondecreasing. The function F (x) is nondecreasing as x increases; that is, if x| < xy,
then F(x1) < F(xp).

Proof If x; < x,, then the event {X < x;} is a subset of the event {X < x,}. Hence,
Pr{X < x1} < Pr{X < x,} according to Theorem 1.5.4. [

An example of a c.d.f. is sketched in Fig. 3.6. It is shown in that figure that 0 <

F(x) <1 over the entire real line. Also, F(x) is always nondecreasing as x increases,
although F(x) is constant over the interval x; < x < x, and for x > x4.

Limits at +oo. lim,_, _, F(x) =0and lim,_, ., F(x)=1.

Proof Asin the proof of Property 3.3.1, note that {X < x;} C {X < x,} whenever x; <
X,. The fact that Pr(X < x) approaches 0 as x — —oo now follows from Exercise 13 in
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F(x)

Section 1.10. Similarly, the fact that Pr(X < x) approaches 1 as x — oo follows from
Exercise 12 in Sec. 1.10. ]

The limiting values specified in Property 3.3.2 are indicated in Fig. 3.6. In this
figure, the value of F(x) actually becomes 1 at x = x4 and then remains 1 for x > x,.
Hence, it may be concluded that Pr(X < x4) =1 and Pr(X > x4) = 0. On the other
hand, according to the sketch in Fig. 3.6, the value of F(x) approaches 0 as x — —oo,
but does not actually become 0 at any finite point x. Therefore, for every finite value
of x, no matter how small, Pr(X < x) > 0.

A c.d.f. need not be continuous. In fact, the value of F(x) may jump at any
finite or countable number of points. In Fig. 3.6, for instance, such jumps or points
of discontinuity occur where x = x; and x = x3. For each fixed value x, we shall let
F(x7) denote the limit of the values of F(y) as y approaches x from the left, that is,
as y approaches x through values smaller than x. In symbols,

F(x™) = lim F(3).

y<x

Similarly, we shall define F(x™) as the limit of the values of F(y) as y approaches x
from the right. Thus,

F(x*) = lim F(y).

y>x

If the c.d.f. is continuous at a given point x, then F(x~) = F(x*) = F(x) at that point.

Continuity from the Right. A c.d.f is always continuous from the right, that is, F(x) =
F(x™T) at every point x.

Proof Let y; >y, >--- be a sequence of numbers that are decreasing such that
lim,,_, o ¥, = x. Then the event {X < x} is the intersection of all the events {X <y, }
forn=1,2,.... Hence, by Exercise 13 of Sec. 1.10,

F(x)=Pr(X <x)= 1320 Pr(X <y, = F(x™). n

It follows from Property 3.3.3 that at every point x at which a jump occurs,

F(xT =F()and F(x7) < F(x).
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In Fig. 3.6 this property is illustrated by the fact that, at the points of discontinuity
x = x1 and x = x3, the value of F(xy) is taken as z; and the value of F(x3) is taken as
z3.

Determining Probabilities from the Distribution Function

Voltage. In Example 3.3.1, suppose that we want to know the probability that X lies
in the interval [2, 4]. That is, we want Pr(2 < X < 4). The c.d.f. allows us to compute
Pr(X <4)and Pr(X <2).These are related to the probability that we want as follows:
Let A={2< X <4}, B={X <2}, and C = {X <4}. Because X has a continuous
distribution, Pr(A) is the same as the probability that we desire. We see that AU B =
C, and it is clear that A and B are disjoint. Hence, Pr(A) 4+ Pr(B) = Pr(C). It follows
that

1
= . <

Pr(A) = Pr(C) — Pr(B) = F(4) — F(2) = %

|~
W
|

The type of reasoning used in Example 3.3.3 can be extended to find the prob-
ability that an arbitrary random variable X will lie in any specified interval of the
real line from the c.d.f. We shall derive this probability for four different types of
intervals.

For every value x,
Pr(X >x)=1- F(x). (3.3.3)
Proof The events {X > x} and {X < x} are disjoint, and their union is the whole

sample space S whose probability is 1. Hence, Pr(X > x) + Pr(X < x) = 1. Now,
Eq. (3.3.3) follows from Eq. (3.3.2). ]

For all values x; and x, such that x; < x,,

Pr(x; < X <xp) = F(xp) — F(x7). (3.34)

Proof Let A={x;{ <X <x,}, B={X <x;},and C = {X < x,}. As in Example 3.3.3,
A and B are disjoint, and their union is C, so

Pr(x; < X <x) + Pr(X <x)) =Pr(X <xy).

Subtracting Pr(X < x;) from both sides of this equation and applying Eq. (3.3.2)
yields Eq. (3.3.4). |

For example, if the c.d.f. of X is as sketched in Fig. 3.6, then it follows from
Theorems3.3.1 and 3.3.2 that Pr(X > x;) =1 — z;and Pr(xp < X < x3) = z3 — z1. Also,
since F(x) is constant over the interval x; < x < x,, then Pr(x; < X <x,) =0.

It is important to distinguish carefully between the strict inequalities and the
weak inequalities that appear in all of the preceding relations and also in the next
theorem. If there is a jump in F(x) at a given value x, then the values of Pr(X < x)
and Pr(X < x) will be different.

For each value x,

Pr(X <x)=F(x). (3.3.5)
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Proof Lety; <y, <---beanincreasing sequence of numbers such thatlim,,_, ., y, =
x. Then it can be shown that

X <x}=[JIX <y

n=1
Therefore, it follows from Exercise 12 of Sec. 1.10 that
Pr(X <x)= lim Pr(X <y,)
n—>oo

= lim F(y,) = F(x). .

For example, for the c.d.f. sketched in Fig. 3.6, Pr(X < x3) =z, and Pr(X < x4)
=1

Finally, we shall show that for every value x, Pr(X = x) is equal to the amount
of the jump that occurs in F at the point x. If F is continuous at the point x, that is,
if there is no jump in F at x, then Pr(X =x) =0.

For every value x,

PriX=x)=Fx)— F(x7). (3.3.6)

Proof Itisalways true that Pr(X = x) = Pr(X < x) — Pr(X < x). The relation (3.3.6)
follows from the fact that Pr(X < x) = F(x) at every point and from Theorem 3.3.3.
]

In Fig. 3.6, for example, Pr(X = xy) = z; — zp, Pr(X = x3) = z3 — 2z, and the
probability of every other individual value of X is 0.

The c.d.f. of a Discrete Distribution

From the definition and properties of a c.d.f. F(x), it follows that if a < b and
if Pr(a < X <b) =0, then F(x) will be constant and horizontal over the interval
a < x < b.Furthermore, as we have just seen, at every point x such that Pr(X = x) > 0,
the c.d.f. will jump by the amount Pr(X = x).

Suppose that X has a discrete distribution with the p.f. f(x). Together, the prop-
erties of a c.d.f. imply that F(x) must have the following form: F (x) will have a jump
of magnitude f(x;) at each possible value x; of X, and F (x) will be constant between
every pair of successive jumps. The distribution of a discrete random variable X can
be represented equally well by either the p.f. or the c.d.f. of X.

The c.d.f. of a Continuous Distribution

Let X have a continuous distribution, and let f(x) and F(x) denote its p.d.f. and the
c.d.f., respectively. Then F is continuous at every x,

F(x)= /x fQ@)dr, (3.3.7)

and
E®) _ ro), (33.8)
dx

at all x such that f is continuous.
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Proof Since the probability of each individual point x is 0, the c.d.f. F(x) will have
no jumps. Hence, F (x) will be a continuous function over the entire real line.

By definition, F(x) = Pr(X < x). Since f is the p.d.f. of X, we have from the
definition of p.d.f. that Pr(X < x) is the right-hand side of Eq. (3.3.7).

It follows from Eq. (3.3.7) and the relation between integrals and derivatives
(the fundamental theorem of calculus) that, for every x at which f is continuous,
Eq. (3.3.8) holds. |

Thus, the c.d.f. of a continuous random variable X can be obtained from the p.d.f.
and vice versa. Eq. (3.3.7) is how we found the c.d.f. in Example 3.3.1. Notice that
the derivative of the F in Example 3.3.1 is

0 for x <0,
F'(x)=

Y for x > 0,
x

and F’ does not exist at x = 0. This verifies Eq (3.3.8) for Example 3.3.1. Here, we
have used the popular shorthand notation F’(x) for the derivative of F at the point x.

Calculating a p.d.f. from a c.d.f. Let the c.d.f. of a random variable be

0 forx <0,
Fx)=1x?3 for0<x <1,
1 for x > 1.

This function clearly satisfies the three properties required of every c.d.f., as given
earlier in this section. Furthermore, since this c.d.f. is continuous over the entire real
line and is differentiable at every point except x = 0 and x = 1, the distribution of X
is continuous. Therefore, the p.d.f. of X can be found at every point other than x =0
and x = 1 by the relation (3.3.8). The value of f(x) at the points x =0 and x = 1 can
be assigned arbitrarily. When the derivative F’(x) is calculated, it is found that f(x)
is as given by Eq. (3.2.9) in Example 3.2.6. Conversely, if the p.d.f. of X is given by
Eq. (3.2.9), then by using Eq. (3.3.7) it is found that F(x) is as given in this example.

<

The Quantile Function

Fair Bets. Suppose that X is the amount of rain that will fall tomorrow, and X has
c.d.f. F. Suppose that we want to place an even-money bet on X as follows: If X < x,
we win one dollar and if X > x; we lose one dollar. In order to make this bet fair, we
need Pr(X < xg) = Pr(X > x3) = 1/2. We could search through all of the real numbers
x trying to find one such that F (x) = 1/2, and then we would let x, equal the value we
found. If F is a one-to-one function, then F has an inverse F~! and x, = F~1(1/2).

<

The value x; that we seek in Example 3.3.5 is called the 0.5 quantile of X or the
50th percentile of X because 50% of the distribution of X is at or below x.

Quantiles/Percentiles. Let X be a random variable with c.d.f. F. For each p strictly
between 0 and 1, define F~( p) to be the smallest value x such that F(x) > p. Then
F~1(p) is called the p quantile of X or the 100p percentile of X. The function F~!
defined here on the open interval (0, 1) is called the quantile function of X.
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Standardized Test Scores. Many universities in the United States rely on standardized
test scores as part of their admissions process. Thousands of people take these tests
each time that they are offered. Each examinee’s score is compared to the collection
of scores of all examinees to see where it fits in the overall ranking. For example, if
83% of all test scores are at or below your score, your test report will say that you
scored at the 83rd percentile. |

The notation F~1(p) in Definition 3.3.2 deserves some justification. Suppose first
that the c.d.f. F of X is continuous and one-to-one over the whole set of possible
values of X. Then the inverse F~! of F exists, and for each 0 < p < 1, there is one
and only one x such that F(x) = p. That x is F~!(p). Definition 3.3.2 extends the
concept of inverse function to nondecreasing functions (such as c.d.f.’s) that may be
neither one-to-one nor continuous.

Quantiles of Continuous Distributions When the c.d.f. of a random variable X is
continuous and one-to-one over the whole set of possible values of X, the inverse
F~1of F exists and equals the quantile function of X.

Value at Risk. The manager of an investment portfolio is interested in how much
money the portfolio might lose over a fixed time horizon. Let X be the change
in value of the given portfolio over a period of one month. Suppose that X has
the p.d.f. in Fig. 3.7. The manager computes a quantity known in the world of risk
management as Value at Risk (denoted by VaR). To be specific, let ¥ = —X stand
for the loss incurred by the portfolio over the one month. The manager wants to
have a level of confidence about how large Y might be. In this example, the manager
specifies a probability level, such as 0.99 and then finds y, the 0.99 quantile of Y. The
manager is now 99% sure that Y <y, and y, is called the VaR. If X has a continuous
distribution, then it is easy to see that y, is closely related to the 0.01 quantile of
the distribution of X. The 0.01 quantile x, has the property that Pr(X < xy) = 0.01.
But Pr(X < xg) = Pr(Y > —xg) =1 — Pr(Y < —x(). Hence, —x is a 0.99 quantile of
Y. For the p.d.f. in Fig. 3.7, we see that xy; = —4.14, as the shaded region indicates.
Then y, =4.14 is VaR for one month at probability level 0.99. <
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Figure 3.8 The c.d.f. of a
uniform distribution indi-
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Uniform Distribution on an Interval. Let X have the uniform distribution on the
interval [a, b]. The c.d.f. of X is

0 if x <a,
Fx)=Pr(X<x)= / 3
a b—a

1 if x > b.

The integral above equals (x —a)/(b—a).So, F(x) = (x —a)/(b—a) foralla <x <b,
which is a strictly increasing function over the entire interval of possible values of X.
The inverse of this function is the quantile function of X, which we obtain by setting
F(x) equal to p and solving for x:

du ifa<x<b,

X —a

b—a
x—a=pb-a),
x=a+ pb—a)=pb+ (1— pa.
Figure 3.8 illustrates how the calculation of a quantile relates to the c.d.f.

The quantile function of X is F~'(p) = pb + (1 — p)afor 0 < p < 1. In particular,
Fl1/2)=® +a)/2. <

bl

Note: Quantiles, Like c.d.f.’s, Depend on the Distribution Only. Any two random
variables with the same distribution have the same quantile function. When we refer
to a quantile of X, we mean a quantile of the distribution of X.

Quantiles of Discrete Distributions Itis convenient to be able to calculate quantiles
for discrete distributions as well. The quantile function of Definition 3.3.2 exists for all
distributions whether discrete, continuous, or otherwise. For example, in Fig. 3.6, let
zg < p < z;. Then the smallest x such that F(x) > p is x;. For every value of x < xq,
we have F(x) < zy < p and F(x{) = z;. Notice that F(x) =z for all x between x;
and x,, but since x; is the smallest of all those numbers, x; is the p quantile. Because
distribution functions are continuous from the right, the smallest x such that F(x) > p
exists for all 0 < p < 1. For p = 1, there is no guarantee that such an x will exist. For
example, in Fig. 3.6, F(x4) =1, but in Example 3.3.1, F(x) < 1 for all x. For p =0,
there is never a smallest x such that F(x) =0 because lim,_, _,, F(x) = 0. That is, if
F(xg) =0, then F(x) =0 for all x < x;. For these reasons, we never talk about the 0
or 1 quantiles.
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Table 3.1 Quantile function

for Example 3.3.9

P Fl(p)
(0, 0.1681] 0
(0.1681, 0.5283] 1
(0.5283, 0.8370] 2
(0.8370, 0.9693] 3
(0.9693, 0.9977] 4
0.9977, 1) 5

Quantiles of a Binomial Distribution. Let X have the binomial distribution with pa-
rameters 5 and 0.3. The binomial table in the back of the book has the p.f. f of X,
which we reproduce here together with the c.d.f. F:

x 0 1 2 3 4 5

fx) 0.1681 0.3602 0.3087 0.1323 0.0284 0.0024
F(x) 0.1681 0.5283 0.8370 0.9693 0.9977 1

(A little rounding error occurred in the p.f.) So, for example, the 0.5 quantile of this
distribution is 1, which is also the 0.25 quantile and the 0.20 quantile. The entire
quantile function is in Table 3.1. So, the 90th percentile is 3, which is also the 95th
percentile, etc. |

Certain quantiles have special names.

Median/Quartiles. The 1/2 quantile or the 50th percentile of a distribution is called its
median. The 1/4 quantile or 25th percentile is the lower quartile. The 3/4 quantile or
75th percentile is called the upper quartile.

Note: The Median Is Special. The median of a distribution is one of several special
features that people like to use when sumarizing the distribution of a random vari-
able. We shall discuss summaries of distributions in more detail in Chapter 4. Because
the median is such a popular summary, we need to note that there are several dif-
ferent but similar “definitions” of median. Recall that the 1/2 quantile is the smallest
number x such that F(x) > 1/2. For some distributions, usually discrete distributions,
there will be an interval of numbers [x, x;) such that for all x € [xy, xp), F(x) =1/2.
In such cases, it is common to refer to all such x (including x,) as medians of the dis-
tribution. (See Definition 4.5.1.) Another popular convention is to call (x; + x;)/2
the median. This last is probably the most common convention. The readers should
be aware that, whenever they encounter a median, it might be any one of the things
that we just discussed. Fortunately, they all mean nearly the same thing, namely that
the number divides the distribution in half as closely as is possible.
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Exercises

Uniform Distribution on Integers. Let X have the uniform distribution on the integers
1,2, 3, 4. (See Definition 3.1.6.) The c.d.f. of X is

0 ifx <1,
1/4 ifl<x <2,
Fx)=41/2 if2<x<3,
3/4 if3<x <4,
1 ifx > 4.
The 1/2 quantile is 2, but every number in the interval [2, 3] might be called a median.
The most popular choice would be 2.5. |

One advantage to describing a distribution by the quantile function rather than
by the c.d.f. is that quantile functions are easier to display in tabular form for multiple
distributions. The reason is that the domain of the quantile function is always the
interval (0, 1) no matter what the possible values of X are. Quantiles are also useful
for summarizing distributions in terms of where the probability is. For example, if
one wishes to say where the middle half of a distribution is, one can say that it lies
between the 0.25 quantile and the 0.75 quantile. In Sec. 8.5, we shall see how to use
quantiles to help provide estimates of unknown quantities after observing data.

In Exercise 19, you can show how to recover the c.d.f. from the quantile function.
Hence, the quantile function is an alternative way to characterize a distribution.

Summary

The c.d.f. F of a random variable X is F(x) = Pr(X < x) for all real x. This function
is continuous from the right. If we let F(x~) equal the limit of F(y) as y approaches
x from below, then F(x) — F(x~) = Pr(X = x). A continuous distribution has a
continuous c.d.f. and F'(x) = f(x), the p.d.f. of the distribution, for all x at which
F is differentiable. A discrete distribution has a c.d.f. that is constant between the
possible values and jumps by f(x) at each possible value x. The quantile function
F~1(p) is equal to the smallest x such that F(x) > p for0 < p < 1.

1. Suppose that a random variable X has the Bernoulli
distribution with parameter p =0.7. (See Definition
3.1.5.) Sketch the c.d.f. of X.

2. Suppose that a random variable X can take only the
values —2, 0, 1, and 4, and that the probabilities of these
values are as follows: Pr(X = —-2) =0.4, Pr(X =0) =0.1,
Pr(X =1) =0.3, and Pr(X =4) = 0.2. Sketch the c.d.f. of
X.

3. Suppose that a coin is tossed repeatedly until a head is
obtained for the first time, and let X denote the number
of tosses that are required. Sketch the c.d.f. of X.

4. Suppose that the c.d.f. F of a random variable X is as
sketched in Fig. 3.9. Find each of the following probabili-
ties:

a. Pr(X=-1) b. Pr(X <0)
c. Pr(X=<0) d Pr(X=1)
e. Pr0<X <3 f Pr0O<X<3
g Pr0<X<3 h Prl<X<2)
i Prl<X<2) j. Pr(X=>5)
k. Pr(X >)5) L Pr@B<X<4%

5. Suppose that the c.d.f. of a random variable X is as
follows:

0 forx <0,
F(x)= %xz for0 <x <3,
1 for x > 3.

Find and sketch the p.d.f. of X.



6. Suppose that the c.d.f. of a random variable X is as
follows:
3 forx <3,

F(x):{

1 for x > 3.
Find and sketch the p.d.f. of X.

7. Suppose, as in Exercise 7 of Sec. 3.2, that a random
variable X has the uniform distribution on the interval
[—2, 8]. Find and sketch the c.d.f. of X.

8. Suppose that a point in the xy-plane is chosen at ran-
dom from the interior of a circle for which the equation is
x? + y? = 1; and suppose that the probability that the point
will belong to each region inside the circle is proportional
to the area of that region. Let Z denote a random variable
representing the distance from the center of the circle to
the point. Find and sketch the c.d.f. of Z.

9. Suppose that X has the uniform distribution on the
interval [0, 5] and that the random variable Y is defined
by Y=0if X <1, Y=5if X >3, and Y = X otherwise.
Sketch the c.d.f. of Y.

10. For the c.d.f. in Example 3.3.4, find the quantile func-
tion.

11. For the c.d.f. in Exercise 5, find the quantile function.
12. For the c.d.f. in Exercise 6, find the quantile function.

13. Suppose that a broker believes that the change in
value X of a particular investment over the next two
months has the uniform distribution on the interval [—12,
24]. Find the value at risk VaR for two months at proba-
bility level 0.95.

14. Find the quartiles and the median of the binomial
distribution with parameters n = 10 and p =0.2.

F(x)

3.3 The Cumulative Distribution Function |17

15. Suppose that X has the p.d.f.

2x if0<x <1,
0  otherwise.

f(x):{

Find and sketch the c.d.f. or X.

16. Find the quantile function for the distribution in Ex-
ample 3.3.1.

17. Prove that the quantile function F~! of a general ran-
dom variable X has the following three properties that are
analogous to properties of the c.d.f.:

a. F~lis a nondecreasing function of p for 0 < p < 1.

b. Let xg=1lim,-0 F‘l(p) and x; =lim,1 F‘l(p).
p>0 p<1
Then x( equals the greatest lower bound on the set

of numbers ¢ such that Pr(X < ¢) > 0, and x; equals
the least upper bound on the set of numbers d such
that Pr(X >d) > 0.

¢. F~lis continuous from the left; that is F _1(p) =
Fl(p)forall0<p<1.

18. Let X be a random variable with quantile function
F~1. Assume the following three conditions: (i) F~1(p) =
¢ for all p in the interval (pg, py), (ii) either pg =0 or
F~Y(py) < ¢, and (iii) either p; =1or F~1(p) > ¢ for p >
p1. Prove that Pr(X =c¢) = p; — po.

19. Let X be a random variable with c.d.f. F and quantile
function F~!. Let x, and x; be as defined in Exercise 17.
(Note that xy = —oo and/or x; = oo are possible.) Prove
that for all x in the open interval (xg, x1), F (x) is the largest
p such that F~1(p) < x.

20. In Exercise 13 of Sec. 3.2, draw a sketch of the c.d.f. F
of X and find F(10).

S

Figure 3.9 The c.d.f. for Exercise 4.

=Y



118

Chapter 3 Random Variables and Distributions

Example
3.4.1

Definition
3.4.1

Example
3.4.2

Definition
3.4.2

3.4 Bivariate Distributions

We generalize the concept of distribution of a random variable to the joint distri-
bution of two random variables. In doing so, we introduce the joint p.f. for two
discrete random variables, the joint p.d.f. for two continuous random variables,
and the joint c.d.f. for any two random variables. We also introduce a joint hybrid
of p.f and p.d.f. for the case of one discrete random variable and one continuous
random variable.

Demands for Utilities. In Example 3.1.5, we found the distribution of the random
variable X that represented the demand for water. But there is another random
variable, Y, the demand for electricity, that is also of interest. When discussing
two random variables at once, it is often convenient to put them together into an
ordered pair, (X, Y). As early as Example 1.5.4 on page 19, we actually calculated
some probabilities associated with the pair (X, Y). In that example, we defined two
events A and B that we now can express as A = {X > 115} and B ={Y > 110}. In
Example 1.5.4, we computed Pr(A N B) and Pr(A U B). We can express A N B and
A U B as events involving the pair (X, Y). For example, define the set of ordered
pairs C = {(x, y) : x > 115 and y > 110} so that that the event {(X, Y) € C)} = AN B.
That is, the event that the pair of random variables lies in the set C is the same
as the intersection of the two events A and B. In Example 1.5.4, we computed
Pr(AN B) =0.1198. So, we can now assert that Pr((X, Y) e C) =0.1198. <

Joint/Bivariate Distribution. Let X and Y be random variables. The joint distribution
or bivariate distribution of X and Y is the collection of all probabilities of the form
Pr[(X, Y) € C]for all sets C of pairs of real numbers such that {(X, Y) € C}is an event.

Itis a straightforward consequence of the definition of the joint distribution of X and
Y that this joint distribution is itself a probability measure on the set of ordered pairs
of real numbers. The set {(X, Y) € C} will be an event for every set C of pairs of real
numbers that most readers will be able to imagine.

In this section and the next two sections, we shall discuss convenient ways to
characterize and do computations with bivariate distributions. In Sec. 3.7, these
considerations will be extended to the joint distribution of an arbitrary finite number
of random variables.

Discrete Joint Distributions

Theater Patrons. Suppose that a sample of 10 people is selected at random from a
theater with 200 patrons. One random variable of interest might be the number X
of people in the sample who are over 60 years of age, and another random variable
might be the number Y of people in the sample who live more than 25 miles from
the theater. For each ordered pair (x, y) withx =0,...,10and y =0, ..., 10, we
might wish to compute Pr((X, Y) = (x, y)), the probability that there are x people in
the sample who are over 60 years of age and there are y people in the sample who
live more than 25 miles away. |

Discrete Joint Distribution. Let X and Y be random variables, and consider the ordered
pair (X, Y). If there are only finitely or at most countably many different possible
values (x, y) for the pair (X, Y), then we say that X and Y have a discrete joint
distribution.
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The two random variables in Example 3.4.2 have a discrete joint distribution.

Suppose that two random variables X and Y each have a discrete distribution. Then
X and Y have a discrete joint distribution.

Proof If both X and Y have only finitely many possible values, then there will be
only a finite number of different possible values (x, y) for the pair (X, ¥). On the
other hand, if either X or Y or both can take a countably infinite number of possible
values, then there will also be a countably infinite number of possible values for the
pair (X, Y). In all of these cases, the pair (X, Y) has a discrete joint distribution. =

When we define continuous joint distribution shortly, we shall see that the obvious
analog of Theorem 3.4.1 is not true.

Joint Probability Function, p.f. The joint probability function, or the joint p.f., of X and
Y is defined as the function f such that for every point (x, y) in the xy-plane,

fx,y)=Pr(X=xand Y =y).

The following result is easy to prove because there are at most countably many
pairs (x, y) that must account for all of the probability a discrete joint distribution.

Let X and Y have a discrete joint distribution. If (x, y) is not one of the possible
values of the pair (X, Y), then f(x, y) =0. Also,

> few=1

All (x,y)

Finally, for each set C of ordered pairs,

Pr((X.Y)eCl= > f(x.y). u

(x,y)eC

Specifying a Discrete Joint Distribution by a Table of Probabilities. In a certain suburban
area, each household reported the number of cars and the number of television sets
that they owned. Let X stand for the number of cars owned by a randomly selected
household in this area. Let Y stand for the number of television sets owned by that
same randomly selected household. In this case, X takes only the values 1, 2, and 3;
Y takes only the values 1, 2, 3, and 4; and the joint p.f. f of X and Y is as specified in
Table 3.2.

Table 3.2 Joint p.f. f(x, y) for
Example 3.4.3

1 01 O 01 0
03 0 01 02
3 0 02 0 0

[\
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Figure 3.10 The joint p.f. of
X and Y in Example 3.4.3.
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3.44

Definition
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S y)

This joint p.f. is sketched in Fig. 3.10. We shall determine the probability that
the randomly selected household owns at least two of both cars and televisions. In
symbols, this is Pr(X > 2 and Y > 2).

By summing f(x, y) over all values of x > 2 and y > 2, we obtain the value

Pr(X>2andY>2)=f(2,2)+ f2,3)+ f2, 4+ f(3,2)
+f3.3)+ 134
=0.5.
Next, we shall determine the probability that the randomly selected household owns

exactly one car, namely Pr(X = 1). By summing the probabilities in the first row of
the table, we obtain the value

4
Pr(X=1)=) f(,y) =02 <
y=1

Continuous Joint Distributions

Demands for Utilities. Consider again the joint distribution of X and Y in Exam-
ple 3.4.1. When we first calculated probabilities for these two random variables back
in Example 1.5.4 on page 19 (even before we named them or called them random
variables), we assumed that the probability of each subset of the sample space was
proportional to the area of the subset. Since the area of the sample space is 29,204,
the probability that the pair (X, Y) liesin aregion C is the area of C divided by 29,204.
We can also write this relation as

1
Pr((X,Y = I 4.1
r((X,Y) € C} /C f 29.204 dx dy, (34.1)

assuming that the integral exists. |

If one looks carefully at Eq. (3.4.1), one will notice the similarity to Egs. (3.2.2)
and (3.2.1). We formalize this connection as follows.

Continuous Joint Distribution/Joint p.d.f./Support. Two random variables X and Y have
a continuous joint distribution if there exists a nonnegative function f defined over
the entire xy-plane such that for every subset C of the plane,

Pr[(X, Y)eC]sz/f(x,y)dx dy,
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if the integral exists. The function f is called the joint probability density function
(abbreviated joint p.d.f) of X and Y. The closure of the set {(x, y): f(x, y) > 0} is
called the support of (the distribution of) (X, Y).

Demands for Utilities. In Example 3.4.4, it is clear from Eq. (3.4.1) that the joint p.d.f.
of X and Y is the function
1
F(x,y) =1 29,204 (3.4.2)
0 otherwise. <

ford <x <200and 1<y <150,

It is clear from Definition 3.4.4 that the joint p.d.f. of two random variables
characterizes their joint distribution. The following result is also straightforward.

A joint p.d.f. must satisfy the following two conditions:

fx,y)>0 for —oco<x <ocoand —o0 <y < 00,

fw/wf(x,y)dxdyzl. [

Any function that satisfies the two displayed formulas in Theorem 3.4.3 is the joint
p.d.f. for some probability distribution.

An example of the graph of a joint p.d.f. is presented in Fig. 3.11.

The total volume beneath the surface z = f(x, y) and above the xy-plane must be
1. The probability that the pair (X, Y) will belong to the rectangle C is equal to the
volume of the solid figure with base A shown in Fig. 3.11. The top of this solid figure
is formed by the surface z = f(x, y).

In Sec. 3.5, we will show that if X and Y have a continuous joint distribution,
then X and Y each have a continuous distribution when considered separately. This
seems reasonable intutively. However, the converse of this statement is not true, and
the following result helps to show why.

and
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For every continuous joint distribution on the xy-plane, the following two statements
hold:

i. Every individual point, and every infinite sequence of points, in the xy-plane
has probability 0.

ii. Let f be a continuous function of one real variable defined on a (possibly
unbounded) interval (a, b). The sets {(x, y) :y = f(x), a < x < b} and {(x, y):
x = f(y), a <y < b} have probability 0.

Proof According to Definition 3.4.4, the probability that a continuous joint distri-
bution assigns to a specified region of the xy-plane can be found by integrating the
joint p.d.f. f(x, y) over that region, if the integral exists. If the region is a single point,
the integral will be 0. By Axiom 3 of probability, the probability for any countable
collection of points must also be 0. The integral of a function of two variables over
the graph of a continuous function in the xy-plane is also 0. ]

Not a Continuous Joint Distribution. It follows from (ii) of Theorem 3.4.4 that the
probability that (X, Y) will lie on each specified straight line in the plane is 0. If
X has a continuous distribution and if ¥ = X, then both X and Y have continuous
distributions, but the probability is 1 that (X, Y) lies on the straight line y = x. Hence,
X and Y cannot have a continuous joint distribution. |

Calculating a Normalizing Constant. Suppose that the joint p.d.f. of X and Y is specified
as follows:
flxy) = { exty forx?<y=<l,
0 otherwise.
We shall determine the value of the constant c.
The support S of (X, Y) is sketched in Fig. 3.12. Since f(x, y) =0 outside S, it

follows that
o0 o0
/ [ f(x,y)dxdyszf(x,y)dxdy
—00 J—0 S

1 1 4
=/ / szy dydx = —c.
_1J2 21

Since the value of this integral must be 1, the value of ¢ must be 21/4.

The limits of integration on the last integral in (3.4.3) were determined as follows.
We have our choice of whether to integrate x or y as the inner integral, and we chose
y. So, we must find, for each x, the interval of y values over which to integrate. From
Fig. 3.12, we see that, for each x, y runs from the curve where y = x2 to the line
where y = 1. The interval of x values for the outer integral is from —1 to 1 according
to Fig. 3.12. If we had chosen to integrate x on the inside, then for each y, we see that
x runs from —,/y to ,/y, while y runs from 0 to 1. The final answer would have been
the same. <

(3.4.3)

Calculating Probabilities from a Joint p.d.f. For the joint distribution in Example 3.4.7,
we shall now determine the value of Pr(X > Y).
The subset S of S where x > y is sketched in Fig. 3.13. Hence,

Lorvor 3
Pr(XZY):f/f(x,y)dxdy:/ / —x“ydydx =—. <
So 0 x2 4 20



Figure 3.12 The support S
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of (X, Y) in Example 3.4.8. \ /
(—=1,1) (1, 1)

Figure 3.13 The subset S,
of the support S where x > y

in Example 3.4.8.
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Determining a Joint p.d.f. by Geometric Methods. Suppose that a point (X, Y) is se-
lected at random from inside the circle x*> 4+ y? <9. We shall determine the joint
p.df of X and Y.

The support of (X, ) is the set S of points on and inside the circle x> 4+ y> <9.
The statement that the point (X, Y) is selected at random from inside the circle is
interpreted to mean that the joint p.d.f. of X and Y is constant over S and is O outside S.
Thus,

fx y):{c for (x, y) € S,

0 otherwise.

We must have
/ /f(x, y)dx dy=c x (areaof §) = 1.
S

Since the area of the circle S is 97, the value of the constant ¢ must be 1/(97). <«

Mixed Bivariate Distributions

A Clinical Trial. Consider a clinical trial (such as the one described in Example 2.1.12)
in which each patient with depression receives a treatment and is followed to see
whether they have a relapse into depression. Let X be the indicator of whether or
not the first patient is a “success” (no relapse). That is X = 1 if the patient does not
relapse and X = 0 if the patient relapses. Also, let P be the proportion of patients
who have no replapse among all patients who might receive the treatment. It is clear
that X must have a discrete distribution, but it might be sensible to think of P as
a continuous random variable taking its value anywhere in the interval [0, 1]. Even
though X and P can have neither a joint discrete distribution nor a joint continuous
distribution, we can still be interested in the joint distribution of X and P. <



124  Chapter 3 Random Variables and Distributions

Definition
3.4.5

Example
3.4.11

Prior to Example 3.4.10, we have discussed bivariate distributions that were
either discrete or continuous. Occasionally, one must consider a mixed bivariate dis-
tribution in which one of the random variables is discrete and the other is continuous.
We shall use a function f(x, y) to characterize such a joint distribution in much the
same way that we use a joint p.f. to characterize a discrete joint distribution or a joint
p-d.f. to characterize a continuous joint distribution.

Joint p.f./p.d.f. Let X and Y be random variables such that X is discrete and Y is
continuous. Suppose that there is a function f(x, y) defined on the xy-plane such
that, for every pair A and B of subsets of the real numbers,

Pr(XeAandY € B) = / Z f(x, y)dy, (3.4.4)
B

xX€eA

if the integral exists. Then the function f is called the joint p.f/p.d.f of X and Y.

Clearly, Definition 3.4.5 can be modified in an obvious way if Y is discrete and X
is continuous. Every joint p.f./p.d.f. must satisfy two conditions. If X is the discrete

random variable with possible values xy, x5, ... and Y is the continuous random
variable, then f(x, y) >0 for all x, y and
00 o0
/ D fl, ydy=1. (3.4.5)
iz

Because f is nonnegative, the sum and integral in Egs. (3.4.4) and (3.4.5) can be done
in whichever order is more convenient.

Note: Probabilities of More General Sets. For a general set C of pairs of real
numbers, we can compute Pr((X, Y) € C) using the joint p.f./p.d.f. of X and Y. For
each x,let C, ={y:(x, y) € C}. Then

Pr((X,Y)eC)= Z/C J(x, y)dy,

All x

if all of the integrals exist. Alternatively, for each y, define C¥ = {x : (x, y) € C}, and
then

Pr((X,Y) e C) =/ [Z fx, y)] dy,

— [xecy

if the integral exists.

A Joint p.f./p.d.f. Suppose that the joint p.f./p.d.f. of X and Y is

x—1
f(x,y)=xy3 , forx=1,2,3and0<y <1

We should check to make sure that this function satisfies (3.4.5). It is easier to
integrate over the y values first, so we compute

3 1xy_ 3 1
2/0 —ay=Y 5=l

x=1

Suppose that we wish to compute the probability that Y > 1/2 and X > 2. That is, we
wantPr(X € A and Y € B) with A = [2, oo) and B =[1/2, 00). So, we apply Eq. (3.4.4)
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to get the probability
3 1 x—1 3 _ X
3 / D _ay=%" <M) = 0.5417.
x=2 1/2 3 x=2 3

For illustration, we shall compute the sum and integral in the other order also.
For each y € [1/2, 1), Zizz f(x,y)=2y/3+ y% For y > 1/2, the sum is 0. So, the
probability is

1 2 3
2 2 1 1 1 1
-y+ dy=-[1-|= +-|1-(= =0.5417. <
/1/2[3y y} ' 3[ <2>] 3[ (2)}
A Clinical Trial. A possible joint p.f./p.d.f. for X and P in Example 3.4.10 is

f,p=pAd—p'™*, forx=0,1land0<p <1

Here, X is discrete and P is continuous. The function f is nonnegative, and the
reader should be able to demonstrate that it satisfies (3.4.5). Suppose that we wish
to compute Pr(X < 0and P < 1/2). This can be computed as

1/2 1
/ (1= pdp=—2[A—1/27 — A —0?]=>.
0 2 8

Suppose that we also wish to compute Pr(X = 1). This time, we apply Eq. (3.4.4) with
A= {1} and B = (0, 1). In this case,

1
Pr(X:l):/ pdp:l. <
0 2

A more complicated type of joint distribution can also arise in a practical prob-
lem.

A Complicated Joint Distribution. Suppose that X and Y are the times at which two
specific components in an electronic system fail. There might be a certain probability
p (0 < p <1) that the two components will fail at the same time and a certain
probability 1 — p that they will fail at different times. Furthermore, if they fail at
the same time, then their common failure time might be distributed according to a
certain p.d.f. f(x);if they fail at different times, then these times might be distributed
according to a certain joint p.d.f. g(x, y).

The joint distribution of X and Y in this example is not continuous, because
there is positive probability p that (X, Y) will lie on the line x = y. Nor does the joint
distribution have a joint p.f./p.d.f. or any other simple function to describe it. There
are ways to deal with such joint distributions, but we shall not discuss them in this
text. <

Bivariate Cumulative Distribution Functions

The first calculation in Example 3.4.12, namely, Pr(X <0and Y < 1/2), is a gener-
alization of the calculation of a c.d.f. to a bivariate distribution. We formalize the
generalization as follows.

Joint (Cumulative) Distribution Function/c.d.f. The joint distribution function or joint
cumulative distribution function (joint c.d.f) of two random variables X and Y is
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Figure 3.14 The probability

of a rectangle.

Theorem
3.4.5

y

Y

defined as the function F such that for all values of x and y (—oo < x < oo and —oo <
y < 00),

Fx,y)=Pr(X<xandY <y).

Itis clear from Definition 3.4.6 that F (x, y) is monotone increasing in x for each fixed
y and is monotone increasing in y for each fixed x.

If the joint c.d.f. of two arbitrary random variables X and Y is F, then the
probability that the pair (X, Y) will lie in a specified rectangle in the xy-plane can be
found from F as follows: For given numbers a < b and ¢ < d,

Pra<X <bandc <Y <d)
=Pra<X<bandY <d)—Pra<X <band? <¢)
=[Pr(X <bandY <d) —Pr(X <aand Y <d)] (3.4.6)
—[Pr(X <band Y <c) —Pr(X <aand Y <¢)]
=F(b,d)— F(a,d) — F(b, c¢) + F(a, c).

Hence, the probability of the rectangle C sketched in Fig. 3.14 is given by the
combination of values of F just derived. It should be noted that two sides of the
rectangle are included in the set C and the other two sides are excluded. Thus, if there
are points or line segments on the boundary of C that have positive probability, it is

important to distinguish between the weak inequalities and the strict inequalities in
Eq. (3.4.6).

Let X and Y have a joint c.d.f. F. The c.d.f. F; of just the single random variable X
can be derived from the joint c.d.f. F as Fi(x) =lim,_, , F(x, y). Similarly, the c.d.f.
F, of Y equals F5(y) =1lim,_, o, F(x, y),for0 <y < oo.

Proof We prove the claim about F; as the claim about F; is similar. Let —oo < x < oo.
Define

By={X <xandY <0},
B,={X<xandn—-1<Y <n}, forn=12,...,

m
Am:UBn, form=1,2,....
n=0

Then {X <x}=U’" (B, and A, ={X <xandY <m}form=1,2, ... It follows
that Pr(A,,) = F(x, m) for each m. Also,
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Fi(x) =Pr(X <x)=Pr (U Bn>

n=1

o0
ZPr(Bn)= lim Pr(A,,)
m—00
n=0
= lim F(x,m)= lim F(x,y),
m—00 y—>00

where the third equality follows from countable additivity and the fact that the B,
events are disjoint, and the last equality follows from the fact that F(x, y) ismonotone
increasing in y for each fixed x. ]

Other relationships involving the univariate distribution of X, the univariate distri-
bution of Y, and their joint bivariate distribution will be presented in the next section.

Finally, if X and Y have a continuous joint distribution with joint p.d.f. f, then
the joint c.d.f. at (x, y) is

F(x,y)= f>’ /x f(r,s)drds.

Here, the symbols r and s are used simply as dummy variables of integration. The
joint p.d.f. can be derived from the joint c.d.f. by using the relations
PF(x.y) _ #F(x.y)

X, y)=
AR dxady ayox

at every point (x, y) at which these second-order derivatives exist.

Determininga Joint p.d.f. fromaJointc.d.f. Suppose that X and Y are random variables
that take values only in the intervals 0 < X <2 and 0 <Y < 2. Suppose also that the
jointc.d.f.of X and Y, for 0 <x <2 and 0 <y <2, is as follows:

1
F(x,y)= Exy(x + ). (3.4.7)

We shall first determine the c.d.f. F; of just the random variable X and then determine
the joint p.d.f. f of X and Y.

The value of F(x, y) at any point (x, y) in the xy-plane that does not represent
a pair of possible values of X and Y can be calculated from (3.4.7) and the fact that
F(x,y)=Pr(X <xandY <y). Thus,ifeitherx <0ory <0, then F(x, y) =0.If both
x>2andy>2,then F(x,y)=1.1f0<x <2andy > 2,then F(x, y) = F(x, 2), and
it follows from Eq. (3.4.7) that

Fx,y)= éx(x +2).

Similarly, if 0 < y <2 and x > 2, then

1
Fx,y)= gy(y +2).
The function F(x, y) has now been specified for every point in the xy-plane.
By letting y — oo, we find that the c.d.f. of just the random variable X is
0 for x <0,
Fi(x) =1 gx(x+2) for0<x<2,

1 for x > 2.
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Furthermore, for0 <x <2 and 0 <y <2,

PF(x,y) 1

=—-(x+y).
0xdy 8( Y)

Also,ifx <0,y <0,x >2,0r y > 2, then

32F (x, y) —0
0x0dy '

Hence, the joint p.d.f. of X and Y is

flx,y) = é(ery) forO0<x <2and0 <y <2,

otherwise. <

Demands for Utilities. We can compute the joint c.d.f. for water and electric demand
in Example 3.4.4 by using the joint p.d.f. that was given in Eq. (3.4.2). If either x <4 or
y <1,then F(x, y) = 0 because either X < x or Y <y would be impossible. Similarly,
if both x > 200 and y > 150, F(x, y) = 1 because both X <x and Y < y would be sure
events. For other values of x and y, we compute

Yo Xy
——dydx = for4 <x <200,1<y <150,
4 J1 29,204 29,204
X 150 1 X
F(x,y) = dydx = —  for 4 < x <200, 150,
() A /1 29,2047 T 196 =r=20y>
200 vy y
/ / dydx = — for x > 200, 1 < y < 150.
4 1 29,204 149

The reason that we need three cases in the formula for F(x, y) is that the joint p.d.f.
in Eq. (3.4.2) drops to 0 when x crosses above 200 or when y crosses above 150;
hence, we never want to integrate 1/29,204 beyond x = 200 or beyond y = 150. If
one takes the limit as y — oo of F(x, y) (for fixed 4 < x < 200), one gets the second
case in the formula above, which then is the c.d.f. of X, Fj(x). Similarly, if one takes
the lim,_, o, F(x, y) (for fixed 1 <y < 150), one gets the third case in the formula,
which then is the c.d.f. of Y, F5(y). |

Summary

The joint c.d.f. of two random variables X and Y is F(x, y) =Pr(X <xand Y <y).
The joint p.d.f. of two continuous random variables is a nonnegative function f such
that the probability of the pair (X, Y) beingin a set C is the integral of f(x, y) over the
set C, if the integral exists. The joint p.d.f. is also the second mixed partial derivative
of the joint c.d.f. with respect to both variables. The joint p.f. of two discrete random
variables is a nonnegative function f such that the probability of the pair (X, Y) being
inaset C isthe sum of f(x, y) overall pointsin C. A joint p.f. can be strictly positive at
countably many pairs (x, y) at most. The joint p.f./p.d.f. of a discrete random variable
X and a continuous random variable Y is a nonnegative function f such that the
probability of the pair (X, Y) being in a set C is obtained by summing f(x, y) over
all x such that (x, y) € C fo