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Preface

Changes to the Fourth Edition
. I have reorganized many main results that were included in the body of the

text by labeling them as theorems in order to facilitate students in finding and
referencing these results.

. I have pulled the important defintions and assumptions out of the body of the
text and labeled them as such so that they stand out better.

. When a new topic is introduced, I introduce it with a motivating example before
delving into the mathematical formalities. Then I return to the example to
illustrate the newly introduced material.

. I moved the material on the law of large numbers and the central limit theorem
to a new Chapter 6. It seemed more natural to deal with the main large-sample
results together.

. I moved the section on Markov chains into Chapter 3. Every time I cover this
material with my own students, I stumble over not being able to refer to random
variables, distributions, and conditional distributions. I have actually postponed
this material until after introducing distributions, and then gone back to cover
Markov chains. I feel that the time has come to place it in a more natural
location. I also added some material on stationary distributions of Markov
chains.

. I have moved the lengthy proofs of several theorems to the ends of their
respective sections in order to improve the flow of the presentation of ideas.

. I rewrote Section 7.1 to make the introduction to inference clearer.

. I rewrote Section 9.1 as a more complete introduction to hypothesis testing,
including likelihood ratio tests. For instructors not interested in the more math-
ematical theory of hypothesis testing, it should now be easier to skip from
Section 9.1 directly to Section 9.5.

Some other changes that readers will notice:

. I have replaced the notation in which the intersection of two sets A and B had
been represented AB with the more popular A ∩ B. The old notation, although
mathematically sound, seemed a bit arcane for a text at this level.

. I added the statements of Stirling’s formula and Jensen’s inequality.

. I moved the law of total probability and the discussion of partitions of a sample
space from Section 2.3 to Section 2.1.

. I define the cumulative distribution function (c.d.f.) as the prefered name of
what used to be called only the distribution function (d.f.).

. I added some discussion of histograms in Chapters 3 and 6.

. I rearranged the topics in Sections 3.8 and 3.9 so that simple functions of random
variables appear first and the general formulations appear at the end to make
it easier for instructors who want to avoid some of the more mathematically
challenging parts.

. I emphasized the closeness of a hypergeometric distribution with a large num-
ber of available items to a binomial distribution.

xi



xii Preface

. I gave a brief introduction to Chernoff bounds. These are becoming increasingly
important in computer science, and their derivation requires only material that
is already in the text.

. I changed the definition of confidence interval to refer to the random interval
rather than the observed interval. This makes statements less cumbersome, and
it corresponds to more modern usage.

. I added a brief discussion of the method of moments in Section 7.6.

. I added brief introductions to Newton’s method and the EM algorithm in
Chapter 7.

. I introduced the concept of pivotal quantity to facilitate construction of confi-
dence intervals in general.

. I added the statement of the large-sample distribution of the likelihood ratio
test statistic. I then used this as an alternative way to test the null hypothesis
that two normal means are equal when it is not assumed that the variances are
equal.

. I moved the Bonferroni inequality into the main text (Chapter 1) and later
(Chapter 11) used it as a way to construct simultaneous tests and confidence
intervals.

How to Use This Book

The text is somewhat long for complete coverage in a one-year course at the under-
graduate level and is designed so that instructors can make choices about which topics
are most important to cover and which can be left for more in-depth study. As an ex-
ample, many instructors wish to deemphasize the classical counting arguments that
are detailed in Sections 1.7–1.9. An instructor who only wants enough information
to be able to cover the binomial and/or multinomial distributions can safely dis-
cuss only the definitions and theorems on permutations, combinations, and possibly
multinomial coefficients. Just make sure that the students realize what these values
count, otherwise the associated distributions will make no sense. The various exam-
ples in these sections are helpful, but not necessary, for understanding the important
distributions. Another example is Section 3.9 on functions of two or more random
variables. The use of Jacobians for general multivariate transformations might be
more mathematics than the instructors of some undergraduate courses are willing
to cover. The entire section could be skipped without causing problems later in the
course, but some of the more straightforward cases early in the section (such as con-
volution) might be worth introducing. The material in Sections 9.2–9.4 on optimal
tests in one-parameter families is pretty mathematics, but it is of interest primarily
to graduate students who require a very deep understanding of hypothesis testing
theory. The rest of Chapter 9 covers everything that an undergraduate course really
needs.

In addition to the text, the publisher has an Instructor’s Solutions Manual, avail-
able for download from the Instructor Resource Center at www.pearsonhighered
.com/irc, which includes some specific advice about many of the sections of the text.
I have taught a year-long probability and statistics sequence from earlier editions of
this text for a group of mathematically well-trained juniors and seniors. In the first
semester, I covered what was in the earlier edition but is now in the first five chap-
ters (including the material on Markov chains) and parts of Chapter 6. In the second
semester, I covered the rest of the new Chapter 6, Chapters 7–9, Sections 11.1–11.5,
and Chapter 12. I have also taught a one-semester probability and random processes

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
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course for engineers and computer scientists. I covered what was in the old edition
and is now in Chapters 1–6 and 12, including Markov chains, but not Jacobians. This
latter course did not emphasize mathematical derivation to the same extent as the
course for mathematics students.

A number of sections are designated with an asterisk (*). This indicates that
later sections do not rely materially on the material in that section. This designation
is not intended to suggest that instructors skip these sections. Skipping one of these
sections will not cause the students to miss definitions or results that they will need
later. The sections are 2.4, 3.10, 4.8, 7.7, 7.8, 7.9, 8.6, 8.8, 9.2, 9.3, 9.4, 9.8, 9.9, 10.6,
10.7, 10.8, 11.4, 11.7, 11.8, and 12.5. Aside from cross-references between sections
within this list, occasional material from elsewhere in the text does refer back to
some of the sections in this list. Each of the dependencies is quite minor, however.
Most of the dependencies involve references from Chapter 12 back to one of the
optional sections. The reason for this is that the optional sections address some of
the more difficult material, and simulation is most useful for solving those difficult
problems that cannot be solved analytically. Except for passing references that help
put material into context, the dependencies are as follows:

. The sample distribution function (Section 10.6) is reintroduced during the
discussion of the bootstrap in Section 12.6. The sample distribution function
is also a useful tool for displaying simulation results. It could be introduced as
early as Example 12.3.7 simply by covering the first subsection of Section 10.6.

. The material on robust estimation (Section 10.7) is revisited in some simulation
exercises in Section 12.2 (Exercises 4, 5, 7, and 8).

. Example 12.3.4 makes reference to the material on two-way analysis of variance
(Sections 11.7 and 11.8).

Supplements

The text is accompanied by the following supplementary material:

. Instructor’s Solutions Manual contains fully worked solutions to all exercises
in the text. Available for download from the Instructor Resource Center at
www.pearsonhighered.com/irc.

. Student Solutions Manual contains fully worked solutions to all odd exercises in
the text. Available for purchase from MyPearsonStore at www.mypearsonstore
.com. (ISBN-13: 978-0-321-71598-2; ISBN-10: 0-321-71598-5)
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1.1 The History of Probability
The use of probability to measure uncertainty and variability dates back hundreds
of years. Probability has found application in areas as diverse as medicine, gam-
bling, weather forecasting, and the law.

The concepts of chance and uncertainty are as old as civilization itself. People have
always had to cope with uncertainty about the weather, their food supply, and other
aspects of their environment, and have striven to reduce this uncertainty and its
effects. Even the idea of gambling has a long history. By about the year 3500 b.c.,
games of chance played with bone objects that could be considered precursors of
dice were apparently highly developed in Egypt and elsewhere. Cubical dice with
markings virtually identical to those on modern dice have been found in Egyptian
tombs dating from 2000 b.c. We know that gambling with dice has been popular ever
since that time and played an important part in the early development of probability
theory.

It is generally believed that the mathematical theory of probability was started by
the French mathematicians Blaise Pascal (1623–1662) and Pierre Fermat (1601–1665)
when they succeeded in deriving exact probabilities for certain gambling problems
involving dice. Some of the problems that they solved had been outstanding for about
300 years. However, numerical probabilities of various dice combinations had been
calculated previously by Girolamo Cardano (1501–1576) and Galileo Galilei (1564–
1642).

The theory of probability has been developed steadily since the seventeenth
century and has been widely applied in diverse fields of study. Today, probability
theory is an important tool in most areas of engineering, science, and management.
Many research workers are actively engaged in the discovery and establishment of
new applications of probability in fields such as medicine, meteorology, photography
from satellites, marketing, earthquake prediction, human behavior, the design of
computer systems, finance, genetics, and law. In many legal proceedings involving
antitrust violations or employment discrimination, both sides will present probability
and statistical calculations to help support their cases.

1
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References

The ancient history of gambling and the origins of the mathematical theory of prob-
ability are discussed by David (1988), Ore (1960), Stigler (1986), and Todhunter
(1865).

Some introductory books on probability theory, which discuss many of the same
topics that will be studied in this book, are Feller (1968); Hoel, Port, and Stone (1971);
Meyer (1970); and Olkin, Gleser, and Derman (1980). Other introductory books,
which discuss both probability theory and statistics at about the same level as they
will be discussed in this book, are Brunk (1975); Devore (1999); Fraser (1976); Hogg
and Tanis (1997); Kempthorne and Folks (1971); Larsen and Marx (2001); Larson
(1974); Lindgren (1976); Miller and Miller (1999); Mood, Graybill, and Boes (1974);
Rice (1995); and Wackerly, Mendenhall, and Schaeffer (2008).

1.2 Interpretations of Probability
This section describes three common operational interpretations of probability.
Although the interpretations may seem incompatible, it is fortunate that the calcu-
lus of probability (the subject matter of the first six chapters of this book) applies
equally well no matter which interpretation one prefers.

In addition to the many formal applications of probability theory, the concept of
probability enters our everyday life and conversation. We often hear and use such
expressions as “It probably will rain tomorrow afternoon,” “It is very likely that
the plane will arrive late,” or “The chances are good that he will be able to join us
for dinner this evening.” Each of these expressions is based on the concept of the
probability, or the likelihood, that some specific event will occur.

Despite the fact that the concept of probability is such a common and natural
part of our experience, no single scientific interpretation of the term probability is
accepted by all statisticians, philosophers, and other authorities. Through the years,
each interpretation of probability that has been proposed by some authorities has
been criticized by others. Indeed, the true meaning of probability is still a highly
controversial subject and is involved in many current philosophical discussions per-
taining to the foundations of statistics. Three different interpretations of probability
will be described here. Each of these interpretations can be very useful in applying
probability theory to practical problems.

The Frequency Interpretation of Probability

In many problems, the probability that some specific outcome of a process will be
obtained can be interpreted to mean the relative frequency with which that outcome
would be obtained if the process were repeated a large number of times under similar
conditions. For example, the probability of obtaining a head when a coin is tossed is
considered to be 1/2 because the relative frequency of heads should be approximately
1/2 when the coin is tossed a large number of times under similar conditions. In other
words, it is assumed that the proportion of tosses on which a head is obtained would
be approximately 1/2.

Of course, the conditions mentioned in this example are too vague to serve as the
basis for a scientific definition of probability. First, a “large number” of tosses of the
coin is specified, but there is no definite indication of an actual number that would
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be considered large enough. Second, it is stated that the coin should be tossed each
time “under similar conditions,” but these conditions are not described precisely. The
conditions under which the coin is tossed must not be completely identical for each
toss because the outcomes would then be the same, and there would be either all
heads or all tails. In fact, a skilled person can toss a coin into the air repeatedly and
catch it in such a way that a head is obtained on almost every toss. Hence, the tosses
must not be completely controlled but must have some “random” features.

Furthermore, it is stated that the relative frequency of heads should be “approx-
imately 1/2,” but no limit is specified for the permissible variation from 1/2. If a coin
were tossed 1,000,000 times, we would not expect to obtain exactly 500,000 heads.
Indeed, we would be extremely surprised if we obtained exactly 500,000 heads. On
the other hand, neither would we expect the number of heads to be very far from
500,000. It would be desirable to be able to make a precise statement of the like-
lihoods of the different possible numbers of heads, but these likelihoods would of
necessity depend on the very concept of probability that we are trying to define.

Another shortcoming of the frequency interpretation of probability is that it
applies only to a problem in which there can be, at least in principle, a large number of
similar repetitions of a certain process. Many important problems are not of this type.
For example, the frequency interpretation of probability cannot be applied directly
to the probability that a specific acquaintance will get married within the next two
years or to the probability that a particular medical research project will lead to the
development of a new treatment for a certain disease within a specified period of time.

The Classical Interpretation of Probability

The classical interpretation of probability is based on the concept of equally likely
outcomes. For example, when a coin is tossed, there are two possible outcomes: a
head or a tail. If it may be assumed that these outcomes are equally likely to occur,
then they must have the same probability. Since the sum of the probabilities must
be 1, both the probability of a head and the probability of a tail must be 1/2. More
generally, if the outcome of some process must be one of n different outcomes, and
if these n outcomes are equally likely to occur, then the probability of each outcome
is 1/n.

Two basic difficulties arise when an attempt is made to develop a formal defi-
nition of probability from the classical interpretation. First, the concept of equally
likely outcomes is essentially based on the concept of probability that we are trying
to define. The statement that two possible outcomes are equally likely to occur is the
same as the statement that two outcomes have the same probability. Second, no sys-
tematic method is given for assigning probabilities to outcomes that are not assumed
to be equally likely. When a coin is tossed, or a well-balanced die is rolled, or a card is
chosen from a well-shuffled deck of cards, the different possible outcomes can usually
be regarded as equally likely because of the nature of the process. However, when the
problem is to guess whether an acquaintance will get married or whether a research
project will be successful, the possible outcomes would not typically be considered
to be equally likely, and a different method is needed for assigning probabilities to
these outcomes.

The Subjective Interpretation of Probability

According to the subjective, or personal, interpretation of probability, the probability
that a person assigns to a possible outcome of some process represents her own
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judgment of the likelihood that the outcome will be obtained. This judgment will be
based on each person’s beliefs and information about the process. Another person,
who may have different beliefs or different information, may assign a different
probability to the same outcome. For this reason, it is appropriate to speak of a
certain person’s subjective probability of an outcome, rather than to speak of the
true probability of that outcome.

As an illustration of this interpretation, suppose that a coin is to be tossed once.
A person with no special information about the coin or the way in which it is tossed
might regard a head and a tail to be equally likely outcomes. That person would
then assign a subjective probability of 1/2 to the possibility of obtaining a head. The
person who is actually tossing the coin, however, might feel that a head is much
more likely to be obtained than a tail. In order that people in general may be able
to assign subjective probabilities to the outcomes, they must express the strength of
their belief in numerical terms. Suppose, for example, that they regard the likelihood
of obtaining a head to be the same as the likelihood of obtaining a red card when one
card is chosen from a well-shuffled deck containing four red cards and one black card.
Because those people would assign a probability of 4/5 to the possibility of obtaining
a red card, they should also assign a probability of 4/5 to the possibility of obtaining
a head when the coin is tossed.

This subjective interpretation of probability can be formalized. In general, if
people’s judgments of the relative likelihoods of various combinations of outcomes
satisfy certain conditions of consistency, then it can be shown that their subjective
probabilities of the different possible events can be uniquely determined. However,
there are two difficulties with the subjective interpretation. First, the requirement
that a person’s judgments of the relative likelihoods of an infinite number of events
be completely consistent and free from contradictions does not seem to be humanly
attainable, unless a person is simply willing to adopt a collection of judgments known
to be consistent. Second, the subjective interpretation provides no “objective” basis
for two or more scientists working together to reach a common evaluation of the
state of knowledge in some scientific area of common interest.

On the other hand, recognition of the subjective interpretation of probability
has the salutary effect of emphasizing some of the subjective aspects of science. A
particular scientist’s evaluation of the probability of some uncertain outcome must
ultimately be that person’s own evaluation based on all the evidence available. This
evaluation may well be based in part on the frequency interpretation of probability,
since the scientist may take into account the relative frequency of occurrence of this
outcome or similar outcomes in the past. It may also be based in part on the classical
interpretation of probability, since the scientist may take into account the total num-
ber of possible outcomes that are considered equally likely to occur. Nevertheless,
the final assignment of numerical probabilities is the responsibility of the scientist
herself.

The subjective nature of science is also revealed in the actual problem that a
particular scientist chooses to study from the class of problems that might have
been chosen, in the experiments that are selected in carrying out this study, and
in the conclusions drawn from the experimental data. The mathematical theory of
probability and statistics can play an important part in these choices, decisions, and
conclusions.

Note: The Theory of Probability Does Not Depend on Interpretation. The math-
ematical theory of probability is developed and presented in Chapters 1–6 of this
book without regard to the controversy surrounding the different interpretations of
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the term probability. This theory is correct and can be usefully applied, regardless of
which interpretation of probability is used in a particular problem. The theories and
techniques that will be presented in this book have served as valuable guides and
tools in almost all aspects of the design and analysis of effective experimentation.

1.3 Experiments and Events
Probability will be the way that we quantify how likely something is to occur (in
the sense of one of the interpretations in Sec. 1.2). In this section, we give examples
of the types of situations in which probability will be used.

Types of Experiments

The theory of probability pertains to the various possible outcomes that might be
obtained and the possible events that might occur when an experiment is performed.

Definition
1.3.1

Experiment and Event. An experiment is any process, real or hypothetical, in which
the possible outcomes can be identified ahead of time. An event is a well-defined set
of possible outcomes of the experiment.

The breadth of this definition allows us to call almost any imaginable process an
experiment whether or not its outcome will ever be known. The probability of each
event will be our way of saying how likely it is that the outcome of the experiment is
in the event. Not every set of possible outcomes will be called an event. We shall be
more specific about which subsets count as events in Sec. 1.4.

Probability will be most useful when applied to a real experiment in which the
outcome is not known in advance, but there are many hypothetical experiments that
provide useful tools for modeling real experiments. A common type of hypothetical
experiment is repeating a well-defined task infinitely often under similar conditions.
Some examples of experiments and specific events are given next. In each example,
the words following “the probability that” describe the event of interest.

1. In an experiment in which a coin is to be tossed 10 times, the experimenter might
want to determine the probability that at least four heads will be obtained.

2. In an experiment in which a sample of 1000 transistors is to be selected from
a large shipment of similar items and each selected item is to be inspected, a
person might want to determine the probability that not more than one of the
selected transistors will be defective.

3. In an experiment in which the air temperature at a certain location is to be
observed every day at noon for 90 successive days, a person might want to
determine the probability that the average temperature during this period will
be less than some specified value.

4. From information relating to the life of Thomas Jefferson, a person might want
to determine the probability that Jefferson was born in the year 1741.

5. In evaluating an industrial research and development project at a certain time,
a person might want to determine the probability that the project will result
in the successful development of a new product within a specified number of
months.
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The Mathematical Theory of Probability

As was explained in Sec. 1.2, there is controversy in regard to the proper meaning
and interpretation of some of the probabilities that are assigned to the outcomes
of many experiments. However, once probabilities have been assigned to some
simple outcomes in an experiment, there is complete agreement among all authorities
that the mathematical theory of probability provides the appropriate methodology
for the further study of these probabilities. Almost all work in the mathematical
theory of probability, from the most elementary textbooks to the most advanced
research, has been related to the following two problems: (i) methods for determining
the probabilities of certain events from the specified probabilities of each possible
outcome of an experiment and (ii) methods for revising the probabilities of events
when additional relevant information is obtained.

These methods are based on standard mathematical techniques. The purpose of
the first six chapters of this book is to present these techniques, which, together, form
the mathematical theory of probability.

1.4 Set Theory
This section develops the formal mathematical model for events, namely, the theory
of sets. Several important concepts are introduced, namely, element, subset, empty
set, intersection, union, complement, and disjoint sets.

The Sample Space

Definition
1.4.1

Sample Space. The collection of all possible outcomes of an experiment is called the
sample space of the experiment.

The sample space of an experiment can be thought of as a set, or collection, of
different possible outcomes; and each outcome can be thought of as a point, or an
element, in the sample space. Similarly, events can be thought of as subsets of the
sample space.

Example
1.4.1

Rolling a Die. When a six-sided die is rolled, the sample space can be regarded as
containing the six numbers 1, 2, 3, 4, 5, 6, each representing a possible side of the die
that shows after the roll. Symbolically, we write

S = {1, 2, 3, 4, 5, 6}.
One event A is that an even number is obtained, and it can be represented as the
subset A = {2, 4, 6}. The event B that a number greater than 2 is obtained is defined
by the subset B = {3, 4, 5, 6}. �

Because we can interpret outcomes as elements of a set and events as subsets
of a set, the language and concepts of set theory provide a natural context for the
development of probability theory. The basic ideas and notation of set theory will
now be reviewed.
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Relations of Set Theory

Let S denote the sample space of some experiment. Then each possible outcome s

of the experiment is said to be a member of the space S, or to belong to the space S.
The statement that s is a member of S is denoted symbolically by the relation s ∈ S.

When an experiment has been performed and we say that some event E has
occurred, we mean two equivalent things. One is that the outcome of the experiment
satisfied the conditions that specified that event E. The other is that the outcome,
considered as a point in the sample space, is an element of E.

To be precise, we should say which sets of outcomes correspond to events as de-
fined above. In many applications, such as Example 1.4.1, it will be clear which sets of
outcomes should correspond to events. In other applications (such as Example 1.4.5
coming up later), there are too many sets available to have them all be events. Ide-
ally, we would like to have the largest possible collection of sets called events so that
we have the broadest possible applicability of our probability calculations. However,
when the sample space is too large (as in Example 1.4.5) the theory of probability
simply will not extend to the collection of all subsets of the sample space. We would
prefer not to dwell on this point for two reasons. First, a careful handling requires
mathematical details that interfere with an initial understanding of the important
concepts, and second, the practical implications for the results in this text are min-
imal. In order to be mathematically correct without imposing an undue burden on
the reader, we note the following. In order to be able to do all of the probability cal-
culations that we might find interesting, there are three simple conditions that must
be met by the collection of sets that we call events. In every problem that we see in
this text, there exists a collection of sets that includes all the sets that we will need to
discuss and that satisfies the three conditions, and the reader should assume that such
a collection has been chosen as the events. For a sample space S with only finitely
many outcomes, the collection of all subsets of S satisfies the conditions, as the reader
can show in Exercise 12 in this section.

The first of the three conditions can be stated immediately.

Condition
1

The sample space S must be an event.

That is, we must include the sample space S in our collection of events. The other two
conditions will appear later in this section because they require additional definitions.
Condition 2 is on page 9, and Condition 3 is on page 10.

Definition
1.4.2

Containment. It is said that a set A is contained in another set B if every element
of the set A also belongs to the set B. This relation between two events is expressed
symbolically by the expression A ⊂ B, which is the set-theoretic expression for saying
that A is a subset of B. Equivalently, if A ⊂ B, we may say that B contains A and may
write B ⊃ A.

For events, to say that A ⊂ B means that if A occurs then so does B.
The proof of the following result is straightforward and is omitted.

Theorem
1.4.1

Let A, B, and C be events. Then A ⊂ S. If A ⊂ B and B ⊂ A, then A = B. If A ⊂ B

and B ⊂ C, then A ⊂ C.

Example
1.4.2

Rolling a Die. In Example 1.4.1, suppose that A is the event that an even number
is obtained and C is the event that a number greater than 1 is obtained. Since
A = {2, 4, 6} and C = {2, 3, 4, 5, 6}, it follows that A ⊂ C. �
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The Empty Set Some events are impossible. For example, when a die is rolled, it
is impossible to obtain a negative number. Hence, the event that a negative number
will be obtained is defined by the subset of S that contains no outcomes.

Definition
1.4.3

Empty Set. The subset of S that contains no elements is called the empty set, or null
set, and it is denoted by the symbol ∅.

In terms of events, the empty set is any event that cannot occur.

Theorem
1.4.2

Let A be an event. Then ∅ ⊂ A.

Proof Let A be an arbitrary event. Since the empty set ∅ contains no points, it is
logically correct to say that every point belonging to ∅ also belongs to A, or ∅ ⊂ A.

Finite and Infinite Sets Some sets contain only finitely many elements, while others
have infinitely many elements. There are two sizes of infinite sets that we need to
distinguish.

Definition
1.4.4

Countable/Uncountable. An infinite set A is countable if there is a one-to-one corre-
spondence between the elements of A and the set of natural numbers {1, 2, 3, . . .}. A
set is uncountable if it is neither finite nor countable. If we say that a set has at most
countably many elements, we mean that the set is either finite or countable.

Examples of countably infinite sets include the integers, the even integers, the odd
integers, the prime numbers, and any infinite sequence. Each of these can be put
in one-to-one correspondence with the natural numbers. For example, the following
function f puts the integers in one-to-one correspondence with the natural numbers:

f (n) =
{

n−1
2 if n is odd,

−n
2 if n is even.

Every infinite sequence of distinct items is a countable set, as its indexing puts it in
one-to-one correspondence with the natural numbers. Examples of uncountable sets
include the real numbers, the positive reals, the numbers in the interval [0, 1], and the
set of all ordered pairs of real numbers. An argument to show that the real numbers
are uncountable appears at the end of this section. Every subset of the integers has
at most countably many elements.

Operations of Set Theory

Definition
1.4.5

Complement. The complement of a set A is defined to be the set that contains all
elements of the sample space S that do not belong to A. The notation for the
complement of A is Ac.

In terms of events, the event Ac is the event that A does not occur.

Example
1.4.3

Rolling a Die. In Example 1.4.1, suppose again that A is the event that an even number
is rolled; then Ac = {1, 3, 5} is the event that an odd number is rolled. �

We can now state the second condition that we require of the collection of events.
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Figure 1.1 The event Ac.

Ac

A

S

Figure 1.2 The set A ∪ B.

A

A B

S

Condition
2

If A is an event, then Ac is also an event.

That is, for each set A of outcomes that we call an event, we must also call its
complement Ac an event.

A generic version of the relationship between A and Ac is sketched in Fig. 1.1.
A sketch of this type is called a Venn diagram.

Some properties of the complement are stated without proof in the next result.

Theorem
1.4.3

Let A be an event. Then

(Ac)c = A, ∅c = S, Sc = ∅.

The empty event ∅ is an event.

Definition
1.4.6

Union of Two Sets. If A and B are any two sets, the union of A and B is defined to be
the set containing all outcomes that belong to A alone, to B alone, or to both A and
B. The notation for the union of A and B is A ∪ B.

The set A ∪ B is sketched in Fig. 1.2. In terms of events, A ∪ B is the event that either
A or B or both occur.

The union has the following properties whose proofs are left to the reader.

Theorem
1.4.4

For all sets A and B,

A ∪ B = B ∪ A, A ∪ A = A, A ∪ Ac = S,

A ∪ ∅ = A, A ∪ S = S.

Furthermore, if A ⊂ B, then A ∪ B = B.

The concept of union extends to more than two sets.

Definition
1.4.7

Union of Many Sets. The union of n sets A1, . . . , An is defined to be the set that
contains all outcomes that belong to at least one of these n sets. The notation for this
union is either of the following:

A1 ∪ A2 ∪ . . . ∪ An or
n⋃

i=1

Ai.
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Similarly, the union of an infinite sequence of sets A1, A2, . . . is the set that contains
all outcomes that belong to at least one of the events in the sequence. The infinite
union is denoted by

⋃∞
i=1 Ai.

In terms of events, the union of a collection of events is the event that at least
one of the events in the collection occurs.

We can now state the final condition that we require for the collection of sets
that we call events.

Condition
3

If A1, A2, . . . is a countable collection of events, then
⋃∞

i=1 Ai is also an event.

In other words, if we choose to call each set of outcomes in some countable collection
an event, we are required to call their union an event also. We do not require that
the union of an arbitrary collection of events be an event. To be clear, let I be an
arbitrary set that we use to index a general collection of events {Ai : i ∈ I }. The union
of the events in this collection is the set of outcomes that are in at least one of the
events in the collection. The notation for this union is

⋃
i∈I Ai. We do not require

that
⋃

i∈I Ai be an event unless I is countable.
Condition 3 refers to a countable collection of events. We can prove that the

condition also applies to every finite collection of events.

Theorem
1.4.5

The union of a finite number of events A1, . . . , An is an event.

Proof For each m = n + 1, n + 2, . . ., define Am = ∅. Because ∅ is an event, we now
have a countable collection A1, A2, . . . of events. It follows from Condition 3 that⋃∞

m=1 Am is an event. But it is easy to see that
⋃∞

m=1 Am = ⋃n
m=1 Am.

The union of three events A, B, and C can be constructed either directly from the
definition of A ∪ B ∪ C or by first evaluating the union of any two of the events and
then forming the union of this combination of events and the third event. In other
words, the following result is true.

Theorem
1.4.6

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C).

Definition
1.4.8

Intersection of Two Sets. If A and B are any two sets, the intersection of A and B is
defined to be the set that contains all outcomes that belong both to A and to B. The
notation for the intersection of A and B is A ∩ B.

The set A ∩ B is sketched in a Venn diagram in Fig. 1.3. In terms of events, A ∩ B is
the event that both A and B occur.

The proof of the first part of the next result follows from Exercise 3 in this section.
The rest of the proof is straightforward.

Figure 1.3 The set A ∩ B.

A B

S
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Theorem
1.4.7

If A and B are events, then so is A ∩ B. For all events A and B,

A ∩ B = B ∩ A, A ∩ A = A, A ∩ Ac = ∅,

A ∩ ∅ = ∅, A ∩ S = A.

Furthermore, if A ⊂ B, then A ∩ B = A.

The concept of intersection extends to more than two sets.

Definition
1.4.9

Intersection of Many Sets. The intersection of n sets A1, . . . , An is defined to be the
set that contains the elements that are common to all these n sets. The notation for
this intersection is A1 ∩ A2 ∩ . . . ∩ An or

⋂n
i=1 Ai. Similar notations are used for the

intersection of an infinite sequence of sets or for the intersection of an arbitrary
collection of sets.

In terms of events, the intersection of a collection of events is the event that every
event in the collection occurs.

The following result concerning the intersection of three events is straightfor-
ward to prove.

Theorem
1.4.8

Associative Property. For every three events A, B, and C, the following associative
relations are satisfied:

A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C).

Definition
1.4.10

Disjoint/Mutually Exclusive. It is said that two sets A and B are disjoint, or mutually
exclusive, if A and B have no outcomes in common, that is, if A ∩ B = ∅. The sets
A1, . . . , An or the sets A1, A2, . . . are disjoint if for every i 	= j , we have that Ai and
Aj are disjoint, that is, Ai ∩ Aj = ∅ for all i 	= j . The events in an arbitrary collection
are disjoint if no two events in the collection have any outcomes in common.

In terms of events, A and B are disjoint if they cannot both occur.
As an illustration of these concepts, a Venn diagram for three events A1, A2, and

A3 is presented in Fig. 1.4. This diagram indicates that the various intersections of
A1, A2, and A3 and their complements will partition the sample space S into eight
disjoint subsets.

Figure 1.4 Partition of
S determined by three
events A1, A2, A3.

A1
c�A2

c�A3
c

A1�A2
c�A3

c

A1
c�A2�A3

A1
c�A2�A3

cA1�A2�A3
c

A1
c�A2

c�A3

A1�A2
c�A3

A1�A2�A3

A3

A2A1

S
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Example
1.4.4

Tossing a Coin. Suppose that a coin is tossed three times. Then the sample space S

contains the following eight possible outcomes s1, . . . , s8:

s1: HHH,

s2: THH,

s3: HTH,

s4: HHT,

s5: HTT,

s6: THT,

s7: TTH,

s8: TTT.

In this notation, H indicates a head and T indicates a tail. The outcome s3, for
example, is the outcome in which a head is obtained on the first toss, a tail is obtained
on the second toss, and a head is obtained on the third toss.

To apply the concepts introduced in this section, we shall define four events as
follows: Let A be the event that at least one head is obtained in the three tosses; let
B be the event that a head is obtained on the second toss; let C be the event that a
tail is obtained on the third toss; and let D be the event that no heads are obtained.
Accordingly,

A = {s1, s2, s3, s4, s5, s6, s7},
B = {s1, s2, s4, s6},
C = {s4, s5, s6, s8},
D = {s8}.

Various relations among these events can be derived. Some of these relations
are B ⊂ A, Ac = D, B ∩ D = ∅, A ∪ C = S, B ∩ C = {s4, s6}, (B ∪ C)c = {s3, s7}, and
A ∩ (B ∪ C) = {s1, s2, s4, s5, s6}. �

Example
1.4.5

Demands for Utilities. A contractor is building an office complex and needs to plan
for water and electricity demand (sizes of pipes, conduit, and wires). After consulting
with prospective tenants and examining historical data, the contractor decides that
the demand for electricity will range somewhere between 1 million and 150 million
kilowatt-hours per day and water demand will be between 4 and 200 (in thousands
of gallons per day). All combinations of electrical and water demand are considered
possible. The shaded region in Fig. 1.5 shows the sample space for the experiment,
consisting of learning the actual water and electricity demands for the office complex.
We can express the sample space as the set of ordered pairs {(x, y) : 4 ≤ x ≤ 200, 1 ≤
y ≤ 150}, where x stands for water demand in thousands of gallons per day and y

Figure 1.5 Sample space for
water and electric demand in
Example 1.4.5

1

150

0 4
Water

Electric

200
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Figure 1.6 Partition of
A ∪ B in Theorem 1.4.11.

A B

A�BA�Bc Ac�B

S

stands for the electric demand in millions of kilowatt-hours per day. The types of sets
that we want to call events include sets like

{water demand is at least 100} = {(x, y) : x ≥ 100}, and

{electric demand is no more than 35} = {(x, y) : y ≤ 35},
along with intersections, unions, and complements of such sets. This sample space
has infinitely many points. Indeed, the sample space is uncountable. There are many
more sets that are difficult to describe and which we will have no need to consider as
events. �

Additional Properties of Sets The proof of the following useful result is left to
Exercise 3 in this section.

Theorem
1.4.9

De Morgan’s Laws. For every two sets A and B,

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

The generalization of Theorem 1.4.9 is the subject of Exercise 5 in this section.
The proofs of the following distributive properties are left to Exercise 2 in this

section. These properties also extend in natural ways to larger collections of events.

Theorem
1.4.10

Distributive Properties. For every three sets A, B, and C,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

The following result is useful for computing probabilities of events that can be
partitioned into smaller pieces. Its proof is left to Exercise 4 in this section, and is
illuminated by Fig. 1.6.

Theorem
1.4.11

Partitioning a Set. For every two sets A and B, A ∩ B and A ∩ Bc are disjoint and

A = (A ∩ B) ∪ (A ∩ Bc).

In addition, B and A ∩ Bc are disjoint, and

A ∪ B = B ∪ (A ∩ Bc).

Proof That the Real Numbers Are Uncountable

We shall show that the real numbers in the interval [0, 1) are uncountable. Every
larger set is a fortiori uncountable. For each number x ∈ [0, 1), define the sequence
{an(x)}∞

n=1 as follows. First, a1(x) = �10x
, where �y
 stands for the greatest integer
less than or equal to y (round nonintegers down to the closest integer below). Then
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0 2 3 0 7 1 3 . . .

1 9 9 2 1 0 0 . . .

2 7 3 6 0 1 1 . . .

8 0 2 1 2 7 9 . . .

7 0 1 6 0 1 3 . . .

1 5 1 5 1 5 1 . . .

2 3 4 5 6 7 8 . . .

0 1 7 3 2 9 8 . . .
...

...
...

...
...

...
...

. . .

Figure 1.7 An array of a countable
collection of sequences of digits with the
diagonal underlined.

set b1(x) = 10x − a1(x), which will again be in [0, 1). For n > 1, an(x) = �10bn−1(x)

and bn(x) = 10bn−1(x) − an(x). It is easy to see that the sequence {an(x)}∞

n=1 gives a
decimal expansion for x in the form

x =
∞∑

n=1

an(x)10−n. (1.4.1)

By construction, each number of the form x = k/10m for some nonnegative
integers k and m will have an(x) = 0 for n > m. The numbers of the form k/10m

are the only ones that have an alternate decimal expansion x = ∑∞
n=1 cn(x)10−n.

When k is not a multiple of 10, this alternate expansion satisfies cn(x) = an(x) for
n = 1, . . . , m − 1, cm(x) = am(x) − 1, and cn(x) = 9 for n > m. Let C = {0, 1, . . . , 9}∞
stand for the set of all infinite sequences of digits. Let B denote the subset of C

consisting of those sequences that don’t end in repeating 9’s. Then we have just
constructed a function a from the interval [0, 1) onto B that is one-to-one and whose
inverse is given in (1.4.1). We now show that the set B is uncountable, hence [0, 1)
is uncountable. Take any countable subset of B and arrange the sequences into a
rectangular array with the kth sequence running across the kth row of the array for
k = 1, 2, . . . . Figure 1.7 gives an example of part of such an array.

In Fig. 1.7, we have underlined the kth digit in the kth sequence for each k. This
portion of the array is called the diagonal of the array. We now show that there must
exist a sequence in B that is not part of this array. This will prove that the whole set
B cannot be put into such an array, and hence cannot be countable. Construct the
sequence {dn}∞n=1 as follows. For each n, let dn = 2 if the nth digit in the nth sequence
is 1, and dn = 1 otherwise. This sequence does not end in repeating 9’s; hence, it is
in B. We conclude the proof by showing that {dn}∞n=1 does not appear anywhere in
the array. If the sequence did appear in the array, say, in the kth row, then its kth
element would be the kth diagonal element of the array. But we constructed the
sequence so that for every n (including n = k), its nth element never matched the
nth diagonal element. Hence, the sequence can’t be in the kth row, no matter what
k is. The argument given here is essentially that of the nineteenth-century German
mathematician Georg Cantor.
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Summary

We will use set theory for the mathematical model of events. Outcomes of an exper-
iment are elements of some sample space S, and each event is a subset of S. Two
events both occur if the outcome is in the intersection of the two sets. At least one of
a collection of events occurs if the outcome is in the union of the sets. Two events can-
not both occur if the sets are disjoint. An event fails to occur if the outcome is in the
complement of the set. The empty set stands for every event that cannot possibly oc-
cur. The collection of events is assumed to contain the sample space, the complement
of each event, and the union of each countable collection of events.

Exercises

1. Suppose that A ⊂ B. Show that Bc ⊂ Ac.

2. Prove the distributive properties in Theorem 1.4.10.

3. Prove De Morgan’s laws (Theorem 1.4.9).

4. Prove Theorem 1.4.11.

5. For every collection of events Ai (i ∈ I ), show that(⋃
i∈I

Ai

)c

=
⋂
i∈I

Ac
i

and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i
.

6. Suppose that one card is to be selected from a deck of
20 cards that contains 10 red cards numbered from 1 to
10 and 10 blue cards numbered from 1 to 10. Let A be
the event that a card with an even number is selected,
let B be the event that a blue card is selected, and let
C be the event that a card with a number less than 5 is
selected. Describe the sample space S and describe each
of the following events both in words and as subsets of S:

a. A ∩ B ∩ C b. B ∩ Cc c. A ∪ B ∪ C

d. A ∩ (B ∪ C) e. Ac ∩ Bc ∩ Cc.

7. Suppose that a number x is to be selected from the real
line S, and let A, B, and C be the events represented by the
following subsets of S, where the notation {x: - - -} denotes
the set containing every point x for which the property
presented following the colon is satisfied:

A = {x: 1 ≤ x ≤ 5},
B = {x: 3 < x ≤ 7},
C = {x: x ≤ 0}.

Describe each of the following events as a set of real
numbers:

a. Ac b. A ∪ B c. B ∩ Cc

d. Ac ∩ Bc ∩ Cc e. (A ∪ B) ∩ C.

8. A simplified model of the human blood-type system
has four blood types: A, B, AB, and O. There are two
antigens, anti-A and anti-B, that react with a person’s

blood in different ways depending on the blood type. Anti-
A reacts with blood types A and AB, but not with B and
O. Anti-B reacts with blood types B and AB, but not with
A and O. Suppose that a person’s blood is sampled and
tested with the two antigens. Let A be the event that the
blood reacts with anti-A, and let B be the event that it
reacts with anti-B. Classify the person’s blood type using
the events A, B, and their complements.

9. Let S be a given sample space and let A1, A2, . . . be
an infinite sequence of events. For n = 1, 2, . . . , let Bn =⋃∞

i=n
Ai and let Cn = ⋂∞

i=n
Ai.

a. Show that B1 ⊃ B2 ⊃ . . . and that C1 ⊂ C2 ⊂ . . ..

b. Show that an outcome in S belongs to the event⋂∞
n=1 Bn if and only if it belongs to an infinite number

of the events A1, A2, . . . .

c. Show that an outcome in S belongs to the event⋃∞
n=1 Cn if and only if it belongs to all the events

A1, A2, . . . except possibly a finite number of those
events.

10. Three six-sided dice are rolled. The six sides of each
die are numbered 1–6. Let A be the event that the first
die shows an even number, let B be the event that the
second die shows an even number, and let C be the event
that the third die shows an even number. Also, for each
i = 1, . . . , 6, let Ai be the event that the first die shows the
number i, let Bi be the event that the second die shows
the number i, and let Ci be the event that the third die
shows the number i. Express each of the following events
in terms of the named events described above:

a. The event that all three dice show even numbers

b. The event that no die shows an even number

c. The event that at least one die shows an odd number

d. The event that at most two dice show odd numbers

e. The event that the sum of the three dices is no greater
than 5

11. A power cell consists of two subcells, each of which
can provide from 0 to 5 volts, regardless of what the other
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subcell provides. The power cell is functional if and only
if the sum of the two voltages of the subcells is at least 6
volts. An experiment consists of measuring and recording
the voltages of the two subcells. Let A be the event that
the power cell is functional, let B be the event that two
subcells have the same voltage, let C be the event that the
first subcell has a strictly higher voltage than the second
subcell, and let D be the event that the power cell is
not functional but needs less than one additional volt to
become functional.

a. Define a sample space S for the experiment as a set
of ordered pairs that makes it possible for you to
express the four sets above as events.

b. Express each of the events A, B, C, and D as sets of
ordered pairs that are subsets of S.

c. Express the following set in terms of A, B, C, and/or
D: {(x, y) : x = y and x + y ≤ 5}.

d. Express the following event in terms of A, B, C,
and/or D: the event that the power cell is not func-
tional and the second subcell has a strictly higher
voltage than the first subcell.

12. Suppose that the sample space S of some experiment
is finite. Show that the collection of all subsets of S satisfies
the three conditions required to be called the collection of
events.

13. Let S be the sample space for some experiment. Show
that the collection of subsets consisting solely of S and ∅
satisfies the three conditions required in order to be called
the collection of events. Explain why this collection would
not be very interesting in most real problems.

14. Suppose that the sample space S of some experiment
is countable. Suppose also that, for every outcome s ∈ S,
the subset {s} is an event. Show that every subset of S must
be an event. Hint: Recall the three conditions required of
the collection of subsets of S that we call events.

1.5 The Definition of Probability
We begin with the mathematical definition of probability and then present some
useful results that follow easily from the definition.

Axioms and Basic Theorems

In this section, we shall present the mathematical, or axiomatic, definition of proba-
bility. In a given experiment, it is necessary to assign to each event A in the sample
space S a number Pr(A) that indicates the probability that A will occur. In order to
satisfy the mathematical definition of probability, the number Pr(A) that is assigned
must satisfy three specific axioms. These axioms ensure that the number Pr(A) will
have certain properties that we intuitively expect a probability to have under each
of the various interpretations described in Sec. 1.2.

The first axiom states that the probability of every event must be nonnegative.

Axiom
1

For every event A, Pr(A) ≥ 0.

The second axiom states that if an event is certain to occur, then the probability
of that event is 1.

Axiom
2

Pr(S) = 1.

Before stating Axiom 3, we shall discuss the probabilities of disjoint events. If two
events are disjoint, it is natural to assume that the probability that one or the other
will occur is the sum of their individual probabilities. In fact, it will be assumed that
this additive property of probability is also true for every finite collection of disjoint
events and even for every infinite sequence of disjoint events. If we assume that this
additive property is true only for a finite number of disjoint events, we cannot then be
certain that the property will be true for an infinite sequence of disjoint events as well.
However, if we assume that the additive property is true for every infinite sequence
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of disjoint events, then (as we shall prove) the property must also be true for every
finite number of disjoint events. These considerations lead to the third axiom.

Axiom
3

For every infinite sequence of disjoint events A1, A2, . . . ,

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai).

Example
1.5.1

Rolling a Die. In Example 1.4.1, for each subset A of S = {1, 2, 3, 4, 5, 6}, let Pr(A) be
the number of elements of A divided by 6. It is trivial to see that this satisfies the first
two axioms. There are only finitely many distinct collections of nonempty disjoint
events. It is not difficult to see that Axiom 3 is also satisfied by this example. �

Example
1.5.2

A Loaded Die. In Example 1.5.1, there are other choices for the probabilities of events.
For example, if we believe that the die is loaded, we might believe that some sides
have different probabilities of turning up. To be specific, suppose that we believe that
6 is twice as likely to come up as each of the other five sides. We could set pi = 1/7 for
i = 1, 2, 3, 4, 5 and p6 = 2/7. Then, for each event A, define Pr(A) to be the sum of
all pi such that i ∈ A. For example, if A = {1, 3, 5}, then Pr(A) = p1 + p3 + p5 = 3/7.
It is not difficult to check that this also satisfies all three axioms. �

We are now prepared to give the mathematical definition of probability.

Definition
1.5.1

Probability. A probability measure, or simply a probability, on a sample space S is a
specification of numbers Pr(A) for all events A that satisfy Axioms 1, 2, and 3.

We shall now derive two important consequences of Axiom 3. First, we shall
show that if an event is impossible, its probability must be 0.

Theorem
1.5.1

Pr(∅) = 0.

Proof Consider the infinite sequence of events A1, A2, . . . such that Ai = ∅ for
i = 1, 2, . . . . In other words, each of the events in the sequence is just the empty set
∅. Then this sequence is a sequence of disjoint events, since ∅ ∩ ∅ = ∅. Furthermore,⋃∞

i=1 Ai = ∅. Therefore, it follows from Axiom 3 that

Pr(∅) = Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai) =
∞∑
i=1

Pr(∅).

This equation states that when the number Pr(∅) is added repeatedly in an infinite
series, the sum of that series is simply the number Pr(∅). The only real number with
this property is zero.

We can now show that the additive property assumed in Axiom 3 for an infinite
sequence of disjoint events is also true for every finite number of disjoint events.

Theorem
1.5.2

For every finite sequence of n disjoint events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai).

Proof Consider the infinite sequence of events A1, A2, . . . , in which A1, . . . , An

are the n given disjoint events and Ai = ∅ for i > n. Then the events in this infinite
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sequence are disjoint and
⋃∞

i=1 Ai = ⋃n
i=1 Ai. Therefore, by Axiom 3,

Pr

(
n⋃

i=1

Ai

)
= Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai)

=
n∑

i=1

Pr(Ai) +
∞∑

i=n+1

Pr(Ai)

=
n∑

i=1

Pr(Ai) + 0

=
n∑

i=1

Pr(Ai).

Further Properties of Probability

From the axioms and theorems just given, we shall now derive four other general
properties of probability measures. Because of the fundamental nature of these four
properties, they will be presented in the form of four theorems, each one of which is
easily proved.

Theorem
1.5.3

For every event A, Pr(Ac) = 1 − Pr(A).

Proof Since A and Ac are disjoint events and A ∪ Ac = S, it follows from Theo-
rem 1.5.2 that Pr(S) = Pr(A) + Pr(Ac). Since Pr(S) = 1 by Axiom 2, then Pr(Ac) =
1 − Pr(A).

Theorem
1.5.4

If A ⊂ B, then Pr(A) ≤ Pr(B).

Proof As illustrated in Fig. 1.8, the event B may be treated as the union of the
two disjoint events A and B ∩ Ac. Therefore, Pr(B) = Pr(A) + Pr(B ∩ Ac). Since
Pr(B ∩ Ac) ≥ 0, then Pr(B) ≥ Pr(A).

Theorem
1.5.5

For every event A, 0 ≤ Pr(A) ≤ 1.

Proof It is known from Axiom 1 that Pr(A) ≥ 0. Since A ⊂ S for every event A,
Theorem 1.5.4 implies Pr(A) ≤ Pr(S) = 1, by Axiom 2.

Theorem
1.5.6

For every two events A and B,

Pr(A ∩ Bc) = Pr(A) − Pr(A ∩ B).

Figure 1.8 B = A ∪ (B ∩ Ac)

in the proof of Theorem 1.5.4.

A

B

B�Ac

S
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Proof According to Theorem 1.4.11, the events A ∩ Bc and A ∩ B are disjoint and

A = (A ∩ B) ∪ (A ∩ Bc).

It follows from Theorem 1.5.2 that

Pr(A) = Pr(A ∩ B) + Pr(A ∩ Bc).

Subtract Pr(A ∩ B) from both sides of this last equation to complete the proof.

Theorem
1.5.7

For every two events A and B,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). (1.5.1)

Proof From Theorem 1.4.11, we have

A ∪ B = B ∪ (A ∩ Bc),

and the two events on the right side of this equation are disjoint. Hence, we have

Pr(A ∪ B) = Pr(B) + Pr(A ∩ Bc)

= Pr(B) + Pr(A) − Pr(A ∩ B),

where the first equation follows from Theorem 1.5.2, and the second follows from
Theorem 1.5.6.

Example
1.5.3

Diagnosing Diseases. A patient arrives at a doctor’s office with a sore throat and low-
grade fever. After an exam, the doctor decides that the patient has either a bacterial
infection or a viral infection or both. The doctor decides that there is a probability of
0.7 that the patient has a bacterial infection and a probability of 0.4 that the person
has a viral infection. What is the probability that the patient has both infections?

Let B be the event that the patient has a bacterial infection, and let V be the
event that the patient has a viral infection. We are told Pr(B) = 0.7, that Pr(V ) = 0.4,
and that S = B ∪ V . We are asked to find Pr(B ∩ V ). We will use Theorem 1.5.7, which
says that

Pr(B ∪ V ) = Pr(B) + Pr(V ) − Pr(B ∩ V ). (1.5.2)

Since S = B ∪ V , the left-hand side of (1.5.2) is 1, while the first two terms on the
right-hand side are 0.7 and 0.4. The result is

1 = 0.7 + 0.4 − Pr(B ∩ V ),

which leads to Pr(B ∩ V ) = 0.1, the probability that the patient has both infections.
�

Example
1.5.4

Demands for Utilities. Consider, once again, the contractor who needs to plan for
water and electricity demands in Example 1.4.5. There are many possible choices
for how to spread the probability around the sample space (pictured in Fig. 1.5 on
page 12). One simple choice is to make the probability of an event E proportional to
the area of E. The area of S (the sample space) is (150 − 1) × (200 − 4) = 29,204,
so Pr(E) equals the area of E divided by 29,204. For example, suppose that the
contractor is interested in high demand. Let A be the set where water demand is
at least 100, and let B be the event that electric demand is at least 115, and suppose
that these values are considered high demand. These events are shaded with different
patterns in Fig. 1.9. The area of A is (150 − 1) × (200 − 100) = 14,900, and the area
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Figure 1.9 The two events
of interest in utility demand
sample space for Exam-
ple 1.5.4.

1

150

115

0 4 100
Water

Electric

200

B
A

A�B

of B is (150 − 115) × (200 − 4) = 6,860. So,

Pr(A) = 14,900
29,204

= 0.5102, Pr(B) = 6,860
29,204

= 0.2349.

The two events intersect in the region denoted by A ∩ B. The area of this region
is (150 − 115) × (200 − 100) = 3,500, so Pr(A ∩ B) = 3,500/29,204 = 0.1198. If the
contractor wishes to compute the probability that at least one of the two demands
will be high, that probability is

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) = 0.5102 + 0.2349 − 0.1198 = 0.6253,

according to Theorem 1.5.7. �

The proof of the following useful result is left to Exercise 13.

Theorem
1.5.8

Bonferroni Inequality. For all events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
≤

n∑
i=1

Pr(Ai) and Pr

(
n⋂

i=1

Ai

)
≥ 1 −

n∑
i=1

Pr(Ac
i
).

(The second inequality above is known as the Bonferroni inequality.)

Note: Probability Zero Does Not Mean Impossible. When an event has probability
0, it does not mean that the event is impossible. In Example 1.5.4, there are many
events with 0 probability, but they are not all impossible. For example, for every x, the
event that water demand equals x corresponds to a line segment in Fig. 1.5. Since line
segments have 0 area, the probability of every such line segment is 0, but the events
are not all impossible. Indeed, if every event of the form {water demand equals x}
were impossible, then water demand could not take any value at all. If ε > 0, the
event

{water demand is between x − ε and x + ε}
will have positive probability, but that probability will go to 0 as ε goes to 0.

Summary

We have presented the mathematical definition of probability through the three
axioms. The axioms require that every event have nonnegative probability, that the
whole sample space have probability 1, and that the union of an infinite sequence
of disjoint events have probability equal to the sum of their probabilities. Some
important results to remember include the following:



1.5 The Definition of Probability 21

. If A1, . . . , Ak are disjoint, Pr
(∪k

i=1Ai

) = ∑k
i=1 Pr(Ai).

. Pr(Ac) = 1 − Pr(A).

. A ⊂ B implies that Pr(A) ≤ Pr(B).

. Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).

It does not matter how the probabilities were determined. As long as they satisfy the
three axioms, they must also satisfy the above relations as well as all of the results
that we prove later in the text.

Exercises

1. One ball is to be selected from a box containing red,
white, blue, yellow, and green balls. If the probability that
the selected ball will be red is 1/5 and the probability that
it will be white is 2/5, what is the probability that it will be
blue, yellow, or green?

2. A student selected from a class will be either a boy or
a girl. If the probability that a boy will be selected is 0.3,
what is the probability that a girl will be selected?

3. Consider two events A and B such that Pr(A) = 1/3
and Pr(B) = 1/2. Determine the value of Pr(B ∩ Ac) for
each of the following conditions: (a) A and B are disjoint;
(b) A ⊂ B; (c) Pr(A ∩ B) = 1/8.

4. If the probability that student A will fail a certain statis-
tics examination is 0.5, the probability that student B will
fail the examination is 0.2, and the probability that both
student A and student B will fail the examination is 0.1,
what is the probability that at least one of these two stu-
dents will fail the examination?

5. For the conditions of Exercise 4, what is the probability
that neither student A nor student B will fail the examina-
tion?

6. For the conditions of Exercise 4, what is the probability
that exactly one of the two students will fail the examina-
tion?

7. Consider two events A and B with Pr(A) = 0.4 and
Pr(B) = 0.7. Determine the maximum and minimum pos-
sible values of Pr(A ∩ B) and the conditions under which
each of these values is attained.

8. If 50 percent of the families in a certain city subscribe
to the morning newspaper, 65 percent of the families sub-
scribe to the afternoon newspaper, and 85 percent of the
families subscribe to at least one of the two newspapers,
what percentage of the families subscribe to both newspa-
pers?

9. Prove that for every two events A and B, the probability
that exactly one of the two events will occur is given by the
expression

Pr(A) + Pr(B) − 2 Pr(A ∩ B).

10. For two arbitrary events A and B, prove that

Pr(A) = Pr(A ∩ B) + Pr(A ∩ Bc).

11. A point (x, y) is to be selected from the square S

containing all points (x, y) such that 0 ≤ x ≤ 1 and 0 ≤ y ≤
1. Suppose that the probability that the selected point will
belong to each specified subset of S is equal to the area of
that subset. Find the probability of each of the following
subsets: (a) the subset of points such that (x − 1

2 )2 + (y −
1
2 )2 ≥ 1

4 ; (b) the subset of points such that 1
2 < x + y < 3

2 ;
(c) the subset of points such that y ≤ 1 − x2; (d) the subset
of points such that x = y.

12. Let A1, A2, . . . be an arbitrary infinite sequence of
events, and let B1, B2, . . . be another infinite sequence
of events defined as follows: B1 = A1, B2 = Ac

1 ∩ A2, B3 =
Ac

1 ∩ Ac
2 ∩ A3, B4 = Ac

1 ∩ Ac
2 ∩ Ac

3 ∩ A4, . . . . Prove that

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Bi) for n = 1, 2, . . . ,

and that

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Bi).

13. Prove Theorem 1.5.8. Hint: Use Exercise 12.

14. Consider, once again, the four blood types A, B, AB,
and O described in Exercise 8 in Sec. 1.4 together with
the two antigens anti-A and anti-B. Suppose that, for a
given person, the probability of type O blood is 0.5, the
probability of type A blood is 0.34, and the probability of
type B blood is 0.12.

a. Find the probability that each of the antigens will
react with this person’s blood.

b. Find the probability that both antigens will react with
this person’s blood.
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1.6 Finite Sample Spaces
The simplest experiments in which to determine and derive probabilities are those
that involve only finitely many possible outcomes. This section gives several ex-
amples to illustrate the important concepts from Sec. 1.5 in finite sample spaces.

Example
1.6.1

Current Population Survey. Every month, the Census Bureau conducts a survey of
the United States population in order to learn about labor-force characteristics.
Several pieces of information are collected on each of about 50,000 households.
One piece of information is whether or not someone in the household is actively
looking for employment but currently not employed. Suppose that our experiment
consists of selecting three households at random from the 50,000 that were surveyed
in a particular month and obtaining access to the information recorded during the
survey. (Due to the confidential nature of information obtained during the Current
Population Survey, only researchers in the Census Bureau would be able to perform
the experiment just described.) The outcomes that make up the sample space S for
this experiment can be described as lists of three three distinct numbers from 1 to
50,000. For example (300, 1, 24602) is one such list where we have kept track of the
order in which the three households were selected. Clearly, there are only finitely
many such lists. We can assume that each list is equally likely to be chosen, but we
need to be able to count how many such lists there are. We shall learn a method for
counting the outcomes for this example in Sec. 1.7. �

Requirements of Probabilities

In this section, we shall consider experiments for which there are only a finite number
of possible outcomes. In other words, we shall consider experiments for which the
sample space S contains only a finite number of points s1, . . . , sn. In an experiment of
this type, a probability measure on S is specified by assigning a probability pi to each
point si ∈ S. The number pi is the probability that the outcome of the experiment
will be si (i = 1, . . . , n). In order to satisfy the axioms of probability, the numbers
p1, . . . , pn must satisfy the following two conditions:

pi ≥ 0 for i = 1, . . . , n

and
n∑

i=1

pi = 1.

The probability of each event A can then be found by adding the probabilities pi of
all outcomes si that belong to A. This is the general version of Example 1.5.2.

Example
1.6.2

Fiber Breaks. Consider an experiment in which five fibers having different lengths are
subjected to a testing process to learn which fiber will break first. Suppose that the
lengths of the five fibers are 1, 2, 3, 4, and 5 inches, respectively. Suppose also that
the probability that any given fiber will be the first to break is proportional to the
length of that fiber. We shall determine the probability that the length of the fiber
that breaks first is not more than 3 inches.

In this example, we shall let si be the outcome in which the fiber whose length is
i inches breaks first (i = 1, . . . , 5). Then S = {s1, . . . , s5} and pi = αi for i = 1, . . . , 5,
where α is a proportionality factor. It must be true that p1 + . . . + p5 = 1, and we
know that p1 + . . . + p5 = 15α, so α = 1/15. If A is the event that the length of the
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fiber that breaks first is not more than 3 inches, then A = {s1, s2, s3}. Therefore,

Pr(A) = p1 + p2 + p3 = 1
15

+ 2
15

+ 3
15

= 2
5
. �

Simple Sample Spaces

A sample space S containing n outcomes s1, . . . , sn is called a simple sample space
if the probability assigned to each of the outcomes s1, . . . , sn is 1/n. If an event A in
this simple sample space contains exactly m outcomes, then

Pr(A) = m

n
.

Example
1.6.3

Tossing Coins. Suppose that three fair coins are tossed simultaneously. We shall
determine the probability of obtaining exactly two heads.

Regardless of whether or not the three coins can be distinguished from each
other by the experimenter, it is convenient for the purpose of describing the sample
space to assume that the coins can be distinguished. We can then speak of the result
for the first coin, the result for the second coin, and the result for the third coin; and
the sample space will comprise the eight possible outcomes listed in Example 1.4.4
on page 12.

Furthermore, because of the assumption that the coins are fair, it is reasonable
to assume that this sample space is simple and that the probability assigned to each
of the eight outcomes is 1/8. As can be seen from the listing in Example 1.4.4, exactly
two heads will be obtained in three of these outcomes. Therefore, the probability of
obtaining exactly two heads is 3/8. �

It should be noted that if we had considered the only possible outcomes to be
no heads, one head, two heads, and three heads, it would have been reasonable to
assume that the sample space contained just these four outcomes. This sample space
would not be simple because the outcomes would not be equally probable.

Example
1.6.4

Genetics. Inherited traits in humans are determined by material in specific locations
on chromosomes. Each normal human receives 23 chromosomes from each parent,
and these chromosomes are naturally paired, with one chromosome in each pair
coming from each parent. For the purposes of this text, it is safe to think of a gene
as a portion of each chromosome in a pair. The genes, either one at a time or in
combination, determine the inherited traits, such as blood type and hair color. The
material in the two locations that make up a gene on the pair of chromosomes
comes in forms called alleles. Each distinct combination of alleles (one on each
chromosome) is called a genotype.

Consider a gene with only two different alleles A and a. Suppose that both
parents have genotype Aa, that is, each parent has allele A on one chromosome
and allele a on the other. (We do not distinguish the same alleles in a different order
as a different genotype. For example, aA would be the same genotype as Aa. But it
can be convenient to distinguish the two chromosomes during intermediate steps in
probability calculations, just as we distinguished the three coins in Example 1.6.3.)
What are the possible genotypes of an offspring of these two parents? If all possible
results of the parents contributing pairs of alleles are equally likely, what are the
probabilities of the different genotypes?

To begin, we shall distinguish which allele the offspring receives from each
parent, since we are assuming that pairs of contributed alleles are equally likely.
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Afterward, we shall combine those results that produce the same genotype. The
possible contributions from the parents are:

Mother

Father A a

A AA Aa

a aA aa

So, there are three possible genotypes AA, Aa, and aa for the offspring. Since we
assumed that every combination was equally likely, the four cells in the table all
have probability 1/4. Since two of the cells in the table combined into genotype Aa,
that genotype has probability 1/2. The other two genotypes each have probability
1/4, since they each correspond to only one cell in the table. �

Example
1.6.5

Rolling Two Dice. We shall now consider an experiment in which two balanced dice
are rolled, and we shall calculate the probability of each of the possible values of the
sum of the two numbers that may appear.

Although the experimenter need not be able to distinguish the two dice from
one another in order to observe the value of their sum, the specification of a simple
sample space in this example will be facilitated if we assume that the two dice are
distinguishable. If this assumption is made, each outcome in the sample space S can
be represented as a pair of numbers (x, y), where x is the number that appears on the
first die and y is the number that appears on the second die. Therefore, S comprises
the following 36 outcomes:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

It is natural to assume that S is a simple sample space and that the probability of each
of these outcomes is 1/36.

Let Pi denote the probability that the sum of the two numbers is i for i =
2, 3, . . . , 12. The only outcome in S for which the sum is 2 is the outcome (1, 1).
Therefore, P2 = 1/36. The sum will be 3 for either of the two outcomes (1, 2) and (2, 1).
Therefore, P3 = 2/36 = 1/18. By continuing in this manner, we obtain the following
probability for each of the possible values of the sum:

P2 = P12 = 1
36

, P5 = P9 = 4
36

,

P3 = P11 = 2
36

, P6 = P8 = 5
36

,

P4 = P10 = 3
36

, P7 = 6
36

. �
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Summary

A simple sample space is a finite sample space S such that every outcome in S has the
same probability. If there are n outcomes in a simple sample space S, then each one
must have probability 1/n. The probability of an event E in a simple sample space is
the number of outcomes in E divided by n. In the next three sections, we will present
some useful methods for counting numbers of outcomes in various events.

Exercises

1. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be odd?

2. If two balanced dice are rolled, what is the probability
that the sum of the two numbers that appear will be even?

3. If two balanced dice are rolled, what is the probability
that the difference between the two numbers that appear
will be less than 3?

4. A school contains students in grades 1, 2, 3, 4, 5, and
6. Grades 2, 3, 4, 5, and 6 all contain the same number of
students, but there are twice this number in grade 1. If a
student is selected at random from a list of all the students
in the school, what is the probability that she will be in
grade 3?

5. For the conditions of Exercise 4, what is the probabil-
ity that the selected student will be in an odd-numbered
grade?

6. If three fair coins are tossed, what is the probability that
all three faces will be the same?

7. Consider the setup of Example 1.6.4 on page 23. This
time, assume that two parents have genotypes Aa and aa.
Find the possible genotypes for an offspring and find the
probabilities for each genotype. Assume that all possi-
ble results of the parents contributing pairs of alleles are
equally likely.

8. Consider an experiment in which a fair coin is tossed
once and a balanced die is rolled once.

a. Describe the sample space for this experiment.

b. What is the probability that a head will be obtained
on the coin and an odd number will be obtained on
the die?

1.7 Counting Methods
In simple sample spaces, one way to calculate the probability of an event involves
counting the number of outcomes in the event and the number of outcomes in
the sample space. This section presents some common methods for counting the
number of outcomes in a set. These methods rely on special structure that exists in
many common experiments, namely, that each outcome consists of several parts
and that it is relatively easy to count how many possibilities there are for each of
the parts.

We have seen that in a simple sample space S, the probability of an event A is the
ratio of the number of outcomes in A to the total number of outcomes in S. In many
experiments, the number of outcomes in S is so large that a complete listing of these
outcomes is too expensive, too slow, or too likely to be incorrect to be useful. In such
an experiment, it is convenient to have a method of determining the total number
of outcomes in the space S and in various events in S without compiling a list of all
these outcomes. In this section, some of these methods will be presented.
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Figure 1.10 Three cities
with routes between them in
Example 1.7.1.
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Example
1.7.1

Routes between Cities. Suppose that there are three different routes from city A to
city B and five different routes from city B to city C. The cities and routes are depicted
in Fig. 1.10, with the routes numbered from 1 to 8. We wish to count the number of
different routes from A to C that pass through B. For example, one such route from
Fig. 1.10 is 1 followed by 4, which we can denote (1, 4). Similarly, there are the routes
(1, 5), (1, 6), . . . , (3, 8). It is not difficult to see that the number of different routes
3 × 5 = 15. �

Example 1.7.1 is a special case of a common form of experiment.

Example
1.7.2

Experiment in Two Parts. Consider an experiment that has the following two charac-
teristics:

i. The experiment is performed in two parts.

ii. The first part of the experiment has m possible outcomes x1, . . . , xm, and,
regardless of which one of these outcomes xi occurs, the second part of the
experiment has n possible outcomes y1, . . . , yn.

Each outcome in the sample space S of such an experiment will therefore be a pair
having the form (xi, yj), and S will be composed of the following pairs:

(x1, y1)(x1, y2) . . . (x1, yn)

(x2, y1)(x2, y2) . . . (x2, yn)
...

...
...

(xm, y1)(xm, y2) . . . (xm, yn). �

Since each of the m rows in the array in Example 1.7.2 contains n pairs, the
following result follows directly.

Theorem
1.7.1

Multiplication Rule for Two-Part Experiments. In an experiment of the type described
in Example 1.7.2, the sample space S contains exactly mn outcomes.

Figure 1.11 illustrates the multiplication rule for the case of n = 3 and m = 2 with a
tree diagram. Each end-node of the tree represents an outcome, which is the pair
consisting of the two parts whose names appear along the branch leading to the end-
node.

Example
1.7.3

Rolling Two Dice. Suppose that two dice are rolled. Since there are six possible
outcomes for each die, the number of possible outcomes for the experiment is
6 × 6 = 36, as we saw in Example 1.6.5. �

The multiplication rule can be extended to experiments with more than two parts.
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Figure 1.11 Tree diagram
in which end-nodes represent
outcomes.
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Theorem
1.7.2

Multiplication Rule. Suppose that an experiment has k parts (k ≥ 2), that the ith
part of the experiment can have ni possible outcomes (i = 1, . . . , k), and that all
of the outcomes in each part can occur regardless of which specific outcomes have
occurred in the other parts. Then the sample space S of the experiment will contain
all vectors of the form (u1, . . . , uk), where ui is one of the ni possible outcomes of part
i (i = 1, . . . , k). The total number of these vectors in S will be equal to the product
n1n2 . . . nk.

Example
1.7.4

Tossing Several Coins. Suppose that we toss six coins. Each outcome in S will consist
of a sequence of six heads and tails, such as HTTHHH. Since there are two possible
outcomes for each of the six coins, the total number of outcomes in S will be 26 = 64.
If head and tail are considered equally likely for each coin, then S will be a simple
sample space. Since there is only one outcome in S with six heads and no tails, the
probability of obtaining heads on all six coins is 1/64. Since there are six outcomes
in S with one head and five tails, the probability of obtaining exactly one head is
6/64 = 3/32. �

Example
1.7.5

Combination Lock. A standard combination lock has a dial with tick marks for 40
numbers from 0 to 39. The combination consists of a sequence of three numbers that
must be dialed in the correct order to open the lock. Each of the 40 numbers may
appear in each of the three positions of the combination regardless of what the other
two positions contain. It follows that there are 403 = 64,000 possible combinations.
This number is supposed to be large enough to discourage would-be thieves from
trying every combination. �

Note: The Multiplication Rule Is Slightly More General. In the statements of The-
orems 1.7.1 and 1.7.2, it is assumed that each possible outcome in each part of the
experiment can occur regardless of what occurs in the other parts of the experiment.
Technically, all that is necessary is that the number of possible outcomes for each
part of the experiment not depend on what occurs on the other parts. The discussion
of permutations below is an example of this situation.

Permutations

Example
1.7.6

Sampling without Replacement. Consider an experiment in which a card is selected
and removed from a deck of n different cards, a second card is then selected and
removed from the remaining n − 1 cards, and finally a third card is selected from the
remaining n − 2 cards. Each outcome consists of the three cards in the order selected.
A process of this kind is called sampling without replacement, since a card that is
drawn is not replaced in the deck before the next card is selected. In this experiment,
any one of the n cards could be selected first. Once this card has been removed, any
one of the other n − 1 cards could be selected second. Therefore, there are n(n − 1)
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possible outcomes for the first two selections. Finally, for every given outcome of
the first two selections, there are n − 2 other cards that could possibly be selected
third. Therefore, the total number of possible outcomes for all three selections is
n(n − 1)(n − 2). �

The situation in Example 1.7.6 can be generalized to any number of selections
without replacement.

Definition
1.7.1

Permutations. Suppose that a set has n elements. Suppose that an experiment consists
of selecting k of the elements one at a time without replacement. Let each outcome
consist of the k elements in the order selected. Each such outcome is called a per-
mutation of n elements taken k at a time. We denote the number of distinct such
permutations by the symbol Pn,k.

By arguing as in Example 1.7.6, we can figure out how many different permutations
there are of n elements taken k at a time. The proof of the following theorem is simply
to extend the reasoning in Example 1.7.6 to selecting k cards without replacement.
The proof is left to the reader.

Theorem
1.7.3

Number of Permutations. The number of permutations of n elements taken k at a time
is Pn,k = n(n − 1) . . . (n − k + 1).

Example
1.7.7

Current Population Survey. Theorem 1.7.3 allows us to count the number of points in
the sample space of Example 1.6.1. Each outcome in S consists of a permutation of
n = 50,000 elements taken k = 3 at a time. Hence, the sample space S in that example
consisits of

50,000 × 49,999 × 49,998 = 1.25 × 1014

outcomes. �

When k = n, the number of possible permutations will be the number Pn,n of
different permutations of all n cards. It is seen from the equation just derived that

Pn,n = n(n − 1) . . . 1 = n!

The symbol n! is read n factorial. In general, the number of permutations of n differ-
ent items is n!.

The expression for Pn,k can be rewritten in the following alternate form for
k = 1, . . . , n − 1:

Pn,k = n(n − 1) . . . (n − k + 1)
(n − k)(n − k − 1) . . . 1
(n − k)(n − k − 1) . . . 1

= n!
(n − k)!

.

Here and elsewhere in the theory of probability, it is convenient to define 0! by the
relation

0!= 1.

With this definition, it follows that the relation Pn,k = n!/(n − k)! will be correct for
the value k = n as well as for the values k = 1, . . . , n − 1. To summarize:

Theorem
1.7.4

Permutations. The number of distinct orderings of k items selected without replace-
ment from a collection of n different items (0 ≤ k ≤ n) is

Pn,k = n!
(n − k)!

.
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Example
1.7.8

Choosing Officers. Suppose that a club consists of 25 members and that a president
and a secretary are to be chosen from the membership. We shall determine the total
possible number of ways in which these two positions can be filled.

Since the positions can be filled by first choosing one of the 25 members to be
president and then choosing one of the remaining 24 members to be secretary, the
possible number of choices is P25,2 = (25)(24) = 600. �

Example
1.7.9

Arranging Books. Suppose that six different books are to be arranged on a shelf. The
number of possible permutations of the books is 6!= 720. �

Example
1.7.10

Sampling with Replacement. Consider a box that contains n balls numbered 1, . . . , n.
First, one ball is selected at random from the box and its number is noted. This ball
is then put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this way.
This process is called sampling with replacement. It is assumed that each of the n

balls is equally likely to be selected at each stage and that all selections are made
independently of each other.

Suppose that a total of k selections are to be made, where k is a given positive
integer. Then the sample space S of this experiment will contain all vectors of the form
(x1, . . . , xk), where xi is the outcome of the ith selection (i = 1, . . . , k). Since there
are n possible outcomes for each of the k selections, the total number of vectors in S

is nk. Furthermore, from our assumptions it follows that S is a simple sample space.
Hence, the probability assigned to each vector in S is 1/nk. �

Example
1.7.11

Obtaining Different Numbers. For the experiment in Example 1.7.10, we shall deter-
mine the probability of the event E that each of the k balls that are selected will have
a different number.

If k > n, it is impossible for all the selected balls to have different numbers be-
cause there are only n different numbers. Suppose, therefore, that k ≤ n. The number
of outcomes in the event E is the number of vectors for which all k components are
different. This equals Pn,k, since the first component x1 of each vector can have n pos-
sible values, the second component x2 can then have any one of the other n − 1values,
and so on. Since S is a simple sample space containing nk vectors, the probability p

that k different numbers will be selected is

p = Pn,k

nk
= n!

(n − k)!nk
. �

Note: Using Two Different Methods in the Same Problem. Example 1.7.11 illus-
trates a combination of techniques that might seem confusing at first. The method
used to count the number of outcomes in the sample space was based on sampling
with replacement, since the experiment allows repeat numbers in each outcome. The
method used to count the number of outcomes in the event E was permutations (sam-
pling without replacement) because E consists of those outcomes without repeats. It
often happens that one needs to use different methods to count the numbers of out-
comes in different subsets of the sample space. The birthday problem, which follows,
is another example in which we need more than one counting method in the same
problem.
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The Birthday Problem

In the following problem, which is often called the birthday problem, it is required to
determine the probability p that at least two people in a group of k people will have
the same birthday, that is, will have been born on the same day of the same month but
not necessarily in the same year. For the solution presented here, we assume that the
birthdays of the k people are unrelated (in particular, we assume that twins are not
present) and that each of the 365 days of the year is equally likely to be the birthday
of any person in the group. In particular, we ignore the fact that the birth rate actually
varies during the year and we assume that anyone actually born on February 29 will
consider his birthday to be another day, such as March 1.

When these assumptions are made, this problem becomes similar to the one
in Example 1.7.11. Since there are 365 possible birthdays for each of k people, the
sample space S will contain 365k outcomes, all of which will be equally probable. If
k > 365, there are not enough birthdays for every one to be different, and hence at
least two people must have the same birthday. So, we assume that k ≤ 365. Counting
the number of outcomes in which at least two birthdays are the same is tedious.
However, the number of outcomes in S for which all k birthdays will be different is
P365, k, since the first person’s birthday could be any one of the 365 days, the second
person’s birthday could then be any of the other 364 days, and so on. Hence, the
probability that all k persons will have different birthdays is

P365, k

365k
.

The probability p that at least two of the people will have the same birthday is
therefore

p = 1 − P365, k

365k
= 1 − (365)!

(365 − k)!365k
.

Numerical values of this probability p for various values of k are given in Table 1.1.
These probabilities may seem surprisingly large to anyone who has not thought about
them before. Many persons would guess that in order to obtain a value of p greater
than 1/2, the number of people in the group would have to be about 100. However,
according to Table 1.1, there would have to be only 23 people in the group. As a
matter of fact, for k = 100 the value of p is 0.9999997.

Table 1.1 The probability p that at least two
people in a group of k people will
have the same birthday

k p k p

5 0.027 25 0.569

10 0.117 30 0.706

15 0.253 40 0.891

20 0.411 50 0.970

22 0.476 60 0.994

23 0.507



1.7 Counting Methods 31

The calculation in this example illustrates a common technique for solving prob-
ability problems. If one wishes to compute the probability of some event A, it might
be more straightforward to calculate Pr(Ac) and then use the fact that Pr(A) =
1 − Pr(Ac). This idea is particularly useful when the event A is of the form “at least
n things happen” where n is small compared to how many things could happen.

Stirling’s Formula

For large values of n, it is nearly impossible to compute n!. For n ≥ 70, n! > 10100

and cannot be represented on many scientific calculators. In most cases for which
n! is needed with a large value of n, one only needs the ratio of n! to another large
number an. A common example of this is Pn,k with large n and not so large k, which
equals n!/(n − k)!. In such cases, we can notice that

n!
an

= elog(n!)−log(an).

Compared to computing n!, it takes a much larger n before log(n!) becomes difficult
to represent. Furthermore, if we had a simple approximation sn to log(n!) such that
limn→∞ |sn − log(n!)| = 0, then the ratio of n!/an to sn/an would be close to 1 for large
n. The following result, whose proof can be found in Feller (1968), provides such an
approximation.

Theorem
1.7.5

Stirling’s Formula. Let

sn = 1
2

log(2π) +
(

n + 1
2

)
log(n) − n.

Then limn→∞ |sn − log(n!)| = 0. Put another way,

lim
n→∞

(2π)1/2nn+1/2e−n

n!
= 1.

Example
1.7.12

Approximating the Number of Permutations. Suppose that we want to compute P70,20 =
70!/50!. The approximation from Stirling’s formula is

70!
50!

≈ (2π)1/27070.5e−70

(2π)1/25050.5e−50
= 3.940 × 1035.

The exact calculation yields 3.938 × 1035. The approximation and the exact calcula-
tion differ by less than 1/10 of 1 percent. �

Summary

Suppose that the following conditions are met:

. Each element of a set consists of k distinguishable parts x1, . . . , xk.

. There are n1 possibilities for the first part x1.

. For each i = 2, . . . , k and each combination (x1, . . . , xi−1) of the first i − 1parts,
there are ni possibilities for the ith part xi.

Under these conditions, there are n1 . . . nk elements of the set. The third condition
requires only that the number of possibilities for xi be ni no matter what the earlier
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parts are. For example, for i = 2, it does not require that the same n2 possibilities
be available for x2 regardless of what x1 is. It only requires that the number of
possibilities for x2 be n2 no matter what x1 is. In this way, the general rule includes the
multiplication rule, the calculation of permutations, and sampling with replacement
as special cases. For permutations of m items k at a time, we have ni = m − i + 1 for
i = 1, . . . , k, and the ni possibilities for part i are just the ni items that have not yet
appeared in the first i − 1 parts. For sampling with replacement from m items, we
have ni = m for all i, and the m possibilities are the same for every part. In the next
section, we shall consider how to count elements of sets in which the parts of each
element are not distinguishable.

Exercises

1. Each year starts on one of the seven days (Sunday
through Saturday). Each year is either a leap year (i.e.,
it includes February 29) or not. How many different cal-
endars are possible for a year?

2. Three different classes contain 20, 18, and 25 students,
respectively, and no student is a member of more than one
class. If a team is to be composed of one student from each
of these three classes, in how many different ways can the
members of the team be chosen?

3. In how many different ways can the five letters a, b, c,
d, and e be arranged?

4. If a man has six different sportshirts and four different
pairs of slacks, how many different combinations can he
wear?

5. If four dice are rolled, what is the probability that each
of the four numbers that appear will be different?

6. If six dice are rolled, what is the probability that each
of the six different numbers will appear exactly once?

7. If 12 balls are thrown at random into 20 boxes, what
is the probability that no box will receive more than one
ball?

8. An elevator in a building starts with five passengers
and stops at seven floors. If every passenger is equally
likely to get off at each floor and all the passengers leave
independently of each other, what is the probability that
no two passengers will get off at the same floor?

9. Suppose that three runners from team A and three run-
ners from team B participate in a race. If all six runners
have equal ability and there are no ties, what is the prob-
ability that the three runners from team A will finish first,
second, and third, and the three runners from team B will
finish fourth, fifth, and sixth?

10. A box contains 100 balls, of which r are red. Suppose
that the balls are drawn from the box one at a time, at ran-
dom, without replacement. Determine (a) the probability
that the first ball drawn will be red; (b) the probability that
the 50th ball drawn will be red; and (c) the probability that
the last ball drawn will be red.

11. Let n and k be positive integers such that both n and
n − k are large. Use Stirling’s formula to write as simple
an approximation as you can for Pn,k.

1.8 Combinatorial Methods
Many problems of counting the number of outcomes in an event amount to
counting how many subsets of a certain size are contained in a fixed set. This section
gives examples of how to do such counting and where it can arise.

Combinations

Example
1.8.1

Choosing Subsets. Consider the set {a, b, c, d} containing the four different letters.
We want to count the number of distinct subsets of size two. In this case, we can list
all of the subsets of size two:

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.
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We see that there are six distinct subsets of size two. This is different from counting
permutaions because {a, b} and {b, a} are the same subset. �

For large sets, it would be tedious, if not impossible, to enumerate all of the
subsets of a given size and count them as we did in Example 1.8.1. However, there
is a connection between counting subsets and counting permutations that will allow
us to derive the general formula for the number of subsets.

Suppose that there is a set of n distinct elements from which it is desired to
choose a subset containing k elements (1 ≤ k ≤ n). We shall determine the number of
different subsets that can be chosen. In this problem, the arrangement of the elements
in a subset is irrelevant and each subset is treated as a unit.

Definition
1.8.1

Combinations. Consider a set with n elements. Each subset of size k chosen from this
set is called a combination of n elements taken k at a time. We denote the number of
distinct such combinations by the symbol Cn,k.

No two combinations will consist of exactly the same elements because two
subsets with the same elements are the same subset.

At the end of Example 1.8.1, we noted that two different permutations (a, b)

and (b, a) both correspond to the same combination or subset {a, b}. We can think of
permutations as being constructed in two steps. First, a combination of k elements is
chosen out of n, and second, those k elements are arranged in a specific order. There
are Cn,k ways to choose the k elements out of n, and for each such choice there are
k! ways to arrange those k elements in different orders. Using the multiplication rule
from Sec. 1.7, we see that the number of permutations of n elements taken k at a time
is Pn,k = Cn,kk!; hence, we have the following.

Theorem
1.8.1

Combinations. The number of distinct subsets of size k that can be chosen from a set
of size n is

Cn,k = Pn,k

k!
= n!

k!(n − k)!
.

In Example 1.8.1, we see that C4,2 = 4!/[2!2!] = 6.

Example
1.8.2

Selecting a Committee. Suppose that a committee composed of eight people is to be
selected from a group of 20 people. The number of different groups of people that
might be on the committee is

C20,8 = 20!
8!12!

= 125,970. �

Example
1.8.3

Choosing Jobs. Suppose that, in Example 1.8.2, the eight people in the committee
each get a different job to perform on the committee. The number of ways to choose
eight people out of 20 and assign them to the eight different jobs is the number of
permutations of 20 elements taken eight at a time, or

P20,8 = C20,8 × 8!= 125,970 × 8!= 5,078,110,400. �

Examples 1.8.2 and 1.8.3 illustrate the difference and relationship between com-
binations and permutations. In Example 1.8.3, we count the same group of people in
a different order as a different outcome, while in Example 1.8.2, we count the same
group in different orders as the same outcome. The two numerical values differ by a
factor of 8!, the number of ways to reorder each of the combinations in Example 1.8.2
to get a permutation in Example 1.8.3.
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Binomial Coefficients

Definition
1.8.2

Binomial Coefficients. The number Cn,k is also denoted by the symbol
(
n
k

)
. That is, for

k = 0, 1, . . . , n, (
n

k

)
= n!

k!(n − k)!
. (1.8.1)

When this notation is used, this number is called a binomial coefficient.

The name binomial coefficient derives from the appearance of the symbol in the
binomial theorem, whose proof is left as Exercise 20 in this section.

Theorem
1.8.2

Binomial Theorem. For all numbers x and y and each positive integer n,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

There are a couple of useful relations between binomial coefficients.

Theorem
1.8.3

For all n, (
n

0

)
=

(
n

n

)
= 1.

For all n and all k = 0, 1, . . . , n, (
n

k

)
=

(
n

n − k

)
.

Proof The first equation follows from the fact that 0! = 1. The second equation
follows from Eq. (1.8.1). The second equation can also be derived from the fact that
selecting k elements to form a subset is equivalent to selecting the remaining n − k

elements to form the complement of the subset.

It is sometimes convenient to use the expression “n choose k” for the value of
Cn,k. Thus, the same quantity is represented by the two different notations Cn,k and(
n
k

)
, and we may refer to this quantity in three different ways: as the number of

combinations of n elements taken k at a time, as the binomial coefficient of n and
k, or simply as “n choose k.”

Example
1.8.4

Blood Types. In Example 1.6.4 on page 23, we defined genes, alleles, and genotypes.
The gene for human blood type consists of a pair of alleles chosen from the three
alleles commonly called O, A, and B. For example, two possible combinations of
alleles (called genotypes) to form a blood-type gene would be BB and AO. We will
not distinguish the same two alleles in different orders, so OA represents the same
genotype as AO. How many genotypes are there for blood type?

The answer could easily be found by counting, but it is an example of a more
general calculation. Suppose that a gene consists of a pair chosen from a set of
n different alleles. Assuming that we cannot distinguish the same pair in different
orders, there are n pairs where both alleles are the same, and there are

(
n
2

)
pairs

where the two alleles are different. The total number of genotypes is

n +
(

n

2

)
= n + n(n − 1)

2
= n(n + 1)

2
=

(
n + 1

2

)
.
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For the case of blood type, we have n = 3, so there are(
4
2

)
= 4 × 3

2
= 6

genotypes, as could easily be verified by counting. �

Note: Sampling with Replacement. The counting method described in Exam-
ple 1.8.4 is a type of sampling with replacement that is different from the type
described in Example 1.7.10. In Example 1.7.10, we sampled with replacement, but
we distinguished between samples having the same balls in different orders. This
could be called ordered sampling with replacement. In Example 1.8.4, samples con-
taining the same genes in different orders were considered the same outcome. This
could be called unordered sampling with replacement. The general formula for the
number of unordered samples of size k with replacement from n elements is

(
n+k−1

k

)
,

and can be derived in Exercise 19. It is possible to have k larger than n when sampling
with replacement.

Example
1.8.5

Selecting Baked Goods. You go to a bakery to select some baked goods for a dinner
party. You need to choose a total of 12 items. The baker has seven different types
of items from which to choose, with lots of each type available. How many different
boxfuls of 12 items are possible for you to choose? Here we will not distinguish the
same collection of 12 items arranged in different orders in the box. This is an example
of unordered sampling with replacement because we can (indeed we must) choose
the same type of item more than once, but we are not distinguishing the same items
in different orders. There are

(7+12−1
12

) = 18,564 different boxfuls. �

Example 1.8.5 raises an issue that can cause confusion if one does not carefully
determine the elements of the sample space and carefully specify which outcomes
(if any) are equally likely. The next example illustrates the issue in the context of
Example 1.8.5.

Example
1.8.6

Selecting Baked Goods. Imagine two different ways of choosing a boxful of 12 baked
goods selected from the seven different types available. In the first method, you
choose one item at random from the seven available. Then, without regard to what
item was chosen first, you choose the second item at random from the seven available.
Then you continue in this way choosing the next item at random from the seven
available without regard to what has already been chosen until you have chosen 12.
For this method of choosing, it is natural to let the outcomes be the possible sequences
of the 12 types of items chosen. The sample space would contain 712 = 1.38 × 1010

different outcomes that would be equally likely.
In the second method of choosing, the baker tells you that she has available

18,564 different boxfuls freshly packed. You then select one at random. In this case,
the sample space would consist of 18,564 different equally likely outcomes.

In spite of the different sample spaces that arise in the two methods of choosing,
there are some verbal descriptions that identify an event in both sample spaces. For
example, both sample spaces contain an event that could be described as {all 12 items
are of the same type} even though the outcomes are different types of mathematical
objects in the two sample spaces. The probability that all 12 items are of the same
type will actually be different depending on which method you use to choose the
boxful.

In the first method, seven of the 712 equally likely outcomes contain 12 of the
same type of item. Hence, the probability that all 12 items are of the same type is
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7/712 = 5.06 × 10−10. In the second method, there are seven equally liklely boxes
that contain 12 of the same type of item. Hence, the probability that all 12 items are
of the same type is 7/18,564 = 3.77 × 10−4. Before one can compute the probability
for an event such as {all 12 items are of the same type}, one must be careful about
defining the experiment and its outcomes. �

Arrangements of Elements of Two Distinct Types When a set contains only el-
ements of two distinct types, a binomial coefficient can be used to represent the
number of different arrangements of all the elements in the set. Suppose, for ex-
ample, that k similar red balls and n − k similar green balls are to be arranged in a
row. Since the red balls will occupy k positions in the row, each different arrangement
of the n balls corresponds to a different choice of the k positions occupied by the red
balls. Hence, the number of different arrangements of the n balls will be equal to
the number of different ways in which k positions can be selected for the red balls
from the n available positions. Since this number of ways is specified by the bino-
mial coefficient

(
n
k

)
, the number of different arrangements of the n balls is also

(
n
k

)
.

In other words, the number of different arrangements of n objects consisting of k

similar objects of one type and n − k similar objects of a second type is
(
n
k

)
.

Example
1.8.7

Tossing a Coin. Suppose that a fair coin is to be tossed 10 times, and it is desired
to determine (a) the probability p of obtaining exactly three heads and (b) the
probability p′ of obtaining three or fewer heads.

(a) The total possible number of different sequences of 10 heads and tails is 210,
and it may be assumed that each of these sequences is equally probable. The
number of these sequences that contain exactly three heads will be equal to
the number of different arrangements that can be formed with three heads and
seven tails. Here are some of those arrangements:

HHHTTTTTTT, HHTHTTTTTT, HHTTHTTTTT, TTHTHTHTTT, etc.

Each such arrangement is equivalent to a choice of where to put the 3 heads
among the 10 tosses, so there are

(10
3

)
such arrangements. The probability of

obtaining exactly three heads is then

p =
(

10
3

)
210

= 0.1172.

(b) Using the same reasoning as in part (a), the number of sequences in the sample
space that contain exactly k heads (k = 0, 1, 2, 3) is

(10
k

)
. Hence, the probability

of obtaining three or fewer heads is

p′ =
(

10
0

)
+

(
10
1

)
+

(
10
2

)
+

(
10
3

)
210

= 1 + 10 + 45 + 120
210

= 176
210

= 0.1719. �

Note: Using Two Different Methods in the Same Problem. Part (a) of Exam-
ple 1.8.7 is another example of using two different counting methods in the same
problem. Part (b) illustrates another general technique. In this part, we broke the
event of interest into several disjoint subsets and counted the numbers of outcomes
separately for each subset and then added the counts together to get the total. In
many problems, it can require several applications of the same or different counting
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methods in order to count the number of outcomes in an event. The next example is
one in which the elements of an event are formed in two parts (multiplication rule),
but we need to perform separate combination calculations to determine the numbers
of outcomes for each part.

Example
1.8.8

Sampling without Replacement. Suppose that a class contains 15 boys and 30 girls,
and that 10 students are to be selected at random for a special assignment. We shall
determine the probability p that exactly three boys will be selected.

The number of different combinations of the 45 students that might be obtained
in the sample of 10 students is

(45
10

)
, and the statement that the 10 students are selected

at random means that each of these
(45

10

)
possible combinations is equally probable.

Therefore, we must find the number of these combinations that contain exactly three
boys and seven girls.

When a combination of three boys and seven girls is formed, the number of
different combinations in which three boys can be selected from the 15 available boys
is
(15

3

)
, and the number of different combinations in which seven girls can be selected

from the 30 available girls is
(30

7

)
. Since each of these combinations of three boys

can be paired with each of the combinations of seven girls to form a distinct sample,
the number of combinations containing exactly three boys is

(15
3

)(30
7

)
. Therefore, the

desired probability is

p =
(

15
3

)(
30
7

)
(

45
10

) = 0.2904. �

Example
1.8.9

Playing Cards. Suppose that a deck of 52 cards containing four aces is shuffled thor-
oughly and the cards are then distributed among four players so that each player
receives 13 cards. We shall determine the probability that each player will receive
one ace.

The number of possible different combinations of the four positions in the deck
occupied by the four aces is

(52
4

)
, and it may be assumed that each of these

(52
4

)
combinations is equally probable. If each player is to receive one ace, then there
must be exactly one ace among the 13 cards that the first player will receive and one
ace among each of the remaining three groups of 13 cards that the other three players
will receive. In other words, there are 13 possible positions for the ace that the first
player is to receive, 13 other possible positions for the ace that the second player is to
receive, and so on. Therefore, among the

(52
4

)
possible combinations of the positions

for the four aces, exactly 134 of these combinations will lead to the desired result.
Hence, the probability p that each player will receive one ace is

p = 134(
52
4

) = 0.1055. �

Ordered versus Unordered Samples Several of the examples in this section and
the previous section involved counting the numbers of possible samples that could
arise using various sampling schemes. Sometimes we treated the same collection of
elements in different orders as different samples, and sometimes we treated the same
elements in different orders as the same sample. In general, how can one tell which
is the correct way to count in a given problem? Sometimes, the problem description
will make it clear which is needed. For example, if we are asked to find the probability
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that the items in a sample arrive in a specified order, then we cannot even specify the
event of interest unless we treat different arrangements of the same items as different
outcomes. Examples 1.8.5 and 1.8.6 illustrate how different problem descriptions can
lead to very different calculations.

However, there are cases in which the problem description does not make it clear
whether or not one must count the same elements in different orders as different
outcomes. Indeed, there are some problems that can be solved correctly both ways.
Example 1.8.9 is one such problem. In that problem, we needed to decide what we
would call an outcome, and then we needed to count how many outcomes were in the
whole sample space S and how many were in the event E of interest. In the solution
presented in Example 1.8.9, we chose as our outcomes the positions in the 52-card
deck that were occupied by the four aces. We did not count different arrangements
of the four aces in those four positions as different outcomes when we counted the
number of outcomes in S. Hence, when we calculated the number of outcomes in E,
we also did not count the different arrangements of the four aces in the four possible
positions as different outcomes. In general, this is the principle that should guide the
choice of counting method. If we have the choice between whether or not to count
the same elements in different orders as different outcomes, then we need to make
our choice and be consistent throughout the problem. If we count the same elements
in different orders as different outcomes when counting the outcomes in S, we must
do the same when counting the elements of E. If we do not count them as different
outcomes when counting S, we should not count them as different when counting E.

Example
1.8.10

Playing Cards, Revisited. We shall solve the problem in Example 1.8.9 again, but this
time, we shall distinguish outcomes with the same cards in different orders. To go
to the extreme, let each outcome be a complete ordering of the 52 cards. So, there
are 52! possible outcomes. How many of these have one ace in each of the four sets
of 13 cards received by the four players? As before, there are 134 ways to choose
the four positions for the four aces, one among each of the four sets of 13 cards. No
matter which of these sets of positions we choose, there are 4! ways to arrange the
four aces in these four positions. No matter how the aces are arranged, there are 48!
ways to arrange the remaining 48 cards in the 48 remaining positions. So, there are
134 × 4!× 48! outcomes in the event of interest. We then calculate

p = 134 × 4!× 48!
52!

= 0.1055. �

In the following example, whether one counts the same items in different orders
as different outcomes is allowed to depend on which events one wishes to use.

Example
1.8.11

Lottery Tickets. In a lottery game, six numbers from 1 to 30 are drawn at random from
a bin without replacement, and each player buys a ticket with six different numbers
from 1 to 30. If all six numbers drawn match those on the player’s ticket, the player
wins. We assume that all possible draws are equally likely. One way to construct a
sample space for the experiment of drawing the winning combination is to consider
the possible sequences of draws. That is, each outcome consists of an ordered subset
of six numbers chosen from the 30 available numbers. There are P30,6 = 30!/24! such
outcomes. With this sample space S, we can calculate probabilities for events such as

A = {the draw contains the numbers 1, 14, 15, 20, 23, and 27},
B = {one of the numbers drawn is 15}, and

C = {the first number drawn is less than 10}.
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There is another natural sample space, which we shall denote S′, for this experiment.
It consists solely of the different combinations of six numbers drawn from the 30
available. There are

(30
6

)= 30!/(6!24!) such outcomes. It also seems natural to consider
all of these outcomes equally likely. With this sample space, we can calculate the
probabilities of the events A and B above, but C is not a subset of the sample space
S′, so we cannot calculate its probability using this smaller sample space. When the
sample space for an experiment could naturally be constructed in more than one way,
one needs to choose based on for which events one wants to compute probabilities.

�

Example 1.8.11 raises the question of whether one will compute the same prob-
abilities using two different sample spaces when the event, such as A or B, exists
in both sample spaces. In the example, each outcome in the smaller sample space
S′ corresponds to an event in the larger sample space S. Indeed, each outcome s′
in S′ corresponds to the event in S containing the 6! permutations of the single
combination s′. For example, the event A in the example has only one outcome
s′ = (1, 14, 15, 20, 23, 27) in the sample space S′, while the corresponding event in
the sample space S has 6! permutations including

(1, 14, 15, 20, 23, 27), (14, 20, 27, 15, 23, 1), (27, 23, 20, 15, 14, 1), etc.

In the sample space S, the probability of the event A is

Pr(A) = 6!
P30,6

= 6!24!
30!

= 1(30
6

) .
In the sample space S′, the event A has this same probability because it has only one
of the

(30
6

)
equally likely outcomes. The same reasoning applies to every outcome in

S′. Hence, if the same event can be expressed in both sample spaces S and S′, we
will compute the same probability using either sample space. This is a special feature
of examples like Example 1.8.11 in which each outcome in the smaller sample space
corresponds to an event in the larger sample space with the same number of elements.
There are examples in which this feature is not present, and one cannot treat both
sample spaces as simple sample spaces.

Example
1.8.12

Tossing Coins. An experiment consists of tossing a coin two times. If we want to
distinguish H followed by T from T followed by H, we should use the sample space
S = {HH, HT, T H, T T }, which might naturally be assumed a simple sample space.
On the other hand, we might be interested solely in the number of H’s tossed. In this
case, we might consider the smaller sample space S′ = {0, 1, 2} where each outcome
merely counts the number of H’s. The outcomes 0 and 2 in S′ each correspond to
a single outcome in S, but 1 ∈ S′ corresponds to the event {HT, T H } ⊂ S with two
outcomes. If we think of S as a simple sample space, then S′ will not be a simple
sample space, because the outcome 1 will have probability 1/2 while the other two
outcomes each have probability 1/4.

There are situations in which one would be justified in treating S′ as a simple
sample space and assigning each of its outcomes probability 1/3. One might do this
if one believed that the coin was not fair, but one had no idea how unfair it was or
which side were more likely to land up. In this case, S would not be a simple sample
space, because two of its outcomes would have probability 1/3 and the other two
would have probabilities that add up to 1/3. �
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Example 1.8.6 is another case of two different sample spaces in which each
outcome in one sample space corresponds to a different number of outcomes in the
other space. See Exercise 12 in Sec. 1.9 for a more complete analysis of Example 1.8.6.

The Tennis Tournament

We shall now present a difficult problem that has a simple and elegant solution.
Suppose that n tennis players are entered in a tournament. In the first round, the
players are paired one against another at random. The loser in each pair is eliminated
from the tournament, and the winner in each pair continues into the second round.
If the number of players n is odd, then one player is chosen at random before the
pairings are made for the first round, and that player automatically continues into
the second round. All the players in the second round are then paired at random.
Again, the loser in each pair is eliminated, and the winner in each pair continues
into the third round. If the number of players in the second round is odd, then one
of these players is chosen at random before the others are paired, and that player
automatically continues into the third round. The tournament continues in this way
until only two players remain in the final round. They then play against each other,
and the winner of this match is the winner of the tournament. We shall assume that
all n players have equal ability, and we shall determine the probability p that two
specific players A and B will ever play against each other during the tournament.

We shall first determine the total number of matches that will be played during
the tournament. After each match has been played, one player—the loser of that
match—is eliminated from the tournament. The tournament ends when everyone
has been eliminated from the tournament except the winner of the final match. Since
exactly n − 1 players must be eliminated, it follows that exactly n − 1 matches must
be played during the tournament.

The number of possible pairs of players is
(
n
2

)
. Each of the two players in every

match is equally likely to win that match, and all initial pairings are made in a random
manner. Therefore, before the tournament begins, every possible pair of players is
equally likely to appear in each particular one of the n − 1 matches to be played
during the tournament. Accordingly, the probability that players A and B will meet
in some particular match that is specified in advance is 1/

(
n
2

)
. If A and B do meet in

that particular match, one of them will lose and be eliminated. Therefore, these same
two players cannot meet in more than one match.

It follows from the preceding explanation that the probability p that players A

and B will meet at some time during the tournament is equal to the product of the
probability 1/

(
n
2

)
that they will meet in any particular specified match and the total

number n − 1 of different matches in which they might possibly meet. Hence,

p = n − 1(
n
2

) = 2
n
.

Summary

We showed that the number of size k subsets of a set of size n is
(
n
k

) = n!/[k!(n −
k)!]. This turns out to be the number of possible samples of size k drawn without
replacement from a population of size n as well as the number of arrangements of n

items of two types with k of one type and n − k of the other type. We also saw several
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examples in which more than one counting technique was required at different points
in the same problem. Sometimes, more than one technique is required to count the
elements of a single set.

Exercises

1. Two pollsters will canvas a neighborhood with 20
houses. Each pollster will visit 10 of the houses. How many
different assignments of pollsters to houses are possible?

2. Which of the following two numbers is larger:
(93

30

)
or(93

31

)
?

3. Which of the following two numbers is larger:
(93

30

)
or(93

63

)
?

4. A box contains 24 light bulbs, of which four are defec-
tive. If a person selects four bulbs from the box at random,
without replacement, what is the probability that all four
bulbs will be defective?

5. Prove that the following number is an integer:

4155 × 4156 × . . . × 4250 × 4251
2 × 3 × . . . × 96 × 97

.

6. Suppose that n people are seated in a random manner
in a row of n theater seats. What is the probability that
two particular people A and B will be seated next to each
other?

7. If k people are seated in a random manner in a row
containing n seats (n > k), what is the probability that the
people will occupy k adjacent seats in the row?

8. If k people are seated in a random manner in a circle
containing n chairs (n > k), what is the probability that the
people will occupy k adjacent chairs in the circle?

9. If n people are seated in a random manner in a row
containing 2n seats, what is the probability that no two
people will occupy adjacent seats?

10. A box contains 24 light bulbs, of which two are de-
fective. If a person selects 10 bulbs at random, without
replacement, what is the probability that both defective
bulbs will be selected?

11. Suppose that a committee of 12 people is selected in
a random manner from a group of 100 people. Determine
the probability that two particular people A and B will
both be selected.

12. Suppose that 35 people are divided in a random man-
ner into two teams in such a way that one team contains
10 people and the other team contains 25 people. What is
the probability that two particular people A and B will be
on the same team?

13. A box contains 24 light bulbs of which four are de-
fective. If one person selects 10 bulbs from the box in
a random manner, and a second person then takes the
remaining 14 bulbs, what is the probability that all four
defective bulbs will be obtained by the same person?

14. Prove that, for all positive integers n and k (n ≥ k),(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
.

15.

a. Prove that(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . . +

(
n

n

)
= 2n.

b. Prove that(
n

0

)
−

(
n

1

)
+

(
n

2

)
−

(
n

3

)
+ . . . + (−1)n

(
n

n

)
= 0.

Hint: Use the binomial theorem.

16. The United States Senate contains two senators from
each of the 50 states. (a) If a committee of eight senators
is selected at random, what is the probability that it will
contain at least one of the two senators from a certain
specified state? (b) What is the probability that a group
of 50 senators selected at random will contain one senator
from each state?

17. A deck of 52 cards contains four aces. If the cards
are shuffled and distributed in a random manner to four
players so that each player receives 13 cards, what is the
probability that all four aces will be received by the same
player?

18. Suppose that 100 mathematics students are divided
into five classes, each containing 20 students, and that
awards are to be given to 10 of these students. If each
student is equally likely to receive an award, what is the
probability that exactly two students in each class will
receive awards?

19. A restaurant has n items on its menu. During a partic-
ular day, k customers will arrive and each one will choose
one item. The manager wants to count how many dif-
ferent collections of customer choices are possible with-
out regard to the order in which the choices are made.
(For example, if k = 3 and a1, . . . , an are the menu items,
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then a1a3a1 is not distinguished from a1a1a3.) Prove that
the number of different collections of customer choices is(
n+k−1

k

)
. Hint: Assume that the menu items are a1, . . . , an.

Show that each collection of customer choices, arranged
with the a1’s first, the a2’s second, etc., can be identified
with a sequence of k zeros and n − 1 ones, where each 0
stands for a customer choice and each 1 indicates a point
in the sequence where the menu item number increases
by 1. For example, if k = 3 and n = 5, then a1a1a3 becomes
0011011.

20. Prove the binomial theorem 1.8.2. Hint: You may use
an induction argument. That is, first prove that the result
is true if n = 1. Then, under the assumption that there is

n0 such that the result is true for all n ≤ n0, prove that it is
also true for n = n0 + 1.

21. Return to the birthday problem on page 30. How
many different sets of birthdays are available with k peo-
ple and 365 days when we don’t distinguish the same
birthdays in different orders? For example, if k = 3, we
would count (Jan. 1, Mar. 3, Jan.1) the same as (Jan. 1,
Jan. 1, Mar. 3).

22. Let n be a large even integer. Use Stirlings’ formula
(Theorem 1.7.5) to find an approximation to the binomial
coefficient

(
n

n/2

)
. Compute the approximation with n =

500.

1.9 Multinomial Coefficients
We learn how to count the number of ways to partition a finite set into more than
two disjoint subsets. This generalizes the binomial coefficients from Sec. 1.8. The
generalization is useful when outcomes consist of several parts selected from a
fixed number of distinct types.

We begin with a fairly simple example that will illustrate the general ideas of this
section.

Example
1.9.1

Choosing Committees. Suppose that 20 members of an organization are to be divided
into three committees A, B, and C in such a way that each of the committees A and
B is to have eight members and committee C is to have four members. We shall
determine the number of different ways in which members can be assigned to these
committees. Notice that each of the 20 members gets assigned to one and only one
committee.

One way to think of the assignments is to form committee A first by choosing its
eight members and then split the remaining 12 members into committees B and C.
Each of these operations is choosing a combination, and every choice of committee
A can be paired with every one of the splits of the remaining 12 members into
committees B and C. Hence, the number of assignments into three committees is
the product of the numbers of combinations for the two parts of the assignment.
Specifically, to form committee A, we must choose eight out of 20 members, and this
can be done in

(20
8

)
ways. Then to split the remaining 12 members into committees B

and C there are are
(12

8

)
ways to do it. Here, the answer is(

20
8

)(
12
8

)
= 20!

8!12!
12!
8!4!

= 20!
8!8!4!

= 62,355,150. �

Notice how the 12! that appears in the denominator of
(20

8

)
divides out with the 12!

that appears in the numerator of
(12

8

)
. This fact is the key to the general formula that

we shall derive next.

In general, suppose that n distinct elements are to be divided into k different
groups (k ≥ 2) in such a way that, for j = 1, . . . , k, the j th group contains exactly
nj elements, where n1 + n2 + . . . + nk = n. It is desired to determine the number
of different ways in which the n elements can be divided into the k groups. The
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n1 elements in the first group can be selected from the n available elements in
(

n
n1

)
different ways. After the n1 elements in the first group have been selected, the n2
elements in the second group can be selected from the remaining n − n1 elements
in

(
n−n1
n2

)
different ways. Hence, the total number of different ways of selecting the

elements for both the first group and the second group is
(

n
n1

)(
n−n1
n2

)
. After the n1 + n2

elements in the first two groups have been selected, the number of different ways in
which the n3 elements in the third group can be selected is

(
n−n1−n2

n3

)
. Hence, the total

number of different ways of selecting the elements for the first three groups is(
n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
.

It follows from the preceding explanation that, for each j = 1, . . . , k − 2 after
the first j groups have been formed, the number of different ways in which the nj+1
elements in the next group (j + 1) can be selected from the remaining n − n1 − . . . −
nj elements is

(
n−n1−...−nj

nj+1

)
. After the elements of group k − 1 have been selected,

the remaining nk elements must then form the last group. Hence, the total number
of different ways of dividing the n elements into the k groups is(

n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
. . .

(
n − n1 − . . . − nk−2

nk−1

)
= n!

n1!n2! . . . nk!
,

where the last formula follows from writing the binomial coefficients in terms of
factorials.

Definition
1.9.1

Multinomial Coefficients. The number

n!
n1!n2! . . . nk!

, which we shall denote by
(

n

n1, n2, . . . , nk

)
,

is called a multinomial coefficient.

The name multinomial coefficient derives from the appearance of the symbol in the
multinomial theorem, whose proof is left as Exercise 11 in this section.

Theorem
1.9.1

Multinomial Theorem. For all numbers x1, . . . , xk and each positive integer n,

(x1 + . . . + xk)
n =

∑(
n

n1, n2, . . . , nk

)
x

n1
1 x

n2
2

. . . x
nk

k ,

where the summation extends over all possible combinations of nonnegative integers
n1, . . . , nk such that n1 + n2 + . . . + nk = n.

A multinomial coefficient is a generalization of the binomial coefficient discussed
in Sec. 1.8. For k = 2, the multinomial theorem is the same as the binomial theorem,
and the multinomial coefficient becomes a binomial coefficient. In particular,(

n

k, n − k

)
=

(
n

k

)
.

Example
1.9.2

Choosing Committees. In Example 1.9.1, we see that the solution obtained there is the
same as the multinomial coefficient for which n = 20, k = 3, n1 = n2 = 8, and n3 = 4,
namely, (

20
8, 8, 4

)
= 20!

(8!)24!
= 62,355,150. �
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Arrangements of Elements of More Than Two Distinct Types Just as binomial
coefficients can be used to represent the number of different arrangements of the
elements of a set containing elements of only two distinct types, multinomial coeffi-
cients can be used to represent the number of different arrangements of the elements
of a set containing elements of k different types (k ≥ 2). Suppose, for example, that
n balls of k different colors are to be arranged in a row and that there are nj balls
of color j (j = 1, . . . , k), where n1 + n2 + . . . + nk = n. Then each different arrange-
ment of the n balls corresponds to a different way of dividing the n available positions
in the row into a group of n1 positions to be occupied by the balls of color 1, a second
group of n2 positions to be occupied by the balls of color 2, and so on. Hence, the
total number of different possible arrangements of the n balls must be(

n

n1, n2, . . . , nk

)
= n!

n1!n2! . . . nk!
.

Example
1.9.3

Rolling Dice. Suppose that 12 dice are to be rolled. We shall determine the probability
p that each of the six different numbers will appear twice.

Each outcome in the sample space S can be regarded as an ordered sequence
of 12 numbers, where the ith number in the sequence is the outcome of the ith roll.
Hence, there will be 612 possible outcomes in S, and each of these outcomes can
be regarded as equally probable. The number of these outcomes that would contain
each of the six numbers 1, 2, . . . , 6 exactly twice will be equal to the number of
different possible arrangements of these 12 elements. This number can be determined
by evaluating the multinomial coefficient for which n = 12, k = 6, and n1 = n2 = . . . =
n6 = 2. Hence, the number of such outcomes is(

12
2, 2, 2, 2, 2, 2

)
= 12!

(2!)6
,

and the required probability p is

p = 12!
26612

= 0.0034. �

Example
1.9.4

Playing Cards. A deck of 52 cards contains 13 hearts. Suppose that the cards are
shuffled and distributed among four players A, B, C, and D so that each player
receives 13 cards. We shall determine the probability p that player A will receive
six hearts, player B will receive four hearts, player C will receive two hearts, and
player D will receive one heart.

The total number N of different ways in which the 52 cards can be distributed
among the four players so that each player receives 13 cards is

N =
(

52
13, 13, 13, 13

)
= 52!

(13!)4
.

It may be assumed that each of these ways is equally probable. We must now calculate
the number M of ways of distributing the cards so that each player receives the
required number of hearts. The number of different ways in which the hearts can
be distributed to players A, B, C, and D so that the numbers of hearts they receive
are 6, 4, 2, and 1, respectively, is(

13
6, 4, 2, 1

)
= 13!

6!4!2!1!
.
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Also, the number of different ways in which the other 39 cards can then be distributed
to the four players so that each will have a total of 13 cards is(

39
7, 9, 11, 12

)
= 39!

7!9!11!12!
.

Therefore,

M = 13!
6!4!2!1!

. 39!
7!9!11!12!

,

and the required probability p is

p = M

N
= 13!39!(13!)4

6!4!2!1!7!9!11!12!52!
= 0.00196.

There is another approach to this problem along the lines indicated in Exam-
ple 1.8.9 on page 37. The number of possible different combinations of the 13 posi-
tions in the deck occupied by the hearts is

(52
13

)
. If player A is to receive six hearts,

there are
(13

6

)
possible combinations of the six positions these hearts occupy among

the 13 cards that A will receive. Similarly, if player B is to receive four hearts, there
are

(13
4

)
possible combinations of their positions among the 13 cards that B will re-

ceive. There are
(13

2

)
possible combinations for player C, and there are

(13
1

)
possible

combinations for player D. Hence,

p =
(

13
6

) (
13
4

) (
13
2

) (
13
1

)
(

52
13

) ,

which produces the same value as the one obtained by the first method of solution.
�

Summary

Multinomial coefficients generalize binomial coefficients. The coefficient
(

n
n1,..., nk

)
is

the number of ways to partition a set of n items into distinguishable subsets of sizes
n1, . . . , nk where n1 + . . . + nk = n. It is also the number of arrangements of n items
of k different types for which ni are of type i for i = 1, . . . , k. Example 1.9.4 illustrates
another important point to remember about computing probabilities: There might
be more than one correct method for computing the same probability.

Exercises

1. Three pollsters will canvas a neighborhood with 21
houses. Each pollster will visit seven of the houses. How
many different assignments of pollsters to houses are pos-
sible?

2. Suppose that 18 red beads, 12 yellow beads, eight blue
beads, and 12 black beads are to be strung in a row. How
many different arrangements of the colors can be formed?

3. Suppose that two committees are to be formed in an
organization that has 300 members. If one committee is

to have five members and the other committee is to have
eight members, in how many different ways can these
committees be selected?

4. If the letters s, s, s, t , t , t , i, i, a, c are arranged in a
random order, what is the probability that they will spell
the word “statistics”?

5. Suppose that n balanced dice are rolled. Determine the
probability that the number j will appear exactly nj times
(j = 1, . . . , 6), where n1 + n2 + . . . + n6 = n.
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6. If seven balanced dice are rolled, what is the probability
that each of the six different numbers will appear at least
once?

7. Suppose that a deck of 25 cards contains 12 red cards.
Suppose also that the 25 cards are distributed in a random
manner to three players A, B, and C in such a way that
player A receives 10 cards, player B receives eight cards,
and player C receives seven cards. Determine the proba-
bility that player A will receive six red cards, player B will
receive two red cards, and player C will receive four red
cards.

8. A deck of 52 cards contains 12 picture cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive three
picture cards?

9. Suppose that a deck of 52 cards contains 13 red cards,
13 yellow cards, 13 blue cards, and 13 green cards. If the
52 cards are distributed in a random manner among four
players in such a way that each player receives 13 cards,
what is the probability that each player will receive 13
cards of the same color?

10. Suppose that two boys named Davis, three boys
named Jones, and four boys named Smith are seated at
random in a row containing nine seats. What is the prob-
ability that the Davis boys will occupy the first two seats
in the row, the Jones boys will occupy the next three seats,
and the Smith boys will occupy the last four seats?

11. Prove the multinomial theorem 1.9.1. (You may wish
to use the same hint as in Exercise 20 in Sec. 1.8.)

12. Return to Example 1.8.6. Let S be the larger sample
space (first method of choosing) and let S′ be the smaller
sample space (second method). For each element s′ of S′,
let N(s′) stand for the number of elements of S that lead to
the same boxful s′ when the order of choosing is ignored.

a. For each s′ ∈ S′, find a formula for N(s′). Hint: Let
ni stand for the number of items of type i in s′ for
i = 1, . . . , 7.

b. Verify that
∑

s′∈S′ N(s′) equals the number of out-
comes in S.

1.10 The Probability of a Union of Events
The axioms of probability tell us directly how to find the probability of the union
of disjoint events. Theorem 1.5.7 showed how to find the probability for the union
of two arbitrary events. This theorem is generalized to the union of an arbitrary
finite collection of events.

We shall now consider again an arbitrary sample space S that may contain either a
finite number of outcomes or an infinite number, and we shall develop some further
general properties of the various probabilities that might be specified for the events
in S. In this section, we shall study in particular the probability of the union

⋃n
i=1 Ai

of n events A1, . . . , An.
If the events A1, . . . , An are disjoint, we know that

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai).

Furthermore, for every two events A1 and A2, regardless of whether or not they are
disjoint, we know from Theorem 1.5.7 of Sec. 1.5 that

Pr(A1 ∪ A2) = Pr(A1) + Pr(A2) − Pr(A1 ∩ A2).

In this section, we shall extend this result, first to three events and then to an arbitrary
finite number of events.

The Union of Three Events

Theorem
1.10.1

For every three events A1, A2, and A3,
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Pr(A1 ∪ A2 ∪ A3) = Pr(A1) + Pr(A2) + Pr(A3)

− [Pr(A1 ∩ A2) + Pr(A2 ∩ A3) + Pr(A1 ∩ A3)]

+ Pr(A1 ∩ A2 ∩ A3). (1.10.1)

Proof By the associative property of unions (Theorem 1.4.6), we can write

A1 ∪ A2 ∪ A3 = (A1 ∪ A2) ∪ A3.

Apply Theorem 1.5.7 to the two events A = A1 ∪ A2 and B = A3 to obtain

Pr(A1 ∪ A2 ∪ A3) = Pr(A ∪ B)

= Pr(A) + Pr(B) − Pr(A ∩ B). (1.10.2)

We next compute the three probabilities on the far right side of (1.10.2) and combine
them to get (1.10.1). First, apply Theorem 1.5.7 to the two events A1 and A2 to obtain

Pr(A) = Pr(A1) + Pr(A2) − Pr(A1 ∩ A2). (1.10.3)

Next, use the first distributive property in Theorem 1.4.10 to write

A ∩ B = (A1 ∪ A2) ∩ A3 = (A1 ∩ A3) ∪ (A2 ∩ A3). (1.10.4)

Apply Theorem 1.5.7 to the events on the far right side of (1.10.4) to obtain

Pr(A ∩ B) = Pr(A1 ∩ A3) + Pr(A2 ∩ A3) − Pr(A1 ∩ A2 ∩ A3). (1.10.5)

Substitute (1.10.3), Pr(B) = Pr(A3), and (1.10.5) into (1.10.2) to complete the proof.

Example
1.10.1

Student Enrollment. Among a group of 200 students, 137 students are enrolled in a
mathematics class, 50 students are enrolled in a history class, and 124 students are
enrolled in a music class. Furthermore, the number of students enrolled in both the
mathematics and history classes is 33, the number enrolled in both the history and
music classes is 29, and the number enrolled in both the mathematics and music
classes is 92. Finally, the number of students enrolled in all three classes is 18. We
shall determine the probability that a student selected at random from the group of
200 students will be enrolled in at least one of the three classes.

Let A1 denote the event that the selected student is enrolled in the mathematics
class, let A2 denote the event that he is enrolled in the history class, and let A3
denote the event that he is enrolled in the music class. To solve the problem, we
must determine the value of Pr(A1 ∪ A2 ∪ A3). From the given numbers,

Pr(A1) = 137
200

, Pr(A2) = 50
200

, Pr(A3) = 124
200

,

Pr(A1 ∩ A2) = 33
200

, Pr(A2 ∩ A3) = 29
200

, Pr(A1 ∩ A3) = 92
200

,

Pr(A1 ∩ A2 ∩ A3) = 18
200

.

It follows from Eq. (1.10.1) that Pr(A1 ∪ A2 ∪ A3) = 175/200 = 7/8. �

The Union of a Finite Number of Events

A result similar to Theorem 1.10.1 holds for any arbitrary finite number of events, as
shown by the following theorem.
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Theorem
1.10.2

For every n events A1, . . . , An,

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai) −
∑
i<j

Pr(Ai ∩ Aj) +
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak)

−
∑

i<j<k<l

Pr(Ai ∩ Aj ∩ Ak ∩ Al) + . . .

+ (−1)n+1 Pr(A1 ∩ A2 ∩ . . . ∩ An).

(1.10.6)

Proof The proof proceeds by induction. In particular, we first establish that (1.10.6)
is true for n = 1 and n = 2. Next, we show that if there exists m such that (1.10.6) is
true for all n ≤ m, then (1.10.6) is also true for n = m + 1. The case of n = 1 is trivial,
and the case of n = 2 is Theorem 1.5.7. To complete the proof, assume that (1.10.6)
is true for all n ≤ m. Let A1, . . . , Am+1 be events. Define A = ⋃m

i=1 Ai and B = Am+1.
Theorem 1.5.7 says that

Pr

(
n⋃

i=1

Ai

)
= Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). (1.10.7)

We have assumed that Pr(A) equals (1.10.6) with n = m. We need to show that when
we add Pr(A) to Pr(B) − Pr(A ∩ B), we get (1.10.6) with n = m + 1. The difference
between (1.10.6) with n = m + 1 and Pr(A) is all of the terms in which one of the
subscripts (i, j , k, etc.) equals m + 1. Those terms are the following:

Pr(Am+1) −
m∑

i=1

Pr(Ai ∩ Am+1) +
∑
i<j

Pr(Ai ∩ Aj ∩ Am+1)

−
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak ∩ Am+1) + . . .

+ (−1)m+2 Pr(A1 ∩ A2 ∩ . . . ∩ Am ∩ Am+1).

(1.10.8)

The first term in (1.10.8) is Pr(B) = Pr(Am+1). All that remains is to show that
− Pr(A ∩ B) equals all but the first term in (1.10.8).

Use the natural generalization of the distributive property (Theorem 1.4.10) to
write

A ∩ B =
(

m⋃
i=1

Ai

)
∩ Am+1 =

m⋃
i=1

(Ai ∩ Am+1). (1.10.9)

The union in (1.10.9) contains m events, and hence we can apply (1.10.6) with n = m

and each Ai replaced by Ai ∩ Am+1. The result is that − Pr(A ∩ B) equals all but the
first term in (1.10.8).

The calculation in Theorem 1.10.2 can be outlined as follows: First, take the
sum of the probabilities of the n individual events. Second, subtract the sum of the
probabilities of the intersections of all possible pairs of events; in this step, there
will be

(
n
2

)
different pairs for which the probabilities are included. Third, add the

probabilities of the intersections of all possible groups of three of the events; there
will be

(
n
3

)
intersections of this type. Fourth, subtract the sum of the probabilities

of the intersections of all possible groups of four of the events; there will be
(
n
4

)
intersections of this type. Continue in this way until, finally, the probability of the
intersection of all n events is either added or subtracted, depending on whether n is
an odd number or an even number.
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The Matching Problem

Suppose that all the cards in a deck of n different cards are placed in a row, and that
the cards in another similar deck are then shuffled and placed in a row on top of the
cards in the original deck. It is desired to determine the probability pn that there
will be at least one match between the corresponding cards from the two decks. The
same problem can be expressed in various entertaining contexts. For example, we
could suppose that a person types n letters, types the corresponding addresses on n

envelopes, and then places the n letters in the n envelopes in a random manner. It
could be desired to determine the probability pn that at least one letter will be placed
in the correct envelope. As another example, we could suppose that the photographs
of n famous film actors are paired in a random manner with n photographs of the
same actors taken when they were babies. It could then be desired to determine the
probability pn that the photograph of at least one actor will be paired correctly with
this actor’s own baby photograph.

Here we shall discuss this matching problem in the context of letters being placed
in envelopes. Thus, we shall let Ai be the event that letter i is placed in the correct
envelope (i = 1, . . . , n), and we shall determine the value of pn = Pr

(⋃n
i=1 Ai

)
by

using Eq. (1.10.6). Since the letters are placed in the envelopes at random, the
probability Pr(Ai) that any particular letter will be placed in the correct envelope
is 1/n. Therefore, the value of the first summation on the right side of Eq. (1.10.6) is

n∑
i=1

Pr(Ai) = n . 1
n

= 1.

Furthermore, since letter 1 could be placed in any one of n envelopes and letter
2 could then be placed in any one of the other n − 1 envelopes, the probability
Pr(A1 ∩ A2) that both letter 1 and letter 2 will be placed in the correct envelopes
is 1/[n(n − 1)]. Similarly, the probability Pr(Ai ∩ Aj) that any two specific letters i

and j (i 	= j) will both be placed in the correct envelopes is 1/[n(n − 1)]. Therefore,
the value of the second summation on the right side of Eq. (1.10.6) is∑

i<j

Pr(Ai ∩ Aj) =
(

n

2

)
1

n(n − 1)
= 1

2!
.

By similar reasoning, it can be determined that the probability Pr(Ai ∩ Aj ∩ Ak)

that any three specific letters i, j , and k (i < j < k) will be placed in the correct
envelopes is 1/[n(n − 1)(n − 2)]. Therefore, the value of the third summation is∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak) =
(

n

3

)
1

n(n − 1)(n − 2)
= 1

3!
.

This procedure can be continued until it is found that the probability Pr(A1 ∩
A2 . . . ∩ An) that all n letters will be placed in the correct envelopes is 1/(n!). It now
follows from Eq. (1.10.6) that the probability pn that at least one letter will be placed
in the correct envelope is

pn = 1 − 1
2!

+ 1
3!

− 1
4!

+ . . . + (−1)n+1 1
n!

. (1.10.10)

This probability has the following interesting features. As n → ∞, the value of
pn approaches the following limit:

lim
n→∞ pn = 1 − 1

2!
+ 1

3!
− 1

4!
+ . . . .
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It is shown in books on elementary calculus that the sum of the infinite series on
the right side of this equation is 1 − (1/e), where e = 2.71828. . . . Hence, 1 − (1/e) =
0.63212. . . . It follows that for a large value of n, the probability pn that at least one
letter will be placed in the correct envelope is approximately 0.63212.

The exact values of pn, as given in Eq. (1.10.10), will form an oscillating sequence
as n increases. As n increases through the even integers 2, 4, 6, . . . , the values of pn

will increase toward the limiting value 0.63212; and as n increases through the odd
integers 3, 5, 7, . . . , the values of pn will decrease toward this same limiting value.

The values of pn converge to the limit very rapidly. In fact, for n = 7 the exact
value p7 and the limiting value of pn agree to four decimal places. Hence, regardless
of whether seven letters are placed at random in seven envelopes or seven million
letters are placed at random in seven million envelopes, the probability that at least
one letter will be placed in the correct envelope is 0.6321.

Summary

We generalized the formula for the probability of the union of two arbitrary events
to the union of finitely many events. As an aside, there are cases in which it is
easier to compute Pr(A1 ∪ . . . ∪ An) as 1 − Pr(Ac

1 ∩ . . . ∩ Ac
n
) using the fact that

(A1 ∪ . . . ∪ An)
c = Ac

1 ∩ . . . ∩ Ac
n
.

Exercises

1. Three players are each dealt, in a random manner, five
cards from a deck containing 52 cards. Four of the 52
cards are aces. Find the probability that at least one person
receives exactly two aces in their five cards.

2. In a certain city, three newspapers A, B, and C are
published. Suppose that 60 percent of the families in the
city subscribe to newspaper A, 40 percent of the families
subscribe to newspaper B, and 30 percent subscribe to
newspaper C. Suppose also that 20 percent of the families
subscribe to both A and B, 10 percent subscribe to both
A and C, 20 percent subscribe to both B and C, and 5
percent subscribe to all three newspapers A, B, and C.
What percentage of the families in the city subscribe to at
least one of the three newspapers?

3. For the conditions of Exercise 2, what percentage of
the families in the city subscribe to exactly one of the three
newspapers?

4. Suppose that three compact discs are removed from
their cases, and that after they have been played, they are
put back into the three empty cases in a random manner.
Determine the probability that at least one of the CD’s
will be put back into the proper cases.

5. Suppose that four guests check their hats when they
arrive at a restaurant, and that these hats are returned to

them in a random order when they leave. Determine the
probability that no guest will receive the proper hat.

6. A box contains 30 red balls, 30 white balls, and 30 blue
balls. If 10 balls are selected at random, without replace-
ment, what is the probability that at least one color will be
missing from the selection?

7. Suppose that a school band contains 10 students from
the freshman class, 20 students from the sophomore class,
30 students from the junior class, and 40 students from the
senior class. If 15 students are selected at random from
the band, what is the probability that at least one student
will be selected from each of the four classes? Hint: First
determine the probability that at least one of the four
classes will not be represented in the selection.

8. If n letters are placed at random in n envelopes, what
is the probability that exactly n − 1 letters will be placed
in the correct envelopes?

9. Suppose that n letters are placed at random in n en-
velopes, and let qn denote the probability that no letter is
placed in the correct envelope. For which of the follow-
ing four values of n is qn largest: n = 10, n = 21, n = 53, or
n = 300?
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10. If three letters are placed at random in three en-
velopes, what is the probability that exactly one letter will
be placed in the correct envelope?

11. Suppose that 10 cards, of which five are red and five
are green, are placed at random in 10 envelopes, of which
five are red and five are green. Determine the probability
that exactly x envelopes will contain a card with a match-
ing color (x = 0, 1, . . . , 10).

12. Let A1, A2, . . . be an infinite sequence of events such
that A1 ⊂ A2 ⊂ . . .. Prove that

Pr

( ∞⋃
i=1

Ai

)
= lim

n→∞ Pr(An).

Hint: Let the sequence B1, B2, . . . be defined as in Exer-
cise 12 of Sec. 1.5, and show that

Pr

( ∞⋃
i=1

Ai

)
= lim

n→∞ Pr

(
n⋃

i=1

Bi

)
= lim

n→∞ Pr(An).

13. Let A1, A2, . . . be an infinite sequence of events such
that A1 ⊃ A2 ⊃ . . .. Prove that

Pr

( ∞⋂
i=1

Ai

)
= lim

n→∞ Pr(An).

Hint: Consider the sequence Ac
1, Ac

2, . . . , and apply Exer-
cise 12.

1.11 Statistical Swindles
This section presents some examples of how one can be misled by arguments that
require one to ignore the calculus of probability.

Misleading Use of Statistics

The field of statistics has a poor image in the minds of many people because there is
a widespread belief that statistical data and statistical analyses can easily be manip-
ulated in an unscientific and unethical fashion in an effort to show that a particular
conclusion or point of view is correct. We all have heard the sayings that “There
are three kinds of lies: lies, damned lies, and statistics” (Mark Twain [1924, p. 246]
says that this line has been attributed to Benjamin Disraeli) and that “you can prove
anything with statistics.”

One benefit of studying probability and statistics is that the knowledge we gain
enables us to analyze statistical arguments that we read in newspapers, magazines,
or elsewhere. We can then evaluate these arguments on their merits, rather than
accepting them blindly. In this section, we shall describe three schemes that have been
used to induce consumers to send money to the operators of the schemes in exchange
for certain types of information. The first two schemes are not strictly statistical in
nature, but they are strongly based on undertones of probability.

Perfect Forecasts

Suppose that one Monday morning you receive in the mail a letter from a firm
with which you are not familiar, stating that the firm sells forecasts about the stock
market for very high fees. To indicate the firm’s ability in forecasting, it predicts that a
particular stock, or a particular portfolio of stocks, will rise in value during the coming
week. You do not respond to this letter, but you do watch the stock market during the
week and notice that the prediction was correct. On the following Monday morning
you receive another letter from the same firm containing another prediction, this one
specifying that a particular stock will drop in value during the coming week. Again
the prediction proves to be correct.
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This routine continues for seven weeks. Every Monday morning you receive a
prediction in the mail from the firm, and each of these seven predictions proves to
be correct. On the eighth Monday morning, you receive another letter from the firm.
This letter states that for a large fee the firm will provide another prediction, on
the basis of which you can presumably make a large amount of money on the stock
market. How should you respond to this letter?

Since the firm has made seven successive correct predictions, it would seem that
it must have some special information about the stock market and is not simply
guessing. After all, the probability of correctly guessing the outcomes of seven
successive tosses of a fair coin is only (1/2)7 = 0.008. Hence, if the firm had only been
guessing each week, then the firm had a probability less than 0.01 of being correct
seven weeks in a row.

The fallacy here is that you may have seen only a relatively small number of the
forecasts that the firm made during the seven-week period. Suppose, for example,
that the firm started the entire process with a list of 27 = 128 potential clients. On
the first Monday, the firm could send the forecast that a particular stock will rise in
value to half of these clients and send the forecast that the same stock will drop in
value to the other half. On the second Monday, the firm could continue writing to
those 64 clients for whom the first forecast proved to be correct. It could again send
a new forecast to half of those 64 clients and the opposite forecast to the other half.
At the end of seven weeks, the firm (which usually consists of only one person and a
computer) must necessarily have one client (and only one client) for whom all seven
forecasts were correct.

By following this procedure with several different groups of 128 clients, and
starting new groups each week, the firm may be able to generate enough positive
responses from clients for it to realize significant profits.

Guaranteed Winners

There is another scheme that is somewhat related to the one just described but that is
even more elegant because of its simplicity. In this scheme, a firm advertises that for
a fixed fee, usually 10 or 20 dollars, it will send the client its forecast of the winner of
any upcoming baseball game, football game, boxing match, or other sports event that
the client might specify. Furthermore, the firm offers a money-back guarantee that
this forecast will be correct; that is, if the team or person designated as the winner in
the forecast does not actually turn out to be the winner, the firm will return the full
fee to the client.

How should you react to such an advertisement? At first glance, it would appear
that the firm must have some special knowledge about these sports events, because
otherwise it could not afford to guarantee its forecasts. Further reflection reveals,
however, that the firm simply cannot lose, because its only expenses are those for
advertising and postage. In effect, when this scheme is used, the firm holds the client’s
fee until the winner has been decided. If the forecast was correct, the firm keeps the
fee; otherwise, it simply returns the fee to the client.

On the other hand, the client can very well lose. He presumably purchases the
firm’s forecast because he desires to bet on the sports event. If the forecast proves to
be wrong, the client will not have to pay any fee to the firm, but he will have lost any
money that he bet on the predicted winner.

Thus, when there are “guaranteed winners,” only the firm is guaranteed to win.
In fact, the firm knows that it will be able to keep the fees from all the clients for
whom the forecasts were correct.
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Improving Your Lottery Chances

State lotteries have become very popular in America. People spend millions of
dollars each week to purchase tickets with very small chances of winning medium
to enormous prizes. With so much money being spent on lottery tickets, it should not
be surprising that a few enterprising individuals have concocted schemes to cash in
on the probabilistic naı̈veté of the ticket-buying public. There are now several books
and videos available that claim to help lottery players improve their performance.
People actually pay money for these items. Some of the advice is just common sense,
but some of it is misleading and plays on subtle misconceptions about probability.

For concreteness, suppose that we have a game in which there are 40 balls num-
bered 1 to 40 and six are drawn without replacement to determine the winning
combination. A ticket purchase requires the customer to choose six different num-
bers from 1 to 40 and pay a fee. This game has

(40
6

) = 3,838,380 different winning
combinations and the same number of possible tickets. One piece of advice often
found in published lottery aids is not to choose the six numbers on your ticket too far
apart. Many people tend to pick their six numbers uniformly spread out from 1 to 40,
but the winning combination often has two consecutive numbers or at least two num-
bers very close together. Some of these “advisors” recommend that, since it is more
likely that there will be numbers close together, players should bunch some of their
six numbers close together. Such advice might make sense in order to avoid choosing
the same numbers as other players in a parimutuel game (i.e., a game in which all
winners share the jackpot). But the idea that any strategy can improve your chances
of winning is misleading.

To see why this advice is misleading, let E be the event that the winning com-
bination contains at least one pair of consecutive numbers. The reader can calculate
Pr(E) in Exercise 13 in Sec. 1.12. For this example, Pr(E) = 0.577. So the lottery aids
are correct that E has high probability. However, by claiming that choosing a ticket in
E increases your chance of winning, they confuse the probability of the event E with
the probability of each outcome in E. If you choose the ticket (5, 7, 14, 23, 24, 38),
your probability of winning is only 1/3,828,380, just as it would be if you chose any
other ticket. The fact that this ticket happens to be in E doesn’t make your probabil-
ity of winning equal to 0.577. The reason that Pr(E) is so big is that so many different
combinations are in E. Each of those combinations still has probability 1/3,828,380
of winning, and you only get one combination on each ticket. The fact that there are
so many combinations in E does not make each one any more likely than anything
else.

1.12 Supplementary Exercises
1. Suppose that a coin is tossed seven times. Let A denote
the event that a head is obtained on the first toss, and let B

denote the event that a head is obtained on the fifth toss.
Are A and B disjoint?

2. If A, B, and D are three events such that Pr(A ∪ B ∪
D) = 0.7, what is the value of Pr(Ac ∩ Bc ∩ Dc)?

3. Suppose that a certain precinct contains 350 voters, of
which 250 are Democrats and 100 are Republicans. If 30
voters are chosen at random from the precinct, what is the
probability that exactly 18 Democrats will be selected?

4. Suppose that in a deck of 20 cards, each card has one
of the numbers 1, 2, 3, 4, or 5 and there are four cards
with each number. If 10 cards are chosen from the deck at
random, without replacement, what is the probability that
each of the numbers 1, 2, 3, 4, and 5 will appear exactly
twice?

5. Consider the contractor in Example 1.5.4 on page 19.
He wishes to compute the probability that the total utility
demand is high, meaning that the sum of water and elec-
trical demand (in the units of Example 1.4.5) is at least
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215. Draw a picture of this event on a graph like Fig. 1.5
or Fig. 1.9 and find its probability.

6. Suppose that a box contains r red balls and w white
balls. Suppose also that balls are drawn from the box one
at a time, at random, without replacement. (a) What is the
probability that all r red balls will be obtained before any
white balls are obtained? (b) What is the probability that
all r red balls will be obtained before two white balls are
obtained?

7. Suppose that a box contains r red balls, w white balls,
and b blue balls. Suppose also that balls are drawn from
the box one at a time, at random, without replacement.
What is the probability that all r red balls will be obtained
before any white balls are obtained?

8. Suppose that 10 cards, of which seven are red and three
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k = 0, 1, . . . , 10).

9. Suppose that 10 cards, of which five are red and five
are green, are put at random into 10 envelopes, of which
seven are red and three are green, so that each envelope
contains one card. Determine the probability that exactly
k envelopes will contain a card with a matching color
(k = 0, 1, . . . , 10).

10. Suppose that the events A and B are disjoint. Under
what conditions are Ac and Bc disjoint?

11. Let A1, A2, and A3 be three arbitrary events. Show that
the probability that exactly one of these three events will
occur is

Pr(A1) + Pr(A2) + Pr(A3)

− 2 Pr(A1 ∩ A2) − 2 Pr(A1 ∩ A3) − 2 Pr(A2 ∩ A3)

+ 3 Pr(A1 ∩ A2 ∩ A3).

12. Let A1, . . . , An be n arbitrary events. Show that the
probability that exactly one of these n events will occur is
n∑

i=1

Pr(Ai) − 2
∑
i<j

Pr(Ai ∩ Aj) + 3
∑

i<j<k

Pr(Ai ∩ Aj ∩ Ak)

− . . . + (−1)n+1n Pr(A1 ∩ A2 . . . ∩ An).

13. Consider a state lottery game in which each winning
combination and each ticket consists of one set of k num-
bers chosen from the numbers 1 to n without replacement.
We shall compute the probability that the winning combi-
nation contains at least one pair of consecutive numbers.

a. Prove that if n < 2k − 1, then every winning combi-
nation has at least one pair of consecutive numbers.
For the rest of the problem, assume that n ≥ 2k − 1.

b. Let i1 < . . . < ik be an arbitrary possible winning
combination arranged in order from smallest to
largest. For s = 1, . . . , k, let js = is − (s − 1). That
is,

j1 = i1,

j2 = i2 − 1
...

jk = ik − (k − 1).

Prove that (i1, . . . , ik) contains at least one pair of
consecutive numbers if and only if (j1, . . . , jk) con-
tains repeated numbers.

c. Prove that 1 ≤ j1 ≤ . . . ≤ jk ≤ n − k + 1 and that the
number of (j1, . . . , jk) sets with no repeats is

(
n−k+1

k

)
.

d. Find the probability that there is no pair of consecu-
tive numbers in the winning combination.

e. Find the probability of at least one pair of consecu-
tive numbers in the winning combination.
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2.1 The Definition of Conditional Probability
A major use of probability in statistical inference is the updating of probabilities
when certain events are observed. The updated probability of event A after we
learn that event B has occurred is the conditional probability of A given B.

Example
2.1.1

Lottery Ticket. Consider a state lottery game in which six numbers are drawn without
replacement from a bin containing the numbers 1–30. Each player tries to match the
set of six numbers that will be drawn without regard to the order in which the numbers
are drawn. Suppose that you hold a ticket in such a lottery with the numbers 1, 14,
15, 20, 23, and 27. You turn on your television to watch the drawing but all you see is
one number, 15, being drawn when the power suddenly goes off in your house. You
don’t even know whether 15 was the first, last, or some in-between draw. However,
now that you know that 15 appears in the winning draw, the probability that your
ticket is a winner must be higher than it was before you saw the draw. How do you
calculate the revised probability? �

Example 2.1.1 is typical of the following situation. An experiment is performed
for which the sample space S is given (or can be constructed easily) and the proba-
bilities are available for all of the events of interest. We then learn that some event B

has occuured, and we want to know how the probability of another event A changes
after we learn that B has occurred. In Example 2.1.1, the event that we have learned
is B = {one of the numbers drawn is 15}. We are certainly interested in the probabil-
ity of

A = {the numbers 1, 14, 15, 20, 23, and 27 are drawn},
and possibly other events.

If we know that the event B has occurred, then we know that the outcome of
the experiment is one of those included in B. Hence, to evaluate the probability that
A will occur, we must consider the set of those outcomes in B that also result in
the occurrence of A. As sketched in Fig. 2.1, this set is precisely the set A ∩ B. It is
therefore natural to calculate the revised probability of A according to the following
definition.

55
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Figure 2.1 The outcomes in
the event B that also belong
to the event A. A

B
S

A�B

Definition
2.1.1

Conditional Probability. Suppose that we learn that an event B has occurred and that
we wish to compute the probability of another event A taking into account that
we know that B has occurred. The new probability of A is called the conditional
probability of the event A given that the event B has occurred and is denoted Pr(A|B).
If Pr(B) > 0, we compute this probability as

Pr(A|B) = Pr(A ∩ B)

Pr(B)
. (2.1.1)

The conditional probability Pr(A|B) is not defined if Pr(B) = 0.

For convenience, the notation in Definition 2.1.1 is read simply as the conditional
probability of A given B. Eq. (2.1.1) indicates that Pr(A|B) is computed as the
proportion of the total probability Pr(B) that is represented by Pr(A ∩ B), intuitively
the proportion of B that is also part of A.

Example
2.1.2

Lottery Ticket. In Example 2.1.1, you learned that the event

B = {one of the numbers drawn is 15}
has occurred. You want to calculate the probability of the event A that your ticket
is a winner. Both events A and B are expressible in the sample space that consists of
the

(30
6

) = 30!/(6!24!) possible combinations of 30 items taken six at a time, namely,
the unordered draws of six numbers from 1–30. The event B consists of combinations
that include 15. Since there are 29 remaining numbers from which to choose the other
five in the winning draw, there are

(29
5

)
outcomes in B. It follows that

Pr(B) =
(29

5

)(30
6

) = 29!24!6!
30!5!24!

= 0.2.

The event A that your ticket is a winner consists of a single outcome that is also in B,
so A ∩ B = A, and

Pr(A ∩ B) = Pr(A) = 1(30
6

) = 6!24!
30!

= 1.68 × 10−6.

It follows that the conditional probability of A given B is

Pr(A|B) =
6!24!
30!

0.2
= 8.4 × 10−6.

This is five times as large as Pr(A) before you learned that B had occurred. �

Definition 2.1.1 for the conditional probability Pr(A|B) is worded in terms of
the subjective interpretation of probability in Sec. 1.2. Eq. (2.1.1) also has a simple
meaning in terms of the frequency interpretation of probability. According to the
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frequency interpretation, if an experimental process is repeated a large number of
times, then the proportion of repetitions in which the event B will occur is approx-
imately Pr(B) and the proportion of repetitions in which both the event A and the
event B will occur is approximately Pr(A ∩ B). Therefore, among those repetitions
in which the event B occurs, the proportion of repetitions in which the event A will
also occur is approximately equal to

Pr(A|B) = Pr(A ∩ B)

Pr(B)
.

Example
2.1.3

Rolling Dice. Suppose that two dice were rolled and it was observed that the sum T of
the two numbers was odd. We shall determine the probability that T was less than 8.

If we let A be the event that T < 8 and let B be the event that T is odd, then
A ∩ B is the event that T is 3, 5, or 7. From the probabilities for two dice given at the
end of Sec. 1.6, we can evaluate Pr(A ∩ B) and Pr(B) as follows:

Pr(A ∩ B) = 2
36

+ 4
36

+ 6
36

= 12
36

= 1
3
,

Pr(B) = 2
36

+ 4
36

+ 6
36

+ 4
36

+ 2
36

= 18
36

= 1
2
.

Hence,

Pr(A|B) = Pr(A ∩ B)

Pr(B)
= 2

3
. �

Example
2.1.4

A Clinical Trial. It is very common for patients with episodes of depression to have
a recurrence within two to three years. Prien et al. (1984) studied three treatments
for depression: imipramine, lithium carbonate, and a combination. As is traditional
in such studies (called clinical trials), there was also a group of patients who received
a placebo. (A placebo is a treatment that is supposed to be neither helpful nor
harmful. Some patients are given a placebo so that they will not know that they
did not receive one of the other treatments. None of the other patients knew which
treatment or placebo they received, either.) In this example, we shall consider 150
patients who entered the study after an episode of depression that was classified
as “unipolar” (meaning that there was no manic disorder). They were divided into
the four groups (three treatments plus placebo) and followed to see how many had
recurrences of depression. Table 2.1 summarizes the results. If a patient were selected
at random from this study and it were found that the patient received the placebo
treatment, what is the conditional probability that the patient had a relapse? Let
B be the event that the patient received the placebo, and let A be the event that

Table 2.1 Results of the clinical depression study in Example 2.1.4

Treatment group

Response Imipramine Lithium Combination Placebo Total

Relapse 18 13 22 24 77

No relapse 22 25 16 10 73

Total 40 38 38 34 150
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the patient had a relapse. We can calculate Pr(B) = 34/150 and Pr(A ∩ B) = 24/150
directly from the table. Then Pr(A|B) = 24/34 = 0.706. On the other hand, if the
randomly selected patient is found to have received lithium (call this event C) then
Pr(C) = 38/150, Pr(A ∩ C) = 13/150, and Pr(A|C) = 13/38 = 0.342. Knowing which
treatment a patient received seems to make a difference to the probability of relapse.
In Chapter 10, we shall study methods for being more precise about how much of a
difference it makes. �

Example
2.1.5

Rolling Dice Repeatedly. Suppose that two dice are to be rolled repeatedly and the
sum T of the two numbers is to be observed for each roll. We shall determine the
probability p that the value T = 7 will be observed before the value T = 8 is observed.

The desired probability p could be calculated directly as follows: We could
assume that the sample space S contains all sequences of outcomes that terminate as
soon as either the sum T = 7 or the sum T = 8 is obtained. Then we could find the
sum of the probabilities of all the sequences that terminate when the value T = 7 is
obtained.

However, there is a simpler approach in this example. We can consider the simple
experiment in which two dice are rolled. If we repeat the experiment until either the
sum T = 7 or the sum T = 8 is obtained, the effect is to restrict the outcome of the
experiment to one of these two values. Hence, the problem can be restated as follows:
Given that the outcome of the experiment is either T = 7 or T = 8, determine the
probability p that the outcome is actually T = 7.

If we let A be the event that T = 7 and let B be the event that the value of T is
either 7 or 8, then A ∩ B = A and

p = Pr(A|B) = Pr(A ∩ B)

Pr(B)
= Pr(A)

Pr(B)
.

From the probabilities for two dice given in Example 1.6.5, Pr(A) = 6/36 and
Pr(B) = (6/36) + (5/36) = 11/36. Hence, p = 6/11. �

The Multiplication Rule for Conditional Probabilities

In some experiments, certain conditional probabilities are relatively easy to assign
directly. In these experiments, it is then possible to compute the probability that both
of two events occur by applying the next result that follows directly from Eq. (2.1.1)
and the analogous definition of Pr(B|A).

Theorem
2.1.1

Multiplication Rule for Conditional Probabilities. Let A and B be events. If Pr(B) > 0,
then

Pr(A ∩ B) = Pr(B) Pr(A|B).

If Pr(A) > 0, then

Pr(A ∩ B) = Pr(A) Pr(B|A).

Example
2.1.6

Selecting Two Balls. Suppose that two balls are to be selected at random, without
replacement, from a box containing r red balls and b blue balls. We shall determine
the probability p that the first ball will be red and the second ball will be blue.

Let A be the event that the first ball is red, and let B be the event that the second
ball is blue. Obviously, Pr(A) = r/(r + b). Furthermore, if the event A has occurred,
then one red ball has been removed from the box on the first draw. Therefore, the
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probability of obtaining a blue ball on the second draw will be

Pr(B|A) = b

r + b − 1
.

It follows that

Pr(A ∩ B) = r

r + b
. b

r + b − 1
. �

The principle that has just been applied can be extended to any finite number of
events, as stated in the following theorem.

Theorem
2.1.2

Multiplication Rule for Conditional Probabilities. Suppose that A1, A2, . . . , An are
events such that Pr(A1 ∩ A2 ∩ . . . ∩ An−1) > 0. Then

Pr(A1 ∩ A2 ∩ . . . ∩ An) (2.1.2)

= Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩ A2) . . . Pr(An|A1 ∩ A2 ∩ . . . ∩ An−1).

Proof The product of probabilities on the right side of Eq. (2.1.2) is equal to

Pr(A1) . Pr(A1 ∩ A2)

Pr(A1)
.

Pr(A1 ∩ A2 ∩ A3)

Pr(A1 ∩ A2)
. . .

Pr(A1 ∩ A2 ∩ . . . ∩ An)

Pr(A1 ∩ A2 . . . ∩ An−1)
.

Since Pr(A1 ∩ A2 ∩ . . . ∩ An−1) > 0, each of the denominators in this product must be
positive. All of the terms in the product cancel each other except the final numerator
Pr(A1 ∩ A2 ∩ . . . ∩ An), which is the left side of Eq. (2.1.2).

Example
2.1.7

Selecting Four Balls. Suppose that four balls are selected one at a time, without
replacement, from a box containing r red balls and b blue balls (r ≥ 2, b ≥ 2). We
shall determine the probability of obtaining the sequence of outcomes red, blue, red,
blue.

If we let Rj denote the event that a red ball is obtained on the j th draw and let
Bj denote the event that a blue ball is obtained on the j th draw (j = 1, . . . , 4), then

Pr(R1 ∩ B2 ∩ R3 ∩ B4) = Pr(R1) Pr(B2|R1) Pr(R3|R1 ∩ B2) Pr(B4|R1 ∩ B2 ∩ R3)

= r

r + b
. b

r + b − 1
. r − 1
r + b − 2

. b − 1
r + b − 3

. �

Note: Conditional Probabilities Behave Just Like Probabilities. In all of the sit-
uations that we shall encounter in this text, every result that we can prove has a
conditional version given an event B with Pr(B) > 0. Just replace all probabilities by
conditional probabilities given B and replace all conditional probabilities given other
events C by conditional probabilities given C ∩ B. For example, Theorem 1.5.3 says
that Pr(Ac) = 1 − Pr(A). It is easy to prove that Pr(Ac|B) = 1 − Pr(A|B) if Pr(B) > 0.
(See Exercises 11 and 12 in this section.) Another example is Theorem 2.1.3, which
is a conditional version of the multiplication rule Theorem 2.1.2. Although a proof is
given for Theorem 2.1.3, we shall not provide proofs of all such conditional theorems,
because their proofs are generally very similar to the proofs of the unconditional
versions.

Theorem
2.1.3

Suppose that A1, A2, . . . , An, B are events such that Pr(B) > 0 and Pr(A1 ∩ A2 ∩ . . . ∩
An−1|B) > 0. Then

Pr(A1 ∩ A2 ∩ . . . ∩ An|B) = Pr(A1|B) Pr(A2|A1 ∩ B) . . .

× Pr(An|A1 ∩ A2 ∩ . . . ∩ An−1 ∩ B).
(2.1.3)
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Proof The product of probabilities on the right side of Eq. (2.1.3) is equal to

Pr(A1 ∩ B)

Pr(B)
. Pr(A1 ∩ A2 ∩ B)

Pr(A1 ∩ B)
. . .

Pr(A1 ∩ A2 ∩ . . . ∩ AnB)

Pr(A1 ∩ A2 . . . ∩ An−1 ∩ B)
.

Since Pr(A1 ∩ A2 ∩ . . . ∩ An−1|B) > 0, each of the denominators in this product must
be positive. All of the terms in the product cancel each other except the first denom-
inator and the final numerator to yield Pr(A1 ∩ A2 ∩ . . . ∩ An ∩ B)/ Pr(B), which is
the left side of Eq. (2.1.3).

Conditional Probability and Partitions

Theorem 1.4.11 shows how to calculate the probability of an event by partitioning
the sample space into two events B and Bc. This result easily generalizes to larger
partitions, and when combined with Theorem 2.1.1 it leads to a very powerful tool
for calculating probabilities.

Definition
2.1.2

Partition. Let S denote the sample space of some experiment, and consider k events
B1, . . . , Bk in S such that B1, . . . , Bk are disjoint and

⋃k
i=1 Bi = S. It is said that these

events form a partition of S.

Typically, the events that make up a partition are chosen so that an important
source of uncertainty in the problem is reduced if we learn which event has occurred.

Example
2.1.8

Selecting Bolts. Two boxes contain long bolts and short bolts. Suppose that one box
contains 60 long bolts and 40 short bolts, and that the other box contains 10 long bolts
and 20 short bolts. Suppose also that one box is selected at random and a bolt is then
selected at random from that box. We would like to determine the probability that
this bolt is long. �

Partitions can facilitate the calculations of probabilities of certain events.

Theorem
2.1.4

Law of total probability. Suppose that the events B1, . . . , Bk form a partition of the
space S and Pr(Bj) > 0 for j = 1, . . . , k. Then, for every event A in S,

Pr(A) =
k∑

j=1

Pr(Bj) Pr(A|Bj). (2.1.4)

Proof The events B1 ∩ A, B2 ∩ A, . . . , Bk ∩ A will form a partition of A, as illustrated
in Fig. 2.2. Hence, we can write

A = (B1 ∩ A) ∪ (B2 ∩ A) ∪ . . . ∪ (Bk ∩ A).

Figure 2.2 The inter-
sections of A with events
B1, . . . , B5 of a partition in
the proof of Theorem 2.1.4.

A
B1

B5
B4

B3

B2

S
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Furthermore, since the k events on the right side of this equation are disjoint,

Pr(A) =
k∑

j=1

Pr(Bj ∩ A).

Finally, if Pr(Bj) > 0 for j = 1, . . . , k, then Pr(Bj ∩ A) = Pr(Bj) Pr(A|Bj) and it
follows that Eq. (2.1.4) holds.

Example
2.1.9

Selecting Bolts. In Example 2.1.8, let B1 be the event that the first box (the one with
60 long and 40 short bolts) is selected, let B2 be the event that the second box (the
one with 10 long and 20 short bolts) is selected, and let A be the event that a long
bolt is selected. Then

Pr(A) = Pr(B1) Pr(A|B1) + Pr(B2) Pr(A|B2).

Since a box is selected at random, we know that Pr(B1) = Pr(B2) = 1/2. Fur-
thermore, the probability of selecting a long bolt from the first box is Pr(A|B1) =
60/100 = 3/5, and the probability of selecting a long bolt from the second box is
Pr(A|B2) = 10/30 = 1/3. Hence,

Pr(A) = 1
2

. 3
5

+ 1
2

. 1
3

= 7
15

. �

Example
2.1.10

Achieving a High Score. Suppose that a person plays a game in which his score must be
one of the 50 numbers 1, 2, . . . , 50 and that each of these 50 numbers is equally likely
to be his score. The first time he plays the game, his score is X. He then continues to
play the game until he obtains another score Y such that Y ≥ X. We will assume that,
conditional on previous plays, the 50 scores remain equally likely on all subsequent
plays. We shall determine the probability of the event A that Y = 50.

For each i = 1, . . . , 50, let Bi be the event that X = i. Conditional on Bi, the
value of Y is equally likely to be any one of the numbers i, i + 1, . . . , 50. Since each
of these (51 − i) possible values for Y is equally likely, it follows that

Pr(A|Bi) = Pr(Y = 50|Bi) = 1
51 − i

.

Furthermore, since the probability of each of the 50 values of X is 1/50, it follows that
Pr(Bi) = 1/50 for all i and

Pr(A) =
50∑
i=1

1
50

. 1
51 − i

= 1
50

(
1 + 1

2
+ 1

3
+ . . . + 1

50

)
= 0.0900. �

Note: Conditional Version of Law of Total Probability. The law of total probability
has an analog conditional on another event C, namely,

Pr(A|C) =
k∑

j=1

Pr(Bj |C) Pr(A|Bj ∩ C). (2.1.5)

The reader can prove this in Exercise 17.

Augmented Experiment In some experiments, it may not be clear from the initial
description of the experiment that a partition exists that will facilitate the calculation
of probabilities. However, there are many such experiments in which such a partition
exists if we imagine that the experiment has some additional structure. Consider the
following modification of Examples 2.1.8 and 2.1.9.
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Example
2.1.11

Selecting Bolts. There is one box of bolts that contains some long and some short
bolts. A manager is unable to open the box at present, so she asks her employees
what is the composition of the box. One employee says that it contains 60 long bolts
and 40 short bolts. Another says that it contains 10 long bolts and 20 short bolts.
Unable to reconcile these opinions, the manager decides that each of the employees
is correct with probability 1/2. Let B1 be the event that the box contains 60 long and
40 short bolts, and let B2 be the event that the box contains 10 long and 20 short
bolts. The probability that the first bolt selected is long is now calculated precisely as
in Example 2.1.9. �

In Example 2.1.11, there is only one box of bolts, but we believe that it has one
of two possible compositions. We let the events B1 and B2 determine the possible
compositions. This type of situation is very common in experiments.

Example
2.1.12

A Clinical Trial. Consider a clinical trial such as the study of treatments for depression
in Example 2.1.4. As in many such trials, each patient has two possible outcomes,
in this case relapse and no relapse. We shall refer to relapse as “failure” and no
relapse as “success.” For now, we shall consider only patients in the imipramine
treatment group. If we knew the effectiveness of imipramine, that is, the proportion
p of successes among all patients who might receive the treatment, then we might
model the patients in our study as having probability p of success. Unfortunately, we
do not know p at the start of the trial. In analogy to the box of bolts with unknown
composition in Example 2.1.11, we can imagine that the collection of all available
patients (from which the 40 imipramine patients in this trial were selected) has two or
more possible compositions. We can imagine that the composition of the collection of
patients determines the proportion that will be success. For simplicity, in this example,
we imagine that there are 11 different possible compositions of the collection of
patients. In particular, we assume that the proportions of success for the 11 possible
compositions are 0, 1/10, . . . , 9/10, 1. (We shall be able to handle more realistic
models for p in Chapter 3.) For example, if we knew that our patients were drawn
from a collection with the proportion 3/10 of successes, we would be comfortable
saying that the patients in our sample each have success probability p = 3/10. The
value of p is an important source of uncertainty in this problem, and we shall partition
the sample space by the possible values of p. For j = 1, . . . , 11, let Bj be the event
that our sample was drawn from a collection with proportion (j − 1)/10 of successes.
We can also identify Bj as the event {p = (j − 1)/10}.

Now, let E1 be the event that the first patient in the imipramine group has a
success. We defined each event Bj so that Pr(E1|Bj) = (j − 1)/10. Supppose that,
prior to starting the trial, we believe that Pr(Bj) = 1/11 for each j . It follows that

Pr(E1) =
11∑

j=1

1
11

j − 1
10

= 55
110

= 1
2
, (2.1.6)

where the second equality uses the fact that
∑n

j=1 j = n(n + 1)/2. �

The events B1, B2, . . . , B11 in Example 2.1.12 can be thought of in much the
same way as the two events B1 and B2 that determine the mixture of long and short
bolts in Example 2.1.11. There is only one box of bolts, but there is uncertainty about
its composition. Similarly in Example 2.1.12, there is only one group of patients,
but we believe that it has one of 11 possible compositions determined by the events
B1, B2, . . . , B11. To call these events, they must be subsets of the sample space for the
experiment in question. That will be the case in Example 2.1.12 if we imagine that
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the experiment consists not only of observing the numbers of successes and failures
among the patients but also of potentially observing enough additional patients to
be able to compute p, possibly at some time very far in the future. Similarly, in
Example 2.1.11, the two events B1 and B2 are subsets of the sample space if we
imagine that the experiment consists not only of observing one sample bolt but also
of potentially observing the entire composition of the box.

Throughout the remainder of this text, we shall implicitly assume that experi-
ments are augmented to include outcomes that determine the values of quantities
such as p. We shall not require that we ever get to observe the complete outcome of
the experiment so as to tell us precisely what p is, but merely that there is an exper-
iment that includes all of the events of interest to us, including those that determine
quantities like p.

Definition
2.1.3

Augmented Experiment. If desired, any experiment can be augmented to include the
potential or hypothetical observation of as much additional information as we would
find useful to help us calculate any probabilities that we desire.

Definition 2.1.3 is worded somewhat vaguely because it is intended to cover a
wide variety of cases. Here is an explicit application to Example 2.1.12.

Example
2.1.13

A Clinical Trial. In Example 2.1.12, we could explicitly assume that there exists an
infinite sequence of patients who could be treated with imipramine even though
we will observe only finitely many of them. We could let the sample space consist
of infinite sequences of the two symbols S and F such as (S, S, F, S, F, F, F, . . .).
Here S in coordinate i means that the ith patient is a success, and F stands for
failure. So, the event E1 in Example 2.1.12 is the event that the first coordinate
is S. The example sequence above is then in the event E1. To accommodate our
interpretation of p as the proportion of successes, we can assume that, for every
such sequence, the proportion of S’s among the first n coordinates gets close to one
of the numbers 0, 1/10, . . . , 9/10, 1 as n increases. In this way, p is explicitly the limit
of the proportion of successes we would observe if we could find a way to observe
indefinitely. In Example 2.1.12, B2 is the event consisting of all the outcomes in which
the limit of the proportion of S’s equals 1/10, B3 is the set of outcomes in which
the limit is 2/10, etc. Also, we observe only the first 40 coordinates of the infinite
sequence, but we still behave as if p exists and could be determined if only we could
observe forever. �

In the remainder of the text, there will be many experiments that we assume
are augmented. In such cases, we will mention which quantities (such as p in Exam-
ple 2.1.13) would be determined by the augmented part of the experiment even if we
do not explicitly mention that the experiment is augmented.

The Game of Craps

We shall conclude this section by discussing a popular gambling game called craps.
One version of this game is played as follows: A player rolls two dice, and the sum
of the two numbers that appear is observed. If the sum on the first roll is 7 or 11,
the player wins the game immediately. If the sum on the first roll is 2, 3, or 12, the
player loses the game immediately. If the sum on the first roll is 4, 5, 6, 8, 9, or 10,
then the two dice are rolled again and again until the sum is either 7 or the original
value. If the original value is obtained a second time before 7 is obtained, then the
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player wins. If the sum 7 is obtained before the original value is obtained a second
time, then the player loses.

We shall now compute the probability Pr(W), where W is the event that the
player will win. Let the sample space S consist of all possible sequences of sums from
the rolls of dice that might occur in a game. For example, some of the elements of S are
(4, 7), (11), (4, 3, 4), (12), (10, 8, 2, 12, 6, 7), etc. We see that (11) ∈ W but (4, 7) ∈ Wc,
etc.. We begin by noticing that whether or not an outcome is in W depends in a crucial
way on the first roll. For this reason, it makes sense to partition W according to the
sum on the first roll. Let Bi be the event that the first roll is i for i = 2, . . . , 12.

Theorem 2.1.4 tells us that Pr(W) = ∑12
i=2 Pr(Bi) Pr(W |Bi). Since Pr(Bi) for each

i was computed in Example 1.6.5, we need to determine Pr(W |Bi) for each i. We
begin with i = 2. Because the player loses if the first roll is 2, we have Pr(W |B2) = 0.
Similarly, Pr(W |B3) = 0 = Pr(W |B12). Also, Pr(W |B7) = 1 because the player wins if
the first roll is 7. Similarly, Pr(W |B11) = 1.

For each first roll i ∈ {4, 5, 6, 8, 9, 10}, Pr(W |Bi) is the probability that, in a
sequence of dice rolls, the sum i will be obtained before the sum 7 is obtained. As
described in Example 2.1.5, this probability is the same as the probability of obtaining
the sum i when the sum must be either i or 7. Hence,

Pr(W |Bi) = Pr(Bi)

Pr(Bi ∪ B7)
.

We compute the necessary values here:

Pr(W |B4) =
3

36
3

36 + 6
36

= 1
3
, P (W |B5) =

4
36

4
36 + 6

36

= 2
5
,

Pr(W |B6) =
5

36
5

36 + 6
36

= 5
11

, Pr(W |B8) =
5

36
5

36 + 6
36

= 5
11

,

Pr(W |B9) =
4
36

4
36 + 6

36

= 2
5
, Pr(W |B10) =

3
36

3
36 + 6

36

= 1
3
.

Finally, we compute the sum
∑12

i=2 Pr(Bi) Pr(W |Bi):

Pr(W) =
12∑
i=2

Pr(Bi) Pr(W |Bi) = 0 + 0 + 3
36

1
3

+ 4
36

2
5

+ 5
36

5
11

+ 6
36

+ 5
36

5
11

+ 4
36

2
5

+ 3
36

1
3

+ 2
36

+ 0 = 2928
5940

= 0.493.

Thus, the probability of winning in the game of craps is slightly less than 1/2.

Summary

The revised probability of an event A after learning that event B (with Pr(B) > 0)
has occurred is the conditional probability of A given B, denoted by Pr(A|B) and
computed as Pr(A ∩ B)/ Pr(B). Often it is easy to assess a conditional probability,
such as Pr(A|B), directly. In such a case, we can use the multiplication rule for con-
ditional probabilities to compute Pr(A ∩ B) = Pr(B) Pr(A|B). All probability results
have versions conditional on an event B with Pr(B) > 0: Just change all probabili-
ties so that they are conditional on B in addition to anything else they were already
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conditional on. For example, the multiplication rule for conditional probabilities be-
comes Pr(A1 ∩ A2|B) = Pr(A1|B) Pr(A2|A1 ∩ B). A partition is a collection of disjoint
events whose union is the whole sample space. To be most useful, a partition is cho-
sen so that an important source of uncertainty is reduced if we learn which one of
the partition events occurs. If the conditional probability of an event A is available
given each event in a partition, the law of total probability tells how to combine these
conditional probabilities to get Pr(A).

Exercises

1. If A ⊂ B with Pr(B) > 0, what is the value of Pr(A|B)?

2. If A and B are disjoint events and Pr(B) > 0, what is
the value of Pr(A|B)?

3. If S is the sample space of an experiment and A is any
event in that space, what is the value of Pr(A|S)?

4. Each time a shopper purchases a tube of toothpaste,
he chooses either brand A or brand B. Suppose that for
each purchase after the first, the probability is 1/3 that he
will choose the same brand that he chose on his preceding
purchase and the probability is 2/3 that he will switch
brands. If he is equally likely to choose either brand A
or brand B on his first purchase, what is the probability
that both his first and second purchases will be brand A
and both his third and fourth purchases will be brand B?

5. A box contains r red balls and b blue balls. One ball
is selected at random and its color is observed. The ball
is then returned to the box and k additional balls of the
same color are also put into the box. A second ball is then
selected at random, its color is observed, and it is returned
to the box together with k additional balls of the same
color. Each time another ball is selected, the process is
repeated. If four balls are selected, what is the probability
that the first three balls will be red and the fourth ball will
be blue?

6. A box contains three cards. One card is red on both
sides, one card is green on both sides, and one card is red
on one side and green on the other. One card is selected
from the box at random, and the color on one side is
observed. If this side is green, what is the probability that
the other side of the card is also green?

7. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
newspaper A, what is the probability that the family also
subscribes to newspaper B?

8. Consider again the conditions of Exercise 2 of Sec. 1.10.
If a family selected at random from the city subscribes to
at least one of the three newspapers A, B, and C, what is
the probability that the family subscribes to newspaper A?

9. Suppose that a box contains one blue card and four red
cards, which are labeled A, B, C, and D. Suppose also that

two of these five cards are selected at random, without
replacement.

a. If it is known that card A has been selected, what is
the probability that both cards are red?

b. If it is known that at least one red card has been
selected, what is the probability that both cards are
red?

10. Consider the following version of the game of craps:
The player rolls two dice. If the sum on the first roll is
7 or 11, the player wins the game immediately. If the
sum on the first roll is 2, 3, or 12, the player loses the
game immediately. However, if the sum on the first roll
is 4, 5, 6, 8, 9, or 10, then the two dice are rolled again and
again until the sum is either 7 or 11 or the original value. If
the original value is obtained a second time before either
7 or 11 is obtained, then the player wins. If either 7 or 11
is obtained before the original value is obtained a second
time, then the player loses. Determine the probability that
the player will win this game.

11. For any two events A and B with Pr(B) > 0, prove that
Pr(Ac|B) = 1 − Pr(A|B).

12. For any three events A, B, and D, such that Pr(D) > 0,
prove that Pr(A ∪ B|D) = Pr(A|D) + Pr(B|D) − Pr(A ∩
B|D).

13. A box contains three coins with a head on each side,
four coins with a tail on each side, and two fair coins. If
one of these nine coins is selected at random and tossed
once, what is the probability that a head will be obtained?

14. A machine produces defective parts with three differ-
ent probabilities depending on its state of repair. If the
machine is in good working order, it produces defective
parts with probability 0.02. If it is wearing down, it pro-
duces defective parts with probability 0.1. If it needs main-
tenance, it produces defective parts with probability 0.3.
The probability that the machine is in good working order
is 0.8, the probability that it is wearing down is 0.1, and the
probability that it needs maintenance is 0.1. Compute the
probability that a randomly selected part will be defective.
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15. The percentages of voters classed as Liberals in three
different election districts are divided as follows: in the
first district, 21 percent; in the second district, 45 percent;
and in the third district, 75 percent. If a district is selected
at random and a voter is selected at random from that
district, what is the probability that she will be a Liberal?

16. Consider again the shopper described in Exercise 4.
On each purchase, the probability that he will choose the

same brand of toothpaste that he chose on his preced-
ing purchase is 1/3, and the probability that he will switch
brands is 2/3. Suppose that on his first purchase the proba-
bility that he will choose brand A is 1/4 and the probability
that he will choose brand B is 3/4. What is the probability
that his second purchase will be brand B?

17. Prove the conditional version of the law of total prob-
ability (2.1.5).

2.2 Independent Events
If learning that B has occurred does not change the probability of A, then we say
that A and B are independent. There are many cases in which events A and B

are not independent, but they would be independent if we learned that some other
event C had occurred. In this case, A and B are conditionally independent given C.

Example
2.2.1

Tossing Coins. Suppose that a fair coin is tossed twice. The experiment has four
outcomes, HH, HT, TH, and TT, that tell us how the coin landed on each of the
two tosses. We can assume that this sample space is simple so that each outcome has
probability 1/4. Suppose that we are interested in the second toss. In particular, we
want to calculate the probability of the event A = {H on second toss}. We see that A =
{HH,TH}, so that Pr(A) = 2/4 = 1/2. If we learn that the first coin landed T, we might
wish to compute the conditional probability Pr(A|B) where B = {T on first toss}.
Using the definition of conditional probability, we easily compute

Pr(A|B) = Pr(A ∩ B)

Pr(B)
= 1/4

1/2
= 1

2
,

because A ∩ B = {T H } has probability 1/4. We see that Pr(A|B) = Pr(A); hence, we
don’t change the probability of A even after we learn that B has occurred. �

Definition of Independence

The conditional probability of the event A given that the event B has occurred is
the revised probability of A after we learn that B has occurred. It might be the case,
however, that no revision is necessary to the probability of A even after we learn that
B occurs. This is precisely what happened in Example 2.2.1. In this case, we say that
A and B are independent events. As another example, if we toss a coin and then roll
a die, we could let A be the event that the die shows 3 and let B be the event that the
coin lands with heads up. If the tossing of the coin is done in isolation of the rolling
of the die, we might be quite comfortable assigning Pr(A|B) = Pr(A) = 1/6. In this
case, we say that A and B are independent events.

In general, if Pr(B) > 0, the equation Pr(A|B) = Pr(A) can be rewritten as Pr(A ∩
B)/ Pr(B) = Pr(A). If we multiply both sides of this last equation by Pr(B), we obtain
the equation Pr(A ∩ B) = Pr(A) Pr(B). In order to avoid the condition Pr(B) > 0, the
mathematical definition of the independence of two events is stated as follows:

Definition
2.2.1

Independent Events. Two events A and B are independent if

Pr(A ∩ B) = Pr(A) Pr(B).
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Suppose that Pr(A) > 0 and Pr(B) > 0. Then it follows easily from the definitions
of independence and conditional probability that A and B are independent if and only
if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B).

Independence of Two Events

If two events A and B are considered to be independent because the events are
physically unrelated, and if the probabilities Pr(A) and Pr(B) are known, then the
definition can be used to assign a value to Pr(A ∩ B).

Example
2.2.2

Machine Operation. Suppose that two machines 1 and 2 in a factory are operated in-
dependently of each other. Let A be the event that machine 1 will become inoperative
during a given 8-hour period, let B be the event that machine 2 will become inopera-
tive during the same period, and suppose that Pr(A) = 1/3 and Pr(B) = 1/4. We shall
determine the probability that at least one of the machines will become inoperative
during the given period.

The probability Pr(A ∩ B) that both machines will become inoperative during
the period is

Pr(A ∩ B) = Pr(A) Pr(B) =
(

1
3

) (
1
4

)
= 1

12
.

Therefore, the probability Pr(A ∪ B) that at least one of the machines will become
inoperative during the period is

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

= 1
3

+ 1
4

− 1
12

= 1
2
. �

The next example shows that two events A and B, which are physically related,
can, nevertheless, satisfy the definition of independence.

Example
2.2.3

Rolling a Die. Suppose that a balanced die is rolled. Let A be the event that an even
number is obtained, and let B be the event that one of the numbers 1, 2, 3, or 4 is
obtained. We shall show that the events A and B are independent.

In this example, Pr(A) = 1/2 and Pr(B) = 2/3. Furthermore, since A ∩ B is the
event that either the number 2 or the number 4 is obtained, Pr(A ∩ B) = 1/3. Hence,
Pr(A ∩ B) = Pr(A) Pr(B). It follows that the events A and B are independent events,
even though the occurrence of each event depends on the same roll of a die. �

The independence of the events A and B in Example 2.2.3 can also be interpreted
as follows: Suppose that a person must bet on whether the number obtained on the
die will be even or odd, that is, on whether or not the event A will occur. Since three
of the possible outcomes of the roll are even and the other three are odd, the person
will typically have no preference between betting on an even number and betting on
an odd number.

Suppose also that after the die has been rolled, but before the person has learned
the outcome and before she has decided whether to bet on an even outcome or on an
odd outcome, she is informed that the actual outcome was one of the numbers 1, 2, 3,
or 4, i.e., that the event B has occurred. The person now knows that the outcome was
1, 2, 3, or 4. However, since two of these numbers are even and two are odd, the
person will typically still have no preference between betting on an even number
and betting on an odd number. In other words, the information that the event B has
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occurred is of no help to the person who is trying to decide whether or not the event
A has occurred.

Independence of Complements In the foregoing discussion of independent events,
we stated that if A and B are independent, then the occurrence or nonoccurrence of
A should not be related to the occurrence or nonoccurrence of B. Hence, if A and
B satisfy the mathematical definition of independent events, then it should also be
true that A and Bc are independent events, that Ac and B are independent events,
and that Ac and Bc are independent events. One of these results is established in the
next theorem.

Theorem
2.2.1

If two events A and B are independent, then the events A and Bc are also indepen-
dent.

Proof Theorem 1.5.6 says that

Pr(A ∩ Bc) = Pr(A) − Pr(A ∩ B).

Furthermore, since A and B are independent events, Pr(A ∩ B) = Pr(A) Pr(B). It
now follows that

Pr(A ∩ Bc) = Pr(A) − Pr(A) Pr(B) = Pr(A)[1 − Pr(B)]

= Pr(A) Pr(Bc).

Therefore, the events A and Bc are independent.

The proof of the analogous result for the events Ac and B is similar, and the proof
for the events Ac and Bc is required in Exercise 2 at the end of this section.

Independence of Several Events

The definition of independent events can be extended to any number of events,
A1, . . . , Ak. Intuitively, if learning that some of these events do or do not occur does
not change our probabilities for any events that depend only on the remaining events,
we would say that all k events are independent. The mathematical definition is the
following analog to Definition 2.2.1.

Definition
2.2.2

(Mutually) Independent Events. The k events A1, . . . , Ak are independent (or mutually
independent) if, for every subset Ai1

, . . . , Aij
of j of these events (j = 2, 3, . . . , k),

Pr(Ai1
∩ . . . ∩ Aij

) = Pr(Ai1
) . . . Pr(Aij

).

As an example, in order for three events A, B, and C to be independent, the following
four relations must be satisfied:

Pr(A ∩ B) = Pr(A) Pr(B),

Pr(A ∩ C) = Pr(A) Pr(C),

Pr(B ∩ C) = Pr(B) Pr(C),

(2.2.1)

and

Pr(A ∩ B ∩ C) = Pr(A) Pr(B) Pr(C). (2.2.2)

It is possible that Eq. (2.2.2) will be satisfied, but one or more of the three rela-
tions (2.2.1) will not be satisfied. On the other hand, as is shown in the next example,
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it is also possible that each of the three relations (2.2.1) will be satisfied but Eq. (2.2.2)
will not be satisfied.

Example
2.2.4

Pairwise Independence. Suppose that a fair coin is tossed twice so that the sample
space S = {HH, HT, TH, TT} is simple. Define the following three events:

A = {H on first toss} = {HH, HT},
B = {H on second toss} = {HH, TH}, and

C = {Both tosses the same} = {HH, TT}.
Then A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C = {HH }. Hence,

Pr(A) = Pr(B) = Pr(C) = 1/2

and

Pr(A ∩ B) = Pr(A ∩ C) = Pr(B ∩ C) = Pr(A ∩ B ∩ C) = 1/4.

It follows that each of the three relations of Eq. (2.2.1) is satisfied but Eq. (2.2.2) is
not satisfied. These results can be summarized by saying that the events A, B, and C

are pairwise independent, but all three events are not independent. �

We shall now present some examples that will illustrate the power and scope of
the concept of independence in the solution of probability problems.

Example
2.2.5

Inspecting Items. Suppose that a machine produces a defective item with probability
p (0 < p < 1) and produces a nondefective item with probability 1 − p. Suppose
further that six items produced by the machine are selected at random and inspected,
and that the results (defective or nondefective) for these six items are independent.
We shall determine the probability that exactly two of the six items are defective.

It can be assumed that the sample space S contains all possible arrangements
of six items, each one of which might be either defective or nondefective. For j =
1, . . . , 6, we shall let Dj denote the event that the j th item in the sample is defective
so that Dc

j is the event that this item is nondefective. Since the outcomes for the six
different items are independent, the probability of obtaining any particular sequence
of defective and nondefective items will simply be the product of the individual
probabilities for the items. For example,

Pr(Dc
1 ∩ D2 ∩ Dc

3 ∩ Dc
4 ∩ D5 ∩ Dc

6) = Pr(Dc
1) Pr(D2) Pr(Dc

3) Pr(Dc
4) Pr(D5) Pr(Dc

6)

= (1 − p)p(1 − p)(1 − p)p(1 − p) = p2(1 − p)4.

It can be seen that the probability of any other particular sequence in S containing
two defective items and four nondefective items will also be p2(1 − p)4. Hence, the
probability that there will be exactly two defectives in the sample of six items can be
found by multiplying the probability p2(1 − p)4 of any particular sequence containing
two defectives by the possible number of such sequences. Since there are

(6
2

)
distinct

arrangements of two defective items and four nondefective items, the probability of
obtaining exactly two defectives is

(6
2

)
p2(1 − p)4. �

Example
2.2.6

Obtaining a Defective Item. For the conditions of Example 2.2.5, we shall now deter-
mine the probability that at least one of the six items in the sample will be defective.

Since the outcomes for the different items are independent, the probability that
all six items will be nondefective is (1 − p)6. Therefore, the probability that at least
one item will be defective is 1 − (1 − p)6. �
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Example
2.2.7

Tossing a Coin Until a Head Appears. Suppose that a fair coin is tossed until a head
appears for the first time, and assume that the outcomes of the tosses are independent.
We shall determine the probability pn that exactly n tosses will be required.

The desired probability is equal to the probability of obtaining n − 1 tails in
succession and then obtaining a head on the next toss. Since the outcomes of the
tosses are independent, the probability of this particular sequence of n outcomes is
pn = (1/2)n.

The probability that a head will be obtained sooner or later (or, equivalently,
that tails will not be obtained forever) is

∞∑
n=1

pn = 1
2

+ 1
4

+ 1
8

+ . . . = 1.

Since the sum of the probabilities pn is 1, it follows that the probability of obtaining
an infinite sequence of tails without ever obtaining a head must be 0. �

Example
2.2.8

Inspecting Items One at a Time. Consider again a machine that produces a defective
item with probability p and produces a nondefective item with probability 1 − p.
Suppose that items produced by the machine are selected at random and inspected
one at a time until exactly five defective items have been obtained. We shall deter-
mine the probability pn that exactly n items (n ≥ 5) must be selected to obtain the
five defectives.

The fifth defective item will be the nth item that is inspected if and only if there
are exactly four defectives among the first n − 1 items and then the nth item is
defective. By reasoning similar to that given in Example 2.2.5, it can be shown that
the probability of obtaining exactly four defectives and n − 5 nondefectives among
the first n − 1 items is

(
n−1

4

)
p4(1 − p)n−5. The probability that the nth item will be

defective is p. Since the first event refers to outcomes for only the first n − 1 items
and the second event refers to the outcome for only the nth item, these two events
are independent. Therefore, the probability that both events will occur is equal to
the product of their probabilities. It follows that

pn =
(

n − 1
4

)
p5(1 − p)n−5. �

Example
2.2.9

People v. Collins. Finkelstein and Levin (1990) describe a criminal case whose verdict
was overturned by the Supreme Court of California in part due to a probability cal-
culation involving both conditional probability and independence. The case, People
v. Collins, 68 Cal. 2d 319, 438 P.2d 33 (1968), involved a purse snatching in which wit-
nesses claimed to see a young woman with blond hair in a ponytail fleeing from the
scene in a yellow car driven by a black man with a beard. A couple meeting the de-
scription was arrested a few days after the crime, but no physical evidence was found.
A mathematician calculated the probability that a randomly selected couple would
possess the described characteristics as about 8.3 × 10−8, or 1 in 12 million. Faced
with such overwhelming odds and no physical evidence, the jury decided that the
defendants must have been the only such couple and convicted them. The Supreme
Court thought that a more useful probability should have been calculated. Based
on the testimony of the witnesses, there was a couple that met the above descrip-
tion. Given that there was already one couple who met the description, what is the
conditional probability that there was also a second couple such as the defendants?

Let p be the probability that a randomly selected couple from a population of n

couples has certain characteristics. Let A be the event that at least one couple in the
population has the characteristics, and let B be the event that at least two couples
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have the characteristics. What we seek is Pr(B|A). Since B ⊂ A, it follows that

Pr(B|A) = Pr(B ∩ A)

Pr(A)
= Pr(B)

Pr(A)
.

We shall calculate Pr(B) and Pr(A) by breaking each event into more manageable
pieces. Suppose that we number the n couples in the population from 1 to n. Let Ai

be the event that couple number i has the characteristics in question for i = 1, . . . , n,
and let C be the event that exactly one couple has the characteristics. Then

A = (Ac
1 ∩ Ac

2
. . . ∩ Ac

n
)c,

C = (A1 ∩ Ac
2
. . . ∩ Ac

n
) ∪ (Ac

1 ∩ A2 ∩ Ac
3
. . . ∩ Ac

n
) ∪ . . . ∪ (Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An),

B = A ∩ Cc.

Assuming that the n couples are mutually independent, Pr(Ac) = (1 − p)n, and
Pr(A) = 1 − (1 − p)n. The n events whose union is C are disjoint and each one has
probability p(1 − p)n−1, so Pr(C) = np(1 − p)n−1. Since A = B ∪ C with B and C

disjoint, we have

Pr(B) = Pr(A) − Pr(C) = 1 − (1 − p)n − np(1 − p)n−1.

So,

Pr(B|A) = 1 − (1 − p)n − np(1 − p)n−1

1 − (1 − p)n
. (2.2.3)

The Supreme Court of California reasoned that, since the crime occurred in a
heavily populated area, n would be in the millions. For example, with p = 8.3 × 10−8

and n = 8,000,000, the value of (2.2.3) is 0.2966. Such a probability suggests that there
is a reasonable chance that there was another couple meeting the same description
as the witnesses provided. Of course, the court did not know how large n was, but the
fact that (2.2.3) could easily be so large was grounds enough to rule that reasonable
doubt remained as to the guilt of the defendants. �

Independence and Conditional Probability Two events A and B with positive
probability are independent if and only if Pr(A|B) = Pr(A). Similar results hold for
larger collections of independent events. The following theorem, for example, is
straightforward to prove based on the definition of independence.

Theorem
2.2.2

Let A1, . . . , Ak be events such that Pr(A1 ∩ . . . ∩ Ak) > 0. Then A1, . . . , Ak are
independent if and only if, for every two disjoint subsets {i1, . . . , im} and {j1, . . . , j�}
of {1, . . . , k}, we have

Pr(Ai1
∩ . . . ∩ Aim

|Aj1
∩ . . . ∩ Aj�

) = Pr(Ai1
∩ . . . ∩ Aim

).

Theorem 2.2.2 says that k events are independent if and only if learning that
some of the events occur does not change the probability that any combination of
the other events occurs.

The Meaning of Independence We have given a mathematical definition of inde-
pendent events in Definition 2.2.1. We have also given some interpretations for what
it means for events to be independent. The most instructive interpretation is the one
based on conditional probability. If learning that B occurs does not change the prob-
ability of A, then A and B are independent. In simple examples such as tossing what
we believe to be a fair coin, we would generally not expect to change our minds
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about what is likely to happen on later flips after we observe earlier flips; hence, we
declare the events that concern different flips to be independent. However, consider
a situation similar to Example 2.2.5 in which items produced by a machine are in-
spected to see whether or not they are defective. In Example 2.2.5, we declared that
the different items were independent and that each item had probability p of being
defective. This might make sense if we were confident that we knew how well the
machine was performing. But if we were unsure of how the machine were perform-
ing, we could easily imagine changing our mind about the probability that the 10th
item is defective depending on how many of the first nine items are defective. To be
specific, suppose that we begin by thinking that the probability is 0.08 that an item
will be defective. If we observe one or zero defective items in the first nine, we might
not make much revision to the probability that the 10th item is defective. On the
other hand, if we observe eight or nine defectives in the first nine items, we might be
uncomfortable keeping the probability at 0.08 that the 10th item will be defective. In
summary, when deciding whether to model events as independent, try to answer the
following question: “If I were to learn that some of these events occurred, would I
change the probabilities of any of the others?” If we feel that we already know ev-
erything that we could learn from these events about how likely the others should be,
we can safely model them as independent. If, on the other hand, we feel that learning
some of these events could change our minds about how likely some of the others
are, then we should be more careful about determining the conditional probabilities
and not model the events as independent.

Mutually Exclusive Events and Mutually Independent Events Two similar-sound-
ing definitions have appeared earlier in this text. Definition 1.4.10 defines mutually
exclusive events, and Definition 2.2.2 defines mutually independent events. It is
almost never the case that the same set of events satisfies both definitions. The reason
is that if events are disjoint (mutually exclusive), then learning that one occurs means
that the others definitely did not occur. Hence, learning that one occurs would change
the probabilities for all the others to 0, unless the others already had probability 0.
Indeed, this suggests the only condition in which the two definitions would both apply
to the same collection of events. The proof of the following result is left to Exercise 24
in this section.

Theorem
2.2.3

Let n > 1 and let A1, . . . , An be events that are mutually exclusive. The events are
also mutually independent if and only if all the events except possibly one of them
has probability 0.

Conditionally Independent Events

Conditional probability and independence combine into one of the most versatile
models of data collection. The idea is that, in many circumstances, we are unwilling
to say that certain events are independent because we believe that learning some of
them will provide information about how likely the others are to occur. But if we
knew the frequency with which such events would occur, we might then be willing
to assume that they are independent. This model can be illustrated using one of the
examples from earlier in this section.

Example
2.2.10

Inspecting Items. Consider again the situation in Example 2.2.5. This time, however,
suppose that we believe that we would change our minds about the probabilities
of later items being defective were we to learn that certain numbers of early items
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were defective. Suppose that we think of the number p from Example 2.2.5 as the
proportion of defective items that we would expect to see if we were to inspect a very
large sample of items. If we knew this proportion p, and if we were to sample only a
few, say, six or 10 items now, we might feel confident maintaining that the probability
of a later item being defective remains p even after we inspect some of the earlier
items. On the other hand, if we are not sure what would be the proportion of defective
items in a large sample, we might not feel confident keeping the probability the same
as we continue to inspect.

To be precise, suppose that we treat the proportion p of defective items as
unknown and that we are dealing with an augmented experiment as described in
Definition 2.1.3. For simplicity, suppose that p can take one of two values, either 0.01
or 0.4, the first corresponding to normal operation and the second corresponding to
a need for maintenance. Let B1 be the event that p = 0.01, and let B2 be the event
that p = 0.4. If we knew that B1 had occurred, then we would proceed under the
assumption that the events D1, D2, . . . were independent with Pr(Di|B1) = 0.01 for
all i. For example, we could do the same calculations as in Examples 2.2.5 and 2.2.8
with p = 0.01. Let A be the event that we observe exactly two defectives in a random
sample of six items. Then Pr(A|B1) = (6

2

)
0.0120.994 = 1.44 × 10−3. Similarly, if we

knew that B2 had occurred, then we would assume that D1, D2, . . . were independent
with Pr(Di|B2) = 0.4. In this case, Pr(A|B2) = (6

2

)
0.420.64 = 0.311. �

In Example 2.2.10, there is no reason that p must be required to assume at most
two different values. We could easily allow p to take a third value or a fourth value,
etc. Indeed, in Chapter 3 we shall learn how to handle the case in which every number
between 0 and 1 is a possible value of p. The point of the simple example is to illustrate
the concept of assuming that events are independent conditional on another event,
such as B1 or B2 in the example.

The formal concept illustrated in Example 2.2.10 is the following:

Definition
2.2.3

Conditional Independence. We say that events A1, . . . , Ak are conditionally inde-
pendent given B if, for every subcollection Ai1

, . . . , Aij
of j of these events (j =

2, 3, . . . , k),

Pr
(
Ai1

∩ . . . ∩ Aij

∣∣∣B)
= Pr(Ai1

|B) . . . Pr(Aij
|B).

Definition 2.2.3 is identical to Definition 2.2.2 for independent events with the mod-
ification that all probabilities in the definition are now conditional on B. As a note,
even if we assume that events A1, . . . , Ak are conditionally independent given B, it
is not necessary that they be conditionally independent given Bc. In Example 2.2.10,
the events D1, D2, . . . were conditionally independent given both B1 and B2 = Bc

1,
which is the typical situation. Exercise 16 in Sec. 2.3 is an example in which events are
conditionally independent given one event B but are not conditionally independent
given the complement Bc.

Recall that two events A1 and A2 (with Pr(A1) > 0) are independent if and only
if Pr(A2|A1) = Pr(A2). A similar result holds for conditionally independent events.

Theorem
2.2.4

Suppose that A1, A2, and B are events such that Pr(A1 ∩ B) > 0. Then A1 and A2 are
conditionally independent given B if and only if Pr(A2|A1 ∩ B) = Pr(A2|B).

This is another example of the claim we made earlier that every result we can prove
has an analog conditional on an event B. The reader can prove this theorem in
Exercise 22.
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The Collector’s Problem

Suppose that n balls are thrown in a random manner into r boxes (r ≤ n). We shall
assume that the n throws are independent and that each of the r boxes is equally
likely to receive any given ball. The problem is to determine the probability p that
every box will receive at least one ball. This problem can be reformulated in terms of
a collector’s problem as follows: Suppose that each package of bubble gum contains
the picture of a baseball player, that the pictures of r different players are used, that
the picture of each player is equally likely to be placed in any given package of gum,
and that pictures are placed in different packages independently of each other. The
problem now is to determine the probability p that a person who buys n packages of
gum (n ≥ r) will obtain a complete set of r different pictures.

For i = 1, . . . , r , let Ai denote the event that the picture of player i is missing
from all n packages. Then

⋃r
i=1 Ai is the event that the picture of at least one player

is missing. We shall find Pr(
⋃r

i=1 Ai) by applying Eq. (1.10.6).
Since the picture of each of the r players is equally likely to be placed in any

particular package, the probability that the picture of player i will not be obtained in
any particular package is (r − 1)/r . Since the packages are filled independently, the
probability that the picture of player i will not be obtained in any of the n packages
is [(r − 1)/r]n. Hence,

Pr(Ai) =
(

r − 1
r

)n

for i = 1, . . . , r.

Now consider any two players i and j . The probability that neither the picture of
player i nor the picture of player j will be obtained in any particular package is
(r − 2)/r . Therefore, the probability that neither picture will be obtained in any of
the n packages is [(r − 2)/r]n. Thus,

Pr(Ai ∩ Aj) =
(

r − 2
r

)n

.

If we next consider any three players i, j , and k, we find that

Pr(Ai ∩ Aj ∩ Ak) =
(

r − 3
r

)n

.

By continuing in this way, we finally arrive at the probability Pr(A1 ∩ A2 ∩ . . . ∩ Ar)

that the pictures of all r players are missing from the n packages. Of course, this
probability is 0. Therefore, by Eq. (1.10.6) of Sec. 1.10,

Pr

(
r⋃

i=1

Ai

)
= r

(
r − 1

r

)n

−
(

r

2

) (
r − 2

r

)n

+ . . . + (−1)r
(

r

r − 1

) (
1
r

)n

=
r−1∑
j=1

(−1)j+1
(

r

j

) (
1 − j

r

)n

.

Since the probability p of obtaining a complete set of r different pictures is equal to
1 − Pr(

⋃r
i=1 Ai), it follows from the foregoing derivation that p can be written in the

form

p =
r−1∑
j=0

(−1)j
(

r

j

) (
1 − j

r

)n

.
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Summary

A collection of events is independent if and only if learning that some of them occur
does not change the probabilities that any combination of the rest of them occurs.
Equivalently, a collection of events is independent if and only if the probability of the
intersection of every subcollection is the product of the individual probabilities. The
concept of independence has a version conditional on another event. A collection
of events is independent conditional on B if and only if the conditional probability
of the intersection of every subcollection given B is the product of the individual
conditional probabilities given B. Equivalently, a collection of events is conditionally
independent given B if and only if learning that some of them (and B) occur does
not change the conditional probabilities given B that any combination of the rest of
them occur. The full power of conditional independence will become more apparent
after we introduce Bayes’ theorem in the next section.

Exercises

1. If A and B are independent events and Pr(B) < 1, what
is the value of Pr(Ac|Bc)?

2. Assuming that A and B are independent events, prove
that the events Ac and Bc are also independent.

3. Suppose that A is an event such that Pr(A) = 0 and that
B is any other event. Prove that A and B are independent
events.

4. Suppose that a person rolls two balanced dice three
times in succession. Determine the probability that on
each of the three rolls, the sum of the two numbers that
appear will be 7.

5. Suppose that the probability that the control system
used in a spaceship will malfunction on a given flight is
0.001. Suppose further that a duplicate, but completely in-
dependent, control system is also installed in the spaceship
to take control in case the first system malfunctions. De-
termine the probability that the spaceship will be under
the control of either the original system or the duplicate
system on a given flight.

6. Suppose that 10,000 tickets are sold in one lottery and
5000 tickets are sold in another lottery. If a person owns
100 tickets in each lottery, what is the probability that she
will win at least one first prize?

7. Two students A and B are both registered for a certain
course. Assume that student A attends class 80 percent of
the time, student B attends class 60 percent of the time,
and the absences of the two students are independent.

a. What is the probability that at least one of the two
students will be in class on a given day?

b. If at least one of the two students is in class on a given
day, what is the probability that A is in class that day?

8. If three balanced dice are rolled, what is the probability
that all three numbers will be the same?

9. Consider an experiment in which a fair coin is tossed
until a head is obtained for the first time. If this experiment
is performed three times, what is the probability that ex-
actly the same number of tosses will be required for each
of the three performances?

10. The probability that any child in a certain family will
have blue eyes is 1/4, and this feature is inherited indepen-
dently by different children in the family. If there are five
children in the family and it is known that at least one of
these children has blue eyes, what is the probability that
at least three of the children have blue eyes?

11. Consider the family with five children described in
Exercise 10.

a. If it is known that the youngest child in the family has
blue eyes, what is the probability that at least three
of the children have blue eyes?

b. Explain why the answer in part (a) is different from
the answer in Exercise 10.

12. Suppose that A, B, and C are three independent
events such that Pr(A) = 1/4, Pr(B) = 1/3, and Pr(C) =
1/2. (a) Determine the probability that none of these three
events will occur. (b) Determine the probability that ex-
actly one of these three events will occur.

13. Suppose that the probability that any particle emitted
by a radioactive material will penetrate a certain shield
is 0.01. If 10 particles are emitted, what is the probability
that exactly one of the particles will penetrate the shield?
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14. Consider again the conditions of Exercise 13. If 10
particles are emitted, what is the probability that at least
one of the particles will penetrate the shield?

15. Consider again the conditions of Exercise 13. How
many particles must be emitted in order for the probability
to be at least 0.8 that at least one particle will penetrate
the shield?

16. In the World Series of baseball, two teams A and B

play a sequence of games against each other, and the first
team that wins a total of four games becomes the winner
of the World Series. If the probability that team A will
win any particular game against team B is 1/3, what is the
probability that team A will win the World Series?

17. Two boys A and B throw a ball at a target. Suppose
that the probability that boy A will hit the target on any
throw is 1/3 and the probability that boy B will hit the
target on any throw is 1/4. Suppose also that boy A throws
first and the two boys take turns throwing. Determine the
probability that the target will be hit for the first time on
the third throw of boy A.

18. For the conditions of Exercise 17, determine the prob-
ability that boy A will hit the target before boy B does.

19. A box contains 20 red balls, 30 white balls, and 50
blue balls. Suppose that 10 balls are selected at random
one at a time, with replacement; that is, each selected ball
is replaced in the box before the next selection is made.
Determine the probability that at least one color will be
missing from the 10 selected balls.

20. Suppose that A1, . . . , Ak form a sequence of k inde-
pendent events. Let B1, . . . , Bk be another sequence of k

events such that for each value of j (j = 1, . . . , k), either
Bj = Aj or Bj = Ac

j
. Prove that B1, . . . , Bk are also inde-

pendent events. Hint: Use an induction argument based
on the number of events Bj for which Bj = Ac

j
.

21. Prove Theorem 2.2.2 on page 71. Hint: The “only if ”
direction is direct from the definition of independence on
page 68. For the “if ” direction, use induction on the value
of j in the definition of independence. Let m = j − 1 and
let � = 1 with j1 = ij .

22. Prove Theorem 2.2.4 on page 73.

23. A programmer is about to attempt to compile a se-
ries of 11 similar programs. Let Ai be the event that the
ith program compiles successfully for i = 1, . . . , 11. When
the programming task is easy, the programmer expects
that 80 percent of programs should compile. When the
programming task is difficult, she expects that only 40 per-
cent of the programs will compile. Let B be the event that
the programming task was easy. The programmer believes
that the events A1, . . . , A11 are conditionally independent
given B and given Bc.

a. Compute the probability that exactly 8 out of 11
programs will compile given B.

b. Compute the probability that exactly 8 out of 11
programs will compile given Bc.

24. Prove Theorem 2.2.3 on page 72.

2.3 Bayes’ Theorem
Suppose that we are interested in which of several disjoint events B1, . . . , Bk will
occur and that we will get to observe some other event A. If Pr(A|Bi) is available
for each i, then Bayes’ theorem is a useful formula for computing the conditional
probabilities of the Bi events given A.

We begin with a typical example.

Example
2.3.1

Test for a Disease. Suppose that you are walking down the street and notice that the
Department of Public Health is giving a free medical test for a certain disease. The
test is 90 percent reliable in the following sense: If a person has the disease, there is a
probability of 0.9 that the test will give a positive response; whereas, if a person does
not have the disease, there is a probability of only 0.1 that the test will give a positive
response.

Data indicate that your chances of having the disease are only 1 in 10,000.
However, since the test costs you nothing, and is fast and harmless, you decide to
stop and take the test. A few days later you learn that you had a positive response to
the test. Now, what is the probability that you have the disease? �
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The last question in Example 2.3.1 is a prototype of the question for which Bayes’
theorem was designed. We have at least two disjoint events (“you have the disease”
and “you do not have the disease”) about which we are uncertain, and we learn a
piece of information (the result of the test) that tells us something about the uncertain
events. Then we need to know how to revise the probabilities of the events in the light
of the information we learned.

We now present the general structure in which Bayes’ theorem operates before
returning to the example.

Statement, Proof, and Examples of Bayes’ Theorem

Example
2.3.2

Selecting Bolts. Consider again the situation in Example 2.1.8, in which a bolt is
selected at random from one of two boxes. Suppose that we cannot tell without
making a further effort from which of the two boxes the one bolt is being selected. For
example, the boxes may be identical in appearance or somebody else may actually
select the box, but we only get to see the bolt. Prior to selecting the bolt, it was
equally likely that each of the two boxes would be selected. However, if we learn that
event A has occurred, that is, a long bolt was selected, we can compute the conditional
probabilities of the two boxes given A. To remind the reader, B1 is the event that the
box is selected containing 60 long bolts and 40 short bolts, while B2 is the event that
the box is selected containing 10 long bolts and 20 short bolts. In Example 2.1.9, we
computed Pr(A) = 7/15, Pr(A|B1) = 3/5, Pr(A|B2) = 1/3, and Pr(B1) = Pr(B2) = 1/2.
So, for example,

Pr(B1|A) = Pr(A ∩ B1)

Pr(A)
= Pr(B1) Pr(A|B1)

Pr(A)
=

1
2 × 3

5
7
15

= 9
14

.

Since the first box has a higher proportion of long bolts than the second box, it seems
reasonable that the probability of B1 should rise after we learn that a long bolt was
selected. It must be that Pr(B2|A) = 5/14 since one or the other box had to be selected.

�

In Example 2.3.2, we started with uncertainty about which of two boxes would
be chosen and then we observed a long bolt drawn from the chosen box. Because the
two boxes have different chances of having a long bolt drawn, the observation of a
long bolt changed the probabilities of each of the two boxes having been chosen. The
precise calculation of how the probabilities change is the purpose of Bayes’ theorem.

Theorem
2.3.1

Bayes’ theorem. Let the events B1, . . . , Bk form a partition of the space S such that
Pr(Bj) > 0 for j = 1, . . . , k, and let A be an event such that Pr(A) > 0. Then, for
i = 1, . . . , k,

Pr(Bi|A) = Pr(Bi) Pr(A|Bi)∑k
j=1 Pr(Bj) Pr(A|Bj)

. (2.3.1)

Proof By the definition of conditional probability,

Pr(Bi|A) = Pr(Bi ∩ A)

Pr(A)
.

The numerator on the right side of Eq. (2.3.1) is equal to Pr(Bi ∩ A) by Theorem 2.1.1.
The denominator is equal to Pr(A) according to Theorem 2.1.4.



78 Chapter 2 Conditional Probability

Example
2.3.3

Test for a Disease. Let us return to the example with which we began this section.
We have just received word that we have tested positive for a disease. The test was
90 percent reliable in the sense that we described in Example 2.3.1. We want to know
the probability that we have the disease after we learn that the result of the test is
positive. Some readers may feel that this probability should be about 0.9. However,
this feeling completely ignores the small probability of 0.0001 that you had the disease
before taking the test. We shall let B1 denote the event that you have the disease, and
let B2 denote the event that you do not have the disease. The events B1 and B2 form
a partition. Also, let A denote the event that the response to the test is positive.
The event A is information we will learn that tells us something about the partition
elements. Then, by Bayes’ theorem,

Pr(B1|A) = Pr(A|B1) Pr(B1)

Pr(A|B1) Pr(B1) + Pr(A|B2) Pr(B2)

= (0.9)(0.0001)
(0.9)(0.0001) + (0.1)(0.9999)

= 0.00090.

Thus, the conditional probability that you have the disease given the test result
is approximately only 1 in 1000. Of course, this conditional probability is approxi-
mately 9 times as great as the probability was before you were tested, but even the
conditional probability is quite small.

Another way to explain this result is as follows: Only one person in every 10,000
actually has the disease, but the test gives a positive response for approximately one
person in every 10. Hence, the number of positive responses is approximately 1000
times the number of persons who actually have the disease. In other words, out of
every 1000 persons for whom the test gives a positive response, only one person
actually has the disease. This example illustrates not only the use of Bayes’ theorem
but also the importance of taking into account all of the information available in a
problem. �

Example
2.3.4

Identifying the Source of a Defective Item. Three different machines M1, M2, and M3
were used for producing a large batch of similar manufactured items. Suppose that
20 percent of the items were produced by machine M1, 30 percent by machine M2,
and 50 percent by machine M3. Suppose further that 1 percent of the items produced
by machine M1 are defective, that 2 percent of the items produced by machine M2
are defective, and that 3 percent of the items produced by machine M3 are defective.
Finally, suppose that one item is selected at random from the entire batch and it is
found to be defective. We shall determine the probability that this item was produced
by machine M2.

Let Bi be the event that the selected item was produced by machine Mi (i =
1, 2, 3), and let A be the event that the selected item is defective. We must evaluate
the conditional probability Pr(B2|A).

The probability Pr(Bi) that an item selected at random from the entire batch was
produced by machine Mi is as follows, for i = 1, 2, 3:

Pr(B1) = 0.2, Pr(B2) = 0.3, Pr(B3) = 0.5.

Furthermore, the probability Pr(A|Bi) that an item produced by machine Mi will be
defective is

Pr(A|B1) = 0.01, Pr(A|B2) = 0.02, Pr(A|B3) = 0.03.

It now follows from Bayes’ theorem that
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Pr(B2|A) = Pr(B2) Pr(A|B2)∑3
j=1 Pr(Bj) Pr(A|Bj)

= (0.3)(0.02)

(0.2)(0.01) + (0.3)(0.02) + (0.5)(0.03)
= 0.26. �

Example
2.3.5

Identifying Genotypes. Consider a gene that has two alleles (see Example 1.6.4 on
page 23) A and a. Suppose that the gene exhibits itself through a trait (such as
hair color or blood type) with two versions. We call A dominant and a recessive
if individuals with genotypes AA and Aa have the same version of the trait and
the individuals with genotype aa have the other version. The two versions of the
trait are called phenotypes. We shall call the phenotype exhibited by individuals
with genotypes AA and Aa the dominant trait, and the other trait will be called the
recessive trait. In population genetics studies, it is common to have information on the
phenotypes of individuals, but it is rather difficult to determine genotypes. However,
some information about genotypes can be obtained by observing phenotypes of
parents and children.

Assume that the allele A is dominant, that individuals mate independently of
genotype, and that the genotypes AA, Aa, and aa occur in the population with prob-
abilities 1/4, 1/2, and 1/4, respectively. We are going to observe an individual whose
parents are not available, and we shall observe the phenotype of this individual. Let
E be the event that the observed individual has the dominant trait. We would like
to revise our opinion of the possible genotypes of the parents. There are six possible
genotype combinations, B1, . . . , B6, for the parents prior to making any observations,
and these are listed in Table 2.2.

The probabilities of the Bi were computed using the assumption that the parents
mated independently of genotype. For example, B3 occurs if the father is AA and the
mother is aa (probability 1/16) or if the father is aa and the mother is AA (probability
1/16). The values of Pr(E|Bi) were computed assuming that the two available alleles
are passed from parents to children with probability 1/2 each and independently for
the two parents. For example, given B4, the event E occurs if and only if the child
does not get two a’s. The probability of getting a from both parents given B4 is 1/4,
so Pr(E|B4) = 3/4.

Now we shall compute Pr(B1|E) and Pr(B5|E). We leave the other calculations
to the reader. The denominator of Bayes’ theorem is the same for both calculations,
namely,

Pr(E) =
5∑

i=1

Pr(Bi) Pr(E|Bi)

= 1
16

× 1 + 1
4

× 1 + 1
8

× 1 + 1
4

× 3
4

+ 1
4

× 1
2

+ 1
16

× 0 = 3
4
.

Table 2.2 Parental genotypes for Example 2.3.5

(AA, AA) (AA, Aa) (AA, aa) (Aa, Aa) (Aa, aa) (aa, aa)

Name of event B1 B2 B3 B4 B5 B6

Probability of Bi 1/16 1/4 1/8 1/4 1/4 1/16

Pr(E|Bi) 1 1 1 3/4 1/2 0
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Applying Bayes’ theorem, we get

Pr(B1|E) =
1

16 × 1
3
4

= 1
12

, Pr(B5|E) =
1
4 × 1

2
3
4

= 1
6
. �

Note: Conditional Version of Bayes’ Theorem. There is also a version of Bayes’
theorem conditional on an event C:

Pr(Bi|A ∩ C) = Pr(Bi|C) Pr(A|Bi ∩ C)∑k
j=1 Pr(Bj |C) Pr(A|Bj ∩ C)

. (2.3.2)

Prior and Posterior Probabilities

In Example 2.3.4, a probability like Pr(B2) is often called the prior probability that
the selected item will have been produced by machine M2, because Pr(B2) is the
probability of this event before the item is selected and before it is known whether
the selected item is defective or nondefective. A probability like Pr(B2|A) is then
called the posterior probability that the selected item was produced by machine M2,
because it is the probability of this event after it is known that the selected item is
defective.

Thus, in Example 2.3.4, the prior probability that the selected item will have been
produced by machine M2 is 0.3. After an item has been selected and has been found
to be defective, the posterior probability that the item was produced by machine
M2 is 0.26. Since this posterior probability is smaller than the prior probability that
the item was produced by machine M2, the posterior probability that the item was
produced by one of the other machines must be larger than the prior probability that
it was produced by one of those machines (see Exercises 1 and 2 at the end of this
section).

Computation of Posterior Probabilities in More Than One Stage

Suppose that a box contains one fair coin and one coin with a head on each side.
Suppose also that one coin is selected at random and that when it is tossed, a head is
obtained. We shall determine the probability that the coin is the fair coin.

Let B1 be the event that the coin is fair, let B2 be the event that the coin has two
heads, and let H1 be the event that a head is obtained when the coin is tossed. Then,
by Bayes’ theorem,

Pr(B1|H1) = Pr(B1) Pr(H1|B1)

Pr(B1) Pr(H1|B1) + Pr(B2) Pr(H1|B2)

= (1/2)(1/2)

(1/2)(1/2) + (1/2)(1)
= 1

3
. (2.3.3)

Thus, after the first toss, the posterior probability that the coin is fair is 1/3.
Now suppose that the same coin is tossed again and we assume that the two

tosses are conditionally independent given both B1 and B2. Suppose that another
head is obtained. There are two ways of determining the new value of the posterior
probability that the coin is fair.

The first way is to return to the beginning of the experiment and assume again
that the prior probabilities are Pr(B1) = Pr(B2) = 1/2. We shall let H1 ∩ H2 denote the
event in which heads are obtained on two tosses of the coin, and we shall calculate the
posterior probability Pr(B1|H1 ∩ H2) that the coin is fair after we have observed the
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event H1 ∩ H2. The assumption that the tosses are conditionally independent given
B1 means that Pr(H1 ∩ H2|B1) = 1/2 × 1/2 = 1/4. By Bayes’ theorem,

Pr(B1|H1 ∩ H2) = Pr(B1) Pr(H1 ∩ H2|B1)

Pr(B1) Pr(H1 ∩ H2|B1) + Pr(B2) Pr(H1 ∩ H2|B2)

= (1/2)(1/4)

(1/2)(1/4) + (1/2)(1)
= 1

5
. (2.3.4)

The second way of determining this same posterior probability is to use the
conditional version of Bayes’ theorem (2.3.2) given the event H1. Given H1, the
conditional probability of B1 is 1/3, and the conditional probability of B2 is therefore
2/3. These conditional probabilities can now serve as the prior probabilities for the
next stage of the experiment, in which the coin is tossed a second time. Thus, we
can apply (2.3.2) with C = H1, Pr(B1|H1) = 1/3, and Pr(B2|H1) = 2/3. We can then
compute the posterior probability Pr(B1|H1 ∩ H2) that the coin is fair after we have
observed a head on the second toss and a head on the first toss. We shall need
Pr(H2|B1 ∩ H1), which equals Pr(H2|B1) = 1/2 by Theorem 2.2.4 since H1 and H2 are
conditionally independent given B1. Since the coin is two-headed when B2 occurs,
Pr(H2|B2 ∩ H1) = 1. So we obtain

Pr(B1|H1 ∩ H2) = Pr(B1|H1) Pr(H2|B1 ∩ H1)

Pr(B1|H1) Pr(H2|B1 ∩ H1) + Pr(B2|H1) Pr(H2|B2 ∩ H1)

= (1/3)(1/2)

(1/3)(1/2) + (2/3)(1)
= 1

5
. (2.3.5)

The posterior probability of the event B1 obtained in the second way is the same
as that obtained in the first way. We can make the following general statement: If an
experiment is carried out in more than one stage, then the posterior probability of
every event can also be calculated in more than one stage. After each stage has been
carried out, the posterior probability calculated for the event after that stage serves
as the prior probability for the next stage. The reader should look back at (2.3.2)
to see that this interpretation is precisely what the conditional version of Bayes’
theorem says. The example we have been doing with coin tossing is typical of many
applications of Bayes’ theorem and its conditional version because we are assuming
that the observable events are conditionally independent given each element of the
partition B1, . . . , Bk (in this case, k = 2). The conditional independence makes the
probability of Hi (head on ith toss) given B1 (or given B2) the same whether or not
we also condition on earlier tosses (see Theorem 2.2.4).

Conditionally Independent Events

The calculations that led to (2.3.3) and (2.3.5) together with Example 2.2.10 illustrate
simple cases of a very powerful statistical model for observable events. It is very
common to encounter a sequence of events that we believe are similar in that they
all have the same probability of occurring. It is also common that the order in which
the events are labeled does not affect the probabilities that we assign. However,
we often believe that these events are not independent, because, if we were to
observe some of them, we would change our minds about the probability of the
ones we had not observed depending on how many of the observed events occur.
For example, in the coin-tossing calculation leading up to Eq. (2.3.3), before any
tosses occur, the probability of H2 is the same as the probability of H1, namely, the
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denominator of (2.3.3), 3/4, as Theorem 2.1.4 says. However, after observing that
the event H1 occurs, the probability of H2 is Pr(H2|H1), which is the denominator of
(2.3.5), 5/6, as computed by the conditional version of the law of total probability
(2.1.5). Even though we might treat the coin tosses as independent conditional
on the coin being fair, and we might treat them as independent conditional on
the coin being two-headed (in which case we know what will happen every time
anyway), we cannot treat them as independent without the conditioning information.
The conditioning information removes an important source of uncertainty from
the problem, so we partition the sample space accordingly. Now we can use the
conditional independence of the tosses to calculate joint probabilities of various
combinations of events conditionally on the partition events. Finally, we can combine
these probabilities using Theorem 2.1.4 and (2.1.5). Two more examples will help to
illustrate these ideas.

Example
2.3.6

Learning about a Proportion. In Example 2.2.10 on page 72, a machine produced
defective parts in one of two proportions, p = 0.01 or p = 0.4. Suppose that the prior
probability that p = 0.01 is 0.9. After sampling six parts at random, suppose that we
observe two defectives. What is the posterior probability that p = 0.01?

Let B1 = {p = 0.01} and B2 = {p = 0.4} as in Example 2.2.10. Let A be the event
that two defectives occur in a random sample of size six. The prior probability of
B1 is 0.9, and the prior probability of B2 is 0.1. We already computed Pr(A|B1) =
1.44 × 10−3 and Pr(A|B2) = 0.311 in Example 2.2.10. Bayes’ theorem tells us that

Pr(B1|A) = 0.9 × 1.44 × 10−3

0.9 × 1.44 × 10−3 + 0.1 × 0.311
= 0.04.

Even though we thought originally that B1 had probability as high as 0.9, after we
learned that there were two defective items in a sample as small as six, we changed
our minds dramatically and now we believe that B1 has probability as small as 0.04.
The reason for this major change is that the event A that occurred has much higher
probability if B2 is true than if B1 is true. �

Example
2.3.7

A Clinical Trial. Consider the same clinical trial described in Examples 2.1.12 and
2.1.13. Let Ei be the event that the ith patient has success as her outcome. Recall
that Bj is the event that p = (j − 1)/10 for j = 1, . . . , 11, where p is the proportion
of successes among all possible patients. If we knew which Bj occurred, we would
say that E1, E2, . . . were independent. That is, we are willing to model the patients
as conditionally independent given each event Bj , and we set Pr(Ei|Bj) = (j − 1)/10
for all i, j . We shall still assume that Pr(Bj) = 1/11 for all j prior to the start of the
trial. We are now in position to express what we learn about p by computing posterior
probabilities for the Bj events after each patient finishes the trial.

For example, consider the first patient. We calculated Pr(E1) = 1/2 in (2.1.6). If
E1 occurs, we apply Bayes’ theorem to get

Pr(Bj |E1) = Pr(E1|Bj) Pr(Bj)

1/2
= 2(j − 1)

10 × 11
= j − 1

55
. (2.3.6)

After observing one success, the posterior probabilities of large values of p are higher
than their prior probabilities and the posterior probabilities of low values of p are
lower than their prior probabilities as we would expect. For example, Pr(B1|E1) = 0,
because p = 0 is ruled out after one success. Also, Pr(B2|E1) = 0.0182, which is much
smaller than its prior value 0.0909, and Pr(B11|E1) = 0.1818, which is larger than its
prior value 0.0909.
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Figure 2.3 The posterior probabilities of partition
elements after 40 patients in Example 2.3.7.

We could check how the posterior probabilities behave after each patient is
observed. However, we shall skip ahead to the point at which all 40 patients in the
imipramine column of Table 2.1 have been observed. Let A stand for the observed
event that 22 of them are successes and 18 are failures. We can use the same reasoning
as in Example 2.2.5 to compute Pr(A|Bj). There are

(40
22

)
possible sequences of 40

patients with 22 successes, and, conditional on Bj , the probability of each sequence
is ([j − 1]/10)22(1 − [j − 1]/10)18.

So,

Pr(A|Bj) =
(

40
22

)
([j − 1]/10)22(1 − [j − 1]/10)18, (2.3.7)

for each j . Then Bayes’ theorem tells us that

Pr(Bj |A) =
1
11

(40
22

)
([j − 1]/10)22(1 − [j − 1]/10)18∑11

i=1
1
11

(40
22

)
([i − 1]/10)22(1 − [i − 1]/10)18

.

Figure 2.3 shows the posterior probabilities of the 11 partition elements after observ-
ing A. Notice that the probabilities of B6 and B7 are the highest, 0.42. This corresponds
to the fact that the proportion of successes in the observed sample is 22/40 = 0.55,
halfway between (6 − 1)/10 and (7 − 1)/10.

We can also compute the probability that the next patient will be a success both
before the trial and after the 40 patients. Before the trial, Pr(E41) = Pr(E1), which
equals 1/2, as computed in (2.1.6). After observing the 40 patients, we can compute
Pr(E41|A) using the conditional version of the law of total probability, (2.1.5):

Pr(E41|A) =
11∑

j=1

Pr(E41|Bj ∩ A) Pr(Bj |A). (2.3.8)

Using the values of Pr(Bj |A) in Fig. 2.3 and the fact that Pr(E41|Bj ∩ A) = Pr(E41|Bj)

= (j − 1)/10 (conditional independence of the Ei given the Bj), we compute (2.3.8)
to be 0.5476. This is also very close to the observed frequency of success. �

The calculation at the end of Example 2.3.7 is typical of what happens after ob-
serving many conditionally independent events with the same conditional probability
of occurrence. The conditional probability of the next event given those that were
observed tends to be close to the observed frequency of occurrence among the ob-
served events. Indeed, when there is substantial data, the choice of prior probabilities
becomes far less important.
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Figure 2.4 The posterior probabilities of partition
elements after 40 patients in Example 2.3.8. The X
characters mark the values of the posterior probabilities
calculated in Example 2.3.7.

Example
2.3.8

The Effect of Prior Probabilities. Consider the same clinical trial as in Example 2.3.7.
This time, suppose that a different researcher has a different prior opinion about the
value of p, the probability of success. This researcher believes the following prior
probabilities:

Event B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Prior prob. 0.00 0.19 0.19 0.17 0.14 0.11 0.09 0.06 0.04 0.01 0.00

We can recalculate the posterior probabilities using Bayes’ theorem, and we get
the values pictured in Fig. 2.4. To aid comparison, the posterior probabilities from
Example 2.3.7 are also plotted in Fig. 2.4 using the symbol X. One can see how
close the two sets of posterior probabilities are despite the large differences between
the prior probabilities. If there had been fewer patients observed, there would have
been larger differences between the two sets of posterior probabilites because the
observed events would have provided less information. (See Exercise 12 in this
section.) �

Summary

Bayes’ theorem tells us how to compute the conditional probability of each event in a
partition given an observed event A. A major use of partitions is to divide the sample
space into small enough pieces so that a collection of events of interest become
conditionally independent given each event in the partition.

Exercises

1. Suppose that k events B1, . . . , Bk form a partition of
the sample space S. For i = 1, . . . , k, let Pr(Bi) denote the
prior probability of Bi. Also, for each event A such that
Pr(A) > 0, let Pr(Bi|A) denote the posterior probability

of Bi given that the event A has occurred. Prove that if
Pr(B1|A) < Pr(B1), then Pr(Bi|A) > Pr(Bi) for at least one
value of i (i = 2, . . . , k).



2.3 Bayes’ Theorem 85

2. Consider again the conditions of Example 2.3.4 in this
section, in which an item was selected at random from
a batch of manufactured items and was found to be de-
fective. For which values of i (i = 1, 2, 3) is the posterior
probability that the item was produced by machine Mi

larger than the prior probability that the item was pro-
duced by machine Mi?

3. Suppose that in Example 2.3.4 in this section, the item
selected at random from the entire lot is found to be non-
defective. Determine the posterior probability that it was
produced by machine M2.

4. A new test has been devised for detecting a particular
type of cancer. If the test is applied to a person who has this
type of cancer, the probability that the person will have a
positive reaction is 0.95 and the probability that the person
will have a negative reaction is 0.05. If the test is applied to
a person who does not have this type of cancer, the prob-
ability that the person will have a positive reaction is 0.05
and the probability that the person will have a negative re-
action is 0.95. Suppose that in the general population, one
person out of every 100,000 people has this type of can-
cer. If a person selected at random has a positive reaction
to the test, what is the probability that he has this type of
cancer?

5. In a certain city, 30 percent of the people are Conser-
vatives, 50 percent are Liberals, and 20 percent are Inde-
pendents. Records show that in a particular election, 65
percent of the Conservatives voted, 82 percent of the Lib-
erals voted, and 50 percent of the Independents voted. If
a person in the city is selected at random and it is learned
that she did not vote in the last election, what is the prob-
ability that she is a Liberal?

6. Suppose that when a machine is adjusted properly, 50
percent of the items produced by it are of high quality
and the other 50 percent are of medium quality. Suppose,
however, that the machine is improperly adjusted during
10 percent of the time and that, under these conditions, 25
percent of the items produced by it are of high quality and
75 percent are of medium quality.

a. Suppose that five items produced by the machine at
a certain time are selected at random and inspected.
If four of these items are of high quality and one item
is of medium quality, what is the probability that the
machine was adjusted properly at that time?

b. Suppose that one additional item, which was pro-
duced by the machine at the same time as the other
five items, is selected and found to be of medium
quality. What is the new posterior probability that
the machine was adjusted properly?

7. Suppose that a box contains five coins and that for
each coin there is a different probability that a head will
be obtained when the coin is tossed. Let pi denote the
probability of a head when the ith coin is tossed (i =

1, . . . , 5), and suppose that p1 = 0, p2 = 1/4, p3 = 1/2,
p4 = 3/4, and p5 = 1.

a. Suppose that one coin is selected at random from the
box and when it is tossed once, a head is obtained.
What is the posterior probability that the ith coin was
selected (i = 1, . . . , 5)?

b. If the same coin were tossed again, what would be
the probability of obtaining another head?

c. If a tail had been obtained on the first toss of the
selected coin and the same coin were tossed again,
what would be the probability of obtaining a head
on the second toss?

8. Consider again the box containing the five different
coins described in Exercise 7. Suppose that one coin is
selected at random from the box and is tossed repeatedly
until a head is obtained.

a. If the first head is obtained on the fourth toss, what
is the posterior probability that the ith coin was se-
lected (i = 1, . . . , 5)?

b. If we continue to toss the same coin until another
head is obtained, what is the probability that exactly
three additional tosses will be required?

9. Consider again the conditions of Exercise 14 in Sec. 2.1.
Suppose that several parts will be observed and that the
different parts are conditionally independent given each
of the three states of repair of the machine. If seven parts
are observed and exactly one is defective, compute the
posterior probabilities of the three states of repair.

10. Consider again the conditions of Example 2.3.5, in
which the phenotype of an individual was observed and
found to be the dominant trait. For which values of i

(i = 1, . . . , 6) is the posterior probability that the parents
have the genotypes of event Bi smaller than the prior
probability that the parents have the genotyes of event
Bi?

11. Suppose that in Example 2.3.5 the observed individual
has the recessive trait. Determine the posterior probabil-
ity that the parents have the genotypes of event B4.

12. In the clinical trial in Examples 2.3.7 and 2.3.8, sup-
pose that we have only observed the first five patients and
three of the five had been successes. Use the two different
sets of prior probabilities from Examples 2.3.7 and 2.3.8
to calculate two sets of posterior probabilities. Are these
two sets of posterior probabilities as close to each other
as were the two in Examples 2.3.7 and 2.3.8? Why or why
not?

13. Suppose that a box contains one fair coin and one coin
with a head on each side. Suppose that a coin is drawn at
random from this box and that we begin to flip the coin.
In Eqs. (2.3.4) and (2.3.5), we computed the conditional
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probability that the coin was fair given that the first two
flips both produce heads.

a. Suppose that the coin is flipped a third time and
another head is obtained. Compute the probability
that the coin is fair given that all three flips produced
heads.

b. Suppose that the coin is flipped a fourth time and the
result is tails. Compute the posterior probability that
the coin is fair.

14. Consider again the conditions of Exercise 23 in Sec.
2.2. Assume that Pr(B) = 0.4. Let A be the event that ex-
actly 8 out of 11 programs compiled. Compute the condi-
tional probability of B given A.

15. Use the prior probabilities in Example 2.3.8 for the
events B1, . . . , B11. Let E1 be the event that the first pa-
tient is a success. Compute the probability of E1 and ex-
plain why it is so much less than the value computed in
Example 2.3.7.

16. Consider a machine that produces items in sequence.
Under normal operating conditions, the items are

independent with probability 0.01 of being defective.
However, it is possible for the machine to develop a
“memory” in the following sense: After each defective
item, and independent of anything that happened earlier,
the probability that the next item is defective is 2/5. Af-
ter each nondefective item, and independent of anything
that happened earlier, the probability that the next item
is defective is 1/165.

Assume that the machine is either operating normally
for the whole time we observe or has a memory for the
whole time that we observe. Let B be the event that the
machine is operating normally, and assume that Pr(B) =
2/3. Let Di be the event that the ith item inspected is
defective. Assume that D1 is independent of B.

a. Prove that Pr(Di) = 0.01 for all i. Hint: Use induc-
tion.

b. Assume that we observe the first six items and the
event that occurs is E = Dc

1 ∩ Dc
2 ∩ D3 ∩ D4 ∩ Dc

5 ∩
Dc

6. That is, the third and fourth items are defective,
but the other four are not. Compute Pr(B|D).

� 2.4 The Gambler’s Ruin Problem
Consider two gamblers with finite resources who repeatedly play the same game
against each other. Using the tools of conditional probability, we can calculate the
probability that each of the gamblers will eventually lose all of his money to the
opponent.

Statement of the Problem

Suppose that two gamblers A and B are playing a game against each other. Let p

be a given number (0 < p < 1), and suppose that on each play of the game, the
probability that gambler A will win one dollar from gambler B is p and the probability
that gambler B will win one dollar from gambler A is 1 − p. Suppose also that the
initial fortune of gambler A is i dollars and the initial fortune of gambler B is k − i

dollars, where i and k − i are given positive integers. Thus, the total fortune of the
two gamblers is k dollars. Finally, suppose that the gamblers play the game repeatedly
and independently until the fortune of one of them has been reduced to 0 dollars.
Another way to think about this problem is that B is a casino and A is a gambler who
is determined to quit as soon he wins k − i dollars from the casino or when he goes
broke, whichever comes first.

We shall now consider this game from the point of view of gambler A. His initial
fortune is i dollars and on each play of the game his fortune will either increase by one
dollar with a probability of p or decrease by one dollar with a probability of 1 − p.
If p > 1/2, the game is favorable to him; if p < 1/2, the game is unfavorable to him;
and if p = 1/2, the game is equally favorable to both gamblers. The game ends either
when the fortune of gambler A reaches k dollars, in which case gambler B will have
no money left, or when the fortune of gambler A reaches 0 dollars. The problem is to
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determine the probability that the fortune of gambler A will reach k dollars before
it reaches 0 dollars. Because one of the gamblers will have no money left at the end
of the game, this problem is called the Gambler’s Ruin problem.

Solution of the Problem

We shall continue to assume that the total fortune of the gamblers A and B is k dollars,
and we shall let ai denote the probability that the fortune of gambler A will reach k

dollars before it reaches 0 dollars, given that his initial fortune is i dollars. We assume
that the game is the same each time it is played and the plays are independent of each
other. It follows that, after each play, the Gambler’s Ruin problem essentially starts
over with the only change being that the initial fortunes of the two gamblers have
changed. In particular, for each j = 0, . . . , k, each time that we observe a sequence
of plays that lead to gambler A’s fortune being j dollars, the conditional probability,
given such a sequence, that gambler A wins is aj . If gambler A’s fortune ever reaches
0, then gambler A is ruined, hence a0 = 0. Similarly, if his fortune ever reaches k,
then gambler A has won, hence ak = 1. We shall now determine the value of ai for
i = 1, . . . , k − 1.

Let A1 denote the event that gambler A wins one dollar on the first play of the
game, let B1 denote the event that gambler A loses one dollar on the first play of the
game, and let W denote the event that the fortune of gambler A ultimately reaches
k dollars before it reaches 0 dollars. Then

Pr(W) = Pr(A1) Pr(W |A1) + Pr(B1) Pr(W |B1)

= pPr(W |A1) + (1 − p)Pr(W |B1). (2.4.1)

Since the initial fortune of gambler A is i dollars (i = 1, . . . , k − 1), then Pr(W) = ai.
Furthermore, if gambler A wins one dollar on the first play of the game, then his
fortune becomes i + 1 dollars and the conditional probability Pr(W |A1) that his
fortune will ultimately reach k dollars is therefore ai+1. If A loses one dollar on the
first play of the game, then his fortune becomes i − 1 dollars and the conditional
probability Pr(W |B1) that his fortune will ultimately reach k dollars is therefore ai−1.
Hence, by Eq. (2.4.1),

ai = pai+1 + (1 − p)ai−1. (2.4.2)

We shall let i = 1, . . . , k − 1 in Eq. (2.4.2). Then, since a0 = 0 and ak = 1, we
obtain the following k − 1 equations:

a1 =pa2,

a2 =pa3 + (1 − p)a1,

a3 =pa4 + (1 − p)a2,

...
ak−2 =pak−1 + (1 − p)ak−3,

ak−1 =p + (1 − p)ak−2.

(2.4.3)

If the value of ai on the left side of the ith equation is rewritten in the form pai +
(1 − p)ai and some elementary algebra is performed, then these k − 1 equations can
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be rewritten as follows:

a2 − a1 = 1 − p

p
a1,

a3 − a2 = 1 − p

p
(a2 − a1) =

(
1 − p

p

)2

a1,

a4 − a3 = 1 − p

p
(a3 − a2) =

(
1 − p

p

)3

a1,

...

ak−1 − ak−2 = 1 − p

p
(ak−2 − ak−3) =

(
1 − p

p

)k−2

a1,

1 − ak−1 = 1 − p

p
(ak−1 − ak−2) =

(
1 − p

p

)k−1

a1.

(2.4.4)

By equating the sum of the left sides of these k − 1 equations with the sum of the
right sides, we obtain the relation

1 − a1 = a1

k−1∑
i=1

(
1 − p

p

)i

. (2.4.5)

Solution for a Fair Game Suppose first that p = 1/2. Then (1 − p)/p = 1, and it
follows from Eq. (2.4.5) that 1 − a1 = (k − 1)a1, from which a1 = 1/k. In turn, it follows
from the first equation in (2.4.4) that a2 = 2/k, it follows from the second equation in
(2.4.4) that a3 = 3/k, and so on. In this way, we obtain the following complete solution
when p = 1/2:

ai = i

k
for i = 1, . . . , k − 1. (2.4.6)

Example
2.4.1

The Probability of Winning in a Fair Game. Suppose that p = 1/2, in which case the
game is equally favorable to both gamblers; and suppose that the initial fortune of
gambler A is 98 dollars and the initial fortune of gambler B is just two dollars. In
this example, i = 98 and k = 100. Therefore, it follows from Eq. (2.4.6) that there
is a probability of 0.98 that gambler A will win two dollars from gambler B before
gambler B wins 98 dollars from gambler A. �

Solution for an Unfair Game Suppose now that p 	= 1/2. Then Eq. (2.4.5) can be
rewritten in the form

1 − a1 = a1

(
1 − p

p

)k

−
(

1 − p
p

)
(

1 − p
p

)
− 1

. (2.4.7)

Hence,

a1 =

(
1 − p

p

)
− 1(

1 − p
p

)k

− 1

. (2.4.8)
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Each of the other values of ai for i = 2, . . . , k − 1 can now be determined in turn
from the equations in (2.4.4). In this way, we obtain the following complete solution:

ai =

(
1 − p

p

)i

− 1(
1 − p

p

)k

− 1

for i = 1, . . . , k − 1. (2.4.9)

Example
2.4.2

The Probability of Winning in an Unfavorable Game. Suppose that p = 0.4, in which
case the probability that gambler A will win one dollar on any given play is smaller
than the probability that he will lose one dollar. Suppose also that the initial fortune
of gambler A is 99 dollars and the initial fortune of gambler B is just one dollar. We
shall determine the probability that gambler A will win one dollar from gambler B

before gambler B wins 99 dollars from gambler A.
In this example, the required probability ai is given by Eq. (2.4.9), in which

(1 − p)/p = 3/2, i = 99, and k = 100. Therefore,

ai =
(

3
2

)99 − 1(
3
2

)100 − 1
≈ 1

3/2
= 2

3
.

Hence, although the probability that gambler A will win one dollar on any given play
is only 0.4, the probability that he will win one dollar before he loses 99 dollars is
approximately 2/3. �

Summary

We considered a gambler and an opponent who each start with finite amounts of
money. The two then play a sequence of games against each other until one of them
runs out of money. We were able to calculate the probability that each of them would
be the first to run out as a function of the probability of winning the game and of how
much money each has at the start.

Exercises

1. Consider the unfavorable game in Example 2.4.2. This
time, suppose that the initial fortune of gambler A is i

dollars with i ≤ 98. Suppose that the initial fortune of
gambler B is 100 − i dollars. Show that the probability
is greater than 1/2 that gambler A losses i dollars before
winning 100 − i dollars.

2. Consider the following three different possible condi-
tions in the gambler’s ruin problem:

a. The initial fortune of gambler A is two dollars, and
the initial fortune of gambler B is one dollar.

b. The initial fortune of gambler A is 20 dollars, and the
initial fortune of gambler B is 10 dollars.

c. The initial fortune of gambler A is 200 dollars, and
the initial fortune of gambler B is 100 dollars.

Suppose that p = 1/2. For which of these three condi-
tions is there the greatest probability that gambler A will
win the initial fortune of gambler B before he loses his
own initial fortune?

3. Consider again the three different conditions (a), (b),
and (c) given in Exercise 2, but suppose now that p < 1/2.
For which of these three conditions is there the greatest
probability that gambler A will win the initial fortune of
gambler B before he loses his own initial fortune?

4. Consider again the three different conditions (a), (b),
and (c) given in Exercise 2, but suppose now that p > 1/2.
For which of these three conditions is there the greatest
probability that gambler A will win the initial fortune of
gambler B before he loses his own initial fortune?



90 Chapter 2 Conditional Probability

5. Suppose that on each play of a certain game, a person is
equally likely to win one dollar or lose one dollar. Suppose
also that the person’s goal is to win two dollars by playing
this game. How large an initial fortune must the person
have in order for the probability to be at least 0.99 that she
will achieve her goal before she loses her initial fortune?

6. Suppose that on each play of a certain game, a person
will either win one dollar with probability 2/3 or lose one
dollar with probability 1/3. Suppose also that the person’s
goal is to win two dollars by playing this game. How large
an initial fortune must the person have in order for the
probability to be at least 0.99 that he will achieve his goal
before he loses his initial fortune?

7. Suppose that on each play of a certain game, a person
will either win one dollar with probability 1/3 or lose one
dollar with probability 2/3. Suppose also that the person’s
goal is to win two dollars by playing this game. Show that
no matter how large the person’s initial fortune might be,

the probability that she will achieve her goal before she
loses her initial fortune is less than 1/4.

8. Suppose that the probability of a head on any toss of
a certain coin is p (0 < p < 1), and suppose that the coin
is tossed repeatedly. Let Xn denote the total number of
heads that have been obtained on the first n tosses, and
let Yn = n − Xn denote the total number of tails on the
first n tosses. Suppose that the tosses are stopped as soon
as a number n is reached such that either Xn = Yn + 3 or
Yn = Xn + 3. Determine the probability that Xn = Yn + 3
when the tosses are stopped.

9. Suppose that a certain box A contains five balls and an-
other box B contains 10 balls. One of these two boxes is
selected at random, and one ball from the selected box is
transferred to the other box. If this process of selecting a
box at random and transferring one ball from that box to
the other box is repeated indefinitely, what is the probabil-
ity that box A will become empty before box B becomes
empty?

2.5 Supplementary Exercises
1. Suppose that A, B, and D are any three events such that
Pr(A|D) ≥ Pr(B|D) and Pr(A|Dc) ≥ Pr(B|Dc). Prove that
Pr(A) ≥ Pr(B).

2. Suppose that a fair coin is tossed repeatedly and inde-
pendently until both a head and a tail have appeared at
least once. (a) Describe the sample space of this experi-
ment. (b) What is the probability that exactly three tosses
will be required?

3. Suppose that A and B are events such that Pr(A) =
1/3, Pr(B) = 1/5, and Pr(A|B) + Pr(B|A) = 2/3. Evaluate
Pr(Ac ∪ Bc).

4. Suppose that A and B are independent events such that
Pr(A) = 1/3 and Pr(B) > 0. What is the value of Pr(A ∪
Bc|B)?

5. Suppose that in 10 rolls of a balanced die, the number 6
appeared exactly three times. What is the probability that
the first three rolls each yielded the number 6?

6. Suppose that A, B, and D are events such that A and
B are independent, Pr(A ∩ B ∩ D) = 0.04, Pr(D|A ∩ B) =
0.25, and Pr(B) = 4 Pr(A). Evaluate Pr(A ∪ B).

7. Suppose that the events A, B, and C are mutually in-
dependent. Under what conditions are Ac, Bc, and Cc

mutually independent?

8. Suppose that the events A and B are disjoint and that
each has positive probability. Are A and B independent?

9. Suppose that A, B, and C are three events such that A

and B are disjoint, A and C are independent, and B and

C are independent. Suppose also that 4Pr(A) = 2Pr(B) =
Pr(C) > 0 and Pr(A ∪ B ∪ C) = 5Pr(A). Determine the
value of Pr(A).

10. Suppose that each of two dice is loaded so that when
either die is rolled, the probability that the number k will
appear is 0.1 for k = 1, 2, 5, or 6 and is 0.3 for k = 3 or 4. If
the two loaded dice are rolled independently, what is the
probability that the sum of the two numbers that appear
will be 7?

11. Suppose that there is a probability of 1/50 that you
will win a certain game. If you play the game 50 times,
independently, what is the probability that you will win at
least once?

12. Suppose that a balanced die is rolled three times, and
let Xi denote the number that appears on the ith roll
(i = 1, 2, 3). Evaluate Pr(X1 > X2 > X3).

13. Three students A, B, and C are enrolled in the same
class. Suppose that A attends class 30 percent of the time,
B attends class 50 percent of the time, and C attends
class 80 percent of the time. If these students attend class
independently of each other, what is (a) the probability
that at least one of them will be in class on a particular
day and (b) the probability that exactly one of them will
be in class on a particular day?

14. Consider the World Series of baseball, as described in
Exercise 16 of Sec. 2.2. If there is probability p that team
A will win any particular game, what is the probability
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that it will be necessary to play seven games in order to
determine the winner of the Series?

15. Suppose that three red balls and three white balls are
thrown at random into three boxes and and that all throws
are independent. What is the probability that each box
contains one red ball and one white ball?

16. If five balls are thrown at random into n boxes, and all
throws are independent, what is the probability that no
box contains more than two balls?

17. Bus tickets in a certain city contain four numbers, U ,
V , W , and X. Each of these numbers is equally likely to
be any of the 10 digits 0, 1, . . . , 9, and the four numbers
are chosen independently. A bus rider is said to be lucky if
U + V = W + X. What proportion of the riders are lucky?

18. A certain group has eight members. In January, three
members are selected at random to serve on a commit-
tee. In February, four members are selected at random
and independently of the first selection to serve on an-
other committee. In March, five members are selected at
random and independently of the previous two selections
to serve on a third committee. Determine the probability
that each of the eight members serves on at least one of
the three committees.

19. For the conditions of Exercise 18, determine the prob-
ability that two particular members A and B will serve
together on at least one of the three committees.

20. Suppose that two players A and B take turns rolling a
pair of balanced dice and that the winner is the first player
who obtains the sum of 7 on a given roll of the two dice.
If A rolls first, what is the probability that B will win?

21. Three players A, B, and C take turns tossing a fair
coin. Suppose that A tosses the coin first, B tosses second,
and C tosses third; and suppose that this cycle is repeated
indefinitely until someone wins by being the first player
to obtain a head. Determine the probability that each of
three players will win.

22. Suppose that a balanced die is rolled repeatedly until
the same number appears on two successive rolls, and let
X denote the number of rolls that are required. Determine
the value of Pr(X = x), for x = 2, 3, . . . .

23. Suppose that 80 percent of all statisticians are shy,
whereas only 15 percent of all economists are shy. Suppose
also that 90 percent of the people at a large gathering are
economists and the other 10 percent are statisticians. If
you meet a shy person at random at the gathering, what is
the probability that the person is a statistician?

24. Dreamboat cars are produced at three different fac-
tories A, B, and C. Factory A produces 20 percent of the
total output of Dreamboats, B produces 50 percent, and
C produces 30 percent. However, 5 percent of the cars
produced at A are lemons, 2 percent of those produced

at B are lemons, and 10 percent of those produced at C

are lemons. If you buy a Dreamboat and it turns out to be
a lemon, what is the probability that it was produced at
factory A?

25. Suppose that 30 percent of the bottles produced in
a certain plant are defective. If a bottle is defective, the
probability is 0.9 that an inspector will notice it and re-
move it from the filling line. If a bottle is not defective,
the probability is 0.2 that the inspector will think that it is
defective and remove it from the filling line.

a. If a bottle is removed from the filling line, what is the
probability that it is defective?

b. If a customer buys a bottle that has not been removed
from the filling line, what is the probability that it is
defective?

26. Suppose that a fair coin is tossed until a head is ob-
tained and that this entire experiment is then performed
independently a second time. What is the probability that
the second experiment requires more tosses than the first
experiment?

27. Suppose that a family has exactly n children (n ≥ 2).
Assume that the probability that any child will be a girl
is 1/2 and that all births are independent. Given that the
family has at least one girl, determine the probability that
the family has at least one boy.

28. Suppose that a fair coin is tossed independently n

times. Determine the probability of obtaining exactly n −
1 heads, given (a) that at least n − 2 heads are obtained
and (b) that heads are obtained on the first n − 2 tosses.

29. Suppose that 13 cards are selected at random from a
regular deck of 52 playing cards.

a. If it is known that at least one ace has been selected,
what is the probability that at least two aces have
been selected?

b. If it is known that the ace of hearts has been selected,
what is the probability that at least two aces have
been selected?

30. Suppose that n letters are placed at random in n en-
velopes, as in the matching problem of Sec. 1.10, and let qn

denote the probability that no letter is placed in the cor-
rect envelope. Show that the probability that exactly one
letter is placed in the correct envelope is qn−1.

31. Consider again the conditions of Exercise 30. Show
that the probability that exactly two letters are placed in
the correct envelopes is (1/2)qn−2.

32. Consider again the conditions of Exercise 7 of Sec. 2.2.
If exactly one of the two students A and B is in class on a
given day, what is the probability that it is A?

33. Consider again the conditions of Exercise 2 of Sec.
1.10. If a family selected at random from the city
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subscribes to exactly one of the three newspapers A, B,
and C, what is the probability that it is A?

34. Three prisoners A, B, and C on death row know that
exactly two of them are going to be executed, but they do
not know which two. Prisoner A knows that the jailer will
not tell him whether or not he is going to be executed. He
therefore asks the jailer to tell him the name of one pris-
oner other than A himself who will be executed. The jailer
responds that B will be executed. Upon receiving this re-
sponse, Prisoner A reasons as follows: Before he spoke to
the jailer, the probability was 2/3 that he would be one of
the two prisoners executed. After speaking to the jailer,
he knows that either he or prisoner C will be the other
one to be executed. Hence, the probability that he will be
executed is now only 1/2. Thus, merely by asking the jailer
his question, the prisoner reduced the probability that he
would be executed from 2/3 to 1/2, because he could go
through exactly this same reasoning regardless of which
answer the jailer gave. Discuss what is wrong with prisoner
A’s reasoning.

35. Suppose that each of two gamblers A and B has an
initial fortune of 50 dollars, and that there is probability
p that gambler A will win on any single play of a game
against gambler B. Also, suppose either that one gambler
can win one dollar from the other on each play of the game
or that they can double the stakes and one can win two
dollars from the other on each play of the game. Under
which of these two conditions does A have the greater
probability of winning the initial fortune of B before losing
her own for each of the following conditions: (a) p < 1/2;
(b) p > 1/2; (c) p = 1/2?

36. A sequence of n job candidates is prepared to inter-
view for a job. We would like to hire the best candidate,
but we have no information to distinguish the candidates

before we interview them. We assume that the best candi-
date is equally likely to be each of the n candidates in the
sequence before the interviews start. After the interviews
start, we are able to rank those candidates we have seen,
but we have no information about where the remaining
candidates rank relative to those we have seen. After each
interview, it is required that either we hire the current can-
didate immediately and stop the interviews, or we must let
the current candidate go and we never can call them back.
We choose to interview as follows: We select a number
0 ≤ r < n and we interview the first r candidates without
any intention of hiring them. Starting with the next can-
didate r + 1, we continue interviewing until the current
candidate is the best we have seen so far. We then stop
and hire the current candidate. If none of the candidates
from r + 1 to n is the best, we just hire candidate n. We
would like to compute the probability that we hire the best
candidate and we would like to choose r to make this prob-
ability as large as possible. Let A be the event that we hire
the best candidate, and let Bi be the event that the best
candidate is in position i in the sequence of interviews.

a. Let i > r . Find the probability that the candidate who
is relatively the best among the first i interviewed
appears in the first r interviews.

b. Prove that Pr(A|Bi) = 0 for i ≤ r and Pr(A|Bi) =
r/(i − 1) for i > r .

c. For fixed r , let pr be the probability of A using that
value of r . Prove that pr = (r/n)

∑n
i=r+1(i − 1)−1.

d. Let qr = pr − pr−1 for r = 1, . . . , n − 1, and prove
that qr is a strictly decreasing function of r .

e. Show that a value of r that maximizes pr is the last r

such that qr > 0. (Hint: Write pr = p0 + q1 + . . . + qr

for r > 0.)

f. For n = 10, find the value of r that maximizes pr , and
find the corresponding pr value.
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3.1 Random Variables and Discrete Distributions
A random variable is a real-valued function defined on a sample space. Random
variables are the main tools used for modeling unknown quantities in statistical
analyses. For each random variable X and each set C of real numbers, we could
calculate the probability that X takes its value in C. The collection of all of these
probabilities is the distribution of X. There are two major classes of distributions
and random variables: discrete (this section) and continuous (Sec. 3.2). Discrete
distributions are those that assign positive probability to at most countably many
different values. A discrete distribution can be characterized by its probability
function (p.f.), which specifies the probability that the random variable takes each
of the different possible values. A random variable with a discrete distribution will
be called a discrete random variable.

Definition of a Random Variable

Example
3.1.1

Tossing a Coin. Consider an experiment in which a fair coin is tossed 10 times. In this
experiment, the sample space S can be regarded as the set of outcomes consisting of
the 210 different sequences of 10 heads and/or tails that are possible. We might be
interested in the number of heads in the observed outcome. We can let X stand for the
real-valued function defined on S that counts the number of heads in each outcome.
For example, if s is the sequence HHTTTHTTTH, then X(s) = 4. For each possible
sequence s consisting of 10 heads and/or tails, the value X(s) equals the number of
heads in the sequence. The possible values for the function X are 0, 1, . . . , 10. �

Definition
3.1.1

Random Variable. Let S be the sample space for an experiment. A real-valued func-
tion that is defined on S is called a random variable.

For example, in Example 3.1.1, the number X of heads in the 10 tosses is a random
variable. Another random variable in that example is Y = 10 − X, the number of
tails.

93
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Figure 3.1 The event that
at least one utility demand is
high in Example 3.1.3.
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Example
3.1.2

Measuring a Person’s Height. Consider an experiment in which a person is selected at
random from some population and her height in inches is measured. This height is a
random variable. �

Example
3.1.3

Demands for Utilities. Consider the contractor in Example 1.5.4 on page 19 who is
concerned about the demands for water and electricity in a new office complex. The
sample space was pictured in Fig. 1.5 on page 12, and it consists of a collection of
points of the form (x, y), where x is the demand for water and y is the demand
for electricity. That is, each point s ∈ S is a pair s = (x, y). One random variable
that is of interest in this problem is the demand for water. This can be expressed
as X(s) = x when s = (x, y). The possible values of X are the numbers in the interval
[4, 200]. Another interesting random variable is Y , equal to the electricity demand,
which can be expressed as Y (s) = y when s = (x, y). The possible values of Y are the
numbers in the interval [1, 150]. A third possible random variable Z is an indicator of
whether or not at least one demand is high. Let A and B be the two events described
in Example 1.5.4. That is, A is the event that water demand is at least 100, and B is
the event that electric demand is at least 115. Define

Z(s) =
{

1 if s ∈ A ∪ B,
0 if s 	∈ A ∪ B.

The possible values of Z are the numbers 0 and 1. The event A ∪ B is indicated in
Fig. 3.1. �

The Distribution of a Random Variable

When a probability measure has been specified on the sample space of an experiment,
we can determine probabilities associated with the possible values of each random
variable X. Let C be a subset of the real line such that {X ∈ C} is an event, and let
Pr(X ∈ C) denote the probability that the value of X will belong to the subset C.
Then Pr(X ∈ C) is equal to the probability that the outcome s of the experiment will
be such that X(s) ∈ C. In symbols,

Pr(X ∈ C) = Pr({s: X(s) ∈ C}). (3.1.1)

Definition
3.1.2

Distribution. Let X be a random variable. The distribution of X is the collection of all
probabilities of the form Pr(X ∈ C) for all sets C of real numbers such that {X ∈ C}
is an event.

It is a straightforward consequence of the definition of the distribution of X that
this distribution is itself a probability measure on the set of real numbers. The set
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Figure 3.2 The event that
water demand is between 50
and 175 in Example 3.1.5.
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{X ∈ C} will be an event for every set C of real numbers that most readers will be
able to imagine.

Example
3.1.4

Tossing a Coin. Consider again an experiment in which a fair coin is tossed 10 times,
and let X be the number of heads that are obtained. In this experiment, the possible
values of X are 0, 1, 2, . . . , 10. For each x, Pr(X = x) is the sum of the probabilities
of all of the outcomes in the event {X = x}. Because the coin is fair, each outcome
has the same probability 1/210, and we need only count how many outcomes s have
X(s) = x. We know that X(s) = x if and only if exactly x of the 10 tosses are H. Hence,
the number of outcomes s with X(s) = x is the same as the number of subsets of size
x (to be the heads) that can be chosen from the 10 tosses, namely,

(10
x

)
, according to

Definitions 1.8.1 and 1.8.2. Hence,

Pr(X = x) =
(

10
x

)
1

210
for x = 0, 1, 2, . . . , 10. �

Example
3.1.5

Demands for Utilities. In Example 1.5.4, we actually calculated some features of the
distributions of the three random variables X, Y , and Z defined in Example 3.1.3.
For example, the event A, defined as the event that water demand is at least 100, can
be expressed as A = {X ≥ 100}, and Pr(A) = 0.5102. This means that Pr(X ≥ 100) =
0.5102. The distribution of X consists of all probabilities of the form Pr(X ∈ C) for all
sets C such that {X ∈ C} is an event. These can all be calculated in a manner similar
to the calculation of Pr(A) in Example 1.5.4. In particular, if C is a subinterval of the
interval [4, 200], then

Pr(X ∈ C) = (150 − 1) × (length of interval C)

29,204
. (3.1.2)

For example, if C is the interval [50,175], then its length is 125, and Pr(X ∈ C) =
149 × 125/29,204 = 0.6378. The subset of the sample space whose probability was
just calculated is drawn in Fig. 3.2. �

The general definition of distribution in Definition 3.1.2 is awkward, and it will
be useful to find alternative ways to specify the distributions of random variables. In
the remainder of this section, we shall introduce a few such alternatives.

Discrete Distributions

Definition
3.1.3

Discrete Distribution/Random Variable. We say that a random variable X has a discrete
distribution or that X is a discrete random variable if X can take only a finite number
k of different values x1, . . . , xk or, at most, an infinite sequence of different values
x1, x2, . . . .
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Random variables that can take every value in an interval are said to have continuous
distributions and are discussed in Sec. 3.2.

Definition
3.1.4

Probability Function/p.f./Support. If a random variable X has a discrete distribution,
the probability function (abbreviated p.f.) of X is defined as the function f such that
for every real number x,

f (x) = Pr(X = x).

The closure of the set {x : f (x) > 0} is called the support of (the distribution of) X.

Some authors refer to the probability function as the probability mass function, or
p.m.f. We will not use that term again in this text.

Example
3.1.6

Demands for Utilities. The random variable Z in Example 3.1.3 equals 1 if at least one
of the utility demands is high, and Z = 0 if neither demand is high. Since Z takes only
two different values, it has a discrete distribution. Note that {s : Z(s) = 1} = A ∪ B,
where A and B are defined in Example 1.5.4. We calculated Pr(A ∪ B) = 0.65253 in
Example 1.5.4. If Z has p.f. f , then

f (z) =
⎧⎨⎩

0.65253 if z = 1,
0.34747 if z = 0,
0 otherwise.

The support of Z is the set {0, 1}, which has only two elements. �

Example
3.1.7

Tossing a Coin. The random variable X in Example 3.1.4 has only 11 different possible
values. Its p.f. f is given at the end of that example for the values x = 0, . . . , 10 that
constitute the support of X; f (x) = 0 for all other values of x. �

Here are some simple facts about probability functions

Theorem
3.1.1

Let X be a discrete random variable with p.f. f . If x is not one of the possible values
of X, then f (x) = 0. Also, if the sequence x1, x2, . . . includes all the possible values
of X, then

∑∞
i=1 f (xi) = 1.

A typical p.f. is sketched in Fig. 3.3, in which each vertical segment represents
the value of f (x) corresponding to a possible value x. The sum of the heights of the
vertical segments in Fig. 3.3 must be 1.

Figure 3.3 An example of
a p.f.

x3 0x2x1 x4 x

f (x)
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Theorem 3.1.2 shows that the p.f. of a discrete random variable characterizes its
distribution, and it allows us to dispense with the general definition of distribution
when we are discussing discrete random variables.

Theorem
3.1.2

If X has a discrete distribution, the probability of each subset C of the real line can
be determined from the relation

Pr(X ∈ C) =
∑
xi∈C

f (xi).

Some random variables have distributions that appear so frequently that the
distributions are given names. The random variable Z in Example 3.1.6 is one such.

Definition
3.1.5

Bernoulli Distribution/Random Variable. A random variable Z that takes only two
values 0 and 1 with Pr(Z = 1) = p has the Bernoulli distribution with parameter p.
We also say that Z is a Bernoulli random variable with parameter p.

The Z in Example 3.1.6 has the Bernoulli distribution with parameter 0.65252. It
is easy to see that the name of each Bernoulli distribution is enough to allow us to
compute the p.f., which, in turn, allows us to characterize its distribution.

We conclude this section with illustrations of two additional families of discrete
distributions that arise often enough to have names.

Uniform Distributions on Integers

Example
3.1.8

Daily Numbers. A popular state lottery game requires participants to select a three-
digit number (leading 0s allowed). Then three balls, each with one digit, are chosen at
random from well-mixed bowls. The sample space here consists of all triples (i1, i2, i3)

where ij ∈ {0, . . . , 9} for j = 1, 2, 3. If s = (i1, i2, i3), define X(s) = 100i1 + 10i2 + i3.
For example, X(0, 1, 5) = 15. It is easy to check that Pr(X = x) = 0.001 for each
integer x ∈ {0, 1, . . . , 999}. �

Definition
3.1.6

Uniform Distribution on Integers. Let a ≤ b be integers. Suppose that the value of a
random variable X is equally likely to be each of the integers a, . . . , b. Then we say
that X has the uniform distribution on the integers a, . . . , b.

The X in Example 3.1.8 has the uniform distribution on the integers 0, 1, . . . , 999.
A uniform distribution on a set of k integers has probability 1/k on each integer.
If b > a, there are b − a + 1 integers from a to b including a and b. The next result
follows immediately from what we have just seen, and it illustrates how the name of
the distribution characterizes the distribution.

Theorem
3.1.3

If X has the uniform distribution on the integers a, . . . , b, the p.f. of X is

f (x) =
⎧⎨⎩ 1

b − a + 1
for x = a, . . . , b,

0 otherwise.

The uniform distribution on the integers a, . . . , b represents the outcome of an
experiment that is often described by saying that one of the integers a, . . . , b is chosen
at random. In this context, the phrase “at random” means that each of the b − a + 1
integers is equally likely to be chosen. In this same sense, it is not possible to choose
an integer at random from the set of all positive integers, because it is not possible
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to assign the same probability to every one of the positive integers and still make the
sum of these probabilities equal to 1. In other words, a uniform distribution cannot
be assigned to an infinite sequence of possible values, but such a distribution can be
assigned to any finite sequence.

Note: Random Variables Can Have the Same Distribution without Being the
Same Random Variable. Consider two consecutive daily number draws as in Ex-
ample 3.1.8. The sample space consists of all 6-tuples (i1, . . . , i6), where the first
three coordinates are the numbers drawn on the first day and the last three are the
numbers drawn on the second day (all in the order drawn). If s = (i1, . . . , i6), let
X1(s) = 100i1 + 10i2 + i3 and let X2(s) = 100i4 + 10i5 + i6. It is easy to see that X1
and X2 are different functions of s and are not the same random variable. Indeed,
there is only a small probability that they will take the same value. But they have
the same distribution because they assume the same values with the same probabil-
ities. If a businessman has 1000 customers numbered 0, . . . , 999, and he selects one
at random and records the number Y , the distribution of Y will be the same as the
distribution of X1 and of X2, but Y is not like X1 or X2 in any other way.

Binomial Distributions

Example
3.1.9

Defective Parts. Consider again Example 2.2.5 from page 69. In that example, a ma-
chine produces a defective item with probability p (0 < p < 1) and produces a non-
defective item with probability 1 − p. We assumed that the events that the different
items were defective were mutually independent. Suppose that the experiment con-
sists of examining n of these items. Each outcome of this experiment will consist of
a list of which items are defective and which are not, in the order examined. For ex-
ample, we can let 0 stand for a nondefective item and 1 stand for a defective item.
Then each outcome is a string of n digits, each of which is 0 or 1. To be specific, if,
say, n = 6, then some of the possible outcomes are

010010, 100100, 000011, 110000, 100001, 000000, etc. (3.1.3)

We will let X denote the number of these items that are defective. Then the random
variable X will have a discrete distribution, and the possible values of X will be
0, 1, 2, . . . , n. For example, the first four outcomes listed in Eq. (3.1.3) all have
X(s) = 2. The last outcome listed has X(s) = 0. �

Example 3.1.9 is a generalization of Example 2.2.5 with n items inspected rather
than just six, and rewritten in the notation of random variables. For x = 0, 1, . . . , n,
the probability of obtaining each particular ordered sequence of n items containing
exactly x defectives and n − x nondefectives is px(1 − p)n−x, just as it was in Ex-
ample 2.2.5. Since there are

(
n
x

)
different ordered sequences of this type, it follows

that

Pr(X = x) =
(

n

x

)
px(1 − p)n−x.

Therefore, the p.f. of X will be as follows:

f (x) =
{ (

n
x

)
px(1 − p)n−x for x = 0, 1, . . . , n,

0 otherwise.
(3.1.4)

Definition
3.1.7

Binomial Distribution/Random Variable. The discrete distribution represented by the
p.f. in (3.1.4) is called the binomial distribution with parameters n and p. A random
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variable with this distribution is said to be a binomial random variable with parame-
ters n and p.

The reader should be able to verify that the random variable X in Example 3.1.4,
the number of heads in a sequence of 10 independent tosses of a fair coin, has the
binomial distribution with parameters 10 and 1/2.

Since the name of each binomial distribution is sufficient to construct its p.f., it
follows that the name is enough to identify the distribution. The name of each distri-
bution includes the two parameters. The binomial distributions are very important in
probability and statistics and will be discussed further in later chapters of this book.

A short table of values of certain binomial distributions is given at the end
of this book. It can be found from this table, for example, that if X has the bino-
mial distribution with parameters n = 10 and p = 0.2, then Pr(X = 5) = 0.0264 and
Pr(X ≥ 5) = 0.0328.

As another example, suppose that a clinical trial is being run. Suppose that the
probability that a patient recovers from her symptoms during the trial is p and that
the probability is 1 − p that the patient does not recover. Let Y denote the number of
patients who recover out of n independent patients in the trial. Then the distribution
of Y is also binomial with parameters n and p. Indeed, consider a general experiment
that consists of observing n independent repititions (trials) with only two possible
results for each trial. For convenience, call the two possible results “success” and
“failure.” Then the distribution of the number of trials that result in success will be
binomial with parameters n and p, where p is the probability of success on each trial.

Note: Names of Distributions. In this section, we gave names to several families
of distributions. The name of each distribution includes any numerical parameters
that are part of the definition. For example, the random variable X in Example 3.1.4
has the binomial distribution with parameters 10 and 1/2. It is a correct statement to
say that X has a binomial distribution or that X has a discrete distribution, but such
statements are only partial descriptions of the distribution of X. Such statements
are not sufficient to name the distribution of X, and hence they are not sufficient as
answers to the question “What is the distribution of X?” The same considerations
apply to all of the named distributions that we introduce elsewhere in the book. When
attempting to specify the distribution of a random variable by giving its name, one
must give the full name, including the values of any parameters. Only the full name
is sufficient for determining the distribution.

Summary

A random variable is a real-valued function defined on a sample space. The distri-
bution of a random variable X is the collection of all probabilities Pr(X ∈ C) for all
subsets C of the real numbers such that {X ∈ C} is an event. A random variable X is
discrete if there are at most countably many possible values for X. In this case, the
distribution of X can be characterized by the probability function (p.f.) of X, namely,
f (x) = Pr(X = x) for x in the set of possible values. Some distributions are so famous
that they have names. One collection of such named distributions is the collection of
uniform distributions on finite sets of integers. A more famous collection is the col-
lection of binomial distributions whose parameters are n and p, where n is a positive
integer and 0 < p < 1, having p.f. (3.1.4). The binomial distribution with parameters
n = 1 and p is also called the Bernoulli distribution with parameter p. The names of
these distributions also characterize the distributions.



100 Chapter 3 Random Variables and Distributions

Exercises

1. Suppose that a random variable X has the uniform dis-
tribution on the integers 10, . . . , 20. Find the probability
that X is even.

2. Suppose that a random variable X has a discrete distri-
bution with the following p.f.:

f (x) =
{

cx for x = 1, . . . , 5,
0 otherwise.

Determine the value of the constant c.

3. Suppose that two balanced dice are rolled, and let X

denote the absolute value of the difference between the
two numbers that appear. Determine and sketch the p.f.
of X.

4. Suppose that a fair coin is tossed 10 times indepen-
dently. Determine the p.f. of the number of heads that will
be obtained.

5. Suppose that a box contains seven red balls and three
blue balls. If five balls are selected at random, without
replacement, determine the p.f. of the number of red balls
that will be obtained.

6. Suppose that a random variable X has the binomial dis-
tribution with parameters n = 15 and p = 0.5. Find Pr(X <

6).

7. Suppose that a random variable X has the binomial dis-
tribution with parameters n = 8 and p = 0.7. Find Pr(X ≥
5) by using the table given at the end of this book. Hint:

Use the fact that Pr(X ≥ 5) = Pr(Y ≤ 3), where Y has the
binomial distribution with parameters n = 8 and p = 0.3.

8. If 10 percent of the balls in a certain box are red, and
if 20 balls are selected from the box at random, with re-
placement, what is the probability that more than three
red balls will be obtained?

9. Suppose that a random variable X has a discrete distri-
bution with the following p.f.:

f (x) =
{ c

2x for x = 0, 1, 2, . . . ,

0 otherwise.

Find the value of the constant c.

10. A civil engineer is studying a left-turn lane that is
long enough to hold seven cars. Let X be the number
of cars in the lane at the end of a randomly chosen red
light. The engineer believes that the probability that X =
x is proportional to (x + 1)(8 − x) for x = 0, . . . , 7 (the
possible values of X).

a. Find the p.f. of X.

b. Find the probability that X will be at least 5.

11. Show that there does not exist any number c such that
the following function would be a p.f.:

f (x) =
{ c

x
for x = 1, 2, . . . ,

0 otherwise.

3.2 Continuous Distributions
Next, we focus on random variables that can assume every value in an interval
(bounded or unbounded). If a random variable X has associated with it a function
f such that the integral of f over each interval gives the probability that X is in the
interval, then we call f the probability density function (p.d.f.) of X and we say
that X has a continuous distribution.

The Probability Density Function

Example
3.2.1

Demands for Utilities. In Example 3.1.5, we determined the distribution of the de-
mand for water, X. From Fig. 3.2, we see that the smallest possible value of X is 4
and the largest is 200. For each interval C = [c0, c1] ⊂ [4, 200], Eq. (3.1.2) says that

Pr(c0 ≤ X ≤ c1) = 149(c1 − c0)

29204
= c1 − c0

196
=

∫ c1

c0

1
196

dx.
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So, if we define

f (x) =
⎧⎨⎩

1
196

if 4 ≤ x ≤ 200,

0 otherwise,
(3.2.1)

we have that

Pr(c0 ≤ X ≤ c1) =
∫ c1

c0

f (x)dx. (3.2.2)

Because we defined f (x) to be 0 for x outside of the interval [4, 200], we see that Eq.
(3.2.2) holds for all c0 ≤ c1, even if c0 = −∞ and/or c1 = ∞. �

The water demand X in Example 3.2.1 is an example of the following.

Definition
3.2.1

Continuous Distribution/Random Variable. We say that a random variable X has a
continuous distribution or that X is a continuous random variable if there exists a
nonnegative function f , defined on the real line, such that for every interval of real
numbers (bounded or unbounded), the probability that X takes a value in the interval
is the integral of f over the interval.

For example, in the situation described in Definition 3.2.1, for each bounded closed
interval [a, b],

Pr(a ≤ X ≤ b) =
∫ b

a

f (x) dx. (3.2.3)

Similarly, Pr(X ≥ a) = ∫ ∞
a

f (x) dx and Pr(X ≤ b) = ∫ b

−∞ f (x) dx.
We see that the function f characterizes the distribution of a continuous ran-

dom variable in much the same way that the probability function characterizes the
distribution of a discrete random variable. For this reason, the function f plays an
important role, and hence we give it a name.

Definition
3.2.2

Probability Density Function/p.d.f./Support. If X has a continuous distribution, the
function f described in Definition 3.2.1 is called the probability density function
(abbreviated p.d.f.) of X. The closure of the set {x : f (x) > 0} is called the support
of (the distribution of) X.

Example 3.2.1 demonstrates that the water demand X has p.d.f. given by (3.2.1).
Every p.d.f. f must satisfy the following two requirements:

f (x) ≥ 0, for all x, (3.2.4)

and ∫ ∞

−∞
f (x) dx = 1. (3.2.5)

A typical p.d.f. is sketched in Fig. 3.4. In that figure, the total area under the curve
must be 1, and the value of Pr(a ≤ X ≤ b) is equal to the area of the shaded region.

Note: Continuous Distributions Assign Probability 0 to Individual Values. The
integral in Eq. (3.2.3) also equals Pr(a < X ≤ b) as well as Pr(a < X < b) and Pr(a ≤
X < b). Hence, it follows from the definition of continuous distributions that, if X

has a continuous distribution, Pr(X = a) = 0 for each number a. As we noted on
page 20, the fact that Pr(X = a) = 0 does not imply that X = a is impossible. If it did,
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Figure 3.4 An example of a
p.d.f.

a b x

f (x)

all values of X would be impossible and X couldn’t assume any value. What happens
is that the probability in the distribution of X is spread so thinly that we can only see
it on sets like nondegenerate intervals. It is much the same as the fact that lines have
0 area in two dimensions, but that does not mean that lines are not there. The two
vertical lines indicated under the curve in Fig. 3.4 have 0 area, and this signifies that
Pr(X = a) = Pr(X = b) = 0. However, for each ε > 0 and each a such that f (a) > 0,
Pr(a − ε ≤ X ≤ a + ε) ≈ 2εf (a) > 0.

Nonuniqueness of the p.d.f.

If a random variable X has a continuous distribution, then Pr(X = x) = 0 for every
individual value x. Because of this property, the values of each p.d.f. can be changed
at a finite number of points, or even at certain infinite sequences of points, without
changing the value of the integral of the p.d.f. over any subset A. In other words,
the values of the p.d.f. of a random variable X can be changed arbitrarily at many
points without affecting any probabilities involving X, that is, without affecting the
probability distribution of X. At exactly which sets of points we can change a p.d.f.
depends on subtle features of the definition of the Riemann integral. We shall not
deal with this issue in this text, and we shall only contemplate changes to p.d.f.’s at
finitely many points.

To the extent just described, the p.d.f. of a random variable is not unique. In many
problems, however, there will be one version of the p.d.f. that is more natural than
any other because for this version the p.d.f. will, wherever possible, be continuous on
the real line. For example, the p.d.f. sketched in Fig. 3.4 is a continuous function over
the entire real line. This p.d.f. could be changed arbitrarily at a few points without
affecting the probability distribution that it represents, but these changes would
introduce discontinuities into the p.d.f. without introducing any apparent advantages.

Throughout most of this book, we shall adopt the following practice: If a random
variable X has a continuous distribution, we shall give only one version of the p.d.f.
of X and we shall refer to that version as the p.d.f. of X, just as though it had been
uniquely determined. It should be remembered, however, that there is some freedom
in the selection of the particular version of the p.d.f. that is used to represent each
continuous distribution. The most common place where such freedom will arise is
in cases like Eq. (3.2.1) where the p.d.f. is required to have discontinuities. Without
making the function f any less continuous, we could have defined the p.d.f. in that
example so that f (4) = f (200) = 0 instead of f (4) = f (200) = 1/196. Both of these
choices lead to the same calculations of all probabilities associated with X, and they
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are both equally valid. Because the support of a continuous distribution is the closure
of the set where the p.d.f. is strictly positive, it can be shown that the support is unique.
A sensible approach would then be to choose the version of the p.d.f. that was strictly
positive on the support whenever possible.

The reader should note that “continuous distribution” is not the name of a
distribution, just as “discrete distribution” is not the name of a distribution. There are
many distributions that are discrete and many that are continuous. Some distributions
of each type have names that we either have introduced or will introduce later.

We shall now present several examples of continuous distributions and their
p.d.f.’s.

Uniform Distributions on Intervals

Example
3.2.2

Temperature Forecasts. Television weather forecasters announce high and low tem-
perature forecasts as integer numbers of degrees. These forecasts, however, are the
results of very sophisticated weather models that provide more precise forecasts that
the television personalities round to the nearest integer for simplicity. Suppose that
the forecaster announces a high temperature of y. If we wanted to know what tem-
perature X the weather models actually produced, it might be safe to assume that X

was equally likely to be any number in the interval from y − 1/2 to y + 1/2. �

The distribution of X in Example 3.2.2 is a special case of the following.

Definition
3.2.3

Uniform Distribution on an Interval. Let a and b be two given real numbers such that
a < b. Let X be a random variable such that it is known that a ≤ X ≤ b and, for
every subinterval of [a, b], the probability that X will belong to that subinterval is
proportional to the length of that subinterval. We then say that the random variable
X has the uniform distribution on the interval [a, b].

A random variable X with the uniform distribution on the interval [a, b] represents
the outcome of an experiment that is often described by saying that a point is chosen
at random from the interval [a, b]. In this context, the phrase “at random” means
that the point is just as likely to be chosen from any particular part of the interval as
from any other part of the same length.

Theorem
3.2.1

Uniform Distribution p.d.f. If X has the uniform distribution on an interval [a, b], then
the p.d.f. of X is

f (x) =
{

1
b − a

for a ≤ x ≤ b,

0 otherwise.
(3.2.6)

Proof X must take a value in the interval [a, b]. Hence, the p.d.f. f (x) of X must
be 0 outside of [a, b]. Furthermore, since any particular subinterval of [a, b] having
a given length is as likely to contain X as is any other subinterval having the same
length, regardless of the location of the particular subinterval in [a, b], it follows that
f (x) must be constant throughout [a, b], and that interval is then the support of the
distribution. Also, ∫ ∞

−∞
f (x) dx =

∫ b

a

f (x) dx = 1. (3.2.7)

Therefore, the constant value of f (x) throughout [a, b] must be 1/(b − a), and the
p.d.f. of X must be (3.2.6).
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Figure 3.5 The p.d.f. for the
uniform distribution on the
interval [a, b].

a b x

f (x)

Th p.d.f. (3.2.6) is sketched in Fig. 3.5. As an example, the random variable X (demand
for water) in Example 3.2.1 has the uniform distribution on the interval [4, 200].

Note: Density Is Not Probability. The reader should note that the p.d.f. in (3.2.6) can
be greater than 1, particularly if b − a < 1. Indeed, p.d.f.’s can be unbounded, as we
shall see in Example 3.2.6. The p.d.f. of X, f (x), itself does not equal the probability
that X is near x. The integral of f over values near x gives the probability that X is
near x, and the integral is never greater than 1.

It is seen from Eq. (3.2.6) that the p.d.f. representing a uniform distribution on
a given interval is constant over that interval, and the constant value of the p.d.f.
is the reciprocal of the length of the interval. It is not possible to define a uniform
distribution over an unbounded interval, because the length of such an interval is
infinite.

Consider again the uniform distribution on the interval [a, b]. Since the proba-
bility is 0 that one of the endpoints a or b will be chosen, it is irrelevant whether the
distribution is regarded as a uniform distribution on the closed interval a ≤ x ≤ b, or
as a uniform distribution on the open interval a < x < b, or as a uniform distribution
on the half-open and half-closed interval (a, b] in which one endpoint is included and
the other endpoint is excluded.

For example, if a random variable X has the uniform distribution on the interval
[−1, 4], then the p.d.f. of X is

f (x) =
{

1/5 for −1 ≤ x ≤ 4,
0 otherwise.

Furthermore,

Pr(0 ≤ X < 2) =
∫ 2

0
f (x) dx = 2

5
.

Notice that we defined the p.d.f. of X to be strictly positive on the closed interval
[−1, 4] and 0 outside of this closed interval. It would have been just as sensible to
define the p.d.f. to be strictly positive on the open interval (−1, 4) and 0 outside of this
open interval. The probability distribution would be the same either way, including
the calculation of Pr(0 ≤ X < 2) that we just performed. After this, when there are
several equally sensible choices for how to define a p.d.f., we will simply choose one
of them without making any note of the other choices.

Other Continuous Distributions

Example
3.2.3

Incompletely Specified p.d.f. Suppose that the p.d.f. of a certain random variable X

has the following form:
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f (x) =
{

cx for 0 < x < 4,
0 otherwise,

where c is a given constant. We shall determine the value of c.
For every p.d.f., it must be true that

∫ ∞
−∞ f (x) = 1. Therefore, in this example,∫ 4

0
cx dx = 8c = 1.

Hence, c = 1/8. �

Note: Calculating Normalizing Constants. The calculation in Example 3.2.3 illus-
trates an important point that simplifies many statistical results. The p.d.f. of X was
specified without explicitly giving the value of the constant c. However, we were able
to figure out what was the value of c by using the fact that the integral of a p.d.f. must
be 1. It will often happen, especially in Chapter 8 where we find sampling distribu-
tions of summaries of observed data, that we can determine the p.d.f. of a random
variable except for a constant factor. That constant factor must be the unique value
such that the integral of the p.d.f. is 1, even if we cannot calculate it directly.

Example
3.2.4

Calculating Probabilities from a p.d.f. Suppose that the p.d.f. of X is as in Example 3.2.3,
namely,

f (x) =
{ x

8
for 0 < x < 4,

0 otherwise.

We shall now determine the values of Pr(1 ≤ X ≤ 2) and Pr(X > 2). Apply Eq. (3.2.3)
to get

Pr(1 ≤ X ≤ 2) =
∫ 2

1

1
8
x dx = 3

16

and

Pr(X > 2) =
∫ 4

2

1
8
x dx = 3

4
. �

Example
3.2.5

Unbounded Random Variables. It is often convenient and useful to represent a con-
tinuous distribution by a p.d.f. that is positive over an unbounded interval of the real
line. For example, in a practical problem, the voltage X in a certain electrical system
might be a random variable with a continuous distribution that can be approximately
represented by the p.d.f.

f (x) =
⎧⎨⎩

0 for x ≤ 0,
1

(1 + x)2
for x > 0.

(3.2.8)

It can be verified that the properties (3.2.4) and (3.2.5) required of all p.d.f.’s are
satisfied by f (x).

Even though the voltage X may actually be bounded in the real situation, the
p.d.f. (3.2.8) may provide a good approximation for the distribution of X over its full
range of values. For example, suppose that it is known that the maximum possible
value of X is 1000, in which case Pr(X > 1000) = 0. When the p.d.f. (3.2.8) is used,
we compute Pr(X > 1000) = 0.001. If (3.2.8) adequately represents the variability
of X over the interval (0, 1000), then it may be more convenient to use the p.d.f.
(3.2.8) than a p.d.f. that is similar to (3.2.8) for x ≤ 1000, except for a new normalizing
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constant, and is 0 for x > 1000. This can be especially true if we do not know for sure
that the maximum voltage is only 1000. �

Example
3.2.6

Unbounded p.d.f.’s. Since a value of a p.d.f. is a probability density, rather than a
probability, such a value can be larger than 1. In fact, the values of the following
p.d.f. are unbounded in the neighborhood of x = 0:

f (x) =
{

2
3x−1/3 for 0 < x < 1,

0 otherwise.
(3.2.9)

It can be verified that even though the p.d.f. (3.2.9) is unbounded, it satisfies the
properties (3.2.4) and (3.2.5) required of a p.d.f. �

Mixed Distributions

Most distributions that are encountered in practical problems are either discrete or
continuous. We shall show, however, that it may sometimes be necessary to consider a
distribution that is a mixture of a discrete distribution and a continuous distribution.

Example
3.2.7

Truncated Voltage. Suppose that in the electrical system considered in Example 3.2.5,
the voltage X is to be measured by a voltmeter that will record the actual value of
X if X ≤ 3 but will simply record the value 3 if X > 3. If we let Y denote the value
recorded by the voltmeter, then the distribution of Y can be derived as follows.

First, Pr(Y = 3) = Pr(X ≥ 3) = 1/4. Since the single value Y = 3 has probability
1/4, it follows that Pr(0 < Y < 3) = 3/4. Furthermore, since Y = X for 0 < X < 3, this
probability 3/4 for Y is distributed over the interval (0, 3) according to the same p.d.f.
(3.2.8) as that of X over the same interval. Thus, the distribution of Y is specified by
the combination of a p.d.f. over the interval (0, 3) and a positive probability at the
point Y = 3. �

Summary

A continuous distribution is characterized by its probability density function (p.d.f.).
A nonnegative function f is the p.d.f. of the distribution of X if, for every interval
[a, b], Pr(a ≤ X ≤ b) = ∫ b

a
f (x) dx. Continuous random variables satisfy Pr(X = x) =

0 for every value x. If the p.d.f. of a distribution is constant on an interval [a, b] and
is 0 off the interval, we say that the distribution is uniform on the interval [a, b].

Exercises

1. Let X be a random variable with the p.d.f. specified in
Example 3.2.6. Compute Pr(X ≤ 8/27).

2. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

4
3 (1 − x3) for 0 < x < 1,

0 otherwise.

Sketch this p.d.f. and determine the values of the fol-

lowing probabilities: a. Pr
(
X<

1
2

)
b. Pr

(
1
4

<X <
3
4

)
c. Pr

(
X> 1

3

)
.

3. Suppose that the p.d.f. of a random variable X is as
follows:
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f (x) =
{

1
36 (9 − x2) for −3 ≤ x ≤ 3,

0 otherwise.

Sketch this p.d.f. and determine the values of the following
probabilities: a. Pr(X < 0) b. Pr(−1 ≤ X ≤ 1)
c. Pr(X > 2).

4. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

cx2 for 1 ≤ x ≤ 2,

0 otherwise.

a. Find the value of the constant c and sketch the p.d.f.

b. Find the value of Pr(X > 3/2).

5. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

1
8x for 0 ≤ x ≤ 4,

0 otherwise.

a. Find the value of t such that Pr(X ≤ t) = 1/4.

b. Find the value of t such that Pr(X ≥ t) = 1/2.

6. Let X be a random variable for which the p.d.f. is as
given in Exercise 5. After the value of X has been ob-
served, let Y be the integer closest to X. Find the p.f. of
the random variable Y .

7. Suppose that a random variable X has the uniform
distribution on the interval [−2, 8]. Find the p.d.f. of X and
the value of Pr(0 < X < 7).

8. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

ce−2x for x > 0,

0 otherwise.

a. Find the value of the constant c and sketch the p.d.f.

b. Find the value of Pr(1 < X < 2).

9. Show that there does not exist any number c such that
the following function f (x) would be a p.d.f.:

f (x) =
{ c

1+x
for x > 0,

0 otherwise.

10. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{ c

(1−x)1/2 for 0 < x < 1,

0 otherwise.

a. Find the value of the constant c and sketch the p.d.f.

b. Find the value of Pr(X ≤ 1/2).

11. Show that there does not exist any number c such that
the following function f (x) would be a p.d.f.:

f (x) =
{ c

x
for 0 < x < 1,

0 otherwise.

12. In Example 3.1.3 on page 94, determine the distri-
bution of the random variable Y , the electricity demand.
Also, find Pr(Y < 50).

13. An ice cream seller takes 20 gallons of ice cream in
her truck each day. Let X stand for the number of gallons
that she sells. The probability is 0.1 that X = 20. If she
doesn’t sell all 20 gallons, the distribution of X follows a
continuous distribution with a p.d.f. of the form

f (x) =
{

cx for 0 < x < 20,
0 otherwise,

where c is a constant that makes Pr(X < 20) = 0.9. Find the
constant c so that Pr(X < 20) = 0.9 as described above.

3.3 The Cumulative Distribution Function
Although a discrete distribution is characterized by its p.f. and a continuous distri-
bution is characterized by its p.d.f., every distribution has a common characteriza-
tion through its (cumulative) distribution function (c.d.f.). The inverse of the c.d.f.
is called the quantile function, and it is useful for indicating where the probability
is located in a distribution.

Example
3.3.1

Voltage. Consider again the voltage X from Example 3.2.5. The distribution of X

is characterized by the p.d.f. in Eq. (3.2.8). An alternative characterization that is
more directly related to probabilities associated with X is obtained from the following
function:
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F(x) = Pr(X ≤ x) =
∫ x

−∞
f (y)dy =

⎧⎨⎩
0 for x ≤ 0,∫ x

0

dy

(1 + y)2
for x > 0,

=
{ 0 for x ≤ 0,

1 − 1
1 + x

for x > 0.

(3.3.1)

So, for example, Pr(X ≤ 3) = F(3) = 3/4. �

Definition and Basic Properties

Definition
3.3.1

(Cumulative) Distribution Function. The distribution function or cumulative distribu-
tion function (abbreviated c.d.f.) F of a random variable X is the function

F(x) = Pr(X ≤ x) for −∞ < x < ∞. (3.3.2)

It should be emphasized that the cumulative distribution function is defined as above
for every random variable X, regardless of whether the distribution of X is discrete,
continuous, or mixed. For the continuous random variable in Example 3.3.1, the c.d.f.
was calculated in Eq. (3.3.1). Here is a discrete example:

Example
3.3.2

Bernoulli c.d.f. Let X have the Bernoulli distribution with parameter p defined in
Definition 3.1.5. Then Pr(X = 0) = 1 − p and Pr(X = 1) = p. Let F be the c.d.f. of X.
It is easy to see that F(x) = 0 for x < 0 because X ≥ 0 for sure. Similarly, F(x) = 1 for
x ≥ 1 because X ≤ 1 for sure. For 0 ≤ x < 1, Pr(X ≤ x) = Pr(X = 0) = 1 − p because
0 is the only possible value of X that is in the interval (−∞, x]. In summary,

F(x) =
⎧⎨⎩

0 for x < 0,
1 − p for 0 ≤ x < 1,
1 for x ≥ 1. �

We shall soon see (Theorem 3.3.2) that the c.d.f. allows calculation of all interval
probabilities; hence, it characterizes the distribution of a random variable. It follows
from Eq. (3.3.2) that the c.d.f. of each random variable X is a function F defined on
the real line. The value of F at every point x must be a number F(x) in the interval
[0, 1] because F(x) is the probability of the event {X ≤ x}. Furthermore, it follows
from Eq. (3.3.2) that the c.d.f. of every random variable X must have the following
three properties.

Property
3.3.1

Nondecreasing. The function F(x) is nondecreasing as x increases; that is, if x1 < x2,
then F(x1) ≤ F(x2).

Proof If x1 < x2, then the event {X ≤ x1} is a subset of the event {X ≤ x2}. Hence,
Pr{X ≤ x1} ≤ Pr{X ≤ x2} according to Theorem 1.5.4.

An example of a c.d.f. is sketched in Fig. 3.6. It is shown in that figure that 0 ≤
F(x) ≤ 1 over the entire real line. Also, F(x) is always nondecreasing as x increases,
although F(x) is constant over the interval x1 ≤ x ≤ x2 and for x ≥ x4.

Property
3.3.2

Limits at ±∞. limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

Proof As in the proof of Property 3.3.1, note that {X ≤ x1} ⊂ {X ≤ x2} whenever x1 <

x2. The fact that Pr(X ≤ x) approaches 0 as x → −∞ now follows from Exercise 13 in
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Figure 3.6 An example of a
c.d.f.

1

z3

z2

z1

z0

0 x1 x2 x3 x4
x

F(x)

Section 1.10. Similarly, the fact that Pr(X ≤ x) approaches 1 as x → ∞ follows from
Exercise 12 in Sec. 1.10.

The limiting values specified in Property 3.3.2 are indicated in Fig. 3.6. In this
figure, the value of F(x) actually becomes 1 at x = x4 and then remains 1 for x > x4.
Hence, it may be concluded that Pr(X ≤ x4) = 1 and Pr(X > x4) = 0. On the other
hand, according to the sketch in Fig. 3.6, the value of F(x) approaches 0 as x → −∞,
but does not actually become 0 at any finite point x. Therefore, for every finite value
of x, no matter how small, Pr(X ≤ x) > 0.

A c.d.f. need not be continuous. In fact, the value of F(x) may jump at any
finite or countable number of points. In Fig. 3.6, for instance, such jumps or points
of discontinuity occur where x = x1 and x = x3. For each fixed value x, we shall let
F(x−) denote the limit of the values of F(y) as y approaches x from the left, that is,
as y approaches x through values smaller than x. In symbols,

F(x−) = lim
y→x
y<x

F (y).

Similarly, we shall define F(x+) as the limit of the values of F(y) as y approaches x

from the right. Thus,

F(x+) = lim
y→x
y>x

F (y).

If the c.d.f. is continuous at a given point x, then F(x−) = F(x+) = F(x) at that point.

Property
3.3.3

Continuity from the Right. A c.d.f. is always continuous from the right; that is, F(x) =
F(x+) at every point x.

Proof Let y1 > y2 > . . . be a sequence of numbers that are decreasing such that
limn→∞ yn = x. Then the event {X ≤ x} is the intersection of all the events {X ≤ yn}
for n = 1, 2, . . . . Hence, by Exercise 13 of Sec. 1.10,

F(x) = Pr(X ≤ x) = lim
n→∞ Pr(X ≤ yn) = F(x+).

It follows from Property 3.3.3 that at every point x at which a jump occurs,

F(x+) = F(x) and F(x−) < F(x).
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In Fig. 3.6 this property is illustrated by the fact that, at the points of discontinuity
x = x1 and x = x3, the value of F(x1) is taken as z1 and the value of F(x3) is taken as
z3.

Determining Probabilities from the Distribution Function

Example
3.3.3

Voltage. In Example 3.3.1, suppose that we want to know the probability that X lies
in the interval [2, 4]. That is, we want Pr(2 ≤ X ≤ 4). The c.d.f. allows us to compute
Pr(X ≤ 4) and Pr(X ≤ 2). These are related to the probability that we want as follows:
Let A = {2 < X ≤ 4}, B = {X ≤ 2}, and C = {X ≤ 4}. Because X has a continuous
distribution, Pr(A) is the same as the probability that we desire. We see that A ∪ B =
C, and it is clear that A and B are disjoint. Hence, Pr(A) + Pr(B) = Pr(C). It follows
that

Pr(A) = Pr(C) − Pr(B) = F(4) − F(2) = 4
5

− 3
4

= 1
20

. �

The type of reasoning used in Example 3.3.3 can be extended to find the prob-
ability that an arbitrary random variable X will lie in any specified interval of the
real line from the c.d.f. We shall derive this probability for four different types of
intervals.

Theorem
3.3.1

For every value x,

Pr(X > x) = 1 − F(x). (3.3.3)

Proof The events {X > x} and {X ≤ x} are disjoint, and their union is the whole
sample space S whose probability is 1. Hence, Pr(X > x) + Pr(X ≤ x) = 1. Now,
Eq. (3.3.3) follows from Eq. (3.3.2).

Theorem
3.3.2

For all values x1 and x2 such that x1 < x2,

Pr(x1 < X ≤ x2) = F(x2) − F(x1). (3.3.4)

Proof Let A = {x1 < X ≤ x2}, B = {X ≤ x1}, and C = {X ≤ x2}. As in Example 3.3.3,
A and B are disjoint, and their union is C, so

Pr(x1 < X ≤ x2) + Pr(X ≤ x1) = Pr(X ≤ x2).

Subtracting Pr(X ≤ x1) from both sides of this equation and applying Eq. (3.3.2)
yields Eq. (3.3.4).

For example, if the c.d.f. of X is as sketched in Fig. 3.6, then it follows from
Theorems 3.3.1 and 3.3.2 that Pr(X > x2) = 1 − z1 and Pr(x2 < X ≤ x3) = z3 − z1. Also,
since F(x) is constant over the interval x1 ≤ x ≤ x2, then Pr(x1 < X ≤ x2) = 0.

It is important to distinguish carefully between the strict inequalities and the
weak inequalities that appear in all of the preceding relations and also in the next
theorem. If there is a jump in F(x) at a given value x, then the values of Pr(X ≤ x)

and Pr(X < x) will be different.

Theorem
3.3.3

For each value x,

Pr(X < x) = F(x−). (3.3.5)
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Proof Let y1 < y2 < . . . be an increasing sequence of numbers such that limn→∞ yn =
x. Then it can be shown that

{X < x} =
∞⋃

n=1

{X ≤ yn}.

Therefore, it follows from Exercise 12 of Sec. 1.10 that

Pr(X < x) = lim
n→∞ Pr(X ≤ yn)

= lim
n→∞ F(yn) = F(x−).

For example, for the c.d.f. sketched in Fig. 3.6, Pr(X < x3) = z2 and Pr(X < x4)

= 1.
Finally, we shall show that for every value x, Pr(X = x) is equal to the amount

of the jump that occurs in F at the point x. If F is continuous at the point x, that is,
if there is no jump in F at x, then Pr(X = x) = 0.

Theorem
3.3.4

For every value x,

Pr(X = x) = F(x) − F(x−). (3.3.6)

Proof It is always true that Pr(X = x) = Pr(X ≤ x) − Pr(X < x). The relation (3.3.6)
follows from the fact that Pr(X ≤ x) = F(x) at every point and from Theorem 3.3.3.

In Fig. 3.6, for example, Pr(X = x1) = z1 − z0, Pr(X = x3) = z3 − z2, and the
probability of every other individual value of X is 0.

The c.d.f. of a Discrete Distribution

From the definition and properties of a c.d.f. F(x), it follows that if a < b and
if Pr(a < X < b) = 0, then F(x) will be constant and horizontal over the interval
a < x < b. Furthermore, as we have just seen, at every point x such that Pr(X = x) > 0,
the c.d.f. will jump by the amount Pr(X = x).

Suppose that X has a discrete distribution with the p.f. f (x). Together, the prop-
erties of a c.d.f. imply that F(x) must have the following form: F(x) will have a jump
of magnitude f (xi) at each possible value xi of X, and F(x) will be constant between
every pair of successive jumps. The distribution of a discrete random variable X can
be represented equally well by either the p.f. or the c.d.f. of X.

The c.d.f. of a Continuous Distribution

Theorem
3.3.5

Let X have a continuous distribution, and let f (x) and F(x) denote its p.d.f. and the
c.d.f., respectively. Then F is continuous at every x,

F(x) =
∫ x

−∞
f (t) dt, (3.3.7)

and
dF(x)

dx
= f (x), (3.3.8)

at all x such that f is continuous.
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Proof Since the probability of each individual point x is 0, the c.d.f. F(x) will have
no jumps. Hence, F(x) will be a continuous function over the entire real line.

By definition, F(x) = Pr(X ≤ x). Since f is the p.d.f. of X, we have from the
definition of p.d.f. that Pr(X ≤ x) is the right-hand side of Eq. (3.3.7).

It follows from Eq. (3.3.7) and the relation between integrals and derivatives
(the fundamental theorem of calculus) that, for every x at which f is continuous,
Eq. (3.3.8) holds.

Thus, the c.d.f. of a continuous random variable X can be obtained from the p.d.f.
and vice versa. Eq. (3.3.7) is how we found the c.d.f. in Example 3.3.1. Notice that
the derivative of the F in Example 3.3.1 is

F ′(x) =
⎧⎨⎩ 0 for x < 0,

1
(1 + x)2

for x > 0,

and F ′ does not exist at x = 0. This verifies Eq (3.3.8) for Example 3.3.1. Here, we
have used the popular shorthand notation F ′(x) for the derivative of F at the point x.

Example
3.3.4

Calculating a p.d.f. from a c.d.f. Let the c.d.f. of a random variable be

F(x) =

⎧⎪⎨⎪⎩
0 for x < 0,

x2/3 for 0 ≤ x ≤ 1,
1 for x > 1.

This function clearly satisfies the three properties required of every c.d.f., as given
earlier in this section. Furthermore, since this c.d.f. is continuous over the entire real
line and is differentiable at every point except x = 0 and x = 1, the distribution of X

is continuous. Therefore, the p.d.f. of X can be found at every point other than x = 0
and x = 1 by the relation (3.3.8). The value of f (x) at the points x = 0 and x = 1 can
be assigned arbitrarily. When the derivative F ′(x) is calculated, it is found that f (x)

is as given by Eq. (3.2.9) in Example 3.2.6. Conversely, if the p.d.f. of X is given by
Eq. (3.2.9), then by using Eq. (3.3.7) it is found that F(x) is as given in this example.

�

The Quantile Function

Example
3.3.5

Fair Bets. Suppose that X is the amount of rain that will fall tomorrow, and X has
c.d.f. F . Suppose that we want to place an even-money bet on X as follows: If X ≤ x0,
we win one dollar and if X > x0 we lose one dollar. In order to make this bet fair, we
need Pr(X ≤ x0) = Pr(X > x0) = 1/2. We could search through all of the real numbers
x trying to find one such that F(x) = 1/2, and then we would let x0 equal the value we
found. If F is a one-to-one function, then F has an inverse F−1 and x0 = F−1(1/2).

�

The value x0 that we seek in Example 3.3.5 is called the 0.5 quantile of X or the
50th percentile of X because 50% of the distribution of X is at or below x0.

Definition
3.3.2

Quantiles/Percentiles. Let X be a random variable with c.d.f. F . For each p strictly
between 0 and 1, define F−1(p) to be the smallest value x such that F(x) ≥ p. Then
F−1(p) is called the p quantile of X or the 100p percentile of X. The function F−1

defined here on the open interval (0, 1) is called the quantile function of X.
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Example
3.3.6

Standardized Test Scores. Many universities in the United States rely on standardized
test scores as part of their admissions process. Thousands of people take these tests
each time that they are offered. Each examinee’s score is compared to the collection
of scores of all examinees to see where it fits in the overall ranking. For example, if
83% of all test scores are at or below your score, your test report will say that you
scored at the 83rd percentile. �

The notation F−1(p) in Definition 3.3.2 deserves some justification. Suppose first
that the c.d.f. F of X is continuous and one-to-one over the whole set of possible
values of X. Then the inverse F−1 of F exists, and for each 0 < p < 1, there is one
and only one x such that F(x) = p. That x is F−1(p). Definition 3.3.2 extends the
concept of inverse function to nondecreasing functions (such as c.d.f.’s) that may be
neither one-to-one nor continuous.

Quantiles of Continuous Distributions When the c.d.f. of a random variable X is
continuous and one-to-one over the whole set of possible values of X, the inverse
F−1 of F exists and equals the quantile function of X.

Example
3.3.7

Value at Risk. The manager of an investment portfolio is interested in how much
money the portfolio might lose over a fixed time horizon. Let X be the change
in value of the given portfolio over a period of one month. Suppose that X has
the p.d.f. in Fig. 3.7. The manager computes a quantity known in the world of risk
management as Value at Risk (denoted by VaR). To be specific, let Y = −X stand
for the loss incurred by the portfolio over the one month. The manager wants to
have a level of confidence about how large Y might be. In this example, the manager
specifies a probability level, such as 0.99 and then finds y0, the 0.99 quantile of Y . The
manager is now 99% sure that Y ≤ y0, and y0 is called the VaR. If X has a continuous
distribution, then it is easy to see that y0 is closely related to the 0.01 quantile of
the distribution of X. The 0.01 quantile x0 has the property that Pr(X < x0) = 0.01.
But Pr(X < x0) = Pr(Y > −x0) = 1 − Pr(Y ≤ −x0). Hence, −x0 is a 0.99 quantile of
Y . For the p.d.f. in Fig. 3.7, we see that x0 = −4.14, as the shaded region indicates.
Then y0 = 4.14 is VaR for one month at probability level 0.99. �

Figure 3.7 The p.d.f. of the
change in value of a portfolio
with lower 1% indicated.
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Figure 3.8 The c.d.f. of a
uniform distribution indi-
cating how to solve for a
quantile.
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Example
3.3.8

Uniform Distribution on an Interval. Let X have the uniform distribution on the
interval [a, b]. The c.d.f. of X is

F(x) = Pr(X ≤ x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ≤ a,∫ x

a

1
b − a

du if a < x ≤ b,

1 if x > b.
The integral above equals (x −a)/(b−a). So, F(x) = (x −a)/(b−a) for all a<x <b,
which is a strictly increasing function over the entire interval of possible values of X.
The inverse of this function is the quantile function of X, which we obtain by setting
F(x) equal to p and solving for x:

x − a

b − a
= p,

x − a = p(b − a),

x = a + p(b − a) = pb + (1 − p)a.

Figure 3.8 illustrates how the calculation of a quantile relates to the c.d.f.
The quantile function of X is F−1(p) = pb + (1 − p)a for 0 < p < 1. In particular,

F−1(1/2) = (b + a)/2. �

Note: Quantiles, Like c.d.f.’s, Depend on the Distribution Only. Any two random
variables with the same distribution have the same quantile function. When we refer
to a quantile of X, we mean a quantile of the distribution of X.

Quantiles of Discrete Distributions It is convenient to be able to calculate quantiles
for discrete distributions as well. The quantile function of Definition 3.3.2 exists for all
distributions whether discrete, continuous, or otherwise. For example, in Fig. 3.6, let
z0 ≤ p ≤ z1. Then the smallest x such that F(x) ≥ p is x1. For every value of x < x1,
we have F(x) < z0 ≤ p and F(x1) = z1. Notice that F(x) = z1 for all x between x1
and x2, but since x1 is the smallest of all those numbers, x1 is the p quantile. Because
distribution functions are continuous from the right, the smallest x such that F(x) ≥ p

exists for all 0 < p < 1. For p = 1, there is no guarantee that such an x will exist. For
example, in Fig. 3.6, F(x4) = 1, but in Example 3.3.1, F(x) < 1 for all x. For p = 0,
there is never a smallest x such that F(x) = 0 because limx→−∞ F(x) = 0. That is, if
F(x0) = 0, then F(x) = 0 for all x < x0. For these reasons, we never talk about the 0
or 1 quantiles.
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Table 3.1 Quantile function
for Example 3.3.9

p F−1(p)

(0, 0.1681] 0

(0.1681, 0.5283] 1

(0.5283, 0.8370] 2

(0.8370, 0.9693] 3

(0.9693, 0.9977] 4

(0.9977, 1) 5

Example
3.3.9

Quantiles of a Binomial Distribution. Let X have the binomial distribution with pa-
rameters 5 and 0.3. The binomial table in the back of the book has the p.f. f of X,
which we reproduce here together with the c.d.f. F :

x 0 1 2 3 4 5

f (x) 0.1681 0.3602 0.3087 0.1323 0.0284 0.0024

F(x) 0.1681 0.5283 0.8370 0.9693 0.9977 1

(A little rounding error occurred in the p.f.) So, for example, the 0.5 quantile of this
distribution is 1, which is also the 0.25 quantile and the 0.20 quantile. The entire
quantile function is in Table 3.1. So, the 90th percentile is 3, which is also the 95th
percentile, etc. �

Certain quantiles have special names.

Definition
3.3.3

Median/Quartiles. The 1/2 quantile or the 50th percentile of a distribution is called its
median. The 1/4 quantile or 25th percentile is the lower quartile. The 3/4 quantile or
75th percentile is called the upper quartile.

Note: The Median Is Special. The median of a distribution is one of several special
features that people like to use when sumarizing the distribution of a random vari-
able. We shall discuss summaries of distributions in more detail in Chapter 4. Because
the median is such a popular summary, we need to note that there are several dif-
ferent but similar “definitions” of median. Recall that the 1/2 quantile is the smallest
number x such that F(x) ≥ 1/2. For some distributions, usually discrete distributions,
there will be an interval of numbers [x1, x2) such that for all x ∈ [x1, x2), F(x) = 1/2.
In such cases, it is common to refer to all such x (including x2) as medians of the dis-
tribution. (See Definition 4.5.1.) Another popular convention is to call (x1 + x2)/2
the median. This last is probably the most common convention. The readers should
be aware that, whenever they encounter a median, it might be any one of the things
that we just discussed. Fortunately, they all mean nearly the same thing, namely that
the number divides the distribution in half as closely as is possible.
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Example
3.3.10

Uniform Distribution on Integers. Let X have the uniform distribution on the integers
1, 2, 3, 4. (See Definition 3.1.6.) The c.d.f. of X is

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if x < 1,
1/4 if 1 ≤ x < 2,
1/2 if 2 ≤ x < 3,
3/4 if 3 ≤ x < 4,
1 if x ≥ 4.

The 1/2 quantile is 2, but every number in the interval [2, 3] might be called a median.
The most popular choice would be 2.5. �

One advantage to describing a distribution by the quantile function rather than
by the c.d.f. is that quantile functions are easier to display in tabular form for multiple
distributions. The reason is that the domain of the quantile function is always the
interval (0, 1) no matter what the possible values of X are. Quantiles are also useful
for summarizing distributions in terms of where the probability is. For example, if
one wishes to say where the middle half of a distribution is, one can say that it lies
between the 0.25 quantile and the 0.75 quantile. In Sec. 8.5, we shall see how to use
quantiles to help provide estimates of unknown quantities after observing data.

In Exercise 19, you can show how to recover the c.d.f. from the quantile function.
Hence, the quantile function is an alternative way to characterize a distribution.

Summary

The c.d.f. F of a random variable X is F(x) = Pr(X ≤ x) for all real x. This function
is continuous from the right. If we let F(x−) equal the limit of F(y) as y approaches
x from below, then F(x) − F(x−) = Pr(X = x). A continuous distribution has a
continuous c.d.f. and F ′(x) = f (x), the p.d.f. of the distribution, for all x at which
F is differentiable. A discrete distribution has a c.d.f. that is constant between the
possible values and jumps by f (x) at each possible value x. The quantile function
F−1(p) is equal to the smallest x such that F(x) ≥ p for 0 < p < 1.

Exercises

1. Suppose that a random variable X has the Bernoulli
distribution with parameter p = 0.7. (See Definition
3.1.5.) Sketch the c.d.f. of X.

2. Suppose that a random variable X can take only the
values −2, 0, 1, and 4, and that the probabilities of these
values are as follows: Pr(X = −2) = 0.4, Pr(X = 0) = 0.1,
Pr(X = 1) = 0.3, and Pr(X = 4) = 0.2. Sketch the c.d.f. of
X.

3. Suppose that a coin is tossed repeatedly until a head is
obtained for the first time, and let X denote the number
of tosses that are required. Sketch the c.d.f. of X.

4. Suppose that the c.d.f. F of a random variable X is as
sketched in Fig. 3.9. Find each of the following probabili-
ties:

a. Pr(X = −1) b. Pr(X < 0)

c. Pr(X ≤ 0) d. Pr(X = 1)

e. Pr(0 < X ≤ 3) f. Pr(0 < X < 3)

g. Pr(0 ≤ X ≤ 3) h. Pr(1 < X ≤ 2)

i. Pr(1 ≤ X ≤ 2) j. Pr(X > 5)

k. Pr(X ≥ 5) l. Pr(3 ≤ X ≤ 4)

5. Suppose that the c.d.f. of a random variable X is as
follows:

F(x) =

⎧⎪⎨⎪⎩
0 for x ≤ 0,
1
9x2 for 0 < x ≤ 3,

1 for x > 3.

Find and sketch the p.d.f. of X.
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6. Suppose that the c.d.f. of a random variable X is as
follows:

F(x) =
{

ex−3 for x ≤ 3,

1 for x > 3.

Find and sketch the p.d.f. of X.

7. Suppose, as in Exercise 7 of Sec. 3.2, that a random
variable X has the uniform distribution on the interval
[−2, 8]. Find and sketch the c.d.f. of X.

8. Suppose that a point in the xy-plane is chosen at ran-
dom from the interior of a circle for which the equation is
x2 + y2 = 1; and suppose that the probability that the point
will belong to each region inside the circle is proportional
to the area of that region. Let Z denote a random variable
representing the distance from the center of the circle to
the point. Find and sketch the c.d.f. of Z.

9. Suppose that X has the uniform distribution on the
interval [0, 5] and that the random variable Y is defined
by Y = 0 if X ≤ 1, Y = 5 if X ≥ 3, and Y = X otherwise.
Sketch the c.d.f. of Y .

10. For the c.d.f. in Example 3.3.4, find the quantile func-
tion.

11. For the c.d.f. in Exercise 5, find the quantile function.

12. For the c.d.f. in Exercise 6, find the quantile function.

13. Suppose that a broker believes that the change in
value X of a particular investment over the next two
months has the uniform distribution on the interval [−12,

24]. Find the value at risk VaR for two months at proba-
bility level 0.95.

14. Find the quartiles and the median of the binomial
distribution with parameters n = 10 and p = 0.2.

1

0.8

0.6

0.4

1�1 2 3 4 5

0.2

0 x

F(x)

Figure 3.9 The c.d.f. for Exercise 4.

15. Suppose that X has the p.d.f.

f (x) =
{

2x if 0 < x < 1,
0 otherwise.

Find and sketch the c.d.f. or X.

16. Find the quantile function for the distribution in Ex-
ample 3.3.1.

17. Prove that the quantile function F−1 of a general ran-
dom variable X has the following three properties that are
analogous to properties of the c.d.f.:

a. F−1 is a nondecreasing function of p for 0 < p < 1.

b. Let x0 = lim p→0
p>0

F−1(p) and x1 = lim p→1
p<1

F−1(p).

Then x0 equals the greatest lower bound on the set
of numbers c such that Pr(X ≤ c) > 0, and x1 equals
the least upper bound on the set of numbers d such
that Pr(X ≥ d) > 0.

c. F−1 is continuous from the left; that is F−1(p) =
F−1(p−) for all 0 < p < 1.

18. Let X be a random variable with quantile function
F−1. Assume the following three conditions: (i) F−1(p) =
c for all p in the interval (p0, p1), (ii) either p0 = 0 or
F−1(p0) < c, and (iii) either p1 = 1 or F−1(p) > c for p >

p1. Prove that Pr(X = c) = p1 − p0.

19. Let X be a random variable with c.d.f. F and quantile
function F−1. Let x0 and x1 be as defined in Exercise 17.
(Note that x0 = −∞ and/or x1 = ∞ are possible.) Prove
that for all x in the open interval (x0, x1), F(x) is the largest
p such that F−1(p) ≤ x.

20. In Exercise 13 of Sec. 3.2, draw a sketch of the c.d.f. F
of X and find F(10).
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3.4 Bivariate Distributions
We generalize the concept of distribution of a random variable to the joint distri-
bution of two random variables. In doing so, we introduce the joint p.f. for two
discrete random variables, the joint p.d.f. for two continuous random variables,
and the joint c.d.f. for any two random variables. We also introduce a joint hybrid
of p.f. and p.d.f. for the case of one discrete random variable and one continuous
random variable.

Example
3.4.1

Demands for Utilities. In Example 3.1.5, we found the distribution of the random
variable X that represented the demand for water. But there is another random
variable, Y , the demand for electricity, that is also of interest. When discussing
two random variables at once, it is often convenient to put them together into an
ordered pair, (X, Y ). As early as Example 1.5.4 on page 19, we actually calculated
some probabilities associated with the pair (X, Y ). In that example, we defined two
events A and B that we now can express as A = {X ≥ 115} and B = {Y ≥ 110}. In
Example 1.5.4, we computed Pr(A ∩ B) and Pr(A ∪ B). We can express A ∩ B and
A ∪ B as events involving the pair (X, Y ). For example, define the set of ordered
pairs C = {(x, y) : x ≥ 115 and y ≥ 110} so that that the event {(X, Y ) ∈ C)} = A ∩ B.
That is, the event that the pair of random variables lies in the set C is the same
as the intersection of the two events A and B. In Example 1.5.4, we computed
Pr(A ∩ B) = 0.1198. So, we can now assert that Pr((X, Y ) ∈ C) = 0.1198. �

Definition
3.4.1

Joint/Bivariate Distribution. Let X and Y be random variables. The joint distribution
or bivariate distribution of X and Y is the collection of all probabilities of the form
Pr[(X, Y ) ∈ C] for all sets C of pairs of real numbers such that {(X, Y ) ∈ C} is an event.

It is a straightforward consequence of the definition of the joint distribution of X and
Y that this joint distribution is itself a probability measure on the set of ordered pairs
of real numbers. The set {(X, Y ) ∈ C} will be an event for every set C of pairs of real
numbers that most readers will be able to imagine.

In this section and the next two sections, we shall discuss convenient ways to
characterize and do computations with bivariate distributions. In Sec. 3.7, these
considerations will be extended to the joint distribution of an arbitrary finite number
of random variables.

Discrete Joint Distributions

Example
3.4.2

Theater Patrons. Suppose that a sample of 10 people is selected at random from a
theater with 200 patrons. One random variable of interest might be the number X

of people in the sample who are over 60 years of age, and another random variable
might be the number Y of people in the sample who live more than 25 miles from
the theater. For each ordered pair (x, y) with x = 0, . . . , 10 and y = 0, . . . , 10, we
might wish to compute Pr((X, Y ) = (x, y)), the probability that there are x people in
the sample who are over 60 years of age and there are y people in the sample who
live more than 25 miles away. �

Definition
3.4.2

Discrete Joint Distribution. Let X and Y be random variables, and consider the ordered
pair (X, Y ). If there are only finitely or at most countably many different possible
values (x, y) for the pair (X, Y ), then we say that X and Y have a discrete joint
distribution.
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The two random variables in Example 3.4.2 have a discrete joint distribution.

Theorem
3.4.1

Suppose that two random variables X and Y each have a discrete distribution. Then
X and Y have a discrete joint distribution.

Proof If both X and Y have only finitely many possible values, then there will be
only a finite number of different possible values (x, y) for the pair (X, Y ). On the
other hand, if either X or Y or both can take a countably infinite number of possible
values, then there will also be a countably infinite number of possible values for the
pair (X, Y ). In all of these cases, the pair (X, Y ) has a discrete joint distribution.

When we define continuous joint distribution shortly, we shall see that the obvious
analog of Theorem 3.4.1 is not true.

Definition
3.4.3

Joint Probability Function, p.f. The joint probability function, or the joint p.f., of X and
Y is defined as the function f such that for every point (x, y) in the xy-plane,

f (x, y) = Pr(X = x and Y = y).

The following result is easy to prove because there are at most countably many
pairs (x, y) that must account for all of the probability a discrete joint distribution.

Theorem
3.4.2

Let X and Y have a discrete joint distribution. If (x, y) is not one of the possible
values of the pair (X, Y ), then f (x, y) = 0. Also,∑

All (x,y)

f (x, y) = 1.

Finally, for each set C of ordered pairs,

Pr[(X, Y ) ∈ C] =
∑

(x,y)∈C

f (x, y).

Example
3.4.3

Specifying a Discrete Joint Distribution by a Table of Probabilities. In a certain suburban
area, each household reported the number of cars and the number of television sets
that they owned. Let X stand for the number of cars owned by a randomly selected
household in this area. Let Y stand for the number of television sets owned by that
same randomly selected household. In this case, X takes only the values 1, 2, and 3;
Y takes only the values 1, 2, 3, and 4; and the joint p.f. f of X and Y is as specified in
Table 3.2.

Table 3.2 Joint p.f. f (x, y) for
Example 3.4.3

y

x 1 2 3 4

1 0.1 0 0.1 0

2 0.3 0 0.1 0.2

3 0 0.2 0 0



120 Chapter 3 Random Variables and Distributions

Figure 3.10 The joint p.f. of
X and Y in Example 3.4.3.

f (x, y)

x y

11
2

3
2

3
4

This joint p.f. is sketched in Fig. 3.10. We shall determine the probability that
the randomly selected household owns at least two of both cars and televisions. In
symbols, this is Pr(X ≥ 2 and Y ≥ 2).

By summing f (x, y) over all values of x ≥ 2 and y ≥ 2, we obtain the value

Pr(X ≥ 2 and Y ≥ 2) = f (2, 2) + f (2, 3) + f (2, 4) + f (3, 2)

+ f (3, 3) + f (3, 4)

= 0.5.

Next, we shall determine the probability that the randomly selected household owns
exactly one car, namely Pr(X = 1). By summing the probabilities in the first row of
the table, we obtain the value

Pr(X = 1) =
4∑

y=1

f (1, y) = 0.2. �

Continuous Joint Distributions

Example
3.4.4

Demands for Utilities. Consider again the joint distribution of X and Y in Exam-
ple 3.4.1. When we first calculated probabilities for these two random variables back
in Example 1.5.4 on page 19 (even before we named them or called them random
variables), we assumed that the probability of each subset of the sample space was
proportional to the area of the subset. Since the area of the sample space is 29,204,
the probability that the pair (X, Y ) lies in a region C is the area of C divided by 29,204.
We can also write this relation as

Pr((X, Y ) ∈ C} =
∫

C

∫
1

29,204
dx dy, (3.4.1)

assuming that the integral exists. �

If one looks carefully at Eq. (3.4.1), one will notice the similarity to Eqs. (3.2.2)
and (3.2.1). We formalize this connection as follows.

Definition
3.4.4

Continuous Joint Distribution/Joint p.d.f./Support. Two random variables X and Y have
a continuous joint distribution if there exists a nonnegative function f defined over
the entire xy-plane such that for every subset C of the plane,

Pr[(X, Y ) ∈ C] =
∫

C

∫
f (x, y) dx dy,
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if the integral exists. The function f is called the joint probability density function
(abbreviated joint p.d.f.) of X and Y . The closure of the set {(x, y) : f (x, y) > 0} is
called the support of (the distribution of) (X, Y ).

Example
3.4.5

Demands for Utilities. In Example 3.4.4, it is clear from Eq. (3.4.1) that the joint p.d.f.
of X and Y is the function

f (x, y) =
⎧⎨⎩

1
29,204

for 4 ≤ x ≤ 200 and 1 ≤ y ≤ 150,

0 otherwise. �
(3.4.2)

It is clear from Definition 3.4.4 that the joint p.d.f. of two random variables
characterizes their joint distribution. The following result is also straightforward.

Theorem
3.4.3

A joint p.d.f. must satisfy the following two conditions:

f (x, y) ≥ 0 for −∞ < x < ∞ and −∞ < y < ∞,

and ∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1.

Any function that satisfies the two displayed formulas in Theorem 3.4.3 is the joint
p.d.f. for some probability distribution.

An example of the graph of a joint p.d.f. is presented in Fig. 3.11.
The total volume beneath the surface z = f (x, y) and above the xy-plane must be
1. The probability that the pair (X, Y ) will belong to the rectangle C is equal to the
volume of the solid figure with base A shown in Fig. 3.11. The top of this solid figure
is formed by the surface z = f (x, y).

In Sec. 3.5, we will show that if X and Y have a continuous joint distribution,
then X and Y each have a continuous distribution when considered separately. This
seems reasonable intutively. However, the converse of this statement is not true, and
the following result helps to show why.

Figure 3.11 An example of
a joint p.d.f.

x y

f (x, y)

C
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Theorem
3.4.4

For every continuous joint distribution on the xy-plane, the following two statements
hold:

i. Every individual point, and every infinite sequence of points, in the xy-plane
has probability 0.

ii. Let f be a continuous function of one real variable defined on a (possibly
unbounded) interval (a, b). The sets {(x, y) : y = f (x), a < x < b} and {(x, y) :
x = f (y), a < y < b} have probability 0.

Proof According to Definition 3.4.4, the probability that a continuous joint distri-
bution assigns to a specified region of the xy-plane can be found by integrating the
joint p.d.f. f (x, y) over that region, if the integral exists. If the region is a single point,
the integral will be 0. By Axiom 3 of probability, the probability for any countable
collection of points must also be 0. The integral of a function of two variables over
the graph of a continuous function in the xy-plane is also 0.

Example
3.4.6

Not a Continuous Joint Distribution. It follows from (ii) of Theorem 3.4.4 that the
probability that (X, Y ) will lie on each specified straight line in the plane is 0. If
X has a continuous distribution and if Y = X, then both X and Y have continuous
distributions, but the probability is 1 that (X, Y ) lies on the straight line y = x. Hence,
X and Y cannot have a continuous joint distribution. �

Example
3.4.7

Calculating a Normalizing Constant. Suppose that the joint p.d.f. of X and Y is specified
as follows:

f (x, y) =
{

cx2y for x2 ≤ y ≤ 1,
0 otherwise.

We shall determine the value of the constant c.
The support S of (X, Y ) is sketched in Fig. 3.12. Since f (x, y) = 0 outside S, it

follows that ∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy =

∫
S

∫
f (x, y) dx dy

=
∫ 1

−1

∫ 1

x2
cx2y dy dx = 4

21
c.

(3.4.3)

Since the value of this integral must be 1, the value of c must be 21/4.
The limits of integration on the last integral in (3.4.3) were determined as follows.

We have our choice of whether to integrate x or y as the inner integral, and we chose
y. So, we must find, for each x, the interval of y values over which to integrate. From
Fig. 3.12, we see that, for each x, y runs from the curve where y = x2 to the line
where y = 1. The interval of x values for the outer integral is from −1 to 1 according
to Fig. 3.12. If we had chosen to integrate x on the inside, then for each y, we see that
x runs from −√

y to
√

y, while y runs from 0 to 1. The final answer would have been
the same. �

Example
3.4.8

Calculating Probabilities from a Joint p.d.f. For the joint distribution in Example 3.4.7,
we shall now determine the value of Pr(X ≥ Y ).

The subset S0 of S where x ≥ y is sketched in Fig. 3.13. Hence,

Pr(X ≥ Y ) =
∫

S0

∫
f (x, y) dx dy =

∫ 1

0

∫ x

x2

21
4

x2y dy dx = 3
20

. �
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Figure 3.12 The support S

of (X, Y ) in Example 3.4.8.

x

y

1�1

S

(1, 1)(�1, 1)

y � x2

Figure 3.13 The subset S0
of the support S where x ≥ y

in Example 3.4.8.

x

y

1�1

(1, 1)

y � x2

y � x

Example
3.4.9

Determining a Joint p.d.f. by Geometric Methods. Suppose that a point (X, Y ) is se-
lected at random from inside the circle x2 + y2 ≤ 9. We shall determine the joint
p.d.f. of X and Y .

The support of (X, Y ) is the set S of points on and inside the circle x2 + y2 ≤ 9.
The statement that the point (X, Y ) is selected at random from inside the circle is
interpreted to mean that the joint p.d.f. of X and Y is constant over S and is 0 outside S.
Thus,

f (x, y) =
{

c for (x, y) ∈ S,
0 otherwise.

We must have ∫
S

∫
f (x, y) dx dy = c × (area of S) = 1.

Since the area of the circle S is 9π , the value of the constant c must be 1/(9π). �

Mixed Bivariate Distributions

Example
3.4.10

A Clinical Trial. Consider a clinical trial (such as the one described in Example 2.1.12)
in which each patient with depression receives a treatment and is followed to see
whether they have a relapse into depression. Let X be the indicator of whether or
not the first patient is a “success” (no relapse). That is X = 1 if the patient does not
relapse and X = 0 if the patient relapses. Also, let P be the proportion of patients
who have no replapse among all patients who might receive the treatment. It is clear
that X must have a discrete distribution, but it might be sensible to think of P as
a continuous random variable taking its value anywhere in the interval [0, 1]. Even
though X and P can have neither a joint discrete distribution nor a joint continuous
distribution, we can still be interested in the joint distribution of X and P . �



124 Chapter 3 Random Variables and Distributions

Prior to Example 3.4.10, we have discussed bivariate distributions that were
either discrete or continuous. Occasionally, one must consider a mixed bivariate dis-
tribution in which one of the random variables is discrete and the other is continuous.
We shall use a function f (x, y) to characterize such a joint distribution in much the
same way that we use a joint p.f. to characterize a discrete joint distribution or a joint
p.d.f. to characterize a continuous joint distribution.

Definition
3.4.5

Joint p.f./p.d.f. Let X and Y be random variables such that X is discrete and Y is
continuous. Suppose that there is a function f (x, y) defined on the xy-plane such
that, for every pair A and B of subsets of the real numbers,

Pr(X ∈ A and Y ∈ B) =
∫

B

∑
x∈A

f (x, y)dy, (3.4.4)

if the integral exists. Then the function f is called the joint p.f./p.d.f. of X and Y .

Clearly, Definition 3.4.5 can be modified in an obvious way if Y is discrete and X

is continuous. Every joint p.f./p.d.f. must satisfy two conditions. If X is the discrete
random variable with possible values x1, x2, . . . and Y is the continuous random
variable, then f (x, y) ≥ 0 for all x, y and∫ ∞

−∞

∞∑
i=1

f (xi, y)dy = 1. (3.4.5)

Because f is nonnegative, the sum and integral in Eqs. (3.4.4) and (3.4.5) can be done
in whichever order is more convenient.

Note: Probabilities of More General Sets. For a general set C of pairs of real
numbers, we can compute Pr((X, Y ) ∈ C) using the joint p.f./p.d.f. of X and Y . For
each x, let Cx = {y : (x, y) ∈ C}. Then

Pr((X, Y ) ∈ C) =
∑
All x

∫
Cx

f (x, y)dy,

if all of the integrals exist. Alternatively, for each y, define Cy = {x : (x, y) ∈ C}, and
then

Pr((X, Y ) ∈ C) =
∫ ∞

−∞

[∑
x∈Cy

f (x, y)

]
dy,

if the integral exists.

Example
3.4.11

A Joint p.f./p.d.f. Suppose that the joint p.f./p.d.f. of X and Y is

f (x, y) = xyx−1

3
, for x = 1, 2, 3 and 0 < y < 1.

We should check to make sure that this function satisfies (3.4.5). It is easier to
integrate over the y values first, so we compute

3∑
x=1

∫ 1

0

xyx−1

3
dy =

3∑
x=1

1
3

= 1.

Suppose that we wish to compute the probability that Y ≥ 1/2 and X ≥ 2. That is, we
want Pr(X ∈ A and Y ∈ B) with A = [2, ∞) and B = [1/2, ∞). So, we apply Eq. (3.4.4)
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to get the probability

3∑
x=2

∫ 1

1/2

xyx−1

3
dy =

3∑
x=2

(
1 − (1/2)x

3

)
= 0.5417.

For illustration, we shall compute the sum and integral in the other order also.
For each y ∈ [1/2, 1),

∑3
x=2 f (x, y) = 2y/3 + y2. For y ≥ 1/2, the sum is 0. So, the

probability is∫ 1

1/2

[
2
3
y + y2

]
dy = 1

3

[
1 −

(
1
2

)2
]

+ 1
3

[
1 −

(
1
2

)3
]

= 0.5417. �

Example
3.4.12

A Clinical Trial. A possible joint p.f./p.d.f. for X and P in Example 3.4.10 is

f (x, p) = px(1 − p)1−x, for x = 0, 1 and 0 < p < 1.

Here, X is discrete and P is continuous. The function f is nonnegative, and the
reader should be able to demonstrate that it satisfies (3.4.5). Suppose that we wish
to compute Pr(X ≤ 0 and P ≤ 1/2). This can be computed as∫ 1/2

0
(1 − p)dp = − 1

2
[(1 − 1/2)2 − (1 − 0)2] = 3

8
.

Suppose that we also wish to compute Pr(X = 1). This time, we apply Eq. (3.4.4) with
A = {1} and B = (0, 1). In this case,

Pr(X = 1) =
∫ 1

0
p dp = 1

2
. �

A more complicated type of joint distribution can also arise in a practical prob-
lem.

Example
3.4.13

A Complicated Joint Distribution. Suppose that X and Y are the times at which two
specific components in an electronic system fail. There might be a certain probability
p (0 < p < 1) that the two components will fail at the same time and a certain
probability 1 − p that they will fail at different times. Furthermore, if they fail at
the same time, then their common failure time might be distributed according to a
certain p.d.f. f (x); if they fail at different times, then these times might be distributed
according to a certain joint p.d.f. g(x, y).

The joint distribution of X and Y in this example is not continuous, because
there is positive probability p that (X, Y ) will lie on the line x = y. Nor does the joint
distribution have a joint p.f./p.d.f. or any other simple function to describe it. There
are ways to deal with such joint distributions, but we shall not discuss them in this
text. �

Bivariate Cumulative Distribution Functions

The first calculation in Example 3.4.12, namely, Pr(X ≤ 0 and Y ≤ 1/2), is a gener-
alization of the calculation of a c.d.f. to a bivariate distribution. We formalize the
generalization as follows.

Definition
3.4.6

Joint (Cumulative) Distribution Function/c.d.f. The joint distribution function or joint
cumulative distribution function (joint c.d.f.) of two random variables X and Y is
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Figure 3.14 The probability
of a rectangle.

a

c

d

b x

y

A

defined as the function F such that for all values of x and y (−∞ < x < ∞ and −∞ <

y < ∞),

F(x, y) = Pr(X ≤ x and Y ≤ y).

It is clear from Definition 3.4.6 that F(x, y) is monotone increasing in x for each fixed
y and is monotone increasing in y for each fixed x.

If the joint c.d.f. of two arbitrary random variables X and Y is F , then the
probability that the pair (X, Y ) will lie in a specified rectangle in the xy-plane can be
found from F as follows: For given numbers a < b and c < d ,

Pr(a < X ≤ b and c < Y ≤ d)

= Pr(a < X ≤ b and Y ≤ d) − Pr(a < X ≤ b and Y ≤ c)

= [Pr(X ≤ b and Y ≤ d) − Pr(X ≤ a and Y ≤ d)] (3.4.6)

−[Pr(X ≤ b and Y ≤ c) − Pr(X ≤ a and Y ≤ c)]

= F(b, d) − F(a, d) − F(b, c) + F(a, c).

Hence, the probability of the rectangle C sketched in Fig. 3.14 is given by the
combination of values of F just derived. It should be noted that two sides of the
rectangle are included in the set C and the other two sides are excluded. Thus, if there
are points or line segments on the boundary of C that have positive probability, it is
important to distinguish between the weak inequalities and the strict inequalities in
Eq. (3.4.6).

Theorem
3.4.5

Let X and Y have a joint c.d.f. F . The c.d.f. F1 of just the single random variable X

can be derived from the joint c.d.f. F as F1(x) = limy→∞ F(x, y). Similarly, the c.d.f.
F2 of Y equals F2(y) = limx→∞ F(x, y), for 0 < y < ∞.

Proof We prove the claim about F1 as the claim about F2 is similar. Let −∞ < x < ∞.
Define

B0 = {X ≤ x and Y ≤ 0},
Bn = {X ≤ x and n − 1 < Y ≤ n}, for n = 1, 2, . . . ,

Am =
m⋃

n=0

Bn, for m = 1, 2, . . . .

Then {X ≤ x} = ⋃∞
n=−0 Bn, and Am = {X ≤ x and Y ≤ m} for m = 1, 2, . . .. It follows

that Pr(Am) = F(x, m) for each m. Also,
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F1(x) = Pr(X ≤ x) = Pr

( ∞⋃
n=1

Bn

)

=
∞∑

n=0

Pr(Bn) = lim
m→∞ Pr(Am)

= lim
m→∞ F(x, m) = lim

y→∞ F(x, y),

where the third equality follows from countable additivity and the fact that the Bn

events are disjoint, and the last equality follows from the fact that F(x, y) is monotone
increasing in y for each fixed x.

Other relationships involving the univariate distribution of X, the univariate distri-
bution of Y , and their joint bivariate distribution will be presented in the next section.

Finally, if X and Y have a continuous joint distribution with joint p.d.f. f , then
the joint c.d.f. at (x, y) is

F(x, y) =
∫ y

−∞

∫ x

−∞
f (r, s) dr ds.

Here, the symbols r and s are used simply as dummy variables of integration. The
joint p.d.f. can be derived from the joint c.d.f. by using the relations

f (x, y) = ∂2F(x, y)

∂x∂y
= ∂2F(x, y)

∂y∂x

at every point (x, y) at which these second-order derivatives exist.

Example
3.4.14

Determining a Joint p.d.f. from a Joint c.d.f. Suppose that X and Y are random variables
that take values only in the intervals 0 ≤ X ≤ 2 and 0 ≤ Y ≤ 2. Suppose also that the
joint c.d.f. of X and Y , for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2, is as follows:

F(x, y) = 1
16

xy(x + y). (3.4.7)

We shall first determine the c.d.f. F1 of just the random variable X and then determine
the joint p.d.f. f of X and Y .

The value of F(x, y) at any point (x, y) in the xy-plane that does not represent
a pair of possible values of X and Y can be calculated from (3.4.7) and the fact that
F(x, y) = Pr(X ≤ x and Y ≤ y). Thus, if either x < 0 or y < 0, then F(x, y) = 0. If both
x > 2 and y > 2, then F(x, y) = 1. If 0 ≤ x ≤ 2 and y > 2, then F(x, y) = F(x, 2), and
it follows from Eq. (3.4.7) that

F(x, y) = 1
8
x(x + 2).

Similarly, if 0 ≤ y ≤ 2 and x > 2, then

F(x, y) = 1
8
y(y + 2).

The function F(x, y) has now been specified for every point in the xy-plane.
By letting y → ∞, we find that the c.d.f. of just the random variable X is

F1(x) =

⎧⎪⎨⎪⎩
0 for x < 0,
1
8x(x + 2) for 0 ≤ x ≤ 2,

1 for x > 2.
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Furthermore, for 0 < x < 2 and 0 < y < 2,

∂2F(x, y)

∂x∂y
= 1

8
(x + y).

Also, if x < 0, y < 0, x > 2, or y > 2, then

∂2F(x, y)

∂x∂y
= 0.

Hence, the joint p.d.f. of X and Y is

f (x, y) =
{

1
8 (x + y) for 0 < x < 2 and 0 < y < 2,

0 otherwise. �

Example
3.4.15

Demands for Utilities. We can compute the joint c.d.f. for water and electric demand
in Example 3.4.4 by using the joint p.d.f. that was given in Eq. (3.4.2). If either x ≤ 4 or
y ≤ 1, then F(x, y) = 0 because either X ≤ x or Y ≤ y would be impossible. Similarly,
if both x ≥ 200 and y ≥ 150, F(x, y) = 1 because both X ≤ x and Y ≤ y would be sure
events. For other values of x and y, we compute

F(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

4

∫ y

1

1
29,204

dydx = xy

29,204
for 4 ≤ x ≤ 200, 1 ≤ y ≤ 150,

∫ x

4

∫ 150

1

1
29,204

dydx = x

196
for 4 ≤ x ≤ 200, y > 150,

∫ 200

4

∫ y

1

1
29,204

dydx = y

149
for x > 200, 1 ≤ y ≤ 150.

The reason that we need three cases in the formula for F(x, y) is that the joint p.d.f.
in Eq. (3.4.2) drops to 0 when x crosses above 200 or when y crosses above 150;
hence, we never want to integrate 1/29,204 beyond x = 200 or beyond y = 150. If
one takes the limit as y → ∞ of F(x, y) (for fixed 4 ≤ x ≤ 200), one gets the second
case in the formula above, which then is the c.d.f. of X, F1(x). Similarly, if one takes
the limx→∞ F(x, y) (for fixed 1 ≤ y ≤ 150), one gets the third case in the formula,
which then is the c.d.f. of Y , F2(y). �

Summary

The joint c.d.f. of two random variables X and Y is F(x, y) = Pr(X ≤ x and Y ≤ y).
The joint p.d.f. of two continuous random variables is a nonnegative function f such
that the probability of the pair (X, Y ) being in a set C is the integral of f (x, y) over the
set C, if the integral exists. The joint p.d.f. is also the second mixed partial derivative
of the joint c.d.f. with respect to both variables. The joint p.f. of two discrete random
variables is a nonnegative function f such that the probability of the pair (X, Y ) being
in a set C is the sum of f (x, y) over all points in C. A joint p.f. can be strictly positive at
countably many pairs (x, y) at most. The joint p.f./p.d.f. of a discrete random variable
X and a continuous random variable Y is a nonnegative function f such that the
probability of the pair (X, Y ) being in a set C is obtained by summing f (x, y) over
all x such that (x, y) ∈ C for each y and then integrating the resulting function of y.
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Exercises

1. Suppose that the joint p.d.f. of a pair of random vari-
ables (X, Y ) is constant on the rectangle where 0 ≤ x ≤ 2
and 0 ≤ y ≤ 1, and suppose that the p.d.f. is 0 off of this
rectangle.

a. Find the constant value of the p.d.f. on the rectangle.

b. Find Pr(X ≥ Y ).

2. Suppose that in an electric display sign there are three
light bulbs in the first row and four light bulbs in the second
row. Let X denote the number of bulbs in the first row that
will be burned out at a specified time t , and let Y denote
the number of bulbs in the second row that will be burned
out at the same time t . Suppose that the joint p.f. of X and
Y is as specified in the following table:

Y

X 0 1 2 3 4

0 0.08 0.07 0.06 0.01 0.01

1 0.06 0.10 0.12 0.05 0.02

2 0.05 0.06 0.09 0.04 0.03

3 0.02 0.03 0.03 0.03 0.04

Determine each of the following probabilities:

a. Pr(X = 2) b. Pr(Y ≥ 2)

c. Pr(X ≤ 2 and Y ≤ 2) d. Pr(X = Y )

e. Pr(X > Y)

3. Suppose that X and Y have a discrete joint distribution
for which the joint p.f. is defined as follows:

f (x, y) =
⎧⎨⎩

c|x + y| for x = −2, −1, 0, 1, 2 and
y = −2, −1, 0, 1, 2,

0 otherwise.

Determine (a) the value of the constant c; (b) Pr(X =
0 and Y = −2); (c) Pr(X = 1); (d) Pr(|X − Y | ≤ 1).

4. Suppose that X and Y have a continuous joint distribu-
tion for which the joint p.d.f. is defined as follows:

f (x, y) =
{

cy2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,
0 otherwise.

Determine (a) the value of the constant c; (b) Pr(X + Y >

2); (c) Pr(Y < 1/2); (d) Pr(X ≤ 1); (e) Pr(X = 3Y ).

5. Suppose that the joint p.d.f. of two random variables X

and Y is as follows:

f (x, y) =
{

c(x2 + y) for 0 ≤ y ≤ 1 − x2,
0 otherwise.

Determine (a) the value of the constant c;
(b) Pr(0 ≤ X ≤ 1/2); (c) Pr(Y ≤ X + 1);
(d) Pr(Y = X2).

6. Suppose that a point (X, Y ) is chosen at random from
the region S in the xy-plane containing all points (x, y)
such that x ≥ 0, y ≥ 0, and 4y + x ≤ 4.

a. Determine the joint p.d.f. of X and Y .

b. Suppose that S0 is a subset of the region S having area
α and determine Pr[(X, Y ) ∈ S0].

7. Suppose that a point (X, Y ) is to be chosen from the
square S in the xy-plane containing all points (x, y) such
that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Suppose that the probabil-
ity that the chosen point will be the corner (0, 0) is 0.1,
the probability that it will be the corner (1, 0) is 0.2, the
probability that it will be the corner (0, 1) is 0.4, and the
probability that it will be the corner (1, 1) is 0.1. Suppose
also that if the chosen point is not one of the four cor-
ners of the square, then it will be an interior point of the
square and will be chosen according to a constant p.d.f.
over the interior of the square. Determine (a) Pr(X ≤ 1/4)

and (b) Pr(X + Y ≤ 1).

8. Suppose that X and Y are random variables such that
(X, Y ) must belong to the rectangle in the xy-plane con-
taining all points (x, y) for which 0 ≤ x ≤ 3 and 0 ≤ y ≤ 4.
Suppose also that the joint c.d.f. of X and Y at every point
(x, y) in this rectangle is specified as follows:

F(x, y) = 1
156

xy(x2 + y).

Determine (a) Pr(1 ≤ X ≤ 2 and 1 ≤ Y ≤ 2);
(b) Pr(2 ≤ X ≤ 4 and 2 ≤ Y ≤ 4); (c) the c.d.f. of Y ;
(d) the joint p.d.f. of X and Y ; (e) Pr(Y ≤ X).

9. In Example 3.4.5, compute the probability that water
demand X is greater than electric demand Y .

10. Let Y be the rate (calls per hour) at which calls arrive
at a switchboard. Let X be the number of calls during a
two-hour period. A popular choice of joint p.f./p.d.f. for
(X, Y ) in this example would be one like

f (x, y) =
{

(2y)x

x! e−3y if y > 0 and x = 0, 1, . . . ,

0 otherwise.

a. Verify that f is a joint p.f./p.d.f. Hint: First, sum over
the x values using the well-known formula for the
power series expansion of e2y.

b. Find Pr(X = 0).

11. Consider the clinical trial of depression drugs in Ex-
ample 2.1.4. Suppose that a patient is selected at random
from the 150 patients in that study and we record Y , an
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Table 3.3 Proportions in clinical depression study for Exercise 11

Treatment group (Y )

Response (X) Imipramine (1) Lithium (2) Combination (3) Placebo (4)

Relapse (0) 0.120 0.087 0.146 0.160

No relapse (1) 0.147 0.166 0.107 0.067

indicator of the treatment group for that patient, and X, an
indicator of whether or not the patient relapsed. Table 3.3
contains the joint p.f. of X and Y .

a. Calculate the probability that a patient selected at
random from this study used Lithium (either alone

or in combination with Imipramine) and did not re-
lapse.

b. Calculate the probability that the patient had a re-
lapse (without regard to the treatment group).

3.5 Marginal Distributions
Earlier in this chapter, we introduced distributions for random variables, and
in Sec. 3.4 we discussed a generalization to joint distributions of two random
variables simultaneously. Often, we start with a joint distribution of two random
variables and we then want to find the distribution of just one of them. The
distribution of one random variable X computed from a joint distribution is also
called the marginal distribution of X. Each random variable will have a marginal
c.d.f. as well as a marginal p.d.f. or p.f. We also introduce the concept of independent
random variables, which is a natural generalization of independent events.

Deriving a Marginal p.f. or a Marginal p.d.f.

We have seen in Theorem 3.4.5 that if the joint c.d.f. F of two random variables X

and Y is known, then the c.d.f. F1 of the random variable X can be derived from
F . We saw an example of this derivation in Example 3.4.15. If X has a continuous
distribution, we can also derive the p.d.f. of X from the joint distribution.

Example
3.5.1

Demands for Utilities. Look carefully at the formula for F(x, y) in Example 3.4.15,
specifically the last two branches that we identified as F1(x) and F2(y), the c.d.f.’s of
the two individual random variables X and Y . It is apparent from those two formulas
and Theorem 3.3.5 that the p.d.f. of X alone is

f1(x) =
⎧⎨⎩

1
196

for 4 ≤ x ≤ 200,

0 otherwise,

which matches what we already found in Example 3.2.1. Similarly, the p.d.f. of Y

alone is

f2(y) =
⎧⎨⎩

1
149

for 1 ≤ y ≤ 150,

0 otherwise. �

The ideas employed in Example 3.5.1 lead to the following definition.



3.5 Marginal Distributions 131

Figure 3.15 Computing
f1(x) from the joint p.f.

x

y

x3····· ·····x2x1 x4

Definition
3.5.1

Marginal c.d.f./p.f./p.d.f. Suppose that X and Y have a joint distribution. The c.d.f. of
X derived by Theorem 3.4.5 is called the marginal c.d.f.of X. Similarly, the p.f. or p.d.f.
of X associated with the marginal c.d.f. of X is called the marginal p.f. or marginal
p.d.f. of X.

To obtain a specific formula for the marginal p.f. or marginal p.d.f., we start with
a discrete joint distribution.

Theorem
3.5.1

If X and Y have a discrete joint distribution for which the joint p.f. is f , then the
marginal p.f. f1 of X is

f1(x) =
∑
All y

f (x, y). (3.5.1)

Similarly, the marginal p.f. f2 of Y is f2(y) = ∑
All x f (x, y).

Proof We prove the result for f1, as the proof for f2 is similar. We illustrate the
proof in Fig. 3.15. In that figure, the set of points in the dashed box is the set of
pairs with first coordinate x. The event {X = x} can be expressed as the union of the
events represented by the pairs in the dashed box, namely, By = {X = x and Y = y}
for all possible y. The By events are disjoint and Pr(By) = f (x, y). Since Pr(X = x) =∑

All y Pr(By), Eq. (3.5.1) holds.

Example
3.5.2

Deriving a Marginal p.f. from a Table of Probabilities. Suppose that X and Y are the
random variables in Example 3.4.3 on page 119. These are respectively the numbers
of cars and televisions owned by a radomly selected household in a certain suburban
area. Table 3.2 on page 119 gives their joint p.f., and we repeat that table in Table 3.4
together with row and column totals added to the margins.

The marginal p.f. f1 of X can be read from the row totals of Table 3.4. The
numbers were obtained by summing the values in each row of this table from the four
columns in the central part of the table (those labeled y = 1, 2, 3, 4). In this way, it is
found that f1(1) = 0.2, f1(2) = 0.6, f1(3) = 0.2, and f1(x) = 0 for all other values of x.
This marginal p.f. gives the probabilities that a randomly selected household owns
1, 2, or 3 cars. Similarly, the marginal p.f. f2 of Y , the probabilities that a household
owns 1, 2, 3, or 4 televisions, can be read from the column totals. These numbers were
obtained by adding the numbers in each of the columns from the three rows in the
central part of the table (those labeled x = 1, 2, 3.) �

The name marginal distribution derives from the fact that the marginal distribu-
tions are the totals that appear in the margins of tables like Table 3.4.

If X and Y have a continuous joint distribution for which the joint p.d.f. is f , then
the marginal p.d.f. f1 of X is again determined in the manner shown in Eq. (3.5.1), but
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Table 3.4 Joint p.f. f (x, y) with marginal
p.f.’s for Example 3.5.2

y

x 1 2 3 4 Total

1 0.1 0 0.1 0 0.2

2 0.3 0 0.1 0.2 0.6

3 0 0.2 0 0 0.2

Total 0.4 0.2 0.2 0.2 1.0

the sum over all possible values of Y is now replaced by the integral over all possible
values of Y .

Theorem
3.5.2

If X and Y have a continuous joint distribution with joint p.d.f. f , then the marginal
p.d.f. f1 of X is

f1(x) =
∫ ∞

−∞
f (x, y) dy for −∞ < x < ∞. (3.5.2)

Similarly, the marginal p.d.f. f2 of Y is

f2(y) =
∫ ∞

−∞
f (x, y) dx for −∞ < y < ∞. (3.5.3)

Proof We prove (3.5.2) as the proof of (3.5.3) is similar. For each x, Pr(X ≤ x) can be
written as Pr((X, Y ) ∈ C), where C = {(r, s)) : r ≤ x}. We can compute this probability
directly from the joint p.d.f. of X and Y as

Pr((X, Y ) ∈ C) =
∫ x

−∞

∫ ∞

−∞
f (r, s)dsdr

=
∫ x

−∞

[∫ ∞

−∞
f (r, s)ds

]
dr

(3.5.4)

The inner integral in the last expression of Eq. (3.5.4) is a function of r and it
can easily be recognized as f1(r), where f1 is defined in Eq. (3.5.2). It follows that
Pr(X ≤ x) = ∫ x

−∞ f1(r)dr , so f1 is the marginal p.d.f. of X.

Example
3.5.3

Deriving a Marginal p.d.f. Suppose that the joint p.d.f. of X and Y is as specified in
Example 3.4.8, namely,

f (x, y) =
{

21
4 x2y for x2 ≤ y ≤ 1,

0 otherwise.

The set S of points (x, y) for which f (x, y) > 0 is sketched in Fig. 3.16. We shall
determine first the marginal p.d.f. f1 of X and then the marginal p.d.f. f2 of Y .

It can be seen from Fig. 3.16 that X cannot take any value outside the interval
[−1, 1]. Therefore, f1(x) = 0 for x < −1 or x > 1. Furthermore, for −1 ≤ x ≤ 1, it is
seen from Fig. 3.16 that f (x, y) = 0 unless x2 ≤ y ≤ 1. Therefore, for −1 ≤ x ≤ 1,

f1(x) =
∫ ∞

−∞
f (x, y) dy =

∫ 1

x2

(
21
4

)
x2y dy =

(
21
8

)
x2(1 − x4).
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Figure 3.16 The set S where
f (x, y) > 0 in Example 3.5.3.

x

y

1�1

S

(1, 1)(�1, 1)

y � x2

Figure 3.17 The marginal
p.d.f. of X in Example 3.5.3.

x1

1

�1

f1(x)

Figure 3.18 The marginal
p.d.f. of Y in Example 3.5.3.

x10

f2(y)

This marginal p.d.f. of X is sketched in Fig. 3.17.
Next, it can be seen from Fig. 3.16 that Y cannot take any value outside the

interval [0, 1]. Therefore, f2(y) = 0 for y < 0 or y > 1. Furthermore, for 0 ≤ y ≤ 1, it
is seen from Fig. 3.12 that f (x, y) = 0 unless −√

y ≤ x ≤ √
y. Therefore, for 0 ≤ y ≤ 1,

f2(y) =
∫ ∞

−∞
f (x, y) dx =

∫ √
y

−√
y

(
21
4

)
x2y dx =

(
7
2

)
y5/2.

This marginal p.d.f. of Y is sketched in Fig. 3.18. �

If X has a discrete distribution and Y has a continuous distribution, we can derive
the marginal p.f. of X and the marginal p.d.f. of Y from the joint p.f./p.d.f. in the same
ways that we derived a marginal p.f. or a marginal p.d.f. from a joint p.f. or a joint
p.d.f. The following result can be proven by combining the techniques used in the
proofs of Theorems 3.5.1 and 3.5.2.

Theorem
3.5.3

Let f be the joint p.f./p.d.f. of X and Y , with X discrete and Y continuous. Then the
marginal p.f. of X is

f1(x) = Pr(X = x) =
∫ ∞

−∞
f (x, y) dy, for all x,
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and the marginal p.d.f. of Y is

f2(y) =
∑
x

f (x, y), for −∞ < y < ∞.

Example
3.5.4

Determining a Marginal p.f. and Marginal p.d.f. from a Joint p.f./p.d.f. Suppose that the
joint p.f./p.d.f. of X and Y is as in Example 3.4.11 on page 124. The marginal p.f. of X

is obtained by integrating

f1(x) =
∫ 1

0

xyx−1

3
dy = 1

3
,

for x = 1, 2, 3. The marginal p.d.f. of Y is obtained by summing

f2(y) = 1
3

+ 2y

3
+ y2, for 0 < y < 1. �

Although the marginal distributions of X and Y can be derived from their
joint distribution, it is not possible to reconstruct the joint distribution of X and
Y from their marginal distributions without additional information. For instance,
the marginal p.d.f.’s sketched in Figs. 3.17 and 3.18 reveal no information about the
relationship between X and Y . In fact, by definition, the marginal distribution of
X specifies probabilities for X without regard for the values of any other random
variables. This property of a marginal p.d.f. can be further illustrated by another
example.

Example
3.5.5

Marginal and Joint Distributions. Suppose that a penny and a nickel are each tossed n

times so that every pair of sequences of tosses (n tosses in each sequence) is equally
likely to occur. Consider the following two definitions of X and Y : (i) X is the number
of heads obtained with the penny, and Y is the number of heads obtained with the
nickel. (ii) Both X and Y are the number of heads obtained with the penny, so the
random variables X and Y are actually identical.

In case (i), the marginal distribution of X and the marginal distribution of Y will
be identical binomial distributions. The same pair of marginal distributions of X and
Y will also be obtained in case (ii). However, the joint distribution of X and Y will
not be the same in the two cases. In case (i), X and Y can take different values. Their
joint p.f. is

f (x, y) =
{ (

n
x

)(
n
y

) ( 1
2

)x+y

for x = 0, 1 . . . , n, y = 0, 1, . . . , n,
0 otherwise.

In case (ii), X and Y must take the same value, and their joint p.f. is

f (x, y) =
{ (

n
x

) ( 1
2

)x

for x = y = 0, 1 . . . , n,
0 otherwise.

�

Independent Random Variables

Example
3.5.6

Demands for Utilities. In Examples 3.4.15 and 3.5.1, we found the marginal c.d.f.’s of
water and electric demand were, respectively,

F1(x) =

⎧⎪⎪⎨⎪⎪⎩
0 for x < 4,
x

196
for 4 ≤ x ≤ 200,

1 for x > 200,

F2(y) =

⎧⎪⎪⎨⎪⎪⎩
0 for y < 1,
y

149
for 1 ≤ y ≤ 150,

1 for y > 150.
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The product of these two functions is precisely the same as the joint c.d.f. of X and
Y given in Example 3.5.1. One consequence of this fact is that, for every x and
y, Pr(X ≤ x, and Y ≤ y) = Pr(X ≤ x) Pr(Y ≤ y). This equation makes X and Y an
example of the next definition. �

Definition
3.5.2

Independent Random Variables. It is said that two random variables X and Y are
independent if, for every two sets A and B of real numbers such that {X ∈ A} and
{Y ∈ B} are events,

Pr(X ∈ A and Y ∈ B) = Pr(X ∈ A) Pr(Y ∈ B). (3.5.5)

In other words, let E be any event the occurrence or nonoccurrence of which depends
only on the value of X (such as E = {X ∈ A}), and let D be any event the occurrence or
nonoccurrence of which depends only on the value of Y (such as D = {Y ∈ B}). Then
X and Y are independent random variables if and only if E and D are independent
events for all such events E and D.

If X and Y are independent, then for all real numbers x and y, it must be true
that

Pr(X ≤ x and Y ≤ y) = Pr(X ≤ x) Pr(Y ≤ y). (3.5.6)

Moreover, since all probabilities for X and Y of the type appearing in Eq. (3.5.5) can
be derived from probabilities of the type appearing in Eq. (3.5.6), it can be shown that
if Eq. (3.5.6) is satisfied for all values of x and y, then X and Y must be independent.
The proof of this statement is beyond the scope of this book and is omitted, but we
summarize it as the following theorem.

Theorem
3.5.4

Let the joint c.d.f. of X and Y be F , let the marginal c.d.f. of X be F1, and let the
marginal c.d.f. of Y be F2. Then X and Y are independent if and only if, for all real
numbers x and y, F(x, y) = F1(x)F2(y).

For example, the demands for water and electricity in Example 3.5.6 are independent.
If one returns to Example 3.5.1, one also sees that the product of the marginal p.d.f.’s
of water and electric demand equals their joint p.d.f. given in Eq. (3.4.2). This relation
is characteristic of independent random variables whether discrete or continuous.

Theorem
3.5.5

Suppose that X and Y are random variables that have a joint p.f., p.d.f., or p.f./p.d.f. f .
Then X and Y will be independent if and only if f can be represented in the following
form for −∞ < x < ∞ and −∞ < y < ∞:

f (x, y) = h1(x)h2(y), (3.5.7)

where h1 is a nonnegative function of x alone and h2 is a nonnegative function of y

alone.

Proof We shall give the proof only for the case in which X is discrete and Y is
continuous. The other cases are similar. For the “if” part, assume that Eq. (3.5.7)
holds. Write

f1(x) =
∫ ∞

−∞
h1(x)h2(y)dy = c1h1(x),

where c1 = ∫ ∞
−∞ h2(y)dy must be finite and strictly positive, otherwise f1 wouldn’t be

a p.f. So, h1(x) = f1(x)/c1. Similarly,

f2(y) =
∑
x

h1(x)h2(y) = h2(y)
∑
x

1
c1

f1(x) = 1
c1

h2(y).
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So, h2(y) = c1f2(y). Since f (x, y) = h1(x)h2(y), it follows that

f (x, y) = f1(x)

c1
c1f2(y) = f1(x)f2(y). (3.5.8)

Now let A and B be sets of real numbers. Assuming the integrals exist, we can write

Pr(X ∈ A and Y ∈ B) =
∑
x∈A

∫
B

f (x, y)dy

=
∫

B

∑
x∈A

f1(x)f2(y)dy,

=
∑
x∈A

f1(x)

∫
B

f2(y)dy,

where the first equality is from Definition 3.4.5, the second is from Eq. (3.5.8), and the
third is straightforward rearrangement. We now see that X and Y are independent
according to Definition 3.5.2.

For the “only if” part, assume that X and Y are independent. Let A and B be sets
of real numbers. Let f1 be the marginal p.d.f. of X, and let f2 be the marginal p.f. of
Y . Then

Pr(X ∈ A and Y ∈ B) =
∑
x∈A

f1(x)

∫
B

f2(y)dy

=
∫

B

∑
x∈A

f1(x)f2(y)dy,

(if the integral exists) where the first equality follows from Definition 3.5.2 and the
second is a straightforward rearrangement. We now see that f1(x)f2(y) satisfies the
conditions needed to be f (x, y) as stated in Definition 3.4.5.

A simple corollary follows from Theorem 3.5.5.

Corollary
3.5.1

Two random variables X and Y are independent if and only if the following factor-
ization is satisfied for all real numbers x and y:

f (x, y) = f1(x)f2(y). (3.5.9)

As stated in Sec. 3.2 (see page 102), in a continuous distribution the values of a
p.d.f. can be changed arbitrarily at any countable set of points. Therefore, for such a
distribution it would be more precise to state that the random variables X and Y are
independent if and only if it is possible to choose versions of f , f1, and f2 such that
Eq. (3.5.9) is satisfied for −∞ < x < ∞ and −∞ < y < ∞.

The Meaning of Independence We have given a mathematical definition of in-
dependent random variables in Definition 3.5.2, but we have not yet given any in-
terpretation of the concept of independent random variables. Because of the close
connection between independent events and independent random variables, the in-
terpretation of independent random variables should be closely related to the inter-
pretation of independent events. We model two events as independent if learning
that one of them occurs does not change the probability that the other one occurs.
It is easiest to extend this idea to discrete random variables. Suppose that X and Y
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Table 3.5 Joint p.f. f (x, y) for Example 3.5.7

y

x 1 2 3 4 5 6 Total

0 1/24 1/24 1/24 1/24 1/24 1/24 1/4

1 1/12 1/12 1/12 1/12 1/12 1/12 1/2

2 1/24 1/24 1/24 1/24 1/24 1/24 1/4

Total 1/6 1/6 1/6 1/6 1/6 1/6 1.000

have a discrete joint distribution. If, for each y, learning that Y = y does not change
any of the probabilities of the events {X = x}, we would like to say that X and Y are
independent. From Corollary 3.5.1 and the definition of marginal p.f., we see that in-
deed X and Y are independent if and only if, for each y and x such that Pr(Y = y) > 0,
Pr(X = x|Y = y) = Pr(X = x), that is, learning the value of Y doesn’t change any of
the probabilities associated with X. When we formally define conditional distribu-
tions in Sec. 3.6, we shall see that this interpretation of independent discrete random
variables extends to all bivariate distributions. In summary, if we are trying to decide
whether or not to model two random variables X and Y as independent, we should
think about whether we would change the distribution of X after we learned the value
of Y or vice versa.

Example
3.5.7

Games of Chance. A carnival game consists of rolling a fair die, tossing a fair coin
two times, and recording both outcomes. Let Y stand for the number on the die,
and let X stand for the number of heads in the two tosses. It seems reasonable to
believe that all of the events determined by the roll of the die are independent of all
of the events determined by the flips of the coin. Hence, we can assume that X and Y

are independent random variables. The marginal distribution of Y is the uniform
distribution on the integers 1, . . . , 6, while the distribution of X is the binomial
distribution with parameters 2 and 1/2. The marginal p.f.’s and the joint p.f. of X

and Y are given in Table 3.5, where the joint p.f. was constructed using Eq. (3.5.9).
The Total column gives the marginal p.f. f1 of X, and the Total row gives the marginal
p.f. f2 of Y . �

Example
3.5.8

Determining Whether Random Variables Are Independent in a Clinical Trial. Return to
the clinical trial of depression drugs in Exercise 11 of Sec. 3.4 (on page 129). In that
trial, a patient is selected at random from the 150 patients in the study and we record
Y , an indicator of the treatment group for that patient, and X, an indicator of whether
or not the patient relapsed. Table 3.6 repeats the joint p.f. of X and Y along with the
marginal distributions in the margins. We shall determine whether or not X and Y

are independent.
In Eq. (3.5.9), f (x, y) is the probability in the xth row and the yth column of the

table, f1(x) is the number in the Total column in the xth row, and f2(y) is the number
in the Total row in the yth column. It is seen in the table that f (1, 2) = 0.087, while
f1(1) = 0.513, and f2(1) = 0.253. Hence, f (1, 2) 	= f1(1)f2(1) = 0.129. It follows that
X and Y are not independent. �

It should be noted from Examples 3.5.7 and 3.5.8 that X and Y will be indepen-
dent if and only if the rows of the table specifying their joint p.f. are proportional to
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Table 3.6 Proportions marginals in Example 3.5.8

Treatment group (Y )

Response (X) Imipramine (1) Lithium (2) Combination (3) Placebo (4) Total

Relapse (0) 0.120 0.087 0.146 0.160 0.513

No relapse (1) 0.147 0.166 0.107 0.067 0.487

Total 0.267 0.253 0.253 0.227 1.0

one another, or equivalently, if and only if the columns of the table are proportional
to one another.

Example
3.5.9

Calculating a Probability Involving Independent Random Variables. Suppose that two
measurements X and Y are made of the rainfall at a certain location on May 1 in two
consecutive years. It might be reasonable, given knowledge of the history of rainfall
on May 1, to treat the random variables X and Y as independent. Suppose that the
p.d.f. g of each measurement is as follows:

g(x) =
{

2x for 0 ≤ x ≤ 1,
0 otherwise.

We shall determine the value of Pr(X + Y ≤ 1).
Since X and Y are independent and each has the p.d.f. g, it follows from Eq. (3.5.9)

that for all values of x and y the joint p.d.f. f (x, y) of X and Y will be specified by
the relation f (x, y) = g(x)g(y). Hence,

f (x, y) =
{

4xy for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise.

The set S in the xy-plane, where f (x, y) > 0, and the subset S0, where x + y ≤ 1, are
sketched in Fig. 3.19. Thus,

Pr(X + Y ≤ 1) =
∫

S0

∫
f (x, y) dx dy =

∫ 1

0

∫ 1−x

0
4xy dy dx = 1

6
.

As a final note, if the two measurements X and Y had been made on the same day at
nearby locations, then it might not make as much sense to treat them as independent,
since we would expect them to be more similar to each other than to historical
rainfalls. For example, if we first learn that X is small compared to historical rainfall
on the date in question, we might then expect Y to be smaller than the historical
distribution would suggest. �

Figure 3.19 The subset S0
where x + y ≤ 1
in Example 3.5.9.

x1

1

0

S

S0

y
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Theorem 3.5.5 says that X and Y are independent if and only if, for all values of
x and y, f can be factored into the product of an arbitrary nonnegative function of x

and an arbitrary nonnegative function of y. However, it should be emphasized that,
just as in Eq. (3.5.9), the factorization in Eq. (3.5.7) must be satisfied for all values of
x and y (−∞ < x < ∞ and −∞ < y < ∞).

Example
3.5.10

Dependent Random Variables. Suppose that the joint p.d.f. of X and Y has the follow-
ing form:

f (x, y) =
{

kx2y2 for x2 + y2 ≤ 1,
0 otherwise.

We shall show that X and Y are not independent.
It is evident that at each point inside the circle x2 + y2 ≤ 1, f (x, y) can be factored

as in Eq. (3.5.7). However, this same factorization cannot also be satisfied at every
point outside this circle. For example, f (0.9, 0.9) = 0, but neither f1(0.9) = 0 nor
f2(0.9) = 0. (In Exercise 13, you can verify this feature of f1 and f2.)

The important feature of this example is that the values of X and Y are con-
strained to lie inside a circle. The joint p.d.f. of X and Y is positive inside the circle
and zero outside the circle. Under these conditions, X and Y cannot be independent,
because for every given value y of Y , the possible values of X will depend on y. For
example, if Y = 0, then X can have any value such that X2 ≤ 1; if Y = 1/2, then X

must have a value such that X2 ≤ 3/4. �

Example 3.5.10 shows that one must be careful when trying to apply Theo-
rem 3.5.5. The situation that arose in that example will occur whenever {(x, y) :
f (x, y) > 0} has boundaries that are curved or not parallel to the coordinate axes.
There is one important special case in which it is easy to check the conditions of
Theorem 3.5.5. The proof is left as an exercise.

Theorem
3.5.6

Let X and Y have a continuous joint distribution. Suppose that {(x, y) : f (x, y) > 0}
is a rectangular region R (possibly unbounded) with sides (if any) parallel to the
coordinate axes. Then X and Y are independent if and only if Eq. (3.5.7) holds for
all (x, y) ∈ R.

Example
3.5.11

Verifying the Factorization of a Joint p.d.f. Suppose that the joint p.d.f. f of X and Y is
as follows:

f (x, y) =
{

ke−(x+2y) for x ≥ 0 and y ≥ 0,
0 otherwise,

where k is some constant. We shall first determine whether X and Y are independent
and then determine their marginal p.d.f.’s.

In this example, f (x, y) = 0 outside of an unbounded rectangular region R whose
sides are the lines x = 0 and y = 0. Furthermore, at each point inside R, f (x, y) can
be factored as in Eq. (3.5.7) by letting h1(x) = ke−x and h2(y) = e−2y. Therefore, X

and Y are independent.
It follows that in this case, except for constant factors, h1(x) for x ≥ 0 and h2(y)

for y ≥ 0 must be the marginal p.d.f.’s of X and Y . By choosing constants that make
h1(x) and h2(y) integrate to unity, we can conclude that the marginal p.d.f.’s f1 and
f2 of X and Y must be as follows:

f1(x) =
{

e−x for x ≥ 0,
0 otherwise,
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and

f2(y) =
{

2e−2y for y ≥ 0,
0 otherwise.

If we multiply f1(x) times f2(y) and compare the product to f (x, y), we see that
k = 2. �

Note: Separate Functions of Independent Random Variables Are Independent. If
X and Y are independent, then h(X) and g(Y ) are independent no matter what the
functions h and g are. This is true because for every t , the event {h(X) ≤ t} can always
be written as {X ∈ A}, where A = {x : h(x) ≤ t}. Similarly, {g(Y ) ≤ u} can be written
as {Y ∈ B}, so Eq. (3.5.6) for h(X) and g(Y ) follows from Eq. (3.5.5) for X and Y .

Summary

Let f (x, y) be a joint p.f., joint p.d.f., or joint p.f./p.d.f. of two random variables X

and Y . The marginal p.f. or p.d.f. of X is denoted by f1(x), and the marginal p.f. or
p.d.f. of Y is denoted by f2(y). To obtain f1(x), compute

∑
y f (x, y) if Y is discrete

or
∫ ∞
−∞ f (x, y) dy if Y is continuous. Similarly, to obtain f2(y), compute

∑
x f (x, y)

if X is discrete or
∫ ∞
−∞ f (x, y) dx if X is continuous. The random variables X and

Y are independent if and only if f (x, y) = f1(x)f2(y) for all x and y. This is true
regardless of whether X and/or Y is continuous or discrete. A sufficient condition for
two continuous random variables to be independent is that R = {(x, y) : f (x, y) > 0}
be rectangular with sides parallel to the coordinate axes and that f (x, y) factors into
separate functions of x of y in R.

Exercises

1. Suppose that X and Y have a continuous joint distribu-
tion for which the joint p.d.f. is

f (x, y) =
{

k for a ≤ x ≤ b and c ≤ y ≤ d,

0 otherwise,

where a < b, c < d , and k > 0. Find the marginal distribu-
tions of X and Y .

2. Suppose that X and Y have a discrete joint distribution
for which the joint p.f. is defined as follows:

f (x, y) =
{

1
30 (x + y) for x = 0, 1, 2 and y = 0, 1, 2, 3,

0 otherwise.

a. Determine the marginal p.f.’s of X and Y .

b. Are X and Y independent?

3. Suppose that X and Y have a continuous joint distribu-
tion for which the joint p.d.f. is defined as follows:

f (x, y) =
{

3
2 y2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,
0 otherwise.

a. Determine the marginal p.d.f.’s of X and Y .

b. Are X and Y independent?

c. Are the event {X < 1} and the event {Y ≥ 1/2} inde-
pendent?

4. Suppose that the joint p.d.f. of X and Y is as follows:

f (x, y) =
{

15
4 x2 for 0 ≤ y ≤ 1 − x2,

0 otherwise.

a. Determine the marginal p.d.f.’s of X and Y .

b. Are X and Y independent?

5. A certain drugstore has three public telephone booths.
For i = 0, 1, 2, 3, let pi denote the probability that ex-
actly i telephone booths will be occupied on any Monday
evening at 8:00 p.m.; and suppose that p0 = 0.1, p1 = 0.2,
p2 = 0.4, and p3 = 0.3. Let X and Y denote the number of
booths that will be occupied at 8:00 p.m. on two indepen-
dent Monday evenings. Determine: (a) the joint p.f. of X

and Y ; (b) Pr(X = Y ); (c) Pr(X > Y).
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6. Suppose that in a certain drug the concentration of a
particular chemical is a random variable with a continuous
distribution for which the p.d.f. g is as follows:

g(x) =
{

3
8x2 for 0 ≤ x ≤ 2,
0 otherwise.

Suppose that the concentrations X and Y of the chemical
in two separate batches of the drug are independent ran-
dom variables for each of which the p.d.f. is g. Determine
(a) the joint p.d.f. of X and Y ; (b) Pr(X = Y ); (c) Pr(X > Y);
(d) Pr(X + Y ≤ 1).

7. Suppose that the joint p.d.f. of X and Y is as follows:

f (x, y) =
{

2xe−y for 0 ≤ x ≤ 1 and 0 < y < ∞,
0 otherwise.

Are X and Y independent?

8. Suppose that the joint p.d.f. of X and Y is as follows:

f (x, y) =
{

24xy for x ≥ 0, y ≥ 0, and x + y ≤ 1,
0 otherwise.

Are X and Y independent?

9. Suppose that a point (X, Y ) is chosen at random from
the rectangle S defined as follows:

S = {(x, y) : 0 ≤ x ≤ 2 and 1 ≤ y ≤ 4}.
a. Determine the joint p.d.f. of X and Y , the marginal

p.d.f. of X, and the marginal p.d.f. of Y .

b. Are X and Y independent?

10. Suppose that a point (X, Y ) is chosen at random from
the circle S defined as follows:

S = {(x, y) :x2 + y2 ≤ 1}.
a. Determine the joint p.d.f. of X and Y , the marginal

p.d.f. of X, and the marginal p.d.f. of Y .

b. Are X and Y independent?

11. Suppose that two persons make an appointment to
meet between 5 p.m. and 6 p.m. at a certain location, and
they agree that neither person will wait more than 10
minutes for the other person. If they arrive independently
at random times between 5 p.m. and 6 p.m., what is the
probability that they will meet?

12. Prove Theorem 3.5.6.

13. In Example 3.5.10, verify that X and Y have the same
marginal p.d.f.’s and that

f1(x) =
{

2kx2(1 − x2)3/2/3 if −1 ≤ x ≤ 1,
0 otherwise.

14. For the joint p.d.f. in Example 3.4.7, determine
whether or not X and Y are independent.

15. A painting process consists of two stages. In the first
stage, the paint is applied, and in the second stage, a pro-
tective coat is added. Let X be the time spent on the first
stage, and let Y be the time spent on the second stage. The
first stage involves an inspection. If the paint fails the in-
spection, one must wait three minutes and apply the paint
again. After a second application, there is no further in-
spection. The joint p.d.f. of X and Y is

f (x, y) =
⎧⎨⎩

1
3 if 1 < x < 3 and 0 < y < 1,
1
6 if 6 < x < 8 and 0 < y < 1,
0 otherwise.

a. Sketch the region where f (x, y) > 0. Note that it is
not exactly a rectangle.

b. Find the marginal p.d.f.’s of X and Y .

c. Show that X and Y are independent.

This problem does not contradict Theorem 3.5.6. In that
theorem the conditions, including that the set where
f (x, y) > 0 be rectangular, are sufficient but not neces-
sary.

3.6 Conditional Distributions
We generalize the concept of conditional probability to conditional distributions.
Recall that distributions are just collections of probabilities of events determined
by random variables. Conditional distributions will be the probabilities of events
determined by some random variables conditional on events determined by other
random variables. The idea is that there will typically be many random variables of
interest in an applied problem. After we observe some of those random variables,
we want to be able to adjust the probabilities associated with the ones that have not
yet been observed. The conditional distribution of one random variable X given
another Y will be the distribution that we would use for X after we learn the value
of Y .
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Table 3.7 Joint p.f. for Example 3.6.1

Brand Y

Stolen X 1 2 3 4 5 Total

0 0.129 0.298 0.161 0.280 0.108 0.976

1 0.010 0.010 0.001 0.002 0.001 0.024

Total 0.139 0.308 0.162 0.282 0.109 1.000

Discrete Conditional Distributions

Example
3.6.1

Auto Insurance. Insurance companies keep track of how likely various cars are to be
stolen. Suppose that a company in a particular area computes the joint distribution
of car brands and the indicator of whether the car will be stolen during a particular
year that appears in Table 3.7.

We let X = 1 mean that a car is stolen, and we let X = 0 mean that the car is not
stolen. We let Y take one of the values from 1 to 5 to indicate the brand of car as
indicated in Table 3.7. If a customer applies for insurance for a particular brand of
car, the company needs to compute the distribution of the random variable X as part
of its premium determination. The insurance company might adjust their premium
according to a risk factor such as likelihood of being stolen. Although, overall, the
probability that a car will be stolen is 0.024, if we assume that we know the brand
of car, the probability might change quite a bit. This section introduces the formal
concepts for addressing this type of problem. �

Suppose that X and Y are two random variables having a discrete joint distribu-
tion for which the joint p.f. is f . As before, we shall let f1 and f2 denote the marginal
p.f.’s of X and Y , respectively. After we observe that Y = y, the probability that the
random variable X will take a particular value x is specified by the following condi-
tional probability:

Pr(X = x|Y = y) = Pr(X = x and Y = y)

Pr(Y = y)

= f (x, y)

f2(y)
. (3.6.1)

In other words, if it is known that Y = y, then the probability that X = x will be
updated to the value in Eq. (3.6.1). Next, we consider the entire distribution of X

after learning that Y = y.

Definition
3.6.1

Conditional Distribution/p.f. Let X and Y have a discrete joint distribution with joint
p.f. f . Let f2 denote the marginal p.f. of Y . For each y such that f2(y) > 0, define

g1(x|y) = f (x, y)

f2(y)
. (3.6.2)

Then g1 is called the conditional p.f. of X given Y . The discrete distribution whose p.f.
is g1(.|y) is called the conditional distribution of X given that Y = y.
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Table 3.8 Conditional p.f. of Y given X for Exam-
ple 3.6.3

Brand Y

Stolen X 1 2 3 4 5

0 0.928 0.968 0.994 0.993 0.991

1 0.072 0.032 0.006 0.007 0.009

We should verify that g1(x|y) is actually a p.f. as a function of x for each y. Let y be
such that f2(y) > 0. Then g1(x|y) ≥ 0 for all x and∑

x

g1(x|y) = 1
f2(y)

∑
x

f (x, y) = 1
f2(y)

f2(y) = 1.

Notice that we do not bother to define g1(x|y) for those y such that f2(y) = 0.
Similarly, if x is a given value of X such that f1(x) = Pr(X = x) > 0, and if g2(y|x)

is the conditional p.f. of Y given that X = x, then

g2(y|x) = f (x, y)

f1(x)
. (3.6.3)

For each x such that f1(x) > 0, the function g2(y|x) will be a p.f. as a function of y.

Example
3.6.2

Calculating a Conditional p.f. from a Joint p.f. Suppose that the joint p.f. of X and Y is
as specified in Table 3.4 in Example 3.5.2. We shall determine the conditional p.f. of
Y given that X = 2.

The marginal p.f. of X appears in the Total column of Table 3.4, so f1(2) = Pr(X =
2) = 0.6. Therefore, the conditional probability g2(y|2) that Y will take a particular
value y is

g2(y|2) = f (2, y)

0.6
.

It should be noted that for all possible values of y, the conditional probabilities
g2(y|2) must be proportional to the joint probabilities f (2, y). In this example, each
value of f (2, y) is simply divided by the constant f1(2) = 0.6 in order that the sum of
the results will be equal to 1. Thus,

g2(1|2) = 1/2, g2(2|2) = 0, g2(3|2) = 1/6, g2(4|2) = 1/3. �

Example
3.6.3

Auto Insurance. Consider again the probabilities of car brands and cars being stolen
in Example 3.6.1. The conditional distribution of X (being stolen) given Y (brand)
is given in Table 3.8. It appears that Brand 1 is much more likely to be stolen than
other cars in this area, with Brand 1 also having a significant chance of being stolen.

�

Continuous Conditional Distributions

Example
3.6.4

Processing Times. A manufacturing process consists of two stages. The first stage
takes Y minutes, and the whole process takes X minutes (which includes the first
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Y minutes). Suppose that X and Y have a joint continuous distribution with joint
p.d.f.

f (x, y) =
{

e−x for 0 ≤ y ≤ x < ∞,
0 otherwise.

After we learn how much time Y that the first stage takes, we want to update our
distribution for the total time X. In other words, we would like to be able to compute
a conditional distribution for X given Y = y. We cannot argue the same way as we
did with discrete joint distributions, because {Y = y} is an event with probability 0
for all y. �

To facilitate the solutions of problems such as the one posed in Example 3.6.4,
the concept of conditional probability will be extended by considering the definition
of the conditional p.f. of X given in Eq. (3.6.2) and the analogy between a p.f. and a
p.d.f.

Definition
3.6.2

Conditional p.d.f. Let X and Y have a continuous joint distribution with joint p.d.f.
f and respective marginals f1 and f2. Let y be a value such that f2(y) > 0. Then the
conditional p.d.f. g1 of X given that Y = y is defined as follows:

g1(x|y) = f (x, y)

f2(y)
for −∞ < x < ∞. (3.6.4)

For values of y such that f2(y) = 0, we are free to define g1(x|y) however we wish,
so long as g1(x|y) is a p.d.f. as a function of x.

It should be noted that Eq. (3.6.2) and Eq. (3.6.4) are identical. However,
Eq. (3.6.2) was derived as the conditional probability that X = x given that Y = y,
whereas Eq. (3.6.4) was defined to be the value of the conditional p.d.f. of X given
that Y = y. In fact, we should verify that g1(x|y) as defined above really is a p.d.f.

Theorem
3.6.1

For each y, g1(x|y) defined in Definition 3.6.2 is a p.d.f. as a function of x.

Proof If f2(y) = 0, then g1 is defined to be any p.d.f. we wish, and hence it is a p.d.f.
If f2(y) > 0, g1 is defined by Eq. (3.6.4). For each such y, it is clear that g1(x|y) ≥ 0
for all x. Also, if f2(y) > 0, then∫ ∞

−∞
g1(x|y) dx =

∫ ∞
−∞ f (x, y) dx

f2(y)
= f2(y)

f2(y)
= 1,

by using the formula for f2(y) in Eq. (3.5.3).

Example
3.6.5

Processing Times. In Example 3.6.4, Y is the time that the first stage of a process takes,
while X is the total time of the two stages. We want to calculate the conditional p.d.f.
of X given Y . We can calculate the marginal p.d.f. of Y as follows: For each y, the
possible values of X are all x ≥ y, so for each y > 0,

f2(y) =
∫ ∞

y

e−xdx = e−y,

and f2(y) = 0 for y < 0. For each y ≥ 0, the conditional p.d.f. of X given Y = y is then

g1(x|y) = f (x, y)

f2(y)
= e−x

e−y
= ey−x, for x ≥ y,
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Figure 3.20 The condi-
tional p.d.f. g1(x|y0) is pro-
portional to f (x, y0).

x y

f (x, y)

f (x, y0)

y0

and g1(x|y) = 0 for x < y. So, for example, if we observe Y = 4 and we want the
conditional probability that X ≥ 9, we compute

Pr(X ≥ 9|Y = 4) =
∫ ∞

9
e4−xdx = e−5 = 0.0067. �

Definition 3.6.2 has an interpretation that can be understood by considering
Fig. 3.20. The joint p.d.f. f defines a surface over the xy-plane for which the height
f (x, y) at each point (x, y) represents the relative likelihood of that point. For
instance, if it is known that Y = y0, then the point (x, y) must lie on the line y = y0 in
the xy-plane, and the relative likelihood of any point (x, y0) on this line is f (x, y0).
Hence, the conditional p.d.f. g1(x|y0) of X should be proportional to f (x, y0). In other
words, g1(x|y0) is essentially the same as f (x, y0), but it includes a constant factor
1/[f2(y0)], which is required to make the conditional p.d.f. integrate to unity over all
values of x.

Similarly, for each value of x such that f1(x) > 0, the conditional p.d.f. of Y given
that X = x is defined as follows:

g2(y|x) = f (x, y)

f1(x)
for −∞ < y < ∞. (3.6.5)

This equation is identical to Eq. (3.6.3), which was derived for discrete distributions.
If f1(x) = 0, then g2(y|x) is arbitrary so long as it is a p.d.f. as a function of y.

Example
3.6.6

Calculating a Conditional p.d.f. from a Joint p.d.f. Suppose that the joint p.d.f. of X and
Y is as specified in Example 3.4.8 on page 122. We shall first determine the conditional
p.d.f. of Y given that X = x and then determine some probabilities for Y given the
specific value X = 1/2.

The set S for which f (x, y) > 0 was sketched in Fig. 3.12 on page 123. Further-
more, the marginal p.d.f. f1 was derived in Example 3.5.3 on page 132 and sketched
in Fig. 3.17 on page 133. It can be seen from Fig. 3.17 that f1(x) > 0 for −1 < x < 1 but
not for x = 0. Therefore, for each given value of x such that −1 < x < 0 or 0 < x < 1,
the conditional p.d.f. g2(y|x) of Y will be as follows:

g2(y|x) =
⎧⎨⎩

2y

1 − x4
for x2 ≤ y ≤ 1,

0 otherwise.
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In particular, if it is known that X = 1/2, then Pr
(
Y ≥ 1

4

∣∣X = 1
2

)
= 1 and

Pr

(
Y ≥ 3

4

∣∣∣∣∣X = 1
2

)
=

∫ 1

3/4
g2

(
y

∣∣∣∣∣1
2

)
dy = 7

15
. �

Note: A Conditional p.d.f. Is Not the Result of Conditioning on a Set of Probability
Zero. The conditional p.d.f. g1(x|y) of X given Y = y is the p.d.f. we would use for
X if we were to learn that Y = y. This sounds as if we were conditioning on the event
{Y = y}, which has zero probability if Y has a continuous distribution. Actually, for
the cases we shall see in this text, the value of g1(x|y) is a limit:

g1(x|y) = lim
ε→0

∂

∂x
Pr(X ≤ x|y − ε < Y ≤ y + ε). (3.6.6)

The conditioning event {y − ε ≤ Y ≤ y + ε} in Eq. (3.6.6) has positive probability if
the marginal p.d.f. of Y is positive at y. The mathematics required to make this rigor-
ous is beyond the scope of this text. (See Exercise 11 in this section and Exercises 25
and 26 in Sec. 3.11 for results that we can prove.) Another way to think about condi-
tioning on a continuous random variable is to notice that the conditional p.d.f.’s that
we compute are typically continuous as a function of the conditioning variable. This
means that conditioning on Y = y or on Y = y + ε for small ε will produce nearly
the same conditional distribution for X. So it does not matter much if we use Y = y

as a surogate for Y close to y. Nevertheless, it is important to keep in mind that the
conditional p.d.f. of X given Y = y is better thought of as the conditional p.d.f. of X

given that Y is very close to y. This wording is awkward, so we shall not use it, but
we must remember the distinction between the conditional p.d.f. and conditioning
on an event with probability 0. Despite this distinction, it is still legitimate to treat Y

as the constant y when dealing with the conditional distribution of X given Y = y.
For mixed joint distributions, we continue to use Eqs. (3.6.2) and (3.6.3) to define

conditional p.f.’s and p.d.f.’s.

Definition
3.6.3

Conditional p.f. or p.d.f. from Mixed Distribution. Let X be discrete and let Y be
continuous with joint p.f./p.d.f. f . Then the conditional p.f. of X given Y = y is defined
by Eq. (3.6.2), and the conditional p.d.f. of Y given X = x is defined by Eq. (3.6.3).

Construction of the Joint Distribution

Example
3.6.7

Defective Parts. Suppose that a certain machine produces defective and nondefective
parts, but we do not know what proportion of defectives we would find among
all parts that could be produced by this machine. Let P stand for the unknown
proportion of defective parts among all possible parts produced by the machine. If we
were to learn that P = p, we might be willing to say that the parts were independent
of each other and each had probability p of being defective. In other words, if we
condition on P = p, then we have the situation described in Example 3.1.9. As in
that example, suppose that we examine n parts and let X stand for the number of
defectives among the n examined parts. The distribution of X, assuming that we know
P = p, is the binomial distribution with parameters n and p. That is, we can let the
binomial p.f. (3.1.4) be the conditional p.f. of X given P = p, namely,

g1(x|p) =
(

n

x

)
px(1 − p)n−x, for x = 0, . . . , n.
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We might also believe that P has a continuous distribution with p.d.f. such as f2(p) = 1
for 0 ≤ p ≤ 1. (This means that P has the uniform distribution on the interval [0, 1].)
We know that the conditional p.f. g1 of X given P = p satisfies

g1(x|p) = f (x, p)

f2(p)
,

where f is the joint p.f./p.d.f. of X and P . If we multiply both sides of this equation
by f2(p), it follows that the joint p.f./p.d.f. of X and P is

f (x, p) = g1(x|p)f2(p) =
(

n

x

)
px(1 − p)n−x, for x = 0, . . . , n, and 0 ≤ p ≤ 1.

�

The construction in Example 3.6.7 is available in general, as we explain next.

Generalizing the Multiplication Rule for Conditional Probabilities A special case
of Theorem 2.1.2, the multiplication rule for conditional probabilities, says that if
A and B are two events, then Pr(A ∩ B) = Pr(A) Pr(B|A). The following theorem,
whose proof is immediate from Eqs. (3.6.4) and (3.6.5), generalizes Theorem 2.1.2 to
the case of two random variables.

Theorem
3.6.2

Multiplication Rule for Distributions. Let X and Y be random variables such that X

has p.f. or p.d.f. f1(x) and Y has p.f. or p.d.f. f2(y). Also, assume that the conditional
p.f. or p.d.f. of X given Y = y is g1(x|y) while the conditional p.f. or p.d.f. of Y given
X = x is g2(y|x). Then for each y such that f2(y) > 0 and each x,

f (x, y) = g1(x|y)f2(y), (3.6.7)

where f is the joint p.f., p.d.f., or p.f./p.d.f. of X and Y . Similarly, for each x such that
f1(x) > 0 and each y,

f (x, y) = f1(x)g2(y|x). (3.6.8)

In Theorem 3.6.2, if f2(y0) = 0 for some value y0, then it can be assumed without
loss of generality that f (x, y0) = 0 for all values of x. In this case, both sides of
Eq. (3.6.7) will be 0, and the fact that g1(x|y0) is not uniquely defined becomes
irrelevant. Hence, Eq. (3.6.7) will be satisfied for all values of x and y. A similar
statement applies to Eq. (3.6.8).

Example
3.6.8

Waiting in a Queue. Let X be the amount of time that a person has to wait for service
in a queue. The faster the server works in the queue, the shorter should be the
waiting time. Let Y stand for the rate at which the server works, which we will take
to be unknown. A common choice of conditional distribution for X given Y = y has
conditional p.d.f. for each y > 0:

g1(x|y) =
{

ye−xy for x ≥ 0,
0 otherwise.

We shall assume that Y has a continuous distribution with p.d.f. f2(y) = e−y for y > 0.
Now we can construct the joint p.d.f. of X and Y using Theorem 3.6.2:

f (x, y) = g1(x|y)f2(y) =
{

ye−y(x+1) for x ≥ 0, y > 0,
0 otherwise. �
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Example
3.6.9

Defective Parts. Let X be the number of defective parts in a sample of size n, and
let P be the proportion of defectives among all parts, as in Example 3.6.7. The joint
p.f./p.d.f of X and P = p was calculated there as

f (x, p) = g1(x|p)f2(p) =
(

n

x

)
px(1 − p)n−x, for x = 0, . . . , n and 0 ≤ p ≤ 1.

We could now compute the conditional p.d.f. of P given X = x by first finding the
marginal p.f. of X:

f1(x) =
∫ 1

0

(
n

x

)
px(1 − p)n−xdp, (3.6.9)

The conditional p.d.f. of P given X = x is then

g2(p|x) = f (x, p)

f1(x)
= px(1 − p)n−x∫ 1

0 qx(1 − q)n−xdq
, for 0 < p < 1. (3.6.10)

The integral in the denominator of Eq. (3.6.10) can be tedious to calculate, but it can
be found. For example, if n = 2 and x = 1, we get∫ 1

0
q(1 − q)dq = 1

2
− 1

3
= 1

6
.

In this case, g2(p|1) = 6p(1 − p) for 0 ≤ p ≤ 1. �

Bayes’ Theorem and the Law of Total Probability for Random Variables The
calculation done in Eq. (3.6.9) is an example of the generalization of the law of total
probability to random variables. Also, the calculation in Eq. (3.6.10) is an example of
the generalization of Bayes’ theorem to random variables. The proofs of these results
are straightforward and not given here.

Theorem
3.6.3

Law of Total Probability for Random Variables. If f2(y) is the marginal p.f. or p.d.f. of a
random variable Y and g1(x|y) is the conditional p.f. or p.d.f. of X given Y = y, then
the marginal p.f. or p.d.f. of X is

f1(x) =
∑
y

g1(x|y)f2(y), (3.6.11)

if Y is discrete. If Y is continuous, the marginal p.f. or p.d.f. of X is

f1(x) =
∫ ∞

−∞
g1(x|y)f2(y) dy. (3.6.12)

There are versions of Eqs. (3.6.11) and (3.6.12) with x and y switched and the
subscripts 1 and 2 switched. These versions would be used if the joint distribution
of X and Y were constructed from the conditional distribution of Y given X and the
marginal distribution of X.

Theorem
3.6.4

Bayes’ Theorem for Random Variables. If f2(y) is the marginal p.f. or p.d.f. of a random
variable Y and g1(x|y) is the conditional p.f. or p.d.f. of X given Y = y, then the
conditional p.f. or p.d.f. of Y given X = x is

g2(y|x) = g1(x|y)f2(y)

f1(x)
, (3.6.13)
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where f1(x) is obtained from Eq. (3.6.11) or (3.6.12). Similarly, the conditional p.f.
or p.d.f. of X given Y = y is

g1(x|y) = g2(y|x)f1(x)

f2(y)
, (3.6.14)

where f2(y) is obtained from Eq. (3.6.11) or (3.6.12) with x and y switched and with
the subscripts 1 and 2 switched.

Example
3.6.10

Choosing Points from Uniform Distributions. Suppose that a point X is chosen from
the uniform distribution on the interval [0, 1], and that after the value X = x has been
observed (0 < x < 1), a point Y is then chosen from the uniform distribution on the
interval [x, 1]. We shall derive the marginal p.d.f. of Y .

Since X has a uniform distribution, the marginal p.d.f. of X is as follows:

f1(x) =
{

1 for 0 < x < 1,

0 otherwise.

Similarly, for each value X = x (0 < x < 1), the conditional distribution of Y is the
uniform distribution on the interval [x, 1]. Since the length of this interval is 1 − x,
the conditional p.d.f. of Y given that X = x will be

g2(y|x) =
⎧⎨⎩ 1

1 − x
for x < y < 1,

0 otherwise.

It follows from Eq. (3.6.8) that the joint p.d.f. of X and Y will be

f (x, y) =
⎧⎨⎩ 1

1 − x
for 0 < x < y < 1,

0 otherwise.
(3.6.15)

Thus, for 0 < y < 1, the value of the marginal p.d.f. f2(y) of Y will be

f2(y) =
∫ ∞

−∞
f (x, y) dx =

∫ y

0

1
1 − x

dx = −log(1 − y). (3.6.16)

Furthermore, since Y cannot be outside the interval 0 < y < 1, then f2(y) = 0 for
y ≤ 0 or y ≥ 1. This marginal p.d.f. f2 is sketched in Fig. 3.21. It is interesting to note
that in this example the function f2 is unbounded.

We can also find the conditional p.d.f. of X given Y = y by applying Bayes’ theo-
rem (3.6.14). The product of g2(y|x) and f1(x) was already calculated in Eq. (3.6.15).

Figure 3.21 The marginal
p.d.f. of Y in Example 3.6.10.

y

f2(y)

10
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The ratio of this product to f2(y) from Eq. (3.6.16) is

g1(x|y) =
⎧⎨⎩

−1
(1 − x) log(1 − y)

for 0 < x < y,

0 otherwise. �

Theorem
3.6.5

Independent Random Variables. Suppose that X and Y are two random variables
having a joint p.f., p.d.f., or p.f./p.d.f. f . Then X and Y are independent if and only if
for every value of y such that f2(y) > 0 and every value of x,

g1(x|y) = f1(x). (3.6.17)

Proof Theorem 3.5.4 says that X and Y are independent if and only if f (x, y) can be
factored in the following form for −∞ < x < ∞ and −∞ < y < ∞:

f (x, y) = f1(x)f2(y),

which holds if and only if, for all x and all y such that f2(y) > 0,

f1(x) = f (x, y)

f2(y)
. (3.6.18)

But the right side of Eq. (3.6.18) is the formula for g1(x|y). Hence, X and Y are
independent if and only if Eq. (3.6.17) holds for all x and all y such that f2(y) > 0.

Theorem 3.6.5 says that X and Y are independent if and only if the conditional p.f. or
p.d.f. of X given Y = y is the same as the marginal p.f. or p.d.f. of X for all y such that
f2(y) > 0. Because g1(x|y) is arbitrary when f2(y) = 0, we cannot expect Eq. (3.6.17)
to hold in that case.

Similarly, it follows from Eq. (3.6.8) that X and Y are independent if and only if

g2(y|x) = f2(y), (3.6.19)

for every value of x such that f1(x) > 0. Theorem 3.6.5 and Eq. (3.6.19) give the
mathematical justification for the meaning of independence that we presented on
page 136.

Note: Conditional Distributions Behave Just Like Distributions. As we noted on
page 59, conditional probabilities behave just like probabilities. Since distributions
are just collections of probabilities, it follows that conditional distributions behave
just like distributions. For example, to compute the conditional probability that a
discrete random variable X is in some interval [a, b] given Y = y, we must add g1(x|y)

for all values of x in the interval. Also, theorems that we have proven or shall prove
about distributions will have versions conditional on additional random variables.
We shall postpone examples of such theorems until Sec. 3.7 because they rely on
joint distributions of more than two random variables.

Summary

The conditional distribution of one random variable X given an observed value y

of another random variable Y is the distribution we would use for X if we were to
learn that Y = y. When dealing with the conditional distribution of X given Y = y,
it is safe to behave as if Y were the constant y. If X and Y have joint p.f., p.d.f.,
or p.f./p.d.f. f (x, y), then the conditional p.f. or p.d.f. of X given Y = y is g1(x|y) =
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f (x, y)/f2(y), where f2 is the marginal p.f. or p.d.f. of Y . When it is convenient to
specify a conditional distribution directly, the joint distribution can be constructed
from the conditional together with the other marginal. For example,

f (x, y) = g1(x|y)f2(y) = f1(x)g2(y|x).

In this case, we have versions of the law of total probability and Bayes’ theorem for
random variables that allow us to calculate the other marginal and conditional.

Two random variables X and Y are independent if and only if the conditional p.f.
or p.d.f. of X given Y = y is the same as the marginal p.f. or p.d.f. of X for all y such
that f2(y) > 0. Equivalently, X and Y are independent if and only if the conditional
p.f. of p.d.f. of Y given X = x is the same as the marginal p.f. or p.d.f. of Y for all x

such that f1(x) > 0.

Exercises

1. Suppose that two random variables X and Y have the
joint p.d.f. in Example 3.5.10 on page 139. Compute the
conditional p.d.f. of X given Y = y for each y.

2. Each student in a certain high school was classified ac-
cording to her year in school (freshman, sophomore, ju-
nior, or senior) and according to the number of times that
she had visited a certain museum (never, once, or more
than once). The proportions of students in the various clas-
sifications are given in the following table:

More
Never Once than once

Freshmen 0.08 0.10 0.04

Sophomores 0.04 0.10 0.04

Juniors 0.04 0.20 0.09

Seniors 0.02 0.15 0.10

a. If a student selected at random from the high school
is a junior, what is the probability that she has never
visited the museum?

b. If a student selected at random from the high school
has visited the museum three times, what is the prob-
ability that she is a senior?

3. Suppose that a point (X, Y ) is chosen at random from
the disk S defined as follows:

S = {(x, y) : (x − 1)2 + (y + 2)2 ≤ 9}.
Determine (a) the conditional p.d.f. of Y for every given
value of X, and (b) Pr(Y > 0|X = 2).

4. Suppose that the joint p.d.f. of two random variables X

and Y is as follows:

f (x, y) =
{

c(x + y2) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise.

Determine (a) the conditional p.d.f. of X for every given
value of Y , and (b) Pr(X < 1

2 |Y = 1
2 ).

5. Suppose that the joint p.d.f. of two points X and Y

chosen by the process described in Example 3.6.10 is as
given by Eq. (3.6.15). Determine (a) the conditional p.d.f.

of X for every given value of Y , and (b) Pr
(
X > 1

2

∣∣∣Y = 3
4

)
.

6. Suppose that the joint p.d.f. of two random variables X

and Y is as follows:

f (x, y) =
{

c sin x for 0 ≤ x ≤ π/2 and 0 ≤ y ≤ 3,
0 otherwise.

Determine (a) the conditional p.d.f. of Y for every given
value of X, and (b) Pr(1 < Y < 2|X = 0.73).

7. Suppose that the joint p.d.f. of two random variables X

and Y is as follows:

f (x, y) =

⎧⎪⎨⎪⎩
3

16 (4 − 2x − y) for x > 0, y > 0,
and 2x + y < 4,

0 otherwise.

Determine (a) the conditional p.d.f. of Y for every given
value of X, and (b) Pr(Y ≥ 2|X = 0.5).

8. Suppose that a person’s score X on a mathematics ap-
titude test is a number between 0 and 1, and that his score
Y on a music aptitude test is also a number between 0
and 1. Suppose further that in the population of all col-
lege students in the United States, the scores X and Y are
distributed according to the following joint p.d.f.:

f (x, y) =
{

2
5 (2x + 3y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0 otherwise.
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a. What proportion of college students obtain a score
greater than 0.8 on the mathematics test?

b. If a student’s score on the music test is 0.3, what is the
probability that his score on the mathematics test will
be greater than 0.8?

c. If a student’s score on the mathematics test is 0.3,
what is the probability that his score on the music
test will be greater than 0.8?

9. Suppose that either of two instruments might be used
for making a certain measurement. Instrument 1 yields a
measurement whose p.d.f. h1 is

h1(x) =
{

2x for 0 < x < 1,
0 otherwise.

Instrument 2 yields a measurement whose p.d.f. h2 is

h2(x) =
{

3x2 for 0 < x < 1,
0 otherwise.

Suppose that one of the two instruments is chosen at ran-
dom and a measurement X is made with it.

a. Determine the marginal p.d.f. of X.

b. If the value of the measurement is X = 1/4, what is
the probability that instrument 1 was used?

10. In a large collection of coins, the probability X that a
head will be obtained when a coin is tossed varies from one
coin to another, and the distribution of X in the collection
is specified by the following p.d.f.:

f1(x) =
{

6x(1 − x) for 0 < x < 1,
0 otherwise.

Suppose that a coin is selected at random from the collec-
tion and tossed once, and that a head is obtained. Deter-
mine the conditional p.d.f. of X for this coin.

11. The definition of the conditional p.d.f. of X given Y =
y is arbitrary if f2(y) = 0. The reason that this causes no
serious problem is that it is highly unlikely that we will
observe Y close to a value y0 such that f2(y0) = 0. To be
more precise, let f2(y0) = 0, and let A0 = [y0 − ε, y0 + ε].
Also, let y1 be such that f2(y1) > 0, and let A1 = [y1 −
ε, y1 + ε]. Assume that f2 is continuous at both y0 and y1.
Show that

lim
ε→0

Pr(Y ∈ A0)

Pr(Y ∈ A1)
= 0.

That is, the probability that Y is close to y0 is much smaller
than the probability that Y is close to y1.

12. Let Y be the rate (calls per hour) at which calls arrive
at a switchboard. Let X be the number of calls during a
two-hour period. Suppose that the marginal p.d.f. of Y is

f2(y) =
{

e−y if y > 0,
0 otherwise,

and that the conditional p.f. of X given Y = y is

g1(x|y) =
⎧⎨⎩

(2y)x

x!
e−2y if x = 0, 1, . . . ,

0 otherwise.

a. Find the marginal p.f. of X. (You may use the formula∫ ∞
0 yke−y dy = k!.)

b. Find the conditional p.d.f. g2(y|0) of Y given X = 0.

c. Find the conditional p.d.f. g2(y|1) of Y given X = 1.

d. For what values of y is g2(y|1) > g2(y|0)? Does this
agree with the intuition that the more calls you see,
the higher you should think the rate is?

13. Start with the joint distribution of treatment group
and response in Table 3.6 on page 138. For each treatment
group, compute the conditional distribution of response
given the treatment group. Do they appear to be very
similar or quite different?

3.7 Multivariate Distributions
In this section, we shall extend the results that were developed in Sections 3.4,
3.5, and 3.6 for two random variables X and Y to an arbitrary finite number
n of random variables X1, . . . , Xn. In general, the joint distribution of more
than two random variables is called a multivariate distribution. The theory of
statistical inference (the subject of the part of this book beginning with Chapter 7)
relies on mathematical models for observable data in which each observation is
a random variable. For this reason, multivariate distributions arise naturally in
the mathematical models for data. The most commonly used model will be one in
which the individual data random variables are conditionally independent given
one or two other random variables.
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Joint Distributions

Example
3.7.1

A Clinical Trial. Suppose that m patients with a certain medical condition are given a
treatment, and each patient either recovers from the condition or fails to recover. For
each i = 1, . . . , m, we can let Xi = 1 if patient i recovers and Xi = 0 if not. We might
also believe that there is a random variable P having a continuous distribution taking
values between 0 and 1 such that, if we knew that P = p, we would say that the m

patients recover or fail to recover independently of each other each with probability
p of recovery. We now have named n = m + 1 random variables in which we are
interested. �

The situation described in Example 3.7.1 requires us to construct a joint distri-
bution for n random variables. We shall now provide definitions and examples of the
important concepts needed to discuss multivariate distributions.

Definition
3.7.1

Joint Distribution Function/c.d.f. The joint c.d.f. of n random variables X1, . . . , Xn is
the function F whose value at every point (x1, . . . , xn) in n-dimensional space Rn is
specified by the relation

F(x1, . . . , xn) = Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (3.7.1)

Every multivariate c.d.f. satisfies properties similar to those given earlier for univari-
ate and bivariate c.d.f.’s.

Example
3.7.2

Failure Times. Suppose that a machine has three parts, and part i will fail at time Xi

for i = 1, 2, 3. The following function might be the joint c.d.f. of X1, X2, and X3:

F(x1, x2, x3) =
{

(1 − e−x1)(1 − e−2x2)(1 − e−3x3) for x1, x2, x3 ≥ 0,
0 otherwise. �

Vector Notation In the study of the joint distribution of n random variables
X1, . . . , Xn, it is often convenient to use the vector notation X = (X1, . . . , Xn) and
to refer to X as a random vector. Instead of speaking of the joint distribution of
the random variables X1, . . . , Xn with a joint c.d.f. F(x1, . . . , xn), we can simply
speak of the distribution of the random vector X with c.d.f. F(x). When this vector
notation is used, it must be kept in mind that if X is an n-dimensional random vec-
tor, then its c.d.f. is defined as a function on n-dimensional space Rn. At each point
x = (x1, . . . , xn) ∈ Rn, the value of F(x) is specified by Eq. (3.7.1).

Definition
3.7.2

Joint Discrete Distribution/p.f. It is said that n random variables X1, . . . , Xn have a
discrete joint distribution if the random vector (X1, . . . , Xn) can have only a finite
number or an infinite sequence of different possible values (x1, . . . , xn) in Rn. The
joint p.f. of X1, . . . , Xn is then defined as the function f such that for every point
(x1, . . . , xn) ∈ Rn,

f (x1, . . . , xn) = Pr(X1 = x1, . . . , Xn = xn).

In vector notation, Definition 3.7.2 says that the random vector X has a discrete
distribution and that its p.f. is specified at every point x ∈ Rn by the relation

f (x) = Pr(X = x).
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The following result is a simple generalization of Theorem 3.4.2.

Theorem
3.7.1

If X has a joint discrete distribution with joint p.f. f , then for every subset C ⊂ Rn,

Pr(X ∈ C) =
∑
x∈C

f (x).

It is easy to show that, if each of X1, . . . , Xn has a discrete distribution, then
X = (X1, . . . , Xn) has a discrete joint distribution.

Example
3.7.3

A Clinical Trial. Consider the m patients in Example 3.7.1. Suppose for now that
P = p is known so that we don’t treat it as a random variable. The joint p.f. of
X = (X1, . . . , Xm) is

f (x) = px1+...+xm(1 − p)m−x1−...−xm,

for all xi ∈ {0, 1} and 0 otherwise. �

Definition
3.7.3

Continuous Distribution/p.d.f. It is said that n random variables X1, . . . , Xn have a
continuous joint distribution if there is a nonnegative function f defined on Rn such
that for every subset C ⊂ Rn,

Pr[(X1, . . . , Xn) ∈ C] =
∫

. . .
C

∫
f (x1, . . . xn) dx1 . . . dxn, (3.7.2)

if the integral exists. The function f is called the joint p.d.f. of X1, . . . , Xn.

In vector notation, f (x) denotes the p.d.f. of the random vector X and Eq. (3.7.2)
could be rewritten more simply in the form

Pr(X ∈ C) =
∫

. . .
C

∫
f (x) dx.

Theorem
3.7.2

If the joint distribution of X1, . . . , Xn is continuous, then the joint p.d.f. f can be
derived from the joint c.d.f. F by using the relation

f (x1, . . . , xn) = ∂nF (x1, . . . , xn)

∂x1 . . . ∂xn

at all points (x1, . . . , xn) at which the derivative in this relation exists.

Example
3.7.4

Failure Times. We can find the joint p.d.f. for the three random variables in Exam-
ple 3.7.2 by applying Theorem 3.7.2. The third-order mixed partial is easily calculated
to be

f (x1, x2, x3) =
{

6e−x1−2x2−3x3 for x1, x2, x3 > 0,
0 otherwise. �

It is important to note that, even if each of X1, . . . , Xn has a continuous distri-
bution, the vector X = (X1, . . . , Xn) might not have a continuous joint distribution.
See Exercise 9 in this section.

Example
3.7.5

Service Times in a Queue. A queue is a system in which customers line up for service
and receive their service according to some algorithm. A simple model is the single-
server queue, in which all customers wait for a single server to serve everyone ahead
of them in the line and then they get served. Suppose that n customers arrive at a
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single-server queue for service. Let Xi be the time that the server spends serving
customer i for i = 1, . . . , n. We might use a joint distribution for X = (X1, . . . , Xn)

with joint p.d.f. of the form

f (x) =
⎧⎨⎩

c(
2 + ∑n

i=1 xi

)n+1
for all xi > 0,

0 otherwise.

(3.7.3)

We shall now find the value of c such that the function in Eq. (3.7.3) is a joint p.d.f.
We can do this by integrating over each variable x1, . . . , xn in succession (starting
with xn). The first integral is∫ ∞

0

c

(2 + x1 + . . . + xn)
n+1

dxn = c/n

(2 + x1 + . . . + xn−1)
n
. (3.7.4)

The right-hand side of Eq. (3.7.4) is in the same form as the original p.d.f. except
that n has been reduced to n − 1 and c has been divided by n. It follows that when
we integrate over the variable xi (for i = n − 1, n − 2, . . . , 1), the result will be in
the same form with n reduced to i − 1 and c divided by n(n − 1) . . . i. The result of
integrating all coordinates except x1 is then

c/n!
(2 + x1)

2
, for x1 > 0.

Integrating x1 out of this yields c/[2(n!)], which must equal 1, so c = 2(n!). �

Mixed Distributions

Example
3.7.6

Arrivals at a Queue. In Example 3.7.5, we introduced the single-server queue and
discussed service times. Some features that influence the performance of a queue are
the rate at which customers arrive and the rate at which customers are served. Let Z

stand for the rate at which customers are served, and let Y stand for the rate at which
customers arrive at the queue. Finally, let W stand for the number of customers that
arrive during one day. Then W is discrete while Y and Z could be continuous random
variables. A possible joint p.f./p.d.f. for these three random variables is

f (y, z, w) =
{

6e−3z−10y(8y)w/w! for z, y > 0 and w = 0, 1, . . . ,

0 otherwise.

We can verify this claim shortly. �

Definition
3.7.4

Joint p.f./p.d.f. Let X1, . . . , Xn be random variables, some of which have a continuous
joint distribution and some of which have discrete distributions; their joint distribu-
tion would then be represented by a function f that we call the joint p.f./p.d.f . The
function has the property that the probability that X lies in a subset C ⊂ Rn is calcu-
lated by summing f (x) over the values of the coordinates of x that correspond to the
discrete random variables and integrating over those coordinates that correspond to
the continuous random variables for all points x ∈ C.

Example
3.7.7

Arrivals at a Queue. We shall now verify that the proposed p.f./p.d.f. in Example 3.7.6
actually sums and integrates to 1 over all values of (y, z, w). We must sum over w

and integrate over y and z. We have our choice of in what order to do them. It is not
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difficult to see that we can factor f as f (y, z, w) = h2(z)h13(y, w), where

h2(z) =
{

6e−3z for z > 0,
0 otherwise,

h13(y, w) =
{

e−10y(8y)w/w! for y > 0 and w = 0, 1, . . . ,

0 otherwise.
So we can integrate z out first to get∫ ∞

−∞
f (y, z, w)dz = h13(y, w)

∫ ∞

0
6e−3zdz = 2h13(y, w).

Integrating y out of h13(y, w) is possible, but not pleasant. Instead, notice that
(8y)w/w! is the wth term in the Taylor expansion of e8y. Hence,

∞∑
w=0

2h13(y, w) = 2e−10y

∞∑
w=0

(8y)w

w!
= 2e−10ye8y = 2e−2y,

for y > 0 and 0 otherwise. Finally, integrating over y yields 1. �

Example
3.7.8

A Clinical Trial. In Example 3.7.1, one of the random variables P has a continuous
distribution, and the others X1, . . . , Xm have discrete distributions. A possible joint
p.f./p.d.f. for (X1, . . . , Xm, P ) is

f (x, p) =
{

px1+...+xm(1 − p)m−x1−...−xm for all xi ∈ {0, 1} and 0 ≤ p ≤ 1,
0 otherwise.

We can find probabilities based on this function. Suppose, for example, that we want
the probability that there is exactly one success among the first two patients, that is,
Pr(X1 + X2 = 1). We must integrate f (x, p) over p and sum over all values of x that
have x1 + x2 = 1. For purposes of illustration, suppose that m = 4. First, factor out
px1+x2(1 − p)2−x1−x2 = p(1 − p), which yields

f (x, p) = [p(1 − p)]px3+x4(1 − p)2−x3−x4,

for x3, x4 ∈ {0, 1}, 0 < p < 1, and x1 + x2 = 1. Summing over x3 yields

[p(1 − p)]
(
px4(1 − p)1−x4(1 − p) + ppx4(1 − p)1−x4

)
= [p(1 − p)]px4(1 − p)1−x4.

Summing this over x4 gives p(1 − p). Next, integrate over p to get
∫ 1

0 p(1 − p)dp =
1/6. Finally, note that there are two (x1, x2) vectors, (1, 0) and (0, 1), that have
x1 + x2 = 1, so Pr(X1 + X2 = 1) = (1/6) + (1/6) = 1/3. �

Marginal Distributions

Deriving a Marginal p.d.f. If the joint distribution of n random variables X1, . . . ,

Xn is known, then the marginal distribution of each single random variable Xi can
be derived from this joint distribution. For example, if the joint p.d.f. of X1, . . . , Xn

is f , then the marginal p.d.f. f1 of X1 is specified at every value x1 by the relation

f1(x1) = ∫ ∞
−∞ . . .

∫ ∞
−∞︸ ︷︷ ︸

n−1

f (x1, . . . , xn) dx2 . . . dxn.

More generally, the marginal joint p.d.f. of any k of the n random variables
X1, . . . , Xn can be found by integrating the joint p.d.f. over all possible values of
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the other n − k variables. For example, if f is the joint p.d.f. of four random variables
X1, X2, X3, and X4, then the marginal bivariate p.d.f. f24 of X2 and X4 is specified at
each point (x2, x4) by the relation

f24(x2, x4) =
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3, x4) dx1 dx3.

Example
3.7.9

Service Times in a Queue. Suppose that n = 5 in Example 3.7.5 and that we want the
marginal bivariate p.d.f. of (X1, X4). We must integrate Eq. (3.7.3) over x2, x3, and x5.
Since the joint p.d.f. is symmetric with respect to permutations of the coordinates of
x, we shall just integrate over the last three variables and then change the names of
the remaining variables to x1 and x4. We already saw how to do this in Example 3.7.5.
The result is

f12(x1, x2) =
⎧⎨⎩

4
(2 + x1 + x2)

3
for x1, x2 > 0,

0 otherwise.
(3.7.5)

Then f14 is just like (3.7.5) with all the 2 subscripts changed to 4. The univariate
marginal p.d.f. of each Xi is

fi(xi) =
⎧⎨⎩

2
(2 + xi)

2
for xi > 0,

0 otherwise.
(3.7.6)

So, for example, if we want to know how likely it is that a customer will have to wait
longer than three time units, we can calculate Pr(Xi > 3) by integrating the function
in Eq. (3.7.6) from 3 to ∞. The result is 0.4. �

If n random variables X1, . . . , Xn have a discrete joint distribution, then the
marginal joint p.f. of each subset of the n variables can be obtained from relations
similar to those for continuous distributions. In the new relations, the integrals are
replaced by sums.

Deriving a Marginal c.d.f. Consider now a joint distribution for which the joint
c.d.f. of X1, . . . , Xn is F . The marginal c.d.f. F1 of X1 can be obtained from the
following relation:

F1(x1) = Pr(X1 ≤ x1) = Pr(X1 ≤ x1, X2 < ∞, . . . , Xn < ∞)

= lim
x2, ..., xn→∞ F(x1, x2, . . . , xn).

Example
3.7.10

Failure Times. We can find the marginal c.d.f. of X1 from the joint c.d.f. in Exam-
ple 3.7.2 by letting x2 and x3 go to ∞. The limit is F1(x1) = 1 − e−x1 for x1 ≥ 0 and 0
otherwise. �

More generally, the marginal joint c.d.f. of any k of the n random variables
X1, . . . , Xn can be found by computing the limiting value of the n-dimensional c.d.f.
F as xj → ∞ for each of the other n − k variables xj . For example, if F is the joint
c.d.f. of four random variables X1, X2, X3, and X4, then the marginal bivariate c.d.f.
F24 of X2 and X4 is specified at every point (x2, x4) by the relation

F24(x2, x4) = lim
x1, x3→∞ F(x1, x2, x3, x4).



158 Chapter 3 Random Variables and Distributions

Example
3.7.11

Failure Times. We can find the marginal bivariate c.d.f. of X1 and X3 from the joint
c.d.f. in Example 3.7.2 by letting x2 go to ∞. The limit is

F13(x1, x3) =
{

(1 − e−x1)(1 − e−3x3) for x1, x3 ≥ 0,
0 otherwise. �

Independent Random Variables

Definition
3.7.5

Independent Random Variables. It is said that n random variables X1, . . . , Xn are
independent if, for every n sets A1, A2, . . . , An of real numbers,

Pr(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An)

= Pr(X1 ∈ A1) Pr(X2 ∈ A2) . . . Pr(Xn ∈ An).

If X1, . . . , Xn are independent, it follows easily that the random variables in every
nonempty subset of X1, . . . , Xn are also independent. (See Exercise 11.)

There is a generalization of Theorem 3.5.4.

Theorem
3.7.3

Let F denote the joint c.d.f. of X1, . . . , Xn, and let Fi denote the marginal univariate
c.d.f. of Xi for i = 1, . . . , n. The variables X1, . . . , Xn are independent if and only if,
for all points (x1, x2, . . . , xn) ∈ Rn,

F(x1, x2, . . . , xn) = F1(x1)F2(x2) . . . Fn(xn).

Theorem 3.7.3 says that X1, . . . , Xn are independent if and only if their joint c.d.f.
is the product of their n individual marginal c.d.f.’s. It is easy to check that the three
random variables in Example 3.7.2 are independent using Theorem 3.7.3.

There is also a generalization of Corollary 3.5.1.

Theorem
3.7.4

If X1, . . . , Xn have a continuous, discrete, or mixed joint distribution for which the
joint p.d.f., joint p.f., or joint p.f./p.d.f. is f , and if fi is the marginal univariate p.d.f. or
p.f. of Xi (i = 1, . . . , n), then X1, . . . , Xn are independent if and only if the following
relation is satisfied at all points (x1, x2, . . . , xn) ∈ Rn:

f (x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn). (3.7.7)

Example
3.7.12

Service Times in a Queue. In Example 3.7.9, we can multiply together the two uni-
variate marginal p.d.f.’s of X1 and X2 calculated using Eq. (3.7.6) and see that the
product does not equal the bivariate marginal p.d.f. of (X1, X2) in Eq. (3.7.5). So X1
and X2 are not independent. �

Definition
3.7.6

Random Samples/i.i.d./Sample Size. Consider a given probability distribution on the
real line that can be represented by either a p.f. or a p.d.f. f . It is said that n

random variables X1, . . . , Xn form a random sample from this distribution if these
random variables are independent and the marginal p.f. or p.d.f. of each of them is
f . Such random variables are also said to be independent and identically distributed,
abbreviated i.i.d. We refer to the number n of random variables as the sample size.

Definition 3.7.6 says that X1, . . . , Xn form a random sample from the distribution
represented by f if their joint p.f. or p.d.f. g is specified as follows at all points
(x1, x2, . . . , xn) ∈ Rn:

g(x1, . . . , xn) = f (x1)f (x2) . . . f (xn).

Clearly, an i.i.d. sample cannot have a mixed joint distribution.
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Example
3.7.13

Lifetimes of Light Bulbs. Suppose that the lifetime of each light bulb produced in a
certain factory is distributed according to the following p.d.f.:

f (x) =
{

xe−x for x > 0,
0 otherwise.

We shall determine the joint p.d.f. of the lifetimes of a random sample of n light bulbs
drawn from the factory’s production.

The lifetimes X1, . . . , Xn of the selected bulbs will form a random sample from
the p.d.f. f . For typographical simplicity, we shall use the notation exp(v) to denote
the exponential ev when the expression for v is complicated. Then the joint p.d.f. g

of X1, . . . , Xn will be as follows: If xi > 0 for i = 1, . . . , n,

g(x1, . . . , xn) =
n∏

i=1

f (xi)

=
(

n∏
i=1

xi

)
exp

(
−

n∑
i=1

xi

)
.

Otherwise, g(x1, . . . , xn) = 0.
Every probability involving the n lifetimes X1, . . . , Xn can in principle be deter-

mined by integrating this joint p.d.f. over the appropriate subset of Rn. For example, if
C is the subset of points (x1, . . . , xn) such that xi > 0 for i = 1, . . . , n and

∑n
i=1 xi < a,

where a is a given positive number, then

Pr

(
n∑

i=1

Xi < a

)
=

∫
. . .
C

∫ (
n∏

i=1

xi

)
exp

(
−

n∑
i=1

xi

)
dx1 . . . dxn. �

The evaluation of the integral given at the end of Example 3.7.13 may require
a considerable amount of time without the aid of tables or a computer. Certain
other probabilities, however, can be evaluated easily from the basic properties of
continuous distributions and random samples. For example, suppose that for the
conditions of Example 3.7.13 it is desired to find Pr(X1 < X2 < . . . < Xn). Since the
random variables X1, . . . , Xn have a continuous joint distribution, the probability
that at least two of these random variables will have the same value is 0. In fact,
the probability is 0 that the vector (X1, . . . , Xn) will belong to each specific subset
of Rn for which the n-dimensional volume is 0. Furthermore, since X1, . . . , Xn are
independent and identically distributed, each of these variables is equally likely to
be the smallest of the n lifetimes, and each is equally likely to be the largest. More
generally, if the lifetimes X1, . . . , Xn are arranged in order from the smallest to the
largest, each particular ordering of X1, . . . , Xn is as likely to be obtained as any
other ordering. Since there are n! different possible orderings, the probability that
the particular ordering X1 < X2 < . . . < Xn will be obtained is 1/n!. Hence,

Pr(X1 < X2 < . . . < Xn) = 1
n!

.

Conditional Distributions

Suppose that n random variables X1, . . . , Xn have a continuous joint distribution for
which the joint p.d.f. is f and that f0 denotes the marginal joint p.d.f. of the k < n ran-
dom variables X1, . . . , Xk. Then for all values of x1, . . . , xk such that f0(x1, . . . , xk) >

0, the conditional p.d.f. of (Xk+1, . . . , Xn) given that X1 = x1, . . . , Xk = xk is defined
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as follows:

gk+1...n(xk+1, . . . , xn|x1, . . . , xk) = f (x1, x2, . . . , xn)

f0(x1, . . . , xk)
.

The definition above generalizes to arbitrary joint distributions as follows.

Definition
3.7.7

Conditional p.f., p.d.f., or p.f./p.d.f. Suppose that the random vector X = (X1, . . . , Xn)

is divided into two subvectors Y and Z, where Y is a k-dimensional random vector
comprising k of the n random variables in X , and Z is an (n − k)-dimensional random
vector comprising the other n − k random variables in X . Suppose also that the
n-dimensional joint p.f., p.d.f., or p.f./p.d.f. of (Y , Z) is f and that the marginal (n − k)-
dimensional p.f., p.d.f., or p.f./p.d.f. of Z is f2. Then for every given point z ∈ Rn−k such
that f2(z) > 0, the conditional k-dimensional p.f., p.d.f., or p.f./p.d.f. g1 of Y given
Z = z is defined as follows:

g1(y|z) = f (y, z)
f2(z)

for y ∈ Rk. (3.7.8)

Eq. (3.7.8) can be rewritten as

f (y, z) = g1(y|z)f2(z), (3.7.9)

which allows construction of the joint distribution from a conditional distribution and
a marginal distribution. As in the bivariate case, it is safe to assume that f (y, z) = 0
whenever f2(z) = 0. Then Eq. (3.7.9) holds for all y and z even though g1( y|z) is not
uniquely defined.

Example
3.7.14

Service Times in a Queue. In Example 3.7.9, we calculated the marginal bivariate
distribution of two service times Z = (X1, X2). We can now find the conditional three-
dimensional p.d.f. of Y = (X3, X4, X5) given Z = (x1, x2) for every pair (x1, x2) such
that x1, x2 > 0:

g1(x3, x4, x5|x1, x2) = f (x1, . . . , x5)

f12(x1, x2)

=
(

240
(2 + x1 + . . . + x5)

6

) (
4

(2 + x1 + x2)
3

)−1

= 60(2 + x1 + x2)
3

(2 + x1 + . . . + x5)
6
, (3.7.10)

for x3, x4, x5 > 0, and 0 otherwise. The joint p.d.f. in (3.7.10) looks like a bunch of
symbols, but it can be quite useful. Suppose that we observe X1 = 4 and X2 = 6. Then

g1(x3, x4, x5|4.6) =
⎧⎨⎩

103,680
(12 + x3 + x4 + x5)

6
for x3, x4, x5 > 0,

0 otherwise.

We can now calculate the conditional probability that X3 > 3 given X1 = 4, X2 = 6:
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Pr(X3 > 3|X1 = 4, X2 = 6) =
∫ ∞

3

∫ ∞

0

∫ ∞

0

10,360
(12 + x3 + x4 + x5)

6
dx5dx4dx3

=
∫ ∞

3

∫ ∞

0

20,736
(12 + x3 + x4)

5
dx4dx3

=
∫ ∞

3

5184
(12 + x3)

4
dx3

= 1728
153

= 0.512.

Compare this to the calculation of Pr(X3 > 3) = 0.4 at the end of Example 3.7.9.
After learning that the first two service times are a bit longer than three time units, we
revise the probability that X3 > 3 upward to reflect what we learned from the first two
observations. If the first two service times had been small, the conditional probability
that X3 > 3 would have been smaller than 0.4. For example, Pr(X3 > 3|X1 = 1, X2 =
1.5) = 0.216. �

Example
3.7.15

Determining a Marginal Bivariate p.d.f. Suppose that Z is a random variable for which
the p.d.f. f0 is as follows:

f0(z) =
{

2e−2z for z > 0,
0 otherwise.

(3.7.11)

Suppose, furthermore, that for every given value Z = z > 0 two other random vari-
ables X1 and X2 are independent and identically distributed and the conditional p.d.f.
of each of these variables is as follows:

g(x|z) =
{

ze−zx for x > 0,
0 otherwise.

(3.7.12)

We shall determine the marginal joint p.d.f. of (X1, X2).
Since X1 and X2 are i.i.d. for each given value of Z, their conditional joint p.d.f.

when Z = z > 0 is

g12(x1, x2|z) =
{

z2e−z(x1+x2) for x1, x2 > 0,
0 otherwise.

The joint p.d.f. f of (Z, X1, X2) will be positive only at those points (z, x1, x2)

such that x1, x2, z > 0. It now follows that, at every such point,

f (z, x1, x2) = f0(z)g12(x1, x2|z) = 2z2e−z(2+x1+x2).

For x1 > 0 and x2 > 0, the marginal joint p.d.f. f12(x1, x2) of X1 and X2 can be
determined either using integration by parts or some special results that will arise
in Sec. 5.7:

f12(x1, x2) =
∫ ∞

0
f (z, x1, x2) dz = 4

(2 + x1 + x2)
3
,

for x1, x2 > 0. The reader will note that this p.d.f. is the same as the marginal bivariate
p.d.f. of (X1, X2) found in Eq. (3.7.5).

From this marginal bivariate p.d.f., we can evaluate probabilities involving X1
and X2, such as Pr(X1 + X2 < 4). We have

Pr(X1 + X2 < 4) =
∫ 4

0

∫ 4−x2

0

4
(2 + x1 + x2)

3
dx1 dx2 = 4

9
. �
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Example
3.7.16

Service Times in a Queue. We can think of the random variable Z in Example 3.7.15
as the rate at which customers are served in the queue of Example 3.7.5. With this
interpretation, it is useful to find the conditional distribution of the rate Z after we
observe some of the service times such as X1 and X2.

For every value of z, the conditional p.d.f. of Z given X1 = x1 and X2 = x2 is

g0(z|x1, x2) = f (z, x1, x2)

f12(x1, x2)

=
{

1
2 (2 + x1 + x2)

3z2e−z(2+x1+x2) for z > 0,

0 otherwise.
(3.7.13)

Finally, we shall evaluate Pr(Z ≤ 1|X1 = 1, X2 = 4). We have

Pr(Z ≤ 1|X1 = 1, X2 = 4) =
∫ 1

0
g0(z|1, 4) dz

=
∫ 1

0
171.5z2e−7z dz = 0.9704. �

Law of Total Probability and Bayes’ Theorem Example 3.7.15 contains an example
of the multivariate version of the law of total probability, while Example 3.7.16
contains an example of the multivariate version of Bayes’ theorem. The proofs of
the general versions are straightforward consequences of Definition 3.7.7.

Theorem
3.7.5

Multivariate Law of Total Probability and Bayes’ Theorem. Assume the conditions and
notation given in Definition 3.7.7. If Z has a continuous joint distribution, the mar-
ginal p.d.f. of Y is

f1( y) =
∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
n−k

g1( y|z)f2(z) dz, (3.7.14)

and the conditional p.d.f. of Z given Y = y is

g2(z|y) = g1( y|z)f2(z)
f1( y)

. (3.7.15)

If Z has a discrete joint distribution, then the multiple integral in (3.7.14) must be
replaced by a multiple summation. If Z has a mixed joint distribution, the multiple
integral must be replaced by integration over those coordinates with continuous
distributions and summation over those coordinates with discrete distributions.

Conditionally Independent Random Variables In Examples 3.7.15 and 3.7.16, Z is
the single random variable Z and Y = (X1, X2). These examples also illustrate the use
of conditionally independent random variables. That is, X1 and X2 are conditionally
independent given Z = z for all z > 0. In Example 3.7.16, we said that Z was the
rate at which customers were served. When this rate is unknown, it is a major source
of uncertainty. Partitioning the sample space by the values of the rate Z and then
conditioning on each value of Z removes a major source of uncertainty for part of
the calculation.

In general, conditional independence for random variables is similar to condi-
tional independence for events.
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Definition
3.7.8

Conditionally Independent Random Variables. Let Z be a random vector with joint
p.f., p.d.f., or p.f./p.d.f. f0(z). Several random variables X1, . . . , Xn are conditionally
independent given Z if, for all z such that f0(z) > 0, we have

g(x|z) =
n∏

i=1

gi(xi|z),

where g(x|z) stands for the conditional multivariate p.f., p.d.f., or p.f./p.d.f. of X given
Z = z and gi(xi|z) stands for the conditional univariate p.f. or p.d.f. of Xi given Z = z.

In Example 3.7.15, gi(xi|z) = ze−zxi for xi > 0 and i = 1, 2.

Example
3.7.17

A Clinical Trial. In Example 3.7.8, the joint p.f./p.d.f. given there was constructed by
assuming that X1, . . . , Xm were conditionally independent given P = p each with
the same conditional p.f., gi(xi|p) = pxi(1 − p)1−xi for xi ∈ {0, 1} and that P had
the uniform distribution on the interval [0, 1]. These assumptions produce, in the
notation of Definition 3.7.8,

g(x|p) =
{

px1+...+xm(1 − p)40−x1−...−xm for all xi ∈ {0, 1} and 0 ≤ p ≤ 1,
0 otherwise,

for 0 ≤ p ≤ 1. Combining this with the marginal p.d.f. of P , f2(p) = 1 for 0 ≤ p ≤ 1
and 0 otherwise, we get the joint p.f./p.d.f. given in Example 3.7.8. �

Conditional Versions of Past and Future Theorems We mentioned earlier that
conditional distributions behave just like distributions. Hence, all theorems that we
have proven and will prove in the future have conditional versions. For example,
the law of total probability in Eq. (3.7.14) has the following version conditional on
another random vector W = w:

f1(y|w) =
∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
n−k

g1(y|z, w)f2(z|w) dz, (3.7.16)

where f1(y|w) stands for the conditional p.d.f., p.f., or p.f./p.d.f. of Y given W = w,
g1(y|z, w) stands for the conditional p.d.f., p.f., or p.f./p.d.f. of Y given (Z, W ) = (z, w),
and f2(z|w) stands for the conditional p.d.f. of Z given W = w. Using the same
notation, the conditional version of Bayes’ theorem is

g2(z|y, w) = g1(y|z, w)f2(z|w)

f1(y|w)
. (3.7.17)

Example
3.7.18

Conditioning on Random Variables in Sequence. In Example 3.7.15, we found the
conditional p.d.f. of Z given (X1, X2) = (x1, x2). Suppose now that there are three
more observations available, X3, X4, and X5, and suppose that all of X1, . . . , X5
are conditionally i.i.d. given Z = z with p.d.f. g(x|z). We shall use the conditional
version of Bayes’ theorem to compute the conditional p.d.f. of Z given (X1, . . . , X5) =
(x1, . . . , x5). First, we shall find the conditional p.d.f. g345(x3, x4, x5|x1, x2, z) of Y =
(X3, X4, X5) given Z = z and W = (X1, X2) = (x1, x2). We shall use the notation for
p.d.f.’s in the discussion immediately preceding this example. Since X1, . . . , X5 are
conditionally i.i.d. given Z, we have that g1(y|z, w) does not depend on w. In fact,

g1(y|z, w) = g(x3|z)g(x4|z)g(x5|z) = z3e−z(x3+x4+x5),
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for x3, x4, x5 > 0. We also need the conditional p.d.f. of Z given W = w, which was
calculated in Eq. (3.7.13), and we now denote it

f2(z|w) = 1
2
(2 + x1 + x2)

3z2e−z(2+x1+x2).

Finally, we need the conditional p.d.f. of the last three observations given the first
two. This was calculated in Example 3.7.14, and we now denote it

f1( y|w) = 60(2 + x1 + x2)
3

(2 + x1 + . . . + x5)
6
.

Now combine these using Bayes’ theorem (3.7.17) to obtain

g2(z|y, w) = z3e−z(x3+x4+x5) 1
2 (2 + x1 + x2)

3z2e−z(2+x1+x2)

60(2 + x1 + x2)
3

(2 + x1 + . . . + x5)
6

= 1
120

(2 + x1 + . . . + x5)
6z5e−z(2+x1+...+x5),

for z > 0. �

Note: Simple Rule for Creating Conditional Versions of Results. If you ever wish to
determine the conditional version given W = w of a result that you have proven, here
is a simple method. Just add “conditional on W = w” to every probabilistic statement
in the result. This includes all probabilities, c.d.f.’s, quantiles, names of distributions,
p.d.f.’s, p.f.’s, and so on. It also includes all future probabilistic concepts that we
introduce in later chapters (such as expected values and variances in Chapter 4).

Note: Independence is a Special Case of Conditional Independence. Let X1, . . . ,

Xn be independent random variables, and let W be a constant random variable.
That is, there is a constant c such that Pr(W = c) = 1. Then X1, . . . , Xn are also
conditionally independent given W = c. The proof is straightforward and is left to
the reader (Exercise 15). This result is not particularly interesting in its own right.
Its value is the following: If we prove a result for conditionally independent random
variables or conditionally i.i.d. random variables, then the same result will hold for
independent random variables or i.i.d. random variables as the case may be.

Histograms

Example
3.7.19

Rate of Service. In Examples 3.7.5 and 3.7.6, we considered customers arriving at a
queue and being served. Let Z stand for the rate at which customers were served,
and we let X1, X2, . . . stand for the times that the successive customers requrired for
service. Assume that X1, X2, . . . are conditionally i.i.d. given Z = z with p.d.f.

g(x|z) =
{

ze−zx for x > 0,
0 otherwise.

(3.7.18)

This is the same as (3.7.12) from Example 3.7.15. In that example, we modeled Z as
a random variable with p.d.f. f0(z) = 2 exp(−2z) for z > 0. In this example, we shall
assume that X1, . . . , Xn will be observed for some large value n, and we want to
think about what these observations tell us about Z. To be specific, suppose that we
observe n = 100 service times. The first 10 times are listed here:

1.39, 0.61, 2.47, 3.35, 2.56, 3.60, 0.32, 1.43, 0.51, 0.94.
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The smallest and largest observed service times from the entire sample are 0.004 and
9.60, respectively. It would be nice to have a graphical display of the entire sample
of n = 100 service times without having to list them separately. �

The histogram, defined below, is a graphical display of a collection of numbers.
It is particularly useful for displaying the observed values of a collection of random
variables that have been modeled as conditionally i.i.d.

Definition
3.7.9

Histogram. Let x1, . . . , xn be a collection of numbers that all lie between two values
a < b. That is, a ≤ xi ≤ b for all i = 1, . . . , n. Choose some integer k ≥ 1 and divide
the interval [a, b] into k equal-length subintervals of length (b − a)/k. For each
subinterval, count how many of the numbers x1, . . . , xn are in the subinterval. Let
ci be the count for subinterval i for i = 1, . . . , k. Choose a number r > 0. (Typically,
r = 1 or r = n or r = n(b − a)/k.) Draw a two-dimensional graph with the horizonal
axis running from a to b. For each subinterval i = 1, . . . , k draw a rectangular bar of
width (b − a)/k and height equal to ci/r over the midpoint of the ith interval. Such
a graph is called a histogram.

The choice of the number r in the definition of histogram depends on what one
wishes to be displayed on the vertical axis. The shape of the histogram is identical
regardless of what value one chooses for r . With r = 1, the height of each bar is the raw
count for each subinterval, and counts are displayed on the vertical axis. With r = n,
the height of each bar is the proportion of the set of numbers in each subinterval,
and the vertical axis displays proportions. With r = n(b − a)/k, the area of each bar
is the proportion of the set of numbers in each subinterval.

Example
3.7.20

Rate of Service. The n = 100 observed service times in Example 3.7.19 all lie between
0 and 10. It is convenient, in this example, to draw a histogram with horizontal axis
running from 0 to 10 and divided into 10 subintervals of length 1 each. Other choices
are possible, but this one will do for illustration. Figure 3.22 contains the histogram of
the 100 observed service times with r = 100. One sees that the numbers of observed
service times in the subintervals decrease as the center of the subinterval increses.
This matches the behavior of the conditional p.d.f. g(x|z) of the service times as a
function of x for fixed z. �

Histograms are useful as more than just graphical displays of large sets of num-
bers. After we see the law of large numbers (Theorem 6.2.4), we can show that the

Figure 3.22 Histogram
of service times for Exam-
ple 3.7.20 with a = 0, b = 10,
k = 10, and r = 100.
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histogram of a large (conditionally) i.i.d. sample of continuous random variables is
an approximation to the (conditional) p.d.f. of the random variables in the sample,
so long as one uses the third choice of r , namely, r = n(b − a)/k.

Note: More General Histograms. Sometimes it is convenient to divide the range of
the numbers to be plotted in a histogram into unequal-length subintervals. In such a
case, one would typically let the height of each bar be ci/ri, where ci is the raw count
and ri is proportional to the length of the ith subinterval. In this way, the area of each
bar is still proportional to the count or proportion in each subinterval.

Summary

A finite collection of random variables is called a random vector. We have defined
joint distributions for arbitrary random vectors. Every random vector has a joint c.d.f.
Continuous random vectors have a joint p.d.f. Discrete random vectors have a joint
p.f. Mixed distribution random vectors have a joint p.f./p.d.f. The coordinates of an
n-dimensional random vector X are independent if the joint p.f., p.d.f., or p.f./p.d.f.
f (x) factors into

∏n
i=1 fi(xi).

We can compute marginal distributions of subvectors of a random vector, and
we can compute the conditional distribution of one subvector given the rest of the
vector. We can construct a joint distribution for a random vector by piecing together
a marginal distribution for part of the vector and a conditional distribution for the
rest given the first part. There are versions of Bayes’ theorem and the law of total
probability for random vectors.

An n-dimensional random vector X has coordinates that are conditionally inde-
pendent given Z if the conditional p.f., p.d.f., or p.f./p.d.f. g(x|z) of X given Z = z
factors into

∏n
i=1 gi(xi|z). There are versions of Bayes’ theorem, the law of total

probability, and all future theorems about random variables and random vectors
conditional on an arbitrary additional random vector.

Exercises

1. Suppose that three random variables X1, X2, and X3
have a continuous joint distribution with the following
joint p.d.f.: f (x1, x2, x3) ={

c(x1 + 2x2 + 3x3) for 0 ≤ xi ≤ 1 (i = 1, 2, 3),

0 otherwise.

Determine (a) the value of the constant c;
(b) the marginal joint p.d.f. of X1 and X3; and

(c) Pr
(
X3 < 1

2

∣∣∣X1 = 1
4 , X2 = 3

4

)
.

2. Suppose that three random variables X1, X2, and X3
have a mixed joint distribution with p.f./p.d.f.:

f (x1, x2, x3)

=

⎧⎪⎨⎪⎩
cx

1+x2+x3
1 (1 − x1)

3−x2−x3 if 0 < x1 < 1
and x2, x3 ∈ {0, 1},

0 otherwise.

(Notice that X1 has a continuous distribution and X2 and
X3 have discrete distributions.) Determine (a) the value of
the constant c; (b) the marginal joint p.f. of X2 and X3; and
(c) the conditional p.d.f. of X1 given X2 = 1 and X3 = 1.

3. Suppose that three random variables X1, X2, and X3
have a continuous joint distribution with the following
joint p.d.f.: f (x1, x2, x3) ={

ce−(x1+2x2+3x3) for xi > 0 (i = 1, 2, 3),

0 otherwise.

Determine (a) the value of the constant c; (b) the marginal
joint p.d.f. of X1 and X3; and (c) Pr(X1 < 1|X2 = 2, X3 = 1).

4. Suppose that a point (X1, X2, X3) is chosen at random,
that is, in accordance with the uniform p.d.f., from the
following set S:

S = {(x1, x2, x3): 0 ≤ xi ≤ 1 for i = 1, 2, 3}.
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Determine:

a. Pr
[(

X1 − 1
2

)2 +
(
X2 − 1

2

)2 +
(
X3 − 1

2

)2 ≤ 1
4

]
b. Pr(X2

1 + X2
2 + X2

3 ≤ 1)

5. Suppose that an electronic system contains n compo-
nents that function independently of each other and that
the probability that component i will function properly is
pi (i = 1, . . . , n). It is said that the components are con-
nected in series if a necessary and sufficient condition for
the system to function properly is that all n components
function properly. It is said that the components are con-
nected in parallel if a necessary and sufficient condition for
the system to function properly is that at least one of the
n components functions properly. The probability that the
system will function properly is called the reliability of the
system. Determine the reliability of the system, (a) assum-
ing that the components are connected in series, and (b)
assuming that the components are connected in parallel.

6. Suppose that the n random variables X1 . . . , Xn form a
random sample from a discrete distribution for which the
p.f. is f . Determine the value of Pr(X1 = X2 = . . . = Xn).

7. Suppose that the n random variables X1, . . . , Xn form a
random sample from a continuous distribution for which
the p.d.f. is f . Determine the probability that at least k

of these n random variables will lie in a specified interval
a ≤ x ≤ b.

8. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

1
n!x

ne−x for x > 0

0 otherwise.

Suppose also that for any given value X = x (x > 0), the n

random variables Y1, . . . , Yn are i.i.d. and the conditional
p.d.f. g of each of them is as follows:

g(y|x) =
{

1
x

for 0 < y < x,

0 otherwise.

Determine (a) the marginal joint p.d.f. of Y1, . . . , Yn and
(b) the conditional p.d.f. of X for any given values of
Y1, . . . , Yn.

9. Let X be a random variable with a continuous distribu-
tion. Let X1 = X2 = X.

a. Prove that both X1 and X2 have a continuous distri-
bution.

b. Prove that X = (X1, X2) does not have a continuous
joint distribution.

10. Return to the situation described in Example 3.7.18.
Let X = (X1, . . . , X5) and compute the conditional p.d.f.
of Z given X = x directly in one step, as if all of X were
observed at the same time.

11. Suppose that X1, . . . , Xn are independent. Let k < n

and let i1, . . . , ik be distinct integers between 1 and n.
Prove that Xi1

, . . . , Xik
are independent.

12. Let X be a random vector that is split into three parts,
X = (Y , Z, W ). Suppose that X has a continuous joint
distribution with p.d.f. f ( y, z, w). Let g1( y, z|w) be the
conditional p.d.f. of (Y , Z) given W = w, and let g2( y|w)

be the conditional p.d.f. of Y given W = w. Prove that
g2( y|w) = ∫

g1( y, z|w) dz.

13. Let X1, X2, X3 be conditionally independent given
Z = z for all z with the conditional p.d.f. g(x|z) in Eq.
(3.7.12). Also, let the marginal p.d.f. of Z be f0 in
Eq. (3.7.11). Prove that the conditional p.d.f. of X3 given
(X1, X2) = (x1, x2) is

∫ ∞
0

g(x3|z)g0(z|x1, x2) dz, where g0 is
defined in Eq. (3.7.13). (You can prove this even if you
cannot compute the integral in closed form.)

14. Consider the situation described in Example 3.7.14.
Suppose that X1 = 5 and X2 = 7 are observed.

a. Compute the conditional p.d.f. of X3 given (X1, X2)=
(5, 7). (You may use the result stated in Exercise 12.)

b. Find the conditional probability that X3 > 3 given
(X1, X2) = (5, 7) and compare it to the value of
Pr(X3 > 3) found in Example 3.7.9. Can you suggest
a reason why the conditional probability should be
higher than the marginal probability?

15. Let X1, . . . , Xn be independent random variables, and
let W be a random variable such that Pr(W = c) = 1 for
some constant c. Prove that X1, . . . , Xn are conditionally
independent given W = c.

3.8 Functions of a Random Variable
Often we find that after we compute the distribution of a random variable X, we
really want the distribution of some function of X. For example, if X is the rate at
which customers are served in a queue, then 1/X is the average waiting time. If we
have the distribution of X, we should be able to determine the distribution of 1/X

or of any other function of X. How to do that is the subject of this section.
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Random Variable with a Discrete Distribution

Example
3.8.1

Distance from the Middle. Let X have the uniform distribution on the integers
1, 2, . . . , 9. Suppose that we are interested in how far X is from the middle of the
distribution, namely, 5. We could define Y = |X − 5| and compute probabilities such
as Pr(Y = 1) = Pr(X ∈ {4, 6}) = 2/9. �

Example 3.8.1 illustrates the general procedure for finding the distribution of a
function of a discrete random variable. The general result is straightforward.

Theorem
3.8.1

Function of a Discrete Random Variable. Let X have a discrete distribution with p.f. f ,
and let Y = r(X) for some function of r defined on the set of possible values of X.
For each possible value y of Y , the p.f. g of Y is

g(y) = Pr(Y = y) = Pr[r(X) = y] =
∑

x: r(x)=y

f (x).

Example
3.8.2

Distance from the Middle. The possible values of Y in Example 3.8.1 are 0, 1, 2, 3,
and 4. We see that Y = 0 if and only if X = 5, so g(0) = f (5) = 1/9. For all other
values of Y , there are two values of X that give that value of Y . For example,
{Y = 4} = {X = 1} ∪ {X = 9}. So, g(y) = 2/9 for y = 1, 2, 3, 4. �

Random Variable with a Continuous Distribution

If a random variable X has a continuous distribution, then the procedure for deriving
the probability distribution of a function of X differs from that given for a discrete
distribution. One way to proceed is by direct calculation as in Example 3.8.3.

Example
3.8.3

Average Waiting Time. Let Z be the rate at which customers are served in a queue,
and suppose that Z has a continuous c.d.f. F . The average waiting time is Y = 1/Z.
If we want to find the c.d.f. G of Y , we can write

G(y) = Pr(Y ≤ y) = Pr
(

1
Z

≤ y

)
= Pr

(
Z ≥ 1

y

)
= Pr

(
Z >

1
y

)
= 1 − F

(
1
y

)
,

where the fourth equality follows from the fact that Z has a continuous distribution
so that Pr(Z = 1/y) = 0. �

In general, suppose that the p.d.f. of X is f and that another random variable is
defined as Y = r(X). For each real number y, the c.d.f. G(y) of Y can be derived as
follows:

G(y) = Pr(Y ≤ y) = Pr[r(X) ≤ y]

=
∫

{x: r(x)≤y}
f (x) dx.

If the random variable Y also has a continuous distribution, its p.d.f. g can be obtained
from the relation

g(y) = dG(y)

dy
.

This relation is satisfied at every point y at which G is differentiable.
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Figure 3.23 The p.d.f. of
Y = X2 in Example 3.8.4.

y10

g(y)

Example
3.8.4

Deriving the p.d.f. of X2 when X Has a Uniform Distribution. Suppose that X has the
uniform distribution on the interval [−1, 1], so

f (x) =
{

1/2 for −1 ≤ x ≤ 1,
0 otherwise.

We shall determine the p.d.f. of the random variable Y = X2.
Since Y = X2, then Y must belong to the interval 0 ≤ Y ≤ 1. Thus, for each value

of Y such that 0 ≤ y ≤ 1, the c.d.f. G(y) of Y is

G(y) = Pr(Y ≤ y) = Pr(X2 ≤ y)

= Pr(−y1/2 ≤ X ≤ y1/2)

=
∫ y1/2

−y1/2
f (x) dx = y1/2.

For 0 < y < 1, it follows that the p.d.f. g(y) of Y is

g(y) = dG(y)

dy
= 1

2y1/2
.

This p.d.f. of Y is sketched in Fig. 3.23. It should be noted that although Y is
simply the square of a random variable with a uniform distribution, the p.d.f. of Y is
unbounded in the neighborhood of y = 0. �

Linear functions are very useful transformations, and the p.d.f. of a linear func-
tion of a continuous random variable is easy to derive. The proof of the following
result is left to the reader in Exercise 5.

Theorem
3.8.2

Linear Function. Suppose that X is a random variable for which the p.d.f. is f and that
Y = aX + b (a 	= 0). Then the p.d.f. of Y is

g(y) = 1
|a|f

(
y − b

a

)
for −∞ < y < ∞, (3.8.1)

and 0 otherwise.

The Probability Integral Transformation

Example
3.8.5

Let X be a continuous random variable with p.d.f. f (x) = exp(−x) for x > 0 and 0
otherwise. The c.d.f. of X is F(x) = 1 − exp(−x) for x > 0 and 0 otherwise. If we let
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F be the function r in the earlier results of this section, we can find the distribution
of Y = F(X). The c.d.f. or Y is, for 0 < y < 1,

G(y) = Pr(Y ≤ y) = Pr(1 − exp(−X) ≤ y) = Pr(X ≤ − log(1 − y))

= F(− log(1 − y)) = 1 − exp(−[− log(1 − y)]) = y,

which is the c.d.f. of the uniform distribution on the interval [0, 1]. It follows that Y

has the uniform distribution on the interval [0, 1]. �

The result in Example 3.8.5 is quite general.

Theorem
3.8.3

Probability Integral Transformation. Let X have a continuous c.d.f. F , and let Y = F(X).
(This transformation from X to Y is called the probability integral transformation.)
The distribution of Y is the uniform distribution on the interval [0, 1].

Proof First, because F is the c.d.f. of a random variable, then 0 ≤ F(x) ≤ 1 for
−∞ < x < ∞. Therefore, Pr(Y < 0) = Pr(Y > 1) = 0. Since F is continuous, the set
of x such that F(x) = y is a nonempty closed and bounded interval [x0, x1] for each y

in the interval (0, 1). Let F−1(y) denote the lower endpoint x0 of this interval, which
was called the y quantile of F in Definition 3.3.2. In this way, Y ≤ y if and only if
X ≤ x1. Let G denote the c.d.f. of Y . Then

G(y) = Pr(Y ≤ y) = Pr(X ≤ x1) = F(x1) = y.

Hence, G(y) = y for 0 < y < 1. Because this function is the c.d.f. of the uniform
distribution on the interval [0, 1], this uniform distribution is the distribution of Y .

Because Pr(X = F−1(Y )) = 1 in the proof of Theorem 3.8.3, we have the following
corollary.

Corollary
3.8.1

Let Y have the uniform distribution on the interval [0, 1], and let F be a continuous
c.d.f. with quantile function F−1. Then X = F−1(Y ) has c.d.f. F .

Theorem 3.8.3 and its corollary give us a method for transforming an arbitrary
continuous random variable X into another random variable Z with any desired
continuous distribution. To be specific, let X have a continuous c.d.f. F , and let G

be another continuous c.d.f. Then Y = F(X) has the uniform distribution on the
interval [0, 1] according to Theorem 3.8.3, and Z = G−1(Y ) has the c.d.f. G according
to Corollary 3.8.1. Combining these, we see that Z = G−1[F(X)] has c.d.f. G.

Simulation

Pseudo-Random Numbers Most computer packages that do statistical analyses
also produce what are called pseudo-random numbers. These numbers appear to
have some of the properties that a random sample would have, even though they
are generated by deterministic algorithms. The most fundamental of these programs
are the ones that generate pseudo-random numbers that appear to have the uniform
distribution on the interval [0, 1]. We shall refer to such functions as uniform pseudo-
random number generators. The important features that a uniform pseudo-random
number generator must have are the following.

The numbers that it produces need to be spread somewhat uniformly over the
interval [0, 1], and they need to appear to be observed values of independent random
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variables. This last feature is very complicated to word precisely. An example of a
sequence that does not appear to be observations of independent random variables
would be one that was perfectly evenly spaced. Another example would be one with
the following behavior: Suppose that we look at the sequence X1, X2, . . . one at a
time, and every time we find an Xi > 0.5, we write down the next number Xi+1. If the
subsequence of numbers that we write down is not spread approximately uniformly
over the interval [0, 1], then the original sequence does not look like observations
of independent random variables with the uniform distribution on the interval [0, 1].
The reason is that the conditional distribution of Xi+1 given that Xi > 0.5 is supposed
to be uniform over the interval [0, 1], according to independence.

Generating Pseudo-Random Numbers Having a Specified Distribution A uniform
pseudo-random number generator can be used to generate values of a random
variable Y having any specified continuous c.d.f. G. If a random variable X has the
uniform distribution on the interval [0, 1] and if the quantile function G−1 is defined
as before, then it follows from Corollary 3.8.1 that the c.d.f. of the random variable
Y = G−1(X) will be G. Hence, if a value of X is produced by a uniform pseudo-
random number generator, then the corresponding value of Y will have the desired
property. If n independent values X1, . . . , Xn are produced by the generator, then
the corresponding values Y1, . . . , Yn will appear to form a random sample of size n

from the distribution with the c.d.f. G.

Example
3.8.6

Generating Independent Values from a Specified p.d.f. Suppose that a uniform pseudo-
random number generator is to be used to generate three independent values from
the distribution for which the p.d.f. g is as follows:

g(y) =
{

1
2 (2 − y) for 0 < y < 2,

0 otherwise.

For 0 < y < 2, the c.d.f. G of the given distribution is

G(y) = y − y2

4
.

Also, for 0 < x < 1, the inverse function y = G−1(x) can be found by solving the
equation x = G(y) for y. The result is

y = G−1(x) = 2[1 − (1 − x)1/2]. (3.8.2)

The next step is to generate three uniform pseudo-random numbers x1, x2, and x3
using the generator. Suppose that the three generated values are

x1 = 0.4125, x2 = 0.0894, x3 = 0.8302.

When these values of x1, x2, and x3 are substituted successively into Eq. (3.8.2),
the values of y that are obtained are y1 = 0.47, y2 = 0.09, and y3 = 1.18. These are
then treated as the observed values of three independent random variables with the
distribution for which the p.d.f. is g. �

If G is a general c.d.f., there is a method similar to Corollary 3.8.1 that can be
used to transform a uniform random variable into a random variable with c.d.f. G.
See Exercise 12 in this section. There are other computer methods for generating
values from certain specified distributions that are faster and more accurate than
using the quantile function. These topics are discussed in the books by Kennedy and
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Gentle (1980) and Rubinstein (1981). Chapter 12 of this text contains techniques and
examples that show how simulation can be used to solve statistical problems.

General Function In general, if X has a continuous distribution and if Y = r(X),
then it is not necessarily true that Y will also have a continuous distribution. For ex-
ample, suppose that r(x) = c, where c is a constant, for all values of x in some interval
a ≤ x ≤ b, and that Pr(a ≤ X ≤ b) > 0. Then Pr(Y = c) > 0. Since the distribution of Y

assigns positive probability to the value c, this distribution cannot be continuous. In
order to derive the distribution of Y in a case like this, the c.d.f. of Y must be derived
by applying methods like those described above. For certain functions r , however,
the distribution of Y will be continuous; and it will then be possible to derive the
p.d.f. of Y directly without first deriving its c.d.f. We shall develop this case in detail
at the end of this section.

Direct Derivation of the p.d.f. When r is One-to-One and Differentiable

Example
3.8.7

Average Waiting Time. Consider Example 3.8.3 again. The p.d.f. g of Y can be com-
puted from G(y) = 1 − F(1/y) because F and 1/y both have derivatives at enough
places. We apply the chain rule for differentiation to obtain

g(y) = dG(y)

dy
= − dF(x)

dx

∣∣∣∣
x=1/y

(
− 1

y2

)
= f

(
1
y

)
1
y2

,

except at y = 0 and at those values of y such that F(x) is not differentiable at x = 1/y.
�

Differentiable One-To-One Functions The method used in Example 3.8.7 general-
izes to very arbitrary differentiable one-to-one functions. Before stating the general
result, we should recall some properties of differentiable one-to-one functions from
calculus. Let r be a differentiable one-to-one function on the open interval (a, b).
Then r is either strictly increasing or strictly decreasing. Because r is also continu-
ous, it will map the interval (a, b) to another open interval (α, β), called the image of
(a, b) under r . That is, for each x ∈ (a, b), r(x) ∈ (α, β), and for each y ∈ (α, β) there is
x ∈ (a, b) such that y = r(x) and this y is unique because r is one-to-one. So the inverse
s of r will exist on the interval (α, β), meaning that for x ∈ (a, b) and y ∈ (α, β) we
have r(x) = y if and only if s(y) = x. The derivative of s will exist (possibly infinite),
and it is related to the derivative of r by

ds(y)

dy
=

(
dr(x)

dx

∣∣∣∣
x=s(y)

)−1

.

Theorem
3.8.4

Let X be a random variable for which the p.d.f. is f and for which Pr(a < X < b) = 1.
(Here, a and/or b can be either finite or infinite.) Let Y = r(X), and suppose that r(x)

is differentiable and one-to-one for a < x < b. Let (α, β) be the image of the interval
(a, b) under the function r . Let s(y) be the inverse function of r(x) for α < y < β.
Then the p.d.f. g of Y is

g(y) =
⎧⎨⎩ f [s(y)]

∣∣∣∣ds(y)

dy

∣∣∣∣ for α < y < β,

0 otherwise.
(3.8.3)
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Proof If r is increasing, then s is increasing, and for each y ∈ (α, β),

G(y) = Pr(Y ≤ y) = Pr[r(X) ≤ y] = Pr[X ≤ s(y)] = F [s(y)].

It follows that G is differentiable at all y where both s is differentiable and where
F(x) is differentiable at x = s(y). Using the chain rule for differentiation, it follows
that the p.d.f. g(y) for α < y < β will be

g(y) = dG(y)

dy
= dF [s(y)]

dy
= f [s(y)]

ds(y)

dy
. (3.8.4)

Because s is increasing, ds(y)/dy is positive; hence, it equals |ds(y)/dy| and Eq.
(3.8.4) implies Eq. (3.8.3). Similarly, if r is decreasing, then s is decreasing, and for
each y ∈ (α, β),

G(y) = Pr[r(X) ≤ y] = Pr[X ≥ s(y)] = 1 − F [s(y)].

Using the chain rule again, we differentiate G to get the p.d.f. of Y

g(y) = dG(y)

dy
= −f [s(y)]

ds(y)

dy
. (3.8.5)

Since s is strictly decreasing, ds(y)/dy is negative so that −ds(y)/dy equals |ds(y)/

dy|. It follows that Eq. (3.8.5) implies Eq. (3.8.3).

Example
3.8.8

Microbial Growth. A popular model for populations of microscopic organisms in
large environments is exponential growth. At time 0, suppose that v organisms are
introduced into a large tank of water, and let X be the rate of growth. After time
t , we would predict a population size of veXt . Assume that X is unknown but has a
continuous distribution with p.d.f.

f (x) =
{

3(1 − x)2 for 0 < x < 1,

0 otherwise.

We are interested in the distribution of Y = veXt for known values of v and t . For
concreteness, let v = 10 and t = 5, so that r(x) = 10e5x.

In this example, Pr(0 < X < 1) = 1 and r is a continuous and strictly increasing
function of x for 0 < x < 1. As x varies over the interval (0, 1), it is found that
y = r(x) varies over the interval (10, 10e5). Furthermore, for 10 < y < 10e5, the
inverse function is s(y) = log(y/10)/5. Hence, for 10 < y < 10e5,

ds(y)

dy
= 1

5y
.

It follows from Eq. (3.8.3) that g(y) will be

g(y) =
⎧⎨⎩ 3(1 − log(y/10)/5)2

5y
for 10 < y < 10e5,

0 otherwise. �

Summary

We learned several methods for determining the distribution of a function of a
random variable. For a random variable X with a continuous distribution having
p.d.f. f , if r is strictly increasing or strictly decreasing with differentiable inverse
s (i.e., s(r(x)) = x and s is differentiable), then the p.d.f. of Y = r(X) is g(y) =
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f (s(y))|ds(y)/dy|. A special transformation allows us to transform a random variable
X with the uniform distribution on the interval [0, 1] into a random variable Y with an
arbitrary continuous c.d.f. G by Y = G−1(X). This method can be used in conjunction
with a uniform pseudo-random number generator to generate random variables with
arbitrary continuous distributions.

Exercises

1. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

3x2 for 0 < x < 1,

0 otherwise.

Also, suppose that Y = 1 − X2. Determine the p.d.f. of Y .

2. Suppose that a random variable X can have each of the
seven values −3, −2, −1, 0, 1, 2, 3 with equal probability.
Determine the p.f. of Y = X2 − X.

3. Suppose that the p.d.f. of a random variable X is as
follows:

f (x) =
{

1
2 x for 0 < x < 2,

0 otherwise.

Also, suppose that Y = X(2 − X). Determine the c.d.f. and
the p.d.f. of Y .

4. Suppose that the p.d.f. of X is as given in Exercise 3.
Determine the p.d.f. of Y = 4 − X3.

5. Prove Theorem 3.8.2. (Hint: Either apply Theorem
3.8.4 or first compute the c.d.f. seperately for a > 0 and
a < 0.)

6. Suppose that the p.d.f. of X is as given in Exercise 3.
Determine the p.d.f. of Y = 3X + 2.

7. Suppose that a random variable X has the uniform
distribution on the interval [0, 1]. Determine the p.d.f. of
(a) X2, (b) −X3, and (c) X1/2.

8. Suppose that the p.d.f. of X is as follows:

f (x) =
{

e−x for x > 0,

0 for x ≤ 0.

Determine the p.d.f. of Y = X1/2.

9. Suppose that X has the uniform distribution on the
interval [0, 1]. Construct a random variable Y = r(X) for
which the p.d.f. will be

g(y) =
{

3
8y2 for 0 < y < 2,

0 otherwise.

10. Let X be a random variable for which the p.d.f f is as
given in Exercise 3. Construct a random variable Y = r(X)

for which the p.d.f. g is as given in Exercise 9.

11. Explain how to use a uniform pseudo-random number
generator to generate four independent values from a
distribution for which the p.d.f. is

g(y) =
{

1
2 (2y + 1) for 0 < y < 1,

0 otherwise.

12. Let F be an arbitrary c.d.f. (not necessarily discrete,
not necessarily continuous, not necessarily either). Let
F−1 be the quantile function from Definition 3.3.2. Let X

have the uniform distribution on the interval [0, 1]. Define
Y = F−1(X). Prove that the c.d.f. of Y is F . Hint: Compute
Pr(Y ≤ y) in two cases. First, do the case in which y is the
unique value of x such that F(x) = F(y). Second, do the
case in which there is an entire interval of x values such
that F(x) = F(y).

13. Let Z be the rate at which customers are served in a
queue. Assume that Z has the p.d.f.

f (z) =
{

2e−2z for z > 0,

0 otherwise.

Find the p.d.f. of the average waiting time T = 1/Z.

14. Let X have the uniform distribution on the interval
[a, b], and let c > 0. Prove that cX + d has the uniform
distribution on the interval [ca + d, cb + d].

15. Most of the calculation in Example 3.8.4 is quite gen-
eral. Suppose that X has a continuous distribution with
p.d.f. f . Let Y = X2, and show that the p.d.f. of Y is

g(y) = 1
2y1/2

[f (y1/2) + f (−y1/2)].

16. In Example 3.8.4, the p.d.f. of Y = X2 is much larger
for values of y near 0 than for values of y near 1 despite
the fact that the p.d.f. of X is flat. Give an intuitive reason
why this occurs in this example.

17. An insurance agent sells a policy which has a $100 de-
ductible and a $5000 cap. This means that when the policy
holder files a claim, the policy holder must pay the first



3.9 Functions of Two or More Random Variables 175

$100. After the first $100, the insurance company pays the
rest of the claim up to a maximum payment of $5000. Any
excess must be paid by the policy holder. Suppose that the
dollar amount X of a claim has a continuous distribution
with p.d.f. f (x) = 1/(1 + x)2 for x > 0 and 0 otherwise. Let
Y be the amount that the insurance company has to pay
on the claim.

a. Write Y as a function of X, i.e., Y = r(X).

b. Find the c.d.f. of Y .

c. Explain why Y has neither a continuous nor a dis-
crete distribution.

3.9 Functions of Two or More Random Variables
When we observe data consisting of the values of several random variables, we
need to summarize the observed values in order to be able to focus on the infor-
mation in the data. Summarizing consists of constructing one or a few functions
of the random variables that capture the bulk of the information. In this section,
we describe the techniques needed to determine the distribution of a function of
two or more random variables.

Random Variables with a Discrete Joint Distribution

Example
3.9.1

Bull Market. Three different investment firms are trying to advertise their mutual
funds by showing how many perform better than a recognized standard. Each com-
pany has 10 funds, so there are 30 in total. Suppose that the first 10 funds belong to the
first firm, the next 10 to the second firm, and the last 10 to the third firm. Let Xi = 1
if fund i performs better than the standard and Xi = 0 otherwise, for i = 1, . . . , 30.
Then, we are interested in the three functions

Y1 = X1 + . . . + X10,

Y2 = X11 + . . . + X20,

Y3 = X21 + . . . + X30.

We would like to be able to determine the joint distribution of Y1, Y2, and Y3 from
the joint distribution of X1, . . . , X30. �

The general method for solving problems like those of Example 3.9.1 is a straight-
forward extension of Theorem 3.8.1.

Theorem
3.9.1

Functions of Discrete Random Variables. Suppose that n random variables X1, . . . , Xn

have a discrete joint distribution for which the joint p.f. is f, and that m functions
Y1, . . . , Ym of these n random variables are defined as follows:

Y1 = r1(X1, . . . , Xn),

Y2 = r2(X1, . . . , Xn),
...

Ym = rm(X1, . . . , Xn).
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For given values y1, . . . , ym of the m random variables Y1, . . . , Ym, let A denote the
set of all points (x1, . . . , xn) such that

r1(x1, . . . , xn) = y1,

r2(x1, . . . , xn) = y2,
...

rm(x1, . . . , xn) = ym.

Then the value of the joint p.f. g of Y1, . . . , Ym is specified at the point (y1, . . . , ym)

by the relation

g(y1, . . . , ym) =
∑

(x1, ...,xn)∈A

f (x1, . . . , xn).

Example
3.9.2

Bull Market. Recall the situation in Example 3.9.1. Suppose that we want the joint
p.f. g of (Y1, Y2, Y3) at the point (3, 5, 8). That is, we want g(3, 5, 8) = Pr(Y1 = 3, Y2 =
5, Y3 = 8). The set A as defined in Theorem 3.9.1 is

A = {(x1, . . . , x30) : x1 + . . . + x10 = 3, x11 + . . . + x20 = 5, x21 + . . . + x30 = 8}.
Two of the points in the set A are

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0),

(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1).

A counting argument like those developed in Sec. 1.8 can be used to discover that
there are (

10
3

)(
10
5

)(
10
8

)
= 1,360,800

points in A. Unless the joint distribution of X1, . . . , X30 has some simple structure,
it will be extremely tedious to compute g(3, 5, 8) as well as most other values of g.
For example, if all of the 230 possible values of the vector (X1, . . . , X30) are equally
likely, then

g(3, 5, 8) = 1,360,800
230

= 1.27 × 10−3. �

The next result gives an important example of a function of discrete random variables.

Theorem
3.9.2

Binomial and Bernoulli Distributions. Assume that X1, . . . , Xn are i.i.d. random vari-
ables having the Bernoulli distribution with parameter p. Let Y = X1 + . . . + Xn.
Then Y has the binomial distribution with parameters n and p.

Proof It is clear that Y = y if and only if exactly y of X1, . . . , Xn equal 1 and the
other n − y equal 0. There are

(
n
y

)
distinct possible values for the vector (X1, . . . , Xn)

that have y ones and n − y zeros. Each such vector has probability py(1 − p)n−y of
being observed; hence the probability that Y = y is the sum of the probabilities of
those vectors, namely,

(
n
y

)
py(1 − p)n−y for y = 0, . . . , n. From Definition 3.1.7, we

see that Y has the binomial distribution with parameters n and p.

Example
3.9.3

Sampling Parts. Suppose that two machines are producing parts. For i = 1, 2, the
probability is pi that machine i will produce a defective part, and we shall assume
that all parts from both machines are independent. Assume that the first n1 parts
are produced by machine 1 and that the last n2 parts are produced by machine 2,
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with n = n1 + n2 being the total number of parts sampled. Let Xi = 1 if the ith part
is defective and Xi = 0 otherwise for i = 1, . . . , n. Define Y1 = X1 + . . . + Xn1

and
Y2 = Xn1+1 + . . . + Xn. These are the total numbers of defective parts produced by
each machine. The assumptions stated in the problem allow us to conclude that Y1 and
Y2 are independent according to the note about separate functions of independent
random variables on page 140. Furthermore, Theorem 3.9.2 says that Yj has the
binomial distribution with parameters nj and pj for j = 1, 2. These two marginal
distributions, together with the fact that Y1 and Y2 are independent, give the entire
joint distribution. So, for example, if g is the joint p.f. of Y1 and Y2, we can compute

g(y1, y2) =
(

n1

y1

)
p

y1
1 (1 − p1)

n1−y1

(
n2

y2

)
p

y2
2 (1 − p)n2−y2,

for y1 = 0, . . . , n1 and y2 = 0, . . . , n2, while g(y1, y2) = 0 otherwise. There is no need
to find a set A as in Example 3.9.2, because of the simplifying structure of the joint
distribution of X1, . . . , Xn. �

Random Variables with a Continuous Joint Distribution

Example
3.9.4

Total Service Time. Suppose that the first two customers in a queue plan to leave
together. Let Xi be the time it takes to serve customer i for i = 1, 2. Suppose also that
X1 and X2 are independent random variables with common distribution having p.d.f.
f (x) = 2e−2x for x > 0 and 0 otherwise. Since the customers will leave together, they
are interested in the total time it takes to serve both of them, namely, Y = X1 + X2.
We can now find the p.d.f. of Y .

For each y, let

Ay = {(x1, x2) : x1 + x2 ≤ y}.
Then Y ≤ y if and only if (X1, X2) ∈ Ay. The set Ay is pictured in Fig. 3.24. If we let
G(y) denote the c.d.f. of Y , then, for y > 0,

G(y) = Pr((X1, X2) ∈ Ay) =
∫ y

0

∫ y−x2

0
4e−2x1−2x2dx1dx2

=
∫ y

0
2e−2x2

[
1 − e−2(y−x2)

]
dx2 =

∫ y

0

[
2e−2x2 − 2e−2y

]
dx2

= 1 − e−2y − 2ye−2y.

Figure 3.24 The set Ay in
Example 3.9.4 and in the
proof of Theorem 3.9.4.

Ay

y

y
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Taking the derivative of G(y) with respect to y, we get the p.d.f.

g(y) = d

dy

[
1 − e−2y − ye−2y

]
= 4ye−2y,

for y > 0 and 0 otherwise. �

The transformation in Example 3.9.4 is an example of a brute-force method that is
always available for finding the distribution of a function of several random variables,
however, it might be difficult to apply in individual cases.

Theorem
3.9.3

Brute-Force Distribution of a Function. Suppose that the joint p.d.f. of X = (X1, . . . , Xn)

is f (x) and that Y = r(X). For each real number y, define Ay = {x : r(x) ≤ y}. Then
the c.d.f. G(y) of Y is

G(y) =
∫

. . .
Ay

∫
f (x) dx. (3.9.1)

Proof From the definition of c.d.f.,

G(y) = Pr(Y ≤ y) = Pr[r(X) ≤ y] = Pr(X ∈ Ay),

which equals the right side of Eq. (3.9.1) by Definition 3.7.3.

If the distribution of Y also is continuous, then the p.d.f. of Y can be found by
differentiating the c.d.f. G(y).

A popular special case of Theorem 3.9.3 is the following.

Theorem
3.9.4

Linear Function of Two Random Variables. Let X1 and X2 have joint p.d.f. f (x1, x2),
and let Y = a1X1 + a2X2 + b with a1 	= 0. Then Y has a continuous distribution whose
p.d.f. is

g(y) =
∫ ∞

−∞
f

(
y − b − a2x2

a1
, x2

)
1

|a1|
dx2. (3.9.2)

Proof First, we shall find the c.d.f. G of Y whose derivative we will see is the function
g in Eq. (3.9.2). For each y, let Ay = {(x1, x2) : a1x1 + a2x2 + b ≤ y}. The set Ay has
the same general form as the set in Fig. 3.24. We shall write the integral over the set
Ay with x2 in the outer integral and x1 in the inner integral. Assume that a1 > 0. The
other case is similar. According to Theorem 3.9.3,

G(y) =
∫

Ay

∫
f (x1, x2)dx1dx2 =

∫ ∞

−∞

∫ (y−b−a2x2)/a1

−∞
f (x1, x2)dx1dx2. (3.9.3)

For the inner integral, perform the change of variable z = a1x1 + a2x2 + b whose
inverse is x1 = (z − b − a2x2)/a1, so that dx1 = dz/a1. The inner integral, after this
change of variable, becomes∫ y

−∞
f

(
z − b − a2x2

a1
, x2

)
1
a1

dz.

We can now substitute this expression for the inner integral into Eq. (3.9.3):

G(y) =
∫ ∞

−∞

∫ y

−∞
f

(
z − b − a2x2

a1
, x2

)
1
a1

dzdx2

=
∫ y

−∞

∫ ∞

−∞
f

(
z − b − a2x2

a1
, x2

)
1
a1

dx2dz. (3.9.4)
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Let g(z) denote the inner integral on the far right side of Eq. (3.9.4). Then we have
G(y) = ∫ y

−∞ g(z)dz, whose derivative is g(y), the function in Eq. (3.9.2).

The special case of Theorem 3.9.4 in which X1 and X2 are independent, a1 = a2 = 1,
and b = 0 is called convolution.

Definition
3.9.1

Convolution. Let X1 and X2 be independent continuous random variables and let
Y = X1 + X2. The distribution of Y is called the convolution of the distributions of
X1 and X2. The p.d.f. of Y is sometimes called the convolution of the p.d.f.’s of X1 and
X2.

If we let the p.d.f. of Xi be fi for i = 1, 2 in Definition 3.9.1, then Theorem 3.9.4 (with
a1 = a2 = 1 and b = 0) says that the p.d.f. of Y = X1 + X2 is

g(y) =
∫ ∞

−∞
f1(y − z)f2(z)dz. (3.9.5)

Equivalently, by switching the names of X1 and X2, we obtain the alternative form
for the convolution:

g(y) =
∫ ∞

−∞
f1(z)f2(y − z) dz. (3.9.6)

The p.d.f. found in Example 3.9.4 is the special case of (3.9.5) with f1(x) = f2(x) =
2e−2x for x > 0 and 0 otherwise.

Example
3.9.5

An Investment Portfolio. Suppose that an investor wants to purchase both stocks and
bonds. Let X1 be the value of the stocks at the end of one year, and let X2 be the
value of the bonds at the end of one year. Suppose that X1 and X2 are independent.
Let X1 have the uniform distribution on the interval [1000, 4000], and let X2 have the
uniform distribution on the interval [800, 1200]. The sum Y = X1 + X2 is the value at
the end of the year of the portfolio consisting of both the stocks and the bonds. We
shall find the p.d.f. of Y . The function f1(z)f2(y − z) in Eq. (3.9.6) is

f1(z)f2(y − z) =
⎧⎨⎩

8.333 × 10−7 for 1000 ≤ z ≤ 4000
and 800 ≤ y − z ≤ 1200,

0 otherwise.

(3.9.7)

We need to integrate the function in Eq. (3.9.7) over z for each value of y to get
the marginal p.d.f. of Y . It is helpful to look at a graph of the set of (y, z) pairs for
which the function in Eq. (3.9.7) is positive. Figure 3.25 shows the region shaded. For
1800 < y ≤ 2200, we must integrate z from 1000 to y − 800. For 2200 < y ≤ 4800, we
must integrate z from y − 1200 to y − 800. For 4800 < y < 5200, we must integrate z

from y − 1200 to 4000. Since the function in Eq. (3.9.7) is constant when it is positive,
the integral equals the constant times the length of the interval of z values. So, the
p.d.f. of Y is

g(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8.333 × 10−7(y − 1800) for 1800 < y ≤ 2200,
3.333 × 10−4 for 2200 < y ≤ 4800,
8.333 × 10−7(5200 − y) for 4800 < y < 5200,
0 otherwise. �

As another example of the brute-force method, we consider the largest and
smallest observations in a random sample. These functions give an idea of how spread
out the sample is. For example, meteorologists often report record high and low
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Figure 3.25 The region
where the function in
Eq. (3.9.7) is positive.
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temperatures for specific days as well as record high and low rainfalls for months
and years.

Example
3.9.6

Maximum and Minimum of a Random Sample. Suppose that X1, . . . , Xn form a random
sample of size n from a distribution for which the p.d.f. is f and the c.d.f. is F . The
largest value Yn and the smallest value Y1 in the random sample are defined as follows:

Yn = max{X1, . . . , Xn},
Y1 = min{X1, . . . , Xn}. (3.9.8)

Consider Yn first. Let Gn stand for its c.d.f., and let gn be its p.d.f. For every given
value of y (−∞ < y < ∞),

Gn(y) = Pr(Yn ≤ y) = Pr(X1 ≤ y, X2 ≤ y, . . . , Xn ≤ y)

= Pr(X1 ≤ y) Pr(X2 ≤ y) . . . Pr(Xn ≤ y)

= F(y)F (y) . . . F (y) = [F(y)]n,

where the third equality follows from the fact that the Xi are independent and
the fourth follows from the fact that all of the Xi have the same c.d.f. F . Thus,
Gn(y) = [F(y)]n.

Now, gn can be determined by differentiating the c.d.f. Gn. The result is

gn(y) = n[F(y)]n−1f (y) for −∞ < y < ∞.

Next, consider Y1 with c.d.f. G1 and p.d.f. g1. For every given value of y (−∞ <

y < ∞),

G1(y) = Pr(Y1 ≤ y) = 1 − Pr(Y1 > y)

= 1 − Pr(X1 > y, X2 > y, . . . , Xn > y)

= 1 − Pr(X1 > y) Pr(X2 > y) . . . Pr(Xn > y)

= 1 − [1 − F(y)][1 − F(y)] . . . [1 − F(y)]

= 1 − [1 − F(y)]n.

Thus, G1(y) = 1 − [1 − F(y)]n.
Then g1 can be determined by differentiating the c.d.f. G1. The result is

g1(y) = n[1 − F(y)]n−1f (y) for −∞ < y < ∞.
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Figure 3.26 The p.d.f. of the
uniform distribution on the
interval [0, 1] together with
the p.d.f.’s of the minimum
and maximum of samples
of size n = 5. The p.d.f. of
the range of a sample of size
n = 5 (see Example 3.9.7) is
also included.
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Figure 3.26 shows the p.d.f. of the uniform distribution on the interval [0, 1]
together with the p.d.f.’s of Y1 and Yn for the case n = 5. It also shows the p.d.f. of
Y5 − Y1, which will be derived in Example 3.9.7. Notice that the p.d.f. of Y1 is highest
near 0 and lowest near 1, while the opposite is true of the p.d.f. of Yn, as one would
expect.

Finally, we shall determine the joint distribution of Y1 and Yn. For every pair
of values (y1, yn) such that −∞ < y1 < yn < ∞, the event {Y1 ≤ y1} ∩ {Yn ≤ yn} is the
same as {Yn ≤ yn} ∩ {Y1 > y1}c. If G denotes the bivariate joint c.d.f. of Y1 and Yn, then

G(y1, yn) = Pr(Y1 ≤ y1 and Yn ≤ yn)

= Pr(Yn ≤ yn) − Pr(Yn ≤ yn and Y1 > y1)

= Pr(Yn ≤ yn)

− Pr(y1 < X1 ≤ yn, y1 < X2 ≤ yn, . . . , y1 < Xn ≤ yn)

= Gn(yn) −
n∏

i=1

Pr(y1 < Xi ≤ yn)

= [F(yn)]
n − [F(yn) − F(y1)]

n.

The bivariate joint p.d.f. g of Y1 and Yn can be found from the relation

g(y1, yn) = ∂2G(y1, yn)

∂y1∂yn

.

Thus, for −∞ < y1 < yn < ∞,

g(y1, yn) = n(n − 1)[F(yn) − F(y1)]
n−2f (y1)f (yn). (3.9.9)

Also, for all other values of y1 and yn, g(y1, yn) = 0. �

A popular way to describe how spread out is a random sample is to use the
distance from the minimum to the maximum, which is called the range of the random
sample. We can combine the result from the end of Example 3.9.6 with Theorem 3.9.4
to find the p.d.f. of the range.

Example
3.9.7

The Distribution of the Range of a Random Sample. Consider the same situation as in
Example 3.9.6. The random variable W = Yn − Y1 is called the range of the sample.
The joint p.d.f. g(y1, yn) of Y1 and Yn was presented in Eq. (3.9.9). We can now apply
Theorem 3.9.4 with a1 = −1, a2 = 1, and b = 0 to get the p.d.f. h of W :
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h(w) =
∫ ∞

−∞
g(yn − w, yn)dyn =

∫ ∞

−∞
g(z, z + w)dz, (3.9.10)

where, for the last equality, we have made the change of variable z = yn − w. �

Here is a special case in which the integral of Eq. 3.9.10 can be computed in
closed form.

Example
3.9.8

The Range of a Random Sample from a Uniform Distribution. Suppose that the n random
variables X1, . . . , Xn form a random sample from the uniform distribution on the
interval [0, 1]. We shall determine the p.d.f. of the range of the sample.

In this example,

f (x) =
{

1 for 0 < x < 1,
0 otherwise,

Also, F(x) = x for 0 < x < 1. We can write g(y1, yn) from Eq. (3.9.9) in this case as

g(y1, yn) =
{

n(n − 1)(yn − y1)
n−2 for 0 < y1 < yn < 1,

0 otherwise.

Therefore, in Eq. (3.9.10), g(z, z + w) = 0 unless 0 < w < 1 and 0 < z < 1 − w. For
values of w and z satisfying these conditions, g(z, w + z) = n(n − 1)wn−2. The p.d.f.
in Eq. (3.9.10) is then, for 0 < w < 1,

h(w) =
∫ 1−w

0
n(n − 1)wn−2 dz = n(n − 1)wn−2(1 − w).

Otherwise, h(w) = 0. This p.d.f. is shown in Fig. 3.26 for the case n = 5. �

Direct Transformation of a Multivariate p.d.f.

Next, we state without proof a generalization of Theorem 3.8.4 to the case of several
random variables. The proof of Theorem 3.9.5 is based on the theory of differentiable
one-to-one transformations in advanced calculus.

Theorem
3.9.5

Multivariate Transformation. Let X1, . . . , Xn have a continuous joint distribution
for which the joint p.d.f. is f . Assume that there is a subset S of Rn such that
Pr[(X1, . . . , Xn) ∈ S] = 1. Define n new random variables Y1, . . . , Yn as follows:

Y1 = r1(X1, . . . , Xn),

Y2 = r2(X1, . . . , Xn),
...

Yn = rn(X1, . . . , Xn),

(3.9.11)

where we assume that the n functions r1, . . . , rn define a one-to-one differentiable
transformation of S onto a subset T of Rn. Let the inverse of this transformation be
given as follows:

x1 = s1(y1, . . . , yn),

x2 = s2(y1, . . . , yn),
...

xn = sn(y1, . . . , yn).

(3.9.12)
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Then the joint p.d.f. g of Y1, . . . , Yn is

g(y1, . . . , yn) =
{

f (s1, . . . , sn)|J | for (y1, . . . , yn) ∈ T ,

0 otherwise,
(3.9.13)

where J is the determinant

J = det

⎡⎢⎢⎣
∂s1

∂y1

. . . ∂s1

∂yn...
. . .

...
∂sn

∂y1

. . .
∂sn

∂yn

⎤⎥⎥⎦
and |J | denotes the absolute value of the determinant J .

Thus, the joint p.d.f. g(y1, . . . , yn) is obtained by starting with the joint p.d.f.
f (x1, . . . , xn), replacing each value xi by its expression si(y1, . . . , yn) in terms of
y1, . . . , yn, and then multiplying the result by |J |. This determinant J is called the
Jacobian of the transformation specified by the equations in (3.9.12).

Note: The Jacobian Is a Generalization of the Derivative of the Inverse. Eqs. (3.8.3)
and (3.9.13) are very similar. The former gives the p.d.f. of a single function of a
single random variable. Indeed, if n = 1 in (3.9.13), J = ds1(y1)/dy1 and Eq. (3.9.13)
becomes the same as (3.8.3). The Jacobian merely generalizes the derivative of the
inverse of a single function of one variable to n functions of n variables.

Example
3.9.9

The Joint p.d.f. of the Quotient and the Product of Two Random Variables. Suppose that
two random variables X1 and X2 have a continuous joint distribution for which the
joint p.d.f. is as follows:

f (x1, x2) =
{

4x1x2 for 0 < x1 < 1 and 0 < x2 < 1,

0 otherwise.

We shall determine the joint p.d.f. of two new random variables Y1 and Y2, which are
defined by the relations

Y1 = X1

X2
and Y2 = X1X2.

In the notation of Theorem 3.9.5, we would say that Y1 = r1(X1, X2) and Y2 =
r2(X1, X2), where

r1(x1, x2) = x1

x2
and r2(x1, x2) = x1x2. (3.9.14)

The inverse of the transformation in Eq. (3.9.14) is found by solving the equations
y1 = r1(x1, x2) and y2 = r2(x1, x2) for x1 and x2 in terms of y1 and y2. The result is

x1 = s1(y1, y2) = (y1y2)
1/2,

x2 = s2(y1, y2) =
(

y2

y1

)1/2

.
(3.9.15)

Let S denote the set of points (x1, x2) such that 0 < x1 < 1 and 0 < x2 < 1, so that
Pr[(X1, X2) ∈ S] = 1. Let T be the set of (y1, y2) pairs such that (y1, y2) ∈ T if and only
if (s1(y1, y2), s2(y1, y2)) ∈ S. Then Pr[(Y1, Y2) ∈ T ] = 1. The transformation defined by
the equations in (3.9.14) or, equivalently, by the equations in (3.9.15) specifies a one-
to-one relation between the points in S and the points in T .
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Figure 3.27 The sets S and T in Example 3.9.9.

We shall now show how to find the set T . We know that (x1, x2) ∈ S if and only
if the following inequalities hold:

x1 > 0, x1 < 1, x2 > 0, and x2 < 1. (3.9.16)

We can substitute the formulas for x1 and x2 in terms of y1 and y2 from Eq. (3.9.15)
into the inequalities in (3.9.16) to obtain

(y1y2)
1/2 > 0, (y1y2)

1/2 < 1,
(

y2

y1

)1/2

> 0,

and
(

y2

y1

)1/2

< 1. (3.9.17)

The first inequality transforms to (y1 > 0 and y2 > 0) or (y1 < 0 and y2 < 0). However,
since y1 = x1/x2, we cannot have y1 < 0, so we get only y1 > 0 and y2 > 0. The third
inequality in (3.9.17) transforms to the same thing. The second inequality in (3.9.17)
becomes y2 < 1/y1. The fourth inequality becomes y2 < y1. The region T where
(y1, y2) satisfy these new inequalities is shown in the right panel of Fig. 3.27 with
the set S in the left panel.

For the functions in (3.9.15),

∂s1

∂y1
= 1

2

(
y2

y1

)1/2

,
∂s1

∂y2
= 1

2

(
y1

y2

)1/2

,

∂s2

∂y1
= − 1

2

(
y2

y3
1

)1/2

,
∂s2

∂y2
= 1

2

(
1

y1y2

)1/2

.

Hence,

J = det

⎡⎢⎢⎢⎣
1
2

(
y2

y1

)1/2 1
2

(
y1

y2

)1/2

− 1
2

(
y2

y3
1

)1/2
1
2

(
1

y1y2

)1/2

⎤⎥⎥⎥⎦ = 1
2y1

.

Since y1 > 0 throughout the set T , |J | = 1/(2y1).
The joint p.d.f. g(y1, y2) can now be obtained directly from Eq. (3.9.13) in the

following way: In the expression for f (x1, x2), replace x1 with (y1y2)
1/2, replace x2
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with (y2/y1)
1/2, and multiply the result by |J | = 1/(2y1). Therefore,

g(y1, y2) =
{

2
(

y2
y1

)
for (y1, y2) ∈ T ,

0 otherwise. �

Example
3.9.10

Service Time in a Queue. Let X be the time that the server in a single-server queue
will spend on a particular customer, and let Y be the rate at which the server can
operate. A popular model for the conditional distribution of X given Y = y is to say
that the conditional p.d.f. of X given Y = y is

g1(x|y) =
{

ye−xy for x > 0,

0 otherwise.
Let Y have the p.d.f. f2(y). The joint p.d.f. of (X, Y ) is then g1(x|y)f2(y). Because
1/Y can be interpreted as the average service time, Z = XY measures how quickly,
compared to average, that the customer is served. For example, Z = 1 corresponds
to an average service time, while Z > 1 means that this customer took longer than
average, and Z < 1 means that this customer was served more quickly than the
average customer. If we want the distribution of Z, we could compute the joint p.d.f.
of (Z, Y ) directly using the methods just illustrated. We could then integrate the joint
p.d.f. over y to obtain the marginal p.d.f. of Z. However, it is simpler to transform the
conditional distribution of X given Y = y into the conditional distribution of Z given
Y = y, since conditioning on Y = y allows us to treat Y as the constant y. Because
X = Z/Y , the inverse transformation is x = s(z), where s(z) = z/y. The derivative of
this is 1/y, and the conditional p.d.f. of Z given Y = y is

h1(z|y) = 1
y

g1

(
z

y

∣∣∣∣ y

)
.

Because Y is a rate, Y ≥ 0 and X = Z/Y > 0 if and only if Z > 0. So,

h1(z|y) =
{

e−z for z > 0,

0 otherwise.
(3.9.18)

Notice that h1 does not depend on y, so Z is independent of Y and h1 is the marginal
p.d.f. of Z. The reader can verify all of this in Exercise 17. �

Note: Removing Dependence. The formula Z = XY in Example 3.9.10 makes it
look as if Z should depend on Y . In reality, however, multiplying X by Y removes the
dependence that X already has on Y and makes the result independent of Y . This type
of transformation that removes the dependence of one random variable on another
is a very powerful technique for finding marginal distributions of transformations of
random variables.

In Example 3.9.10, we mentioned that there was another, more straightforward
but more tedious, way to compute the distribution of Z. That method, which is useful
in many settings, is to transform (X, Y ) into (Z, W) for some uninteresting random
variable W and then integrate w out of the joint p.d.f. All that matters in the choice
of W is that the transformation be one-to-one with differentiable inverse and that
the calculations are feasible. Here is a specific example.

Example
3.9.11

One Function of Two Variables. In Example 3.9.9, suppose that we were interested
only in the quotient Y1 = X1/X2 rather than both the quotient and the product
Y2 = X1X2. Since we already have the joint p.d.f. of (Y1, Y2), we will merely integrate
y2 out rather than start from scratch. For each value of y1 > 0, we need to look at the
set T in Fig. 3.27 and find the interval of y2 values to integrate over. For 0 < y1 < 1,
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we integrate over 0 < y2 < y1. For y1 > 1, we integrate over 0 < y2 < 1/y1. (For y1 = 1
both intervals are the same.) So, the marginal p.d.f. of Y1 is

g1(y1) =
⎧⎨⎩

∫ y1
0 2

(
y2
y1

)
dy2 for 0 < y1 < 1,∫ 1/y1

0 2
(

y2
y1

)
dy2 for y1 > 1,

=
{

y1 for 0 < y1 < 1,
1
y3

1
for y1 > 1.

There are other transformations that would have made the calculation of g1 simpler
if that had been all we wanted. See Exercise 21 for an example. �

Theorem
3.9.6

Linear Transformations. Let X = (X1, . . . , Xn) have a continuous joint distribution for
which the joint p.d.f. is f . Define Y = (Y1, . . . , Yn) by

Y = AX, (3.9.19)

where A is a nonsingular n × n matrix. Then Y has a continuous joint distribution
with p.d.f.

g( y) = 1
|det A|f (A−1y) for y ∈ Rn, (3.9.20)

where A−1 is the inverse of A.

Proof Each Yi is a linear combination of X1, . . . , Xn. Because A is nonsingular, the
transformation in Eq. (3.9.19) is a one-to-one transformation of the entire space Rn

onto itself. At every point y ∈ Rn, the inverse transformation can be represented by
the equation

x = A−1y. (3.9.21)

The Jacobian J of the transformation that is defined by Eq. (3.9.21) is simply J =
det A−1. Also, it is known from the theory of determinants that

det A−1 = 1
det A

.

Therefore, at every point y ∈ Rn, the joint p.d.f. g(y) can be evaluated in the fol-
lowing way, according to Theorem 3.9.5: First, for i = 1, . . . , n, the component xi in
f (x1, . . . , xn) is replaced with the ith component of the vector A−1y. Then, the result
is divided by |det A|. This produces Eq. (3.9.20).

Summary

We extended the construction of the distribution of a function of a random variable
to the case of several functions of several random variables. If one only wants the
distribution of one function r1 of n random variables, the usual way to find this is to
first find n − 1additional functions r2, . . . , rn so that the n functions together compose
a one-to-one transformation. Then find the joint p.d.f. of the n functions and finally
find the marginal p.d.f. of the first function by integrating out the extra n − 1variables.
The method is illustrated for the cases of the sum and the range of several random
variables.
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Exercises

1. Suppose that X1 and X2 are i.i.d. random variables and
that each of them has the uniform distribution on the
interval [0, 1]. Find the p.d.f. of Y = X1 + X2.

2. For the conditions of Exercise 1, find the p.d.f. of the
average (X1 + X2)/2.

3. Suppose that three random variables X1, X2, and X3
have a continuous joint distribution for which the joint
p.d.f. is as follows:

f (x1, x2, x3) =
{

8x1x2x3 for 0 < xi < 1 (i = 1, 2, 3),

0 otherwise.

Suppose also that Y1 = X1, Y2 = X1X2, and Y3 = X1X2X3.
Find the joint p.d.f. of Y1, Y2, and Y3.

4. Suppose that X1 and X2 have a continuous joint distri-
bution for which the joint p.d.f. is as follows:

f (x1, x2) =
{

x1 + x2 for 0 < x1 < 1 and 0 < x2 < 1,

0 otherwise.

Find the p.d.f. of Y = X1X2.

5. Suppose that the joint p.d.f. of X1 and X2 is as given in
Exercise 4. Find the p.d.f. of Z = X1/X2.

6. Let X and Y be random variables for which the joint
p.d.f. is as follows:

f (x, y) =
{

2(x + y) for 0 ≤ x ≤ y ≤ 1,

0 otherwise.

Find the p.d.f. of Z = X + Y .

7. Suppose that X1 and X2 are i.i.d. random variables and
that the p.d.f. of each of them is as follows:

f (x) =
{

e−x for x > 0,
0 otherwise.

Find the p.d.f. of Y = X1 − X2.

8. Suppose that X1, . . . , Xn form a random sample of size
n from the uniform distribution on the interval [0, 1] and
that Yn = max {X1, . . . , Xn}. Find the smallest value of n

such that

Pr{Yn ≥ 0.99} ≥ 0.95.

9. Suppose that the n variables X1, . . . , Xn form a random
sample from the uniform distribution on the interval [0, 1]
and that the random variables Y1 and Yn are defined as
in Eq. (3.9.8). Determine the value of Pr(Y1 ≤ 0.1 and
Yn ≤ 0.8).

10. For the conditions of Exercise 9, determine the value
of Pr(Y1 ≤ 0.1 and Yn ≥ 0.8).

11. For the conditions of Exercise 9, determine the prob-
ability that the interval from Y1 to Yn will not contain the
point 1/3.

12. Let W denote the range of a random sample of n

observations from the uniform distribution on the interval
[0, 1]. Determine the value of Pr(W > 0.9).

13. Determine the p.d.f. of the range of a random sample
of n observations from the uniform distribution on the
interval [−3, 5].

14. Suppose that X1, . . . , Xn form a random sample of n

observations from the uniform distribution on the interval
[0, 1], and let Y denote the second largest of the observa-
tions. Determine the p.d.f. of Y. Hint: First determine the
c.d.f. G of Y by noting that

G(y) = Pr(Y ≤ y)

= Pr(At least n − 1 observations ≤ y).

15. Show that if X1, X2, . . . , Xn are independent random
variables and if Y1 = r1(X1), Y2 = r2(X2), . . . , Yn = rn(Xn),
then Y1, Y2, . . . , Yn are also independent random vari-
ables.

16. Suppose that X1, X2, . . . , X5 are five random vari-
ables for which the joint p.d.f. can be factored in the fol-
lowing form for all points (x1, x2, . . . , x5) ∈ R5:

f (x1, x2, . . . , x5) = g(x1, x2)h(x3, x4, x5),

where g and h are certain nonnegative functions. Show
that if Y1 = r1 (X1, X2) and Y2 = r2 (X3, X4, X5), then the
random variables Y1 and Y2 are independent.

17. In Example 3.9.10, use the Jacobian method (3.9.13)
to verify that Y and Z are independent and that Eq.
(3.9.18) is the marginal p.d.f. of Z.

18. Let the conditional p.d.f. of X given Y be g1(x|y) =
3x2/y3 for 0 < x < y and 0 otherwise. Let the marginal
p.d.f. of Y be f2(y), where f2(y) = 0 for y ≤ 0 but is oth-
erwise unspecified. Let Z = X/Y . Prove that Z and Y are
independent and find the marginal p.d.f. of Z.

19. Let X1 and X2 be as in Exercise 7. Find the p.d.f. of
Y = X1 + X2.

20. If a2 = 0 in Theorem 3.9.4, show that Eq. (3.9.2) be-
comes the same as Eq. (3.8.1) with a = a1 and f = f1.

21. In Examples 3.9.9 and 3.9.11, find the marginal p.d.f.
of Z1 = X1/X2 by first transforming to Z1 and Z2 = X1 and
then integrating z2 out of the joint p.d.f.
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� 3.10 Markov Chains
A popular model for systems that change over time in a random manner is the
Markov chain model. A Markov chain is a sequence of random variables, one for
each time. At each time, the corresponding random variable gives the state of the
system. Also, the conditional distribution of each future state given the past states
and the present state depends only on the present state.

Stochastic Processes

Example
3.10.1

Occupied Telephone Lines. Suppose that a certain business office has five telephone
lines and that any number of these lines may be in use at any given time. During
a certain period of time, the telephone lines are observed at regular intervals of 2
minutes and the number of lines that are being used at each time is noted. Let X1
denote the number of lines that are being used when the lines are first observed at the
beginning of the period; let X2 denote the number of lines that are being used when
they are observed the second time, 2 minutes later; and in general, for n = 1, 2, . . . ,

let Xn denote the number of lines that are being used when they are observed for the
nth time. �

Definition
3.10.1

Stochastic Process. A sequence of random variables X1, X2, . . . is called a stochastic
process or random process with discrete time parameter. The first random variable X1
is called the initial state of the process; and for n = 2, 3, . . . , the random variable Xn

is called the state of the process at time n.

In Example 3.10.1, the state of the process at any time is the number of lines
being used at that time. Therefore, each state must be an integer between 0 and 5.
Each of the random variables in a stochastic process has a marginal distribution,
and the entire process has a joint distribution. For convenience, in this text, we will
discuss only joint distributions for finitely many of X1, X2, . . . at a time. The meaning
of the phrase “discrete time parameter” is that the process, such as the numbers of
occupied phone lines, is observed only at discrete or separated points in time, rather
than continuously in time. In Sec. 5.4, we will introduce a different stochastic process
(called the Poisson process) with a continuous time parameter.

In a stochastic process with a discrete time parameter, the state of the process
varies in a random manner from time to time. To describe a complete probability
model for a particular process, it is necessary to specify the distribution for the
initial state X1 and also to specify for each n = 1, 2, . . . the conditional distribution
of the subsequent state Xn+1 given X1, . . . , Xn. These conditional distributions are
equivalent to the collection of conditional c.d.f.’s of the following form:

Pr(Xn+1 ≤ b|X1 = x1, X2 = x2, . . . , Xn = xn).

Markov Chains

A Markov chain is a special type of stochastic process, defined in terms of the
conditional distributions of future states given the present and past states.

Definition
3.10.2

Markov Chain. A stochastic process with discrete time parameter is a Markov chain
if, for each time n, the conditional distributions of all Xn+j for j ≥ 1 given X1, . . . , Xn

depend only on Xn and not on the earlier states X1, . . . , Xn−1. In symbols, for
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n = 1, 2, . . . and for each b and each possible sequence of states x1, x2, . . . , xn,

Pr(Xn+1 ≤ b|X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 ≤ b|Xn = xn).

A Markov chain is called finite if there are only finitely many possible states.

In the remainder of this section, we shall consider only finite Markov chains. This
assumption could be relaxed at the cost of more complicated theory and calculation.
For convenience, we shall reserve the symbol k to stand for the number of possible
states of a general finite Markov chain for the remainder of the section. It will also
be convenient, when discussing a general finite Markov chain, to name the k states
using the integers 1, . . . , k. That is, for each n and j , Xn = j will mean that the chain
is in state j at time n. In specific examples, it may prove more convenient to label the
states in a more informative fashion. For example, if the states are the numbers of
phone lines in use at given times (as in the example that introduced this section), we
would label the states 0, . . . , 5 even though k = 6.

The following result follows from the multiplication rule for conditional proba-
bilities, Theorem 2.1.2.

Theorem
3.10.1

For a finite Markov chain, the joint p.f. for the first n states equals

Pr (X1 = x1, X2 = x2, . . . , Xn = xn)

= Pr(X1 = x1) Pr(X2 = x2|X1 = x1) Pr(X3 = x3|X2 = x2) . . .

Pr(Xn = xn|Xn−1 = xn−1). (3.10.1)

Also, for each n and each m > 0,

Pr (Xn+1 = xn+1, Xn+2 = xn+2, . . . , Xn+m = xn+m|Xn = xn)

= Pr(Xn+1 = xn+1|Xn = xn) Pr(Xn+2 = xn+2|Xn+1 = xn+1)

. . . Pr(Xn+m = xn+m|Xn+m−1 = xn+m−1). (3.10.2)

Eq. (3.10.1) is a discrete version of a generalization of conditioning in sequence that
was illustrated in Example 3.7.18 with continuous random variables. Eq. (3.10.2) is a
conditional version of (3.10.1) shifted forward in time.

Example
3.10.2

Shopping for Toothpaste. In Exercise 4 in Sec. 2.1, we considered a shopper who
chooses between two brands of toothpaste on several occasions. Let Xi = 1 if the
shopper chooses brand A on the ith purchase, and let Xi = 2 if the shopper chooses
brand B on the ith purchase. Then the sequence of states X1, X2, . . . is a stochas-
tic process with two possible states at each time. The probabilities of purchase were
specified by saying that the shopper will choose the same brand as on the previous
purchase with probability 1/3 and will switch with probability 2/3. Since this hap-
pens regardless of purchases that are older than the previous one, we see that this
stochastic process is a Markov chain with

Pr(Xn+1 = 1|Xn = 1) = 1
3
, Pr(Xn+1 = 2|Xn = 1) = 2

3
,

Pr(Xn+1 = 1|Xn = 2) = 2
3
, Pr(Xn+1 = 2|Xn = 2) = 1

3
. �

Exammple 3.10.2 has an additional feature that puts it in a special class of Markov
chains. The probability of moving from one state at time n to another state at time
n + 1 does not depend on n.
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Definition
3.10.3

Transition Distributions/Stationary Transition Distributions. Consider a finite Markov
chain with k possible states. The conditional distributions of the state at time n + 1
given the state at time n, that is, Pr(Xn+1 = j |Xn = i) for i, j = 1, . . . , k and n =
1, 2, . . ., are called the transition distributions of the Markov chain. If the transition
distribution is the same for every time n (n = 1, 2, . . .), then the Markov chain has
stationary transition distributions.

When a Markov chain with k possible states has stationary transition distribu-
tions, there exist probabilities pij for i, j = 1, . . . , k such that, for all n,

Pr(Xn+1 = j |Xn = i) = pij for n = 1, 2, . . . . (3.10.3)

The Markov chain in Example 3.10.2 has stationary transition distributions. For
example, p11 = 1/3.

In the language of multivariate distributions, when a Markov chain has stationary
transition distributions, specified by (3.10.3), we can write the conditional p.f. of Xn+1
given Xn as

g(j |i) = pij , (3.10.4)

for all n, i, j .

Example
3.10.3

Occupied Telephone Lines. To illustrate the application of these concepts, we shall
consider again the example involving the office with five telephone lines. In order
for this stochastic process to be a Markov chain, the specified distribution for the
number of lines that may be in use at each time must depend only on the number
of lines that were in use when the process was observed most recently 2 minutes
earlier and must not depend on any other observed values previously obtained. For
example, if three lines were in use at time n, then the distribution for time n + 1 must
be the same regardless of whether 0, 1, 2, 3, 4, or 5 lines were in use at time n − 1.
In reality, however, the observation at time n − 1 might provide some information in
regard to the length of time for which each of the three lines in use at time n had been
occupied, and this information might be helpful in determining the distribution for
time n + 1. Nevertheless, we shall suppose now that this process is a Markov chain.
If this Markov chain is to have stationary transition distributions, it must be true that
the rates at which incoming and outgoing telephone calls are made and the average
duration of these telephone calls do not change during the entire period covered
by the process. This requirement means that the overall period cannot include busy
times when more calls are expected or quiet times when fewer calls are expected. For
example, if only one line is in use at a particular observation time, regardless of when
this time occurs during the entire period covered by the process, then there must be
a specific probability p1j that exactly j lines will be in use 2 minutes later. �

The Transition Matrix

Example
3.10.4

Shopping for Toothpaste. The notation for stationary transition distributions, pij ,
suggests that they could be arranged in a matrix. The transition probabilities for
Example 3.10.2 can be arranged into the following matrix:

P =
[ 1

3
2
3

2
3

1
3

]
. �
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Every finite Markov chain with stationary transition distributions has a matrix like
the one constructed in Example 3.10.4.

Definition
3.10.4

Transition Matrix. Consider a finite Markov chain with stationary transition distribu-
tions given by pij = Pr(Xn+1 = j |Xn = i) for all n, i, j . The transition matrix of the
Markov chain is defined to be the k × k matrix P with elements pij . That is,

P =

⎡⎢⎢⎢⎣
p11 . . . p1k

p21 . . . p2k

...
. . .

...
pk1 . . . pkk

⎤⎥⎥⎥⎦ . (3.10.5)

A transition matrix has several properties that are apparent from its defintion.
For example, each element is nonnegative because all elements are probabilities.
Since each row of a transition matrix is a conditional p.f. for the next state given
some value of the current state, we have

∑k
j=1 pij = 1 for i = 1, . . . , k. Indeed, row

i of the transition matrix specifies the conditional p.f. g(.|i) defined in (3.10.4).

Definition
3.10.5

Stochastic Matrix. A square matrix for which all elements are nonnegative and the
sum of the elements in each row is 1 is called a stochastic matrix.

It is clear that the transition matrix P for every finite Markov chain with stationary
transition probabilities must be a stochastic matrix. Conversely, every k × k stochastic
matrix can serve as the transition matrix of a finite Markov chain with k possible states
and stationary transition distributions.

Example
3.10.5

A Transition Matrix for the Number of Occupied Telephone Lines. Suppose that in the
example involving the office with five telephone lines, the numbers of lines being
used at times 1, 2, . . . form a Markov chain with stationary transition distributions.
This chain has six possible states 0, 1, . . . , 5, where i is the state in which exactly
i lines are being used at a given time (i = 0, 1, . . . , 5). Suppose that the transition
matrix P is as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5
0 0.1 0.4 0.2 0.1 0.1 0.1
1 0.2 0.3 0.2 0.1 0.1 0.1
2 0.1 0.2 0.3 0.2 0.1 0.1
3 0.1 0.1 0.2 0.3 0.2 0.1
4 0.1 0.1 0.1 0.2 0.3 0.2
5 0.1 0.1 0.1 0.1 0.4 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.10.6)

(a) Assuming that all five lines are in use at a certain observation time, we shall
determine the probability that exactly four lines will be in use at the next observation
time. (b) Assuming that no lines are in use at a certain time, we shall determine the
probability that at least one line will be in use at the next observation time.

(a) This probability is the element in the matrix P in the row corresponding to the
state 5 and the column corresponding to the state 4. Its value is seen to be 0.4.

(b) If no lines are in use at a certain time, then the element in the upper left corner
of the matrix P gives the probability that no lines will be in use at the next
observation time. Its value is seen to be 0.1. Therefore, the probability that at
least one line will be in use at the next observation time is 1 − 0.1 = 0.9. �
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Figure 3.28 The generation
following {Aa, Aa}.

aA aA

Aa aaAA aA

Example
3.10.6

Plant Breeding Experiment. A botanist is studying a certain variety of plant that is
monoecious (has male and female organs in separate flowers on a single plant).
She begins with two plants I and II and cross-pollinates them by crossing male I
with female II and female I with male II to produce two offspring for the next
generation. The original plants are destroyed and the process is repeated as soon
as the new generation of two plants is mature. Several replications of the study are
run simultaneously. The botanist might be interested in the proportion of plants in
any generation that have each of several possible genotypes for a particular gene.
(See Example 1.6.4 on page 23.) Suppose that the gene has two alleles, A and a.
The genotype of an individual will be one of the three combinations AA, Aa, or aa.
When a new individual is born, it gets one of the two alleles (with probability 1/2
each) from one of the parents, and it independently gets one of the two alleles from
the other parent. The two offspring get their genotypes independently of each other.
For example, if the parents have genotypes AA and Aa, then an offspring will get
A for sure from the first parent and will get either A or a from the second parent
with probability 1/2 each. Let the states of this population be the set of genotypes of
the two members of the current population. We will not distinguish the set {AA, Aa}
from {Aa, AA}. There are then six states: {AA, AA}, {AA, Aa}, {AA, aa}, {Aa, Aa},
{Aa, aa}, and {aa, aa}. For each state, we can calculate the probability that the next
generation will be in each of the six states. For example, if the state is either {AA, AA}
or {aa, aa}, the next generation will be in the same state with probability 1. If the state
is {AA, aa}, the next generation will be in state {Aa, Aa} with probability 1. The other
three states have more complicated transitions.

If the current state is {Aa, Aa}, then all six states are possible for the next gen-
eration. In order to compute the transition distribution, it helps to first compute the
probability that a given offspring will have each of the three genotypes. Figure 3.28
illustrates the possible offspring in this state. Each arrow going down in Fig. 3.28
is a possible inheritance of an allele, and each combination of arrows terminating
in a genotype has probability 1/4. It follows that the probability of AA and aa are
both 1/4, while the probability of Aa is 1/2, because two different combinations of
arrows lead to this offspring. In order for the next state to be {AA, AA}, both off-
spring must be AA independently, so the probability of this transition is 1/16. The
same argument implies that the probability of a transition to {aa, aa} is 1/16. A tran-
sition to {AA, Aa} requires one offspring to be AA (probability 1/4) and the other to
be Aa (probabilty 1/2). But the two different genotypes could occur in either order,
so the whole probability of such a transition is 2 × (1/4) × (1/2) = 1/4. A similar ar-
gument shows that a transition to {Aa, aa} also has probability 1/4. A transition to
{AA, aa} requires one offspring to be AA (probability 1/4) and the other to be aa

(probability 1/4). Once again, these can occur in two orders, so the whole probabil-
ity is 2 × 1/4 × 1/4 = 1/8. By subtraction, the probability of a transition to {Aa, Aa}
must be 1 − 1/16 − 1/16 − 1/4 − 1/4 − 1/8 = 1/4. Here is the entire transition matrix,
which can be verified in a manner similar to what has just been done:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{AA, AA} {AA, Aa} {AA, aa} {Aa, Aa} {Aa, aa} {aa, aa}
{AA, AA} 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

{AA, Aa} 0.2500 0.5000 0.0000 0.2500 0.0000 0.0000

{AA, aa} 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

{Aa, Aa} 0.0625 0.2500 0.1250 0.2500 0.2500 0.0625

{Aa, aa} 0.0000 0.0000 0.0000 0.2500 0.5000 0.2500

{aa, aa} 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

The Transition Matrix for Several Steps

Example
3.10.7

Single Server Queue. A manager usually checks the server at her store every 5 minutes
to see whether the server is busy or not. She models the state of the server (1 = busy
or 2 = not busy) as a Markov chain with two possible states and stationary transition
distributions given by the following matrix:

P =
⎡⎢⎣

Busy Not busy

Busy 0.9 0.1

Not busy 0.6 0.4

⎤⎥⎦.

The manager realizes that, later in the day, she will have to be away for 10 minutes
and will miss one server check. She wants to compute the conditional distribution of
the state two time periods in the future given each of the possible states. She reasons
as follows: If Xn = 1 for example, then the state will have to be either 1 or 2 at time
n + 1 even though she does not care now about the state at time n + 1. But, if she
computes the joint conditional distribution of Xn+1 and Xn+2 given Xn = 1, she can
sum over the possible values of Xn+1 to get the conditional distribution of Xn+2 given
Xn = 1. In symbols,

Pr(Xn+2 = 1|Xn = 1) = Pr(Xn+1 = 1, Xn+2 = 1|Xn = 1)

+ Pr(Xn+1 = 2, Xn+2 = 1|Xn = 1).

By the second part of Theorem 3.10.1,

Pr(Xn+1 = 1, Xn+2 = 1|Xn = 1) = Pr(Xn+1 = 1|Xn = 1) Pr(Xn+2 = 1|Xn+1 = 1)

= 0.9 × 0.9 = 0.81.

Similarly,

Pr(Xn+1 = 2, Xn+2 = 1|Xn = 1) = Pr(Xn+1 = 2|Xn = 1) Pr(Xn+2 = 1|Xn+1 = 2)

= 0.1 × 0.6 = 0.06.

It follows that Pr(Xn+2 = 1|Xn = 1) = 0.81 + 0.06 = 0.87, and hence Pr(Xn+2 = 2|Xn =
1) = 1 − 0.87 = 0.13. By similar reasoning, if Xn = 2,

Pr(Xn+2 = 1|Xn = 2) = 0.6 × 0.9 + 0.4 × 0.6 = 0.78,

and Pr(Xn+2 = 2|Xn = 2) = 1 − 0.78 = 0.22. �

Generalizing the calculations in Example 3.10.7 to three or more transitions might
seem tedious. However, if one examines the calculations carefully, one sees a pattern
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that will allow a compact calculation of transition distributions for several steps.
Consider a general Markov chain with k possible states 1, . . . , k and the transition
matrix P given by Eq. (3.10.5). Assuming that the chain is in state i at a given time n,
we shall now determine the probability that the chain will be in state j at time n + 2.
In other words, we shall determine the conditional probability of Xn+2 = j given
Xn = i. The notation for this probability is p

(2)
ij .

We argue as the manager did in Example 3.10.7. Let r denote the value of Xn+1
that is not of primary interest but is helpful to the calculation. Then

p
(2)
ij = Pr(Xn+2 = j |Xn = i)

=
k∑

r=1

Pr(Xn+1 = r and Xn+2 = j |Xn = i)

=
k∑

r=1

Pr(Xn+1 = r|Xn = i) Pr(Xn+2 = j |Xn+1 = r, Xn = i)

=
k∑

r=1

Pr(Xn+1 = r|Xn = i) Pr(Xn+2 = j |Xn+1 = r)

=
k∑

r=1

pirprj ,

where the third equality follows from Theorem 2.1.3 and the fourth equality follows
from the definition of a Markov chain.

The value of p
(2)
ij can be determined in the following manner: If the transition

matrix P is squared, that is, if the matrix P2 = PP is constructed, then the element in
the ith row and the j th column of the matrix P2 will be

∑k
r=1 pirprj . Therefore, p

(2)
ij

will be the element in the ith row and the j th column of P2.
By a similar argument, the probability that the chain will move from the state i to

the state j in three steps, or p
(3)
ij = Pr(Xn+3 = j |Xn = i), can be found by constructing

the matrix P3 = P2P . Then the probability p
(3)
ij will be the element in the ith row and

the j th column of the matrix P3.
In general, we have the following result.

Theorem
3.10.2

Multiple Step Transitions. Let P be the transition matrix of a finite Markov chain with
stationary transition distributions. For each m = 2, 3, . . ., the mth power Pm of the
matrix P has in row i and column j the probability p

(m)
ij that the chain will move from

state i to state j in m steps.

Definition
3.10.6

Multiple Step Transition Matrix. Under the conditions of Theorem 3.10.2, the ma-
trix Pm is called the m-step transition matrix of the Markov chain.

In summary, the ith row of the m-step transition matrix gives the conditional distri-
bution of Xn+m given Xn = i for all i = 1, . . . , k and all n, m = 1, 2, . . . .

Example
3.10.8

The Two-Step and Three-Step Transition Matrices for the Number of Occupied Telephone
Lines. Consider again the transition matrix P given by Eq. (3.10.6) for the Markov
chain based on five telephone lines. We shall assume first that i lines are in use at a
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certain time, and we shall determine the probability that exactly j lines will be in use
two time periods later.

If we multiply the matrix P by itself, we obtain the following two-step transition
matrix:

P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5
0 0.14 0.23 0.20 0.15 0.16 0.12
1 0.13 0.24 0.20 0.15 0.16 0.12
2 0.12 0.20 0.21 0.18 0.17 0.12
3 0.11 0.17 0.19 0.20 0.20 0.13
4 0.11 0.16 0.16 0.18 0.24 0.15
5 0.11 0.16 0.15 0.17 0.25 0.16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.10.7)

From this matrix we can find any two-step transition probability for the chain, such
as the following:

i. If two lines are in use at a certain time, then the probability that four lines will
be in use two time periods later is 0.17.

ii. If three lines are in use at a certain time, then the probability that three lines
will again be in use two time periods later is 0.20.

We shall now assume that i lines are in use at a certain time, and we shall
determine the probability that exactly j lines will be in use three time periods later.

If we construct the matrix P3 = P2P , we obtain the following three-step transi-
tion matrix:

P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5
0 0.123 0.208 0.192 0.166 0.183 0.128
1 0.124 0.207 0.192 0.166 0.183 0.128
2 0.120 0.197 0.192 0.174 0.188 0.129
3 0.117 0.186 0.186 0.179 0.199 0.133
4 0.116 0.181 0.177 0.176 0.211 0.139
5 0.116 0.180 0.174 0.174 0.215 0.141

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.10.8)

From this matrix we can find any three-step transition probability for the chain, such
as the following:

i. If all five lines are in use at a certain time, then the probability that no lines will
be in use three time periods later is 0.116.

ii. If one line is in use at a certain time, then the probability that exactly one line
will again be in use three time periods later is 0.207. �

Example
3.10.9

Plant Breeding Experiment. In Example 3.10.6, the transition matrix has many zeros,
since many of the transitions will not occur. However, if we are willing to wait two
steps, we will find that the only transitions that cannot occur in two steps are those
from the first state to anything else and those from the last state to anything else.
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Here is the two-step transition matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{AA, AA} {AA, Aa} {AA, aa} {Aa, Aa} {Aa, aa} {aa, aa}
{AA, AA} 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

{AA, Aa} 0.3906 0.3125 0.0313 0.1875 0.0625 0.0156

{AA, aa} 0.0625 0.2500 0.1250 0.2500 0.2500 0.0625

{Aa, Aa} 0.1406 0.1875 0.0313 0.3125 0.1875 0.1406

{Aa, aa} 0.0156 0.0625 0.0313 0.1875 0.3125 0.3906

{aa, aa} 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Indeed, if we look at the three-step or the four-step or the general m-step transition
matrix, the first and last rows will always be the same. �

The first and last states in Example 3.10.9 have the property that, once the chain gets
into one of those states, it can’t get out. Such states occur in many Markov chains
and have a special name.

Definition
3.10.7

Absorbing State. In a Markov chain, if pii = 1 for some state i, then that state is called
an absorbing state.

In Example 3.10.9, there is positive probability of getting into each absorbing state
in two steps no matter where the chain starts. Hence, the probability is 1 that the
chain will eventually be absorbed into one of the absorbing states if it is allowed to
run long enough.

The Initial Distribution

Example
3.10.10

Single Server Queue. The manager in Example 3.10.7 enters the store thinking that the
probability is 0.3 that the server will be busy the first time that she checks. Hence, the
probability is 0.7 that the server will be not busy. These values specify the marginal
distribution of the state at time 1, X1. We can represent this distribution by the vector
v = (0.3, 0.7) that gives the probabilities of the two states at time 1 in the same order
that they appear in the transition matrix. �

The vector giving the marginal distribution of X1 in Example 3.10.10 has a special
name.

Definition
3.10.8

Probability Vector/Initial Distribution. A vector consisting of nonnegative numbers
that add to 1 is called a probability vector. A probability vector whose coordinates
specify the probabilities that a Markov chain will be in each of its states at time 1 is
called the initial distribution of the chain or the intial probability vector.

For Example 3.10.2, the initial distribution was given in Exercise 4 in Sec. 2.1 as
v = (0.5, 0.5).

The initial distribution and the transition matrix together determine the entire
joint distribution of the Markov chain. Indeed, Theorem 3.10.1 shows how to con-
struct the joint distribution of the chain from the initial probability vector and the
transition matrix. Letting v = (v1, . . . , vk) denote the initial distribution, Eq. (3.10.1)
can be rewritten as

Pr(X1 = x1, X2 = x2, . . . , Xn = xn) = vx1
px1x2

. . . pxn−1xn
. (3.10.9)
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The marginal distributions of states at times later than 1 can be found from the
joint distribution.

Theorem
3.10.3

Marginal Distributions at Times Other Than 1. Consider a finite Markov chain with
stationary transition distributions having initial distribution v and transition matrix
P . The marginal distribution of Xn, the state at time n, is given by the probability
vector vPn−1.

Proof The marginal distribution of Xn can be found from Eq. (3.10.9) by summing
over the possible values of x1, . . . , xn−1. That is,

Pr(Xn = xn) =
k∑

xn−1=1

. . .
k∑

x2=1

k∑
x1=1

vx1
px1x2

px2x3
. . . pxn−1xn

. (3.10.10)

The innermost sum in Eq. (3.10.10) for x1 = 1, . . . , k involves only the first two factors
vx1

px1x2
and produces the x2 coordinate of vP . Similarly, the next innermost sum

over x2 = 1, . . . , k involves only the x2 coordinate of vP and px2x3
and produces the

x3 coordinate of vPP = vP 2. Proceeding in this way through all n − 1 summations
produces the xn coordinate of vP n−1.

Example
3.10.11

Probabilities for the Number of Occupied Telephone Lines. Consider again the office
with five telephone lines and the Markov chain for which the transition matrix P is
given by Eq. (3.10.6). Suppose that at the beginning of the observation process at
time n = 1, the probability that no lines will be in use is 0.5, the probability that one
line will be in use is 0.3, and the probability that two lines will be in use is 0.2. Then
the initial probability vector is v = (0.5, 0.3, 0.2, 0, 0, 0). We shall first determine the
distribution of the number of lines in use at time 2, one period later.

By an elementary computation it will be found that

vP = (0.13, 0.33, 0.22, 0.12, 0.10, 0.10).

Since the first component of this probability vector is 0.13, the probability that no
lines will be in use at time 2 is 0.13; since the second component is 0.33, the probability
that exactly one line will be in use at time 2 is 0.33; and so on.

Next, we shall determine the distribution of the number of lines that will be in
use at time 3.

By use of Eq. (3.10.7), it can be found that

vP2 = (0.133, 0.227, 0.202, 0.156, 0.162, 0.120).

Since the first component of this probability vector is 0.133, the probability that
no lines will be in use at time 3 is 0.133; since the second component is 0.227, the
probability that exactly one line will be in use at time 3 is 0.227; and so on. �

Stationary Distributions

Example
3.10.12

A Special Initial Distribution for Telephone Lines. Suppose that the initial distribution
for the number of occupied telephone lines is

v = (0.119, 0.193, 0.186, 0.173, 0.196, 0.133).

It can be shown, by matrix multiplication, that vP = v. This means that if v is the
initial distribution, then it is also the distribution after one transition. Hence, it will
also be the distribution after two or more transitions as well. �
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Definition
3.10.9

Stationary Distribution. Let P be the transition matrix for a Markov chain. A proba-
bility vector v that satisfies vP = v is called a stationary distribution for the Markov
chain.

The initial distribution in Example 3.10.12 is a stationary distribution for the tele-
phone lines Markov chain. If the chain starts in this distribution, the distribution stays
the same at all times. Every finite Markov chain with stationary transition distribu-
tions has at least one stationary distribution. Some chains have a unique stationary
distribution.

Note: A Stationary Distribution Does Not Mean That the Chain is Not Moving. It
is important to note that vP n gives the probabilities that the chain is in each of
its states after n transitions, calculated before the initial state of the chain or any
transitions are observed. These are different from the probabilities of being in the
various states after observing the initial state or after observing any of the intervening
transitions. In addition, a stationary distribution does not imply that the Markov
chain is staying put. If a Markov chain starts in a stationary distribution, then for
each state i, the probability that the chain is in state i after n transitions is the same
as the probability that it is state i at the start. But the Markov chain can still move
around from one state to the next at each transition. The one case in which a Markov
chain does stay put is after it moves into an absorbing state. A distribution that is
concentrated solely on absorbing states will necessarily be stationary because the
Markov chain will never move if it starts in such a distribution. In such cases, all of
the uncertainty surrounds the initial state, which will also be the state after every
transition.

Example
3.10.13

Stationary Distributions for the Plant Breeding Experiment. Consider again the experi-
ment described in Example 3.10.6. The first and sixth states, {AA, AA} and {aa, aa},
respectively, are absorbing states. It is easy to see that every initial distribution of the
form v = (p, 0, 0, 0, 0, 1 − p) for 0 ≤ p ≤ 1 has the property that vP = v. Suppose
that the chain is in state 1 with probability p and in state 6 with probability 1 − p

at time 1. Because these two states are absorbing states, the chain will never move
and the event X1 = 1 is the same as the event that Xn = 1 for all n. Similarly, X1 = 6
is the same as Xn = 6. So, thinking ahead to where the chain is likely to be after n

transitions, we would also say that it will be in state 1 with probability p and in state
6 with probability 1 − p. �

Method for Finding Stationary Distributions We can rewrite the equation vP = v
that defines stationary distributions as v[P − I] = 0, where I is a k × k identity matrix
and 0 is a k-dimensional vector of all zeros. Unfortunately, this system of equations
has lots of solutions even if there is a unique stationary distribution. The reason is
that whenever v solves the system, so does cv for all real c (including c = 0). Even
though the system has k equations for k variables, there is at least one redundant
equation. However, there is also one missing equation. We need to require that the
solution vector v has coordinates that sum to 1. We can fix both of these problems by
replacing one of the equations in the original system by the equation that says that
the coordinates of v sum to 1.

To be specific, define the matrix G to be P − I with its last column replaced by
a column of all ones. Then, solve the equation
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vG = (0, . . . , 0, 1). (3.10.11)

If there is a unique stationary distribution, we will find it by solving (3.10.11). In this
case, the matrix G will have an inverse G−1 that satisfies

GG−1 = G−1G = I .

The solution of (3.10.11) will then be

v = (0, . . . , 0, 1)G−1,

which is easily seen to be the bottom row of the matrix G−1. This was the method
used to find the stationary distribution in Example 3.10.12. If the Markov chain
has multiple stationary distributions, then the matrix G will be singular, and this
method will not find any of the stationary distributions. That is what would happen
in Example 3.10.13 if one were to apply the method.

Example
3.10.14

Stationary Distribution for Toothpaste Shopping. Consider the transition matrix P
given in Example 3.10.4. We can construct the matrix G as follows:

P − I =
[ − 2

3
2
3

2
3 − 2

3

]
; hence G =

[ − 2
3 1

2
3 1

]
.

The inverse of G is

G−1 =
[ − 3

4
3
4

1
2

1
2

]
.

We now see that the stationary distribution is the bottom row of G−1, v = (1/2, 1/2).
�

There is a special case in which it is known that a unique stationary distribution
exists and it has special properties.

Theorem
3.10.4

If there exists m such that every element of Pm is strictly positive, then

. the Markov chain has a unique stationary distribution v,

. limn→∞ P n is a matrix with all rows equal to v, and

. no matter with what distribution the Markov chain starts, its distribution after
n steps converges to v as n → ∞.

We shall not prove Theorem 3.10.4, although some evidence for the second
claim can be seen in Eq. (3.10.8), where the six rows of P3 are much more alike
than the rows of P and they are very similar to the stationary distribution given in
Example 3.10.12. The third claim in Theorem 3.10.4 actually follows easily from the
second claim. In Sec. 12.5, we shall introduce a method that makes use of the third
claim in Theorem 3.10.4 in order to approximate distributions of random variables
when those distributions are difficult to calculate exactly.

The transition matrices in Examples 3.10.2, 3.10.5, and 3.10.7 satisfy the condi-
tions of Theorem 3.10.4. The following example has a unique stationary distribution
but does not satisfy the conditions of Theorem 3.10.4.

Example
3.10.15

Alternating Chain. Let the transition matrix for a two-state Markov chain be

P =
[

0 1
1 0

]
.
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The matrix G is easy to construct and invert, and we find that the unique stationary
distribution is v = (0.5, 0.5). However, as m increases, Pm alternates between P and
the 2 × 2 identity matrix. It does not converge and never does it have all elements
strictly positive. If the initial distribution is (v1, v2), the distribution after n steps
alternates between (v1, v2) and (v2, v1). �

Another example that fails to satisfy the conditions of Theorem 3.10.4 is the
gambler’s ruin problem from Sec. 2.4.

Example
3.10.16

Gambler’s Ruin. In Sec. 2.4, we described the gambler’s ruin problem, in which a
gambler wins one dollar with probability p and loses one dollar with probability 1 − p

on each play of a game. The sequence of amounts held by the gambler through the
course of those plays forms a Markov chain with two absorbing states, namely, 0 and
k. There are k − 1 other states, namely, 1, . . . , k − 1. (This notation violates our use of
k to stand for the number of states, which is k + 1 in this example. We felt this was less
confusing than switching from the original notation of Sec. 2.4.) The transition matrix
has first and last row being (1, 0, . . . , 0) and (0, . . . , 1), respectively. The ith row (for
i = 1, . . . , k − 1) has 0 everywhere except in coordinate i − 1 where it has 1 − p and
in coordinate i + 1 where it has p. Unlike Example 3.10.15, this time the sequence
of matrices P m converges but there is no unique stationary distribution. The limit
of P m has as its last column the numbers a0, . . . , ak, where ai is the probability that
the fortune of a gambler who starts with i dollars reaches k dollars before it reaches
0 dollars. The first column of the limit has the numbers 1 − a0, . . . , 1 − ak and the
rest of the limit matrix is all zeros. The stationary distributions have the same form
as those in Example 3.10.13, namely, all probability is in the absorbing states. �

Summary

A Markov chain is a stochastic process, a sequence of random variables giving the
states of the process, in which the conditional distribution of the state at the next
time given all of the past states depends on the past states only through the most
recent state. For Markov chains with finitely many states and stationary transition
distributions, the transitions over time can be described by a matrix giving the prob-
abilities of transition from the state indexing the row to the state indexing the column
(the transition matrix P). The initial probability vector v gives the distribution of the
state at time 1. The transition matrix and initial probability vector together allow
calculation of all probabilities associated with the Markov chain. In particular, P n

gives the probabilities of transitions over n time periods, and vP n gives the distri-
bution of the state at time n + 1. A stationary distribution is a probability vector v
such that vP = v. Every finite Markov chain with stationary transition distributions
has at least one stationary distribution. For many Markov chains, there is a unique
stationary distribution and the distribution of the chain after n transitions converges
to the stationary distribution as n goes to ∞.

Exercises

1. Consider the Markov chain in Example 3.10.2 with ini-
tial probability vector v = (1/2, 1/2).

a. Find the probability vector specifying the probabili-
ties of the states at time n = 2.

b. Find the two-step transition matrix.
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2. Suppose that the weather can be only sunny or cloudy
and the weather conditions on successive mornings form
a Markov chain with stationary transition probabilities.
Suppose also that the transition matrix is as follows:

Sunny Cloudy

Sunny 0.7 0.3

Cloudy 0.6 0.4

a. If it is cloudy on a given day, what is the probability
that it will also be cloudy the next day?

b. If it is sunny on a given day, what is the probability
that it will be sunny on the next two days?

c. If it is cloudy on a given day, what is the probability
that it will be sunny on at least one of the next three
days?

3. Consider again the Markov chain described in Exer-
cise 2.

a. If it is sunny on a certain Wednesday, what is the
probability that it will be sunny on the following
Saturday?

b. If it is cloudy on a certain Wednesday, what is the
probability that it will be sunny on the following
Saturday?

4. Consider again the conditions of Exercises 2 and 3.

a. If it is sunny on a certain Wednesday, what is the
probability that it will be sunny on both the following
Saturday and Sunday?

b. If it is cloudy on a certain Wednesday, what is the
probability that it will be sunny on both the following
Saturday and Sunday?

5. Consider again the Markov chain described in Exer-
cise 2. Suppose that the probability that it will be sunny
on a certain Wednesday is 0.2 and the probability that it
will be cloudy is 0.8.

a. Determine the probability that it will be cloudy on
the next day, Thursday.

b. Determine the probability that it will be cloudy on
Friday.

c. Determine the probability that it will be cloudy on
Saturday.

6. Suppose that a student will be either on time or late for
a particular class and that the events that he is on time or
late for the class on successive days form a Markov chain
with stationary transition probabilities. Suppose also that
if he is late on a given day, then the probability that he will
be on time the next day is 0.8. Furthermore, if he is on time
on a given day, then the probability that he will be late the
next day is 0.5.

a. If the student is late on a certain day, what is the
probability that he will be on time on each of the next
three days?

b. If the student is on time on a given day, what is the
probability that he will be late on each of the next
three days?

7. Consider again the Markov chain described in Exer-
cise 6.

a. If the student is late on the first day of class, what is
the probability that he will be on time on the fourth
day of class?

b. If the student is on time on the first day of class, what
is the probability that he will be on time on the fourth
day of class?

8. Consider again the conditions of Exercises 6 and 7.
Suppose that the probability that the student will be late
on the first day of class is 0.7 and that the probability that
he will be on time is 0.3.

a. Determine the probability that he will be late on the
second day of class.

b. Determine the probability that he will be on time on
the fourth day of class.

9. Suppose that a Markov chain has four states 1, 2, 3, 4
and stationary transition probabilities as specified by the
following transition matrix:

⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
1 1/4 1/4 0 1/2

2 0 1 0 0
3 1/2 0 1/2 0

4 1/4 1/4 1/4 1/4

⎤⎥⎥⎥⎥⎥⎦.

a. If the chain is in state 3 at a given time n, what is the
probability that it will be in state 2 at time n + 2?

b. If the chain is in state 1 at a given time n, what is the
probability that it will be in state 3 at time n + 3?

10. Let X1 denote the initial state at time 1 of the Markov
chain for which the transition matrix is as specified in
Exercise 5, and suppose that the initial probabilities are
as follows:

Pr(X1 = 1) = 1/8, Pr(X1 = 2) = 1/4,

Pr(X1 = 3) = 3/8, Pr(X1 = 4) = 1/4.

Determine the probabilities that the chain will be in
states 1, 2, 3, and 4 at time n for each of the following values
of n: (a) n = 2; (b) n = 3; (c) n = 4.

11. Each time that a shopper purchases a tube of tooth-
paste, she chooses either brand A or brand B. Suppose that
the probability is 1/3 that she will choose the same brand
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chosen on her previous purchase, and the probability is
2/3 that she will switch brands.

a. If her first purchase is brand A, what is the probability
that her fifth purchase will be brand B?

b. If her first purchase is brand B, what is the probability
that her fifth purchase will be brand B?

12. Suppose that three boys A, B, and C are throwing a
ball from one to another. Whenever A has the ball, he
throws it to B with a probability of 0.2 and to C with a
probability of 0.8. Whenever B has the ball, he throws it
to A with a probability of 0.6 and to C with a probability of
0.4. Whenever C has the ball, he is equally likely to throw
it to either A or B.

a. Consider this process to be a Markov chain and con-
struct the transition matrix.

b. If each of the three boys is equally likely to have the
ball at a certain time n, which boy is most likely to
have the ball at time n + 2?

13. Suppose that a coin is tossed repeatedly in such a way
that heads and tails are equally likely to appear on any
given toss and that all tosses are independent, with the
following exception: Whenever either three heads or three
tails have been obtained on three successive tosses, then
the outcome of the next toss is always of the opposite type.
At time n (n ≥ 3), let the state of this process be specified
by the outcomes on tosses n − 2, n − 1, and n. Show that
this process is a Markov chain with stationary transition
probabilities and construct the transition matrix.

14. There are two boxes A and B, each containing red and
green balls. Suppose that box A contains one red ball and
two green balls and box B contains eight red balls and two
green balls. Consider the following process: One ball is
selected at random from box A, and one ball is selected
at random from box B. The ball selected from box A is

then placed in box B and the ball selected from box B is
placed in box A. These operations are then repeated indef-
initely. Show that the numbers of red balls in box A form a
Markov chain with stationary transition probabilities, and
construct the transition matrix of the Markov chain.

15. Verify the rows of the transition matrix in Exam-
ple 3.10.6 that correspond to current states {AA, Aa} and
{Aa, aa}.
16. Let the initial probability vector in Example 3.10.6 be
v = (1/16, 1/4, 1/8, 1/4, 1/4, 1/16). Find the probabilities
of the six states after one generation.

17. Return to Example 3.10.6. Assume that the state at
time n − 1 is {Aa, aa}.

a. Suppose that we learn that Xn+1 is {AA, aa}. Find the
conditional distribution of Xn. (That is, find all the
probabilities for the possible states at time n given
that the state at time n + 1 is {AA, aa}.)

b. Suppose that we learn that Xn+1 is {aa, aa}. Find the
conditional distribution of Xn.

18. Return to Example 3.10.13. Prove that the stationary
distributions described there are the only stationary dis-
tributions for that Markov chain.

19. Find the unique stationary distribution for the Markov
chain in Exercise 2.

20. The unique stationary distribution in Exercise 9 is v =
(0, 1, 0, 0). This is an instance of the following general re-
sult: Suppose that a Markov chain has exactly one absorb-
ing state. Suppose further that, for each non-absorbing
state k, there is n such that the probability is positive of
moving from state k to the absorbing state in n steps. Then
the unique stationary distribution has probability 1 in the
absorbing state. Prove this result.

3.11 Supplementary Exercises
1. Suppose that X and Y are independent random vari-
ables, that X has the uniform distribution on the integers
1, 2, 3, 4, 5 (discrete), and that Y has the uniform distribu-
tion on the interval [0, 5] (continuous). Let Z be a random
variable such that Z = X with probability 1/2 and Z = Y

with probability 1/2. Sketch the c.d.f. of Z.

2. Suppose that X and Y are independent random vari-
ables. Suppose that X has a discrete distribution concen-
trated on finitely many distinct values with p.f. f1. Suppose
that Y has a continuous distribution with p.d.f. f2. Let
Z = X + Y . Show that Z has a continuous distribution and

find its p.d.f. Hint: First find the conditional p.d.f. of Z given
X = x.

3. Suppose that the random variable X has the following
c.d.f.:

F(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for x ≤ 0,
2
5x for 0 < x ≤ 1,
3
5x − 1

5 for 1 < x ≤ 2,

1 for x > 2.

Verify that X has a continuous distribution, and determine
the p.d.f. of X.
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4. Suppose that the random variable X has a continuous
distribution with the following p.d.f.:

f (x) = 1
2
e−|x| for −∞ < x < ∞.

Determine the value x0 such that F(x0) = 0.9, where F(x)

is the c.d.f. of X.

5. Suppose that X1 and X2 are i.i.d. random variables,
and that each has the uniform distribution on the interval
[0, 1]. Evaluate Pr(X2

1 + X2
2 ≤ 1).

6. For each value of p > 1, let

c(p) =
∞∑

x=1

1
xp

.

Suppose that the random variable X has a discrete distri-
bution with the following p.f.:

f (x) = 1
c(p)xp

for x = 1, 2, . . . .

a. For each fixed positive integer n, determine the prob-
ability that X will be divisible by n.

b. Determine the probability that X will be odd.

7. Suppose that X1 and X2 are i.i.d. random variables,
each of which has the p.f. f (x) specified in Exercise 6.
Determine the probability that X1 + X2 will be even.

8. Suppose that an electronic system comprises four com-
ponents, and let Xj denote the time until component j fails
to operate (j = 1, 2, 3, 4). Suppose that X1, X2, X3, and X4
are i.i.d. random variables, each of which has a continuous
distribution with c.d.f. F(x). Suppose that the system will
operate as long as both component 1 and at least one of
the other three components operate. Determine the c.d.f.
of the time until the system fails to operate.

9. Suppose that a box contains a large number of tacks
and that the probability X that a particular tack will land
with its point up when it is tossed varies from tack to tack
in accordance with the following p.d.f.:

f (x) =
{

2(1 − x) for 0 < x < 1,
0 otherwise.

Suppose that a tack is selected at random from the box
and that this tack is then tossed three times independently.
Determine the probability that the tack will land with its
point up on all three tosses.

10. Suppose that the radius X of a circle is a random
variable having the following p.d.f.:

f (x) =
{

1
8 (3x + 1) for 0 < x < 2,
0 otherwise.

Determine the p.d.f. of the area of the circle.

11. Suppose that the random variable X has the following
p.d.f.:

f (x) =
{

2e−2x for x > 0,
0 otherwise.

Construct a random variable Y = r(X) that has the uni-
form distribution on the interval [0, 5].

12. Suppose that the 12 random variables X1, . . . , X12 are
i.i.d. and each has the uniform distribution on the interval
[0, 20]. For j = 0, 1, . . . , 19, let Ij denote the interval (j ,
j + 1). Determine the probability that none of the 20 dis-
joint intervals Ij will contain more than one of the random
variables X1, . . . , X12.

13. Suppose that the joint distribution of X and Y is uni-
form over a set A in the xy-plane. For which of the follow-
ing sets A are X and Y independent?

a. A circle with a radius of 1 and with its center at the
origin

b. A circle with a radius of 1 and with its center at the
point (3, 5)

c. A square with vertices at the four points (1, 1),
(1, −1), (−1, −1), and (−1, 1)

d. A rectangle with vertices at the four points (0, 0),
(0, 3), (1, 3), and (1, 0)

e. A square with vertices at the four points (0, 0), (1, 1),
(0, 2), and (−1, 1)

14. Suppose that X and Y are independent random vari-
ables with the following p.d.f.’s:

f1(x) =
{

1 for 0 < x < 1,
0 otherwise,

f2(y) =
{

8y for 0 < y < 1
2 ,

0 otherwise.

Determine the value of Pr(X > Y).

15. Suppose that, on a particular day, two persons A and
B arrive at a certain store independently of each other.
Suppose that A remains in the store for 15 minutes and B

remains in the store for 10 minutes. If the time of arrival
of each person has the uniform distribution over the hour
between 9:00 a.m. and 10:00 a.m., what is the probability
that A and B will be in the store at the same time?

16. Suppose that X and Y have the following joint p.d.f.:

f (x, y) =
{

2(x + y) for 0 < x < y < 1,
0 otherwise.

Determine (a) Pr(X < 1/2); (b) the marginal p.d.f. of X;
and (c) the conditional p.d.f. of Y given that X = x.
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17. Suppose that X and Y are random variables. The mar-
ginal p.d.f. of X is

f (x) =
{

3x2 for 0 < x < 1,
0 otherwise.

Also, the conditional p.d.f. of Y given that X = x is

g(y|x) =
{

3y2

x3 for 0 < y < x,
0 otherwise.

Determine (a) the marginal p.d.f. of Y and (b) the condi-
tional p.d.f. of X given that Y = y.

18. Suppose that the joint distribution of X and Y is uni-
form over the region in the xy-plane bounded by the four
lines x = −1, x = 1, y = x + 1, and y = x − 1. Determine
(a) Pr(XY > 0) and (b) the conditional p.d.f. of Y given
that X = x.

19. Suppose that the random variables X, Y , and Z have
the following joint p.d.f.:

f (x, y, z) =
{

6 for 0 < x < y < z < 1,
0 otherwise.

Determine the univariate marginal p.d.f.’s of X, Y , and Z.

20. Suppose that the random variables X, Y , and Z have
the following joint p.d.f.:

f (x, y, z) =
{

2 for 0 < x < y < 1 and 0 < z < 1,
0 otherwise.

Evaluate Pr(3X > Y |1 < 4Z < 2).

21. Suppose that X and Y are i.i.d. random variables, and
that each has the following p.d.f.:

f (x) =
{

e−x for x > 0,
0 otherwise.

Also, let U = X/(X + Y ) and V = X + Y .

a. Determine the joint p.d.f. of U and V .

b. Are U and V independent?

22. Suppose that the random variables X and Y have the
following joint p.d.f.:

f (x, y) =
{

8xy for 0 ≤ x ≤ y ≤ 1,
0 otherwise.

Also, let U = X/Y and V = Y .

a. Determine the joint p.d.f. of U and V .

b. Are X and Y independent?

c. Are U and V independent?

23. Suppose that X1, . . . , Xn are i.i.d. random variables,
each having the following c.d.f.:

F(x) =
{

0 for x ≤ 0,
1 − e−x for x > 0.

Let Y1 = min{X1, . . . , Xn} and Yn = max{X1, . . . , Xn}. De-
termine the conditional p.d.f. of Y1 given that Yn = yn.

24. Suppose that X1, X2, and X3 form a random sample of
three observations from a distribution having the follow-
ing p.d.f.:

f (x) =
{

2x for 0 < x < 1,
0 otherwise.

Determine the p.d.f. of the range of the sample.

25. In this exercise, we shall provide an approximate jus-
tification for Eq. (3.6.6). First, remember that if a and b

are close together, then∫ b

a

r(t)dt ≈ (b − a)r

(
a + b

2

)
. (3.11.1)

Throughout this problem, assume that X and Y have joint
p.d.f. f .

a. Use (3.11.1) to approximate Pr(y − ε < Y ≤ y + ε).

b. Use (3.11.1) with r(t) = f (s, t) for fixed s to approx-
imate

Pr(X ≤ x and y − ε < Y ≤ y + ε)

=
∫ x

−∞

∫ y+ε

y−ε

f (s, t) dt ds.

c. Show that the ratio of the approximation in part (b)
to the approximation in part (a) is

∫ x

−∞ g1(s|y) ds.

26. Let X1, X2 be two independent random variables each
with p.d.f. f1(x) = e−x for x > 0 and f1(x) = 0 for x ≤ 0. Let
Z = X1 − X2 and W = X1/X2.

a. Find the joint p.d.f. of X1 and Z.

b. Prove that the conditional p.d.f. of X1 given Z = 0 is

g1(x1|0) =
{

2e−2x1 for x1 > 0,
0 otherwise.

c. Find the joint p.d.f. of X1 and W .

d. Prove that the conditional p.d.f. of X1 given W = 1 is

h1(x1|1) =
{

4x1e
−2x1 for x1 > 0,

0 otherwise.

e. Notice that {Z = 0} = {W = 1}, but the conditional
distribution of X1 given Z = 0 is not the same as the
conditional distribution of X1 given W = 1. This dis-
crepancy is known as the Borel paradox. In light
of the discussion that begins on page 146 about
how conditional p.d.f.’s are not like conditioning on
events of probability 0, show how “Z very close to
0” is not the same as “W very close to 1.” Hint: Draw
a set of axes for x1 and x2, and draw the two sets
{(x1, x2) : |x1 − x2| < ε} and {(x1, x2) : |x1/x2 − 1| < ε}
and see how much different they are.
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27. Three boys A, B, and C are playing table tennis. In
each game, two of the boys play against each other and
the third boy does not play. The winner of any given game
n plays again in game n + 1 against the boy who did not
play in game n, and the loser of game n does not play in
game n + 1. The probability that A will beat B in any game
that they play against each other is 0.3, the probability that
A will beat C is 0.6, and the probability that B will beat
C is 0.8. Represent this process as a Markov chain with
stationary transition probabilities by defining the possible
states and constructing the transition matrix.

28. Consider again the Markov chain described in Exer-
cise 27. (a) Determine the probability that the two boys
who play against each other in the first game will play
against each other again in the fourth game. (b) Show that
this probability does not depend on which two boys play
in the first game.

29. Find the unique stationary distribution for the Markov
chain in Exercise 27.
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4.1 The Expectation of a Random Variable
The distribution of a random variable X contains all of the probabilistic infor-
mation about X. The entire distribution of X, however, is usually too cumbersome
for presenting this information. Summaries of the distribution, such as the average
value, or expected value, can be useful for giving people an idea of where we expect
X to be without trying to describe the entire distribution. The expected value also
plays an important role in the approximation methods that arise in Chapter 6.

Expectation for a Discrete Distribution

Example
4.1.1

Fair Price for a Stock. An investor is considering whether or not to invest $18 per
share in a stock for one year. The value of the stock after one year, in dollars, will be
18 + X, where X is the amount by which the price changes over the year. At present
X is unknown, and the investor would like to compute an “average value” for X in
order to compare the return she expects from the investment to what she would get
by putting the $18 in the bank at 5% interest. �

The idea of finding an average value as in Example 4.1.1 arises in many applications
that involve a random variable. One popular choice is what we call the mean or
expected value or expectation.

The intuitive idea of the mean of a random variable is that it is the weighted
average of the possible values of the random variable with the weights equal to the
probabilities.

Example
4.1.2

Stock Price Change. Suppose that the change in price of the stock in Example 4.1.1
is a random variable X that can assume only the four different values −2, 0, 1, and
4, and that Pr(X = −2) = 0.1, Pr(X = 0) = 0.4, Pr(X = 1) = 0.3, and Pr(X = 4) = 0.2.
Then the weighted avarage of these values is

−2(0.1) + 0(0.4) + 1(0.3) + 4(0.2) = 0.9.

The investor now compares this with the interest that would be earned on $18 at 5%
for one year, which is 18 × 0.05 = 0.9 dollars. From this point of view, the price of $18
seems fair. �

207
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The calculation in Example 4.1.2 generalizes easily to every random variable that
assumes only finitely many values. Possible problems arise with random variables
that assume more than finitely many values, especially when the collection of possible
values is unbounded.

Definition
4.1.1

Mean of Bounded Discrete Random Variable. Let X be a bounded discrete random
variable whose p.f. is f . The expectation of X, denoted by E(X), is a number defined
as follows:

E(X) =
∑
All x

xf (x). (4.1.1)

The expectation of X is also referred to as the mean of X or the expected value of X.

In Example 4.1.2, E(X) = 0.9. Notice that 0.9 is not one of the possible values of X

in that example. This is typically the case with discrete random variables.

Example
4.1.3

Bernoulli Random Variable. Let X have the Bernoulli distribution with parameter p,
that is, assume that X takes only the two values 0 and 1 with Pr(X = 1) = p. Then the
mean of X is

E(X) = 0 × (1 − p) + 1 × p = p. �

If X is unbounded, it might still be possible to define E(X) as the weighted
average of its possible values. However, some care is needed.

Definition
4.1.2

Mean of General Discrete Random Variable. Let X be a discrete random variable whose
p.f. is f . Suppose that at least one of the following sums is finite:∑

Positive x

xf (x),
∑

Negative x

xf (x). (4.1.2)

Then the mean, expectation, or expected value of X is said to exist and is defined to be

E(X) =
∑
All x

xf (x). (4.1.3)

If both of the sums in (4.1.2) are infinite, then E(X) does not exist.

The reason that the expectation fails to exist if both of the sums in (4.1.2) are
infinite is that, in such cases, the sum in (4.1.3) is not well-defined. It is known from
calculus that the sum of an infinite series whose positive and negative terms both
add to infinity either fails to converge or can be made to converge to many different
values by rearranging the terms in different orders. We don’t want the meaning of
expected value to depend on arbitrary choices about what order to add numbers. If
only one of two sums in (4.1.3) is infiinte, then the expected value is also infinite with
the same sign as that of the sum that is infinite. If both sums are finite, then the sum
in (4.1.3) converges and doesn’t depend on the order in which the terms are added.

Example
4.1.4

The Mean of X Does Not Exist. Let X be a random variable whose p.f. is

f (x) =
⎧⎨⎩

1
2|x|(|x| + 1)

if x = ±1, ±2, ±3, . . . ,

0 otherwise.
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It can be verified that this function satisfies the conditions required to be a p.f. The
two sums in (4.1.2) are

−∞∑
x=−1

x
1

2|x|(|x| + 1)
= −∞ and

∞∑
x=1

x
1

2x(x + 1)
= ∞;

hence, E(X) does not exist. �

Example
4.1.5

An Infinite Mean. Let X be a random variable whose p.f. is

f (x) =
⎧⎨⎩

1
x(x + 1)

if x = 1, 2, 3, . . . ,

0 otherwise.

The sum over negative values in Eq. (4.1.2) is 0, so the mean of X exists and is

E(X) =
∞∑

x=1

x
1

x(x + 1)
= ∞.

We say that the mean of X is infinite in this case. �

Note: The Expectation of X Depends Only on the Distribution of X . Although
E(X) is called the expectation of X, it depends only on the distribution of X. Every
two random variables that have the same distribution will have the same expectation
even if they have nothing to do with each other. For this reason, we shall often refer
to the expectation of a distribution even if we do not have in mind a random variable
with that distribution.

Expectation for a Continuous Distribution

The idea of computing a weighted average of the possible values can be generalized
to continuous random variables by using integrals instead of sums. The distinction
between bounded and unbounded random variables arises in this case for the same
reasons.

Definition
4.1.3

Mean of Bounded Continuous Random Variable. Let X be a bounded continuous
random variable whose p.d.f. is f . The expectation of X, denoted E(X), is defined
as follows:

E(X) =
∫ ∞

−∞
xf (x) dx. (4.1.4)

Once again, the expectation is also called the mean or the expected value.

Example
4.1.6

Expected Failure Time. An appliance has a maximum lifetime of one year. The time
X until it fails is a random variable with a continuous distribution having p.d.f.

f (x) =
{

2x for 0 < x < 1,
0 otherwise.

Then

E(X) =
∫ 1

0
x(2x) dx =

∫ 1

0
2x2 dx = 2

3
.

We can also say that the expectation of the distribution with p.d.f. f is 2/3. �
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For general continuous random variables, we modify Definition 4.1.2.

Definition
4.1.4

Mean of General Continuous Random Variable. Let X be a continuous random variable
whose p.d.f. is f . Suppose that at least one of the following integrals is finite:∫ ∞

0
xf (x)dx,

∫ 0

−∞
xf (x)dx. (4.1.5)

Then the mean, expectation, or expected value of X is said to exist and is defined to
be

E(X) =
∫ ∞

−∞
xf (x)dx. (4.1.6)

If both of the integrals in (4.1.5) are infinite, then E(X) does not exist.

Example
4.1.7

Failure after Warranty. A product has a warranty of one year. Let X be the time at
which the product fails. Suppose that X has a continuous distribution with the p.d.f.

f (x) =
{

0 for x < 1,
2
x3 for x ≥ 1.

The expected time to failure is then

E(X) =
∫ ∞

1
x

2
x3

dx =
∫ ∞

1

2
x2

dx = 2. �

Example
4.1.8

A Mean That Does Not Exist. Suppose that a random variable X has a continuous
distribution for which the p.d.f. is as follows:

f (x) = 1
π(1 + x2)

for −∞ < x < ∞. (4.1.7)

This distribution is called the Cauchy distribution. We can verify the fact that∫ ∞
−∞ f (x) dx = 1 by using the following standard result from elementary calculus:

d

dx
tan−1 x = 1

1 + x2
for −∞ < x < ∞.

The two integrals in (4.1.5) are∫ ∞

0

x

π(1 + x2)
dx = ∞ and

∫ 0

−∞
x

π(1 + x2)
dx = −∞;

hence, the mean of X does not exist. �

Interpretation of the Expectation

Relation of the Mean to the Center of Gravity The expectation of a random
variable or, equivalently, the mean of its distribution can be regarded as being the
center of gravity of that distribution. To illustrate this concept, consider, for example,
the p.f. sketched in Fig. 4.1. The x-axis may be regarded as a long weightless rod to
which weights are attached. If a weight equal to f (xj) is attached to this rod at each
point xj , then the rod will be balanced if it is supported at the point E(X).

Now consider the p.d.f. sketched in Fig. 4.2. In this case, the x-axis may be
regarded as a long rod over which the mass varies continuously. If the density of
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Figure 4.1 The mean of a
discrete distribution.
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Figure 4.2 The mean of a
continuous distribution.

xE(X)
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the rod at each point x is equal to f (x), then the center of gravity of the rod will be
located at the point E(X), and the rod will be balanced if it is supported at that point.

It can be seen from this discussion that the mean of a distribution can be affected
greatly by even a very small change in the amount of probability that is assigned to
a large value of x. For example, the mean of the distribution represented by the p.f.
in Fig. 4.1 can be moved to any specified point on the x-axis, no matter how far from
the origin that point may be, by removing an arbitrarily small but positive amount
of probability from one of the points xj and adding this amount of probability at a
point far enough from the origin.

Suppose now that the p.f. or p.d.f. f of some distribution is symmetric with respect
to a given point x0 on the x-axis. In other words, suppose that f (x0 + δ) = f (x0 − δ)

for all values of δ. Also assume that the mean E(X) of this distribution exists. In
accordance with the interpretation that the mean is at the center of gravity, it follows
that E(X) must be equal to x0, which is the point of symmetry. The following example
emphasizes the fact that it is necessary to make certain that the mean E(X) exists
before it can be concluded that E(X) = x0.

Example
4.1.9

The Cauchy Distribution. Consider again the p.d.f. specified by Eq. (4.1.7), which is
sketched in Fig. 4.3. This p.d.f. is symmetric with respect to the point x = 0. Therefore,
if the mean of the Cauchy distribution existed, its value would have to be 0. However,
we saw in Example 4.1.8 that the mean of X does not exist.

The reason for the nonexistence of the mean of the Cauchy distribution is as
follows: When the curve y = f (x) is sketched as in Fig. 4.3, its tails approach the x-
axis rapidly enough to permit the total area under the curve to be equal to 1. On
the other hand, if each value of f (x) is multiplied by x and the curve y = xf (x) is
sketched, as in Fig. 4.4, the tails of this curve approach the x-axis so slowly that the
total area between the x-axis and each part of the curve is infinite. �
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Figure 4.3 The p.d.f. of a
Cauchy distribution.
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Figure 4.4 The curve
y = xf (x) for the Cauchy
distribution.
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The Expectation of a Function

Example
4.1.10

Failure Rate and Time to Failure. Suppose that appliances manufactured by a particular
company fail at a rate of X per year, where X is currently unknown and hence is a
random variable. If we are interested in predicting how long such an appliance will
last before failure, we might use the mean of 1/X. How can we calculate the mean
of Y = 1/X? �

Functions of a Single Random Variable If X is a random variable for which the
p.d.f. is f , then the expectation of each real-valued function r(X) can be found by
applying the definition of expectation to the distribution of r(X) as follows: Let
Y = r(X), determine the probability distribution of Y , and then determine E(Y )

by applying either Eq. (4.1.1) or Eq. (4.1.4). For example, suppose that Y has a
continuous distribution with the p.d.f. g. Then

E[r(X)] = E(Y ) =
∫ ∞

−∞
yg(y) dy, (4.1.8)

if the expectation exists.

Example
4.1.11

Failure Rate and Time to Failure. In Example 4.1.10, suppose that the p.d.f. of X is

f (x) =
{

3x2 if 0 < x < 1,
0 otherwise.



4.1 The Expectation of a Random Variable 213

Let r(x) = 1/x. Using the methods of Sec. 3.8, we can find the p.d.f. of Y = r(X) as

g(y) =
{

3y−4 if y > 1,
0 otherwise.

The mean of Y is then

E(Y ) =
∫ ∞

0
y3y−4dy = 3

2
. �

Although the method of Example 4.1.11 can be used to find the mean of a
continuous random variable, it is not actually necessary to determine the p.d.f. of
r(X) in order to calculate the expectation E[r(X)]. In fact, it can be shown that the
value of E[r(X)] can always be calculated directly using the following result.

Theorem
4.1.1

Law of the Unconscious Statistician. Let X be a random variable, and let r be a real-
valued function of a real variable. If X has a continuous distribution, then

E[r(X)] =
∫ ∞

−∞
r(x)f (x) dx, (4.1.9)

if the mean exists. If X has a discrete distribution, then

E[r(X)] =
∑
All x

r(x)f (x), (4.1.10)

if the mean exists.

Proof A general proof will not be given here. However, we shall provide a proof
for two special cases. First, suppose that the distribution of X is discrete. Then the
distribution of Y must also be discrete. Let g be the p.f. of Y . For this case,∑

y

yg(y) =
∑
y

y Pr[r(X) = y]

=
∑
y

y
∑

x:r(x)=y

f (x)

=
∑
y

∑
x:r(x)=y

r(x)f (x) =
∑
x

r(x)f (x).

Hence, Eq. (4.1.10) yields the same value as one would obtain from Definition 4.1.1
applied to Y .

Second, suppose that the distribution of X is continuous. Suppose also, as in
Sec. 3.8, that r(x) is either strictly increasing or strictly decreasing with differentiable
inverse s(y). Then, if we change variables in Eq. (4.1.9) from x to y = r(x),∫ ∞

−∞
r(x)f (x) dx =

∫ ∞

−∞
yf [s(y)]

∣∣∣∣ds(y)

dy

∣∣∣∣ dy.

It now follows from Eq. (3.8.3) that the right side of this equation is equal to∫ ∞

−∞
yg(y) dy.

Hence, Eqs. (4.1.8) and (4.1.9) yield the same value.
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Theorem 4.1.1 is called the law of the unconscious statistician because many peo-
ple treat Eqs. (4.1.9) and (4.1.10) as the definition of E[r(X)] and forget that the
definition of the mean of Y = r(X) is given in Definitions 4.1.2 and 4.1.4.

Example
4.1.12

Failure Rate and Time to Failure. In Example 4.1.11, we can apply Theorem 4.1.1 to
find

E(Y ) =
∫ 1

0

1
x

3x2dx = 3
2
,

the same result we got in Example 4.1.11. �

Example
4.1.13

Determining the Expectation of X1/2. Suppose that the p.d.f. of X is as given in Exam-
ple 4.1.6 and that Y = X1/2. Then, by Eq. (4.1.9),

E(Y ) =
∫ 1

0
x1/2(2x) dx = 2

∫ 1

0
x3/2 dx = 4

5
. �

Note: In General, E[g(X)] 	= g(E(X)). In Example 4.1.13, the mean of X1/2 is 4/5.
The mean of X was computed in Example 4.1.6 as 2/3. Note that 4/5 	= (2/3)1/2. In
fact, unless g is a linear function, it is generally the case that E[g(X)] 	= g(E(X)). A
linear function g does satisfy E[g(X)] = g(E(X)), as we shall see in Theorem 4.2.1.

Example
4.1.14

Option Pricing. Suppose that common stock in the up-and-coming company A is
currently priced at $200 per share. As an incentive to get you to work for company
A, you might be offered an option to buy a certain number of shares of the stock, one
year from now, at a price of $200. This could be quite valuable if you believed that the
stock was very likely to rise in price over the next year. For simplicity, suppose that
the price X of the stock one year from now is a discrete random variable that can take
only two values (in dollars): 260 and 180. Let p be the probability that X = 260. You
want to calculate the value of these stock options, either because you contemplate
the possibility of selling them or because you want to compare Company A’s offer
to what other companies are offering. Let Y be the value of the option for one share
when it expires in one year. Since nobody would pay $200 for the stock if the price X

is less than $200, the value of the stock option is 0 if X = 180. If X = 260, one could
buy the stock for $200 per share and then immediately sell it for $260. This brings in a
profit of $60 per share. (For simplicity, we shall ignore dividends and the transaction
costs of buying and selling stocks.) Then Y = h(X) where

h(x) =
{

0 if x = 180,
60 if x = 260.

Assume that an investor could earn 4% risk-free on any money invested for this
same year. (Assume that the 4% includes any compounding.) If no other investment
options were available, a fair cost of the option would then be what is called the
present value of E(Y ) in one year. This equals the value c such that E(Y ) = 1.04c.
That is, the expected value of the option equals the amount of money the investor
would have after one year without buying the option. We can find E(Y ) easily:

E(Y ) = 0 × (1 − p) + 60 × p = 60p.

So, the fair price of an option to buy one share would be c = 60p/1.04 = 57.69p.
How should one determine the probability p? There is a standard method used

in the finance industry for choosing p in this example. That method is to assume that
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the present value of the mean of X (the stock price in one year) is equal to the current
value of the stock price. That is, assume that the expected value of buying one share
of stock and waiting one year to sell is the same as the result of investing the current
cost of the stock risk-free for one year (multiplying by 1.04 in this example). In our
example, this means E(X) = 200 × 1.04. Since E(X) = 260p + 180(1 − p), we set

200 × 1.04 = 260p + 180(1 − p),

and obtain p = 0.35. The resulting price of an option to buy one share for $200 in
one year would be $57.69 × 0.35 = $20.19. This price is called the risk-neutral price
of the option.One can prove (see Exercise 14 in this section) that any price other than
$20.19 for the option would lead to unpleasant consequences in the market. �

Functions of Several Random Variables

Example
4.1.15

The Expectation of a Function of Two Variables. Let X and Y have a joint p.d.f., and
suppose that we want the mean of X2 + Y 2. The most straightforward but most
difficult way to do this would be to use the methods of Sec. 3.9 to find the distribution
of Z = X2 + Y 2 and then apply the definition of mean to Z. �

There is a version of Theorem 4.1.1 for functions of more than one random variable.
Its proof is not given here.

Theorem
4.1.2

Law of the Unconscious Statistician. Suppose that X1, . . . , Xn are random variables
with the joint p.d.f. f (x1, . . . , xn). Let r be a real-valued function of n real variables,
and suppose that Y = r(X1, . . . , Xn). Then E(Y ) can be determined directly from the
relation

E(Y ) =
∫

. . .
Rn

∫
r(x1, . . . , xn)f (x1, . . . , xn) dx1 . . . dxn,

if the mean exists. Similarly, if X1, . . . , Xn have a discrete joint distribution with p.f.
f (x1, . . . , xn), the mean of Y = r(X1, . . . , Xn) is

E(Y ) =
∑

All x1,...,xn

r(x1, . . . , xn)f (x1, . . . , xn),

if the mean exists.

Example
4.1.16

Determining the Expectation of a Function of Two Variables. Suppose that a point (X, Y )
is chosen at random from the square S containing all points (x, y) such that 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1. We shall determine the expected value of X2 + Y 2.

Since X and Y have the uniform distribution over the square S, and since the
area of S is 1, the joint p.d.f. of X and Y is

f (x, y) =
{

1 for (x, y) ∈ S,
0 otherwise.

Therefore,

E(X2 + Y 2) =
∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)f (x, y) dx dy

=
∫ 1

0

∫ 1

0
(x2 + y2) dx dy = 2

3
. �
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Note: More General Distributions. In Example 3.2.7, we introduced a type of distri-
bution that was neither discrete nor continuous. It is possible to define expectations
for such distributions also. The definition is rather cumbersome, and we shall not
pursue it here.

Summary

The expectation, expected value, or mean of a random variable is a summary of its
distribution. If the probability distribution is thought of as a distribution of mass
along the real line, then the mean is the center of mass. The mean of a function r of a
random variable X can be calculated directly from the distribution of X without first
finding the distribution of r(X). Similarly, the mean of a function of a random vector
X can be calculated directly from the distribution of X .

Exercises

1. Suppose that X has the uniform distribution on the
interval [a, b]. Find the mean of X.

2. If an integer between 1 and 100 is to be chosen at
random, what is the expected value?

3. In a class of 50 students, the number of students ni of
each age i is shown in the following table:

Age i ni

18 20

19 22

20 4

21 3

25 1

If a student is to be selected at random from the class, what
is the expected value of his age?

4. Suppose that one word is to be selected at random from
the sentence the girl put on her beautiful red hat. If X

denotes the number of letters in the word that is selected,
what is the value of E(X)?

5. Suppose that one letter is to be selected at random from
the 30 letters in the sentence given in Exercise 4. If Y

denotes the number of letters in the word in which the
selected letter appears, what is the value of E(Y )?

6. Suppose that a random variable X has a continuous
distribution with the p.d.f. f given in Example 4.1.6. Find
the expectation of 1/X.

7. Suppose that a random variable X has the uniform dis-
tribution on the interval [0, 1]. Show that the expectation
of 1/X is infinite.

8. Suppose that X and Y have a continuous joint distribu-
tion for which the joint p.d.f. is as follows:

f (x, y) =
{

12y2 for 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Find the value of E(XY).

9. Suppose that a point is chosen at random on a stick of
unit length and that the stick is broken into two pieces at
that point. Find the expected value of the length of the
longer piece.

10. Suppose that a particle is released at the origin of
the xy-plane and travels into the half-plane where x > 0.
Suppose that the particle travels in a straight line and that
the angle between the positive half of the x-axis and this
line is α, which can be either positive or negative. Suppose,
finally, that the angle α has the uniform distribution on the
interval [−π/2, π/2]. Let Y be the ordinate of the point at
which the particle hits the vertical line x = 1. Show that
the distribution of Y is a Cauchy distribution.

11. Suppose that the random variables X1, . . . , Xn form
a random sample of size n from the uniform distribution
on the interval [0, 1]. Let Y1 = min{X1, . . . , Xn}, and let
Yn = max{X1, . . . , Xn}. Find E(Y1) and E(Yn).

12. Suppose that the random variables X1, . . . , Xn form
a random sample of size n from a continuous distribution
for which the c.d.f. is F , and let the random variables Y1
and Yn be defined as in Exercise 11. Find E[F(Y1)] and
E[F(Yn)].

13. A stock currently sells for $110 per share. Let the price
of the stock at the end of a one-year period be X, which will
take one of the values $100 or $300. Suppose that you have
the option to buy shares of this stock at $150 per share
at the end of that one-year period. Suppose that money
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could earn 5.8% risk-free over that one-year period. Find
the risk-neutral price for the option to buy one share.

14. Consider the situation of pricing a stock option as in
Example 4.1.14. We want to prove that a price other than
$20.19 for the option to buy one share in one year for $200
would be unfair in some way.

a. Suppose that an investor (who has several shares of
the stock already) makes the following transactions.
She buys three more shares of the stock at $200 per
share and sells four options for $20.19 each. The in-
vestor must borrow the extra $519.24 necessary to
make these transactions at 4% for the year. At the
end of the year, our investor might have to sell four
shares for $200 each to the person who bought the
options. In any event, she sells enough stock to pay
back the amount borrowed plus the 4 percent inter-
est. Prove that the investor has the same net worth
(within rounding error) at the end of the year as she
would have had without making these transactions,
no matter what happens to the stock price. (A combi-
nation of stocks and options that produces no change
in net worth is called a risk-free portfolio.)

b. Consider the same transactions as in part (a), but
this time suppose that the option price is $x where
x < 20.19. Prove that our investor loses |4.16x − 84|
dollars of net worth no matter what happens to the
stock price.

c. Consider the same transactions as in part (a), but
this time suppose that the option price is $x where
x > 20.19. Prove that our investor gains 4.16x − 84
dollars of net worth no matter what happens to the
stock price.

The situations in parts (b) and (c) are called arbi-
trage opportunities. Such opportunities rarely exist for any
length of time in financial markets. Imagine what would
happen if the three shares and four options were changed
to three million shares and four million options.

15. In Example 4.1.14, we showed how to price an option
to buy one share of a stock at a particular price at a partic-
ular time in the future. This type of option is called a call
option. A put option is an option to sell a share of a stock
at a particular price $y at a particular time in the future.
(If you don’t own any shares when you wish to exercise
the option, you can always buy one at the market price
and then sell it for $y.) The same sort of reasoning as in
Example 4.1.14 could be used to price a put option. Con-
sider the same stock as in Example 4.1.14 whose price in
one year is X with the same distribution as in the example
and the same risk-free interest rate. Find the risk-neutral
price for an option to sell one share of that stock in one
year at a price of $220.

16. Let Y be a discrete random variable whose p.f. is the
function f in Example 4.1.4. Let X = |Y |. Prove that the
distribution of X has the p.d.f. in Example 4.1.5.

4.2 Properties of Expectations
In this section, we present some results that simplify the calculation of expectations
for some common functions of random variables.

Basic Theorems

Suppose that X is a random variable for which the expectation E(X) exists. We shall
present several results pertaining to the basic properties of expectations.

Theorem
4.2.1

Linear Function. If Y = aX + b, where a and b are finite constants, then

E(Y ) = aE(X) + b.

Proof We first shall assume, for convenience, that X has a continuous distribution
for which the p.d.f. is f . Then

E(Y ) = E(aX + b) =
∫ ∞

−∞
(ax + b)f (x) dx

= a

∫ ∞

−∞
xf (x) dx + b

∫ ∞

−∞
f (x) dx

= aE(X) + b.

A similar proof can be given for a discrete distribution.
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Example
4.2.1

Calculating the Expectation of a Linear Function. Suppose that E(X) = 5. Then

E(3X − 5) = 3E(X) − 5 = 10

and

E(−3X + 15) = −3E(X) + 15 = 0. �

The following result follows from Theorem 4.2.1 with a = 0.

Corollary
4.2.1

If X = c with probability 1, then E(X) = c.

Example
4.2.2

Investment. An investor is trying to choose between two possible stocks to buy for
a three-month investment. One stock costs $50 per share and has a rate of return of
R1 dollars per share for the three-month period, where R1 is a random variable. The
second stock costs $30 per share and has a rate of return of R2 per share for the same
three-month period. The investor has a total of $6000 to invest. For this example,
suppose that the investor will buy shares of only one stock. (In Example 4.2.3, we
shall consider strategies in which the investor buys more than one stock.) Suppose
that R1 has the uniform distribution on the interval [−10, 20] and that R2 has the
uniform distribution on the interval [−4.5, 10]. We shall first compute the expected
dollar value of investing in each of the two stocks. For the first stock, the $6000 will
purchase 120 shares, so the return will be 120R1, whose mean is 120E(R1) = 600.
(Solve Exercise 1 in Sec. 4.1 to see why E(R1) = 5.) For the second stock, the $6000
will purchase 200 shares, so the return will be 200R2, whose mean is 200E(R2) = 550.
The first stock has a higher expected return.

In addition to calculating expected return, we should also ask which of the two
investments is riskier. We shall now compute the value at risk (VaR) at probability
level 0.97 for each investment. (See Example 3.3.7 on page 113.) VaR will be the
negative of the 1 − 0.97 = 0.03 quantile for the return on each investment. For the
first stock, the return 120R1 has the uniform distribution on the interval [−1200, 2400]
(see Exercise 14 in Sec. 3.8) whose 0.03 quantile is (according to Example 3.3.8 on
page 114) 0.03 × 2400 + 0.97 × (−1200) = −1092. So VaR= 1092. For the second
stock, the return 200R2 has the uniform distribution on the interval [−900, 2000]
whose 0.03 quantile is 0.03 × 2000 + 0.97 × (−900) = −813. So VaR= 813. Even
though the first stock has higher expected return, the second stock seems to be
slightly less risky in terms of VaR. How should we balance risk and expected return
to choose between the two purchases? One way to answer this question is illustrated
in Example 4.8.10, after we learn about utility. �

Theorem
4.2.2

If there exists a constant such that Pr(X ≥ a) = 1, then E(X) ≥ a. If there exists a
constant b such that Pr(X ≤ b) = 1, then E(X) ≤ b.

Proof We shall assume again, for convenience, that X has a continuous distribution
for which the p.d.f. is f , and we shall suppose first that Pr(X ≥ a) = 1. Because X is
bounded below, the second integral in (4.1.5) is finite. Then

E(X) =
∫ ∞

−∞
xf (x) dx =

∫ ∞

a

xf (x) dx

≥
∫ ∞

a

af (x) dx = a Pr(X ≥ a) = a.

The proof of the other part of the theorem and the proof for a discrete distribution
are similar.
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It follows from Theorem 4.2.2 that if Pr(a ≤ X ≤ b) = 1, then a ≤ E(X) ≤ b.

Theorem
4.2.3

Suppose that E(X) = a and that either Pr(X ≥ a) = 1 or Pr(X ≤ a) = 1. Then
Pr(X = a) = 1.

Proof We shall provide a proof for the case in which X has a discrete distribution
and Pr(X ≥ a) = 1. The other cases are similar. Let x1, x2, . . . include every value
x > a such that Pr(X = x) > 0, if any. Let p0 = Pr(X = a). Then,

E(X) = p0a +
∞∑

j=1

xj Pr(X = xj). (4.2.1)

Each xj in the sum on the right side of Eq. (4.2.1) is greater than a. If we replace all
of the xj ’s by a, the sum can’t get larger, and hence

E(X) ≥ p0a +
∞∑

j=1

a Pr(X = xj) = a. (4.2.2)

Furthermore, the inequality in Eq. (4.2.2) will be strict if there is even one x > a with
Pr(X = x) > 0. This contradicts E(X) = a. Hence, there can be no x > a such that
Pr(X = x) > 0.

Theorem
4.2.4

If X1, . . . , Xn are n random variables such that each expectation E(Xi) is finite
(i = 1, . . . , n), then

E(X1 + . . . + Xn) = E(X1) + . . . + E(Xn).

Proof We shall first assume that n = 2 and also, for convenience, that X1 and X2 have
a continuous joint distribution for which the joint p.d.f. is f . Then

E(X1 + X2) =
∫ ∞

−∞

∫ ∞

−∞
(x1 + x2)f (x1, x2) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1f (x1, x2) dx1 dx2 +

∫ ∞

−∞

∫ ∞

−∞
x2f (x1, x2) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1f (x1, x2) dx2 dx1 +

∫ ∞

−∞
x2f2(x2) dx2

=
∫ ∞

−∞
x1f1(x1) dx1 +

∫ ∞

−∞
x2f2(x2) dx2

= E(X1) + E(X2),

where f1 and f2 are the marginal p.d.f.’s of X1 and X2. The proof for a discrete
distribution is similar. Finally, the theorem can be established for each positive
integer n by an induction argument.

It should be emphasized that, in accordance with Theorem 4.2.4, the expectation
of the sum of several random variables always equals the sum of their individual
expectations, regardless of what their joint distribution is. Even though the joint p.d.f.
of X1 and X2 appeared in the proof of Theorem 4.2.4, only the marginal p.d.f.’s figured
into the calculation of E(X1 + X2).

The next result follows easily from Theorems 4.2.1 and 4.2.4.

Corollary
4.2.2

Assume that E(Xi) is finite for i = 1, . . . , n. For all constants a1, . . . , an and b,

E(a1X1 + . . . + anXn + b) = a1E(X1) + . . . + anE(Xn) + b.
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Example
4.2.3

Investment Portfolio. Suppose that the investor with $6000 in Example 4.2.2 can buy
shares of both of the two stocks. Suppose that the investor buys s1 shares of the first
stock at $50 per share and s2 shares of the second stock at $30 per share. Such a
combination of investments is called a portfolio. Ignoring possible problems with
fractional shares, the values of s1 and s2 must satisfy

50s1 + 30s2 = 6000,

in order to invest the entire $6000. The return on this portfolio will be s1R1 + s2R2.
The mean return will be

s1E(R1) + s2E(R2) = 5s1 + 2.75s2.

For example, if s1 = 54 and s2 = 110, then the mean return is 572.5. �

Example
4.2.4

Sampling without Replacement. Suppose that a box contains red balls and blue balls
and that the proportion of red balls in the box is p (0 ≤ p ≤ 1). Suppose that n balls are
selected from the box at random without replacement, and let X denote the number
of red balls that are selected. We shall determine the value of E(X).

We shall begin by defining n random variables X1, . . . , Xn as follows: For i =
1, . . . , n, let Xi = 1 if the ith ball that is selected is red, and let Xi = 0 if the ith ball
is blue. Since the n balls are selected without replacement, the random variables
X1, . . . , Xn are dependent. However, the marginal distribution of each Xi can be
derived easily (see Exercise 10 of Sec. 1.7). We can imagine that all the balls are
arranged in the box in some random order, and that the first n balls in this arrange-
ment are selected. Because of randomness, the probability that the ith ball in the
arrangement will be red is simply p. Hence, for i = 1, . . . , n,

Pr(Xi = 1) = p and Pr(Xi = 0) = 1 − p. (4.2.3)

Therefore, E(Xi) = 1(p) + 0(1 − p) = p.
From the definition of X1, . . . , Xn, it follows that X1 + . . . + Xn is equal to the

total number of red balls that are selected. Therefore, X = X1 + . . . + Xn and, by
Theorem 4.2.4,

E(X) = E(X1) + . . . + E(Xn) = np. (4.2.4)

�

Note: In General, E[g(X)] 	= g(E(X)). Theorems 4.2.1 and 4.2.4 imply that if g is a
linear function of a random vector X , then E[g(X)] = g(E(X)). For a nonlinear func-
tion g, we have already seen Example 4.1.13 in which E[g(X)] 	= g(E(X)). Jensen’s
inequality (Theorem 4.2.5) gives a relationship between E[g(X)] and g(E(X)) for
another special class of functions.

Definition
4.2.1

Convex Functions. A function g of a vector argument is convex if, for every α ∈ (0, 1),
and every x and y,

g[αx + (1 − α)y] ≥ αg(x) + (1 − α)g(y).

The proof of Theorem 4.2.5 is not given, but one special case is left to the reader in
Exercise 13.

Theorem
4.2.5

Jensen’s Inequality. Let g be a convex function, and let X be a random vector with
finite mean. Then E[g(X)] ≥ g(E(X)).
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Example
4.2.5

Sampling with Replacement. Suppose again that in a box containing red balls and
blue balls, the proportion of red balls is p (0 ≤ p ≤ 1). Suppose now, however, that
a random sample of n balls is selected from the box with replacement. If X denotes
the number of red balls in the sample, then X has the binomial distribution with
parameters n and p, as described in Sec. 3.1. We shall now determine the value
of E(X).

As before, for i = 1, . . . , n, let Xi = 1 if the ith ball that is selected is red, and let
Xi = 0 otherwise. Then, as before, X = X1 + . . . + Xn. In this problem, the random
variables X1, . . . , Xn are independent, and the marginal distribution of each Xi is
again given by Eq. (4.2.3). Therefore, E(Xi) = p for i = 1, . . . , n, and it follows from
Theorem 4.2.4 that

E(X) = np. (4.2.5)

Thus, the mean of the binomial distribution with parameters n and p is np. The
p.f. f (x) of this binomial distribution is given by Eq. (3.1.4), and the mean can be
computed directly from the p.f. as follows:

E(X) =
n∑

x=0

x

(
n

x

)
pxqn−x. (4.2.6)

Hence, by Eq. (4.2.5), the value of the sum in Eq. (4.2.6) must be np. �

It is seen from Eqs. (4.2.4) and (4.2.5) that the expected number of red balls
in a sample of n balls is np, regardless of whether the sample is selected with or
without replacement. However, the distribution of the number of red balls is different
depending on whether sampling is done with or without replacement (for n > 1).
For example, Pr(X = n) is always smaller in Example 4.2.4 where sampling is done
without replacement than in Example 4.2.5 where sampling is done with replacement,
if n > 1. (See Exercise 27 in Sec. 4.9.)

Example
4.2.6

Expected Number of Matches. Suppose that a person types n letters, types the ad-
dresses on n envelopes, and then places each letter in an envelope in a random
manner. Let X be the number of letters that are placed in the correct envelopes.
We shall find the mean of X. (In Sec. 1.10, we did a more difficult calculation with
this same example.)

For i = 1, . . . , n, let Xi = 1 if the ith letter is placed in the correct envelope, and
let Xi = 0 otherwise. Then, for i = 1, . . . , n,

Pr(Xi = 1) = 1
n

and Pr(Xi = 0) = 1 − 1
n
.

Therefore,

E(Xi) = 1
n

for i = 1, . . . , n.

Since X = X1 + . . . + Xn, it follows that

E(X) = E(X1) + . . . + E(Xn)

= 1
n

+ . . . + 1
n

= 1.

Thus, the expected value of the number of correct matches of letters and envelopes
is 1, regardless of the value of n. �
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Expectation of a Product of Independent Random Variables

Theorem
4.2.6

If X1, . . . , Xn are n independent random variables such that each expectation E(Xi)

is finite (i = 1, . . . , n), then

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi).

Proof We shall again assume, for convenience, that X1, . . . , Xn have a continuous
joint distribution for which the joint p.d.f. is f . Also, we shall let fi denote the mar-
ginal p.d.f. of Xi (i = 1, . . . , n). Then, since the variables X1, . . . , Xn are independent,
it follows that at every point (x1, . . . , xn) ∈ Rn,

f (x1, . . . , xn) =
n∏

i=1

fi(xi).

Therefore,

E

(
n∏

i=1

Xi

)
=

∫ ∞

−∞
. . .

∫ ∞

−∞

(
n∏

i=1

xi

)
f (x1, . . . , xn) dx1 . . . dxn

=
∫ ∞

−∞
. . .

∫ ∞

−∞

[
n∏

i=1

xifi(xi)

]
dx1 . . . dxn

=
n∏

i=1

∫ ∞

−∞
xifi(xi) dxi =

n∏
i=1

E(Xi).

The proof for a discrete distribution is similar.

The difference between Theorem 4.2.4 and Theorem 4.2.6 should be emphasized.
If it is assumed that each expectation is finite, the expectation of the sum of a group
of random variables is always equal to the sum of their individual expectations.
However, the expectation of the product of a group of random variables is not always
equal to the product of their individual expectations. If the random variables are
independent, then this equality will also hold.

Example
4.2.7

Calculating the Expectation of a Combination of Random Variables. Suppose that X1,
X2, and X3 are independent random variables such that E(Xi) = 0 and E(X2

i
) = 1 for

i = 1, 2, 3. We shall determine the value of E[X2
1(X2 − 4X3)

2].
Since X1, X2, and X3 are independent, it follows that the two random variables

X2
1 and (X2 − 4X3)

2 are also independent. Therefore,

E[X2
1(X2 − 4X3)

2] = E(X2
1)E[(X2 − 4X3)

2]

= E(X2
2 − 8X2X3 + 16X2

3)

= E(X2
2) − 8E(X2X3) + 16E(X2

3)

= 1 − 8E(X2)E(X3) + 16

= 17. �

Example
4.2.8

Repeated Filtering. A filtration process removes a random proportion of particulates
in water to which it is applied. Suppose that a sample of water is subjected to this
process twice. Let X1 be the proportion of the particulates that are removed by
the first pass. Let X2 be the proportion of what remains after the first pass that
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is removed by the second pass. Assume that X1 and X2 are independent random
variables with common p.d.f. f (x) = 4x3 for 0 < x < 1 and f (x) = 0 otherwise. Let
Y be the proportion of the original particulates that remain in the sample after two
passes. Then Y = (1 − X1)(1 − X2). Because X1 and X2 are independent, so too are
1 − X1 and 1 − X2. Since 1 − X1 and 1 − X2 have the same distribution, they have the
same mean, call it μ. It follows that Y has mean μ2. We can find μ as

μ = E(1 − X1) =
∫ 1

0
(1 − x1)4x3

1dx1 = 1 − 4
5

= 0.2.

It follows that E(Y ) = 0.22 = 0.04. �

Expectation for Nonnegative Distributions

Theorem
4.2.7

Integer-Valued Random Variables. Let X be a random variable that can take only the
values 0, 1, 2, . . . . Then

E(X) =
∞∑

n=1

Pr(X ≥ n). (4.2.7)

Proof First, we can write

E(X) =
∞∑

n=0

n Pr(X = n) =
∞∑

n=1

n Pr(X = n). (4.2.8)

Next, consider the following triangular array of probabilities:

Pr(X = 1) Pr(X = 2) Pr(X = 3) . . .

Pr(X = 2) Pr(X = 3) . . .

Pr(X = 3) . . .
. . .

We can compute the sum of all the elements in this array in two different ways
because all of the summands are nonnegative. First, we can add the elements in each
column of the array and then add these column totals. Thus, we obtain the value∑∞

n=1 n Pr(X = n). Second, we can add the elements in each row of the array and then
add these row totals. In this way we obtain the value

∑∞
n=1 Pr(X ≥ n). Therefore,

∞∑
n=1

n Pr(X = n) =
∞∑

n=1

Pr(X ≥ n).

Eq. (4.2.7) now follows from Eq. (4.2.8).

Example
4.2.9

Expected Number of Trials. Suppose that a person repeatedly tries to perform a certain
task until he is successful. Suppose also that the probability of success on each given
trial is p (0 < p < 1) and that all trials are independent. If X denotes the number
of the trial on which the first success is obtained, then E(X) can be determined as
follows.

Since at least one trial is always required, Pr(X ≥ 1) = 1. Also, for n = 2, 3, . . . ,

at least n trials will be required if and only if none of the first n − 1 trials results in
success. Therefore,

Pr(X ≥ n) = (1 − p)n−1.
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By Eq. (4.2.7), it follows that

E(X) = 1 + (1 − p) + (1 − p)2 + . . . = 1
1 − (1 − p)

= 1
p

. �

Theorem 4.2.7 has a more general version that applies to all nonnegative random
variables.

Theorem
4.2.8

General Nonnegative Random Variable. Let X be a nonnegative random variable with
c.d.f. F . Then

E(X) =
∫ ∞

0
[1 − F(x)]dx. (4.2.9)

The proof of Theorem 4.2.8 is left to the reader in Exercises 1 and 2 in Sec. 4.9.

Example
4.2.10

Expected Waiting Time. Let X be the time that a customer spends waiting for service
in a queue. Suppose that the c.d.f. of X is

F(x) =
{

0 if x ≤ 0,
1 − e−2x if x > 0.

Then the mean of X is

E(X) =
∫ ∞

0
e−2xdx = 1

2
. �

Summary

The mean of a linear function of a random vector is the linear function of the mean.
In particular, the mean of a sum is the sum of the means. As an example, the mean of
the binomial distribution with parameters n and p is np. No such relationship holds
in general for nonlinear functions. For independent random variables, the mean of
the product is the product of the means.

Exercises

1. Suppose that the return R (in dollars per share) of a
stock has the uniform distribution on the interval [−3, 7].
Suppose also, that each share of the stock costs $1.50.
Let Y be the net return (total return minus cost) on an
investment of 10 shares of the stock. Compute E(Y ).

2. Suppose that three random variables X1, X2, X3 form
a random sample from a distribution for which the mean
is 5. Determine the value of

E(2X1 − 3X2 + X3 − 4).

3. Suppose that three random variables X1, X2, X3 form
a random sample from the uniform distribution on the
interval [0, 1]. Determine the value of

E[(X1 − 2X2 + X3)
2].

4. Suppose that the random variable X has the uniform
distribution on the interval [0, 1], that the random vari-
able Y has the uniform distribution on the interval [5, 9],
and that X and Y are independent. Suppose also that a
rectangle is to be constructed for which the lengths of two
adjacent sides are X and Y . Determine the expected value
of the area of the rectangle.

5. Suppose that the variables X1, . . . , Xn form a random
sample of size n from a given continuous distribution on
the real line for which the p.d.f. is f . Find the expecta-
tion of the number of observations in the sample that fall
within a specified interval a ≤ x ≤ b.
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6. Suppose that a particle starts at the origin of the real
line and moves along the line in jumps of one unit. For
each jump, the probability is p (0 ≤ p ≤ 1) that the particle
will jump one unit to the left and the probability is 1 − p

that the particle will jump one unit to the right. Find the
expected value of the position of the particle after n jumps.

7. Suppose that on each play of a certain game a gambler
is equally likely to win or to lose. Suppose that when he
wins, his fortune is doubled, and that when he loses, his
fortune is cut in half. If he begins playing with a given
fortune c, what is the expected value of his fortune after
n independent plays of the game?

8. Suppose that a class contains 10 boys and 15 girls, and
suppose that eight students are to be selected at random
from the class without replacement. Let X denote the
number of boys that are selected, and let Y denote the
number of girls that are selected. Find E(X − Y ).

9. Suppose that the proportion of defective items in a
large lot is p, and suppose that a random sample of n

items is selected from the lot. Let X denote the number of
defective items in the sample, and let Y denote the number
of nondefective items. Find E(X − Y ).

10. Suppose that a fair coin is tossed repeatedly until a
head is obtained for the first time. (a) What is the expected
number of tosses that will be required? (b) What is the
expected number of tails that will be obtained before the
first head is obtained?

11. Suppose that a fair coin is tossed repeatedly until ex-
actly k heads have been obtained. Determine the expected
number of tosses that will be required. Hint: Represent the
total number of tosses X in the form X = X1 + . . . + Xk,

where Xi is the number of tosses required to obtain the
ith head after i − 1 heads have been obtained.

12. Suppose that the two return random variables R1 and
R2 in Examples 4.2.2 and 4.2.3 are independent. Consider
the portfolio at the end of Example 4.2.3 with s1 = 54
shares of the first stock and s2 = 110 shares of the second
stock.

a. Prove that the change in value X of the portfolio has
the p.d.f.

f (x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3.87 × 10−7(x + 1035) if −1035 < x < 560,
6.1728 × 10−4 if 560 ≤ x ≤ 585,
3.87 × 10−7(2180 − x) if 585 < x < 2180,
0 otherwise.

Hint: Look at Example 3.9.5.
b. Find the value at risk (VaR) at probability level 0.97

for the portfolio.

13. Prove the special case of Theorem 4.2.5 in which the
function g is twice continuously differentiable and X is
one-dimensional. You may assume that a twice continu-
ously differentiable convex function has nonnegative sec-
ond derivative. Hint: Expand g(X) around its mean using
Taylor’s theorem with remainder. Taylor’s theorem with
remainder says that if g(x) has two continuous derivatives
g′ and g′′ at x = x0, then there exists y between x0 and x

such that

g(x) = g(x0) + (x − x0)g
′(x0) + (x − x0)

2

2
g′′(y).

4.3 Variance
Although the mean of a distribution is a useful summary, it does not convey
very much information about the distribution. For example, a random variable
X with mean 2 has the same mean as the constant random variable Y such that
Pr(Y = 2) = 1 even if X is not constant. To distinguish the distribution of X from
the distribution of Y in this case, it might be useful to give some measure of how
spread out the distribution of X is. The variance of X is one such measure. The
standard deviation of X is the square root of the variance. The variance also plays
an important role in the approximation methods that arise in Chapter 6.

Example
4.3.1

Stock Price Changes. Consider the prices A and B of two stocks at a time one month in
the future. Assume that A has the uniform distribution on the interval [25, 35] and B

has the uniform distribution on the interval [15, 45]. It is easy to see (from Exercise 1
in Sec. 4.1) that both stocks have a mean price of 30. But the distributions are very
different. For example, A will surely be worth at least 25 while Pr(B < 25) = 1/3.
But B has more upside potential also. The p.d.f.’s of these two random variables are
plotted in Fig. 4.5. �
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Figure 4.5 The p.d.f.’s of
two uniform distributions
in Example 4.3.1. Both
distributions have mean
equal to 30, but they are
spread out differently.
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Definitions of the Variance and the Standard Deviation

Although the two random prices in Example 4.3.1 have the same mean, price B

is more spread out than price A, and it would be good to have a summary of the
distribution that makes this easy to see.

Definition
4.3.1

Variance/Standard Deviation. Let X be a random variable with finite mean μ = E(X).
The variance of X, denoted by Var(X), is defined as follows:

Var(X) = E[(X − μ)2]. (4.3.1)

If X has infinite mean or if the mean of X does not exist, we say that Var(X) does
not exist. The standard deviation of X is the nonnegative square root of Var(X) if the
variance exists.

If the expectation in Eq. (4.3.1) is infinite, we say that Var(X) and the standard
deviation of X are infinite.

When only one random variable is being discussed, it is common to denote its
standard deviation by the symbol σ , and the variance is denoted by σ 2. When more
than one random variable is being discussed, the name of the random variable is
included as a subscript to the symbol σ , e.g., σX would be the standard deviation of
X while σ 2

Y
would be the variance of Y .

Example
4.3.2

Stock Price Changes. Return to the two random variables A and B in Example 4.3.1.
Using Theorem 4.1.1, we can compute

Var(A) =
∫ 35

25
(a − 30)2 1

10
da = 1

10

∫ 5

−5
x2dx = 1

10
x3

3

∣∣∣∣∣
5

x=−5

= 25
3

,

Var(B) =
∫ 45

15
(b − 30)2 1

30
db = 1

30

∫ 15

−15
y2dy = 1

30
y3

3

∣∣∣∣∣
15

y=−15

= 75.

So, Var(B) is nine times as large as Var(A). The standard deviations of A and B are
σA = 2.87 and σB = 8.66. �

Note: Variance Depends Only on the Distribution. The variance and standard
deviation of a random variable X depend only on the distribution of X, just as
the expectation of X depends only on the distribution. Indeed, everything that can
be computed from the p.f. or p.d.f. depends only on the distribution. Two random
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variables with the same distribution will have the same variance, even if they have
nothing to do with each other.

Example
4.3.3

Variance and Standard Deviation of a Discrete Distribution. Suppose that a random
variable X can take each of the five values −2, 0, 1, 3, and 4 with equal probability.
We shall determine the variance and standard deviation of X.

In this example,

E(X) = 1
5
(−2 + 0 + 1 + 3 + 4) = 1.2.

Let μ = E(X) = 1.2, and define W = (X − μ)2. Then Var(X) = E(W). We can easily
compute the p.f. f of W :

x −2 0 1 3 4

w 10.24 1.44 0.04 3.24 7.84

f (w) 1/5 1/5 1/5 1/5 1/5

It follows that

Var(X) = E(W) = 1
5

[10.24 + 1.44 + 0.04 + 3.24 + 7.84] = 4.56.

The standard deviation of X is the square root of the variance, namely, 2.135. �

There is an alternative method for calculating the variance of a distribution,
which is often easier to use.

Theorem
4.3.1

Alternative Method for Calculating the Variance. For every random variable X,
Var(X) = E(X2) − [E(X)]2.

Proof Let E(X) = μ. Then

Var(X) = E[(X − μ)2]

= E(X2 − 2μX + μ2)

= E(X2) − 2μE(X) + μ2

= E(X2) − μ2.

Example
4.3.4

Variance of a Discrete Distribution. Once again, consider the random variable X in
Example 4.3.3, which takes each of the five values −2, 0, 1, 3, and 4 with equal
probability. We shall use Theorem 4.3.1 to compute Var(X). In Example 4.3.3, we
computed the mean of X as μ = 1.2. To use Theorem 4.3.1, we need

E(X2) = 1
5

[(−2)2 + 02 + 12 + 32 + 42] = 6.

BecauseE(X) = 1.2, Theorem 4.3.1 says that

Var(X) = 6 − (1.2)2 = 4.56,

which agrees with the calculation in Example 4.3.3. �

The variance (as well as the standard deviation) of a distribution provides a mea-
sure of the spread or dispersion of the distribution around its mean μ. A small value of
the variance indicates that the probability distribution is tightly concentrated around
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μ; a large value of the variance typically indicates that the probability distribution
has a wide spread around μ. However, the variance of a distribution, as well as its
mean, can be made arbitrarily large by placing even a very small but positive amount
of probability far enough from the origin on the real line.

Example
4.3.5

Slight Modification of a Bernoulli Distribution. Let X be a discrete random variable
with the following p.d.f.:

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5 if x = 0,
0.499 if x = 1,
0.001 if x = 10,000,
0 otherwise.

There is a sense in which the distribution of X differs very little from the Bernoulli
distribution with parameter 0.5. However, the mean and variance of X are quite
different from the mean and variance of the Bernoulli distribution with parame-
ter 0.5. Let Y have the Bernoulli distribution with parameter 0.5. In Example 4.1.3,
we computed the mean of Y as E(Y ) = 0.5. Since Y 2 = Y , E(Y 2) = E(Y ) = 0.5, so
Var(Y ) = 0.5 − 0.52 = 0.25. The means of X and X2 are also straightforward calcula-
tions:

E(X) = 0.5 × 0 + 0.499 × 1 + 0.001 × 10,000 = 10.499

E(X2) = 0.5 × 02 + 0.499 × 12 + 0.001 × 10,0002 = 100,000.499.

So Var(X) = 99,890.27. The mean and variance of X are much larger than the mean
and variance of Y . �

Properties of the Variance

We shall now present several theorems that state basic properties of the variance. In
these theorems we shall assume that the variances of all the random variables exist.
The first theorem concerns the possible values of the variance.

Theorem
4.3.2

For each X, Var(X) ≥ 0. If X is a bounded random variable, then Var(X) must exist
and be finite.

Proof Because Var(X) is the mean of a nonnegative random variable (X − μ)2, it
must be nonnegative according to Theorem 4.2.2. If X is bounded, then the mean
exists, and hence the variance exists. Furthermore, if X is bounded the so too is
(X − μ)2, so the variance must be finite.

The next theorem shows that the variance of a random variable X cannot be 0 unless
the entire probability distribution of X is concentrated at a single point.

Theorem
4.3.3

Var(X) = 0 if and only if there exists a constant c such that Pr(X = c) = 1.

Proof Suppose first that there exists a constant c such that Pr(X = c) = 1. Then
E(X) = c, and Pr[(X − c)2 = 0] = 1. Therefore,

Var(X) = E[(X − c)2] = 0.

Conversely, suppose that Var(X) = 0. Then Pr[(X − μ)2 ≥ 0] = 1 but
E[(X − μ)2] = 0. It follows from Theorem 4.2.3 that

Pr[(X − μ)2 = 0] = 1.

Hence, Pr(X = μ) = 1.
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Figure 4.6 The p.d.f. of a
random variable X together
with the p.d.f.’s of X + 3 and
−X. Note that the spreads of
all three distributions appear
the same.
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Theorem
4.3.4

For constants a and b, let Y = aX + b. Then

Var(Y ) = a2 Var(X),

and σY = |a|σX.

Proof If E(X) = μ, then E(Y ) = aμ + b by Theorem 4.2.1. Therefore,

Var(Y ) = E[(aX + b − aμ − b)2] = E[(aX − aμ)2]

= a2E[(X − μ)2] = a2 Var(X).

Taking the square root of Var(Y ) yields |a|σX.

It follows from Theorem 4.3.4 that Var(X + b) = Var(X) for every constant b.
This result is intuitively plausible, since shifting the entire distribution of X a distance
of b units along the real line will change the mean of the distribution by b units but
the shift will not affect the dispersion of the distribution around its mean. Figure 4.6
shows the p.d.f. a random variable X together with the p.d.f. of X + 3 to illustrate
how a shift of the distribution does not affect the spread.

Similarly, it follows from Theorem 4.3.4 that Var(−X) = Var(X). This result also
is intuitively plausible, since reflecting the entire distribution of X with respect to the
origin of the real line will result in a new distribution that is the mirror image of the
original one. The mean will be changed from μ to −μ, but the total dispersion of
the distribution around its mean will not be affected. Figure 4.6 shows the p.d.f. of a
random variable X together with the p.d.f. of −X to illustrate how a reflection of the
distribution does not affect the spread.

Example
4.3.6

Calculating the Variance and Standard Deviation of a Linear Function. Consider the same
random variable X as in Example 4.3.3, which takes each of the five values −2, 0, 1, 3,
and 4 with equal probability. We shall determine the variance and standard deviation
of Y = 4X − 7.

In Example 4.3.3, we computed the mean of X as μ = 1.2 and the variance as
4.56. By Theorem 4.3.4,

Var(Y ) = 16 Var(X) = 72.96.

Also, the standard deviation σ of Y is

σY = 4σX = 4(4.56)1/2 = 8.54. �
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The next theorem provides an alternative method for calculating the variance of
a sum of independent random variables.

Theorem
4.3.5

If X1, . . . , Xn are independent random variables with finite means, then

Var(X1 + . . . + Xn) = Var(X1) + . . . + Var(Xn).

Proof Suppose first that n = 2. If E(X1) = μ1 and E(X2) = μ2, then

E(X1 + X2) = μ1 + μ2.

Therefore,

Var(X1 + X2) = E[(X1 + X2 − μ1 − μ2)
2]

= E[(X1 − μ1)
2 + (X2 − μ2)

2 + 2(X1 − μ1)(X2 − μ2)]

= Var(X1) + Var(X2) + 2E[(X1 − μ1)(X2 − μ2)].

Since X1 and X2 are independent,

E[(X1 − μ1)(X2 − μ2)] = E(X1 − μ1)E(X2 − μ2)

= (μ1 − μ1)(μ2 − μ2)

= 0.

It follows, therefore, that

Var(X1 + X2) = Var(X1) + Var(X2).

The theorem can now be established for each positive integer n by an induction
argument.

It should be emphasized that the random variables in Theorem 4.3.5 must be
independent. The variance of the sum of random variables that are not independent
will be discussed in Sec. 4.6. By combining Theorems 4.3.4 and 4.3.5, we can now
obtain the following corollary.

Corollary
4.3.1

If X1, . . . , Xn are independent random variables with finite means, and if a1, . . . , an

and b are arbitrary constants, then

Var(a1X1 + . . . + anXn + b) = a2
1 Var(X1) + . . . + a2

n
Var(Xn).

Example
4.3.7

Investment Portfolio. An investor with $100,000 to invest wishes to construct a port-
folio consisting of shares of one or both of two available stocks and possibly some
fixed-rate investments. Suppose that the two stocks have random rates of return R1
and R2 per share for a period of one year. Suppose that R1 has a distribution with
mean 6 and variance 55, while R2 has mean 4 and variance 28. Suppose that the first
stock costs $60 per share and the second costs $48 per share. Suppose that money
can also be invested at a fixed rate of 3.6 percent per year. The portfolio will consist
of s1 shares of the first stock, s2 shares of the second stock, and all remaining money
($s3) invested at the fixed rate. The return on this portfolio will be

s1R1 + s2R2 + 0.036s3,

where the coefficients are constrained by

60s1 + 48s2 + s3 = 100,000, (4.3.2)
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Figure 4.7 The set of all
means and variances of
investment portfolios in
Example 4.3.7. The solid
vertical line shows the range
of possible variances for
portfoloios with a mean of
7000.
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as well as s1, s2, s3 ≥ 0. For now, we shall assume that R1 and R2 are independent. The
mean and the variance of the return on the portfolio will be

E(s1R1 + s2R2 + 0.036s3) = 6s1 + 4s2 + 0.036s3,

Var(s1R1 + s2R2 + 0.036s3) = 55s2
1 + 28s2

2 .

One method for comparing a class of portfolios is to say that portfolio A is at least
as good as portfolio B if the mean return for A is at least as large as the mean return
for B and if the variance for A is no larger than the variance of B. (See Markowitz,
1987, for a classic treatment of such methods.) The reason for preferring smaller
variance is that large variance is associated with large deviations from the mean,
and for portfolios with a common mean, some of the large deviations are going to
have to be below the mean, leading to the risk of large losses. Figure 4.7 is a plot
of the pairs (mean, variance) for all of the possible portfolios in this example. That
is, for each (s1, s2, s3) that satisfy (4.3.2), there is a point in the outlined region of
Fig. 4.7. The points to the right and toward the bottom are those that have the largest
mean return for a fixed variance, and the ones that have the smallest variance for
a fixed mean return. These portfolios are called efficient. For example, suppose that
the investor would like a mean return of 7000. The vertical line segment above 7000
on the horizontal axis in Fig. 4.7 indicates the possible variances of all portfolios with
mean return of 7000. Among these, the portfolio with the smallest variance is efficient
and is indicated in Fig. 4.7. This portfolio has s1 = 524.7, s2 = 609.7, s3 = 39,250, and
variance 2.55 × 107. So, every portfolio with mean return greater than 7000 must have
variance larger than 2.55 × 107, and every portfolio with variance less than 2.55 × 107

must have mean return smaller than 7000. �

The Variance of a Binomial Distribution

We shall now consider again the method of generating a binomial distribution pre-
sented in Sec. 4.2. Suppose that a box contains red balls and blue balls, and that the
proportion of red balls is p (0 ≤ p ≤ 1). Suppose also that a random sample of n balls
is selected from the box with replacement. For i = 1, . . . , n, let Xi = 1 if the ith ball
that is selected is red, and let Xi = 0 otherwise. If X denotes the total number of red
balls in the sample, then X = X1 + . . . + Xn and X will have the binomial distribution
with parameters n and p.
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Figure 4.8 Two binomial
distributions with the same
mean (2.5) but different
variances.
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Since X1, . . . , Xn are independent, it follows from Theorem 4.3.5 that

Var(X) =
n∑

i=1

Var(Xi).

According to Example 4.1.3, E(Xi) = p for i = 1, . . . , n. Since X2
i
= Xi for each i,

E(X2
i
) = E(Xi) = p. Therefore, by Theorem 4.3.1,

Var(Xi) = E(X2
i
) − [E(Xi)]

2

= p − p2 = p(1 − p).

It now follows that

Var(X) = np(1 − p). (4.3.3)

Figure 4.8 compares two different binomial distributions with the same mean
(2.5) but different variances (1.25 and 1.875). One can see how the p.f. of the distri-
bution with the larger variance (n = 10, p = 0.25) is higher at more extreme values
and lower at more central values than is the p.f. of the distribution with the smaller
variance (n = 5, p = 0.5). Similarly, Fig. 4.5 compares two uniform distributions with
the same mean (30) and different variances (8.33 and 75). The same pattern appears,
namely that the distribution with larger variance has higher p.d.f. at more extreme
values and lower p.d.f. at more central values.

Interquartile Range

Example
4.3.8

The Cauchy Distribution. In Example 4.1.8, we saw a distribution (the Cauchy dis-
tribution) whose mean did not exist, and hence its variance does not exist. But, we
might still want to describe how spread out such a distribution is. For example, if X

has the Cauchy distribution and Y = 2X, it stands to reason that Y is twice as spread
out as X is, but how do we quantify this? �

There is a measure of spread that exists for every distribution, regardless of
whether or not the distribution has a mean or variance. Recall from Definition 3.3.2
that the quantile function for a random variable is the inverse of the c.d.f., and it is
defined for every random variable.
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Definition
4.3.2

Interquartile Range (IQR). Let X be a random variable with quantile function F−1(p)

for 0 < p < 1. The interquartile range (IQR) is defined to be F−1(0.75) − F−1(0.25).

In words, the IQR is the length of the interval that contains the middle half of the
distribution.

Example
4.3.9

The Cauchy Distribution. Let X have the Cauchy distribution. The c.d.f. F of X can
be found using a trigonometric substitution in the following integral:

F(x) =
∫ x

−∞
dy

π(1 + y2)
= 1

2
+ tan−1(x)

π
,

where tan−1(x) is the principal inverse of the tangent function, taking values from
−π/2 to π/2 as x runs from −∞ to ∞. The quantile function of X is then F−1(p) =
tan[π(p − 1/2)] for 0 < p < 1. The IQR is

F−1(0.75) − F−1(0.25) = tan(π/4) − tan(−π/4) = 2.

It is not difficult to show that, if Y = 2X, then the IQR of Y is 4. (See Exercise 14.)
�

Summary

The variance of X, denoted by Var(X), is the mean of [X − E(X)]2 and measures how
spread out the distribution of X is. The variance also equals E(X2) − [E(X)]2. The
standard deviation is the square root of the variance. The variance of aX + b, where
a and b are constants, is a2 Var(X). The variance of the sum of independent random
variables is the sum of the variances. As an example, the variance of the binomial
distribution with parameters n and p is np(1 − p). The interquartile range (IQR) is
the difference between the 0.75 and 0.25 quantiles. The IQR is a measure of spread
that exists for every distribution.

Exercises

1. Suppose that X has the uniform distribution on the
interval [0, 1]. Compute the variance of X.

2. Suppose that one word is selected at random from the
sentence the girl put on her beautiful red hat. If X

denotes the number of letters in the word that is selected,
what is the value of Var(X)?

3. For all numbers a and b such that a < b, find the vari-
ance of the uniform distribution on the interval [a, b].

4. Suppose that X is a random variable for which E(X) =
μ and Var(X) = σ 2. Show that
E[X(X − 1)] = μ(μ − 1) + σ 2.

5. Let X be a random variable for which E(X) = μ and
Var(X) = σ 2, and let c be an arbitrary constant. Show that

E[(X − c)2] = (μ − c)2 + σ 2.

6. Suppose that X and Y are independent random vari-
ables whose variances exist and such that E(X) = E(Y ).
Show that

E[(X − Y )2] = Var(X) + Var(Y ).

7. Suppose that X and Y are independent random vari-
ables for which Var(X) = Var(Y ) = 3. Find the values of
(a) Var(X − Y ) and (b) Var(2X − 3Y + 1).

8. Construct an example of a distribution for which the
mean is finite but the variance is infinite.

9. Let X have the discrete uniform distribution on the
integers 1, . . . , n. Compute the variance of X. Hint: You
may wish to use the formula

∑n
k=1 k2 = n(n + 1) . (2n +

1)/6.
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10. Consider the example efficient portfolio at the end of
Example 4.3.7. Suppose that Ri has the uniform distribu-
tion on the interval [ai, bi] for i = 1, 2.

a. Find the two intervals [a1, b1] and [a2, b2]. Hint: The
intervals are determined by the means and variances.

b. Find the value at risk (VaR) for the example portfolio
at probability level 0.97. Hint: Review Example 3.9.5
to see how to find the p.d.f. of the sum of two uniform
random variables.

11. Let X have the uniform distribution on the interval
[0, 1]. Find the IQR of X.

12. Let X have the p.d.f. f (x) = exp(−x) for x ≥ 0, and
f (x) = 0 for x < 0. Find the IQR of X.

13. Let X have the binomial distribution with parameters
5 and 0.3. Find the IQR of X. Hint: Return to Exam-
ple 3.3.9 and Table 3.1.

14. Let X be a random variable whose interquartile range
is η. Let Y = 2X. Prove that the interquartile range of Y is
2η.

4.4 Moments
For a random variable X, the means of powers Xk (called moments) for k >

2 have useful theoretical properties, and some of them are used for additional
summaries of a distribution. The moment generating function is a related tool
that aids in deriving distributions of sums of independent random variables and
limiting properties of distributions.

Existence of Moments

For each random variable X and every positive integer k, the expectation E(Xk) is
called the kth moment of X . In particular, in accordance with this terminology, the
mean of X is the first moment of X.

It is said that the kth moment exists if and only if E(|X|k) < ∞. If the random
variable X is bounded, that is, if there are finite numbers a and b such that Pr(a ≤
X ≤ b) = 1, then all moments of X must necessarily exist. It is possible, however, that
all moments of X exist even though X is not bounded. It is shown in the next theorem
that if the kth moment of X exists, then all moments of lower order must also exist.

Theorem
4.4.1

If E(|X|k) < ∞ for some positive integer k, then E(|X|j ) < ∞ for every positive
integer j such that j < k.

Proof We shall assume, for convenience, that the distribution of X is continuous and
the p.d.f. is f . Then

E(|X|j ) =
∫ ∞

−∞
|x|jf (x) dx

=
∫

|x|≤1
|x|jf (x) dx +

∫
|x|>1

|x|jf (x) dx

≤
∫

|x|≤1
1 . f (x) dx +

∫
|x|>1

|x|kf (x) dx

≤ Pr(|X| ≤ 1) + E(|X|k).
By hypothesis, E(|X|k) < ∞. It therefore follows that E(|X|j ) < ∞. A similar proof
holds for a discrete or a more general type of distribution.

In particular, it follows from Theorem 4.4.1 that if E(X2) < ∞, then both the
mean of X and the variance of X exist. Theorem 4.4.1 extends to the case in which
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j and k are arbitrary positive numbers rather than just integers. (See Exercise 15 in
this section.) We will not make use of such a result in this text, however.

Central Moments Suppose that X is a random variable for which E(X) = μ. For
every positive integer k, the expectation E[(X − μ)k] is called the kth central moment
of X or the kth moment of X about the mean. In particular, in accordance with this
terminology, the variance of X is the second central moment of X.

For every distribution, the first central moment must be 0 because

E(X − μ) = μ − μ = 0.

Furthermore, if the distribution of X is symmetric with respect to its mean μ, and if
the central moment E[(X − μ)k] exists for a given odd integer k, then the value of
E[(X − μ)k] will be 0 because the positive and negative terms in this expectation will
cancel one another.

Example
4.4.1

A Symmetric p.d.f. Suppose that X has a continuous distribution for which the p.d.f.
has the following form:

f (x) = ce−(x−3)2/2 for −∞ < x < ∞.

We shall determine the mean of X and all the central moments.
It can be shown that for every positive integer k,∫ ∞

−∞
|x|ke−(x−3)2/2 dx < ∞.

Hence, all the moments of X exist. Furthermore, since f (x) is symmetric with respect
to the point x = 3, then E(X) = 3. Because of this symmetry, it also follows that
E[(X − 3)k] = 0 for every odd positive integer k. For even k = 2n, we can find a
recursive formula for the sequence of central moments. First, let y = x − μ in all
the integral fomulas. Then, for n ≥ 1, the 2nth central moment is

m2n =
∫ ∞

−∞
y2nce−y2/2dy.

Use integration by parts with u = y2n−1 and dv = ye−y2/2dy. It follows that du =
(2n − 1)y2n−2dy and v = −e−y2/2. So,

m2n =
∫ ∞

−∞
udv = uv|∞

y=−∞ −
∫ ∞

−∞
vdu

= −y2n−1e−y2/2
∣∣∣∞
y=−∞ + (2n − 1)

∫ ∞

−∞
y2n−2ce−y2/2dy

= (2n − 1)m2(n−1).

Because y0 = 1, m0 is just the integral of the p.d.f.; hence, m0 = 1. It follows that
m2n = ∏n

i=1(2i − 1) for n = 1, 2, . . .. So, for example, m2 = 1, m4 = 3, m6 = 15, and so
on. �

Skewness In Example 4.4.1, we saw that the odd central moments are all 0 for a
distribution that is symmetric. This leads to the following distributional summary that
is used to measure lack of symmetry.

Definition
4.4.1

Skewness. Let X be a random variable with mean μ, standard deviation σ , and finite
third moment. The skewness of X is defined to be E[(X − μ)3]/σ 3.
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The reason for dividing the third central moment by σ 3 is to make the skewness
measure only the lack of symmetry rather than the spread of the distribution.

Example
4.4.2

Skewness of Binomial Distributions. Let X have the binomial distribution with param-
eters 10 and 0.25. The p.f. of this distribution appears in Fig. 4.8. It is not difficult to
see that the p.f. is not symmetric. The skewness can be computed as follows: First,
note that the mean is μ = 10 × 0.25 = 2.5 and that the standard deviation is

σ = (10 × 0.25 × 0.75)1/2 = 1.369.

Second, compute

E[(X − 2.5)3] = (0 − 2.5)3
(

10
0

)
0.250 0.7510 + . . . + (10 − 2.5)3

(
10
10

)
0.2500 0.750

= 0.9375.
Finally, the skewness is

0.9375
1.3693

= 0.3652.

For comparison, the skewness of the binomial distribution with parameters 10 and 0.2
is 0.4743, and the skewness of the binomial distribution with parameters 10 and 0.3
is 0.2761. The absolute value of the skewness increases as the probability of success
moves away from 0.5. It is straightforward to show that the skewness of the binomial
distribution with parameters n and p is the negative of the skewness of the binomial
distribution with parameters n and 1 − p. (See Exercise 16 in this section.) �

Moment Generating Functions

We shall now consider a different way to characterize the distribution of a random
variable that is more closely related to its moments than to where its probability is
distributed.

Definition
4.4.2

Moment Generating Function. Let X be a random variable. For each real number t ,
define

ψ(t) = E(etX). (4.4.1)

The function ψ(t) is called the moment generating function (abbreviated m.g.f.) of X.

Note: The Moment Generating Function of X Depends Only on the Distribution
of X . Since the m.g.f. is the expected value of a function of X, it must depend only
on the distribution of X. If X and Y have the same distribution, they must have the
same m.g.f.

If the random variable X is bounded, then the expectation in Eq. (4.4.1) must
be finite for all values of t . In this case, therefore, the m.g.f. of X will be finite for all
values of t . On the other hand, if X is not bounded, then the m.g.f. might be finite for
some values of t and might not be finite for others. It can be seen from Eq. (4.4.1),
however, that for every random variable X, the m.g.f. ψ(t) must be finite at the point
t = 0 and at that point its value must be ψ(0) = E(1) = 1.

The next result explains how the name “moment generating function” arose.

Theorem
4.4.2

Let X be a random variables whose m.g.f. ψ(t) is finite for all values of t in some open
interval around the point t = 0. Then, for each integer n > 0, the nth moment of X,



4.4 Moments 237

E(Xn), is finite and equals the nth derivative ψ(n)(t) at t = 0. That is, E(Xn) = ψ(n)(0)

for n = 1, 2, . . . .

We sketch the proof at the end of this section.

Example
4.4.3

Calculating an m.g.f. Suppose that X is a random variable for which the p.d.f. is as
follows:

f (x) =
{

e−x for x > 0,
0 otherwise.

We shall determine the m.g.f. of X and also Var(X).
For each real number t ,

ψ(t) = E(etX) =
∫ ∞

0
etxe−x dx

=
∫ ∞

0
e(t−1)x dx.

The final integral in this equation will be finite if and only if t < 1. Therefore, ψ(t) is
finite only for t < 1. For each such value of t ,

ψ(t) = 1
1 − t

.

Since ψ(t) is finite for all values of t in an open interval around the point t = 0,
all moments of X exist. The first two derivatives of ψ are

ψ ′(t) = 1
(1 − t)2

and ψ ′′(t) = 2
(1 − t)3

.

Therefore, E(X) = ψ ′(0) = 1 and E(X2) = ψ ′′(0) = 2. It now follows that

Var(X) = ψ ′′(0) − [ψ ′(0)]2 = 1. �

Properties of Moment Generating Functions

We shall now present three basic theorems pertaining to moment generating func-
tions.

Theorem
4.4.3

Let X be a random variable for which the m.g.f. is ψ1; let Y = aX + b, where a and b

are given constants; and let ψ2 denote the m.g.f. of Y . Then for every value of t such
that ψ1(at) is finite,

ψ2(t) = ebtψ1(at). (4.4.2)

Proof By the definition of an m.g.f.,

ψ2(t) = E(etY ) = E[et(aX+b)] = ebtE(eatX) = ebtψ1(at).

Example
4.4.4

Calculating the m.g.f. of a Linear Function. Suppose that the distribution of X is as
specified in Example 4.4.3. We saw that the m.g.f. of X for t < 1 is

ψ1(t) = 1
1 − t

.

If Y = 3 − 2X, then the m.g.f. of Y is finite for t > −1/2 and will have the value

ψ2(t) = e3tψ1(−2t) = e3t

1 + 2t
. �
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The next theorem shows that the m.g.f. of the sum of an arbitrary number of
independent random variables has a very simple form. Because of this property, the
m.g.f. is an important tool in the study of such sums.

Theorem
4.4.4

Suppose that X1, . . . , Xn are n independent random variables; and for i = 1, . . . , n,
let ψi denote the m.g.f. of Xi. Let Y = X1 + . . . + Xn, and let the m.g.f. of Y be denoted
by ψ . Then for every value of t such that ψi(t) is finite for i = 1, . . . , n,

ψ(t) =
n∏

i=1

ψi(t). (4.4.3)

Proof By definition,

ψ(t) = E(etY ) = E[et(X1+...+Xn)] = E

(
n∏

i=1

etXi

)
.

Since the random variables X1, . . . , Xn are independent, it follows from Theo-
rem 4.2.6 that

E

(
n∏

i=1

etXi

)
=

n∏
i=1

E(etXi).

Hence,

ψ(t) =
n∏

i=1

ψi(t).

The Moment Generating Function for the Binomial Distribution Suppose that
a random variable X has the binomial distribution with parameters n and p. In
Sections 4.2 and 4.3, the mean and the variance of X were determined by representing
X as the sum of n independent random variables X1, . . . , Xn. In this representation,
the distribution of each variable Xi is as follows:

Pr(Xi = 1) = p and Pr(Xi = 0) = 1 − p.

We shall now use this representation to determine the m.g.f. of X = X1 + . . . + Xn.
Since each of the random variables X1, . . . , Xn has the same distribution, the

m.g.f. of each variable will be the same. For i = 1, . . . , n, the m.g.f. of Xi is

ψi(t) = E(etXi) = (et) Pr(Xi = 1) + (1) Pr(Xi = 0)

= pet + 1 − p.

It follows from Theorem 4.4.4 that the m.g.f. of X in this case is

ψ(t) = (pet + 1 − p)n. (4.4.4)

Uniqueness of Moment Generating Functions We shall now state one more im-
portant property of the m.g.f. The proof of this property is beyond the scope of this
book and is omitted.

Theorem
4.4.5

If the m.g.f.’s of two random variables X1 and X2 are finite and identical for all values
of t in an open interval around the point t = 0, then the probability distributions of
X1 and X2 must be identical.
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Theorem 4.4.5 is the justification for the claim made at the start of this discussion,
namely, that the m.g.f. is another way to characterize the distribution of a random
variable.

The Additive Property of the Binomial Distribution Moment generating functions
provide a simple way to derive the distribution of the sum of two independent
binomial random variables with the same second parameter.

Theorem
4.4.6

If X1 and X2 are independent random variables, and if Xi has the binomial distribu-
tion with parameters ni and p (i = 1, 2), then X1 + X2 has the binomial distribution
with parameters n1 + n2 and p.

Proof L et ψi denote the m.g.f. of Xi for i = 1, 2. It follows from Eq. (4.4.4) that

ψi(t) = (pet + 1 − p)ni.

Let ψ denote the m.g.f. of X1 + X2. Then, by Theorem 4.4.4,

ψ(t) = (pet + 1 − p)n1+n2.

It can be seen from Eq. (4.4.4) that this function ψ is the m.g.f. of the binomial
distribution with parameters n1 + n2 and p. Hence, by Theorem 4.4.5, the distribution
of X1 + X2 must be that binomial distribution.

Sketch of the Proof of Theorem 4.4.2

First, we indicate why all moments of X are finite. Let t > 0 be such that both ψ(t)

and ψ(−t) are finite. Define g(x) = etx + e−tx. Notice that

E[g(X)] = ψ(t) + ψ(−t) < ∞. (4.4.5)

On every bounded interval of x values, g(x) is bounded. For each integer n > 0, as
|x| → ∞, g(x) is eventually larger than |x|n. It follows from these facts and (4.4.5)
that E|Xn| < ∞.

Although it is beyond the scope of this book, it can be shown that the derivative
ψ ′(t) exists at the point t = 0, and that at t = 0, the derivative of the expectation in
Eq. (4.4.1) must be equal to the expectation of the derivative. Thus,

ψ ′(0) =
[

d

dt
E(etX)

]
t=0

= E

[(
d

dt
etX

)
t=0

]
.

But (
d

dt
etX

)
t=0

= (XetX)t=0 = X.

It follows that

ψ ′(0) = E(X).

In other words, the derivative of the m.g.f. ψ(t) at t = 0 is the mean of X.
Furthermore, it can be shown that it is possible to differentiate ψ(t) an arbitrary

number of times at the point t = 0. For n = 1, 2, . . . , the nth derivative ψ(n)(0) at
t = 0 will satisfy the following relation:

ψ(n)(0) =
[

dn

dtn
E(etX)

]
t=0

= E

[(
dn

dtn
etX

)
t=0

]
= E[(XnetX)t=0] = E(Xn).
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Thus, ψ ′(0) = E(X), ψ ′′(0) = E(X2), ψ ′′′(0) = E(X3), and so on. Hence, we see that
the m.g.f., if it is finite in an open interval around t = 0, can be used to generate all
of the moments of the distribution by taking derivatives at t = 0.

Summary

If the kth moment of a random variable exists, then so does the j th moment for every
j < k. The moment generating function of X, ψ(t) = E(etX), if it is finite for t in a
neighborhood of 0, can be used to find moments of X. The kth derivative of ψ(t) at
t = 0 is E(Xk). The m.g.f. characterizes the distribution in the sense that all random
variables that have the same m.g.f. have the same distribution.

Exercises

1. If X has the uniform distribution on the interval [a, b],
what is the value of the fifth central moment of X?

2. If X has the uniform distribution on the interval [a, b],
write a formula for every even central moment of X.

3. Suppose that X is a random variable for which E(X) =
1, E(X2) = 2, and E(X3) = 5. Find the value of the third
central moment of X.

4. Suppose that X is a random variable such that E(X2)

is finite. (a) Show that E(X2) ≥ [E(X)]2. (b) Show that
E(X2) = [E(X)]2 if and only if there exists a constant c

such that Pr(X = c) = 1. Hint: Var(X) ≥ 0.

5. Suppose that X is a random variable with mean μ and
variance σ 2, and that the fourth moment of X is finite.
Show that

E[(X − μ)4] ≥ σ 4.

6. Suppose that X has the uniform distribution on the
interval [a, b]. Determine the m.g.f. of X.

7. Suppose that X is a random variable for which the m.g.f.
is as follows:

ψ(t) = 1
4
(3et + e−t ) for −∞ < t < ∞.

Find the mean and the variance of X.

8. Suppose that X is a random variable for which the m.g.f.
is as follows:

ψ(t) = et2+3t for −∞ < t < ∞.

Find the mean and the variance of X.

9. Let X be a random variable with mean μ and variance
σ 2, and let ψ1(t) denote the m.g.f. of X for −∞ < t < ∞.
Let c be a given positive constant, and let Y be a random

variable for which the m.g.f. is

ψ2(t) = ec[ψ1(t)−1] for −∞ < t < ∞.

Find expressions for the mean and the variance of Y in
terms of the mean and the variance of X.

10. Suppose that the random variables X and Y are i.i.d.
and that the m.g.f. of each is

ψ(t) = et2+3t for −∞ < t < ∞.

Find the m.g.f. of Z = 2X − 3Y + 4.

11. Suppose that X is a random variable for which the
m.g.f. is as follows:

ψ(t) = 1
5
et + 2

5
e4t + 2

5
e8t for −∞ < t < ∞.

Find the probability distribution of X. Hint: It is a simple
discrete distribution.

12. Suppose that X is a random variable for which the
m.g.f. is as follows:

ψ(t) = 1
6
(4 + et + e−t ) for −∞ < t < ∞.

Find the probability distribution of X.

13. Let X have the Cauchy distribution (see Example
4.1.8). Prove that the m.g.f. ψ(t) is finite only for t = 0.

14. Let X have p.d.f.

f (x) =
{

x−2 if x > 1,

0 otherwise.

Prove that the m.g.f. ψ(t) is finite for all t ≤ 0 but for no
t > 0.
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15. Prove the following extension of Theorem 4.4.1: If
E(|X|a) < ∞ for some positive number a, then E(|X|b) <

∞ for every positive number b < a. Give the proof for the
case in which X has a discrete distribution.

16. Let X have the binomial distribution with parameters
n and p. Let Y have the binomial distribution with pa-
rameters n and 1 − p. Prove that the skewness of Y is the
negative of the skewness of X. Hint: Let Z = n − X and
show that Z has the same distribution as Y .

17. Find the skewness of the distribution in Example 4.4.3.

4.5 The Mean and the Median
Although the mean of a distribution is a measure of central location, the median
(see Definition 3.3.3) is also a measure of central location for a distribution.
This section presents some comparisons and contrasts between these two location
summaries of a distribution.

The Median

It was mentioned in Sec. 4.1 that the mean of a probability distribution on the real
line will be at the center of gravity of that distribution. In this sense, the mean of a
distribution can be regarded as the center of the distribution. There is another point
on the line that might also be regarded as the center of the distribution. Suppose
that there is a point m0 that divides the total probability into two equal parts, that
is, the probability to the left of m0 is 1/2, and the probability to the right of m0 is
also 1/2. For a continuous distribution, the median of the distribution introduced
in Definition 3.3.3 is such a number. If there is such an m0, it could legitimately be
called a center of the distribution. It should be noted, however, that for some discrete
distributions there will not be any point at which the total probability is divided into
two parts that are exactly equal. Moreover, for other distributions, which may be
either discrete or continuous, there will be more than one such point. Therefore, the
formal definition of a median, which will now be given, must be general enough to
include these possibilities.

Definition
4.5.1

Median. Let X be a random variable. Every number m with the following property
is called a median of the distribution of X:

Pr(X ≤ m) ≥ 1/2 and Pr(X ≥ m) ≥ 1/2.

Another way to understand this definition is that a median is a point m that
satisfies the following two requirements: First, if m is included with the values of X

to the left of m, then

Pr(X ≤ m) ≥ Pr(X > m).

Second, if m is included with the values of X to the right of m, then

Pr(X ≥ m) ≥ Pr(X < m).

If there is a number m such that Pr(X < m) = Pr(X > m), that is, if the number m

does actually divide the total probability into two equal parts, then m will of course
be a median of the distribution of X (see Exercise 16).

Note: Multiple Medians. One can prove that every distribution must have at least
one median. Indeed, the 1/2 quantile from Definition 3.3.2 is a median. (See Exer-
cise 1.) For some distributions, every number in some interval is a median. In such
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cases, the 1/2 quantile is the minimum of the set of all medians. When a whole interval
of numbers are medians of a distribution, some writers refer to the midpoint of the
interval as the median.

Example
4.5.1

The Median of a Discrete Distribution. Suppose that X has the following discrete
distribution:

Pr(X = 1) = 0.1, Pr(X = 2) = 0.2,

Pr(X = 3) = 0.3, Pr(X = 4) = 0.4.

The value 3 is a median of this distribution because Pr(X ≤ 3) = 0.6, which is greater
than 1/2, and Pr(X ≥ 3) = 0.7, which is also greater than 1/2. Furthermore, 3 is the
unique median of this distribution. �

Example
4.5.2

A Discrete Distribution for Which the Median Is Not Unique. Suppose that X has the
following discrete distribution:

Pr(X = 1) = 0.1, Pr(X = 2) = 0.4,

Pr(X = 3) = 0.3, Pr(X = 4) = 0.2.

Here, Pr(X ≤ 2) = 1/2, and Pr(X ≥ 3) = 1/2. Therefore, every value of m in the closed
interval 2 ≤ m ≤ 3 will be a median of this distribution. The most popular choice of
median of this distribution would be the midpoint 2.5. �

Example
4.5.3

The Median of a Continuous Distribution. Suppose that X has a continuous distribution
for which the p.d.f. is as follows:

f (x) =
{

4x3 for 0 < x < 1,
0 otherwise.

The unique median of this distribution will be the number m such that∫ m

0
4x3 dx =

∫ 1

m

4x3 dx = 1
2
.

This number is m = 1/21/4. �

Example
4.5.4

A Continuous Distribution for Which the Median Is Not Unique. Suppose that X has a
continuous distribution for which the p.d.f. is as follows:

f (x) =
⎧⎨⎩

1/2 for 0 ≤ x ≤ 1,
1 for 2.5 ≤ x ≤ 3,
0 otherwise.

Here, for every value of m in the closed interval 1 ≤ m ≤ 2.5, Pr(X ≤ m) = Pr(X ≥
m) = 1/2. Therefore, every value of m in the interval 1 ≤ m ≤ 2.5 is a median of this
distribution. �

Comparison of the Mean and the Median

Example
4.5.5

Last Lottery Number. In a state lottery game, a three-digit number from 000 to 999
is drawn each day. After several years, all but one of the 1000 possible numbers has
been drawn. A lottery official would like to predict how much longer it will be until
that missing number is finally drawn. Let X be the number of days (X = 1 being
tomorrow) until that number appears. It is not difficult to determine the distribution
of X, assuming that all 1000 numbers are equally likely to be drawn each day and



4.5 The Mean and the Median 243

that the draws are independent. Let Ax stand for the event that the missing number
is drawn on day x for x = 1, 2, . . . . Then {X = 1} = A1, and for x > 1,

{X = x} = Ac
1 ∩ . . . ∩ Ac

x−1 ∩ Ax.

Since the Ax events are independent and all have probability 0.001, it is easy to see
that the p.f. of X is

f (x) =
{

0.001(0.999)x−1 for x = 1, 2, . . .

0 otherwise.

But, the lottery official wants to give a single-number prediction for when the number
will be drawn. What summary of the distribution would be appropriate for this
prediction? �

The lottery official in Example 4.5.5 wants some sort of “average” or “middle”
number to summarize the distribution of the number of days until the last number
appears. Presumably she wants a prediction that is neither excessively large nor too
small. Either the mean or a median of X can be used as such a summary of the
distribution. Some important properties of the mean have already been described in
this chapter, and several more properties will be given later in the book. However, for
many purposes the median is a more useful measure of the middle of the distribution
than is the mean. For example, every distribution has a median, but not every
distribution has a mean. As illustrated in Example 4.3.5, the mean of a distribution
can be made very large by removing a small but positive amount of probability from
any part of the distribution and assigning this amount to a sufficiently large value of x.
On the other hand, the median may be unaffected by a similar change in probabilities.
If any amount of probability is removed from a value of x larger than the median
and assigned to an arbitrarily large value of x, the median of the new distribution
will be the same as that of the original distribution. In Example 4.3.5, all numbers in
the interval [0, 1] are medians of both random variables X and Y despite the large
difference in their means.

Example
4.5.6

Annual Incomes. Suppose that the mean annual income among the families in a
certain community is $30,000. It is possible that only a few families in the community
actually have an income as large as $30,000, but those few families have incomes that
are very much larger than $30,000. As an extreme example, suppose that there are
100 families and 99 of them have income of $1,000 while the other one has income
of $2,901,000. If, however, the median annual income among the families is $30,000,
then at least one-half of the families must have incomes of $30,000 or more. �

The median has one convenient property that the mean does not have.

Theorem
4.5.1

One-to-One Function. Let X be a random variable that takes values in an interval I

of real numbers. Let r be a one-to-one function defined on the interval I . If m is a
median of X, then r(m) is a median of r(X).

Proof Let Y = r(X). We need to show that Pr(Y ≥ r(m)) ≥ 1/2 and Pr(Y ≤ r(m)) ≥
1/2. Since r is one-to-one on the interval I , it must be either increasing or decreasing
over the interval I . If r is increasing, then Y ≥ r(m) if and only if X ≥ m, so Pr(Y ≥
r(m)) = Pr(X ≥ m) ≥ 1/2. Similarly, Y ≤ r(m) if and only if X ≤ m and Pr(Y ≤ r(m)) ≥
1/2 also. If r is decreasing, then Y ≥ r(m) if and only if X ≤ m. The remainder of the
proof is then similar to the preceding.
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We shall now consider two specific criteria by which the prediction of a random
variable X can be judged. By the first criterion, the optimal prediction that can be
made is the mean. By the second criterion, the optimal prediction is the median.

Minimizing the Mean Squared Error

Suppose that X is a random variable with mean μ and variance σ 2. Suppose also that
the value of X is to be observed in some experiment, but this value must be predicted
before the observation can be made. One basis for making the prediction is to select
some number d for which the expected value of the square of the error X − d will be
a minimum.

Definition
4.5.2

Mean Squared Error/M.S.E.. The number E[(X − d)2] is called the mean squared error
(M.S.E.) of the prediction d .

The next result shows that the number d for which the M.S.E. is minimized is
E(X).

Theorem
4.5.2

Let X be a random variable with finite variance σ 2, and let μ = E(X). For every
number d ,

E[(X − μ)2] ≤ E[(X − d)2]. (4.5.1)

Furthermore, there will be equality in the relation (4.5.1) if and only if d = μ.

Proof For every value of d ,

E[(X − d)2] = E(X2 − 2 dX + d2)

= E(X2) − 2 dμ + d2. (4.5.2)

The final expression in Eq. (4.5.2) is simply a quadratic function of d. By elementary
differentiation it will be found that the minimum value of this function is attained
when d = μ. Hence, in order to minimize the M.S.E., the predicted value of X

should be its mean μ. Furthermore, when this prediction is used, the M.S.E. is simply
E[(X − μ)2] = σ 2.

Example
4.5.7

Last Lottery Number. In Example 4.5.5, we discussed a state lottery in which one
number had never yet been drawn. Let X stand for the number of days until that
last number is eventually drawn. The p.f. of X was computed in Example 4.5.5 as

f (x) =
{

0.001(0.999)x−1 for x = 1, 2, . . .

0 otherwise.

We can compute the mean of X as

E(X) =
∞∑

x=1

x0.001(0.999)x−1 = 0.001
∞∑

x=1

x(0.999)x−1. (4.5.3)

At first, this sum does not look like one that is easy to compute. However, it is closely
related to the general sum

g(y) =
∞∑

x=0

yx = 1
1 − y

,
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if 0 < y < 1. Using properties of power series from calculus, we know that the deriva-
tive of g(y) can be found by differentiating the individual terms of the power series.
That is,

g′(y) =
∞∑

x=0

xyx−1 =
∞∑

x=1

xyx−1,

for 0 < y < 1. But we also know that g′(y) = 1/(1 − y)2. The last sum in Eq. (4.5.3) is
g′(0.999) = 1/(0.001)2. It follows that

E(X) = 0.001
1

(0.001)2
= 1000. �

Minimizing the Mean Absolute Error

Another possible basis for predicting the value of a random variable X is to choose
some number d for which E(|X − d|) will be a minimum.

Definition
4.5.3

Mean Absolute Error/M.A.E. The number E(|X − d|) is called the mean absolute error
(M.A.E.) of the prediction d .

We shall now show that the M.A.E. is minimized when the chosen value of d is a
median of the distribution of X.

Theorem
4.5.3

Let X be a random variable with finite mean, and let m be a median of the distribution
of X. For every number d,

E(|X − m|) ≤ E(|X − d|). (4.5.4)

Furthermore, there will be equality in the relation (4.5.4) if and only if d is also a
median of the distribution of X.

Proof For convenience, we shall assume that X has a continuous distribution for
which the p.d.f. is f . The proof for any other type of distribution is similar. Suppose
first that d > m. Then

E(|X − d|) − E(|X − m|) =
∫ ∞

−∞
(|x − d| − |x − m|)f (x) dx

=
∫ m

−∞
(d − m)f (x) dx +

∫ d

m

(d + m − 2x)f (x) dx +
∫ ∞

d

(m − d)f (x) dx

≥
∫ m

−∞
(d − m)f (x) dx +

∫ d

m

(m − d)f (x) dx +
∫ ∞

d

(m − d)f (x) dx

= (d − m)[Pr(X ≤ m) − Pr(X > m)]. (4.5.5)

Since m is a median of the distribution of X, it follows that

Pr(X ≤ m) ≥ 1/2 ≥ Pr(X > m). (4.5.6)

The final difference in the relation (4.5.5) is therefore nonnegative. Hence,

E(|X − d|) ≥ E(|X − m|). (4.5.7)

Furthermore, there can be equality in the relation (4.5.7) only if the inequalities in
relations (4.5.5) and (4.5.6) are actually equalities. A careful analysis shows that these
inequalities will be equalities only if d is also a median of the distribution of X.

The proof for every value of d such that d < m is similar.
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Example
4.5.8

Last Lottery Number. In Example 4.5.5, in order to compute the median of X, we must
find the smallest number x such that the c.d.f. F(x) ≥ 0.5. For integer x, we have

F(x) =
x∑

n=1

0.001(0.999)n−1.

We can use the popular formula

x∑
n=0

yn = 1 − yx+1

1 − y

to see that, for integer x ≥ 1,

F(x) = 0.001
1 − (0.999)x

1 − 0.999
= 1 − (0.999)x.

Setting this equal to 0.5 and solving for x gives x = 692.8; hence, the median of X is
693. The median is unique because F(x) never takes the exact value 0.5 for any integer
x. The median of X is much smaller than the mean of 1000 found in Example 4.5.7.

�

The reason that the mean is so much larger than the median in Examples 4.5.7
and 4.5.8 is that the distribution has probability at arbitrarily large values but is
bounded below. The probability at these large values pulls the mean up because there
is no probability at equally small values to balance. The median is not affected by
how the upper half of the probability is distributed. The following example involves
a symmetric distribution. Here, the mean and median(s) are more similar.

Example
4.5.9

Predicting a Discrete Uniform Random Variable. Suppose that the probability is 1/6
that a random variable X will take each of the following six values: 1, 2, 3, 4, 5, 6. We
shall determine the prediction for which the M.S.E. is minimum and the prediction
for which the M.A.E. is minimum.

In this example,

E(X) = 1
6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5.

Therefore, the M.S.E. will be minimized by the unique value d = 3.5.
Also, every number m in the closed interval 3 ≤ m ≤ 4 is a median of the given

distribution. Therefore, the M.A.E. will be minimized by every value of d such that
3 ≤ d ≤ 4 and only by such a value of d. Because the distribution of X is symmetric,
the mean of X is also a median of X. �

Note: When the M.A.E. and M.S.E. Are Finite. We noted that the median exists for
every distribution, but the M.A.E. is finite if and only if the distribution has a finite
mean. Similarly, the M.S.E. is finite if and only if the distribution has a finite variance.

Summary

A median of X is any number m such that Pr(X ≤ m) ≥ 1/2 and Pr(X ≥ m) ≥ 1/2.
To minimize E(|X − d|) by choice of d, one must choose d to be a median of X. To
minimize E[(X − d)2] by choice of d, one must choose d = E(X).
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Exercises

1. Prove that the 1/2 quantile as defined in Definition 3.3.2
is a median as defined in Definition 4.5.1.

2. Suppose that a random variable X has a discrete distri-
bution for which the p.f. is as follows:

f (x) =
{

cx for x = 1, 2, 3, 4, 5, 6,
0 otherwise.

Determine all the medians of this distribution.

3. Suppose that a random variable X has a continuous
distribution for which the p.d.f. is as follows:

f (x) =
{

e−x for x > 0,
0 otherwise.

Determine all the medians of this distribution.

4. In a small community consisting of 153 families, the
number of families that have k children (k = 0, 1, 2, . . .)

is given in the following table:

Number of Number of
children families

0 21

1 40

2 42

3 27

4 or more 23

Determine the mean and the median of the number of
children per family. (For the mean, assume that all families
with four or more children have only four children. Why
doesn’t this point matter for the median?)

5. Suppose that an observed value of X is equally likely to
come from a continuous distribution for which the p.d.f.
is f or from one for which the p.d.f. is g. Suppose that
f (x) > 0 for 0 < x < 1 and f (x) = 0 otherwise, and sup-
pose also that g(x) > 0 for 2 < x < 4 and g(x) = 0 other-
wise. Determine: (a) the mean and
(b) the median of the distribution of X.

6. Suppose that a random variable X has a continuous
distribution for which the p.d.f. f is as follows:

f (x) =
{

2x for 0 < x < 1,
0 otherwise.

Determine the value of d that minimizes
(a) E[(X − d)2] and (b) E(|X − d|).
7. Suppose that a person’s score X on a certain examina-
tion will be a number in the interval 0 ≤ X ≤ 1 and that

X has a continuous distribution for which the p.d.f. is as
follows:

f (x) =
{

x + 1
2 for 0 ≤ x ≤ 1,

0 otherwise.

Determine the prediction of X that minimizes (a) the
M.S.E. and (b) the M.A.E.

8. Suppose that the distribution of a random variable
X is symmetric with respect to the point x = 0 and that
E(X4) < ∞. Show that E[(X − d)4] is minimized by the
value d = 0.

9. Suppose that a fire can occur at any one of five points
along a road. These points are located at −3, −1, 0, 1, and
2 in Fig. 4.9. Suppose also that the probability that each of
these points will be the location of the next fire that occurs
along the road is as specified in Fig. 4.9.

�3

0.2

0.1 0.1

0.4

0.2

Road�1 0 1 2

Figure 4.9 Probabilities for Exercise 9.

a. At what point along the road should a fire engine
wait in order to minimize the expected value of the
square of the distance that it must travel to the next
fire?

b. Where should the fire engine wait to minimize the
expected value of the distance that it must travel to
the next fire?

10. If n houses are located at various points along a
straight road, at what point along the road should a store
be located in order to minimize the sum of the distances
from the n houses to the store?

11. Let X be a random variable having the binomial dis-
tribution with parameters n = 7 and p = 1/4, and let Y be
a random variable having the binomial distribution with
parameters n = 5 and p = 1/2. Which of these two random
variables can be predicted with the smaller M.S.E.?

12. Consider a coin for which the probability of obtaining
a head on each given toss is 0.3. Suppose that the coin is to
be tossed 15 times, and let X denote the number of heads
that will be obtained.

a. What prediction of X has the smallest M.S.E.?

b. What prediction of X has the smallest M.A.E.?

13. Suppose that the distribution of X is symmetric
around a point m. Prove that m is a median of X.
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14. Find the median of the Cauchy distribution defined in
Example 4.1.8.

15. Let X be a random variable with c.d.f. F . Suppose that
a < b are numbers such that both a and b are medians of
X.

a. Prove that F(a) = 1/2.

b. Prove that there exist a smallest c ≤ a and a largest
d ≥ b such that every number in the closed interval
[c, d] is a median of X.

c. If X has a discrete distribution, prove that F(d) >

1/2.

16. Let X be a random variable. Suppose that there exists
a number m such that Pr(X < m) = Pr(X > m). Prove that
m is a median of the distribution of X.

17. Let X be a random variable. Suppose that there exists
a number m such that Pr(X < m) < 1/2 and Pr(X > m) <

1/2. Prove that m is the unique median of the distribution
of X.

18. Prove the following extension of Theorem 4.5.1. Let
m be the p quantile of the random variable X. (See Defi-
nition 3.3.2.) If r is a strictly increasing function, then r(m)

is the p quantile of r(X).

4.6 Covariance and Correlation
When we are interested in the joint distribution of two random variables, it is useful
to have a summary of how much the two random variables depend on each other.
The covariance and correlation are attempts to measure that dependence, but they
only capture a particular type of dependence, namely linear dependence.

Covariance

Example
4.6.1

Test Scores. When applying for college, high school students often take a number of
standardized tests. Consider a particular student who will take both a verbal and a
quantitative test. Let X be this student’s score on the verbal test, and let Y be the
same student’s score on the quantitative test. Although there are students who do
much better on one test than the other, it might still be reasonable to expect that a
student who does very well on one test to do at least a little better than average on
the other. We would like to find a numerical summary of the joint distribution of X

and Y that reflects the degree to which we believe a high or low score on one test will
be accompanied by a high or low score on the other test. �

When we consider the joint distribution of two random variables, the means, the
medians, and the variances of the variables provide useful information about their
marginal distributions. However, these values do not provide any information about
the relationship between the two variables or about their tendency to vary together
rather than independently. In this section and the next one, we shall introduce
summaries of a joint distribution that enable us to measure the association between
two random variables, determine the variance of the sum of an arbitrary number of
dependent random variables, and predict the value of one random variable by using
the observed value of some other related variable.

Definition
4.6.1

Covariance. Let X and Y be random variables having finite means. Let E(X) = μX

and E(Y ) = μY The covariance of X and Y , which is denoted by Cov(X, Y ), is defined
as

Cov(X, Y ) = E[(X − μX)(Y − μY)], (4.6.1)

if the expectation in Eq. (4.6.1) exists.
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It can be shown (see Exercise 2 at the end of this section) that if both X and Y

have finite variance, then the expectation in Eq. (4.6.1) will exist and Cov(X, Y ) will
be finite. However, the value of Cov(X, Y ) can be positive, negative, or zero.

Example
4.6.2

Test Scores. Let X and Y be the test scores in Example 4.6.1, and suppose that they
have the joint p.d.f.

f (x, y) =
{

2xy + 0.5 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise.

We shall compute the covariance Cov(X, Y ). First, we shall compute the means μX

and μY of X and Y , respectively. The symmetry in the joint p.d.f. means that X and
Y have the same marginal distribution; hence, μX = μY . We see that

μX =
∫ 1

0

∫ 1

0
[2x2y + 0.5x]dydx

=
∫ 1

0
[x2 + 0.5x]dx = 1

3
+ 1

4
= 7

12
,

so that μY = 7/12 as well. The covariance can be computed using Theorem 4.1.2.
Specifically, we must evaluate the integral∫ 1

0

∫ 1

0

(
x − 7

12

) (
y − 7

12

)
(2xy + 0.5) dy dx.

This integral is straightforward, albeit tedious, to compute, and the result is
Cov(X, Y ) = 1/144. �

The following result often simplifies the calculation of a covariance.

Theorem
4.6.1

For all random variables X and Y such that σ 2
X

< ∞ and σ 2
Y

< ∞,

Cov(X, Y ) = E(XY) − E(X)E(Y ). (4.6.2)

Proof It follows from Eq. (4.6.1) that

Cov(X, Y ) = E(XY − μXY − μYX + μXμY)

= E(XY) − μXE(Y ) − μYE(X) + μXμY .

Since E(X) = μX and E(Y ) = μY , Eq. (4.6.2) is obtained.

The covariance between X and Y is intended to measure the degree to which
X and Y tend to be large at the same time or the degree to which one tends to be
large while the other is small. Some intution about this interpretation can be gathered
from a careful look at Eq. (4.6.1). For example, suppose that Cov(X, Y ) is positive.
Then X > μX and Y > μY must occur together and/or X < μX and Y < μY must occur
together to a larger extent than X < μX occurs with Y > μY and X > μX occurs with
Y < μY . Otherwise, the mean would be negative. Similarly, if Cov(X, Y ) is negative,
then X > μX and Y < μY must occur together and/or X < μX and Y > μY must occur
together to larger extent than the other two inequalities. If Cov(X, Y ) = 0, then the
extent to which X and Y are on the same sides of their respective means exactly
balances the extent to which they are on opposite sides of their means.
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Correlation

Although Cov(X, Y ) gives a numerical measure of the degree to which X and Y vary
together, the magnitude of Cov(X, Y ) is also influenced by the overall magnitudes of
X and Y . For example, in Exercise 5 in this section, you can prove that Cov(2X, Y ) =
2 Cov(X, Y ). In order to obtain a measure of association between X and Y that is
not driven by arbitrary changes in the scales of one or the other random variable, we
define a slightly different quantity next.

Definition
4.6.2

Correlation. Let X and Y be random variables with finite variances σ 2
X

and σ 2
Y

, re-
spectively. Then the correlation of X and Y , which is denoted by ρ(X, Y ), is defined
as follows:

ρ(X, Y ) = Cov(X, Y )

σXσY

. (4.6.3)

In order to determine the range of possible values of the correlation ρ(X, Y ), we
shall need the following result.

Theorem
4.6.2

Schwarz Inequality. For all random variables U and V such that E(UV ) exists,

[E(UV )]2 ≤ E(U2)E(V 2). (4.6.4)

If, in addition, the right-hand side of Eq. (4.6.4) is finite, then the two sides of
Eq. (4.6.4) equal the same value if and only if there are nonzero constants a and
b such that aU + bV = 0 with probability 1.

Proof If E(U2) = 0, then Pr(U = 0) = 1. Therefore, it must also be true that Pr(UV =
0) = 1. Hence, E(UV ) = 0, and the relation (4.6.4) is satisfied. Similarly, if E(V 2) = 0,
then the relation (4.6.4) will be satisfied. Moreover, if either E(U2) or E(V 2) is
infinite, then the right side of the relation (4.6.4) will be infinite. In this case, the
relation (4.6.4) will surely be satisfied.

For the rest of the proof, assume that 0 < E(U2) < ∞ and 0 < E(V 2) < ∞. For
all numbers a and b,

0 ≤ E[(aU + bV )2] = a2E(U2) + b2E(V 2) + 2abE(UV ) (4.6.5)

and

0 ≤ E[(aU − bV )2] = a2E(U2) + b2E(V 2) − 2abE(UV ). (4.6.6)

If we let a = [E(V 2)]1/2 and b = [E(U2)]1/2, then it follows from the relation (4.6.5)
that

E(UV ) ≥ −[E(U2)E(V 2)]1/2. (4.6.7)

It also follows from the relation (4.6.6) that

E(UV ) ≤ [E(U2)E(V 2)]1/2. (4.6.8)

These two relations together imply that the relation (4.6.4) is satisfied.
Finally, suppose that the right-hand side of Eq. (4.6.4) is finite. Both sides of

(4.6.4) equal the same value if and only if the same is true for either (4.6.7) or (4.6.8).
Both sides of (4.6.7) equal the same value if and only if the rightmost expression in
(4.6.5) is 0. This, in turn, is true if and only if E[(aU + bV )2] = 0, which occurs if and
only if aU + bV = 0 with probability 1. The reader can easily check that both sides
of (4.6.8) equal the same value if and only if aU − bV = 0 with probability 1.
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A slight variant on Theorem 4.6.2 is the result we want.

Theorem
4.6.3

Cauchy-Schwarz Inequality. Let X and Y be random variables with finite variance.
Then

[Cov(X, Y )]2 ≤ σ 2
X
σ 2

Y
, (4.6.9)

and

−1 ≤ ρ(X, Y ) ≤ 1. (4.6.10)

Furthermore, the inequality in Eq. (4.6.9) is an equality if and only if there are
nonzero constants a and b and a constant c such that aX + bY = c with probability 1.

Proof Let U = X − μX and V = Y − μY . Eq. (4.6.9) now follows directly from Theo-
rem 4.6.2. In turn, it follows from Eq. (4.6.3) that [ρ(X, Y )]2 ≤ 1 or, equivalently, that
Eq. (4.6.10) holds. The final claim follows easily from the similar claim at the end of
Theorem 4.6.2.

Definition
4.6.3

Positively/Negatively Correlated/Uncorrelated. It is said that X and Y are positively
correlated if ρ(X, Y ) > 0, that X and Y are negatively correlated if ρ(X, Y ) < 0, and
that X and Y are uncorrelated if ρ(X, Y ) = 0.

It can be seen from Eq. (4.6.3) that Cov(X, Y ) and ρ(X, Y ) must have the same
sign; that is, both are positive, or both are negative, or both are zero.

Example
4.6.3

Test Scores. For the two test scores in Example 4.6.2, we can compute the correlation
ρ(X, Y ). The variances of X and Y are both equal to 11/144, so the correlation is
ρ(X, Y ) = 1/11. �

Properties of Covariance and Correlation

We shall now present four theorems pertaining to the basic properties of covariance
and correlation.

The first theorem shows that independent random variables must be uncorre-
lated.

Theorem
4.6.4

If X and Y are independent random variables with 0 < σ 2
X

< ∞ and 0 < σ 2
Y

< ∞, then

Cov(X, Y ) = ρ(X, Y ) = 0.

Proof If X and Y are independent, then E(XY) = E(X)E(Y ). Therefore, by Eq.
(4.6.2), Cov(X, Y ) = 0. Also, it follows that ρ(X, Y ) = 0.

The converse of Theorem 4.6.4 is not true as a general rule. Two dependent
random variables can be uncorrelated. Indeed, even though Y is an explicit function
of X, it is possible that ρ(X, Y ) = 0, as in the following examples.

Example
4.6.4

Dependent but Uncorrelated Random Variables. Suppose that the random variable X

can take only the three values −1, 0, and 1, and that each of these three values has the
same probability. Also, let the random variable Y be defined by the relation Y = X2.
We shall show that X and Y are dependent but uncorrelated.
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Figure 4.10 The shaded
region is where the joint p.d.f.
of (X, Y ) is constant and
nonzero in Example 4.6.5.
The vertical line indicates the
values of Y that are possible
when X = 0.5.
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In this example, X and Y are clearly dependent, since Y is not constant and the
value of Y is completely determined by the value of X. However,

E(XY) = E(X3) = E(X) = 0,

because X3 is the same random variable as X. Since E(XY) = 0 and E(X)E(Y ) = 0,
it follows from Theorem 4.6.1 that Cov(X, Y ) = 0 and that X and Y are uncorrelated.

�

Example
4.6.5

Uniform Distribution Inside a Circle. Let (X, Y ) have joint p.d.f. that is constant on
the interior of the unit circle, the shaded region in Fig. 4.10. The constant value of
the p.d.f. is one over the area of the circle, that is, 1/(2π). It is clear that X and Y

are dependent since the region where the joint p.d.f. is nonzero is not a rectangle.
In particular, notice that the set of possible values for Y is the interval (−1, 1), but
when X = 0.5, the set of possible values for Y is the smaller interval (−0.866, 0.866).
The symmetry of the circle makes it clear that both X and Y have mean 0. Also, it is
not difficult to see that E(XY) = ∫ ∫

xyf (x, y)dxdy = 0. To see this, notice that the
integral of xy over the top half of the circle is exactly the negative of the integral of xy

over the bottom half. Hence, Cov(X, Y ) = 0, but the random variables are dependent.
�

The next result shows that if Y is a linear function of X, then X and Y must be
correlated and, in fact, |ρ(X, Y )| = 1.

Theorem
4.6.5

Suppose that X is a random variable such that 0 < σ 2
X

< ∞, and Y = aX + b for some
constants a and b, where a 	= 0. If a > 0, then ρ(X, Y ) = 1. If a < 0, then ρ(X, Y ) = −1.

Proof If Y = aX + b, then μY = aμX + b and Y − μY = a(X − μX). Therefore, by
Eq. (4.6.1),

Cov(X, Y ) = aE[(X − μX)2] = aσ 2
X
.

Since σY = |a|σX, the theorem follows from Eq. (4.6.3).

There is a converse to Theorem 4.6.5. That is, |ρ(X, Y )| = 1 implies that X and
Y are linearly related. (See Exercise 17.) In general, the value of ρ(X, Y ) provides a
measure of the extent to which two random variables X and Y are linearly related. If



4.6 Covariance and Correlation 253

the joint distribution of X and Y is relatively concentrated around a straight line in
the xy-plane that has a positive slope, then ρ(X, Y ) will typically be close to 1. If the
joint distribution is relatively concentrated around a straight line that has a negative
slope, then ρ(X, Y ) will typically be close to −1. We shall not discuss these concepts
further here, but we shall consider them again when the bivariate normal distribution
is introduced and studied in Sec. 5.10.

Note: Correlation Measures Only Linear Relationship. A large value of |ρ(X, Y )|
means that X and Y are close to being linearly related and hence are closely related.
But a small value of |ρ(X, Y )| does not mean that X and Y are not close to being
related. Indeed, Example 4.6.4 illustrates random variables that are functionally
related but have 0 correlation.

We shall now determine the variance of the sum of random variables that are
not necessarily independent.

Theorem
4.6.6

If X and Y are random variables such that Var(X) < ∞ and Var(Y ) < ∞, then

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ). (4.6.11)

Proof Since E(X + Y ) = μX + μY , then

Var(X + Y ) = E[(X + Y − μX − μY)2]

= E[(X − μX)2 + (Y − μY)2 + 2(X − μX)(Y − μY)]

= Var(X) + Var(Y ) + 2 Cov(X, Y ).

For all constants a and b, it can be shown that Cov(aX, bY ) = ab Cov(X, Y )

(see Exercise 5 at the end of this section). The following then follows easily from
Theorem 4.6.6.

Corollary
4.6.1

Let a, b, and c be constants. Under the conditions of Theorem 4.6.6,

Var(aX + bY + c) = a2 Var(X) + b2 Var(Y ) + 2ab Cov(X, Y ). (4.6.12)

A particularly useful special case of Corollary 4.6.1 is

Var(X − Y ) = Var(X) + Var(Y ) − 2 Cov(X, Y ). (4.6.13)

Example
4.6.6

Investment Portfolio. Consider, once again, the investor in Example 4.3.7 on page 230
trying to choose a portfolio with $100,000 to invest. We shall make the same assump-
tions about the returns on the two stocks, except that now we will suppose that the
correlation between the two returns R1 and R2 is −0.3, reflecting a belief that the two
stocks tend to react in opposite ways to common market forces. The variance of a
portfolio of s1 shares of the first stock, s2 shares of the second stock, and s3 dollars
invested at 3.6% is now

Var(s1R1 + s2R2 + 0.036s3) = 55s2
1 + 28s2

2 − 0.3
√

55 × 28s1s2.

We continue to assume that (4.3.2) holds. Figure 4.11 shows the relationship between
the mean and variance of the efficient portfolios in this example and Example 4.3.7.
Notice how the variances are smaller in this example than in Example 4.3.7. This is
due to the fact that the negative correlation lowers the variance of a linear combina-
tion with positive coefficients. �

Theorem 4.6.6 can also be extended easily to the variance of the sum of n random
variables, as follows.
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Figure 4.11 Mean and vari-
ance of efficient investment
portfolios.
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Theorem
4.6.7

If X1, . . . , Xn are random variables such that Var(Xi) < ∞ for i = 1, . . . , n, then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi, Xj). (4.6.14)

Proof For every random variable Y , Cov(Y, Y ) = Var(Y ). Therefore, by using the
result in Exercise 8 at the end of this section, we can obtain the following relation:

Var

(
n∑

i=1

Xi

)
= Cov

⎛⎝ n∑
i=1

Xi,

n∑
j=1

Xj

⎞⎠ =
n∑

i=1

n∑
j=1

Cov(Xi, Xj).

We shall separate the final sum in this relation into two sums: (i) the sum of those
terms for which i = j and (ii) the sum of those terms for which i 	= j . Then, if we use
the fact that Cov(Xi, Xj) = Cov(Xj, Xi), we obtain the relation

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) +
∑∑

i 	=j

Cov(Xi, Xj)

=
n∑

i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi, Xj).

The following is a simple corrolary to Theorem 4.6.7.

Corollary
4.6.2

If X1, . . . , Xn are uncorrelated random variables (that is, if Xi and Xj are uncorre-
lated whenever i 	= j), then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi). (4.6.15)

Corollary 4.6.2 extends Theorem 4.3.5 on page 230, which states that (4.6.15) holds
if X1, . . . , Xn are independent random variables.

Note: In General, Variances Add Only for Uncorrelated Random Variables. The
variance of a sum of random variables should be calculated using Theorem 4.6.7 in
general. Corollary 4.6.2 applies only for uncorrelated random variables.
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Summary

The covariance of X and Y is Cov(X, Y ) = E{[X − E(X)][Y − E(Y )]}. The correlation
is ρ(X, Y ) = Cov(X, Y )/[Var(X) Var(Y )]1/2, and it measures the extent to which X

and Y are linearly related. Indeed, X and Y are precisely linearly related if and only
if |ρ(X, Y )| = 1. The variance of a sum of random variables can be expressed as the
sum of the variances plus two times the sum of the covariances. The variance of a
linear function is Var(aX + bY + c) = a2 Var(X) + b2 Var(Y ) + 2ab Cov(X, Y ).

Exercises

1. Suppose that the pair (X, Y ) is uniformly distributed on
the interior of a circle of radius 1. Compute ρ(X, Y ).

2. Prove that if Var(X) < ∞ and Var(Y ) < ∞, then
Cov(X, Y ) is finite. Hint: By considering the relation
[(X − μX) ± (Y − μY)]2 ≥ 0, show that

|(X − μX)(Y − μY)| ≤ 1
2

[(X − μX)2 + (Y − μY)2].

3. Suppose that X has the uniform distribution on the
interval [−2, 2] and Y = X6. Show that X and Y are un-
correlated.

4. Suppose that the distribution of a random variable X is
symmetric with respect to the point x = 0, 0 < E(X4) < ∞,
and Y = X2. Show that X and Y are uncorrelated.

5. For all random variables X and Y and all constants a,
b, c, and d, show that

Cov(aX + b, cY + d) = ac Cov(X, Y ).

6. Let X and Y be random variables such that 0 < σ 2
X

< ∞
and 0 < σ 2

Y
< ∞. Suppose that U = aX + b and V = cY +

d, where a 	= 0 and c 	= 0. Show that ρ(U, V ) = ρ(X, Y ) if
ac > 0, and ρ(U, V ) = −ρ(X, Y ) if ac < 0.

7. Let X, Y , and Z be three random variables such that
Cov(X, Z) and Cov(Y, Z) exist, and let a, b, and c be
arbitrary given constants. Show that

Cov(aX + bY + c, Z) = a Cov(X, Z) + b Cov(Y, Z).

8. Suppose that X1, . . . , Xm and Y1, . . . , Yn are random
variables such that Cov(Xi, Yj) exists for i = 1, . . . , m and
j = 1, . . . , n, and suppose that a1, . . . , am and b1, . . . , bn

are constants. Show that

Cov

⎛⎝ m∑
i=1

aiXi,

n∑
j=1

bjYj

⎞⎠ =
m∑

i=1

n∑
j=1

aibj Cov(Xi,Yj).

9. Suppose that X and Y are two random variables, which
may be dependent, and Var(X) = Var(Y ). Assuming that
0 < Var(X + Y ) < ∞ and 0 < Var(X − Y ) < ∞, show that
the random variables X + Y and X − Y are uncorrelated.

10. Suppose that X and Y are negatively correlated. Is
Var(X + Y ) larger or smaller than Var(X − Y )?

11. Show that two random variables X and Y cannot pos-
sibly have the following properties: E(X) = 3, E(Y ) = 2,
E(X2) = 10, E(Y 2) = 29, and E(XY) = 0.

12. Suppose that X and Y have a continuous joint distri-
bution for which the joint p.d.f. is as follows:

f (x, y) =
{

1
3(x + y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2,

0 otherwise.

Determine the value of Var(2X − 3Y + 8).

13. Suppose that X and Y are random variables such that
Var(X) = 9, Var(Y ) = 4, and ρ(X, Y ) = −1/6. Determine
(a) Var(X + Y ) and (b) Var(X − 3Y + 4).

14. Suppose that X, Y , and Z are three random variables
such that Var(X) = 1, Var(Y ) = 4, Var(Z) = 8, Cov(X, Y )

= 1, Cov(X, Z) = −1, and Cov(Y, Z) = 2. Determine (a)
Var(X + Y + Z) and (b) Var(3X − Y − 2Z + 1).

15. Suppose that X1, . . . , Xn are random variables such
that the variance of each variable is 1 and the correlation
between each pair of different variables is 1/4. Determine
Var(X1 + . . . + Xn).

16. Consider the investor in Example 4.2.3 on page 220.
Suppose that the returns R1 and R2 on the two stocks
have correlation −1. A portfolio will consist of s1 shares
of the first stock and s2 shares of the second stock where
s1, s2 ≥ 0. Find a portfolio such that the total cost of the
portfolio is $6000 and the variance of the return is 0. Why
is this situation unrealistic?

17. Let X and Y be random variables with finite variance.
Prove that |ρ(X, Y )| = 1 implies that there exist constants
a, b, and c such that aX + bY = c with probability 1. Hint:
Use Theorem 4.6.2 with U = X − μX and V = Y − μY .

18. Let X and Y have a continuous distribution with joint
p.d.f.

f (x, y) =
{

x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0 otherwise.

Compute the covariance Cov(X, Y ).
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4.7 Conditional Expectation
Since expectations (including variances and covariances) are properties of distri-
butions, there will exist conditional versions of all such distributional summaries
as well as conditional versions of all theorems that we have proven or will later
prove about expectations. In particular, suppose that we wish to predict one ran-
dom variable Y using a function d(X) of another random variable X so as to
minimize E([Y − d(X)]2). Then d(X) should be the conditional mean of Y given
X. There is also a very useful theorem that is an extension to expectations of the
law of total probability.

Definition and Basic Properties

Example
4.7.1

Household Survey. A collection of households were surveyed, and each household re-
ported the number of members and the number of automobiles owned. The reported
numbers are in Table 4.1.

Suppose that we were to sample a household at random from those households
in the survey and learn the number of members. What would then be the expected
number of automobiles that they own? �

The question at the end of Example 4.7.1 is closely related to the conditional
distribution of one random variable given the other, as defined in Sec. 3.6.

Definition
4.7.1

Conditional Expectation/Mean. Let X and Y be random variables such that the mean
of Y exists and is finite. The conditional expectation (or conditional mean) of Y given
X = x is denoted by E(Y |x) and is defined to be the expectation of the conditional
distribution of Y given X = x.

For example, if Y has a continuous conditional distribution given X = x with
conditional p.d.f. g2(y|x), then

E(Y |x) =
∫ ∞

−∞
yg2(y|x) dy. (4.7.1)

Similarly, if Y has a discrete conditional distribution given X = x with conditional p.f.
g2(y|x), then

E(Y |x) =
∑
All y

yg2(y|x). (4.7.2)

Table 4.1 Reported numbers of household members and
automobiles in Example 4.7.1

Number of membersNumber of
automobiles 1 2 3 4 5 6 7 8

0 10 7 3 2 2 1 0 0

1 12 21 25 30 25 15 5 1

2 1 5 10 15 20 11 5 3

3 0 2 3 5 5 3 2 1
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The value of E(Y |x) will not be uniquely defined for those values of x such that
the marginal p.f. or p.d.f. of X satisfies f1(x) = 0. However, since these values of x

form a set of points whose probability is 0, the definition of E(Y |x) at such a point
is irrelevant. (See Exercise 11 in Sec. 3.6.) It is also possible that there will be some
values of x such that the mean of the conditional distribution of Y given X = x is
undefined for those x values. When the mean of Y exists and is finite, the set of x

values for which the conditional mean is undefined has probability 0.
The expressions in Eqs. (4.7.1) and (4.7.2) are functions of x. These functions of

x can be computed before X is observed, and this idea leads to the following useful
concept.

Definition
4.7.2

Conditional Means as Random Variables. Let h(x) stand for the function of x that is
denoted E(Y |x) in either (4.7.1) or (4.7.2). Define the symbol E(Y |X) to mean h(X)

and call it the conditional mean of Y given X.

In other words, E(Y |X) is a random variable (a function of X) whose value when
X = x is E(Y |x). Obviously, we could define E(X|Y ) and E(X|y) analogously.

Example
4.7.2

Household Survey. Consider the household survey in Example 4.7.1. Let X be the
number of members in a randomly selected household from the survey, and let Y be
the number of cars owned by that household. The 250 surveyed households are all
equally likely to be selected, so Pr(X = x, Y = y) is the number of households with
x members and y cars, divided by 250. Those probabilities are reported in Table 4.2.
Suppose that the sampled household has X = 4 members. The conditional p.f. of Y

given X = 4 is g2(y|4) = f (4, y)/f1(4), which is the x = 4 column of Table 4.2 divided
by f1(4) = 0.208, namely,

g2(0|4) = 0.0385, g2(1|4) = 0.5769, g2(2|4) = 0.2885, g2(3|4) = 0.0962.

The conditional mean of Y given X = 4 is then

E(Y |4) = 0 × 0.0385 + 1 × 0.5769 + 2 × 0.2885 + 3 × 0.0962 = 1.442.

Similarly, we can compute E(Y |x) for all eight values of x. They are

x 1 2 3 4 5 6 7 8

E(Y |x) 0.609 1.057 1.317 1.442 1.538 1.533 1.75 2

Table 4.2 Joint p.f. f (x, y) of X and Y in Example 4.7.2 together with marginal
p.f.’s f1(x) and f2(y)

x

y 1 2 3 4 5 6 7 8 f2(y)

0 0.040 0.028 0.012 0.008 0.008 0.004 0 0 0.100

1 0.048 0.084 0.100 0.120 0.100 0.060 0.020 0.004 0.536

2 0.004 0.020 0.040 0.060 0.080 0.044 0.020 0.012 0.280

3 0 0.008 0.012 0.020 0.020 0.012 0.008 0.004 0.084

f1(x) 0.092 0.140 0.164 0.208 0.208 0.120 0.048 0.020
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The random variable that takes the value 0.609 when the sampled household has one
member, takes the value 1.057 when the sampled household has two members, and
so on, is the random variable E(Y |X). �

Example
4.7.3

A Clinical Trial. Consider a clinical trial in which a number of patients will be treated
and each patient will have one of two possible outcomes: success or failure. Let P

be the proportion of successes in a very large collection of patients, and let Xi = 1
if the ith patient is a success and Xi = 0 if not. Assume that the random variables
X1, X2, . . . are conditionally independent given P = p with Pr(Xi = 1|P = p) = p.
Let X = X1 + . . . + Xn, which is the number of patients out of the first n who are
successes. We now compute the conditional mean of X given P . The patients are
independent and identically distributed conditional on P = p. Hence, the conditional
distribution of X given P = p is the binomial distribution with parameters n and p.
As we saw in Sec. 4.2, the mean of this binomial distribution is np, so E(X|p) = np

and E(X|P) = nP . Later, we will show how to compute the conditional mean of P

given X. This can be used to predict P after observing X. �

Note: The Conditional Mean of Y Given X Is a Random Variable. Because E(Y |X)

is a function of the random variable X, it is itself a random variable with its own
probability distribution, which can be derived from the distribution of X. On the
other hand, h(x) = E(Y |x) is a function of x that can be manipulated like any other
function. The connection between the two is that when one substitutes the random
variable X for x in h(x), the result is h(X) = E(Y |X).

We shall now show that the mean of the random variable E(Y |X) must be E(Y ).
A similar calculation shows that the mean of E(X|Y ) must be E(X).

Theorem
4.7.1

Law of Total Probability for Expectations. Let X and Y be random variables such that
Y has finite mean. Then

E[E(Y |X)] = E(Y ). (4.7.3)

Proof We shall assume, for convenience, that X and Y have a continuous joint
distribution. Then

E[E(Y |X)] =
∫ ∞

−∞
E(Y |x)f1(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
yg2(y|x)f1(x) dy dx.

Since g2(y|x) = f (x, y)/f1(x), it follows that

E[E(Y |X)] =
∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dy dx = E(Y ).

The proof for a discrete distribution or a more general type of distribution is similar.

Example
4.7.4

Household Survey. At the end of Example 4.7.2, we described the random variable
E(Y |X). Its distribution can be constructed from that description. It has a discrete dis-
tribution that takes the eight values of E(Y |x) listed near the end of that example with
corresponding probabilities f1(x) for x = 1, . . . , 8. To be specific, let Z = E(Y |X),
then Pr[Z = E(Y |x)] = f1(x) for x = 1, . . . , 8. The specific values are
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z 0.609 1.057 1.317 1.442 1.538 1.533 1.75 2

Pr(Z = z) 0.092 0.140 0.164 0.208 0.208 0.120 0.048 0.020

We can compute E(Z) = 0.609 × 0.092 + . . . + 2 × 0.020 = 1.348. The reader can
verify that E(Y ) = 1.348 by using the values of f2(y) in Table 4.2. �

Example
4.7.5

A Clinical Trial. In Example 4.7.3, we let X be the number of patients out of the
first n who are successes. The conditional mean of X given P = p was computed as
E(X|p) = np, where P is the proportion of successes in a large population of patients.
If the distribution of P is uniform on the interval [0, 1], then the marginal expected
value of X is E[E(X|P)] = E(nP ) = n/2. We will see how to calculate E(P |X) in
Example 4.7.8. �

Example
4.7.6

Choosing Points from Uniform Distributions. Suppose that a point X is chosen in
accordance with the uniform distribution on the interval [0, 1]. Also, suppose that
after the value X = x has been observed (0 < x < 1), a point Y is chosen in accordance
with a uniform distribution on the interval [x, 1]. We shall determine the value
of E(Y ).

For each given value of x (0 < x < 1), E(Y |x) will be equal to the midpoint
(1/2)(x + 1) of the interval [x, 1]. Therefore, E(Y |X) = (1/2)(X + 1) and

E(Y ) = E[E(Y |X)] = 1
2

[E(X) + 1] = 1
2

(
1
2

+ 1
)

= 3
4
. �

When manipulating the conditional distribution given X = x, it is safe to act as if
X is the constant x. This fact, which can simplify the calculation of certain conditional
means, is now stated without proof.

Theorem
4.7.2

Let X and Y be random variables, and let Z = r(X, Y ) for some function r . The
conditional distribution of Z given X = x is the same as the conditional distribution
of r(x, Y ) given X = x.

One consequence of Theorem 4.7.2 when X and Y have a continuous joint
distribution is that

E(Z|x) = E(r(x, Y )|x) =
∫ ∞

−∞
r(x, y)g2(y|x) dy.

Theorem 4.7.1 also implies that for two arbitrary random variables X and Y ,

E{E[r(X, Y )|X]} = E[r(X, Y )], (4.7.4)

by letting Z = r(X, Y ) and noting that E{E(Z|X)} = E(Z).
We can define, in a similar manner, the conditional expectation of r(X, Y ) given

Y and the conditional expectation of a function r(X1, . . . , Xn) of several random
variables given one or more of the variables X1, . . . , Xn.

Example
4.7.7

Linear Conditional Expectation. Suppose that E(Y |X) = aX + b for some constants a

and b. We shall determine the value of E(XY) in terms of E(X) and E(X2).
By Eq. (4.7.4), E(XY) = E[E(XY |X)]. Furthermore, since X is considered to be

given and fixed in the conditional expectation,

E(XY |X) = XE(Y |X) = X(aX + b) = aX2 + bX.
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Therefore,

E(XY) = E(aX2 + bX) = aE(X2) + bE(X). �

The mean is not the only feature of a conditional distribution that is important
enough to get its own name.

Definition
4.7.3

Conditional Variance. For every given value x, let Var(Y |x) denote the variance of the
conditional distribution of Y given that X = x. That is,

Var(Y |x) = E{[Y − E(Y |x)]2|x}. (4.7.5)

We call Var(Y |x) the conditional variance of Y given X = x.

The expression in Eq. (4.7.5) is once again a function v(x). We shall define
Var(Y |X) to be v(X) and call it the conditional variance of Y given X.

Note: Other Conditional Quantities. In much the same way as in Definitions 4.7.1
and 4.7.3, we could define any conditional summary of a distribution that we wish. For
example, conditional quantiles of Y given X = x are the quantiles of the conditional
distribution of Y given X = x. The conditional m.g.f. of Y given X = x is the m.g.f. of
the conditional distribution of Y given X = x, etc.

Prediction

At the end of Example 4.7.3, we considered the problem of predicting the proportion
P of successes in a large population of patients given the observed number X of
succeses in a sample of size n. In general, consider two arbitrary random variables X

and Y that have a specified joint distribution and suppose that after the value of X

has been observed, the value of Y must be predicted. In other words, the predicted
value of Y can depend on the value of X. We shall assume that this predicted value
d(X) must be chosen so as to minimize the mean squared error E{[Y − d(X)]2}.

Theorem
4.7.3

The prediction d(X) that minimizes E{[Y − d(X)]2} is d(X) = E(Y |X).

Proof We shall prove the theorem in the case in which X has a continuous distri-
bution, but the proof in the discrete case is virtually identical. Let d(X) = E(Y |X),
and let d∗(X) be an arbitrary predictor. We need only prove that E{[Y − d(X)]2} ≤
E{[Y − d∗(X)]2}. It follows from Eq. (4.7.4) that

E{[Y − d(X)]2} = E(E{[Y − d(X)]2|X}). (4.7.6)

A similar equation holds for d∗. Let Z = [Y − d(X)]2, and let h(x) = E(Z|x). Sim-
ilarly, let Z∗ = [Y − d∗(X)]2 and h∗(x) = E(Z∗|x). The right-hand side of (4.7.6) is∫

h(x)f1(x) dx, and the corresponding expression using d∗ is
∫

h∗(x)f1(x) dx. So, the
proof will be complete if we can prove that∫

h(x)f1(x) dx ≤
∫

h∗(x)f1(x) dx. (4.7.7)

Clearly, Eq. (4.7.7) holds if we can show that h(x) ≤ h∗(x) for all x. That is, the proof
is complete if we can show that E{[Y − d(X)]2|x} ≤ E{[Y − d∗(X)]2|x}. When we
condition on X = x, we are allowed to treat X as if it were the constant x, so we need
to show that E{[Y − d(x)]2|x} ≤ E{[Y − d∗(x)]2|x}. These last expressions are nothing
more than the M.S.E.’s for two different predictions d(x) and d∗(x) of Y calculated
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using the conditional distribution of Y given X = x. As discussed in Sec. 4.5, the
M.S.E. of such a prediction is smallest if the prediction is the mean of the distribution
of Y . In this case, that mean is the mean of the conditional distribution of Y given
X = x. Since d(x) is the mean of the conditional distribution of Y given X = x, it must
have smaller M.S.E. than every other prediction d∗(x). Hence, h(x) ≤ h∗(x) for all x.

If the value X = x is observed and the value E(Y |x) is predicted for Y , then
the M.S.E. of this predicted value will be Var(Y |x), from Definition 4.7.3. It follows
from Eq. (4.7.6) that if the prediction is to be made by using the function d(X) =
E(Y |X), then the overall M.S.E., averaged over all the possible values of X, will be
E[Var(Y |X)].

If the value of Y must be predicted without any information about the value of
X, then, as shown in Sec. 4.5, the best prediction is the mean E(Y ) and the M.S.E.
is Var(Y ). However, if X can be observed before the prediction is made, the best
prediction is d(X) = E(Y |X) and the M.S.E. is E[Var(Y |X)]. Thus, the reduction in
the M.S.E. that can be achieved by using the observation X is

Var(Y ) − E[Var(Y |X)]. (4.7.8)

This reduction provides a measure of the usefulness of X in predicting Y . It is shown
in Exercise 11 at the end of this section that this reduction can also be expressed as
Var[E(Y |X)].

It is important to distinguish carefully between the overall M.S.E., which is
E[Var(Y |X)], and the M.S.E. of the particular prediction to be made when X = x,
which is Var(Y |x). Before the value of X has been observed, the appropriate value
for the M.S.E. of the complete process of observing X and then predicting Y is
E[Var(Y |X)]. After a particular value x of X has been observed and the prediction
E(Y |x) has been made, the appropriate measure of the M.S.E. of this prediction is
Var(Y |x). A useful relationship between these values is given in the following result,
whose proof is left to Exercise 11.

Theorem
4.7.4

Law of Total Probability for Variances. If X and Y are arbitrary random variables for
which the necessary expectations and variances exist, then Var(Y ) = E[Var(Y |X)] +
Var[E(Y |X)].

Example
4.7.8

A Clinical Trial. In Example 4.7.3, let X be the number of patients out of the first
40 in a clinical trial who have success as their outcome. Let P be the probability
that an individual patient is a success. Suppose that P has the uniform distribution
on the interval [0, 1] before the trial begins, and suppose that the outcomes of the
patients are conditionally independent given P = p. As we saw in Example 4.7.3, X

has the binomial distribution with parameters 40 and p given P = p. If we needed to
minimize M.S.E. in predicting P before observing X, we would use the mean of P ,
namely, 1/2. The M.S.E. would be Var(P ) = 1/12. However, we shall soon observe the
value of X and then predict P . To do this, we shall need the conditional distribution
of P given X = x. Bayes’ theorem for random variables (3.6.13) tells us that the
conditional p.d.f. of P given X = x is

g2(p|x) = g1(x|p)f2(p)

f1(x)
, (4.7.9)

where g1(x|p) is the conditional p.f. of X given P = p, namely, the binomial p.f.
g1(x|p) = (40

x

)
px(1 − p)40−x for x = 0, . . . , 40, f2(p) = 1 for 0 < p < 1 is the marginal

p.d.f. of P , and f1(x) is the marginal p.f. of X obtained from the law of total probability
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Figure 4.12 The conditional
p.d.f. of P given X = 18 in
Example 4.7.8. The marginal
p.d.f. of P (prior to observing
X) is also shown.
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for random variables (3.6.12):

f1(x) =
∫ 1

0

(
40
x

)
px(1 − p)40−x dp. (4.7.10)

This last integral looks difficult to compute. However, there is a simple formula for
integrals of this form, namely,∫ 1

0
pk(1 − p)� dp = k!�!

(k + � + 1)!
. (4.7.11)

A proof of Eq. (4.7.11) is given in Sec. 5.8. Substituting (4.7.11) into (4.7.10) yields

f1(x) = 40!
x!(40 − x)!

x!(40 − x)!
41!

= 1
41

,

for x = 0, . . . , 40. Substituting this into Eq. (4.7.9) yields

g2(p|x) = 41!
x!(40 − x)!

px(1 − p)40−x, for 0 < p < 1.

For example, with x = 18, the observed number of successes in Table 2.1, a graph of
g2(p|18) is shown in Fig. 4.12.

If we want to minimize the M.S.E. when predicting P , we should use E(P |x),
the conditional mean. We can compute E(P |x) using the conditional p.d.f. and
Eq. (4.7.11):

E(P |x) =
∫ 1

0
p

41!
x!(40 − x)!

px(1 − p)40−x dp

= 41!
x!(40 − x)!

(x + 1)!(40 − x)!
42!

= x + 1
42

.

(4.7.12)

So, after X = x is observed, we will predict P to be (x + 1)/42, which is very close to
the proportion of the first 40 patients who are successes. The M.S.E. after observing
X = x is the conditional variance Var(P |x). We can compute this using (4.7.12) and

E(P 2|x) =
∫ 1

0
p2 41!

x!(40 − x)!
px(1 − p)40−x dp

= 41!
x!(40 − x)!

(x + 2)!(40 − x)!
43!

= (x + 1)(x + 2)

42 × 43
.
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Using the fact that Var(P |x) = E(P 2|x) − [E(P |x)]2, we see that

Var(P |x) = (x + 1)(41 − x)

422 × 43
.

The overall M.S.E. of predicting P from X is the mean of the conditional M.S.E.

E[Var(P |X)] = E

(
(X + 1)(41 − X)

422 × 43

)
= 1

75,852
E(−X2 + 40X + 41)

= 1
75,852

(
− 1

41

40∑
x=0

x2 + 40
41

40∑
x=0

x + 41

)

= 1
75,852

(
− 1

41
40 × 41 × 81

6
+ 40

41
40 × 41

2
+ 41

)
= 301

75,852
= 0.003968.

In this calculation, we used two popular formulas,

n∑
k=0

k = n(n + 1)
2

, (4.7.13)

n∑
k=0

k2 = n(n + 1)(2n + 1)
6

. (4.7.14)

The overall M.S.E. is quite a bit smaller than the value 1/12 = 0.08333, which we
would have obtained before observing X. As an illustration, Fig. 4.12 shows how
much more spread out the marginal distribution of P is compared to the conditional
distribution of P after observing X = 18. �

It should be emphasized that for the conditions of Example 4.7.8, 0.003968 is the
appropriate value of the overall M.S.E. when it is known that the value of X will be
available for predicting P but before the explicit value of X has been determined.
After the value of X = x has been determined, the appropriate value of the M.S.E. is
Var(P |x) = (x+1)(41−x)

75,852 . Notice that the largest possible value of Var(P |x) is 0.005814
when x = 20 and is still much less than 1/12.

A result similar to Theorem 4.7.3 holds if we are trying to minimize the M.A.E.
(mean absolute error) of our prediction rather than the M.S.E. In Exercise 16, you
can prove that the predictor that minimizes M.A.E. is d(X) equal to the median of
the conditional distribution of Y given X.

Summary

The conditional mean E(Y |x) of Y given X = x is the mean of the conditional
distribution of Y given X = x. This conditional distribution was defined in Chapter 3.
Likewise, the conditional variance Var(Y |x) of Y given X = x is the variance of
the conditional distribution. The law of total probability for expectations says that
E[E(Y |X)] = E(Y ). If we will observe X and then need to predict Y , the predictor
that leads to the smallest M.S.E. is the conditional mean E(Y |X).
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Exercises

1. Consider again the situation described in Example
4.7.8. Compute the M.S.E. when using E(P |x) to predict
P after observing X = 18. How much smaller is this than
the marginal M.S.E. 1/12?

2. Suppose that 20 percent of the students who took a
certain test were from school A and that the arithmetic
average of their scores on the test was 80. Suppose also
that 30 percent of the students were from school B and that
the arithmetic average of their scores was 76. Suppose,
finally, that the other 50 percent of the students were from
school C and that the arithmetic average of their scores
was 84. If a student is selected at random from the entire
group that took the test, what is the expected value of her
score?

3. Suppose that 0 < Var(X) < ∞ and 0 < Var(Y ) < ∞.
Show that if E(X|Y ) is constant for all values of Y , then X

and Y are uncorrelated.

4. Suppose that the distribution of X is symmetric with
respect to the point x = 0, that all moments of X exist, and
that E(Y |X) = aX + b, where a and b are given constants.
Show that X2m and Y are uncorrelated for m = 1, 2, . . . .

5. Suppose that a point X1 is chosen from the uniform
distribution on the interval [0, 1], and that after the value
X1 = x1 is observed, a point X2 is chosen from a uniform
distribution on the interval [x1, 1]. Suppose further that
additional variables X3, X4, . . . are generated in the same
way. In general, for j = 1, 2, . . . , after the value Xj =
xj has been observed, Xj+1 is chosen from a uniform
distribution on the interval [xj, 1]. Find the value of E(Xn).

6. Suppose that the joint distribution of X and Y is the uni-
form distribution on the circle x2 + y2 < 1. Find E(X|Y ).

7. Suppose that X and Y have a continuous joint distribu-
tion for which the joint p.d.f. is as follows:

f (x, y) =
{

x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise.

Find E(Y |X) and Var(Y |X).

8. Consider again the conditions of Exercise 7. (a) If it
is observed that X = 1/2, what predicted value of Y will
have the smallest M.S.E.? (b) What will be the value of
this M.S.E.?

9. Consider again the conditions of Exercise 7. If the value
of Y is to be predicted from the value of X, what will be
the minimum value of the overall M.S.E.?

10. Suppose that, for the conditions in Exercises 7 and 9,
a person either can pay a cost c for the opportunity of
observing the value of X before predicting the value of Y

or can simply predict the value of Y without first observing
the value of X. If the person considers her total loss to be
the cost c plus the M.S.E. of her predicted value, what is
the maximum value of c that she should be willing to pay?

11. Prove Theorem 4.7.4.

12. Suppose that X and Y are random variables such that
E(Y |X) = aX + b. Assuming that Cov(X, Y ) exists and
that 0 < Var(X) < ∞, determine expressions for a and b

in terms of E(X), E(Y ), Var(X), and Cov(X, Y ).

13. Suppose that a person’s score X on a mathematics
aptitude test is a number in the interval (0, 1) and that
his score Y on a music aptitude test is also a number in
the interval (0, 1). Suppose also that in the population of
all college students in the United States, the scores X and
Y are distributed in accordance with the following joint
p.d.f.:

f (x, y) =
{

2
5 (2x + 3y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise.

a. If a college student is selected at random, what pre-
dicted value of his score on the music test has the
smallest M.S.E.?

b. What predicted value of his score on the mathematics
test has the smallest M.A.E.?

14. Consider again the conditions of Exercise 13. Are the
scores of college students on the mathematics test and the
music test positively correlated, negatively correlated, or
uncorrelated?

15. Consider again the conditions of Exercise 13. (a) If a
student’s score on the mathematics test is 0.8, what pre-
dicted value of his score on the music test has the smallest
M.S.E.? (b) If a student’s score on the music test is 1/3,
what predicted value of his score on the mathematics test
has the smallest M.A.E.?

16. Define a conditional median of Y given X = x to be
any median of the conditional distribution of Y given X =
x. Suppose that we will get to observe X and then we will
need to predict Y . Suppose that we wish to choose our
prediction d(X) so as to minimize mean absolute error,
E(|Y − d(X)|). Prove that d(x) should be chosen to be
a conditional median of Y given X = x. Hint: You can
modify the proof of Theorem 4.7.3 to handle this case.

17. Prove Theorem 4.7.2 for the case in which X and Y

have a discrete joint distribution. The key to the proof is
to write all of the necessary conditional p.f.’s in terms of
the joint p.f. of X and Y and the marginal p.f. of X. To
facilitate this, for each x and z, give a name to the set of y

values such that r(x, y) = z.
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� 4.8 Utility
Much of statistical inference consists of choosing between several available actions.
Generally, we do not know for certain which choice will be best, because some
important random variable has not yet been observed. For some values of that
random variable one choice is best, and for other values some other choice is
best. We can try to weigh the costs and benefits of the various choices against the
probabilities that the various choices turn out to be best. Utility is one tool for
assigning values to the costs and benefits of our choices. The expected value of the
utility then balances the costs and benefits according to how likely the uncertain
possibilities are.

Utility Functions

Example
4.8.1

Choice of Gambles. Consider two gambles between which a gambler must choose.
Each gamble will be expressed as a random variable for which positive values mean
a gain to the gambler and negative values mean a loss to the gambler. The numerical
values of each random variable tell the number of dollars that the gambler gains or
loses. Let X have the p.f.

f (x) =
{

0.5 if x = 500 or x = −350,
0 otherwise,

and let Y have the p.f.

g(y) =
{

1/3 if y = 40, y = 50, or y = 60,
0 otherwise,

It is simple to compute that E(X) = 75 and E(Y ) = 50. How might a gambler choose
between these two gambles? Is X better than Y simply because it has higher expected
value? �

In Example 4.8.1, a gambler who does not desire to risk losing 350 dollars for the
chance of winning 500 dollars might prefer Y , which yields a certain gain of at least
40 dollars.

The theory of utility was developed during the 1930s and 1940s to describe a
person’s preference among gambles like those in Example 4.8.1. According to that
theory, a person will prefer a gamble X for which the expectation of a certain
function U(X) is a maximum, rather than a gamble for which simply the expected
gain E(X) is a maximum.

Definition
4.8.1

Utility Function. A person’s utility function U is a function that assigns to each pos-
sible amount x (−∞ < x < ∞) a number U(x) representing the actual worth to the
person of gaining the amount x.

Example
4.8.2

Choice of Gambles. Suppose that a person’s utility function is U and that she must
choose between the gambles X and Y in Example 4.8.1. Then

E[U(X)] = 1
2
U(500) + 1

2
U(−350) (4.8.1)

and

E[U(Y )] = 1
3
U(60) + 1

3
U(50) + 1

3
U(40). (4.8.2)
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Figure 4.13 The utility
function for Example 4.8.2.
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The person would prefer the gamble for which the expected utility of the gain, as
specified by Eq. (4.8.1) or Eq. (4.8.2), is larger.

As a specific example, consider the following utility function that penalizes losses
to a much greater extent than it rewards gains:

U(x) =
{

100 log(x + 100) − 461 if x ≥ 0,
x if x < 0.

(4.8.3)

This function was chosen to be differentiable at x = 0, continuous everywhere, in-
creasing, concave for x > 0, and linear for x < 0. A graph of U(x) is given in Fig. 4.13.
Using this specific U , we compute

E[U(X)] = 1
2

[100 log(600) − 461] + 1
2
(−350) = −85.4,

E[U(Y )] = 1
3

[100 log(160) − 461] + 1
3

[100 log(150) − 461] + 1
3

[100 log(140) − 461]

= 40.4.

We see that a person with the utility function in Eq. (4.8.3) would prefer Y to X.
�

Here, we formalize the principle that underlies the choice between gambles
illustrated in Example 4.8.1.

Definition
4.8.2

Maximizing Expected Utility. We say that a person chooses between gambles by
maximizing expected utility if the following conditions hold. There is a utility function
U , and when the person must choose between any two gambles X and Y , he will
prefer X to Y if E[U(X)] > E[U(Y )] and will be indifferent between X and Y if
E[U(X)] = E[U(Y )].

In words, Definition 4.8.2 says that a person chooses between gambles by maximizing
expected utility if he will choose a gamble X for which E[U(X)] is a maximum.

If one adopts a utility function, then one can (at least in principle) make choices
between gambles by maximizing expected utility. The computational algorithms nec-
essary to perform the maximization often provide a practical challenge. Conversely,
if one makes choices between gambles in such a way that certain reasonable criteria
apply, then one can prove that there exists a utility function such that the choices



4.8 Utility 267

correspond to maximizing expected utility. We shall not consider this latter prob-
lem in detail here; however, it is discussed by DeGroot (1970) and Schervish (1995,
chapter 3) along with other aspects of the theory of utility.

Examples of Utility Functions

Since it is reasonable to assume that every person prefers a larger gain to a smaller
gain, we shall assume that every utility function U(x) is an increasing function of
the gain x. However, the shape of the function U(x) will vary from person to person
and will depend on each person’s willingness to risk losses of various amounts in
attempting to increase his gains.

For example, consider two gambles X and Y for which the gains have the follow-
ing probability distributions:

Pr(X = −3) = 0.5, Pr(X = 2.5) = 0.4, Pr(X = 6) = 0.1 (4.8.4)

and

Pr(Y = −2) = 0.3, Pr(Y = 1) = 0.4, Pr(Y = 3) = 0.3. (4.8.5)

We shall assume that a person must choose one of the following three decisions:
(i) accept gamble X, (ii) accept gamble Y , or (iii) do not accept either gamble. We
shall now determine the decision that a person would choose for three different utility
functions.

Example
4.8.3

Linear Utility Function. Suppose that U(x) = ax + b for some constants a and b, where
a > 0. In this case, for every gamble X, E[U(X)] = aE(X) + b. Hence, for every two
gambles X and Y , E[U(X)] > E[U(Y )] if and only if E(X) > E(Y ). In other words, a
person who has a linear utility function will always choose a gamble for which the
expected gain is a maximum.

When the gambles X and Y are defined by Eqs. (4.8.4) and (4.8.5),

E(X) = (0.5)(−3) + (0.4)(2.5) + (0.1)(6) = 0.1

and

E(Y ) = (0.3)(−2) + (0.4)(1) + (0.3)(3) = 0.7.

Furthermore, since the gain from not accepting either of these gambles is 0, the
expected gain from choosing not to accept either gamble is clearly 0. Since E(Y ) >

E(X) > 0, it follows that a person who has a linear utility function would choose to
accept gamble Y . If gamble Y were not available, then the person would prefer to
accept gamble X rather than not to gamble at all. �

Example
4.8.4

Cubic Utility Function. Suppose that a person’s utility function is U(x) = x3 for −∞ <

x < ∞. Then for the gambles defined by Eqs. (4.8.4) and (4.8.5),

E[U(X)] = (0.5)(−3)3 + (0.4)(2.5)3 + (0.1)(6)3 = 14.35

and

E[U(Y )] = (0.3)(−2)3 + (0.4)(1)3 + (0.3)(3)3 = 6.1.

Furthermore, the utility of not accepting either gamble is U(0) = 03 = 0. Since
E[U(X)] > E[U(Y )] > 0, it follows that the person would choose to accept gamble X.
If gamble X were not available, the person would prefer to accept gamble Y rather
than not to gamble at all. �
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Example
4.8.5

Logarithmic Utility Function. Suppose that a person’s utility function is U(x) = log(x +
4) for x > −4. Since limx→−4 log(x + 4) = −∞, a person who has this utility function
cannot choose a gamble in which there is any possibility of her gain being −4 or less.
For the gambles X and Y defined by Eqs. (4.8.4) and (4.8.5),

E[U(X)] = (0.5)(log 1) + (0.4)(log 6.5) + (0.1)(log 10) = 0.9790

and

E[U(Y )] = (0.3)(log 2) + (0.4)(log 5) + (0.3)(log 7) = 1.4355.

Furthermore, the utility of not accepting either gamble is U(0) = log 4 = 1.3863. Since
E[U(Y )]> U(0) > E[U(X)], it follows that the person would choose to accept gamble
Y . If gamble Y were not available, the person would prefer not to gamble at all rather
than to accept gamble X. �

Selling a Lottery Ticket

Suppose that a person has a lottery ticket from which she will receive a random gain
of X dollars, where X has a specified probability distribution. We shall determine the
number of dollars for which the person would be willing to sell this lottery ticket.

Let U denote the person’s utility function. Then the expected utility of her gain
from the lottery ticket is E[U(X)]. If she sells the lottery ticket for x0 dollars, then her
gain is x0 dollars, and the utility of this gain is U(x0). The person would prefer to accept
x0 dollars as a certain gain rather than accept the random gain X from the lottery
ticket if and only if U(x0) > E[U(X)]. Hence, the person would be willing to sell the
lottery ticket for any amount x0 such that U(x0) > E[U(X)]. If U(x0) = E[U(X)], she
would be equally willing to either sell the lottery ticket or accept the random gain X.

Example
4.8.6

Quadratic Utility Function. Suppose that U(x) = x2 for x ≥ 0, and suppose that the
person has a lottery ticket from which she will win either 36 dollars with probability
1/4 or 0 dollars with probability 3/4. For how many dollars x0 would she be willing to
sell this lottery ticket?

The expected utility of the gain from the lottery ticket is

E[U(X)] = 1
4
U(36) + 3

4
U(0) = 1

4
(362) + 3

4
(0) = 324.

Therefore, the person would be willing to sell the lottery ticket for any amount x0
such that U(x0) = x2

0 > 324. Hence, x0 > 18. In other words, although the expected
gain from the lottery ticket in this example is only 9 dollars, the person would not
sell the ticket for less than 18 dollars. �

Example
4.8.7

Square Root Utility Function. Suppose now that U(x) = x1/2 for x ≥ 0, and consider
again the lottery ticket described in Example 4.8.6. The expected utility of the gain
from the lottery ticket in this case is

E[U(X)] = 1
4
U(36) + 3

4
U(0) = 1

4
(6) + 3

4
(0) = 1.5.

Therefore, the person would be willing to sell the lottery ticket for any amount x0

such that U(x0) = x
1/2
0 > 1.5. Hence, x0 > 2.25. In other words, although the expected

gain from the lottery ticket in this example is 9 dollars, the person would be willing
to sell the ticket for as little as 2.25 dollars. �
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Some Statistical Decision Problems

Much of the theory of statistical inference (the subject of Chapters 7–11 of this
text) deals with problems in which one has to make one of several available choices.
Generally, which choice is best depends on some random variable that has not yet
been observed. One example was already discussed in Sec. 4.5, where we introduced
the mean squared error (M.S.E.) and mean absolute error (M.A.E.) criteria for
predicting a random variable. In these cases, we have to choose a number d for our
prediction of a random variable Y . Which prediction will be best depends on the
value of Y that we do not yet know. Random variables like −|Y − d| and −(Y − d)2

are gambles, and the choice of gamble that minimizes M.A.E. or M.S.E. is the choice
that maximizes an expected utility.

Example
4.8.8

Predicting a Random Variable. Suppose that Y is a random variable that we need
to predict. For each possible prediction d , there is a gamble Xd = −|Y − d| that
specifies our gain when we are being judged by absolute error. Alternatively, if we
are being judged by squared error, the appropriate gamble to consider would be
Zd = −(Y − d)2. Notice that these gambles are always negative, meaning that our
gain is negative because we lose according to how far Y is from the prediction d. If our
utility U is linear, then maximizing E[U(Xd)] by choice of d is the same as minimizing
M.A.E. Also, maximizing E[U(Zd)] by choice of d is the same as minimizing M.S.E.
The equivalence between maximizing expected utility and minimizing the mean error
would continue to hold if the prediction were allowed to depend on another random
variable W that we could observe before predicting. That is, our prediction would be
a function d(W), and Xd = −|Y − d(W)| or Zd = −[Y − d(W)]2 would be the gamble
whose expected utility we would want to compute. �

Example
4.8.9

Bounding a Random Variable. Suppose that Y is a random variable and that we are
interested in whether or not Y ≤ c for some constant c. For example, Y could be
the random variable P in our clinical trial Example 4.7.3. We might be interested in
whether or not P ≤ p0, where p0 is the probability that a patient will be a success
without any help from the treatment being studied. Suppose that we have to make
one of two available decisions:

(t) continue to promote the treatment, or

(a) abandon the treatment.

If we choose t , suppose that we stand to gain

Xt =
{

106 if P > p0,
−106 if P ≤ p0.

If we choose a, our gain will be Xa = 0. If our utility function is U , then the expected
utility for choosing t is E[U(Xt)], and t would be the better choice if this value is
greater than U(0). For example, suppose that our utility is

U(x) =
{

x0.8 if x ≥ 0,
x if x < 0.

(4.8.6)

Then U(0) = 0 and

E[U(Xt)] = −106 Pr(P ≤ p0) + [106]0.8 Pr(P > p0)

= 104.8 − (106 + 104.8) Pr(P ≤ p0).
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So, E[U(Xt)] > 0 if Pr(P ≤ p0) < 104.8/(106 + 104.8) = 0.0594. It makes sense that t is
better than a if Pr(P ≤ p0) is small. The reason is that the utility of choosing t over a

is only positive when P > p0. This example is in the spirit of hypothesis testing, which
will be the subject of Chapter 9. �

Example
4.8.10

Investment. In Example 4.2.2, we compared two possible stock purchases based
on their expected returns and value at risk, VaR. Suppose that the investor has a
nonlinear utility function for dollars. To be specific, suppose that the utility of a return
of x would equal U(x) given in Eq. (4.8.6). We can calculate the expected utility of
the return from each of the two possible stock purchases in Example 4.2.2 to decide
which is more favorable. If R is the return per share and we buy s shares, then the
return is X = sR, and the expected utility of the return is

E[U(sR)] =
∫ 0

−∞
srf (r) dr +

∫ ∞

0
(sr)0.8f (r) dr, (4.8.7)

where f is the p.d.f. of R. For the first stock, the return per share is R1 distributed
uniformly on the interval [−10, 20], and the number of shares would be s1 = 120. This
makes (4.8.7) equal to

E[U(120R1)] =
∫ 0

−10

120r

30
dr +

∫ 20

0

(120r)0.8

30
dr = −12.6.

For the second stock, the return per share is R2 distributed uniformly on the interval
[−4.5, 10], and the number of shares would be s2 = 200. This makes (4.8.7) equal to

E[U(200R2)] =
∫ 0

−4.5

200r

14.5
dr +

∫ 10

0

(200r)0.8

14.5
dr = 27.9.

With this utility function, the expected utility of the first stock purchase is actually
negative because the big gains (up to 120 × 20 = 2400) add less to the utility (24000.8 =
506) than the big losses (up to 120 × −10 = −1200) take away from the utility. The
second stock purchase has positive expected utility, so it would be the preferred
choice in this example. �

Summary

When we have to make choices in the face of uncertainty, we need to assess what our
gains and losses will be under each of the uncertain possibilities. Utility is the value
to us of those gains and losses. For example, if X represents the random gain from
a possible choice, then U(X) is the value to us of the random gain we would receive
if we were to make that choice. We should make the choice such that E[U(X)] is as
large as possible.

Exercises

1. Let α > 0. A decision maker has a utility function for
money of the form

U(x) =
{

xα if x > 0,
x if x ≤ 0.

Suppose that this decision maker is trying to decide
whether or not to buy a lottery ticket for $1. The lottery
ticket pays $500 with probability 0.001, and it pays $0 with
probability 0.999. What would the values of α have to be
in order for this decision maker to prefer buying the ticket
to not buying it?
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2. Consider three gambles X , Y , and Z for which the
probability distributions of the gains are as follows:

Pr(X = 5) = Pr(X = 25) = 1/2,

Pr(Y = 10) = Pr(Y = 20) = 1/2,

Pr(Z = 15) = 1.

Suppose that a person’s utility function has the form
U(x) = x2 for x > 0. Which of the three gambles would she
prefer?

3. Determine which of the three gambles in Exercise 2
would be preferred by a person whose utility function is
U(x) = x1/2 for x > 0.

4. Determine which of the three gambles in Exercise 2
would be preferred by a person whose utility function
has the form U(x) = ax + b, where a and b are constants
(a > 0).

5. Consider a utility function U for which U(0) = 0 and
U(100) = 1. Suppose that a person who has this utility
function is indifferent to either accepting a gamble from
which his gain will be 0 dollars with probability 1/3 or 100
dollars with probability 2/3 or accepting 50 dollars as a
sure thing. What is the value of U(50)?

6. Consider a utility function U for which U(0) = 5,
U(1) = 8, and U(2) = 10. Suppose that a person who has
this utility function is indifferent to either of two gambles
X and Y, for which the probability distributions of the
gains are as follows:

Pr(X = −1) = 0.6, Pr(X = 0) = 0.2, Pr(X = 2) = 0.2;

Pr(Y = 0) = 0.9, Pr(Y = 1) = 0.1.

What is the value of U(−1)?

7. Suppose that a person must accept a gamble X of the
following form:

Pr(X = a) = p and Pr(X = 1 − a) = 1 − p,

where p is a given number such that 0 < p < 1. Suppose
also that the person can choose and fix the value of a

(0 ≤ a ≤ 1) to be used in this gamble. Determine the value
of a that the person would choose if his utility function
was U(x) = log x for x > 0.

8. Determine the value of a that a person would choose in
Exercise 7 if his utility function was U(x) = x1/2 for x ≥ 0.

9. Determine the value of a that a person would choose
in Exercise 7 if his utility function was U(x) = x for x ≥ 0.

10. Consider four gambles X1, X2, X3, and X4, for which
the probability distributions of the gains are as follows:

Pr(X1 = 0) = 0.2, Pr(X1 = 1) = 0.5, Pr(X1 = 2) = 0.3;

Pr(X2 = 0) = 0.4, Pr(X2 = 1) = 0.2, Pr(X2 = 2) = 0.4;

Pr(X3 = 0) = 0.3, Pr(X3 = 1) = 0.3, Pr(X3 = 2) = 0.4;

Pr(X4 = 0) = Pr(X4 = 2) = 0.5.

Suppose that a person’s utility function is such that she
prefers X1 to X2. If the person were forced to accept either
X3 or X4, which one would she choose?

11. Suppose that a person has a given fortune A > 0 and
can bet any amount b of this fortune in a certain game
(0 ≤ b ≤ A). If he wins the bet, then his fortune becomes
A + b; if he loses the bet, then his fortune becomes A − b.
In general, let X denote his fortune after he has won or
lost. Assume that the probability of his winning is p (0 <

p < 1) and the probability of his losing is 1 − p. Assume
also that his utility function, as a function of his final for-
tune x, is U(x) = log x for x > 0. If the person wishes to
bet an amount b for which the expected utility of his for-
tune E[U(X)] will be a maximum, what amount b should
he bet?

12. Determine the amount b that the person should bet in
Exercise 11 if his utility function is U(x) = x1/2 for x ≥ 0.

13. Determine the amount b that the person should bet in
Exercise 11 if his utility function is U(x) = x for x ≥ 0.

14. Determine the amount b that the person should bet in
Exercise 11 if his utility function is U(x) = x2 for x ≥ 0.

15. Suppose that a person has a lottery ticket from which
she will win X dollars, where X has the uniform distribu-
tion on the interval [0, 4]. Suppose also that the person’s
utility function is U(x) = xα for x ≥ 0, where α is a given
positive constant. For how many dollars x0 would the per-
son be willing to sell this lottery ticket?

16. Let Y be a random variable that we would like to pre-
dict. Suppose that we must choose a single number d as the
prediction and that we will lose (Y − d)2 dollars. Suppose
that our utility for dollars is a square root function:

U(x) =
{ √

x if x ≥ 0,

−√−x if x < 0.

Prove that the value of d that maximizes expected utility
is a median of the distribution of Y .

17. Reconsider the conditions of Example 4.8.9. This
time, suppose that p0 = 1/2 and

U(x) =
{

x0.9 if x ≥ 0,

x if x < 0.

Suppose also that P has p.d.f. f (p) = 56p6(1 − p) for 0 <

p < 1. Decide whether or not it is better to abandon the
treatment.
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4.9 Supplementary Exercises
1. Suppose that the random variable X has a continuous
distribution with c.d.f. F(x) and p.d.f. f . Suppose also that
E(X) exists. Prove that

lim
x→∞ x[1 − F(x)] = 0.

Hint: Use the fact that if E(X) exists, then

E(X) = lim
u→∞

∫ u

−∞
xf (x) dx.

2. Suppose that the random variable X has a continuous
distribution with c.d.f. F(x). Suppose also that Pr(X ≥ 0) =
1 and that E(X) exists. Show that

E(X) =
∫ ∞

0
[1 − F(x)] dx.

Hint: You may use the result proven in Exercise 1.

3. Consider again the conditions of Exercise 2, but sup-
pose now that X has a discrete distribution with c.d.f. F(x),
rather than a continuous distribution. Show that the con-
clusion of Exercise 2 still holds.

4. Suppose that X, Y , and Z are nonnegative random
variables such that Pr(X + Y + Z ≤ 1.3) = 1. Show that X,
Y , and Z cannot possibly have a joint distribution under
which each of their marginal distributions is the uniform
distribution on the interval [0, 1].

5. Suppose that the random variable X has mean μ and
variance σ 2, and that Y = aX + b. Determine the values
of a and b for which E(Y ) = 0 and Var(Y ) = 1.

6. Determine the expectation of the range of a random
sample of size n from the uniform distribution on the
interval [0, 1].

7. Suppose that an automobile dealer pays an amount X

(in thousands of dollars) for a used car and then sells it for
an amount Y . Suppose that the random variables X and Y

have the following joint p.d.f.:

f (x, y) =
{

1
36x for 0 < x < y < 6,

0 otherwise.

Determine the dealer’s expected gain from the sale.

8. Suppose that X1, . . . , Xn form a random sample of size
n from a continuous distribution with the following p.d.f.:

f (x) =
{

2x for 0 < x < 1,

0 otherwise.

Let Yn = max{X1, . . . , Xn}. Evaluate E(Yn).

9. If m is a median of the distribution of X, and if Y = r(X)

is either a nondecreasing or a nonincreasing function of X,
show that r(m) is a median of the distribution of Y .

10. Suppose that X1, . . . , Xn are i.i.d. random variables,
each of which has a continuous distribution with median
m. Let Yn = max{X1, . . . , Xn}. Determine the value of
Pr(Yn > m).

11. Suppose that you are going to sell cola at a football
game and must decide in advance how much to order.
Suppose that the demand for cola at the game, in liters,
has a continuous distribution with p.d.f. f (x). Suppose that
you make a profit of g cents on each liter that you sell at
the game and suffer a loss of c cents on each liter that you
order but do not sell. What is the optimal amount of cola
for you to order so as to maximize your expected net gain?

12. Suppose that the number of hours X for which a ma-
chine will operate before it fails has a continuous distribu-
tion with p.d.f. f (x). Suppose that at the time at which the
machine begins operating you must decide when you will
return to inspect it. If you return before the machine has
failed, you incur a cost of b dollars for having wasted an
inspection. If you return after the machine has failed, you
incur a cost of c dollars per hour for the length of time dur-
ing which the machine was not operating after its failure.
What is the optimal number of hours to wait before you
return for inspection in order to minimize your expected
cost?

13. Suppose that X and Y are random variables for which
E(X) = 3, E(Y ) = 1, Var(X) = 4, and Var(Y ) = 9. Let Z =
5X − Y + 15. Find E(Z) and Var(Z) under each of the
following conditions: (a) X and Y are independent; (b)
X and Y are uncorrelated; (c) the correlation of X and Y

is 0.25.

14. Suppose that X0, X1, . . . , Xn are independent ran-
dom variables, each having the same variance σ 2. Let

Yj = Xj − Xj−1 for j = 1, . . . , n, and let Yn = 1
n

∑n
j=1 Yj .

Determine the value of Var(Y n).

15. Suppose that X1, . . . , Xn are random variables for
which Var(Xi) has the same value σ 2 for i = 1, . . . , n and
ρ(Xi, Xj) has the same value ρ for every pair of values i

and j such that i 	= j . Prove that ρ ≥ − 1
n − 1

.

16. Suppose that the joint distribution of X and Y is the
uniform distribution over a rectangle with sides parallel
to the coordinate axes in the xy-plane. Determine the
correlation of X and Y .

17. Suppose that n letters are put at random into n en-
velopes, as in the matching problem described in Sec. 1.10.
Determine the variance of the number of letters that are
placed in the correct envelopes.
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18. Suppose that the random variable X has mean μ and
variance σ 2. Show that the third central moment of X can
be expressed as E(X3) − 3μσ 2 − μ3.

19. Suppose that X is a random variable with m.g.f. ψ(t),
mean μ, and variance σ 2; and let c(t) = log[ψ(t)]. Prove
that c′(0) = μ and c′′(0) = σ 2.

20. Suppose that X and Y have a joint distribution with
means μX and μY , standard deviations σX and σY , and
correlation ρ. Show that if E(Y |X) is a linear function of
X, then

E(Y |X) = μY + ρ
σY

σX

(X − μX).

21. Suppose that X and Y are random variables such that
E(Y |X) = 7 − (1/4)X and E(X|Y ) = 10 − Y . Determine
the correlation of X and Y .

22. Suppose that a stick having a length of 3 feet is broken
into two pieces, and that the point at which the stick is
broken is chosen in accordance with the p.d.f. f (x). What
is the correlation between the length of the longer piece
and the length of the shorter piece?

23. Suppose that X and Y have a joint distribution with
correlation ρ > 1/2 and that Var(X) = Var(Y ) = 1. Show

that b = − 1
2ρ

is the unique value of b such that the corre-

lation of X and X + bY is also ρ.

24. Suppose that four apartment buildings A, B, C, and D

are located along a highway at the points 0, 1, 3, and 5, as
shown in the following figure. Suppose also that 10 percent
of the employees of a certain company live in building A,
20 percent live in B, 30 percent live in C, and 40 percent
live in D.

a. Where should the company build its new office in or-
der to minimize the total distance that its employees
must travel?

b. Where should the company build its new office in
order to minimize the sum of the squared distances
that its employees must travel?

A B C D

• • | • | • | |
0 1 2 3 4 5 6 7

25. Suppose that X and Y have the following joint p.d.f.:

f (x, y) =
{

8xy for 0 < y < x < 1,
0 otherwise.

Suppose also that the observed value of X is 0.2.

a. What predicted value of Y has the smallest M.S.E.?

b. What predicted value of Y has the smallest M.A.E.?

26. For all random variables X, Y , and Z, let Cov(X, Y |z)
denote the covariance of X and Y in their conditional joint
distribution given Z = z. Prove that

Cov(X, Y ) = E[Cov(X, Y |Z)]

+ Cov[E(X|Z), E(Y |Z)].

27. Consider the box of red and blue balls in Exam-
ples 4.2.4 and 4.2.5. Suppose that we sample n > 1 balls
with replacement, and let X be the number of red balls in
the sample. Then we sample n balls without replacement,
and we let Y be the number of red balls in the sample.
Prove that Pr(X = n) > Pr(Y = n).

28. Suppose that a person’s utility function is U(x) = x2

for x ≥ 0. Show that the person will always prefer to take
a gamble in which she will receive a random gain of X dol-
lars rather than receive the amount E(X) with certainty,
where Pr(X ≥ 0) = 1 and E(X) < ∞.

29. A person is given m dollars, which he must allocate
between an event A and its complement Ac. Suppose that
he allocates a dollars to A and m − a dollars to Ac. The
person’s gain is then determined as follows: If A occurs,
his gain is g1a; if Ac occurs, his gain is g2(m − a). Here,
g1 and g2 are given positive constants. Suppose also that
Pr(A) = p and the person’s utility function is U(x) = log x

for x > 0. Determine the amount a that will maximize the
person’s expected utility, and show that this amount does
not depend on the values of g1 and g2.
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5.1 Introduction
In this chapter, we shall define and discuss several special families of distributions
that are widely used in applications of probability and statistics. The distributions that
will be presented here include discrete and continuous distributions of univariate, bi-
variate, and multivariate types. The discrete univariate distributions are the families
of Bernoulli, binomial, hypergeometric, Poisson, negative binomial, and geomet-
ric distributions. The continuous univariate distributions are the families of normal,
lognormal, gamma, exponential, and beta distributions. Other continuous univariate
distributions (introduced in exercises and examples) are the families of Weibull and
Pareto distributions. Also discussed is the multinomial family of multivariate discrete
distributions, and the bivariate normal family of bivariate continuous distributions.

We shall briefly describe how each of these families of distributions arise in
applied problems and show why each might be an appropriate probability model
for some experiment. For each family, we shall present the form of the p.f. or the
p.d.f. and discuss some of the basic properties of the distributions in the family.

The list of distributions presented in this chapter, or in this entire text for that
matter, is not intended to be exhaustive. These distributions are known to be useful in
a wide variety of applied problems. In many real-world problems, however, one will
need to consider other distributions not mentioned here. The tools that we develop
for use with these distributions can be generalized for use with other distributions.
Our purpose in providing in-depth presentations of the most popular distributions
here is to give the reader a feel for how to use probablity to model the variation and
uncertainty in applied problems as well as some of the tools that get used during
probability modeling.

5.2 The Bernoulli and Binomial Distributions
The simplest type of experiment has only two possible outcomes, call them 0 and
1. If X equals the outcome from such an experiment, then X has the simplest
type of nondegenerate distribution, which is a member of the family of Bernoulli
distributions. If n independent random variables X1, . . . , Xn all have the same

275
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Bernoulli distribution, then their sum is equal to the number of the Xi’s that equal 1,
and the distribution of the sum is a member of the binomial family.

The Bernoulli Distributions

Example
5.2.1

A Clinical Trial. The treatment given to a particular patient in a clinical trial can
either succeed or fail. Let X = 0 if the treatment fails, and let X = 1 if the treatment
succeeds. All that is needed to specify the distribution of X is the value p = Pr(X = 1)
(or, equivalently, 1 − p = Pr(X = 0)). Each different p corresponds to a different
distribution for X. The collection of all such distributions corresponding to all 0 ≤
p ≤ 1 form the family of Bernoulli distributions. �

An experiment of a particularly simple type is one in which there are only two
possible outcomes, such as head or tail, success or failure, defective or nondefective,
patient recovers or does not recover. It is convenient to designate the two possible
outcomes of such an experiment as 0 and 1, as in Example 5.2.1. The following recap
of Definition 3.1.5 can then be applied to every experiment of this type.

Definition
5.2.1

Bernoulli Distribution. A random variable X has the Bernoulli distribution with pa-
rameter p (0 ≤ p ≤ 1) if X can take only the values 0 and 1 and the probabilities
are

Pr(X = 1) = p and Pr(X = 0) = 1 − p. (5.2.1)

The p.f. of X can be written as follows:

f (x|p) =
{

px(1 − p)1−x for x = 0, 1,
0 otherwise.

(5.2.2)

To verify that this p.f. f (x|p) actually does represent the Bernoulli distribution
specified by the probabilities (5.2.1), it is simply necessary to note that f (1|p) = p

and f (0|p) = 1 − p.
If X has the Bernoulli distribution with parameter p, then X2 and X are the same

random variable. It follows that

E(X) = 1 . p + 0 . (1 − p) = p,

E(X2) = E(X) = p,

and

Var(X) = E(X2) − [E(X)]2 = p(1 − p).

Furthermore, the m.g.f. of X is

ψ(t) = E(etX) = pet + (1 − p) for −∞ < t < ∞.

Definition
5.2.2

Bernoulli Trials/Process. If the random variables in a finite or infinite sequence X1,

X2, . . . are i.i.d., and if each random variable Xi has the Bernoulli distribution with
parameter p, then it is said that X1, X2, . . . are Bernoulli trials with parameter p. An
infinite sequence of Bernoulli trials is also called a Bernoulli process.

Example
5.2.2

Tossing a Coin. Suppose that a fair coin is tossed repeatedly. Let Xi = 1 if a head is
obtained on the ith toss, and let Xi = 0 if a tail is obtained (i = 1, 2, . . .). Then the
random variables X1, X2, . . . are Bernoulli trials with parameter p = 1/2. �
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Example
5.2.3

Defective Parts. Suppose that 10 percent of the items produced by a certain machine
are defective and the parts are independent of each other. We will sample n items at
random and inspect them. Let Xi = 1 if the ith item is defective, and let Xi = 0 if it
is nondefective (i = 1, . . . , n). Then the variables X1, . . . , Xn form n Bernoulli trials
with parameter p = 1/10. �

Example
5.2.4

Clinical Trials. In the many clinical trial examples in earlier chapters (Example 4.7.8,
for instance), the random variables X1, X2, . . . , indicating whether each patient is a
success, were conditionally Bernoulli trials with parameter p given P = p, where P

is the unknown proportion of patients in a very large population who recover. �

The Binomial Distributions

Example
5.2.5

Defective Parts. In Example 5.2.3, let X = X1 + . . . + X10, which equals the number
of defective parts among the 10 sampled parts. What is the distribution of X? �

As derived after Example 3.1.9, the distribution of X in Example 5.2.5 is the
binomial distribution with parameters 10 and 1/10. We repeat the general definition
of binomial distributions here.

Definition
5.2.3

Binomial Distribution. A random variable X has the binomial distribution with pa-
rameters n and p if X has a discrete distribution for which the p.f. is as follows:

f (x|n, p) =
{ (

n
x

)
px(1 − p)n−x for x = 0, 1, 2, . . . , n,

0 otherwise.
(5.2.3)

In this distribution, n must be a positive integer, and p must lie in the interval
0 ≤ p ≤ 1.

Probabilities for various binomial distributions can be obtained from the table given
at the end of this book and from many statistical software programs.

The binomial distributions are of fundamental importance in probability and
statistics because of the following result, which was derived in Sec. 3.1 and which we
restate here in the terminology of this chapter.

Theorem
5.2.1

If the random variables X1, . . . , Xn form n Bernoulli trials with parameter p, and if
X = X1 + . . . + Xn, then X has the binomial distribution with parameters n and p.

When X is represented as the sum of n Bernoulli trials as in Theorem 5.2.1, the
values of the mean, variance, and m.g.f. of X can be derived very easily. These values,
which were already obtained in Example 4.2.5 and on pages 231 and 238, are

E(X) =
n∑

i=1

E(Xi) = np,

Var(X) =
n∑

i=1

Var(Xi) = np(1 − p),

and

ψ(t) = E(etX) =
n∏

i=1

E(etXi) = (pet + 1 − p)n. (5.2.4)
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The reader can use the m.g.f. in Eq. (5.2.4) to establish the following simple
extension of Theorem 4.4.6.

Theorem
5.2.2

If X1, . . . , Xk are independent random variables, and if Xi has the binomial distri-
bution with parameters ni and p (i = 1, . . . , k), then the sum X1 + . . . + Xk has the
binomial distribution with parameters n = n1 + . . . + nk and p.

Theorem 5.2.2 also follows easily if we represent each Xi as the sum of ni

Bernoulli trials with parameter p. If n = n1 + . . . + nk, and if all n trials are inde-
pendent, then the sum X1 + . . . + Xk will simply be the sum of n Bernoulli trials with
parameter p. Hence, this sum must have the binomial distribution with parameters
n and p.

Example
5.2.6

Castaneda v. Partida. Courts have used the binomial distributions to calculate proba-
bilities of jury compositions from populations with known racial and ethnic composi-
tions. In the case of Castaneda v. Partida, 430 U.S. 482 (1977), a local population was
79.1 percent Mexican American. During a 2.5-year period, there were 220 persons
called to serve on grand juries, but only 100 were Mexican Americans. The claim
was made that this was evidence of discrimination against Mexican Americans in the
grand jury selection process. The court did a calculation under the assumption that
grand jurors were drawn at random and independently from the population each
with probability 0.791 of being Mexican American. Since the claim was that 100 was
too small a number of Mexican Americans, the court calculated the probability that a
binomial random variable X with parameters 220 and 0.791 would be 100 or less. The
probability is very small (less than 10−25). Is this evidence of discrimination against
Mexican Americans? The small probability was calculated under the assumption that
X had the binomial distribution with parameters 220 and 0.791, which means that
the court was assuming that there was no discrimination against Mexican Americans
when performing the calculation. In other words, the small probability is the condi-
tional probability of observing X ≤ 100 given that there is no discrimination. What
should be more interesting to the court is the reverse conditional probability, namely,
the probability that there is no discrimination given that X = 100 (or given X ≤ 100).
This sounds like a case for Bayes’ theorem. After we introduce the beta distributions
in Sec. 5.8, we shall show how to use Bayes’ theorem to calculate this probability
(Examples 5.8.3 and 5.8.4). �

Note: Bernoulli and Binomial Distributions. Every random variable that takes only
the two values 0 and 1 must have a Bernoulli distribution. However, not every sum
of Bernoulli random variables has a binomial distribution. There are two conditions
needed to apply Theorem 5.2.1. The Bernoulli random variables must be mutually
independent, and they must all have the same parameter. If either of these conditions
fails, the distribution of the sum will not be a binomial distribution. When the court
did a binomial calculation in Example 5.2.6, it was defining “no discrimination” to
mean that jurors were selected independently and with the same probability 0.791
of being Mexican American. If the court had defined “no discrimination” some
other way, they would have needed to do a different, presumably more complicated,
probability calculation.

We conclude this section with an example that shows how Bernoulli and binomial
calculations can improve efficiency when data collection is costly.

Example
5.2.7

Group Testing. Military and other large organizations are often faced with the need
to test large numbers of members for rare diseases. Suppose that each test requires
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a small amount of blood, and it is guaranteed to detect the disease if it is anywhere
in the blood. Suppose that 1000 people need to be tested for a disease that affects
1/5 of 1 percent of all people. Let Xj = 1 if person j has the disease and Xj = 0 if
not, for j = 1, . . . , 1000. We model the Xj as i.i.d. Bernoulli random variables with
parameter 0.002 for j = 1, . . . , 1000. The most naı̈ve approach would be to perform
1000 tests to see who has the disease. But if the tests are costly, there may be a more
economical way to test. For example, one could divide the 1000 people into 10 groups
of size 100 each. For each group, take a portion of the blood sample from each of
the 100 people in the group and combine them into one sample. Then test each of
the 10 combined samples. If none of the 10 combined samples has the disease, then
nobody has the disease, and we needed only 10 tests instead of 1000. If only one of
the combined samples has the disease, then we can test those 100 people separately,
and we needed only 110 tests.

In general, let Z1,i be the number of people in group i who have the disease for
i = 1, . . . , 10. Then each Z1,i has the binomial distribution with parameters 100 and
0.002. Let Y1,i = 1 if Z1,i > 0 and Y1,i = 0 if Z1,i = 0. Then each Y1,i has the Bernoulli
distribution with parameter

Pr(Z1,i > 0) = 1 − Pr(Z1,i = 0) = 1 − 0.998100 = 0.181,

and they are independent. Then Y1 = ∑10
i=1 Y1,i is the number of groups whose mem-

bers we have to test individually. Also, Y1 has the binomial distribution with param-
eters 10 and 0.181. The number of people that we need to test individually is 100Y1.
The mean of 100Y1 is 100 × 10 × 0.181 = 181. So, the expected total number of tests is
10 + 181 = 191, rather than 1000. One can compute the entire distribution of the to-
tal number of tests, 100Y1 + 10. The maximum number of tests needed by this group
testing procedure is 1010, which would be the case if all 10 groups had at least one
person with the disease, but this has probability 3.84 × 10−8. In all other cases, group
testing requires fewer than 1000 tests.

There are multiple-stage versions of group testing in which each of the groups
that tests positive is split further into subgroups which are each tested together. If
each of those subgroups is sufficiently large, they can be further subdivided into
smaller sub-subgroups, etc. Finally, only the final-stage subgroups that have a positive
result are tested individually. This can further reduce the expected number of tests.
For example, consider the following two-stage version of the procedure described
earlier. We could divide each of the 10 groups of 100 people into 10 subgroups of
10 people each. Following the above notation, let Z2,i,k be the number of people in
subgroup k of group i who have the disease, for i = 1, . . . , 10 and k = 1, . . . , 10. Then
each Z2,i,k has the binomial distribution with parameters 10 and 0.002. Let Y2,i,k = 1
if Z2,i,k > 0 and Y2,i,k = 0 otherwise. Notice that Y2,i,k = 0 for k = 1, . . . , 10 for every
i such that Y1,i = 0. So, we only need to test individuals in those subgroups such that
Y2,i,k = 1. Each Y2,i,k has the Bernoulli distribution with parameter

Pr(Z2,i,k > 0) = 1 − Pr(Z2,i,k = 0) = 1 − 0.99810 = 0.0198,

and they are independent. Then Y2 = ∑10
i=1

∑10
j=1 Y2,i,k is the number of groups whose

members we have to test individually. Also, Y2 has the binomial distribution with
parameters 100 and 0.0198. The number of people that we need to test individually is
10Y2. The mean of 10Y2 is 10 × 100 × 0.0198 = 19.82. The number of subgroups that
we need to test in the second stage is Y1, whose mean is 1.81. So, the expected total
number of tests is 10 + 1.81 + 19.82 = 31.63, which is even smaller than the 191 for
the one-stage procedure described earlier. �
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Summary

A random variable X has the Bernoulli distribution with parameter p if the p.f. of X

is f (x|p) = px(1 − p)1−x for x = 0, 1 and 0 otherwise. If X1, . . . , Xn are i.i.d. random
variables all having the Bernoulli distribution with parameter p, then we refer to
X1, . . . , Xn as Bernoulli trials, and X = ∑n

i=1 Xi has the binomial distribution with
parameters n and p. Also, X is the number of successes in the n Bernoulli trials, where
success on trial i corresponds to Xi = 1 and failure corresponds to Xi = 0.

Exercises

1. Suppose that X is a random variable such that E(Xk) =
1/3 for k = 1, 2, . . . . Assuming that there cannot be more
than one distribution with this same sequence of moments
(see Exercise 14), determine the distribution of X.

2. Suppose that a random variable X can take only the
two values a and b with the following probabilities:

Pr(X = a) = p and Pr(X = b) = 1 − p.

Express the p.f. of X in a form similar to that given in
Eq. (5.2.2).

3. Suppose that a fair coin (probability of heads equals
1/2) is tossed independently 10 times. Use the table of the
binomial distribution given at the end of this book to find
the probability that strictly more heads are obtained than
tails.

4. Suppose that the probability that a certain experiment
will be successful is 0.4, and let X denote the number
of successes that are obtained in 15 independent perfor-
mances of the experiment. Use the table of the binomial
distribution given at the end of this book to determine the
value of Pr(6 ≤ X ≤ 9).

5. A coin for which the probability of heads is 0.6 is tossed
nine times. Use the table of the binomial distribution given
at the end of this book to find the probability of obtaining
an even number of heads.

6. Three men A, B, and C shoot at a target. Suppose that
A shoots three times and the probability that he will hit
the target on any given shot is 1/8, B shoots five times and
the probability that he will hit the target on any given shot
is 1/4, and C shoots twice and the probability that he will
hit the target on any given shot is 1/2. What is the expected
number of times that the target will be hit?

7. Under the conditions of Exercise 6, assume also that all
shots at the target are independent. What is the variance
of the number of times that the target will be hit?

8. A certain electronic system contains 10 components.
Suppose that the probability that each individual com-
ponent will fail is 0.2 and that the components fail inde-

pendently of each other. Given that at least one of the
components has failed, what is the probability that at least
two of the components have failed?

9. Suppose that the random variables X1, . . . , Xn form n

Bernoulli trials with parameter p. Determine the condi-
tional probability that X1 = 1, given that

n∑
i=1

Xi = k (k = 1, . . . , n).

10. The probability that each specific child in a given fam-
ily will inherit a certain disease is p. If it is known that at
least one child in a family of n children has inherited the
disease, what is the expected number of children in the
family who have inherited the disease?

11. For 0 ≤ p ≤ 1, and n = 2, 3, . . . , determine the value
of

n∑
x=2

x(x − 1)
(

n

x

)
px(1 − p)n−x.

12. If a random variable X has a discrete distribution
for which the p.f. is f (x), then the value of x for which
f (x) is maximum is called the mode of the distribution.
If this same maximum f (x) is attained at more than one
value of x, then all such values of x are called modes of
the distribution. Find the mode or modes of the binomial
distribution with parameters n and p. Hint: Study the ratio
f (x + 1|n, p)/f (x|n, p).

13. In a clinical trial with two treatment groups, the prob-
ability of success in one treatment group is 0.5, and the
probability of success in the other is 0.6. Suppose that
there are five patients in each group. Assume that the
outcomes of all patients are independent. Calculate the
probability that the first group will have at least as many
successes as the second group.

14. In Exercise 1, we assumed that there could be at
most one distribution with moments E(Xk) = 1/3 for
k = 1, 2, . . . . In this exercise, we shall prove that there
can be only one such distribution. Prove the following
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facts and show that they imply that at most one distribu-
tion has the given moments.

a. Pr(|X| ≤ 1) = 1. (If not, show that limk→∞ E(X2k) =
∞.)

b. Pr(X2 ∈ {0, 1}) = 1. (If not, prove that E(X4) <

E(X2).)

c. Pr(X = −1) = 0. (If not, prove that E(X) < E(X2).)

15. In Example 5.2.7, suppose that we use the two-stage
version described at the end of the example. What is the
maximum number of tests that could possibly be needed

by this version? What is the probability that the maximum
number of tests would be required?

16. For the 1000 people in Example 5.2.7, suppose that
we use the following three-stage group testing procedure.
First, divide the 1000 people into five groups of size 200
each. For each group that tests positive, further divide it
into five subgroups of size 40 each. For each subgroup that
tests positive, further divide it into five sub-subgroups of
size 8 each. For each sub-subgroup that tests positive, test
all eight people. Find the expected number and maximum
number of tests.

5.3 The Hypergeometric Distributions
In this section, we consider dependent Bernoulli random variables. A common
source of dependent Bernoulli random variables is sampling without replacement
from a finite population. Suppose that a finite population consists of a known
number of successes and failures. If we sample a fixed number of units from that
population, the number of successes in our sample will have a distribution that is
a member of the family of hypergeometric distributions.

Definition and Examples

Example
5.3.1

Sampling without Replacement. Suppose that a box contains A red balls and B blue
balls. Suppose also that n ≥ 0 balls are selected at random from the box without
replacement, and let X denote the number of red balls that are obtained. Clearly,
we must have n ≤ A + B or we would run out of balls. Also, if n = 0, then X = 0
because there are no balls, red or blue, drawn. For cases with n ≥ 1, we can let
Xi = 1 if the ith ball drawn is red and Xi = 0 if not. Then each Xi has a Bernoulli
distribution, but X1, . . . , Xn are not independent in general. To see this, assume
that both A > 0 and B > 0 as well as n ≥ 2. We will now show that Pr(X2 = 1|X1 =
0) 	= Pr(X2 = 1|X1 = 1). If X1 = 1, then when the second ball is drawn there are
only A − 1 red balls remaining out of a total of A + B − 1 available balls. Hence,
Pr(X2 = 1|X1 = 1) = (A − 1)/(A + B − 1). By the same reasoning,

Pr(X2 = 1|X1 = 0) = A

A + B − 1
>

A − 1
A + B − 1

.

Hence, X2 is not independent of X1, and we should not expect X to have a binomial
distribution. �

The problem described in Example 5.3.1 is a template for all cases of sampling
without replacement from a finite population with only two types of objects. Any-
thing that we learn about the random variable X in Example 5.3.1 will apply to every
case of sampling without replacement from finite populations with only two types of
objects. First, we derive the distribution of X.
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Theorem
5.3.1

Probability Function. The distribution of X in Example 5.3.1 has the p.f.

f (x|A, B, n) =

(
A

x

)(
B

n − x

)
(

A + B

n

) , (5.3.1)

for

max{0, n − B} ≤ x ≤ min{n, A}, (5.3.2)

and f (x|A, B, n) = 0 otherwise.

Proof Clearly, the value of X can neither exceed n nor exceed A. Therefore, it must
be true that X ≤ min{n, A}. Similarly, because the number of blue balls n − X that
are drawn cannot exceed B, the value of X must be at least n − B. Because the value
of X cannot be less than 0, it must be true that X ≥ max{0, n − B}. Hence, the value
of X must be an integer in the interval in (5.3.2).

We shall now find the p.f. of X using combinatorial arguments from Sec. 1.8. The
degenerate cases, those with A, B, and/or n equal to 0, are easy to prove because(
k
0

) = 1 for all nonnegative k, including k = 0. For the cases in which all of A, B, and n

are strictly positive, there are
(
A+B

n

)
ways to choose n balls out of the A + B available

balls, and all of these choices are equally likely. For each integer x in the interval
(5.3.2), there are

(
A
x

)
ways to choose x red balls, and for each such choice there are(

B
n−x

)
ways to choose n − x blue balls. Hence, the probability of obtaining exactly x

red balls out of n is given by Eq. (5.3.1). Furthermore, f (x|A, B, n) must be 0 for all
other values of x, because all other values are impossible.

Definition
5.3.1

Hypergeometric Distribution. Let A, B, and n be nonnegative integers with n ≤ A + B.
If a random variable X has a discrete distribution with p.f. as in Eqs. (5.3.1) and
(5.3.2), then it is said that X has the hypergeometric distribution with parameters A,
B, and n.

Example
5.3.2

Sampling without Replacement from an Observed Data Set. Consider the patients in the
clinical trial whose results are tabulated in Table 2.1. We might need to reexamine a
subset of the patients in the placebo group. Suppose that we need to sample 11 distinct
patients from the 34 patients in that group. What is the distribution of the number of
successes (no relapse) that we obtain in the subsample? Let X stand for the number
of successes in the subsample. Table 2.1 indicates that there are 10 successes and
24 failures in the placebo group. According to the definition of the hypergeometric
distribution, X has the hypergeometric distribution with parameters A = 10, B = 24,
and n = 11. In particular, the possible values of X are the integers from 0 to 10. Even
though we sample 11 patients, we cannot observe 11 successes, since only 10 successes
are available. �

The Mean and Variance for a Hypergeometric Distribution

Theorem
5.3.2

Mean and Variance. Let X have a hypergeometric distribution with strictly positive
parameters A, B, and n. Then
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E(X) = nA

A + B
, (5.3.3)

Var(X) = nAB

(A + B)2
. A + B − n

A + B − 1
. (5.3.4)

Proof Assume that X is as defined in Example 5.3.1, the number of red balls drawn
when n balls are selected at random without replacement from a box containing A

red balls and B blue balls. For i = 1, . . . , n, let Xi = 1 if the ith ball that is selected
is red, and let Xi = 0 if the ith ball is blue. As explained in Example 4.2.4, we can
imagine that the n balls are selected from the box by first arranging all the balls in the
box in some random order and then selecting the first n balls from this arrangement.
It can be seen from this interpretation that, for i = 1, . . . , n,

Pr(Xi = 1) = A

A + B
and Pr(Xi = 0) = B

A + B
.

Therefore, for i = 1, . . . , n,

E(Xi) = A

A + B
and Var(Xi) = AB

(A + B)2
. (5.3.5)

Since X = X1 + . . . + Xn, the mean of X is the sum of the means of the Xi’s, namely,
Eq. (5.3.3).

Next, use Theorem 4.6.7 to write

Var(X) =
n∑

i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi, Xj). (5.3.6)

Because of the symmetry among the random variables X1, . . . , Xn, every term
Cov(Xi, Xj) in the final summation in Eq. (5.3.6) will have the same value as
Cov(X1, X2). Since there are

(
n
2

)
terms in this summation, it follows from Eqs. (5.3.5)

and (5.3.6) that

Var(X) = nAB

(A + B)2
+ n(n − 1) Cov(X1, X2). (5.3.7)

We could compute Cov(X1, X2) directly, but it is simpler to argue as follows. If
n = A + B, then Pr(X = A) = 1because all the balls in the box will be selected without
replacement. Thus, for n = A + B, X is a constant random variable and Var(X) = 0.
Setting Eq. (5.3.7) to 0 and solving for Cov(X1, X2) gives

Cov(X1, X2) = − AB

(A + B)2(A + B − 1)
.

Plugging this value back into Eq. (5.3.7) gives Eq. (5.3.4).

Comparison of Sampling Methods

If we had sampled with replacement in Example 5.3.1, the number of red balls would
have the binomial distribution with parameters n and A/(A + B). In that case, the
mean number of red balls would still be nA/(A + B), but the variance would be
different. To see how the variances from sampling with and without replacement are
related, let T = A + B denote the total number of balls in the box, and let p = A/T

denote the proportion of red balls in the box. Then Eq. (5.3.4) can be rewritten as
follows:

Var(X) = np(1 − p)
T − n

T − 1
. (5.3.8)
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The variance np(1 − p) of the binomial distribution is the variance of the number
of red balls when sampling with replacement. The factor α = (T − n)/(T − 1) in
Eq. (5.3.8) therefore represents the reduction in Var(X) caused by sampling without
replacement from a finite population. This α is called the finite population correction
in the theory of sampling from finite populations without replacement.

If n = 1, the value of this factor α is 1, because there is no distinction between
sampling with replacement and sampling without replacement when only one ball is
being selected. If n = T , then (as previously mentioned) α = 0 and Var(X) = 0. For
values of n between 1 and T , the value of α will be between 0 and 1.

For each fixed sample size n, it can be seen that α → 1 as T → ∞. This limit
reflects the fact that when the population size T is very large compared to the sample
size n, there is very little difference between sampling with replacement and sampling
without replacement. Theorem 5.3.4 expresses this idea more formally. The proof
relies on the following result which gets used several times in this text.

Theorem
5.3.3

Let an and cn be sequences of real numbers such that an converges to 0, and cna
2
n

converges to 0. Then

lim
n→∞(1 + an)

cne−ancn = 1.

In particular, if ancn converges to b, then (1 + an)
cn converges to eb.

The proof of Theorem 5.3.3 is left to the reader in Exercise 11.

Theorem
5.3.4

Closeness of Binomial and Hypergeometric Distributions. Let 0 < p < 1, and let n be
a positive integer. Let Y have the binomial distribution with parameters n and p.
For each positive integer T , let AT and BT be integers such that limT →∞ AT = ∞,
limT →∞ BT = ∞, and limT →∞ AT /(AT + BT ) = p. Let XT have the hypergeometric
distribution with parameters AT , BT , and n. For each fixed n and each x = 0, . . . , n,

lim
T →∞

Pr(Y = x)

Pr(XT = x)
= 1. (5.3.9)

Proof Once AT and BT are both larger than n, the formula in (5.3.1) is Pr(XT = x)

for all x = 0, . . . , n. So, for large T , we have

Pr(XT = x) =
(

n

x

)
AT !BT !(AT + BT − n)!

(AT − x)!(BT − n + x)!(AT + BT )!
.

Apply Stirling’s formula (Theorem 1.7.5) to each of the six factorials in the second
factor above. A little manipulation gives that

lim
T →∞

(
n
x

)
A

AT +1/2
T B

BT +1/2
T (AT + BT − n)AT +BT −n+1/2

Pr(XT = x)(AT − x)AT −x+1/2(BT − n + x)BT −n+x+1/2(AT + BT )AT +BT +1/2

(5.3.10)

equals 1. Each of the following limits follows from Theorem 5.3.3:

lim
T →∞

(
AT

AT − x

)AT −x+1/2

= ex

lim
T →∞

(
BT

BT − n + x

)BT −n+x+1/2

= en−x

lim
T →∞

(
AT + BT − n

AT + BT

)AT +BT −n+1/2

= e−n.
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Inserting these limits in (5.3.10) yields

lim
T →∞

(
n
x

)
Ax

T Bn−x
T

Pr(XT = x)(AT + BT )n
= 1. (5.3.11)

Since AT /(AT + BT ) converges to p, we have

lim
T →∞

Ax
T Bn−x

T

(AT + BT )n
= px(1 − p)n−x. (5.3.12)

Together, (5.3.11) and (5.3.12) imply that

lim
T →∞

(
n
x

)
px(1 − p)n−x

Pr(XT = x)
= 1.

The numerator of this last expression is Pr(Y = x); hence, (5.3.9) holds.

In words, Theorem 5.3.4 says that if the sample size n represents a negligible fraction
of the total population A + B, then the hypergeometric distribution with parameters
A, B, and n will be very nearly the same as the binomial distribution with parameters
n and p = A/(A + B).

Example
5.3.3

Population of Unknown Composition. The hypergeometric distribution can arise as a
conditional distribution when sampling is done without replacement from a finite
population of unknown composition. The simplest example would be to modify
Example 5.3.1 so that we still know the value of T = A + B but no longer know
A and B. That is, we know how many balls are in the box, but we don’t know how
many are red or blue. This makes P = A/T , the proportion of red balls, unknown.
Let h(p) be the p.f. of P . Here P is a random variable whose possible values are
0, 1/T, . . . , (T − 1)/T, 1. Conditional on P = p, we can behave as if we know that
A = pT and B = (1 − p)T , and then the conditional distribution of X (the number
of red balls in a sample of size n) is the hypergeometric distribution with parameters
pT , (1 − p)T , and n.

Suppose now that T is so large that the difference is essentially negligible be-
tween this hypergeometric distribution and the binomial distribution with parame-
ters n and p. In this case, it is no longer necessary that we assume that T is known.
This is the situation that we had in mind (in Examples 3.4.10 and 3.6.7, as well as
their many variations and other examples) when we referred to P as the proportion
of successes among all patients who might receive a treatment or the proportion of
defectives among all parts produced by a machine. We think of T as essentially infi-
nite so that conditional on the proportion A/T , which we call P , the individual draws
become independent Bernoulli trials. If either A or T (or both) is unknown, it makes
sense that P = A/T will be unknown. In the augmented experiment described on
page 61, in which P can be computed from the experimental outcome, we have that
P is a random variable. �

Note: Essentially Infinite Populations. The case in which T is essentially infinite
in Example 5.3.3 is the motivation for using the binomial distributions as models
for numbers of successes in samples from very large finite populations. Look at
Example 5.2.6, for instance. The number of Mexican Americans available to be
sampled for grand jury duty is finite, but it is huge relative to the number (220) of
grand jurors selected during the 2.5-year period. Technically, it is impossible that the
individual grand jurors are selected independently, but the difference is too small for
even the best defense attorney to make anything out of it. In the future, we will often
model Bernoulli random variables as independent when we imagine selecting them
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at random without replacement from a huge finite population. We shall be relying
on Theorem 5.3.4 in these cases without explicitly saying so.

Extending the Definition of Binomial Coefficients

There is an extension of the definition of a binomial coefficient given in Sec. 1.8
that allows a simplification of the expression for the p.f. of the hypergeometric
distribution. For all positive integers r and m, where r ≤ m, the binomial coefficient(
m
r

)
was defined to be (

m

r

)
= m!

r!(m − r)!
. (5.3.13)

It can be seen that the value of
(
m
r

)
specified by Eq. (5.3.13) can also be written

in the form (
m

r

)
= m(m − 1) . . . (m − r + 1)

r!
. (5.3.14)

For every real number m that is not necessarily a positive integer and every
positive integer r , the value of the right side of Eq. (5.3.14) is a well-defined number.
Therefore, for every real number m and every positive integer r , we can extend
the definition of the binomial coefficient

(
m
r

)
by defining its value as that given by

Eq. (5.3.14).
The value of the binomial coefficient

(
m
r

)
can be obtained from this definition

for all positive integers r and m. If r ≤ m, the value of
(
m
r

)
is given by Eq.(5.3.13). If

r > m, one of the factors in the numerator of (5.3.14) will be 0 and
(
m
r

) = 0. Finally,
for every real number m, we shall define the value of

(
m
0

)
to be

(
m
0

) = 1.
When this extended definition of a binomial coefficient is used, it can be seen

that the value of
(
A
x

)(
B

n−x

)
is 0 for every integer x such that either x > A or n − x > B.

Therefore, we can write the p.f. of the hypergeometric distribution with parameters
A, B, and n as follows:

f (x|A, B, n) =

⎧⎪⎪⎨⎪⎪⎩
(
A
x

)(
B

n − x

)
(
A + B

n

) for x = 0, 1, . . . , n,

0 otherwise.

(5.3.15)

It then follows from Eq. (5.3.14) that f (x|A, B, n) > 0 if and only if x is an integer in
the interval (5.3.2).

Summary

We introduced the family of hypergeometric distributions. Suppose that n units are
drawn at random without replacement from a finite population consisting of T units
of which A are successes and B = T − A are failures. Let X stand for the number of
successes in the sample. Then the distribution of X is the hypergeometric distribution
with parameters A, B, and n. We saw that the distinction between sampling from
a finite population with and without replacement is negligible when the size of the
population is huge relative to the size of the sample. We also generalized the binomial
coefficient notation so that

(
m
r

)
is defined for all real numbers m and all positive

integers r .
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Exercises

1. In Example 5.3.2, compute the probability that all 10
success patients appear in the subsample of size 11 from
the Placebo group.

2. Suppose that a box contains five red balls and ten blue
balls. If seven balls are selected at random without re-
placement, what is the probability that at least three red
balls will be obtained?

3. Suppose that seven balls are selected at random with-
out replacement from a box containing five red balls and
ten blue balls. If X denotes the proportion of red balls in
the sample, what are the mean and the variance of X?

4. If a random variable X has the hypergeometric distri-
bution with parameters A = 8, B = 20, and n, for what
value of n will Var(X) be a maximum?

5. Suppose that n students are selected at random without
replacement from a class containing T students, of whom
A are boys and T − A are girls. Let X denote the number of
boys that are obtained. For what sample size n will Var(X)

be a maximum?

6. Suppose that X1 and X2 are independent random vari-
ables, that X1 has the binomial distribution with param-
eters n1 and p, and that X2 has the binomial distribution
with parameters n2 and p, where p is the same for both X1
and X2. For each fixed value of k (k = 1, 2, . . . , n1 + n2),
prove that the conditional distribution of X1 given that

X1 + X2 = k is hypergeometric with parameters n1, n2,
and k.

7. Suppose that in a large lot containing T manufactured
items, 30 percent of the items are defective and 70 per-
cent are nondefective. Also, suppose that ten items are
selected at random without replacement from the lot. De-
termine (a) an exact expression for the probability that not
more than one defective item will be obtained and (b) an
approximate expression for this probability based on the
binomial distribution.

8. Consider a group of T persons, and let a1, . . . , aT de-
note the heights of these T persons. Suppose that n per-
sons are selected from this group at random without re-
placement, and let X denote the sum of the heights of
these n persons. Determine the mean and variance of X.

9. Find the value of
(3/2

4

)
.

10. Show that for all positive integers n and k,(−n

k

)
= (−1)k

(
n + k − 1

k

)
.

11. Prove Theorem 5.3.3. Hint: Prove that

lim
n→∞ cn log(1 + an) − ancn = 0

by applying Taylor’s theorem with remainder (see Exer-
cise 13 in Sec. 4.2) to the function f (x) = log(1 + x) around
x = 0.

5.4 The Poisson Distributions
Many experiments consist of observing the occurrence times of random arrivals.
Examples include arrivals of customers for service, arrivals of calls at a switch-
board, occurrences of floods and other natural and man-made disasters, and so
forth. The family of Poisson distributions is used to model the number of such
arrivals that occur in a fixed time period. Poisson distributions are also useful
approximations to binomial distributions with very small success probabilities.

Definition and Properties of the Poisson Distributions

Example
5.4.1

Customer Arrivals. A store owner believes that customers arrive at his store at a rate
of 4.5 customers per hour on average. He wants to find the distribution of the actual
number X of customers who will arrive during a particular one-hour period later in
the day. He models customer arrivals in different time periods as independent of each
other. As a first approximation, he divides the one-hour period into 3600 seconds and
thinks of the arrival rate as being 4.5/3600 = 0.00125 per second. He then says that
during each second either 0 or 1 customers will arrive, and the probability of an arrival
during any single second is 0.00125. He then tries to use the binomial distribution with
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parameters n = 3600 and p = 0.00125 for the distribution of the number of customers
who arrive during the one-hour period later in the day.

He starts calculating f , the p.f. of this binomial distribution, and quickly discovers
how cumbersome the calculations are. However, he realizes that the successive values
of f (x) are closely related to each other because f (x) changes in a systematic way
as x increases. So he computes

f (x + 1)
f (x)

=
(

n
x+1

)
px+1(1 − p)n−x−1(

n
x

)
px(1 − p)n−x

= (n − x)p

(x + 1)(1 − p)
≈ np

x + 1
,

where the reasoning for the approximation at the end is as follows: For the first 30
or so values of x, n − x is essentially the same as n and dividing by 1 − p has almost
no effect because p is so small. For example, for x = 30, the actual value is 0.1441,
while the approximation is 0.1452. This approximation suggests defining λ = np and
approximating f (x + 1) ≈ f (x)λ/(x + 1) for all the values of x that matter. That is,

f (1) = f (0)λ,

f (2) = f (1)
λ

2
= f (0)

λ2

2
,

f (3) = f (2)
λ

3
= f (0)

λ3

6
,

...
Continuing the pattern for all x yields f (x) = f (0)λx/x! for all x. To obtain a p.f. for
X, he would need to make sure that

∑∞
x=0 f (x) = 1. This is easily achieved by setting

f (0) = 1∑∞
x=0 λx/x!

= e−λ,

where the last equality follows from the following well-known calculus result:

eλ =
∞∑

x=0

λx

x!
, (5.4.1)

for all λ > 0. Hence, f (x) = e−λλx/x! for x = 0, 1, . . . and f (x) = 0 otherwise is a p.f.
�

The approximation formula for the p.f. of a binomial distribution at the end
of Example 5.4.1 is actually a useful p.f. that can model many phenomena of types
similar to the arrivals of customers.

Definition
5.4.1

Poisson Distribution. Let λ > 0. A random variable X has the Poisson distribution
with mean λ if the p.f. of X is as follows:

f (x|λ) =
⎧⎨⎩ e−λλx

x!
for x = 0, 1, 2, . . . ,

0 otherwise.

(5.4.2)

At the end of Example 5.4.1, we proved that the function in Eq. (5.4.2) is indeed
a p.f. In order to justify the phrase “with mean λ” in the definition of the distribution,
we need to prove that the mean is indeed λ.

Theorem
5.4.1

Mean. The mean of the distribution with p.f. equal to (5.4.2) is λ.
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Proof If X has the distribution with p.f. f (x|λ), then E(X) is given by the following
infinite series:

E(X) =
∞∑

x=0

xf (x|λ).

Since the term corresponding to x = 0 in this series is 0, we can omit this term and
can begin the summation with the term for x = 1. Therefore,

E(X) =
∞∑

x=1

xf (x|λ) =
∞∑

x=1

x
e−λλx

x!
= λ

∞∑
x=1

e−λλx−1

(x − 1)!
.

If we now let y = x − 1 in this summation, we obtain

E(X) = λ

∞∑
y=0

e−λλy

y!
.

The sum of the series in this equation is the sum of f (y|λ), which equals 1. Hence,
E(X) = λ.

Example
5.4.2

Customer Arrivals. In Example 5.4.1, the store owner was approximating the binomial
distribution with parameters 3600 and 0.00125 with a distribution that we now know
as the Poisson distribution with mean λ = 3600 × 0.00125 = 4.5. For x = 0, . . . , 9,
Table 5.1 has the binomial and corresponding Poisson probabilities.

The division of the one-hour period into 3600 seconds was somewhat arbitrary.
The owner could have divided the hour into 7200 half-seconds or 14400 quarter-
seconds, etc. Regardless of how finely the time is divided, the product of the number
of time intervals and the rate in customers per time interval will always be 4.5 because
they are all based on a rate of 4.5 customers per hour. Perhaps the store owner would
do better simply modeling the number X of arrivals as a Poisson random variable with
mean 4.5, rather than choosing an arbitrarily sized time interval to accommodate a
tedious binomial calculation. The disadvantage to the Poisson model for X is that
there is positive probability that a Poisson random variable will be arbitrarily large,
whereas a binomial random variable with parameters n and p can never exceed n.
However, the probability is essentially 0 that a Poisson random variable with mean
4.5 will exceed 19. �

Table 5.1 Binomial and Poisson probabilities in Example 5.4.2

x

0 1 2 3 4

Binomial 0.01108 0.04991 0.11241 0.16874 0.18991

Poisson 0.01111 0.04999 0.11248 0.16872 0.18981

x

5 6 7 8 9

Binomial 0.17094 0.12819 0.08237 0.04630 0.02313

Poisson 0.17083 0.12812 0.08237 0.04633 0.02317
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Theorem
5.4.2

Variance. The variance of the Poisson distribution with mean λ is also λ.

Proof The variance can be found by a technique similar to the one used in the
proof of Theorem 5.4.1 to find the mean. We begin by considering the following
expectation:

E[X(X − 1)] =
∞∑

x=0

x(x − 1)f (x|λ) =
∞∑

x=2

x(x − 1)f (x|λ)

=
∞∑

x=2

x(x − 1)
e−λλx

x!
= λ2

∞∑
x=2

e−λλx−2

(x − 2)!
.

If we let y = x − 2, we obtain

E[X(X − 1)] = λ2
∞∑

y=0

e−λλy

y!
= λ2. (5.4.3)

Since E[X(X − 1)] = E(X2) − E(X) = E(X2) − λ, it follows from Eq. (5.4.3) that
E(X2) = λ2 + λ. Therefore,

Var(X) = E(X2) − [E(X)]2 = λ. (5.4.4)

Hence, the variance is also equal to λ.

Theorem
5.4.3

Moment Generating Function. The m.g.f. of the Poisson distribution with mean λ is

ψ(t) = eλ(et−1), (5.4.5)

for all real t .

Proof For every value of t (−∞ < t < ∞),

ψ(t) = E(etX) =
∞∑

x=0

etxe−λλx

x!
= e−λ

∞∑
x=0

(λet)x

x!
.

It follows from Eq. (5.4.1) that, for −∞ < t < ∞,

ψ(t) = e−λeλet = eλ(et−1).

The mean and the variance, as well as all other moments, can be determined
from the m.g.f. given in Eq. (5.4.5). We shall not derive the values of any other
moments here, but we shall use the m.g.f. to derive the following property of Poisson
distributions.

Theorem
5.4.4

If the random variables X1, . . . , Xk are independent and if Xi has the Poisson dis-
tribution with mean λi (i = 1, . . . , k), then the sum X1 + . . . + Xk has the Poisson
distribution with mean λ1 + . . . + λk.

Proof Let ψi(t) denote the m.g.f. of Xi for i = 1, . . . , k, and let ψ(t) denote the
m.g.f. of the sum X1 + . . . + Xk. Since X1, . . . , Xk are independent, it follows that,
for −∞ < t < ∞,

ψ(t) =
k∏

i=1

ψi(t) =
k∏

i=1

eλi(e
t−1) = e(λ1+...+λk)(e

t−1).
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It can be seen from Eq. (5.4.5) that this m.g.f. ψ(t) is the m.g.f. of the Poisson
distribution with mean λ1 + . . . + λk. Hence, the distribution of X1 + . . . + Xk must
be as stated in the theorem.

A table of probabilities for Poisson distributions with various values of the mean
λ is given at the end of this book.

Example
5.4.3

Customer Arrivals. Suppose that the store owner in Examples 5.4.1 and 5.4.2 is in-
terested not only in the number of customers that arrive in the one-hour period,
but also in how many customers arrive in the next hour after that period. Let Y be
the number of customers that arrive in the second hour. By the reasoning at the
end of Example 5.4.2, the owner might model Y as a Poisson random variable with
mean 4.5. He would also say that X and Y are independent because he has been
assuming that arrivals in disjoint time intervals are independent. According to Theo-
rem 5.4.4, X + Y would have the Poisson distribution with mean 4.5 + 4.5 = 9. What
is the probability that at least 12 customers will arrive in the entire two-hour period?
We can use the table of Poisson probabilities in the back of this book by looking in
the λ = 9 column. Either add up the numbers corresponding to k = 0, . . . , 11 and
subtract the total from 1, or add up those from k = 12 to the end. Either way, the
result is Pr(X ≥ 12) = 0.1970. �

The Poisson Approximation to Binomial Distributions

In Examples 5.4.1 and 5.4.2, we illustrated how close the Poisson distribution with
mean 4.5 is to the binomial distribution with parameters 3600 and 0.00125. We shall
now demonstrate a general version of that result, namely, that when the value of n

is large and the value of p is close to 0, the binomial distribution with parameters n

and p can be approximated by the Poisson distribution with mean np.

Theorem
5.4.5

Closeness of Binomial and Poisson Distributions. For each integer n and each 0 < p < 1,
let f (x|n, p) denote the p.f. of the binomial distribution with parameters n and p.
Let f (x|λ) denote the p.f. of the Poisson distribution with mean λ. Let {pn}∞n=1 be a
sequence of numbers between 0 and 1 such that limn→∞ npn = λ. Then

lim
n→∞ f (x|n, pn) = f (x|λ),

for all x = 0, 1, . . . .

Proof We begin by writing

f (x|n, pn) = n(n − 1) . . . (n − x + 1)
x!

px
n
(1 − pn)

n−x.

Next, let λn = npn so that limn→∞ λn = λ. Then f (x|n, pn) can be rewritten in the
following form:

f (x|n, pn) = λx
n

x!
n

n
. n − 1

n
. . . n − x + 1

n

(
1 − λn

n

)n(
1 − λn

n

)−x

. (5.4.6)

For each x ≥ 0,

lim
n→∞

n

n
. n − 1

n
. . . n − x + 1

n

(
1 − λn

n

)−x

= 1.
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Furthermore, it follows from Theorem 5.3.3 that

lim
n→∞

(
1 − λn

n

)n

= e−λ. (5.4.7)

It now follows from Eq. (5.4.6) that for every x ≥ 0,

lim
n→∞ f (x|n, pn) = e−λλx

x!
= f (x|λ).

Example
5.4.4

Approximating a Probability. Suppose that in a large population the proportion of
people who have a certain disease is 0.01. We shall determine the probability that in
a random group of 200 people at least four people will have the disease.

In this example, we can assume that the exact distribution of the number of
people having the disease among the 200 people in the random group is the binomial
distribution with parameters n = 200 and p = 0.01. Therefore, this distribution can
be approximated by the Poisson distribution for which the mean is λ = np = 2. If X

denotes a random variable having this Poisson distribution, then it can be found from
the table of the Poisson distribution at the end of this book that Pr(X ≥ 4) = 0.1428.
Hence, the probability that at least four people will have the disease is approximately
0.1428. The actual value is 0.1420. �

Theorem 5.4.5 says that if n is large and p is small so that np is close to λ, then the
binomial distribution with parameters n and p is close to the Poisson distribution with
mean λ. Recall Theorem 5.3.4, which says that if A and B are large compared to n and
if A/(A + B) is close to p, then the hypergeometric distribution with parameters A, B,
and n is close to the binomial distribution with parameters n and p. These two results
can be combined into the following theorem, whose proof is left to Exercise 17.

Theorem
5.4.6

Closeness of Hypergeometric and Poisson Distributions. Let λ > 0. Let Y have the
Poisson distribution with mean λ. For each positive integer T , let AT , BT , and
nT be integers such that limT →∞ AT = ∞, limT →∞ BT = ∞, limT →∞ nT = ∞, and
limT →∞ nT AT /(AT + BT ) = λ. Let XT have the hypergeometric distribution with
parameters AT , BT , and nT . For each fixed x = 0, 1, . . .,

lim
T →∞

Pr(Y = x)

Pr(XT = x)
= 1.

Poisson Processes

Example
5.4.5

Customer Arrivals. In Example 5.4.3, the store owner believes that the number of
customers that arrive in each one-hour period has the Poisson distribution with mean
4.5. What if the owner is interested in a half-hour period or a 4-hour and 15-minute
period? Is it safe to assume that the number of customers that arrive in a half-hour
period has the Poisson distribution with mean 2.25? �

In order to be sure that all of the distributions for the various numbers of arrivals
in Example 5.4.5 are consistent with each other, the store owner needs to think about
the overall process of customer arrivals, not just a few isolated time periods. The
following definition gives a model for the overall process of arrivals that will allow
the store owner to construct distributions for all the counts of customer arrivals that
interest him as well as other useful things.
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Definition
5.4.2

Poisson Process. A Poisson process with rate λ per unit time is a process that satisfies
the following two properties:

i. The number of arrivals in every fixed interval of time of length t has the Poisson
distribution with mean λt .

ii. The numbers of arrivals in every collection of disjoint time intervals are inde-
pendent.

The answer to the question at the end of Example 5.4.5 will be “yes” if the store
owner makes the assumption that customers arrive according to a Poisson process
with rate 4.5 per hour. Here is another example.

Example
5.4.6

Radioactive Particles. Suppose that radioactive particles strike a certain target in
accordance with a Poisson process at an average rate of three particles per minute.
We shall determine the probability that 10 or more particles will strike the target in
a particular two-minute period.

In a Poisson process, the number of particles striking the target in any particular
one-minute period has the Poisson distribution with mean λ. Since the mean num-
ber of strikes in any one-minute period is 3, it follows that λ = 3 in this example.
Therefore, the number of strikes X in any two-minute period will have the Poisson
distribution with mean 6. It can be found from the table of the Poisson distribution
at the end of this book that Pr(X ≥ 10) = 0.0838. �

Note: Generality of Poisson Processes. Although we have introduced Poisson pro-
cesses in terms of counts of arrivals during time intervals, Poisson processes are
actually more general. For example, a Poisson process can be used to model occur-
rences in space as well as time. A Poisson process could be used to model telephone
calls arriving at a switchboard, atomic particles emitted from a radioactive source,
diseased trees in a forest, or defects on the surface of a manufactured product. The
reason for the popularity of the Poisson process model is twofold. First, the model
is computationally convenient. Second, there is a mathematical justification for the
model if one makes three plausible assumptions about how the phenomena occur.
We shall present the three assumptions in some detail after another example.

Example
5.4.7

Cryptosporidium in Drinking Water. Cryptosporidium is a genus of protozoa that oc-
curs as small oocysts and can cause painful sickness and even death when ingested.
Occasionally, oocysts are detected in public drinking water supplies. A concentration
as low as one oocyst per five liters can be enough to trigger a boil-water advisory. In
April 1993, many thousands of people became ill during a cryptosporidiosis outbreak
in Milwaukee, Wisconsin. Different water systems have different systems for moni-
toring protozoa occurrence in drinking water. One problem with monitoring systems
is that detection technology is not always very sensitive. One popular technique is to
push a large amount of water through a very fine filter and then treat the material
captured on the filter in a way that identifies Cryptosporidium oocysts. The number
of oocysts is then counted and recorded. Even if there is an oocyst on the filter, the
probability can be as low as 0.1 that it will get counted.

Suppose that, in a particular water supply, oocysts occur according to a Poisson
process with rate λ oocysts per liter. Suppose that the filtering system is capable of
capturing all oocysts in a sample, but that the counting system has probability p of
actually observing each oocyst that is on the filter. Assume that the counting system
observes or misses each oocyst on the filter independently. What is the distribution
of the number of counted oocysts from t liters of filtered water?



294 Chapter 5 Special Distributions

Let Y be the number of oocysts in the t liters (all of which make it onto the filter).
Then Y has the Poisson distribution with mean λt . Let Xi = 1 if the ith oocyst on the
filter gets counted, and Xi = 0 if not. Let X be the counted number of oocysts so that
X = X1 + . . . + Xy if Y = y. Conditional on Y = y, we have assumed that the Xi are
independent Bernoulli random variables with parameter p, so X has the binomial
distribution with parameters y and p conditional on Y = y. We want the marginal
distribution of X. This can be found using the law of total probability for random
variables (3.6.11). For x = 0, 1, . . . ,

f1(x) =
∞∑

y=0

g1(x|y)f2(y)

=
∞∑

y=x

(
y

x

)
px(1 − p)y−xe−λt (λt)y

y!

= e−λt (pλt)x

x!

∞∑
y=x

[λt (1 − p)]y−x

(y − x)!

= e−λt (pλt)x

x!

∞∑
u=0

[λt (1 − p)]u

u!

= e−λt (pλt)x

x!
eλt(1−p) = e−pλt (pλt)x

x!
.

This is easily recognized as the p.f. of the Poisson distribution with mean pλt . The
effect of losing a fraction 1 − p of the oocyst count is merely to lower the rate of the
Poisson process from λ per liter to pλ per liter.

Suppose that λ = 0.2 and p = 0.1. How much water must we filter in order
for there to be probability at least 0.9 that we will count at least one oocyst? The
probability of counting at least one oocyst is 1 minus the probability of counting
none, which is e−pλt = e−0.02t . So, we need t large enough so that 1 − e−0.02t ≥ 0.9,
that is, t ≥ 115. A typical procedure is to test 100 liters, which would have probability
1 − e−.02×100 = 0.86 of detecting at least one oocyst. �

Assumptions Underlying the Poisson Process Model

In what follows, we shall refer to time intervals, but the assumptions can be used
equally well for subregions of two- or three-dimensional regions or sublengths of
a linear distance. Indeed, a Poisson process can be used to model occurrences in
any region that can be subdivided into arbitrarily small pieces. There are three
assumptions that lead to the Poisson process model.

The first assumption is that the numbers of occurrences in any collection of
disjoint intervals of time must be mutually independent. For example, even though
an unusually large number of telephone calls are received at a switchboard during
a particular interval, the probability that at least one call will be received during a
forthcoming interval remains unchanged. Similarly, even though no call has been
received at the switchboard for an unusually long interval, the probability that a call
will be received during the next short interval remains unchanged.

The second assumption is that the probability of an occurrence during each
very short interval of time must be approximately proportional to the length of
that interval. To express this condition more formally, we shall use the standard
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mathematical notation in which o(t) denotes any function of t having the property
that

lim
t→0

o(t)

t
= 0. (5.4.8)

According to (5.4.8), o(t) must be a function that approaches 0 as t → 0, and, fur-
thermore, this function must approach 0 at a rate faster than t itself. An example of
such a function is o(t) = tα, where α > 1. It can be verified that this function satisfies
Eq. (5.4.8). The second assumption can now be expressed as follows: There exists a
constant λ > 0 such that for every time interval of length t , the probability of at least
one occurrence during that interval has the form λt + o(t). Thus, for every very small
value of t , the probability of at least one occurrence during an interval of length t is
equal to λt plus a quantity having a smaller order of magnitude.

One of the consequences of the second assumption is that the process being ob-
served must be stationary over the entire period of observation; that is, the probability
of an occurrence must be the same over the entire period. There can be neither busy
intervals, during which we know in advance that occurrences are likely to be more
frequent, nor quiet intervals, during which we know in advance that occurrences are
likely to be less frequent. This condition is reflected in the fact that the same con-
stant λ expresses the probability of an occurrence in every interval over the entire
period of observation. The second assumption can be relaxed at the cost of more
complicated mathematics, but we shall not do so here.

The third assumption is that, for each very short interval of time, the probability
that there will be two or more occurrences in that interval must have a smaller order
of magnitude than the probability that there will be just one occurrence. In symbols,
the probability of two or more occurrences in a time interval of length t must be
o(t). Thus, the probability of two or more occurrences in a small interval must be
negligible in comparison with the probability of one occurrence in that interval. Of
course, it follows from the second assumption that the probability of one occurrence
in that same interval will itself be negligible in comparison with the probability of no
occurrences.

Under the preceding three assumptions, it can be shown that the process will
satisfy the definition of a Poisson process with rate λ. See Exercise 16 in this section
for one method of proof.

Summary

Poisson distributions are used to model data that arrive as counts. A Poisson process
with rate λ is a model for random occurrences that have a constant expected rate λ

per unit time (or per unit area). We must assume that occurrences in disjoint time
intervals (or disjoint areas) are independent and that two or more occurrences cannot
happen at the same time (or place). The number of occurrences in an interval of
length (or area of size) t has the Poisson distribution with mean tλ. If n is large and
p is small, then the binomial distribution with parameters n and p is approximately
the same as the Poisson distribution with mean np.
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Exercises

1. In Example 5.4.7, with λ = 0.2 and p = 0.1, compute
the probability that we would detect at least two oocysts
after filtering 100 liters of water.

2. Suppose that on a given weekend the number of acci-
dents at a certain intersection has the Poisson distribution
with mean 0.7. What is the probability that there will be at
least three accidents at the intersection during the week-
end?

3. Suppose that the number of defects on a bolt of cloth
produced by a certain process has the Poisson distribution
with mean 0.4. If a random sample of five bolts of cloth is
inspected, what is the probability that the total number of
defects on the five bolts will be at least 6?

4. Suppose that in a certain book there are on the average
λ misprints per page and that misprints occurred accord-
ing to a Poisson process. What is the probability that a
particular page will contain no misprints?

5. Suppose that a book with n pages contains on the av-
erage λ misprints per page. What is the probability that
there will be at least m pages which contain more than k

misprints?

6. Suppose that a certain type of magnetic tape contains
on the average three defects per 1000 feet. What is the
probability that a roll of tape 1200 feet long contains no
defects?

7. Suppose that on the average a certain store serves 15
customers per hour. What is the probability that the store
will serve more than 20 customers in a particular two-hour
period?

8. Suppose that X1 and X2 are independent random vari-
ables and that Xi has the Poisson distribution with mean
λi (i = 1, 2). For each fixed value of k (k = 1, 2, . . .), de-
termine the conditional distribution of X1 given that X1 +
X2 = k.

9. Suppose that the total number of items produced by
a certain machine has the Poisson distribution with mean
λ, all items are produced independently of one another,
and the probability that any given item produced by the
machine will be defective is p. Determine the marginal
distribution of the number of defective items produced by
the machine.

10. For the problem described in Exercise 9, let X denote
the number of defective items produced by the machine,
and let Y denote the number of nondefective items pro-
duced by the machine. Show that X and Y are independent
random variables.

11. The mode of a discrete distribution was defined in
Exercise 12 of Sec. 5.2. Determine the mode or modes of
the Poisson distribution with mean λ.

12. Suppose that the proportion of colorblind people in
a certain population is 0.005. What is the probability that
there will not be more than one colorblind person in a
randomly chosen group of 600 people?

13. The probability of triplets in human births is approx-
imately 0.001. What is the probability that there will be
exactly one set of triplets among 700 births in a large hos-
pital?

14. An airline sells 200 tickets for a certain flight on an
airplane that has only 198 seats because, on the average,
1 percent of purchasers of airline tickets do not appear
for the departure of their flight. Determine the probability
that everyone who appears for the departure of this flight
will have a seat.

15. Suppose that internet users access a particular Web
site according to a Poisson process with rate λ per hour,
but λ is unknown. The Web site maintainer believes that
λ has a continuous distribution with p.d.f.

f (λ) =
{

2e−2λ for λ > 0,
0 otherwise.

Let X be the number of users who access the Web
site during a one-hour period. If X = 1 is observed, find
the conditional p.d.f. of λ given X = 1.

16. In this exercise, we shall prove that the three assump-
tions underlying the Poisson process model do indeed
imply that occurrences happen according to a Poisson
process. What we need to show is that, for each t , the
number of occurrences during a time interval of length t

has the Poisson distribution with mean λt . Let X stand for
the number of occurrences during a particular time inter-
val of length t . Feel free to use the following extension of
Eq. (5.4.7): For all real a,

lim
u→0

(1 + au + o(u))1/u = ea, (5.4.9)

a. For each positive integer n, divide the time interval
into n disjoint subintervals of length t/n each. For
i = 1, . . . , n, let Yi = 1 if exactly one arrival occurs in
the ith subinterval, and let Ai be the event that two or
more occurrences occur during the ith subinterval.
Let Wn = ∑n

i=1 Yi. For each nonnegative integer k,
show that we can write Pr(X = k) = Pr(Wn = k) +
Pr(B), where B is a subset of ∪n

i=1Ai.

b. Show that limn→∞ Pr(∪n
i=1Ai) = 0. Hint: Show that

Pr(∩n
i=1A

c
i
) = (1 + o(u))1/u where u = 1/n.

c. Show that limn→∞ Pr(Wn = k) = e−λ(λt)k/k!. Hint:
limn→∞ n!/[nk(n − k)!] = 1.

d. Show that X has the Poisson distribution with mean
λt .
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17. Prove Theorem 5.4.6. One approach is to adapt the
proof of Theorem 5.3.4 by replacing n by nT in that proof.
The steps of the proof that are significanlty different are
the following. (i) You will need to show that BT − nT goes
to ∞. (ii) The three limits that depend on Theorem 5.3.3
need to be rewritten as ratios converging to 1. For exam-
ple, the second one is rewritten as

lim
T →∞

(
BT

BT − nT + x

)BT −nT +x+1/2

e−nT +x = 1.

You’ll need a couple more such limits as well. (iii) Instead
of (5.3.12), prove that

lim
T →∞

nx
T
Ax

T
B

nT −x

T

(AT + BT )nT
= λxe−λ.

18. Let AT , BT , and nT be sequences, all three of which go
to ∞ as T → ∞. Prove that limT →∞ nT AT /(AT + BT ) = λ

if and only if limT →∞ nT AT /BT = λ.

5.5 The Negative Binomial Distributions
Earlier we learned that, in n Bernoulli trials with probability of success p, the
number of successes has the binomial distribution with parameters n and p. Instead
of counting successes in a fixed number of trials, it is often necessary to observe
the trials until we see a fixed number of successes. For example, while monitoring
a piece of equipment to see when it needs maintenance, we might let it run until it
produces a fixed number of errors and then repair it. The number of failures until
a fixed number of successes has a distribution in the family of negative binomial
distributions.

Definition and Interpretation

Example
5.5.1

Defective Parts. Suppose that a machine produces parts that can be either good or
defective. Let Xi = 1 if the ith part is defective and Xi = 0 otherwise. Assume that
the parts are good or defective independently of each other with Pr(Xi = 1) = p for
all i. An inspector observes the parts produced by this machine until she sees four
defectives. Let X be the number of good parts observed by the time that the fourth
defective is observed. What is the distribution of X? �

The problem described in Example 5.5.1 is typical of a general situation in which
a sequence of Bernoulli trials can be observed. Suppose that an infinite sequence
of Bernoulli trials is available. Call the two possible outcomes success and failure,
with p being the probability of success. In this section, we shall study the distribution
of the total number of failures that will occur before exactly r successes have been
obtained, where r is a fixed positive integer.

Theorem
5.5.1

Sampling until a Fixed Number of Successes. Suppose that an infinite sequence of
Bernoulli trials with probability of success p are available. The number X of failures
that occur before the rth success has the following p.d.f.:

f (x|r, p) =
{ (

r + x − 1
x

)
pr(1 − p)x for x = 0, 1, 2, . . . ,

0 otherwise.
(5.5.1)

Proof For n = r, r + 1, . . . , we shall let An denote the event that the total number of
trials required to obtain exactly r successes is n. As explained in Example 2.2.8, the
event An will occur if and only if exactly r − 1 successes occur among the first n − 1
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trials and the rth success is obtained on the nth trial. Since all trials are independent,
it follows that

Pr(An) =
(

n − 1
r − 1

)
pr−1(1 − p)(n−1)−(r−1) . p =

(
n − 1
r − 1

)
pr(1 − p)n−r. (5.5.2)

For each value of x (x = 0, 1, 2, . . .), the event that exactly x failures are obtained
before the rth success is obtained is the same as the event that the total number
of trials required to obtain r successes is r + x. In other words, if X denotes the
number of failures that will occur before the rth success is obtained, then Pr(X =
x) = Pr(Ar+x). Eq. (5.5.1) now follows from Eq. (5.5.2).

Definition
5.5.1

Negative Binomial Distribution. A random variable X has the negative binomial dis-
tribution with parameters r and p (r = 1, 2, . . . and 0 < p < 1) if X has a discrete
distribution for which the p.f. f (x|r, p) is as specified by Eq. (5.5.1).

Example
5.5.2

Defective Parts. Example 5.5.1 is worded so that defective parts are successes and
good parts are failures. The distribution of the number X of good parts observed by
the time of the fourth defective is the negative binomial distribution with parameters
4 and p. �

The Geometric Distributions

The most common special case of a negative binomial random variable is one for
which r = 1. This would be the number of failures until the first success.

Definition
5.5.2

Geometric Distribution. A random variable X has the geometric distribution with
parameter p (0 < p < 1) if X has a discrete distribution for which the p.f. f (x|1, p) is
as follows:

f (x|1, p) =
{

p(1 − p)x for x = 0, 1, 2, . . . ,

0 otherwise.
(5.5.3)

Example
5.5.3

Triples in the Lottery. A common daily lottery game involves the drawing of three
digits from 0 to 9 independently with replacement and independently from day to
day. Lottery watchers often get excited when all three digits are the same, an event
called triples. If p is the probability of obtaining triples, and if X is the number of
days without triples before the first triple is observed, then X has the geometric
distribution with parameter p. In this case, it is easy to see that p = 0.01, since there
are 10 different triples among the 1000 equally likely daily numbers. �

The relationship between geometric and negative binomial distributions goes
beyond the fact that the geometric distributions are special cases of negative binomial
distributions.

Theorem
5.5.2

If X1, . . . , Xr are i.i.d. random variables and if each Xi has the geometric distribution
with parameter p, then the sum X1 + . . . + Xr has the negative binomial distribution
with parameters r and p.

Proof Consider an infinite sequence of Bernoulli trials with success probability p.
Let X1 denote the number of failures that occur before the first success is obtained;
then X1 will have the geometric distribution with parameter p.

Now continue observing the Bernoulli trials after the first success. For j =
2, 3, . . . , let Xj denote the number of failures that occur after j − 1 successes have
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been obtained but before the j th success is obtained. Since all the trials are indepen-
dent and the probability of obtaining a success on each trial is p, it follows that each
random variable Xj will have the geometric distribution with parameter p and that
the random variables X1, X2, . . . will be independent. Furthermore, for r = 1, 2, . . . ,

the sum X1 + . . . + Xr will be equal to the total number of failures that occur before
exactly r successes have been obtained. Therefore, this sum will have the negative
binomial distribution with parameters r and p.

Properties of Negative Binomial and Geometric Distributions

Theorem
5.5.3

Moment Generating Function. If X has the negative binomial distribution with param-
eters r and p, then the m.g.f. of X is as follows:

ψ(t) =
(

p

1 − (1 − p)et

)r

for t < log
(

1
1 − p

)
. (5.5.4)

The m.g.f. of the geometric distribution with parameter p is the special case of
Eq. (5.5.4) with r = 1.

Proof Let X1, . . . , Xr be a random sample of r geometric random variables each with
parameter p. We shall find the m.g.f. of X1 and then apply Theorems 4.4.4 and 5.5.2
to find the m.g.f. of the negative binomial distribution with parameters r and p.

The m.g.f. ψ1(t) of X1 is

ψ1(t) = E(etX1) = p

∞∑
x=0

[(1 − p)et]x. (5.5.5)

The infinite series in Eq. (5.5.5) will have a finite sum for every value of t such that
0 < (1 − p)et < 1, that is, for t < log(1/[1 − p]). It is known from elementary calculus
that for every number α (0 < α < 1),

∞∑
x=0

αx = 1
1 − α

.

Therefore, for t < log(1/[1 − p]), the m.g.f. of the geometric distribution with param-
eter p is

ψ1(t) = p

1 − (1 − p)et
. (5.5.6)

Each of X1, . . . , Xr has the same m.g.f., namely, ψ1. According to Theorem 4.4.4,
the m.g.f. of X = X1 + . . . + Xr is ψ(t) = [ψ1(t)]

r . Theorem 5.5.2 says that X has the
negative binomial distribution with parameters r and p, and hence the m.g.f. of X is
[ψ1(t)]

r , which is the same as Eq. (5.5.4).

Theorem
5.5.4

Mean and Variance. If X has the negative binomial distribution with parameters r and
p, the mean and the variance of X must be

E(X) = r(1 − p)

p
and Var(X) = r(1 − p)

p2
. (5.5.7)

The mean and variance of the geometric distribution with parameter p are the special
case of Eq. (5.5.7) with r = 1.
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Proof Let X1 have the geometric distribution with parameter p. We will find the
mean and variance by differentiating the m.g.f. Eq. (5.5.5):

E(X1) = ψ ′
1(0) = 1 − p

p
, (5.5.8)

Var(X1) = ψ ′′
1 (0) − [ψ ′

1(0)]2 = 1 − p

p2
. (5.5.9)

If X has the negative binomial distribution with parameters r and p, represent it as
the sum X = X1 + . . . + Xr of r independent random variables, each having the same
distribution as X1. Eq. (5.5.7) now follows from Eqs. (5.5.8) and (5.5.9).

Example
5.5.4

Triples in the Lottery. In Example 5.5.3, the number X of daily draws without a triple
until we see a triple has the geometric distribution with parameter p = 0.01. The total
number of days until we see the first triple is then X + 1. So, the expected number of
days until we observe triples is E(X) + 1 = 100.

Now suppose that a lottery player has been waiting 120 days for triples to occur.
Such a player might conclude from the preceeding calculation that triples are “due.”
The most straightforward way to address such a claim would be to start by calculating
the conditional distribution of X given that X ≥ 120. �

The next result says that the lottery player at the end of Example 5.5.4 couldn’t
be farther from correct. Regardless of how long he has waited for triples, the time
remaining until triples occur has the same geometric distribution (and the same
mean) as it had when he started waiting. The proof is simple and is left as Exercise 8.

Theorem
5.5.5

Memoryless Property of Geometric Distributions. Let X have the geometric distribution
with parameter p, and let k ≥ 0. Then for every integer t ≥ 0,

Pr(X = k + t |X ≥ k) = Pr(X = t).

The intuition behind Theorem 5.5.5 is the following: Think of X as the number of
failures until the first success in a sequence of Bernoulli trials. Let Y be the number
of failures starting with the k + 1st trial until the next success. Then Y has the same
distribution as X and is independent of the first k trials. Hence, conditioning on
anything that happened on the first k trials, such as no successes yet, doesn’t affect
the distribution of Y—it is still the same geometric distribution. A formal proof can
be given in Exercise 8. In Exercise 13, you can prove that the geometric distributions
are the only discrete distributions that have the memoryless property.

Example
5.5.5

Triples in the Lottery. In Example 5.5.4, after the first 120 non-triples, the process
essentially starts over again and we still have to wait a geometric amount of time
until the first triple.

At the beginning of the experiment, the expected number of failures (non-
triples) that will occur before the first success (triples) is (1 − p)/p, as given by
Eq. (5.5.8). If it is known that failures were obtained on the first 120 trials, then the
conditional expected total number of failures before the first success (given the 120
failures on the first 120 trials) is simply 120 + (1 − p)/p. �



5.5 The Negative Binomial Distributions 301

Extension of Definition of Negative Binomial Distributon

By using the definition of binomial coefficients given in Eq. (5.3.14), the function
f (x|r, p) can be regarded as the p.f. of a discrete distribution for each number r > 0
(not necessarily an integer) and each number p in the interval 0 < p < 1. In other
words, it can be verified that for r > 0 and 0 < p < 1,

∞∑
x=0

(
r + x − 1

x

)
pr(1 − p)x = 1. (5.5.10)

Summary

If we observe a sequence of independent Bernoulli trials with success probability p,
the number of failures until the rth success has the negative binomial distribution
with parameters r and p. The special case of r = 1 is the geometric distribution with
parameter p. The sum of independent negative binomial random variables with the
same second parameter p has a negative binomial distribution.

Exercises

1. Consider a daily lottery as described in Example 5.5.4.

a. Compute the probability that two particular days in
a row will both have triples.

b. Suppose that we observe triples on a particular day.
Compute the conditional probability that we observe
triples again the next day.

2. Suppose that a sequence of independent tosses are
made with a coin for which the probability of obtaining a
head on each given toss is 1/30.

a. What is the expected number of tails that will be
obtained before five heads have been obtained?

b. What is the variance of the number of tails that will
be obtained before five heads have been obtained?

3. Consider the sequence of coin tosses described in Ex-
ercise 2.

a. What is the expected number of tosses that will be
required in order to obtain five heads?

b. What is the variance of the number of tosses that will
be required in order to obtain five heads?

4. Suppose that two players A and B are trying to throw a
basketball through a hoop. The probability that player A

will succeed on any given throw is p, and he throws until
he has succeeded r times. The probability that player B

will succeed on any given throw is mp, where m is a given

integer (m = 2, 3, . . .) such that mp < 1, and she throws
until she has succeeded mr times.

a. For which player is the expected number of throws
smaller?

b. For which player is the variance of the number of
throws smaller?

5. Suppose that the random variables X1, . . . , Xk are in-
dependent and that Xi has the negative binomial distribu-
tion with parameters ri and p (i = 1 . . . k). Prove that the
sum X1 + . . . + Xk has the negative binomial distribution
with parameters r = r1 + . . . + rk and p.

6. Suppose that X has the geometric distribution with
parameter p. Determine the probability that the value of
X will be one of the even integers 0, 2, 4, . . . .

7. Suppose that X has the geometric distribution with
parameter p. Show that for every nonnegative integer k,
Pr(X ≥ k) = (1 − p)k.

8. Prove Theorem 5.5.5.

9. Suppose that an electronic system contains n compo-
nents that function independently of each other, and sup-
pose that these components are connected in series, as
defined in Exercise 5 of Sec. 3.7. Suppose also that each
component will function properly for a certain number
of periods and then will fail. Finally, suppose that for i =
1, . . . , n, the number of periods for which component i

will function properly is a discrete random variable having
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a geometric distribution with parameter pi. Determine the
distribution of the number of periods for which the system
will function properly.

10. Let f (x|r, p) denote the p.f. of the negative binomial
distribution with parameters r and p, and let f (x|λ) de-
note the p.f. of the Poisson distribution with mean λ, as
defined by Eq. (5.4.2). Suppose r → ∞ and p → 1 in such
a way that the value of r(1 − p) remains constant and is
equal to λ throughout the process. Show that for each fixed
nonnegative integer x,

f (x|r, p) → f (x|λ).

11. Prove that the p.f. of the negative binomial distribu-
tion can be written in the following alternative form:

f (x|r, p) =
{ (−r

x

)
pr(−[1 − p])x for x = 0, 1, 2, . . . ,

0 otherwise.

Hint: Use Exercise 10 in Sec. 5.3.

12. Suppose that a machine produces parts that are defec-
tive with probability P , but P is unknown. Suppose that

P has a continuous distribution with p.d.f.

f (p) =
{

10(1 − p)9 if 0 < p < 1,
0 otherwise.

Conditional on P = p, assume that all parts are indepen-
dent of each other. Let X be the number of nondefective
parts observed until the first defective part. If we observe
X = 12, compute the conditional p.d.f. of P given X = 12.

13. Let F be the c.d.f. of a discrete distribution that has
the memoryless property stated in Theorem 5.5.5. Define
�(x) = log[1 − F(x − 1)] for x = 1, 2, . . ..

a. Show that, for all integers t, h > 0,

1 − F(h − 1) = 1 − F(t + h − 1)
1 − F(t − 1)

.

b. Prove that �(t + h) = �(t) + �(h) for all integers t, h >

0.

c. Prove that �(t) = t�(1) for every integer t > 0.

d. Prove that F must be the c.d.f. of a geometric distri-
bution.

5.6 The Normal Distributions
The most widely used model for random variables with continuous distributions is
the family of normal distributions. These distributions are the first ones we shall see
whose p.d.f.’s cannot be integrated in closed form, and hence tables of the c.d.f. or
computer programs are necessary in order to compute probabilities and quantiles
for normal distributions.

Importance of the Normal Distributions

Example
5.6.1

Automobile Emissions. Automobile engines emit a number of undesirable pollutants
when they burn gasoline. Lorenzen (1980) studied the amounts of various pollutants
emitted by 46 automobile engines. One class of polutants consists of the oxides of
nitrogen. Figure 5.1 shows a histogram of the 46 amounts of oxides of nitrogen (in
grams per mile) that are reported by Lorenzen (1980). The bars in the histogram
have areas that equal the proportions of the sample of 46 measurements that lie
between the points on the horizontal axis where the sides of the bars stand. For
example, the fourth bar (which runs from 1.0 to 1.2 on the horizontal axis) has
area 0.870 × 0.2 = 0.174, which equals 8/46 because there are eight observations
between 1.0 and 1.2. When we want to make statements about probabilities related
to emissions, we will need a distribution with which to model emissions. The family of
normal distributions introduced in this section will prove to be valuable in examples
such as this. �

The family of normal distributions, which will be defined and discussed in this
section, is by far the single most important collection of probability distributions
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Figure 5.1 Histogram
of emissions of oxides of
nitrogen for Example 5.6.1
in grams per mile over a
common driving regimen.
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in statistics. There are three main reasons for this preeminent position of these
distributions.

The first reason is directly related to the mathematical properties of the normal
distributions. We shall demonstrate in this section and in several later sections of this
book that if a random sample is taken from a normal distribution, then the distribu-
tions of various important functions of the observations in the sample can be derived
explicitly and will themselves have simple forms. Therefore, it is a mathematical con-
venience to be able to assume that the distribution from which a random sample is
drawn is a normal distribution.

The second reason is that many scientists have observed that the random vari-
ables studied in various physical experiments often have distributions that are ap-
proximately normal. For example, a normal distribution will usually be a close ap-
proximation to the distribution of the heights or weights of individuals in a homoge-
neous population of people, corn stalks, or mice, or to the distribution of the tensile
strength of pieces of steel produced by a certain process. Sometimes, a simple trans-
formation of the observed random variables has a normal distribution.

The third reason for the preeminence of the normal distributions is the central
limit theorem, which will be stated and proved in Sec. 6.3. If a large random sample is
taken from some distribution, then even though this distribution is not itself approx-
imately normal, a consequence of the central limit theorem is that many important
functions of the observations in the sample will have distributions which are approx-
imately normal. In particular, for a large random sample from any distribution that
has a finite variance, the distribution of the average of the random sample will be
approximately normal. We shall return to this topic in the next chapter.

Properties of Normal Distributions

Definition
5.6.1

Definition and p.d.f. A random variable X has the normal distribution with mean μ

and variance σ 2 (−∞ < μ < ∞ and σ > 0) if X has a continuous distribution with the
following p.d.f.:

f (x|μ, σ 2) = 1
(2π)1/2σ

exp

[
− 1

2

(
x − μ

σ

)2
]

for −∞ < x < ∞. (5.6.1)
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We should first verify that the function defined in Eq. (5.6.1) is a p.d.f. Shortly
thereafter, we shall verify that the mean and variance of the distribution with p.d.f.
(5.6.1) are indeed μ and σ 2, respectively.

Theorem
5.6.1

The function defined in Eq. (5.6.1) is a p.d.f.

Proof Clearly, the function is nonnegative. We must also show that∫ ∞

−∞
f (x|μ, σ 2) dx = 1. (5.6.2)

If we let y = (x − μ)/σ , then∫ ∞

−∞
f (x|μ, σ 2) dx =

∫ ∞

−∞
1

(2π)1/2
exp

(
− 1

2
y2

)
dy.

We shall now let

I =
∫ ∞

−∞
exp

(
− 1

2
y2

)
dy. (5.6.3)

Then we must show that I = (2π)1/2.
From Eq. (5.6.3), it follows that

I 2 = I . I =
∫ ∞

−∞
exp

(
− 1

2
y2

)
dy

∫ ∞

−∞
exp

(
− 1

2
z2
)

dz

=
∫ ∞

−∞

∫ ∞

−∞
exp

[
− 1

2
(y2 + z2)

]
dy dz.

We shall now change the variables in this integral from y and z to the polar coordi-
nates r and θ by letting y = r cos θ and z = r sin θ . Then, since y2 + z2 = r2,

I 2 =
∫ 2π

0

∫ ∞

0
exp

(
− 1

2
r2
)

r dr dθ = 2π, (5.6.4)

where the inner integral in (5.6.4) is performed by substituting v = r2/2 with dv = rdr ,
so the inner integral is ∫ ∞

0
exp(−v)dv = 1,

and the outer integral is 2π . Therefore, I = (2π)1/2 and Eq. (5.6.2) has been estab-
lished.

Example
5.6.2

Automobile Emissions. Consider the automobile engines described in Example 5.6.1.
Figure 5.2 shows the histogram from Fig. 5.1 together with the normal p.d.f. having
mean and variance chosen to match the observed data. Although the p.d.f. does not
exactly match the shape of the histogram, it does correspond remarkably well. �

We could verify directly, using integration by parts, that the mean and variance
of the distribution with p.d.f. given by Eq. (5.6.1) are, respectively, μ and σ 2. (See
Exercise 26.) However, we need the moment generating function anyway, and then
we can just take two derivatives of the m.g.f. to find the first two moments.

Theorem
5.6.2

Moment Generating Function. The m.g.f. of the distribution with p.d.f. given by
Eq. (5.6.1) is

ψ(t) = exp
(

μt + 1
2
σ 2t2

)
for −∞ < t < ∞. (5.6.5)
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Figure 5.2 Histogram
of emissions of oxides of
nitrogen for Example 5.6.2
together with a matching
normal p.d.f.
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Proof By the definition of an m.g.f.,

ψ(t) = E(etX) =
∫ ∞

−∞
1

(2π)1/2σ
exp

[
tx − (x − μ)2

2σ 2

]
dx.

By completing the square inside the brackets (see Exercise 24), we obtain the relation

tx − (x − μ)2

2σ 2
= μt + 1

2
σ 2t2 − [x − (μ + σ 2t)]2

2σ 2
.

Therefore,

ψ(t) = C exp
(

μt + 1
2
σ 2t2

)
,

where

C =
∫ ∞

−∞
1

(2π)1/2σ
exp

{
− [x − (μ + σ 2t)]2

2σ 2

}
dx.

If we now replace μ with μ + σ 2t in Eq. (5.6.1), it follows from Eq. (5.6.2) that C = 1.
Hence, the m.g.f. of the normal distribution is given by Eq. (5.6.5).

We are now ready to verify the mean and variance.

Theorem
5.6.3

Mean and Variance. The mean and variance of the distribution with p.d.f. given by
Eq. (5.6.1) are μ and σ 2, respectively.

Proof The first two derivatives of the m.g.f. in Eq. (5.6.5) are

ψ ′(t) =
(
μ + σ 2t

)
exp

(
μt + 1

2
σ 2t2

)
ψ ′′(t) =

(
[μ + σ 2t]2 + σ 2

)
exp

(
μt + 1

2
σ 2t2

)
Plugging t = 0 into each of these derivatives yields

E(X) = ψ ′(0) = μ and Var(X) = ψ ′′(0) − [ψ ′(0)]2 = σ 2.

Since the m.g.f. ψ(t) is finite for all values of t , all the moments E(Xk) (k =
1, 2, . . .) will also be finite.
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Figure 5.3 The p.d.f. of a
normal distribution.
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Example
5.6.3

Stock Price Changes. A popular model for the change in the price of a stock over a
period of time of length u is to say that the price after time u is Su = S0e

Zu, where
Zu has the normal distribution with mean μu and variance σ 2u. In this formula, S0
is the present price of the stock, and σ is called the volatility of the stock price. The
expected value of Su can be computed from the m.g.f. ψ of Zu:

E(Su) = S0E(eZu) = S0ψ(1) = S0e
μu+σ 2u/2. �

The Shapes of Normal Distributions It can be seen from Eq. (5.6.1) that the p.d.f.
f (x|μ, σ 2) of the normal distribution with mean μ and variance σ 2 is symmetric
with respect to the point x = μ. Therefore, μ is both the mean and the median
of the distribution. Furthermore, μ is also the mode of the distribution. In other
words, the p.d.f. f (x|μ, σ 2) attains its maximum value at the point x = μ. Finally, by
differentiating f (x|μ, σ 2) twice, it can be found that there are points of inflection at
x = μ + σ and at x = μ − σ .

The p.d.f. f (x|μ, σ 2) is sketched in Fig. 5.3. It is seen that the curve is “bell-
shaped.” However, it is not necessarily true that every arbitrary bell-shaped p.d.f.
can be approximated by the p.d.f. of a normal distribution. For example, the p.d.f. of
a Cauchy distribution, as sketched in Fig. 4.3, is a symmetric bell-shaped curve which
apparently resembles the p.d.f. sketched in Fig. 5.3. However, since no moment of
the Cauchy distribution—not even the mean—exists, the tails of the Cauchy p.d.f.
must be quite different from the tails of the normal p.d.f.

Linear Transformations We shall now show that if a random variable X has a nor-
mal distribution, then every linear function of X will also have a normal distribution.

Theorem
5.6.4

If X has the normal distribution with mean μ and variance σ 2 and if Y = aX + b,
where a and b are given constants and a 	= 0, then Y has the normal distribution with
mean aμ + b and variance a2σ 2.

Proof The m.g.f. ψ of X is given by Eq. (5.6.5). If ψY denotes the m.g.f. of Y , then

ψY(t) = ebtψ(at) = exp
[
(aμ + b)t + 1

2
a2σ 2t2

]
for −∞ < t < ∞.
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By comparing this expression for ψY with the m.g.f. of a normal distribution given in
Eq. (5.6.5), we see that ψY is the m.g.f. of the normal distribution with mean aμ + b

and variance a2σ 2. Hence, Y must have this normal distribution.

The Standard Normal Distribution

Definition
5.6.2

Standard Normal Distribution. The normal distribution with mean 0 and variance 1 is
called the standard normal distribution. The p.d.f. of the standard normal distribution
is usually denoted by the symbol φ, and the c.d.f. is denoted by the symbol �. Thus,

φ(x) = f (x|0, 1) = 1
(2π)1/2

exp
(

− 1
2
x2

)
for −∞ < x < ∞ (5.6.6)

and

�(x) =
∫ x

−∞
φ(u) du for −∞ < x < ∞, (5.6.7)

where the symbol u is used in Eq. (5.6.7) as a dummy variable of integration.

The c.d.f. �(x) cannot be expressed in closed form in terms of elementary
functions. Therefore, probabilities for the standard normal distribution or any other
normal distribution can be found only by numerical approximations or by using a
table of values of �(x) such as the one given at the end of this book. In that table, the
values of �(x) are given only for x ≥ 0. Most computer packages that do statistical
analysis contain functions that compute the c.d.f. and the quantile function of the
standard normal distribution. Knowing the values of �(x) for x ≥ 0 and �−1(p) for
0.5 < p < 1 is sufficient for calculating the c.d.f. and the quantile function of any
normal distribution at any value, as the next two results show.

Theorem
5.6.5

Consequences of Symmetry. For all x and all 0 < p < 1,

�(−x) = 1 − �(x) and �−1(p) = −�−1(1 − p). (5.6.8)

Proof Since the p.d.f. of the standard normal distribution is symmetric with respect
to the point x = 0, it follows that Pr(X ≤ x) = Pr(X ≥ −x) for every number x (−∞ <

x < ∞). Since Pr(X ≤ x) = �(x) and Pr(X ≥ −x) = 1 − �(−x), we have the first
equation in Eq. (5.6.8). The second equation follows by letting x = �−1(p) in the
first equation and then applying the function �−1 to both sides of the equation.

Theorem
5.6.6

Converting Normal Distributions to Standard. Let X have the normal distribution with
mean μ and variance σ 2. Let F be the c.d.f. of X. Then Z = (X − μ)/σ has the
standard normal distribution, and, for all x and all 0 < p < 1,

F(x) = �

(
x − μ

σ

)
, (5.6.9)

F−1(p) = μ + σ�−1(p). (5.6.10)

Proof It follows immediately from Theorem 5.6.4 that Z = (X − μ)/σ has the stan-
dard normal distribution. Therefore,

F(x) = Pr(X ≤ x) = Pr
(

Z ≤ x − μ

σ

)
,

which establishes Eq. (5.6.9). For Eq. (5.6.10), let p = F(x) in Eq. (5.6.9) and then
solve for x in the resulting equation.
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Example
5.6.4

Determining Probabilities for a Normal Distribution. Suppose that X has the normal
distribution with mean 5 and standard deviation 2. We shall determine the value of
Pr(1 < X < 8).

If we let Z = (X − 5)/2, then Z will have the standard normal distribution and

Pr(1 < X < 8) = Pr
(

1 − 5
2

<
X − 5

2
<

8 − 5
2

)
= Pr(−2 < Z < 1.5).

Furthermore,

Pr(−2 < Z < 1.5) = Pr(Z < 1.5) − Pr(Z ≤ −2)

= �(1.5) − �(−2)

= �(1.5) − [1 − �(2)].

From the table at the end of this book, it is found that �(1.5) = 0.9332 and �(2) =
0.9773. Therefore,

Pr(1 < X < 8) = 0.9105. �

Example
5.6.5

Quantiles of Normal Distributions. Suppose that the engineers who collected the
automobile emissions data in Example 5.6.1 are interested in finding out whether
most engines are serious polluters. For example, they could compute the 0.05 quantile
of the distribution of emissions and declare that 95 percent of the engines of the
type tested exceed this quantile. Let X be the average grams of oxides of nitrogen
per mile for a typical engine. Then the engineers modeled X as having a normal
distribution. The normal distribution plotted in Fig. 5.2 has mean 1.329 and standard
deviation 0.4844. The c.d.f. of X would then be F(x) = �([x − 1.329]/0.4844), and
the quantile function would be F−1(p) = 1.329 + 0.4844�−1(p), where �−1 is the
quantile function of the standard normal distribution, which can be evaluated using
a computer or from tables. To find �−1(p) from the table of �, find the closest value
to p in the �(x) column and read the inverse from the x column. Since the table only
has values of p > 0.5, we use Eq. (5.6.8) to conclude that �−1(0.05) = −�−1(0.95). So,
look up 0.95 in �(x) column (halfway between 0.9495 and 0.9505) to find x = 1.645
(halfway between 1.64 and 1.65) and conclude that �−1(0.05) = −1.645. The 0.05
quantile of X is then 1.329 + 0.4844 × (−1.645) = 0.5322. �

Comparisons of Normal Distributions

The p.d.f.’s of three normal distributions are sketched in Fig. 5.4 for a fixed value of
μ and three different values of σ (σ = 1/2, 1, and 2). It can be seen from this figure
that the p.d.f. of a normal distribution with a small value of σ has a high peak and
is very concentrated around the mean μ, whereas the p.d.f. of a normal distribution
with a larger value of σ is relatively flat and is spread out more widely over the real
line.

An important fact is that every normal distribution contains the same total
amount of probability within one standard deviation of its mean, the same amount
within two standard deviations of its mean, and the same amount within any other
fixed number of standard deviations of its mean. In general, if X has the normal dis-
tribution with mean μ and variance σ 2, and if Z has the standard normal distribution,
then for k > 0,

pk = Pr(|X − μ| ≤ kσ) = Pr(|Z| ≤ k).

In Table 5.2, the values of this probability pk are given for various values of k.
These probabilities can be computed from a table of � or using computer programs.
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Figure 5.4 The normal p.d.f.
for μ = 0 and σ = 1/2, 1, 2.
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Table 5.2 Probabilities that normal
random variables are within
k standard deviations of
their means

k pk

1 0.6826

2 0.9544

3 0.9974

4 0.99994

5 1 − 6 × 10−7

10 1 − 2 × 10−23

Although the p.d.f. of a normal distribution is positive over the entire real line, it can
be seen from this table that the total amount of probability outside an interval of
four standard deviations on each side of the mean is only 0.00006.

Linear Combinations of Normally Distributed Variables

In the next theorem and corollary, we shall prove the following important result:
Every linear combination of random variables that are independent and normally
distributed will also have a normal distribution.

Theorem
5.6.7

If the random variables X1, . . . , Xk are independent and if Xi has the normal distri-
bution with mean μi and variance σ 2

i
(i = 1, . . . , k), then the sum X1 + . . . + Xk has

the normal distribution with mean μ1 + . . . + μk and variance σ 2
1 + . . . + σ 2

k
.
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Proof Let ψi(t) denote the m.g.f. of Xi for i = 1, . . . , k, and let ψ(t) denote the m.g.f.
of X1 + . . . + Xk. Since the variables X1, . . . , Xk are independent, then

ψ(t) =
k∏

i=1

ψi(t) =
k∏

i=1

exp
(

μit + 1
2
σ 2

i
t2
)

= exp

[(
k∑

i=1

μi

)
t + 1

2

(
k∑

i=1

σ 2
i

)
t2

]
for −∞ < t < ∞.

From Eq. (5.6.5), the m.g.f. ψ(t) can be identified as the m.g.f. of the normal dis-
tribution for which the mean is

∑k
i=1 μi and the variance is

∑k
i=1 σ 2

i
. Hence, the

distribution of X1 + . . . + Xk must be as stated in the theorem.

The following corollary is now obtained by combining Theorems 5.6.4 and 5.6.7.

Corollary
5.6.1

If the random variables X1, . . . , Xk are independent, if Xi has the normal distribution
with mean μi and variance σ 2

i
(i = 1, . . . , k), and if a1, . . . , ak and b are constants

for which at least one of the values a1, . . . , ak is different from 0, then the variable
a1X1 + . . . + akXk + b has the normal distribution with mean a1μ1 + . . . + akμk + b

and variance a2
1σ

2
1 + . . . + a2

k
σ 2

k
.

Example
5.6.6

Heights of Men and Women. Suppose that the heights, in inches, of the women
in a certain population follow the normal distribution with mean 65 and standard
deviation 1, and that the heights of the men follow the normal distribution with mean
68 and standard deviation 3. Suppose also that one woman is selected at random and,
independently, one man is selected at random. We shall determine the probability
that the woman will be taller than the man.

Let W denote the height of the selected woman, and let M denote the height of
the selected man. Then the difference W − M has the normal distribution with mean
65 − 68 = −3 and variance 12 + 32 = 10. Therefore, if we let

Z = 1
101/2

(W − M + 3),

then Z has the standard normal distribution. It follows that

Pr(W > M) = Pr(W − M > 0)

= Pr
(

Z >
3

101/2

)
= Pr(Z > 0.949)

= 1 − �(0.949) = 0.171.

Thus, the probability that the woman will be taller than the man is 0.171. �

Averages of random samples of normal random variables figure prominently in
many statistical calculations. To fix notation, we start with a general defintion.

Definition
5.6.3

Sample Mean. Let X1, . . . , Xn be random variables. The average of these n random
variables, 1

n

∑n
i=1 Xi, is called their sample mean and is commonly denoted Xn.

The following simple corollary to Corollary 5.6.1 gives the distribution of the
sample mean of a random sample of normal random variables.
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Corollary
5.6.2

Suppose that the random variables X1, . . . , Xn form a random sample from the
normal distribution with mean μ and variance σ 2, and let Xn denote their sample
mean. Then Xn has the normal distribution with mean μ and variance σ 2/n.

Proof Since Xn = ∑n
i=1(1/n)Xi, it follows from Corollary 5.6.1 that the distribution

of Xn is normal with mean
∑n

i=1(1/n)μ = μ and variance
∑n

i=1(1/n)2σ 2 = σ 2/n.

Example
5.6.7

Determining a Sample Size. Suppose that a random sample of size n is to be taken
from the normal distribution with mean μ and variance 9. (The heights of men
in Example 5.6.6 have such a distribution with μ = 68.) We shall determine the
minimum value of n for which

Pr(|Xn − μ| ≤ 1) ≥ 0.95.

It is known from Corollary 5.6.2 that the sample mean Xn will have the normal
distribution for which the mean is μ and the standard deviation is 3/n1/2. Therefore,
if we let

Z = n1/2

3
(Xn − μ),

then Z will have the standard normal distribution. In this example, n must be chosen
so that

Pr(|Xn − μ| ≤ 1) = Pr

(
|Z| ≤ n1/2

3

)
≥ 0.95. (5.6.11)

For each positive number x, it will be true that Pr(|Z| ≤ x) ≥ 0.95 if and only if
1 − �(x) = Pr(Z > x) ≤ 0.025. From the table of the standard normal distribution at
the end of this book, it is found that 1 − �(x) ≤ 0.025 if and only if x ≥ 1.96. Therefore,
the inequality in relation (5.6.11) will be satisfied if and only if

n1/2

3
≥ 1.96.

Since the smallest permissible value of n is 34.6, the sample size must be at least 35
in order that the specified relation will be satisfied. �

Example
5.6.8

Interval for Mean. Consider a popluation with a normal distribution such as the
heights of men in Example 5.6.6. Suppose that we are not willing to specify the
precise distribution as we did in that example, but rather only that the standard
deviation is 3, leaving the mean μ unspecified. If we sample a number of men from
this population, we could try to use their sampled heights to give us some idea what μ

equals. A popular form of statistical inference that will be discussed in Sec. 8.5 finds
an interval that has a specified probability of containing μ. To be specific, suppose
that we observe a random sample of size n from the normal distribution with mean
μ and standard deviation 3. Then, Xn has the normal distribution with mean μ and
standard deviation 3/n1/2 as in Example 5.6.7. Similarly, we can define

Z = n1/2

3
(Xn − μ),

which then has the standard normal distribution. Hence,

0.95 = Pr(|Z| < 1.96) = Pr
(

|Xn − μ| < 1.96
3

n1/2

)
. (5.6.12)
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It is easy to verify that

|Xn − μ| < 1.96
3

n1/2
if and only if

Xn − 1.96
3

n1/2
< μ < Xn + 1.96

3
n1/2

. (5.6.13)

The two inequalities in Eq. (5.6.13) hold if and only if the interval(
Xn − 1.96

3
n1/2

, Xn + 1.96
3

n1/2

)
(5.6.14)

contains the value of μ. It follows from Eq. (5.6.12) that the probability is 0.95 that
the interval in (5.6.14) contains μ. Now, suppose that the sample size is n = 36. Then
the half-width of the interval (5.6.14) is then 3/361/2 = 0.98. We will not know the
endpoints of the interval until after we observe Xn. However, we know now that the

interval
(
Xn − 0.98, Xn + 0.98

)
has probability 0.95 of containing μ. �

The Lognormal Distributions

It is very common to use normal distributions to model logarithms of random vari-
ables. For this reason, a name is given to the distribution of the original random
variables before transforming.

Definition
5.6.4

Lognormal Distribution. If log(X) has the normal distribution with mean μ and vari-
ance σ 2, we say that X has the lognormal distribution with parameters μ and σ 2.

Example
5.6.9

Failure Times of Ball Bearings. Products that are subject to wear and tear are gener-
ally tested for endurance in order to estimate their useful lifetimes. Lawless (1982,
example 5.2.2) describes data taken from Lieblein and Zelen (1956), which are mea-
surements of the numbers of millions of revolutions before failure for 23 ball bearings.
The lognormal distribution is one popular model for times until failure. Figure 5.5
shows a histogram of the 23 lifetimes together with a lognormal p.d.f. with parame-
ters chosen to match the observed data. The bars of the histogram in Fig. 5.5 have
areas that equal the proportions of the sample that lie between the points on the
horizontal axis where the sides of the bars stand. Suppose that the engineers are in-
terested in knowing how long to wait until there is a 90 percent chance that a ball

Figure 5.5 Histogram of
lifetimes of ball bearings and
fitted lognormal p.d.f. for
Example 5.6.9.
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bearing will have failed. Then they want the 0.9 quantile of the distribution of life-
times. Let X be the time to failure of a ball bearing. The lognormal distribution of
X plotted in Fig. 5.5 has parameters 4.15 and 0.53342. The c.d.f. of X would then be
F(x) = �([log(x) − 4.15]/0.5334), and the quantile function would be

F−1(p) = e4.15+0.5334�−1(p),

where �−1 is the quantile function of the standard normal distribution. With p = 0.9,
we get �−1(0.9) = 1.28 and F−1(0.9) = 125.6. �

The moments of a lognormal random variable are easy to compute based on the
m.g.f. of a normal distribution. If Y = log(X) has the normal distribution with mean
μ and variance σ 2, then the m.g.f. of Y is ψ(t) = exp(μt + 0.5σ 2t2). However, the
definition of ψ is ψ(t) = E(etY ). Since Y = log(X), we have

ψ(t) = E(etY ) = E(et log(X)) = E(Xt).

It follows that E(Xt) = ψ(t) for all real t . In particular, the mean and variance of X

are

E(X) = ψ(1) = exp(μ + 0.5σ 2), (5.6.15)

Var(X) = ψ(2) − ψ(1)2 = exp(2μ + σ 2)[exp(σ 2) − 1].

Example
5.6.10

Stock and Option Prices. Consider a stock like the one in Example 5.6.3 whose current
price is S0. Suppose that the price at u time units in the future is Su = S0e

Zu, where
Zu has the normal distribution with mean μu and variance σ 2u. Note that S0e

Zu =
eZu+log(S0) and Zu + log(S0) has the normal distribution with mean μu + log(S0) and
variance σ 2u. So Su has the lognormal distribution with parameters μu + log(S0) and
σ 2u.

Black and Scholes (1973) developed a pricing scheme for options on stocks whose
prices follow a lognormal distribution. For the remainder of this example, we shall
consider a single time u and write the stock price as Su = S0e

μu+σu1/2Z, where Z has
the standard normal distribution. Suppose that we need to price the option to buy
one share of the above stock for the price q at a particular time u in the future. As
in Example 4.1.14 on page 214, we shall use risk-neutral pricing. That is, we force
the present value of E(Su) to equal S0. If u is measured in years and the risk-free
interest rate is r per year, then the present value of E(Su) is e−ruE(Su). (This assumes
that compounding of interest is done continuously instead of just once as it was in
Example 4.1.14. The effect of continuous compounding is examined in Exercise 25.)
But E(Su) = S0e

μu+σ 2u/2. Setting S0 equal to e−ruS0e
μu+σ 2u/2 yields μ = r − σ 2/2

when doing risk-neutral pricing.
Now we can determine a price for the specified option. The value of the option

at time u will be h(Su), where

h(s) =
{

s − q if s > q,
0 otherwise.

Set μ = r − σ 2/2, and it is easy to see that h(Su) > 0 if and only if

Z >
log

(
q
S0

)
− (r − σ 2/2)u

σu1/2
. (5.6.16)
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We shall refer to the constant on the right-hand side of Eq. (5.6.16) as c. The
risk-neutral price of the option is the present value of E(h(Su)), which equals

e−ruE[h(Su)] = e−ru

∫ ∞

c

[
S0e

[r−σ 2/2]u+σu1/2z − q
] 1

(2π)1/2
e−z2/2 dz. (5.6.17)

To compute the integral in Eq. (5.6.17), split the integrand into two parts at the −q.
The second integral is then just a constant times the integral of a normal p.d.f., namely,

−e−ruq

∫ ∞

c

1
(2π)1/2

e−z2
dz = −e−ruq[1 − �(c)].

The first integral in Eq. (5.6.17), is

e−σ 2u/2S0

∫ ∞

c

1
(2π)1/2

e−z2/2+σu1/2z dz.

This can be converted into the integral of a normal p.d.f. times a constant by com-
pleting the square (see Exercise 24). The result of completing the square is

e−σ 2u/2S0

∫ ∞

c

1
(2π)1/2

e−(z−σu1/2)2/2+σ 2u/2 dz = S0[1 − �(c − σu1/2)].

Finally, combine the two integrals into the option price, using the fact that 1 − �(x) =
�(−x):

S0�(σu1/2 − c) − qe−ru�(−c). (5.6.18)

This is the famous Black-Scholes formula for pricing options. As a simple ex-
ample, suppose that q = S0, r = 0.06 (6 percent interest), u = 1 (one year wait), and
σ = 0.1. Then (5.6.18) says that the option price should be 0.0746S0. If the distribution
of Su is different from the form used here, simulation techniques (see Chapter 12)
can be used to help price options. �

The p.d.f.’s of the lognormal distributions will be found in Exercise 17 of this
section. The c.d.f. of each lognormal distribution is easily constructed from the
standard normal c.d.f. �. Let X have the lognormal distribution with parameters
μ and σ 2. Then

Pr(X ≤ x) = Pr(log(X) ≤ log(x)) = �

(
log(x) − μ

σ

)
.

The results from earlier in this section about linear combinations of normal random
variables translate into results about products of powers of lognormal random vari-
ables. Results about sums of independent normal random variables translate into
results about products of independent lognormal random variables.

Summary

We introduced the family of normal distributions. The parameters of each normal
distribution are its mean and variance. A linear combination of independent normal
random variables has the normal distribution with mean equal to the linear combi-
nation of the means and variance determined by Corollary 4.3.1. In particular, if X

has the normal distribution with mean μ and variance σ 2, then (X − μ)/σ has the
standard normal distribution (mean 0 and variance 1). Probabilities and quantiles for
normal distributions can be obtained from tables or computer programs for standard
normal probabilities and quantiles. For example, if X has the normal distribution with
mean μ and variance σ 2, then the c.d.f. of X is F(x) = �([x − μ]/σ) and the quantile
function of X is F−1(p) = μ + �−1(p)σ , where � is the standard normal c.d.f.
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Exercises

1. Find the 0.5, 0.25, 0.75, 0.1, and 0.9 quantiles of the
standard normal distribution.

2. Suppose that X has the normal distribution for which
the mean is 1 and the variance is 4. Find the value of each
of the following probabilities:

a. Pr(X ≤ 3) b. Pr(X > 1.5)

c. Pr(X = 1) d. Pr(2 < X < 5)

e. Pr(X ≥ 0) f. Pr(−1 < X < 0.5)

g. Pr(|X| ≤ 2) h. Pr(1 ≤ −2X + 3 ≤ 8)

3. If the temperature in degrees Fahrenheit at a certain
location is normally distributed with a mean of 68 degrees
and a standard deviation of 4 degrees, what is the distri-
bution of the temperature in degrees Celsius at the same
location?

4. Find the 0.25 and 0.75 quantiles of the Fahrenheit tem-
perature at the location mentioned in Exercise 3.

5. Let X1, X2, and X3 be independent lifetimes of memory
chips. Suppose that each Xi has the normal distribution
with mean 300 hours and standard deviation 10 hours.
Compute the probability that at least one of the three
chips lasts at least 290 hours.

6. If the m.g.f. of a random variable X is ψ(t) = et2
for

−∞ < t < ∞, what is the distribution of X?

7. Suppose that the measured voltage in a certain electric
circuit has the normal distribution with mean 120 and
standard deviation 2. If three independent measurements
of the voltage are made, what is the probability that all
three measurements will lie between 116 and 118?

8. Evaluate the integral
∫ ∞

0 e−3x2
dx.

9. A straight rod is formed by connecting three sections
A, B, and C, each of which is manufactured on a different
machine. The length of section A, in inches, has the normal
distribution with mean 20 and variance 0.04. The length of
section B, in inches, has the normal distribution with mean
14 and variance 0.01. The length of section C, in inches, has
the normal distribution with mean 26 and variance 0.04.
As indicated in Fig. 5.6, the three sections are joined so
that there is an overlap of 2 inches at each connection.
Suppose that the rod can be used in the construction of an
airplane wing if its total length in inches is between 55.7
and 56.3. What is the probability that the rod can be used?

22

A C

B

Figure 5.6 Sections of the rod in Exercise 9.

10. If a random sample of 25 observations is taken from
the normal distribution with mean μ and standard devia-
tion 2, what is the probability that the sample mean will
lie within one unit of μ?

11. Suppose that a random sample of size n is to be taken
from the normal distribution with mean μ and standard
deviation 2. Determine the smallest value of n such that

Pr(|Xn − μ| < 0.1) ≥ 0.9.

12.

a. Sketch the c.d.f. � of the standard normal distribu-
tion from the values given in the table at the end of
this book.

b. From the sketch given in part (a) of this exercise,
sketch the c.d.f. of the normal distribution for which
the mean is −2 and the standard deviation is 3.

13. Suppose that the diameters of the bolts in a large box
follow a normal distribution with a mean of 2 centimeters
and a standard deviation of 0.03 centimeter. Also, suppose
that the diameters of the holes in the nuts in another large
box follow the normal distribution with a mean of 2.02
centimeters and a standard deviation of 0.04 centimeter.
A bolt and a nut will fit together if the diameter of the
hole in the nut is greater than the diameter of the bolt and
the difference between these diameters is not greater than
0.05 centimeter. If a bolt and a nut are selected at random,
what is the probability that they will fit together?

14. Suppose that on a certain examination in advanced
mathematics, students from university A achieve scores
that are normally distributed with a mean of 625 and a
variance of 100, and students from university B achieve
scores which are normally distributed with a mean of 600
and a variance of 150. If two students from university A

and three students from university B take this examina-
tion, what is the probability that the average of the scores
of the two students from university A will be greater than
the average of the scores of the three students from univer-
sity B? Hint: Determine the distribution of the difference
between the two averages.

15. Suppose that 10 percent of the people in a certain
population have the eye disease glaucoma. For persons
who have glaucoma, measurements of eye pressure X will
be normally distributed with a mean of 25 and a variance
of 1. For persons who do not have glaucoma, the pressure
X will be normally distributed with a mean of 20 and a
variance of 1. Suppose that a person is selected at random
from the population and her eye pressure X is measured.

a. Determine the conditional probability that the per-
son has glaucoma given that X = x.

b. For what values of x is the conditional probability in
part (a) greater than 1/2?
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16. Suppose that the joint p.d.f. of two random variables
X and Y is

f (x, y) = 1
2π

e−(1/2)(x2+y2) for − ∞ < x < ∞
and − ∞ < y < ∞.

Find Pr(−√
2 < X + Y < 2

√
2).

17. Consider a random variable X having the lognormal
distribution with parameters μ and σ 2. Determine the
p.d.f. of X.

18. Suppose that the random variables X and Y are inde-
pendent and that each has the standard normal distribu-
tion. Show that the quotient X/Y has the Cauchy distri-
bution.

19. Suppose that the measurement X of pressure made by
a device in a particular system has the normal distribution
with mean μ and variance 1, where μ is the true pressure.
Suppose that the true pressure μ is unknown but has the
uniform distribution on the interval [5, 15]. If X = 8 is
observed, find the conditional p.d.f. of μ given X = 8.

20. Let X have the lognormal distribution with parame-
ters 3 and 1.44. Find the probability that X ≤ 6.05.

21. Let X and Y be independent random variables such
that log(X) has the normal distribution with mean 1.6 and
variance 4.5 and log(Y ) has the normal distribution with
mean 3 and variance 6. Find the distribution of the product
XY .

22. Suppose that X has the lognormal distribution with
parameters μ and σ 2. Find the distribution of 1/X.

23. Suppose that X has the lognormal distribution with
parameters 4.1 and 8. Find the distribution of 3X1/2.

24. The method of completing the square is used several
times in this text. It is a useful method for combining
several quadratic and linear polynomials into a perfect
square plus a constant. Prove the following identity, which
is one general form of completing the square:

n∑
i=1

ai(x − bi)
2 + cx

=
(

n∑
i=1

ai

) (
x −

∑n
i=1 aibi − c/2∑n

i=1 ai

)2

+
n∑

i=1

ai

(
bi −

∑n
i=1 aibi∑n
i=1 ai

)2

+
(

n∑
i=1

ai

)−1 [
c

n∑
i=1

aibi − c2/4

]
if
∑n

i=1 ai 	= 0.

25. In Example 5.6.10, we considered the effect of con-
tinuous compounding of interest. Suppose that S0 dollars
earn a rate of r per year componded continuously for u

years. Prove that the principal plus interest at the end of
this time equals S0e

ru. Hint: Suppose that interest is com-
pounded n times at intervals of u/n years each. At the end
of each of the n intervals, the principal gets multiplied by
1 + ru/n. Take the limit of the result as n → ∞.

26. Let X have the normal distribution whose p.d.f. is
given by (5.6.6). Instead of using the m.g.f., derive the
variance of X using integration by parts.

5.7 The Gamma Distributions
The family of gamma distributions is a popular model for random variables that
are known to be positive. The family of exponential distributions is a subfamily of
the gamma distributions. The times between successive occurrences in a Poisson
process have an exponential distribution. The gamma function, related to the
gamma distributions, is an extension of factorials from integers to all positive
numbers.

The Gamma Function

Example
5.7.1

Mean and Variance of Lifetime of a Light Bulb. Suppopse that we model the lifetime of
a light bulb as a continuous random variable with the following p.d.f.:

f (x) =
{

e−x for x > 0,
0 otherwise.
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If we wish to compute the mean and variance of such a lifetime, we need to compute
the following integrals: ∫ ∞

0
xe−xdx, and

∫ ∞

0
x2e−xdx. (5.7.1)

These integrals are special cases of an important function that we examine next. �

Definition
5.7.1

The Gamma Function. For each positive number α, let the value �(α) be defined by
the following integral:

�(α) =
∫ ∞

0
xα−1e−x dx. (5.7.2)

The function � defined by Eq. (5.7.2) for α > 0 is called the gamma function.

As an example,

�(1) =
∫ ∞

0
e−x dx = 1. (5.7.3)

The following result, together with Eq. (5.7.3), shows that �(α) is finite for every
value of α > 0.

Theorem
5.7.1

If α > 1, then

�(α) = (α − 1)�(α − 1). (5.7.4)

Proof We shall apply the method of integration by parts to the integral in Eq. (5.7.2).
If we let u = xα−1 and dv = e−x dx, then du = (α − 1)xα−2 dx and v = −e−x. There-
fore,

�(α) =
∫ ∞

0
u dv = [uv]∞0 −

∫ ∞

0
v du

= [−xα−1e−x]∞
x=0 + (α − 1)

∫ ∞

0
xα−2e−x dx

= 0 + (α − 1)�(α − 1).

For integer values of α, we have a simple expression for the gamma function.

Theorem
5.7.2

For every positive integer n,

�(n) = (n − 1)!. (5.7.5)

Proof It follows from Theorem 5.7.1 that for every integer n ≥ 2,

�(n) = (n − 1)�(n − 1) = (n − 1)(n − 2)�(n − 2)

= (n − 1)(n − 2) . . . 1 . �(1)

= (n − 1)!�(1).

Since �(1) = 1 = 0! by Eq. (5.7.3), the proof is complete.

Example
5.7.2

Mean and Variance of Lifetime of a Light Bulb. The two integrals in (5.7.1) are, respec-
tively, �(2) = 1! = 1 and �(3) = 2! = 2. It follows that the mean of each lifetime is 1,
and the variance is 2 − 12 = 1. �

In many statistical applications, �(α) must be evaluated when α is either a positive
integer or of the form α = n + (1/2) for some positive integer n. It follows from
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Eq. (5.7.4) that for each positive integer n,

�

(
n + 1

2

)
=

(
n − 1

2

) (
n − 3

2

)
. . .

(
1
2

)
�

(
1
2

)
. (5.7.6)

Hence, it will be possible to determine the value of �

(
n + 1

2

)
if we can evaluate

�

(
1
2

)
.

From Eq. (5.7.2),

�

(
1
2

)
=

∫ ∞

0
x−1/2e−x dx.

If we let x = (1/2)y2 in this integral, then dx = y dy and

�

(
1
2

)
= 21/2

∫ ∞

0
exp

(
− 1

2
y2

)
dy. (5.7.7)

Because the integral of the p.d.f. of the standard normal distribution is equal to 1, it
follows that ∫ ∞

−∞
exp

(
− 1

2
y2

)
dy = (2π)1/2. (5.7.8)

Because the integrand in (5.7.8) is symmetric around y = 0,∫ ∞

0
exp

(
− 1

2
y2

)
dy = 1

2
(2π)1/2 =

(
π

2

)1/2

.

It now follows from Eq. (5.7.7) that

�

(
1
2

)
= π1/2. (5.7.9)

For example, it is found from Eqs. (5.7.6) and (5.7.9) that

�

(
7
2

)
=

(
5
2

) (
3
2

) (
1
2

)
π1/2 = 15

8
π1/2.

We present two final useful results before we introduce the gamma distributions.

Theorem
5.7.3

For each α > 0 and each β > 0,∫ ∞

0
xα−1 exp(βx)dx = �(α)

βα
. (5.7.10)

Proof Make the change of variables y = βx so that x = y/β and dx = dy/β. The
result now follows easily from Eq. (5.7.2).

There is a version of Stirling’s formula (Theorem 1.7.5) for the gamma function,
which we state without proof.

Theorem
5.7.4

Stirling’s Formula. lim
x→∞

(2π)1/2xx−1/2e−x

�(x)
= 1.

Example
5.7.3

Service Times in a Queue. For i = 1, . . . , n, suppose that customer i in a queue must
wait time Xi for service once reaching the head of the queue. Let Z be the rate at
which the average customer is served. A typical probability model for this situation
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is to say that, conditional on Z = z, X1, . . . , Xn are i.i.d. with a distribution having the
conditional p.d.f. g1(xi|z) = z exp(−zxi) for xi > 0. Suppose that Z is also unknown
and has the p.d.f. f2(z) = 2 exp(−2z) for z > 0. The joint p.d.f. of X1, . . . , Xn, Z is
then

f (x1, . . . , xn, z) =
n∏

i=1

g1(xi|z)f2(z)

= 2zn exp
(−z [2 + x1 + . . . + xn]

)
, (5.7.11)

if z, x1, . . . , xn > 0 and 0 otherwise. In order to calculate the marginal joint distribu-
tion of X1, . . . , Xn, we must integrate z out of the the joint p.d.f. above. We can apply
Theorem 5.7.3 with α = n + 1 and β = 2 + x1 + . . . + xn together with Theorem 5.7.2
to integrate the function in Eq. (5.7.11). The result is∫ ∞

0
f (x1, . . . , xn, z)dz = 2(n!)(

2 + ∑n
i=1 xi

)n+1
, (5.7.12)

for all xi > 0 and 0 otherwise. This is the same joint p.d.f. that was used in Exam-
ple 3.7.5 on page 154. �

The Gamma Distributions

Example
5.7.4

Service Times in a Queue. In Example 5.7.3, suppose that we observe the service times
of n customers and want to find the conditional distribution of the rate Z. We can
easily find the conditional p.d.f. g2(z|x1, . . . , xn) of Z given X1 = x1, . . . , Xn = xn by
dividing the joint p.d.f. of X1, . . . , Xn, Z in Eq. (5.7.11) by the p.d.f. of X1, . . . , Xn in
Eq. (5.7.12). The calculation is simplified by defining y = 2 + ∑n

i=1 xi. We then obtain

g2(z|x1, . . . , xn) =
{

yn+1

n!
e−yz, for z > 0,

0 otherwise.
�

Distributions with p.d.f.’s like the one at the end of Example 5.7.4 are members
of a commonly used family, which we now define.

Definition
5.7.2

Gamma Distributions. Let α and β be positive numbers. A random variable X has the
gamma distribution with parameters α and β if X has a continuous distribution for
which the p.d.f. is

f (x|α, β) =
⎧⎨⎩

βα

�(α)
xα−1e−βx for x > 0,

0 for x ≤ 0.
(5.7.13)

That the integral of the p.d.f. in Eq. (5.7.13) is 1 follows easily from Theorem 5.7.3.

Example
5.7.5

Service Times in a Queue. In Example 5.7.4, we can easily recognize the conditional
p.d.f. as the p.d.f. of the gamma distribution with parameters α = n + 1 and β = y.

�

If X has a gamma distribution, then the moments of X are easily found from
Eqs. (5.7.13) and (5.7.10).
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Figure 5.7 Graphs of the
p.d.f.’s of several different
gamma distributions with
common mean of 1.
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Theorem
5.7.5

Moments. Let X have the gamma distribution with parameters α and β. For k =
1, 2, . . . ,

E(Xk) = �(α + k)

βk�(α)
= α(α + 1) . . . (α + k − 1)

βk
.

In particular, E(X) = α
β

, and Var(X) = α

β2 .

Proof For k = 1, 2, . . . ,

E(Xk) =
∫ ∞

0
xkf (x|α, β) dx = βα

�(α)

∫ ∞

0
xα+k−1e−βx dx

= βα

�(α)
. �(α + k)

βα+k
= �(α + k)

βk�(α)
. (5.7.14)

The expression for E(X) follows immediately from (5.7.14). The variance can be
computed as

Var(X) = α(α + 1)
β2

−
(

α

β

)2

= α

β2
.

Figure 5.7 shows several gamma distribution p.d.f.’s that all have mean equal to
1 but different values of α and β.

Example
5.7.6

Service Times in a Queue. In Example 5.7.5, the conditional mean service rate given
the observations X1 = x1, . . . , Xn = xn is

E(Z|x1, . . . , xn) = n + 1
2 + ∑n

i=1 xi

.

For large n, the conditional mean is approximately 1 over the sample average of
the service times. This makes sense since 1 over the average service time is what we
generally mean by service rate. �

The m.g.f. ψ of X can be obtained similarly.

Theorem
5.7.6

Moment Generating Function. Let X have the gamma distribution with parameters α

and β. The m.g.f. of X is

ψ(t) =
(

β

β − t

)α

for t < β. (5.7.15)
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Proof The m.g.f. is

ψ(t) =
∫ ∞

0
etxf (x|α, β) dx = βα

�(α)

∫ ∞

0
xα−1e−(β−t)x dx.

This integral will be finite for every value of t such that t < β. Therefore, it follows
from Eq. (5.7.10) that, for t < β,

ψ(t) = βα

�(α)
. �(α)

(β − t)α
=

(
β

β − t

)α

.

We can now show that the sum of independent random variables that have
gamma distributions with a common value of the parameter β will also have a gamma
distribution.

Theorem
5.7.7

If the random variables X1, . . . , Xk are independent, and if Xi has the gamma
distribution with parameters αi and β (i = 1, . . . , k), then the sum X1 + . . . + Xk

has the gamma distribution with parameters α1 + . . . + αk and β.

Proof If ψi denotes the m.g.f. of Xi, then it follows from Eq. (5.7.15) that for
i = 1, . . . , k,

ψi(t) =
(

β

β − t

)αi

for t < β.

If ψ denotes the m.g.f. of the sum X1 + . . . + Xk, then by Theorem 4.4.4,

ψ(t) =
k∏

i=1

ψi(t) =
(

β

β − t

)α1+...+αk

for t < β.

The m.g.f. ψ can now be recognized as the m.g.f. of the gamma distribution with
parameters α1 + . . . + αk and β. Hence, the sum X1 + . . . + Xk must have this gamma
distribution.

The Exponential Distributions

A special case of gamma distributions provide a common model for phenomena such
as waiting times. For instance, in Example 5.7.3, the conditional distribution of each
service time Xi given Z (the rate of service) is a member of the following family of
distributions.

Definition
5.7.3

Exponential Distributions. Let β > 0. A random variable X has the exponential distri-
bution with parameter β if X has a continuous distribution with the p.d.f.

f (x|β) =
{

βe−βx for x > 0,
0 for x ≤ 0.

(5.7.16)

A comparison of the p.d.f.’s for gamma and exponential distributions makes the
following result obvious.

Theorem
5.7.8

The exponential distribution with parameter β is the same as the gamma distribution
with parameters α = 1 and β. If X has the exponential distribution with parameter
β, then

E(X) = 1
β

and Var(X) = 1
β2

, (5.7.17)
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and the m.g.f. of X is

ψ(t) = β

β − t
for t < β.

Exponential distributions have a memoryless property similar to that stated in
Theorem 5.5.5 for geometric distributions.

Theorem
5.7.9

Memoryless Property of Exponential Distributions. Let X have the exponential distri-
bution with parameter β, and let t > 0. Then for every number h > 0,

Pr(X ≥ t + h|X ≥ t) = Pr(X ≥ h). (5.7.18)

Proof For each t > 0,

Pr(X ≥ t) =
∫ ∞

t

βe−βx dx = e−βt . (5.7.19)

Hence, for each t > 0 and each h > 0,

Pr(X ≥ t + h|X ≥ t) = Pr(X ≥ t + h)

Pr(X ≥ t)

= e−β(t+h)

e−βt
= e−βh = Pr(X ≥ h). (5.7.20)

You can prove (see Exercise 23) that the exponential distributions are the only
continuous distributions with the memoryless property.

To illustrate the memoryless property, we shall suppose that X represents the
number of minutes that elapse before some event occurs. According to Eq. (5.7.20),
if the event has not occurred during the first t minutes, then the probability that the
event will not occur during the next h minutes is simply e−βh. This is the same as the
probability that the event would not occur during an interval of h minutes starting
from time 0. In other words, regardless of the length of time that has elapsed without
the occurrence of the event, the probability that the event will occur during the next
h minutes always has the same value.

This memoryless property will not strictly be satisfied in all practical problems.
For example, suppose that X is the length of time for which a light bulb will burn
before it fails. The length of time for which the bulb can be expected to continue to
burn in the future will depend on the length of time for which it has been burning
in the past. Nevertheless, the exponential distribution has been used effectively as
an approximate distribution for such variables as the lengths of the lives of various
products.

Life Tests

Example
5.7.7

Light Bulbs. Suppose that n light bulbs are burning simultaneously in a test to deter-
mine the lengths of their lives. We shall assume that the n bulbs burn independently of
one another and that the lifetime of each bulb has the exponential distribution with
parameter β. In other words, if Xi denotes the lifetime of bulb i, for i = 1, . . . , n,
then it is assumed that the random variables X1, . . . , Xn are i.i.d. and that each has
the exponential distribution with parameter β. What is the distribution of the length
of time Y1 until the first failure of one of the n bulbs? What is the distribution of the
length of time Y2 after the first failure until a second bulb fails? �
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The random variable Y1 in Example 5.7.7 is the minimum of a random sample of
n exponential random variables. The distribution of Y1 is easy to find.

Theorem
5.7.10

Suppose that the variables X1, . . . , Xn form a random sample from the exponential
distribution with parameter β. Then the distribution of Y1 = min{X1, . . . , Xn} will be
the exponential distribution with parameter nβ.

Proof For every number t > 0,

Pr(Y1 > t) = Pr(X1 > t, . . . , Xn > t)

= Pr(X1 > t) . . . Pr(Xn > t)

= e−βt . . . e−βt = e−nβt .

By comparing this result with Eq. (5.7.19), we see that the distribution of Y1 must be
the exponential distribution with parameter nβ.

The memoryless property of the exponential distributions allows us to answer
the second question at the end of Example 5.7.7, as well as similar questions about
later failures. After one bulb has failed, n − 1 bulbs are still burning. Furthermore,
regardless of the time at which the first bulb failed or which bulb failed first, it follows
from the memoryless property of the exponential distribution that the distribution
of the remaining lifetime of each of the other n − 1 bulbs is still the exponential
distribution with parameter β. In other words, the situation is the same as it would be
if we were starting the test over again from time t = 0 with n − 1new bulbs. Therefore,
Y2 will be equal to the smallest of n − 1 i.i.d. random variables, each of which has the
exponential distribution with parameter β. It follows from Theorem 5.7.10 that Y2
will have the exponential distribution with parameter (n − 1)β. The next result deals
with the remaining waiting times between failures.

Theorem
5.7.11

Suppose that the variables X1, . . . , Xn form a random sample from the exponen-
tial distribution with parameter β. Let Z1 ≤ Z2 ≤ . . . ≤ Zn be the random variables
X1, . . . , Xn sorted from smallest to largest. For each k = 2, . . . , n, let Yk = Zk − Zk−1.
Then the distribution of Yk is the exponential distribution with parameter (n + 1 −
k)β.

Proof At the time Zk−1, exactly k − 1 of the lifetimes have ended and there are
n + 1 − k lifetimes that have not yet ended. For each of the remaining lifetimes, the
conditional distribution of what remains of that lifetime given that it has lasted at
least Zk−1 is still exponential with parameter β by the memoryless property. So, Yk =
Zk − Zk−1 has the same distribution as the minimum lifetime from a random sample
of size n + 1 − k from the exponential distribution with parameter β. According to
Theorem 5.7.10, that distribution is exponential with parameter (n + 1 − k)β.

Relation to the Poisson Process

Example
5.7.8

Radioactive Particles. Suppose that radioactive particles strike a target according to a
Poisson process with rate β, as defined in Definition 5.4.2. Let Zk be the time until the
kth particle strikes the target for k = 1, 2, . . .. What is the distribution of Z1? What
is the distribution of Yk = Zk − Zk−1 for k ≥ 2? �

Although the random variables defined at the end of Example 5.7.8 look similar
to those in Theorem 5.7.11, there are major differences. In Theorem 5.7.11, we were
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observing a fixed number n of lifetimes that all started simultaneously. The n lifetimes
are all labeled in advance, and each could be observed independently of the others.
In Example 5.7.8, there is no fixed number of particles being contemplated, and we
have no well-defined notion of when each particle “starts” toward the target. In fact,
we cannot even tell which particle is which until after they are observed. We merely
start observing at an arbitrary time and record each time a particle hits. Depending
on how long we observe the process, we could see an arbitrary number of particles
hit the target in Example 5.7.8, but we could never see more than n failures in the
setup of Theorem 5.7.11, no matter how long we observe. Theorem 5.7.12 gives the
distributions for the times between arrivals in Example 5.7.8, and one can see how
the distributions differ from those in Theorem 5.7.11.

Theorem
5.7.12

Times between Arrivals in a Poisson Process. Suppose that arrivals occur according to
a Poisson process with rate β. Let Zk be the time until the kth arrival for k = 1, 2, . . . .

Define Y1 = Z1 and Yk = Zk − Zk−1 for k ≥ 2. Then Y1, Y2, . . . are i.i.d. and they each
have the exponential distribution with parameter β.

Proof Let t > 0, and define X to be the number of arrivals from time 0 until time t .
It is easy to see that Y1 ≤ t if and only if X ≥ 1. That is, the first particle strikes the
target by time t if and only if at least one particle strikes the target by time t . We
already know that X has the Poisson distribution with mean βt , where β is the rate
of the process. So, for t > 0,

Pr(Y1 ≤ t) = Pr(X ≥ 1) = 1 − Pr(X = 0) = 1 − e−βt .

Comparing this to Eq. (5.7.19), we see that 1 − e−βt is the c.d.f. of the exponential
distribution with parameter β.

What happens in a Poisson process after time t is independent of what happens
up to time t . Hence, the conditional distribution given Y1 = t of the gap from time
t until the next arrival at Z2 is the same as the distribution of the time from time
0 until the first arrival. That is, the distribution of Y2 = Z2 − Z1 given Y1 = t (i.e.,
Z1 = t) is the exponential distribution with parameter β no matter what t is. Hence,
Y2 is independent of Y1 and they have the same distribution. The same argument can
be applied to find the distributions for Y3, Y4, . . . .

An exponential distribution is often used in a practical problem to represent
the distribution of the time that elapses before the occurrence of some event. For
example, this distribution has been used to represent such periods of time as the
period for which a machine or an electronic component will operate without breaking
down, the period required to take care of a customer at some service facility, and the
period between the arrivals of two successive customers at a facility.

If the events being considered occur in accordance with a Poisson process, then
both the waiting time until an event occurs and the period of time between any two
successive events will have exponential distributions. This fact provides theoretical
support for the use of the exponential distribution in many types of problems.

We can combine Theorem 5.7.12 with Theorem 5.7.7 to obtain the following.

Corollary
5.7.1

Time until kth Arrival. In the situation of Theorem 5.7.12, the distribution of Zk is the
gamma distribution with parameters k and β.
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Summary

The gamma function is defined by �(α) = ∫ ∞
0 xα−1e−x dx and has the property that

�(n) = (n − 1)! for n = 1, 2, . . . . If X1, . . . , Xn are independent random variables
with gamma distributions all having the same second parameter β, then

∑n
i=1 Xi has

the gamma distribution with first parameter equal to the sum of the first parameters
of X1, . . . , Xn and second parameter equal to β. The exponential distribution with
parameter β is the same as the gamma distribution with parameters 1 and β. Hence,
the sum of a random sample of n exponential random variables with parameter β

has the gamma distribution with parameters n and β. For a Poisson process with rate
β, the times between successive occurrences have the exponential distribution with
parameter β, and they are independent. The waiting time until the kth occurrence
has the gamma distribution with parameters k and β.

Exercises

1. Suppose that X has the gamma distribution with pa-
rameters α and β, and c is a positive constant. Show that
cX has the gamma distribution with parameters α and β/c.

2. Compute the quantile function of the exponential dis-
tribution with parameter β.

3. Sketch the p.d.f. of the gamma distribution for each of
the following pairs of values of the parameters α and β:
(a) α = 1/2 and β = 1, (b) α = 1 and β = 1, (c) α = 2 and
β = 1.

4. Determine the mode of the gamma distribution with
parameters α and β.

5. Sketch the p.d.f. of the exponential distribution for each
of the following values of the parameter β: (a) β = 1/2, (b)
β = 1, and (c) β = 2.

6. Suppose that X1, . . . , Xn form a random sample of
size n from the exponential distribution with parameter
β. Determine the distribution of the sample mean Xn.

7. Let X1, X2, X3 be a random sample from the exponen-
tial distribution with parameter β. Find the probability
that at least one of the random variables is greater than
t , where t > 0.

8. Suppose that the random variables X1, . . . , Xk are in-
dependent and Xi has the exponential distribution with
parameter βi (i = 1, . . . , k). Let Y = min{X1, . . . , Xk}.
Show that Y has the exponential distribution with param-
eter β1 + . . . + βk.

9. Suppose that a certain system contains three compo-
nents that function independently of each other and are
connected in series, as defined in Exercise 5 of Sec. 3.7,
so that the system fails as soon as one of the components
fails. Suppose that the length of life of the first compo-

nent, measured in hours, has the exponential distribution
with parameter β = 0.001, the length of life of the second
component has the exponential distribution with parame-
ter β = 0.003, and the length of life of the third component
has the exponential distribution with parameter β = 0.006.
Determine the probability that the system will not fail be-
fore 100 hours.

10. Suppose that an electronic system contains n similar
components that function independently of each other
and that are connected in series so that the system fails
as soon as one of the components fails. Suppose also that
the length of life of each component, measured in hours,
has the exponential distribution with mean μ. Determine
the mean and the variance of the length of time until the
system fails.

11. Suppose that n items are being tested simultaneously,
the items are independent, and the length of life of each
item has the exponential distribution with parameter β.
Determine the expected length of time until three items
have failed. Hint: The required value is E(Y1 + Y2 + Y3) in
the notation of Theorem 5.7.11.

12. Consider again the electronic system described in Ex-
ercise 10, but suppose now that the system will continue
to operate until two components have failed. Determine
the mean and the variance of the length of time until the
system fails.

13. Suppose that a certain examination is to be taken by
five students independently of one another, and the num-
ber of minutes required by any particular student to com-
plete the examination has the exponential distribution for
which the mean is 80. Suppose that the examination be-
gins at 9:00 a.m. Determine the probability that at least
one of the students will complete the examination before
9:40 a.m.
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14. Suppose again that the examination considered in Ex-
ercise 13 is taken by five students, and the first student to
complete the examination finishes at 9:25 a.m. Determine
the probability that at least one other student will com-
plete the examination before 10:00 a.m.

15. Suppose again that the examination considered in Ex-
ercise 13 is taken by five students. Determine the proba-
bility that no two students will complete the examination
within 10 minutes of each other.

16. It is said that a random variable X has the Pareto distri-
bution with parameters x0 and α (x0 > 0 and α > 0) if X has
a continuous distribution for which the p.d.f. f (x|x0, α) is
as follows:

f (x|x0, α) =
⎧⎨⎩

αxα
0

xα+1
for x ≥ x0,

0 for x < x0.

Show that if X has this Pareto distribution, then the ran-
dom variable log(X/x0) has the exponential distribution
with parameter α.

17. Suppose that a random variable X has the normal
distribution with mean μ and variance σ 2. Determine the
value of E[(X − μ)2n] for n = 1, 2, . . . .

18. Consider a random variable X for which Pr(X > 0) =
1, the p.d.f. is f , and the c.d.f. is F . Consider also the
function h defined as follows:

h(x) = f (x)

1 − F(x)
for x > 0.

The function h is called the failure rate or the hazard func-
tion of X. Show that if X has an exponential distribution,
then the failure rate h(x) is constant for x > 0.

19. It is said that a random variable has the Weibull distri-
bution with parameters a and b (a > 0 and b > 0) if X has
a continuous distribution for which the p.d.f. f (x|a, b) is
as follows:

f (x|a, b) =
⎧⎨⎩

b

ab
xb−1e−(x/a)b for x > 0,

0 for x ≤ 0.

Show that if X has this Weibull distribution, then the ran-
dom variable Xb has the exponential distribution with pa-
rameter β = a−b.

20. It is said that a random variable X has an increasing
failure rate if the failure rate h(x) defined in Exercise 18 is
an increasing function of x for x > 0, and it is said that X

has a decreasing failure rate if h(x) is a decreasing function
of x for x > 0. Suppose that X has the Weibull distribution
with parameters a and b, as defined in Exercise 19. Show

that X has an increasing failure rate if b > 1, and X has a
decreasing failure rate if b < 1.

21. Let X have the gamma distribution with parameters
α > 2 and β > 0.

a. Prove that the mean of 1/X is β/(α − 1).

b. Prove that the variance of 1/X is β2/[(α − 1)2

(α − 2)].

22. Consider the Poisson process of radioactive particle
hits in Example 5.7.8. Suppose that the rate β of the Pois-
son process is unknown and has the gamma distribution
with parameters α and γ . Let X be the number of parti-
cles that strike the target during t time units. Prove that
the conditional distribution of β given X = x is a gamma
distribution, and find the parameters of that gamma dis-
tribution.

23. Let F be a continuous c.d.f. satisfying F(0) = 0, and
suppose that the distribution with c.d.f. F has the mem-
oryless property (5.7.18). Define �(x) = log[1 − F(x)] for
x > 0.

a. Show that for all t, h > 0,

1 − F(h) = 1 − F(t + h)

1 − F(t)
.

b. Prove that �(t + h) = �(t) + �(h) for all t, h > 0.

c. Prove that for all t > 0 and all positive integers k and
m, �(kt/m) = (k/m)�(t).

d. Prove that for all t, c > 0, �(ct) = c�(t).

e. Prove that g(t) = �(t)/t is constant for t > 0.

f. Prove that F must be the c.d.f. of an exponential
distribution.

24. Review the derivation of the Black-Scholes formula
(5.6.18). For this exercise, assume that our stock price at
time u in the future is S0e

μu+Wu, where Wu has the gamma
distribution with parameters αu and β with β > 1. Let r be
the risk-free interest rate.

a. Prove that e−ruE(Su) = S0 if and only if μ = r −
α log(β/[β − 1]).

b. Assume that μ = r − α log(β/[β − 1]). Let R be 1 mi-
nus the c.d.f. of the gamma distribution with param-
eters αu and 1. Prove that the risk-neutral price for
the option to buy one share of the stock for the price
q at time u is S0R(c[β − 1]) − qe−ruR(cβ), where

c = log
(

q

S0

)
+ αu log

(
β

β − 1

)
− ru.

c. Find the price for the option being considered when
u = 1, q = S0, r = 0.06, α = 1, and β = 10.
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5.8 The Beta Distributions
The family of beta distributions is a popular model for random variables that are
known to take values in the interval [0, 1]. One common example of such a random
variable is the unknown proportion of successes in a sequence of Bernoulli trials.

The Beta Function

Example
5.8.1

Defective Parts. A machine produces parts that are either defective or not, as in
Example 3.6.9 on page 148. Let P denote the proportion of defectives among all
parts that might be produced by this machine. Suppose that we observe n such parts,
and let X be the number of defectives among the n parts observed. If we assume that
the parts are conditionally independent given P , then we have the same situation as
in Example 3.6.9, where we computed the conditional p.d.f. of P given X = x as

g2(p|x) = px(1 − p)n−x∫ 1
0 qx(1 − q)n−xdq

, for 0 < p < 1. (5.8.1)

We are now in a position to calculate the integral in the denominator of Eq. (5.8.1).
The distribution with the resulting p.d.f. is a member a useful family that we shall
study in this section. �

Definition
5.8.1

The Beta Function. For each positive α and β, define

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx.

The function B is called the beta function.

We can show that the beta function B is finite for all α, β > 0. The proof of the
following result relies on the methods from the end of Sec. 3.9 and is given at the end
of this section.

Theorem
5.8.1

For all α, β > 0,

B(α, β) = �(α)�(β)

�(α + β)
. (5.8.2)

Example
5.8.2

Defective Parts. It follows from Theorem 5.8.1 that the integral in the denominator
of Eq. (5.8.1) is∫ 1

0
qx(1 − q)n−xdq = �(x + 1)�(n − x + 1)

�(n + 2)
= x!(n − x)!

(n + 1)!
.

The conditional p.d.f. of P given X = x is then

g2(p|x) = (n + 1)!
x!(n − x)!

px(1 − p)n−x, for 0 < p < 1. �
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Definition of the Beta Distributions

The distribution in Example 5.8.2 is a special case of the following.

Definition
5.8.2

Beta Distributions. Let α, β > 0 and let X be a random variable with p.d.f.

f (x|α, β) =
⎧⎨⎩

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1 for 0 < x < 1,

0 otherwise.
(5.8.3)

Then X has the beta distribution with parameters α and β.

The conditional distribution of P given X = x in Example 5.8.2 is the beta
distribution with parameters x + 1 and n − x + 1. It can also be seen from Eq. (5.8.3)
that the beta distribution with parameters α = 1 and β = 1 is simply the uniform
distribution on the interval [0, 1].

Example
5.8.3

Castaneda v. Partida. In Example 5.2.6 on page 278, 220 grand jurors were chosen
from a population that is 79.1 percent Mexican American, but only 100 grand jurors
were Mexican American. The expected value of a binomial random variable X with
parameters 220 and 0.791 is E(X) = 220 × 0.791 = 174.02. This is much larger than
the observed value of X = 100. Of course, such a discrepancy could occur by chance.
After all, there is positive probability of X = x for all x = 0, . . . , 220. Let P stand for
the proportion of Mexican Americans among all grand jurors that would be chosen
under the current system being used. The court assumed that X had the binomial
distribution with parameters n = 220 and p, conditional on P = p. We should then
be interested in whether P is substantially less than the value 0.791, which represents
impartial juror choice. For example, suppose that we define discrimination to mean
that P ≤ 0.8 × 0.791 = 0.6328. We would like to compute the conditional probability
of P ≤ 0.6328 given X = 100.

Suppose that the distribution of P prior to observing X was the beta distribution
with parameters α and β. Then the p.d.f. of P was

f2(p) = �(α + β)

�(α)�(β)
pα−1(1 − p)β−1, for 0 < p < 1.

The conditional p.f. of X given P = p is the binomial p.f.

g1(x|p) =
(

220
x

)
px(1 − p)220−x, for x = 0, . . . , 220.

We can now apply Bayes’ theorem for random variables (3.6.13) to obtain the con-
ditional p.d.f. of P given X = 100:

g2(p|100) =

(
220
100

)
p100(1 − p)120 �(α + β)

�(α)�(β)
pα−1(1 − p)β−1

f1(100)

=
(220

100

)
�(α + β)

�(α)�(β)f1(100)
pα+100−1(1 − p)β+120−1, (5.8.4)

for 0 < p < 1, where f1(100) is the marginal p.f. of X at 100. As a function of
p the far right side of Eq. (5.8.4) is a constant times pα+100−1(1 − p)β+120−1 for
0 < p < 1. As such, it is clearly the p.d.f. of a beta distribution. The parameters
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of that beta distribution are α + 100 and β + 120. Hence, the constant must be
1/B(100 + α, 120 + β). That is,

g2(p|100) = �(α + β + 220)

�(α + 100)�(β + 120)
pα+100−1(1 − p)β+120−1, for 0 < p < 1.

(5.8.5)

After choosing values of α and β, we could compute Pr(P ≤ 0.6328|X = 100) and
decide how likely it is that there was discrimination. We will see how to choose α and
β after we learn how to compute the expected value of a beta random variable. �

Note: Conditional Distribution of P after Observing X with Binomial Distribu-
tion. The calculation of the conditional distribution of P given X = 100 in Exam-
ple 5.8.3 is a special case of a useful general result. In fact, the proof of the following
result is essentially given in Example 5.8.3, and will not be repeated.

Theorem
5.8.2

Suppose that P has the beta distribution with parameters α and β, and the conditional
distribution of X given P = p is the binomial distribution with parameters n and
p. Then the conditional distribution of P given X = x is the beta distribution with
parameters α + x and β + n − x.

Moments of Beta Distributions

Theorem
5.8.3

Moments. Suppose that X has the beta distribution with parameters α and β. Then
for each positive integer k,

E(Xk) = α(α + 1) . . . (α + k − 1)
(α + β)(α + β + 1) . . . (α + β + k − 1)

. (5.8.6)

In particular,

E(X) = α

α + β
,

Var(X) = αβ

(α + β)2(α + β + 1)
.

Proof For k = 1, 2, . . . ,

E(Xk) =
∫ 1

0
xkf (x|α, β) dx

= �(α + β)

�(α)�(β)

∫ 1

0
xα+k−1(1 − x)β−1 dx.

Therefore, by Eq. (5.8.2),

E(Xk) = �(α + β)

�(α)�(β)
. �(α + k)�(β)

�(α + k + β)
,

which simplifies to Eq. (5.8.6). The special case of the mean is simple, while the
variance follows easily from

E(X2) = α(α + 1)
(α + β)(α + β + 1)

.

There are too many beta distributions to provide tables in the back of the
book. Any good statistical package will be able to calculate the c.d.f.’s of many beta
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Figure 5.8 Probability of
discrimination as a function
of β.
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distributions, and some packages will also be able to calculate the quantile functions.
The next example illustrates the importance of being able to calculate means and
c.d.f.’s of beta distributions.

Example
5.8.4

Castaneda v. Partida. Continuing Example 5.8.3, we are now prepared to see why, for
every reasonable choice one makes for α and β, the probability of discrimination in
Castaneda v. Partida is quite large. To avoid bias either for or against the defendant,
we shall suppose that, before learning X, the probability that a Mexican American
juror would be selected on each draw from the pool was 0.791. Let Y = 1 if a Mexican
American juror is selected on a single draw, and let Y = 0 if not. Then Y has the
Bernoulli distribution with parameter p given P = p and E(Y |p) = p. So the law of
total probability for expectations, Theorem 4.7.1, says that

Pr(Y = 1) = E(Y ) = E[E(Y |P)] = E(P ).

This means that we should choose α and β so that E(P ) = 0.791. Because E(P ) =
α/(α + β), this means that α = 3.785β. The conditional distribution of P given X =
100 is the beta distribution with parameters α + 100 and β + 120. For each value of
β > 0, we can compute Pr(P ≤ 0.6328|X = 100) using α = 3.785β. Then, for each β we
can check whether or not that probability is small. A plot of Pr(P ≤ 0.6328|X = 100)

for various values of β is given in Fig. 5.8. From the figure, we see that Pr(P ≤
0.6328|X = 100) < 0.5 only for β ≥ 51.5. This makes α ≥ 194.9. We claim that the
beta distribution with parameters 194.9 and 51.5 as well as all others that make
Pr(P ≤ 0.6328|X = 100) < 0.5 are unreasonable because they are incredibly preju-
diced about the possibility of discrimination. For example, suppose that someone
actually believed, before observing X = 100, that the distribution of P was the beta
distribution with parameters 194.9 and 51.5. For this beta distribution, the proba-
bility that there is discrimination would be Pr(P ≤ 0.6328) = 3.28 × 10−8, which is
essentially 0. All of the other priors with β ≥ 51.5 and α = 3.785β have even smaller
probabilities of {P ≤ 0.6328}. Arguing from the other direction, we have the fol-
lowing: Anyone who believed, before observing X = 100, that E(P ) = 0.791 and the
probability of discrimination was greater than 3.28 × 10−8, would believe that the
probability of discrimination is at least 0.5 after learning X = 100. This is then fairly
convincing evidence that there was discrimination in this case. �

Example
5.8.5

A Clinical Trial. Consider the clinical trial described in Example 2.1.4. Let P be the
proportion of all patients in a large group receiving imipramine who have no relapse
(called success). A popular model for P is that P has the beta distribution with
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parameters α and β. Choosing α and β can be done based on expert opinion about the
chance of success and on the effect that data should have on the distribution of P after
observing the data. For example, suppose that the doctors running the clinical trial
think that the probability of success should be around 1/3. Let Xi = 1 if the ith patient
is a success and Xi = 0 if not. We are supposing that E(Xi|p) = Pr(Xi = 1|p) = p, so
the law of total probability for expectations (Theorem 4.7.1) says that

Pr(Xi = 1) = E(Xi) = E[E(Xi|P)] = E(P ) = α

α + β
.

If we want Pr(Xi = 1) = 1/3, we need α/(α + β) = 1/3, so β = 2α. Of course, the
doctors will revise the probability of success after observing patients from the study.
The doctors can choose α and β based on how that revision will occur.

Assume that the random variables X1, X2, . . . (the indicators of success) are con-
ditionally independent given P = p. Let X = X1 + . . . + Xn be the number of patients
out of the first n who are successes. The conditional distribution of X given P = p

is the binomial distribution with parameters n and p, and the marginal distribution
of P is the beta distribution with parameters α and β. Theorem 5.8.2 tells us that
the conditional distribution of P given X = x is the beta distribution with parame-
ters α + x and β + n − x. Suppose that a sequence of 20 patients, all of whom are
successes, would raise the doctors’ probability of success from 1/3 up to 0.9. Then

0.9 = E(P |X = 20) = α + 20
α + β + 20

.

This equation implies that α + 20 = 9β. Combining this with β = 2α, we get α = 1.18
and β = 2.35.

Finally, we can ask, what will be the distribution of P after observing some
patients in the study? Suppose that 40 patients are actually observed, and 22 of them
recover (as in Table 2.1). Then the conditional distribution of P given this observation
is the beta distribution with parameters 1.18 + 22 = 23.18 and 2.35 + 18 = 20.35. It
follows that

E(P |X = 22) = 23.18
23.18 + 20.35

= 0.5325.

Notice how much closer this is to the proportion of successes (0.55) than was E(P ) =
1/3. �

Proof of Theorem 5.8.1.

Theorem 5.8.1, i.e., Eq. (5.8.2), is part of the following useful result. The proof uses
Theorem 3.9.5 (multivariate transformation of random variables). If you did not
study Theorem 3.9.5, you will not be able to follow the proof of Theorem 5.8.4.

Theorem
5.8.4

Let U and V be independent random variables with U having the gamma distribution
with parameters α and 1 and V having the gamma distribution with parameters β and
1. Then

. X = U/(U + V ) and Y = U + V are independent,

. X has the beta distribution with parameters α and β, and

. Y has the gamma distribution with parameters α + β and 1.

Also, Eq. (5.8.2) holds.
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Proof Because U and V are independent, the joint p.d.f. of U and V is the product
of their marginal p.d.f.’s, which are

f1(u) = uα−1e−u

�(α)
, for u > 0,

f2(v) = vβ−1e−v

�(β)
, for v > 0.

So, the joint p.d.f. is

f (u, v) = uα−1vβ−1e−(u+v)

�(α)�(β)
,

for u > 0 and v > 0.
The transformation from (u, v) to (x, y) is

x = r1(u, v) = u

u + v
and y = r2(u, v) = u + v,

and the inverse is

u = s1(x, y) = xy and v = s2(x, y) = (1 − x)y.

The Jacobian is the determinant of the matrix

J =
[

y x

−y 1 − x

]
,

which equals y. According to Theorem 3.9.5, the joint p.d.f. of (X, Y ) is then

g(x, y) = f (s1(x, y), s2(x, y))y

= xα−1(1 − x)β−1yα+β−1e−y

�(α)�(β)
, (5.8.7)

for 0 < x < 1 and y > 0. Notice that this joint p.d.f. factors into separate functions
of x and y, and hence X and Y are independent. The marginal distribution of Y is
available from Theorem 5.7.7. The marginal p.d.f. of X is obtained by integrating y

out of (5.8.7):

g1(x) =
∫ ∞

0

xα−1(1 − x)β−1yα+β−1e−y

�(α)�(β)
dy

= xα−1(1 − x)β−1

�(α)�(β)

∫ ∞

0
yα+β−1e−ydy

= �(α + β)

�(α)�(β)
xα−1(1 − x)β−1, (5.8.8)

where the last equation follows from (5.7.2). Because the far right side of (5.8.8) is
a p.d.f., it integrates to 1, which proves Eq. (5.8.2). Also, one can recognize the far
right side of (5.8.8) as the p.d.f. of the beta distribution with parameters α and β.

Summary

The family of beta distributions is a popular model for random variables that lie in
the interval (0, 1), such as unknown proportions of success for sequences of Bernoulli
trials. The mean of the beta distribution with parameters α and β is α/(α + β). If X
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has the binomial distribution with parameters n and p conditional on P = p, and if
P has the beta distribution with parameters α and β, then, conditional on X = x, the
distribution of P is the beta distribution with parameters α + x and β + n − x.

Exercises

1. Compute the quantile function of the beta distribution
with parameters α > 0 and β = 1.

2. Determine the mode of the beta distribution with pa-
rameters α and β, assuming that α > 1 and β > 1.

3. Sketch the p.d.f. of the beta distribution for each of the
following pairs of values of the parameters:

a. α = 1/2 and β = 1/2 b. α = 1/2 and β = 1

c. α = 1/2 and β = 2 d. α = 1 and β = 1

e. α = 1 and β = 2 f. α = 2 and β = 2

g. α = 25 and β = 100 h. α = 100 and β = 25

4. Suppose that X has the beta distribution with param-
eters α and β. Show that 1 − X has the beta distribution
with parameters β and α.

5. Suppose that X has the beta distribution with param-
eters α and β, and let r and s be given positive integers.
Determine the value of E[Xr(1 − X)s].

6. Suppose that X and Y are independent random vari-
ables, X has the gamma distribution with parameters α1
and β, and Y has the gamma distribution with parameters
α2 and β. Let U = X/(X + Y ) and V = X + Y . Show that
(a) U has the beta distribution with parameters α1 and α2,
and (b) U and V are independent. Hint: Look at the steps
in the proof of Theorem 5.8.1.

7. Suppose that X1 and X2 form a random sample of two
observed values from the exponential distribution with
parameter β. Show that X1/(X1 + X2) has the uniform
distribution on the interval [0, 1].

8. Suppose that the proportion X of defective items in a
large lot is unknown and that X has the beta distribution
with parameters α and β.

a. If one item is selected at random from the lot, what
is the probability that it will be defective?

b. If two items are selected at random from the lot, what
is the probability that both will be defective?

9. A manufacturer believes that an unknown proportion
P of parts produced will be defective. She models P as
having a beta distribution. The manufacturer thinks that P

should be around 0.05, but if the first 10 observed products
were all defective, the mean of P would rise from 0.05 to
0.9. Find the beta distribution that has these properties.

10. A marketer is interested in how many customers are
likely to buy a particular product in a particular store. Let
P be the proportion of all customers in the store who will
buy the product. Let the distribution of P be uniform on
the interval [0, 1]before observing any data. The marketer
then observes 25 customers and only six buy the product.
If the customers were conditionally independent given P ,
find the conditional distribution of P given the observed
customers.

5.9 The Multinomial Distributions
Many times we observe data that can assume three or more possible values. The
family of multinomial distributions is an extension of the family of binomial
distributions to handle these cases. The multinomial distributions are multivariate
distributions.

Definition and Derivation of Multinomial Distributions

Example
5.9.1

Blood Types. In Example 1.8.4 on page 34, we discussed human blood types, of which
there are four: O, A, B, and AB. If a number of people are chosen at random, we
might be interested in the probability of obtaining certain numbers of each blood
type. Such calculations are used in the courts during paternity suits. �

In general, suppose that a population contains items of k different types (k ≥ 2)

and that the proportion of the items in the population that are of type i is pi
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(i = 1, . . . , k). It is assumed that pi > 0 for i = 1, . . . , k, and
∑k

i=1 pi = 1. Let p =
(p1, . . . , pk) denote the vector of these probabilities.

Next, suppose that n items are selected at random from the population, with
replacement, and let Xi denote the number of selected items that are of type i

(i = 1, . . . , k). Because the n items are selected from the population at random with
replacement, the selections will be independent of each other. Hence, the probability
that the first item will be of type i1, the second item of type i2, and so on, is simply
pi1

pi2
. . . pin

. Therefore, the probability that the sequence of n outcomes will consist
of exactly x1 items of type 1, x2 items of type 2, and so on, selected in a particular
prespecified order, is p

x1
1 p

x2
2 . . . p

xk

k . It follows that the probability of obtaining exactly
xi items of type i (i = 1, . . . , k) is equal to the probability p

x1
1 p

x2
2 . . . p

xk

k multiplied by
the total number of different ways in which the order of the n items can be specified.

From the discussion that led to the definition of multinomial coefficients (Defini-
tion 1.9.1), it follows that the total number of different ways in which n items can be
arranged when there are xi items of type i (i = 1, . . . , k) is given by the multinomial
coefficient (

n

x1, . . . , xk

)
= n!

x1!x2! . . . xk!
.

In the notation of multivariate distributions, let X = (X1, . . . , Xk) denote the random
vector of counts, and let x = (x1, . . . , xk) denote a possible value for that random
vector. Finally, let f (x|n, p) denote the joint p.f. of X . Then

f (x|n, p) = Pr(X = x) = Pr(X1 = x1, . . . , Xk = xk)

=
⎧⎨⎩

(
n

x1, . . . , xk

)
p

x1
1

. . . p
xk

k if x1 + . . . + xk = n,

0 otherwise.

(5.9.1)

Definition
5.9.1

Multinomial Distributions. A discrete random vector X = (X1, . . . , Xk) whose p.f.
is given by Eq. (5.9.1) has the multinomial distribution with parameters n and p =
(p1, . . . , pk).

Example
5.9.2

Attendance at a Baseball Game. Suppose that 23 percent of the people attending a
certain baseball game live within 10 miles of the stadium, 59 percent live between
10 and 50 miles from the stadium, and 18 percent live more than 50 miles from
the stadium. Suppose also that 20 people are selected at random from the crowd
attending the game. We shall determine the probability that seven of the people
selected live within 10 miles of the stadium, eight of them live between 10 and 50
miles from the stadium, and five of them live more than 50 miles from the stadium.

We shall assume that the crowd attending the game is so large that it is irrelevant
whether the 20 people are selected with or without replacement. We can therefore
assume that they were selected with replacement. It then follows from Eq. (5.9.1)
that the required probability is

20!
7! 8! 5!

(0.23)7(0.59)8(0.18)5 = 0.0094. �

Example
5.9.3

Blood Types. Berry and Geisser (1986) estimate the probabilities of the four blood
types in Table 5.3 based on a sample of 6004 white Californians that was analyzed by
Grunbaum et al. (1978). Suppose that we will select two people at random from this
population and observe their blood types. What is the probability that they will both
have the same blood type? The event that the two people have the same blood type
is the union of four disjoint events, each of which is the event that the two people
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Table 5.3 Estimated probabilities of blood
types for white Californians

A B AB O

0.360 0.123 0.038 0.479

both have one of the four different blood types. Each of these events has probability( 2
2,0,0,0

)
times the square of one of the four probabilities. The probability that we want

is the sum of the probabilities of the four events:(
2

2, 0, 0, 0

)
(0.3602 + 0.1232 + 0.0382 + 0.4792) = 0.376. �

Relation between the Multinomial and Binomial Distributions

When the population being sampled contains only two different types of items,
that is, when k = 2, each multinomial distribution reduces to essentially a binomial
distribution. The precise form of this relationship is as follows.

Theorem
5.9.1

Suppose that the random vector X = (X1, X2) has the multinomial distribution with
parameters n and p = (p1, p2). Then X1 has the binomial distribution with parameters
n and p1, and X2 = n − X1.

Proof It is clear from the definition of multinomial distributions that X2 = n − X1
and p2 = 1 − p1. Therefore, the random vector X is actually determined by the single
random variable X1. From the derivation of the multinomial distribution, we see that
X1 is the number of items of type 1 that are selected if n items are selected from a
population consisting of two types of items. If we call items of type 1 “success,” then
X1 is the number of successes in n Bernoulli trials with probability of success on each
trial equal to p1. It follows that X1 has the binomial distribution with parameters n

and p1.

The proof of Theorem 5.9.1 extends easily to the following result.

Corollary
5.9.1

Suppose that the random vector X = (X1, . . . , Xk) has the multinomial distribution
with parameters n and p = (p1, . . . , pk). The marginal distribution of each variable
Xi (i = 1, . . . , k) is the binomial distribution with parameters n and pi.

Proof Choose one i from 1, . . . , k, and define success to be the selection of an item
of type i. Then Xi is the number of successes in n Bernoulli trials with probability of
sucess on each trial equal to pi.

A further generalization of Corollary 5.9.1 is that the marginal distribution of the
sum of some of the coordinates of a multinomial vector has a binomial distribution.
The proof is left to Exercise 1 in this section.

Corollary
5.9.2

Suppose that the random vector X = (X1, . . . , Xk) has the multinomial distribution
with parameters n and p = (p1, . . . , pk) with k > 2. Let � < k, and let i1, . . . , i� be
distinct elements of the set {1, . . . , k}. The distribution of Y = Xi1

+ . . . + Xi�
is the

binomial distribution with parameters n and pi1
+ . . . + pi�

.
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As a final note, the relationship between Bernoulli and binomial distributions
extends to multinomial distributions. The Bernoulli distribution with parameter p is
the same as the binomial distribution with parameters 1 and p. However, there is no
separate name for a multinomial distribution with first parameter n = 1. A random
vector with such a distribution will consist of a single 1 in one of its coordinates and
k − 1 zeros in the other coordinates. The probability is pi that the ith coordinate is
the 1. A k-dimensional vector seems an unwieldy way to represent a random object
that can take only k different values. A more common representation would be as
a single discrete random variable X that takes one of the k values 1, . . . , k with
probabilities p1, . . . , pk, respectively. The univarite distribution just described has
no famous name associated with it; however, we have just shown that it is closely
related to the multinomial distribution with parameters 1 and (p1, . . . , pk).

Means, Variances, and Covariances

The means, variances, and covaraiances of the coordinates of a multinomial random
vector are given by the next result.

Theorem
5.9.2

Means, Variances, and Covariances. Let the random vector X have the multinomial
distribution with parameters n and p. The means and variances of the coordinates of
X are

E(Xi) = npi and Var(Xi) = npi(1 − pi) for i = 1, . . . , k. (5.9.2)

Also, the covariances between the coordinates are

Cov(Xi, Xj) = −npipj . (5.9.3)

Proof Corollary 5.9.1 says that the marginal distribution of each component Xi is
the binomial distribution with parameters n and pi. Eq. 5.9.2 follows directly from
this fact.

Corollary 5.9.2 says that Xi + Xj has the binomial distribution with parameters
n and pi + pj . Hence,

Var(Xi + Xj) = n(pi + pj)(1 − pi − pj). (5.9.4)

According to Theorem 4.6.6, it is also true that

Var(Xi + Xj) = Var(Xi) + Var(Xj) + 2 Cov(Xi, Xj)

= npi(1 − pi) + npj(1 − pj) + 2 Cov(Xi, Xj). (5.9.5)

Equate the right sides of (5.9.4) and (5.9.5), and solve for Cov(Xi, Xj). The result is
(5.9.3).

Note: Negative Covariance Is Natural for Multinomial Distributions. The negative
covariance between different coordinates of a multinomial vector is natural since
there are only n selections to be distributed among the k coordinates of the vector. If
one of the coordinates is large, at least some of the others have to be small because
the sum of the coordinates is fixed at n.

Summary

Multinomial distributions extend binomial distributions to counts of more than two
possible outcomes. The ith coordinate of a vector having the multinomial distribution
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with parameters n and p = (p1, . . . , pk) has the binomial distribution with parameters
n and pi for i = 1, . . . , k. Hence, the means and variances of the coordinates of
a multinomial vector are the same as those of a binomial random variable. The
covariance between the ith and j th coordinates is −npipj .

Exercises

1. Prove Corollary 5.9.2.

2. Suppose that F is a continuous c.d.f. on the real line,
and let α1 and α2 be numbers such that F(α1) = 0.3 and
F(α2) = 0.8. If 25 observations are selected at random
from the distribution for which the c.d.f. is F , what is the
probability that six of the observed values will be less than
α1, 10 of the observed values will be between α1 and α2,
and nine of the observed values will be greater than α2?

3. If five balanced dice are rolled, what is the probability
that the number 1 and the number 4 will appear the same
number of times?

4. Suppose that a die is loaded so that each of the numbers
1, 2, 3, 4, 5, and 6 has a different probability of appearing
when the die is rolled. For i = 1, . . . , 6, let pi denote
the probability that the number i will be obtained, and
suppose that p1 = 0.11, p2 = 0.30, p3 = 0.22, p4 = 0.05,
p5 = 0.25, and p6 = 0.07. Suppose also that the die is to
be rolled 40 times. Let X1 denote the number of rolls
for which an even number appears, and let X2 denote
the number of rolls for which either the number 1 or
the number 3 appears. Find the value of Pr(X1 = 20 and
X2 = 15).

5. Suppose that 16 percent of the students in a certain
high school are freshmen, 14 percent are sophomores, 38
percent are juniors, and 32 percent are seniors. If 15 stu-
dents are selected at random from the school, what is the
probability that at least eight will be either freshmen or
sophomores?

6. In Exercise 5, let X3 denote the number of juniors
in the random sample of 15 students, and let X4 denote
the number of seniors in the sample. Find the value of
E(X3 − X4) and the value of Var(X3 − X4).

7. Suppose that the random variables X1, . . . , Xk are in-
dependent and that Xi has the Poisson distribution with
mean λi (i = 1, . . . , k). Show that for each fixed posi-
tive integer n, the conditional distribution of the ran-
dom vector X = (X1, . . . , Xk), given that

∑k
i=1 Xi = n,

is the multinomial distribution with parameters n and
p = (p1, . . . , pk), where

pi = λi∑k
j=1 λj

for i = 1, . . . , k.

8. Suppose that the parts produced by a machine can have
three different levels of functionality: working, impaired,
defective. Let p1, p2, and p3 = 1 − p1 − p2 be the prob-
abilities that a part is working, impaired, and defective,
respectively. Suppose that the vector p = (p1, p2) is un-
known but has a joint distribution with p.d.f.

f (p1, p2) =

⎧⎪⎨⎪⎩
12p2

1 for 0 < p1, p2 < 1
and p1 + p2 < 1,

0 otherwise.

Suppose that we observe 10 parts that are conditionally
independent given p, and among those 10 parts, eight
are working and two are impaired. Find the conditional
p.d.f. of p given the observed parts. Hint: You might find
Eq. (5.8.2) helpful.

5.10 The Bivariate Normal Distributions
The first family of multivariate continuous distributions for which we have a name
is a generalization of the family of normal distributions to two coordinates. There
is more structure to a bivariate normal distribution than just a pair of normal
marginal distributions.

Definition and Derivation of Bivariate Normal Distributions

Example
5.10.1

Thyroid Hormones. Production of rocket fuel produces a chemical, perchlorate, that
has found its way into drinking water supplies. Perchlorate is suspected of inhibiting
thyroid function. Experiments have been performed in which laboratory rats have
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been dosed with perchlorate in their drinking water. After several weeks, rats were
sacrificed, and a number of thyroid hormones were measured. The levels of these hor-
mones were then compared to the levels of the same hormones in rats that received
no perchlorate in their water. Two hormones, TSH and T4, were of particular inter-
est. Experimenters were interested in the joint distribution of TSH and T4. Although
each of the hormones might be modeled with a normal distribution, a bivariate dis-
tribution is needed in order to model the two hormone levels jointly. Knowledge of
thyroid activity suggests that the levels of these hormones will not be independent,
because one of them is actually used by the thyroid to stimulate production of the
other. �

If researchers are comfortable using the family of normal distributions to model
each of two random variables separately, such as the hormones in Example 5.10.1,
then they need a bivariate generalization of the family of normal distributions that
still has normal distributions for its marginals while allowing the two random vari-
ables to be dependent. A simple way to create such a generalization is to make use
of the result in Corollary 5.6.1. That result says that a linear combination of indepen-
dent normal random variables has a normal distribution. If we create two different
linear combinations X1 and X2 of the same independent normal random variables,
then X1 and X2 will each have a normal distribution and they might be dependent.
The following result formalizes this idea.

Theorem
5.10.1

Suppose that Z1 and Z2 are independent random variables, each of which has the
standard normal distribution. Let μ1, μ2, σ1, σ2, and ρ be constants such that −∞ <

μi < ∞ (i = 1, 2), σi > 0 (i = 1, 2), and −1 < ρ < 1. Define two new random variables
X1 and X2 as follows:

X1 = σ1Z1 + μ1,

X2 = σ2

[
ρZ1 + (1 − ρ2)1/2Z2

]
+ μ2. (5.10.1)

The joint p.d.f. of X1 and X2 is

f (x1, x2) = 1
2π(1 − ρ2)1/2σ1σ2

exp

{
− 1

2(1 − ρ2)

[(
x1 − μ1

σ1

)2

(5.10.2)

− 2ρ

(
x1 − μ1

σ1

) (
x2 − μ2

σ2

)
+

(
x2 − μ2

σ2

)2
]}

.

Proof This proof relies on Theorem 3.9.5 (multivariate transformation of random
variables). If you did not study Theorem 3.9.5, you won’t be able to follow this proof.
The joint p.d.f. g(z1, z2) of Z1 and Z2 is

g(z1, z2) = 1
2π

exp
[
− 1

2
(z2

1 + z2
2)

]
, (5.10.3)

for all z1 and z2.
The inverse of the transformation (5.10.1) is (Z1, Z2) = (s1(X1, X2), s2(X1, X2)),

where

s1(x1, x2) = x1 − μ1

σ1
,

s2(x1, x2) = 1
(1 − ρ2)1/2

(
x2 − μ2

σ2
− ρ

x1 − μ1

σ1

)
.

(5.10.4)



5.10 The Bivariate Normal Distributions 339

The Jacobian J of the transformation is

J = det

⎡⎢⎣
1
σ1

0

−ρ

σ1(1 − ρ2)1/2

1
σ2(1 − ρ2)1/2

⎤⎥⎦ = 1
(1 − ρ2)1/2σ1σ2

. (5.10.5)

If one substitutes si(x1, x2) for zi (i = 1, 2) in Eq. (5.10.3) and then multiplies by
|J |, one obtains Eq. (5.10.2), which is the joint p.d.f. of (X1, X2) according to Theo-
rem 3.9.5.

Some simple properties of the distribution with p.d.f. in Eq. (5.10.2) are worth
deriving before giving a name to the joint distribution.

Theorem
5.10.2

Suppose that X1 and X2 have the joint distribution whose p.d.f. is given by Eq. (5.10.2).
Then there exist independent standard normal random variables Z1 and Z2 such
that Eqs. (5.10.1) hold. Also, the mean of Xi is μi and the variance of Xi is σ 2

i
for

i = 1, 2. Furthermore the correlation between X1 and X2 is ρ. Finally, the marginal
distribution of Xi is the normal distribution with mean μi and variance σ 2

i
for i = 1, 2.

Proof Use the functions s1 and s2 defined in Eqs. (5.10.4) and define Zi = si(X1, X2)

for i = 1, 2. By running the proof of Theorem 5.10.1 in reverse, we see that the joint
p.d.f. of Z1 and Z2 is Eq. (5.10.3). Hence, Z1 and Z2 are independent standard normal
random variables.

The values of the means and variances of X1 and X2 are easily obtained by apply-
ing Corollary 5.6.1 to Eq. (5.10.1). If one applies the result in Exercise 8 of Sec. 4.6,
one obtains Cov(X1, X2) = σ1σ2ρ. It now follows that ρ is the correlation. The claim
about the marginal distributions of X1 and X2 is immediate from Corollary 5.6.1.

We are now ready to define the family of bivariate normal distributions.

Definition
5.10.1

Bivariate Normal Distributions. When the joint p.d.f. of two random variables X1 and
X2 is of the form in Eq. (5.10.2), it is said that X1 and X2 have the bivariate normal
distribution with means μ1 and μ2, variances σ 2

1 and σ 2
2 , and correlation ρ.

It was convenient for us to derive the bivariate normal distributions as the joint
distributions of certain linear combinations of independent random variables hav-
ing standard normal distributions. It should be emphasized, however, that bivariate
normal distributions arise directly and naturally in many practical problems. For ex-
ample, for many populations the joint distribution of two physical characteristics such
as the heights and the weights of the individuals in the population will be approxi-
mately a bivariate normal distribution. For other populations, the joint distribution
of the scores of the individuals in the population on two related tests will be approx-
imately a bivariate normal distribution.

Example
5.10.2

Anthropometry of Flea Beetles. Lubischew (1962) reports the measurements of several
physical features of a variety of species of flea beetle. The investigation was concerned
with whether some combination of easily obtained measurements could be used to
distinguish the different species. Figure 5.9 shows a scatterplot of measurements of
the first joint in the first tarsus versus the second joint in the first tarsus for a sample of
31 from the species Chaetocnema heikertingeri. The plot also includes three ellipses
that correspond to a fitted bivariate normal distribution. The ellipses were chosen
to contain 25%, 50%, and 75% of the probability of the fitted bivariate normal
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Figure 5.9 Scatterplot of
flea beetle data with 25%,
50%, and 75% bivariate
normal ellipses for Exam-
ple 5.10.2.
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distribution. The fitted distribution is is the bivariate normal distribution with means
201 and 119.3, variances 222.1 and 44.2, and correlation 0.64. �

Properties of Bivariate Normal Distributions

For random variables with a bivariate normal distribution, we find that being inde-
pendent is equivalent to being uncorrelated.

Theorem
5.10.3

Independence and Correlation. Two random variables X1 and X2 that have a bivariate
normal distribution are independent if and only if they are uncorrelated.

Proof The “only if” direction is already known from Theorem 4.6.4. For the “if”
direction, assume that X1 and X2 are uncorrelated. Then ρ = 0, and it can be seen
from Eq. (5.10.2) that the joint p.d.f. f (x1, x2) factors into the product of the marginal
p.d.f. of X1 and the marginal p.d.f. of X2. Hence, X1 and X2 are independent.

We have already seen in Example 4.6.4 that two random variables X1 and X2
with an arbitrary joint distribution can be uncorrelated without being independent.
Theorem 5.10.3 says that no such examples exist in which X1 and X2 have a bivariate
normal distribution.

When the correlation is not zero, Theorem 5.10.2 gives the marginal distributions
of bivariate normal random variables. Combining the marginal and joint distributions
allows us to find the conditional distributions of each Xi given the other one. The next
theorem derives the conditional distributions using another technique.

Theorem
5.10.4

Conditional Distributions. Let X1 and X2 have the bivariate normal distribution whose
p.d.f. is Eq. (5.10.2). The conditional distribution of X2 given that X1 = x1 is the normal
distribution with mean and variance given by

E(X2|x1) = μ2 + ρσ2

(
x1 − μ1

σ1

)
, Var(X2|x1) = (1 − ρ2)σ 2

2. (5.10.6)

Proof We will make liberal use of Theorem 5.10.2 and its notation in this proof. Con-
ditioning on X1 = x1 is the same as conditioning on Z1 = (x1 − μ1)/σ1. When we want
to find the conditional distribution of X2 given Z1 = (x1 − μ1)/σ1, we can subtitute
(x1 − μ1)/σ1 for Z2 in the formula for X2 in Eq. (5.10.1) and find the conditional dis-
tribution for the rest of the formula. That is, the conditional distribution of X2 given
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that X1 = x1 is the same as the conditional distribution of

(1 − ρ2)1/2σ2Z2 + μ2 + ρσ2

(
x1 − μ1

σ1

)
(5.10.7)

given Z1 = (x1 − μ1)/σ1. But Z2 is the only random variable in Eq. (5.10.7), and Z2
is independent of Z1. Hence, the conditional distribution of X2 given X1 = x1 is the
marginal distribution of Eq. (5.10.7), namely, the normal distribution with mean and
variance given by Eq. (5.10.6).

The conditional distribution of X1 given that X2 = x2 cannot be derived so easily
from Eq. (5.10.1) because of the different ways in which Z1 and Z2 enter Eq. (5.10.1).
However, it is seen from Eq. (5.10.2) that the joint distribution of X2 and X1 is also
bivariate normal with all of the subscripts 1 and 2 swithched on all of the parameters.
Hence, we can apply Theorem 5.10.4 to X2 and X1 to conclude that the conditional
distribution of X1 given that X2 = x2 must be the normal distribution with mean and
variance

E(X1|x2) = μ1 + ρσ1

(
x2 − μ2

σ2

)
, Var(X1|x2) = (1 − ρ2)σ 2

1. (5.10.8)

We have now shown that each marginal distribution and each conditional distri-
bution of a bivariate normal distribution is a univariate normal distribution.

Some particular features of the conditional distribution of X2 given that X1 =
x1 should be noted. If ρ 	= 0, then E(X2|x1) is a linear function of x1. If ρ > 0,
the slope of this linear function is positive. If ρ < 0, the slope of the function is
negative. However, the variance of the conditional distribution of X2 given that
X1 = x1 is (1 − ρ2)σ 2

2, which does not depend on x1. Furthermore, this variance of
the conditional distribution of X2 is smaller than the variance σ 2

2 of the marginal
distribution of X2.

Example
5.10.3

Predicting a Person’s Weight. Let X1 denote the height of a person selected at random
from a certain population, and let X2 denote the weight of the person. Suppose that
these random variables have the bivariate normal distribution for which the p.d.f. is
specified by Eq. (5.10.2) and that the person’s weight X2 must be predicted. We shall
compare the smallest M.S.E. that can be attained if the person’s height X1 is known
when her weight must be predicted with the smallest M.S.E. that can be attained if
her height is not known.

If the person’s height is not known, then the best prediction of her weight is the
mean E(X2) = μ2, and the M.S.E. of this prediction is the variance σ 2

2. If it is known
that the person’s height is x1, then the best prediction is the mean E(X2|x1) of the
conditional distribution of X2 given that X1 = x1, and the M.S.E. of this prediction is
the variance (1 − ρ2)σ 2

2 of that conditional distribution. Hence, when the value of X1

is known, the M.S.E. is reduced from σ 2
2 to (1 − ρ2)σ 2

2. �

Since the variance of the conditional distribution in Example 5.10.3 is (1 − ρ2)σ 2
2,

regardless of the known height x1 of the person, it follows that the difficulty of
predicting the person’s weight is the same for a tall person, a short person, or a
person of medium height. Furthermore, since the variance (1 − ρ2)σ 2

2 decreases as
|ρ| increases, it follows that it is easier to predict a person’s weight from her height
when the person is selected from a population in which height and weight are highly
correlated.
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Example
5.10.4

Determining a Marginal Distribution. Suppose that a random variable X has the nor-
mal distribution with mean μ and variance σ 2, and that for every number x, the
conditional distribution of another random variable Y given that X = x is the normal
distribution with mean x and variance τ 2. We shall determine the marginal distribu-
tion of Y .

We know that the marginal distribution of X is a normal distribution, and the
conditional distribution of Y given that X = x is a normal distribution, for which the
mean is a linear function of x and the variance is constant. It follows that the joint
distribution of X and Y must be a bivariate normal distribution (see Exercise 14).
Hence, the marginal distribution of Y is also a normal distribution. The mean and
the variance of Y must be determined.

The mean of Y is

E(Y ) = E[E(Y |X)] = E(X) = μ.

Furthermore, by Theorem 4.7.4,

Var(Y ) = E[Var(Y |X)] + Var[E(Y |X)]

= E(τ 2) + Var(X)

= τ 2 + σ 2.

Hence, the distribution of Y is the normal distribution with mean μ and variance
τ 2 + σ 2. �

Linear Combinations

Example
5.10.5

Heights of Husbands and Wives. Suppose that a married couple is selected at random
from a certain population of married couples and that the joint distribution of the
height of the wife and the height of her husband is a bivariate normal distribution.
What is the probability that, in the randomly chosen couple, the wife is taller than
the husband? �

The question asked at the end of Example 5.10.5 can be expressed in terms of
the distribution of the difference between a wife’s and husband’s heights. This is a
special case of a linear combination of a bivariate normal vector.

Theorem
5.10.5

Linear Combination of Bivariate Normals. Suppose that two random variables X1 and
X2 have a bivariate normal distribution, for which the p.d.f. is specified by Eq. (5.10.2).
Let Y = a1X1 + a2X2 + b, where a1, a2, and b are arbitrary given constants. Then Y

has the normal distribution with mean a1μ1 + a2μ2 + b and variance

a2
1σ

2
1 + a2

2σ
2
2 + 2a1a2ρσ1σ2. (5.10.9)

Proof According to Theorem 5.10.2, both X1 and X2 can be represented, as in
Eq. (5.10.1), as linear combinations of independent and normally distributed random
variables Z1 and Z2. Since Y is a linear combination of X1 and X2, it follows that
Y can also be represented as a linear combination of Z1 and Z2. Therefore, by
Corollary 5.6.1, the distribution of Y will also be a normal distribution. It only remains
to compute the mean and variance of Y . The mean of Y is

E(Y ) = a1E(X1) + a2E(X2) + b

= a1μ1 + a2μ2 + b.
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It also follows from Corollary 4.6.1 that

Var(Y ) = a2
1 Var(X1) + a2

2 Var(X2) + 2a1a2 Cov(X1, X2).

That Var(Y ) is given by Eq. (5.10.9) now follows easily.

Example
5.10.6

Heights of Husbands and Wives. Consider again Example 5.10.5. Suppose that the
heights of the wives have a mean of 66.8 inches and a standard deviation of 2 inches,
the heights of the husbands have a mean of 70 inches and a standard deviation of 2
inches, and the correlation between these two heights is 0.68. We shall determine the
probability that the wife will be taller than her husband.

If we let X denote the height of the wife, and let Y denote the height of her
husband, then we must determine the value of Pr(X − Y > 0). Since X and Y have
a bivariate normal distribution, it follows that the distribution of X − Y will be the
normal distribution, with mean

E(X − Y ) = 66.8 − 70 = −3.2

and variance
Var(X − Y ) = Var(X) + Var(Y ) − 2 Cov(X, Y )

= 4 + 4 − 2(0.68)(2)(2) = 2.56.

Hence, the standard deviation of X − Y is 1.6.
The random variable Z = (X − Y + 3.2)/(1.6) will have the standard normal

distribution. It can be found from the table given at the end of this book that

Pr(X − Y > 0) = Pr(Z > 2) = 1 − �(2)

= 0.0227.

Therefore, the probability that the wife will be taller than her husband is 0.0227. �

Summary

If a random vector (X, Y ) has a bivariate normal distribution, then every linear
combination aX + bY + c has a normal distribution. In particular, the marginal
distributions of X and Y are normal. Also, the conditional distribution of X given
Y = y is normal with the conditional mean being a linear function of y and the
conditional variance being constant in y. (Similarly, for the conditional distribution
of Y given X = x.) A more thorough treatment of the bivariate normal distributions
and higher-dimensional generalizations can be found in the book by D. F. Morrison
(1990).

Exercises

1. Consider again the joint distribution of heights of hus-
bands and wives in Example 5.10.6. Find the 0.95 quantile
of the conditional distribution of the height of the wife
given that the height of the husband is 72 inches.

2. Suppose that two different tests A and B are to be given
to a student chosen at random from a certain population.
Suppose also that the mean score on test A is 85, and the

standard deviation is 10; the mean score on test B is 90,
and the standard deviation is 16; the scores on the two tests
have a bivariate normal distribution; and the correlation
of the two scores is 0.8. If the student’s score on test A is
80, what is the probability that her score on test B will be
higher than 90?
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3. Consider again the two tests A and B described in Ex-
ercise 2. If a student is chosen at random, what is the
probability that the sum of her scores on the two tests will
be greater than 200?

4. Consider again the two tests A and B described in Ex-
ercise 2. If a student is chosen at random, what is the
probability that her score on test A will be higher than
her score on test B?

5. Consider again the two tests A and B described in Ex-
ercise 2. If a student is chosen at random, and her score
on test B is 100, what predicted value of her score on test
A has the smallest M.S.E., and what is the value of this
minimum M.S.E.?

6. Suppose that the random variables X1 and X2 have
a bivariate normal distribution, for which the joint p.d.f.
is specified by Eq. (5.10.2). Determine the value of the
constant b for which Var(X1 + bX2) will be a minimum.

7. Suppose that X1 and X2 have a bivariate normal dis-
tribution for which E(X1|X2) = 3.7 − 0.15X2, E(X2|X1) =
0.4 − 0.6X1, and Var(X2|X1) = 3.64. Find the mean and the
variance of X1, the mean and the variance of X2, and the
correlation of X1 and X2.

8. Let f (x1, x2) denote the p.d.f. of the bivariate normal
distribution specified by Eq. (5.10.2). Show that the max-
imum value of f (x1, x2) is attained at the point at which
x1 = μ1 and x2 = μ2.

9. Let f (x1, x2) denote the p.d.f. of the bivariate normal
distribution specified by Eq. (5.10.2), and let k be a con-
stant such that

0 < k <
1

2π(1 − ρ2)1/2σ1σ2
.

Show that the points (x1, x2) such that f (x1, x2) = k lie on a
circle if ρ = 0 and σ1 = σ2, and these points lie on an ellipse
otherwise.

10. Suppose that two random variables X1 and X2 have
a bivariate normal distribution, and two other random
variables Y1 and Y2 are defined as follows:

Y1 = a11X1 + a12X2 + b1,

Y2 = a21X1 + a22X2 + b2,

where ∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ 	= 0.

Show that Y1 and Y2 also have a bivariate normal distribu-
tion.

11. Suppose that two random variables X1 and X2 have
a bivariate normal distribution, and Var(X1) = Var(X2).
Show that the sum X1 + X2 and the difference X1 − X2
are independent random variables.

12. Suppose that the two measurements from flea beetles
in Example 5.10.2 have the bivariate normal distribution
with μ1 = 201, μ2 = 118, σ1 = 15.2, σ2 = 6.6, and ρ = 0.64.
Suppose that the same two measurements from a second
species also have the bivariate normal distribution with
μ1 = 187, μ2 = 131, σ1 = 15.2, σ2 = 6.6, and ρ = 0.64. Let
(X1, X2) be a pair of measurements on a flea beetle from
one of these two species. Let a1, a2 be constants.

a. For each of the two species, find the mean and stan-
dard deviation of a1X1 + a2X2. (Note that the vari-
ances for the two species will be the same. How do
you know that?)

b. Find a1 and a2 to maximize the ratio of the difference
between the two means found in part (a) to the stan-
dard deviation found in part (a). There is a sense in
which this linear combination a1X1 + a2X2 does the
best job of distinguishing the two species among all
possible linear combinations.

13. Suppose that the joint p.d.f. of two random variables
X and Y is proportional, as a function of (x, y), to

exp
(
−[ax2 + by2 + cxy + ex + gy + h]

)
,

where a > 0, b > 0, and c, e, g, and h are all constants.
Assume that ab > (c/2)2. Prove that X and Y have a bi-
variate normal distribution, and find the means, variances,
and correlation.

14. Suppose that a random variable X has a normal dis-
tribution, and for every x, the conditional distribution of
another random variable Y given that X = x is a normal
distribution with mean ax + b and variance τ 2, where a,
b, and τ 2 are constants. Prove that the joint distribution of
X and Y is a bivariate normal distribution.

15. Let X1, . . . , Xn be i.i.d. random variables having the
normal distribution with mean μ and variance σ 2. Define
Xn = 1

n

∑n
i=1 Xi, the sample mean. In this problem, we

shall find the conditional distribution of each Xi given Xn.

a. Show that Xi and Xn have the bivariate normal dis-
tribution with both means μ, variances σ 2 and σ 2/n,
and correlation 1/

√
n. Hint: Let Y = ∑

j 	=i Xj . Now
show that Y and Xi are independent normals and Xn

and Xi are linear combinations of Y and Xi.

b. Show that the conditional distribution of Xi given
Xn = xn is normal with mean xn and variance σ 2(1 −
1/n).
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5.11 Supplementary Exercises
1. Let X and P be random variables. Suppose that the
conditional distribution of X given P = p is the binomial
distribution with parameters n and p. Suppose that the
distribution of P is the beta distribution with parameters
α = 1 and β = 1. Find the marginal distribution of X.

2. Suppose that X, Y , and Z are i.i.d. random variables
and each has the standard normal distribution. Evaluate
Pr(3X + 2Y < 6Z − 7).

3. Suppose that X and Y are independent Poisson random
variables such that Var(X) + Var(Y ) = 5. Evaluate Pr(X +
Y < 2).

4. Suppose that X has a normal distribution such that
Pr(X < 116) = 0.20 and Pr(X < 328) = 0.90. Determine
the mean and the variance of X.

5. Suppose that a random sample of four observations is
drawn from the Poisson distribution with mean λ, and let
X denote the sample mean. Show that

Pr
(

X <
1
2

)
= (4λ + 1)e−4λ.

6. The lifetime X of an electronic component has the
exponential distribution such that Pr(X ≤ 1000) = 0.75.
What is the expected lifetime of the component?

7. Suppose that X has the normal distribution with mean
μ and variance σ 2. Express E(X3) in terms of μ and σ 2.

8. Suppose that a random sample of 16 observations is
drawn from the normal distribution with mean μ and stan-
dard deviation 12, and that independently another ran-
dom sample of 25 observations is drawn from the normal
distribution with the same mean μ and standard devia-
tion 20. Let X and Y denote the sample means of the two
samples. Evaluate Pr(|X − Y | < 5).

9. Suppose that men arrive at a ticket counter according
to a Poisson process at the rate of 120 per hour, and women
arrive according to an independent Poisson process at the
rate of 60 per hour. Determine the probability that four
or fewer people arrive in a one-minute period.

10. Suppose that X1, X2, . . . are i.i.d. random variables,
each of which has m.g.f. ψ(t). Let Y = X1 + . . . + XN ,
where the number of terms N in this sum is a random
variable having the Poisson distribution with mean λ.
Assume that N and X1, X2, . . . are independent, and Y = 0
if N = 0. Determine the m.g.f. of Y .

11. Every Sunday morning, two children, Craig and Jill,
independently try to launch their model airplanes. On
each Sunday, Craig has probability 1/3 of a successful
launch, and Jill has probability 1/5 of a successful launch.
Determine the expected number of Sundays required un-
til at least one of the two children has a successful launch.

12. Suppose that a fair coin is tossed until at least one head
and at least one tail have been obtained. Let X denote the
number of tosses that are required. Find the p.f. of X.

13. Suppose that a pair of balanced dice are rolled 120
times, and let X denote the number of rolls on which the
sum of the two numbers is 12. Use the Poisson approxi-
mation to approximate Pr(X = 3).

14. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, 1]. Let Y1 =
min{X1, . . . , Xn}, Yn = max{X1, . . . , Xn}, and W = Yn −
Y1. Show that each of the random variables Y1, Yn, and W

has a beta distribution.

15. Suppose that events occur in accordance with a Pois-
son process at the rate of five events per hour.

a. Determine the distribution of the waiting time T1
until the first event occurs.

b. Determine the distribution of the total waiting time
Tk until k events have occurred.

c. Determine the probability that none of the first k

events will occur within 20 minutes of one another.

16. Suppose that five components are functioning simul-
taneously, that the lifetimes of the components are i.i.d.,
and that each lifetime has the exponential distribution
with parameter β. Let T1 denote the time from the begin-
ning of the process until one of the components fails; and
let T5 denote the total time until all five components have
failed. Evaluate Cov(T1, T5).

17. Suppose that X1 and X2 are independent random vari-
ables, and Xi has the exponential distribution with param-
eter βi (i = 1, 2). Show that for each constant k > 0,

Pr(X1 > kX2) = β2

kβ1 + β2
.

18. Suppose that 15,000 people in a city with a population
of 500,000 are watching a certain television program. If
200 people in the city are contacted at random, what is
the approximate probability that fewer than four of them
are watching the program?

19. Suppose that it is desired to estimate the proportion of
persons in a large population who have a certain charac-
teristic. A random sample of 100 persons is selected from
the population without replacement, and the proportion
X of persons in the sample who have the characteristic is
observed. Show that, no matter how large the population
is, the standard deviation of X is at most 0.05.

20. Suppose that X has the binomial distribution with
parameters n and p, and that Y has the negative binomial
distribution with parameters r and p, where r is a positive
integer. Show that Pr(X < r) = Pr(Y > n − r) by showing
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that both the left side and the right side of this equation
can be regarded as the probability of the same event in a
sequence of Bernoulli trials with probability p of success.

21. Suppose that X has the Poisson distribution with mean
λt , and that Y has the gamma distribution with parameters
α = k and β = λ, where k is a positive integer. Show that
Pr(X ≥ k) = Pr(Y ≤ t) by showing that both the left side
and the right side of this equation can be regarded as the
probability of the same event in a Poisson process in which
the expected number of occurrences per unit of time is λ.

22. Suppose that X is a random variable having a contin-
uous distribution with p.d.f. f (x) and c.d.f. F(x), and for
which Pr(X > 0) = 1. Let the failure rate h(x) be as defined
in Exercise 18 of Sec. 5.7. Show that

exp
[
−

∫ x

0
h(t) dt

]
= 1 − F(x).

23. Suppose that 40 percent of the students in a large pop-
ulation are freshmen, 30 percent are sophomores, 20 per-
cent are juniors, and 10 percent are seniors. Suppose that

10 students are selected at random from the population,
and let X1, X2, X3, X4 denote, respectively, the numbers
of freshmen, sophomores, juniors, and seniors that are ob-
tained.

a. Determine ρ(Xi, Xj) for each pair of values i and j

(i < j).

b. For what values of i and j (i < j) is ρ(Xi, Xj) most
negative?

c. For what values of i and j (i < j) is ρ(Xi, Xj) closest
to 0?

24. Suppose that X1 and X2 have the bivariate normal
distribution with means μ1 and μ2, variances σ 2

1 and σ 2
2,

and correlation ρ. Determine the distribution of X1 − 3X2.

25. Suppose that X has the standard normal distribution,
and the conditional distribution of Y given X is the normal
distribution with mean 2X − 3 and variance 12. Determine
the marginal distribution of Y and the value of ρ(X, Y ).

26. Suppose that X1 and X2 have a bivariate normal dis-
tribution with E(X2) = 0. Evaluate E(X2

1X2).
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6.1 Introduction
In this chapter, we introduce a number of approximation results that simplify the
analysis of large random samples. In the first section, we give two examples to
illustrate the types of analyses that we might wish to perform and how additional
tools may be needed to be able to perform them.

Example
6.1.1

Proportion of Heads. If you draw a coin from your pocket, you might feel confident
that it is essentially fair. That is, the probability that it will land with head up when
flipped is 1/2. However, if you were to flip the coin 10 times, you would not expect
to see exactly 5 heads. If you were to flip it 100 times, you would be even less likely
to see exactly 50 heads. Indeed, we can calculate the probabilities of each of these
two results using the fact that the number of heads in n independent flips of a fair
coin has the binomial distribution with parameters n and 1/2. So, if X is the number
of heads in 10 independent flips, we know that

Pr(X = 5) =
(

10
5

) (
1
2

)5 (
1 − 1

2

)5

= 0.2461.

If Y is the number of heads in 100 independent flips, we have

Pr(Y = 50) =
(

100
50

) (
1
2

)50 (
1 − 1

2

)50

= 0.0796.

Even though the probability of exactly n/2 heads in n flips is quite small, especially
for large n, you still expect the proportion of heads to be close to 1/2 if n is large. For
example, if n = 100, the proportion of heads is Y/100. In this case, the probability
that the proportion is within 0.1 of 1/2 is

Pr
(

0.4 ≤ Y

100
≤ 0.6

)
= Pr(40 ≤ Y ≤ 60) =

60∑
i=40

(
100
i

) (
1
2

)i (
1 − 1

2

)100−i

= 0.9648.

A similar calculation with n = 10 yields

Pr
(

0.4 ≤ X

10
≤ 0.6

)
= Pr(4 ≤ Y ≤ 6) =

6∑
i=4

(
10
i

) (
1
2

)i (
1 − 1

2

)10−i

= 0.6563.

Notice that the probability that the proportion of heads in n tosses is close to 1/2 is
larger for n = 100 than for n = 10 in this example. This is due in part to the fact that

347
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we have defined “close to 1/2” to be the same for both cases, namely, between 0.4
and 0.6. �

The calculations performed in Example 6.1.1 were simple enough because we
have a formula for the probability function of the number of heads in any number
of flips. For more complicated random variables, the situation is not so simple.

Example
6.1.2

Average Waiting Time. A queue is serving customers, and the ith customer waits a
random time Xi to be served. Suppose that X1, X2, . . . are i.i.d. random variables
having the uniform distribution on the interval [0, 1]. The mean waiting time is 0.5.
Intuition suggests that the average of a large number of waiting times should be
close to the mean waiting time. But the distribution of the average of X1, . . . , Xn is
rather complicated for every n > 1. It may not be possible to calculate precisely the
probability that the sample average is close to 0.5 for large samples. �

The law of large numbers (Theorem 6.2.4) will give a mathematical foundation
to the intuition that the average of a large sample of i.i.d. random variables, such as
the waiting times in Example 6.1.2, should be close to their mean. The central limit
theorem (Theorem 6.3.1) will give us a way to approximate the probability that the
sample average is close to the mean.

Exercises

1. The solution to Exercise 1 of Sec. 3.9 is the p.d.f. of X1 +
X2 in Example 6.1.2. Find the p.d.f. of X2 = (X1 + X2)/2.
Compare the probabilities that X2 and X1 are close to 0.5.
In particular, compute Pr(|X2 − 0.5| < 0.1) and Pr(|X1 −
0.5| < 0.1). What feature of the p.d.f. of X2 makes it clear
that the distribution is more concentrated near the mean?

2. Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables having the normal distribution with mean μ and
variance σ 2. Let Xn = 1

n

∑n
i=1 Xi be the sample mean of

the first n random variables in the sequence. Show that

Pr(|Xn − μ| ≤ c) converges to 1 as n → ∞. Hint: Write the
probability in terms of the standard normal c.d.f. � and use
what you know about this c.d.f.

3. This problem requires a computer program because the
calculation is too tedious to do by hand. Extend the cal-
culation in Example 6.1.1 to the case of n = 200 flips. That
is, let W be the number of heads in 200 flips of a fair coin,

and compute Pr
(

0.4 ≤ W
200 ≤ 0.6

)
. What do you think is

the continuation of the pattern of these probabilities as
the number of flips n increases without bound?

6.2 The Law of Large Numbers
The average of a random sample of i.i.d. random variables is called their sample
mean. The sample mean is useful for summarizing the information in a random
sample in much the same way that the mean of a probability distribution summa-
rizes the information in the distribution. In this section, we present some results
that illustrate the connection between the sample mean and the expected value of
the individual random variables that comprise the random sample.

The Markov and Chebyshev Inequalities

We shall begin this section by presenting two simple and general results, known
as the Markov inequality and the Chebyshev inequality. We shall then apply these
inequalities to random samples.
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The Markov inequality is related to the claim made on page 211 about how the
mean of a distribution can be affected by moving a small amount of probability to an
arbitrarily large value. The Markov inequality puts a bound on how much probability
can be at arbitrarily large values once the mean is specified.

Theorem
6.2.1

Markov Inequality. Suppose that X is a random variable such that Pr(X ≥ 0) = 1. Then
for every real number t > 0,

Pr(X ≥ t) ≤ E(X)

t
. (6.2.1)

Proof For convenience, we shall assume that X has a discrete distribution for which
the p.f. is f . The proof for a continuous distribution or a more general type of
distribution is similar. For a discrete distribution,

E(X) =
∑
x

xf (x) =
∑
x<t

xf (x) +
∑
x≥t

xf (x).

Since X can have only nonnegative values, all the terms in the summations are
nonnegative. Therefore,

E(X) ≥
∑
x≥t

xf (x) ≥
∑
x≥t

tf (x) = t Pr(X ≥ t). (6.2.2)

Divide the extreme ends of (6.2.2) by t > 0 to obtain (6.2.1).

The Markov inequality is primarily of interest for large values of t . In fact, when
t ≤ E(X), the inequality is of no interest whatsoever, since it is known that Pr(X ≤
t) ≤ 1. However, it is found from the Markov inequality that for every nonnegative
random variable X whose mean is 1, the maximum possible value of Pr(X ≥ 100) is
0.01. Furthermore, it can be verified that this maximum value is actually attained by
every random variable X for which Pr(X = 0) = 0.99 and Pr(X = 100) = 0.01.

The Chebyshev inequality is related to the idea that the variance of a random
variable is a measure of how spread out its distribution is. The inequality says that the
probability that X is far away from its mean is bounded by a quantity that increases
as Var(X) increases.

Theorem
6.2.2

Chebyshev Inequality. Let X be a random variable for which Var(X) exists. Then for
every number t > 0,

Pr(|X − E(X)| ≥ t) ≤ Var(X)

t2
. (6.2.3)

Proof Let Y = [X − E(X)]2. Then Pr(Y ≥ 0) = 1 and E(Y ) = Var(X). By applying
the Markov inequality to Y , we obtain the following result:

Pr(|X − E(X)| ≥ t) = Pr(Y ≥ t2) ≤ Var(X)

t2
.

It can be seen from this proof that the Chebyshev inequality is simply a special
case of the Markov inequality. Therefore, the comments that were given following
the proof of the Markov inequality can be applied as well to the Chebyshev inequal-
ity. Because of their generality, these inequalities are very useful. For example, if
Var(X) = σ 2 and we let t = 3σ , then the Chebyshev inequality yields the result that

Pr(|X − E(X)| ≥ 3σ) ≤ 1
9
.



350 Chapter 6 Large Random Samples

In words, the probability that any given random variable will differ from its mean by
more than 3 standard deviations cannot exceed 1/9. This probability will actually be
much smaller than 1/9 for many of the random variables and distributions that will
be discussed in this book. The Chebyshev inequality is useful because of the fact that
this probability must be 1/9 or less for every distribution. It can also be shown (see
Exercise 4 at the end of this section) that the upper bound in (6.2.3) is sharp in the
sense that it cannot be made any smaller and still hold for all distributions.

Properties of the Sample Mean

In Definition 5.6.3, we defined the sample mean of n random variables X1, . . . , Xn

to be their average,

Xn = 1
n
(X1 + . . . + Xn).

The mean and the variance of Xn are easily computed.

Theorem
6.2.3

Mean and Variance of the Sample Mean. Let X1, . . . , Xn be a random sample from
a distribution with mean μ and variance σ 2. Let Xn be the sample mean. Then
E(Xn) = μ and Var(Xn) = σ 2/n.

Proof It follows from Theorems 4.2.1 and 4.2.4 that

E(Xn) = 1
n

n∑
i=1

E(Xi) = 1
n

. nμ = μ.

Furthermore, since X1, . . . , Xn are independent, Theorems 4.3.4 and 4.3.5 say that

Var(Xn) = 1
n2

Var

(
n∑

i=1

Xi

)

= 1
n2

n∑
i=1

Var(Xi) = 1
n2

. nσ 2 = σ 2

n
.

In words, the mean of Xn is equal to the mean of the distribution from which the
random sample was drawn, but the variance of Xn is only 1/n times the variance
of that distribution. It follows that the probability distribution of Xn will be more
concentrated around the mean value μ than was the original distribution. In other
words, the sample mean Xn is more likely to be close to μ than is the value of just a
single observation Xi from the given distribution.

These statements can be made more precise by applying the Chebyshev inequal-
ity to Xn. Since E(Xn) = μ and Var(Xn) = σ 2/n, it follows from the relation (6.2.3)
that for every number t > 0,

Pr(|Xn − μ| ≥ t) ≤ σ 2

nt2
. (6.2.4)

Example
6.2.1

Determining the Required Number of Observations. Suppose that a random sample is
to be taken from a distribution for which the value of the mean μ is not known, but for
which it is known that the standard deviation σ is 2 units or less. We shall determine
how large the sample size must be in order to make the probability at least 0.99 that
|Xn − μ| will be less than 1 unit.
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Since σ 2 ≤ 22 = 4, it follows from the relation (6.2.4) that for every sample size n,

Pr(|Xn − μ| ≥ 1) ≤ σ 2

n
≤ 4

n
.

Since n must be chosen so that Pr(|Xn − μ| < 1) ≥ 0.99, it follows that n must be
chosen so that 4/n ≤ 0.01. Hence, it is required that n ≥ 400. �

Example
6.2.2

A Simulation. An environmental engineer believes that there are two contaminants
in a water supply, arsenic and lead. The actual concentrations of the two contami-
nants are independent random variables X and Y , measured in the same units. The
engineer is interested in what proportion of the contamination is lead on average.
That is, the engineer wants to know the mean of R = Y/(X + Y ). We suppose that it
is a simple matter to generate as many independent pseudo-random numbers with
the distributions of X and Y as we desire. A common way to obtain an approximation
to E[Y/(X + Y )] would be the following: If we sample n pairs (X1, Y1), . . . , (Xn, Yn)

and compute Ri = Yi/(Xi + Yi) for i = 1, . . . , n, then Rn = 1
n

∑n
i=1 Ri is a sensible

approximation to E(R). To decide how large n should be, we can argue as in Ex-
ample 6.2.1. Since it is known that |Ri| ≤ 1, it must be that Var(Ri) ≤ 1. (Actually,
Var(Ri) ≤ 1/4, but this is harder to prove. See Exercise 14 in this section for a way to
prove it in the discrete case.) According to Chebyshev’s inequality, for each ε > 0,

Pr
(
|Rn − E(R)| ≥ ε

)
≤ 1

nε2
.

So, if we want |Rn − E(R)| ≤ 0.005 with probability 0.98 or more, then we should use
n > 1/[0.2 × 0.0052] = 2,000,000. �

It should be emphasized that the use of the Chebyshev inequality in Exam-
ple 6.2.1 guarantees that a sample for which n = 400 will be large enough to meet the
specified probability requirements, regardless of the particular type of distribution
from which the sample is to be taken. If further information about this distribution
is available, then it can often be shown that a smaller value for n will be sufficient.
This property is illustrated in the next example.

Example
6.2.3

Tossing a Coin. Suppose that a fair coin is to be tossed n times independently. For
i = 1, . . . , n, let Xi = 1 if a head is obtained on the ith toss, and let Xi = 0 if a tail
is obtained on the ith toss. Then the sample mean Xn will simply be equal to the
proportion of heads that are obtained on the n tosses. We shall determine the number
of times the coin must be tossed in order to make Pr(0.4 ≤ Xn ≤ 0.6) ≥ 0.7. We shall
determine this number in two ways: first, by using the Chebyshev inequality; second,
by using the exact probabilities for the binomial distribution of the total number of
heads.

Let T = ∑n
i=1 Xi denote the total number of heads that are obtained when n

tosses are made. Then T has the binomial distribution with parameters n and p = 1/2.
Therefore, it follows from Eq. (4.2.5) on page 221 that E(T ) = n/2, and it follows
from Eq. (4.3.3) on page 232 that Var(T ) = n/4. Because Xn = T/n, we can obtain
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the following relation from the Chebyshev inequality:

Pr(0.4 ≤ Xn ≤ 0.6) = Pr(0.4n ≤ T ≤ 0.6n)

= Pr
(∣∣∣∣T − n

2

∣∣∣∣ ≤ 0.1n
)

≥ 1 − n

4(0.1n)2
= 1 − 25

n
.

Hence, if n ≥ 84, this probability will be at least 0.7, as required.
However, from the table of binomial distributions given at the end of this book,

it is found that for n = 15,

Pr(0.4 ≤ Xn ≤ 0.6) = Pr(6 ≤ T ≤ 9) = 0.70.

Hence, 15 tosses would actually be sufficient to satisfy the specified probability
requirement. �

The Law of Large Numbers

The discussion in Example 6.2.3 indicates that the Chebyshev inequality may not be
a practical tool for determining the appropriate sample size in a particular problem,
because it may specify a much greater sample size than is actually needed for the
particular distribution from which the sample is being taken. However, the Cheby-
shev inequality is a valuable theoretical tool, and it will be used here to prove an
important result known as the law of large numbers.

Suppose that Z1, Z2, . . . is a sequence of random variables. Roughly speaking, it
is said that this sequence converges to a given number b if the probability distribution
of Zn becomes more and more concentrated around b as n → ∞. To be more precise,
we give the following definition.

Definition
6.2.1

Convergence in Probability. A sequence Z1, Z2, . . . of random variables converges to
b in probability if for every number ε > 0,

lim
n→∞ Pr(|Zn − b| < ε) = 1.

This property is denoted by

Zn

p−→ b,

and is sometimes stated simply as Zn converges to b in probability.

In other words, Zn converges to b in probability if the probability that Zn lies in
each given interval around b, no matter how small this interval may be, approaches
1 as n → ∞.

We shall now show that the sample mean of a random sample with finite variance
always converges in probability to the mean of the distribution from which the
random sample was taken.

Theorem
6.2.4

Law of Large Numbers. Suppose that X1, . . . , Xn form a random sample from a
distribution for which the mean is μ and for which the variance is finite. Let Xn denote
the sample mean. Then

Xn

p−→ μ. (6.2.5)
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Proof Let the variance of each Xi be σ 2. It then follows from the Chebyshev inequal-
ity that for every number ε > 0,

Pr(|Xn − μ| < ε) ≥ 1 − σ 2

nε2
.

Hence,

lim
n→∞ Pr(|Xn − μ| < ε) = 1,

which means that Xn

p−→ μ.

It can also be shown that Eq. (6.2.5) is satisfied if the distribution from which the
random sample is taken has a finite mean μ but an infinite variance. However, the
proof for this case is beyond the scope of this book.

Since Xn converges to μ in probability, it follows that there is high probability that
Xn will be close to μ if the sample size n is large. Hence, if a large random sample is
taken from a distribution for which the mean is unknown, then the arithmetic average
of the values in the sample will usually be a close estimate of the unknown mean.
This topic will be discussed again in Sec. 6.3, where we introduce the central limit
theorem. It will then be possible to present a more precise probability distribution
for the difference between Xn and μ.

The following result can be useful if we observe random variables with mean μ

but are interested in μ2 or log(μ) or some other continuous function of μ. The proof
is left for the reader (Exercise 15).

Theorem
6.2.5

Continuous Functions of Random Variables. If Zn

p−→ b, and if g(z) is a function that
is continuous at z = b, then g(Zn)

p−→ g(b).

Similarly, it is almost as easy to show that if Zn

p−→ b and Yn

p−→ c, and if g(z, y) is
continuous at (z, y) = (b, c), then g(Zn, Yn)

p−→ g(b, c) (Exercise 16). Indeed, Theo-
rem 6.2.5 extends to any finite number k of sequences that converge in probability
and a continuous function of k variables.

The law of large numbers helps to explain why a histogram (Definition 3.7.9) can
be used as an approximation to a p.d.f.

Theorem
6.2.6

Histograms. Let X1, X2, . . . be a sequence of i.i.d. random variables. Let c1 < c2 be
two constants. Define Yi = 1 if c1 ≤ Xi < c2 and Yi = 0 if not. Then Yn = 1

n

∑n
i=1 Yi

is the proportion of X1, . . . , Xn that lie in the interval [c1, c2), and Yn

p−→
Pr(c1 ≤ X1 < c2).

Proof By construction, Y1, Y2, . . . are i.i.d. Bernoulli random variables with param-
eter p = Pr(c1 ≤ X1 < c2). Theorem 6.2.4 says that Yn

p−→ p.

In words, Theorem 6.2.6 says the following: If we draw a histogram with the area
of the bar over each subinterval being the proportion of a random sample that lies
in the corresponding subinterval, then the area of each bar converges in probability
to the probability that a random variable from the sequence lies in the subinterval.
If the sample is large, we would then expect the area of each bar to be close to the
probability. The same idea applies to a conditionally i.i.d. (given Z = z) sample, with
Pr(c1 ≤ X1 < c2) replaced by Pr(c1 ≤ X1 < c2|Z = z).
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Figure 6.1 Histogram of ser-
vice times for Example 6.2.4
together with graph of the
conditional p.d.f. from which
the service times were simu-
lated.
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Example
6.2.4

Rate of Service. In Example 3.7.20, we drew a histogram of an observed sample of
n = 100 service times. The service times were actually simulated as an i.i.d. sample
from the exponential distribution with parameter 0.446. Figure 6.1 reproduces the
histogram overlayed with the graph of g(x|z0) where z0 = 0.446. Because the width
of each bar is 1, the area of each bar equals the proportion of the sample that lies in the
corresponding interval. The area under the curve g(x|z0) is Pr(c1 ≤ X1 < c2|Z = z0)

for each interval [c1, c2). Notice how closely the area under the conditional p.d.f.
matches the area of each bar. �

The reason that the p.d.f. and the heights of the bars in the histogram in Fig. 6.1
match so closely is that the area of each bar is converging in probablity to the area
under the graph of the p.d.f. The sum of the areas of the bars is 1, which is the same
as the area under the graph of the p.d.f. If we had chosen the heights of the bars in
the histogram to represent counts, then the sum of the areas of the bars would have
been n = 100, and the bars would have been about 100 times as high as the p.d.f.

We could choose a different width for the subintervals in the histogram and still
keep the areas equal to the proportions in the subintervals.

Example
6.2.5

Rate of Service. In Example 6.2.4, we can choose 20 bars of width 0.5 instead of 10 bars
of width 1. To make the area of each bar represent the proportion in the subinterval,
the height of each bar should equal the proportion divided by 0.5. The probability of
an observation being in each interval [c1, c2) would be

Pr(c1 ≤ X1 < c2|Z = x) =
∫ c2

c1

g(x|z)dx ≈ (c2 − c1)g([c1 + c2]/2|z)

= 0.5 ∗ g([c1 + c2]/2|z). (6.2.6)

Recall that the probability in (6.2.6) should be close to the proportion of the sample
in the interval. If we divide both the probability and the proportion by 0.5, we see
that the height of the histogram bar should be close to g([c1 + c2]/2). Hence, the
graph of the p.d.f. should still be close to the heights of the histogram bars. What
we are doing here is choosing r = n(b − a)/k in Defintion 3.7.9. Figure 6.2 shows the
histogram with 20 intervals of length 0.5 together with the same p.d.f. from Fig. 6.1.
The bar heights are still similar to the p.d.f., but they are much more variable in
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Figure 6.2 Modified his-
togram of service times from
Example 6.2.4 together with
graph of the conditional p.d.f.
This time, the width of each
interval is 0.5.
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Fig. 6.2 compared to Fig. 6.1. Exercise 17 helps to explain why the bar heights are
more variable in this example. �

The reasoning used to construct Figures 6.1 and 6.2 applies even when the
subintervals used to construct the histogram have different widths. In this case, each
bar should have height equal to the raw count divided by both n (the sample size)
and the width of the corresponding subinterval.

Weak Laws and Strong Laws

There are other concepts of the convergence of a sequence of random variables,
in addition to the concept of convergence in probability that has been presented
above. For example, it is said that a sequence Z1, Z2, . . . converges to a constant b

with probability 1 if

Pr
(

lim
n→∞ Zn = b

)
= 1.

A careful investigation of the concept of convergence with probability 1 is be-
yond the scope of this book. It can be shown that if a sequence Z1, Z2, . . . converges to
b with probability 1, then the sequence will also converge to b in probability. For this
reason, convergence with probability 1 is often called strong convergence, whereas
convergence in probability is called weak convergence. In order to emphasize the
distinction between these two concepts of convergence, the result that here has been
called simply the law of large numbers is often called the weak law of large numbers.
The strong law of large numbers can then be stated as follows: If Xn is the sample
mean of a random sample of size n from a distribution with mean μ, then

Pr
(

lim
n→∞ Xn = μ

)
= 1.

The proof of this result will not be given here. There are examples of sequences of
random variables that converge in probability but that do not converge with proba-
bility 1. Exercise 22 is one such example. Another type of converges is convergence
in quadratic mean, which is introduced in Exercises 10–13.
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Chernoff Bounds

One way to think of the Chebyshev inequality is as an application of the Markov
inequalitty to the random variable (X − μ)2. This idea generalizes to other functions
and leads to a sharper bound on the probability in the tail of a distribution when the
bound applies. Before giving the general result, we give a simple example to illustrate
the potential improvement that it can provide.

Example
6.2.6

Binomial Random Variable. Suppose that X has the binomial distribution with param-
eters n and 1/2. We would like a bound to the probability that X/n is far from its
mean 1/2. To be specific, suppose that we would like a bound for

Pr
(∣∣∣∣Xn − 1

2

∣∣∣∣ ≥ 1
10

)
. (6.2.7)

The Chebyshev inequality gives the bound Var(X/n)/(1/10)2, which equals 25/n.
Instead of applying the Chebyshev inequality, define Y = X − n/2 and rewrite

the probability in (6.2.7) as the sum of the following two probabilities:

Pr
(

X

n
≥ 1

2
+ 1

10

)
= Pr

(
Y ≥ n

10

)
, and

Pr
(

X

n
≤ 1

2
− 1

10

)
= Pr

(
−Y ≥ n

10

)
. (6.2.8)

For each s > 0, rewrite the first of the probabilities in (6.2.8) as

Pr
(

Y ≥ n

10

)
= Pr

[
exp(sY ) ≥ exp

(
ns

10

)]
≤ E[exp(sY )]

exp(ns/10)
,

where the inequality follows from the Markov inequality. This equation involves
the moment generating function of Y , ψ(s) = E[exp(sY )]. The m.g.f. of Y can be
found by applying Theorem 4.4.3 with p = 1/2, a = 1, and b = −n/2 together with
Equation (5.2.4). The result is

ψ(s) =
(

1
2

[exp(s) + 1] exp(−s/2)

)n

, (6.2.9)

for all s. Let s = 1/2 in (6.2.9) to obtain the bound

Pr
(

Y ≥ n

10

)
≤ ψ(1/2) exp(−n/20)

= exp(−n/20)

(
1
2

[exp(1/2) + 1] exp(−1/4)

)n

= 0.9811n.

Similarly, we can write the second probability in (6.2.8) as

Pr
(

−Y ≥ n

10

)
= Pr

[
exp(−sY ) ≥ exp

(
ns

10

)]
, (6.2.10)

where s > 0. The m.g.f. of −Y is ψ(−s). Let s = 1/2 in (6.2.10) and apply the Markov
inequality to obtatin the bound
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Pr
(

−Y ≥ n

10

)
≤ ψ(−1/2) exp(−n/20)

= exp(−n/20)

(
1
2

[exp(−1/2) + 1] exp(1/4)

)n

= 0.9811n.

Hence, we obtain the bound

Pr
(∣∣∣∣Xn − 1

2

∣∣∣∣ ≥ 1
10

)
≤ 2(0.9811)n. (6.2.11)

The bound in (6.2.11) decreases exponentially fast as n increases, while the Cheby-
shev bound 25/n decreases proportionally to 1/n. For example, with n = 100, 200,

300, the Chebychev bounds are 0.25, 0.125, and 0.0833. The corresponding bounds
from (6.2.11) are 0.2967, 0.0440, and 0.0065. �

The choice of s = 1/2 in Example 6.2.6 was arbitrary. Theorem 6.2.7 says that we
can replace this arbitrary choice with the choice that leads to the smallest possible
bound. The proof of Theorem 6.2.7 is a straightforward application of the Markov
inequality. (See Exercise 18 in this section.)

Theorem
6.2.7

Chernoff Bounds. Let X be a random variable with moment generating function ψ .
Then, for every real t ,

Pr(X ≥ t) ≤ min
s>0

exp(−st)ψ(s).

Theorem 6.2.7 is most useful when X is the sum of n i.i.d. random variables each
with finite m.g.f. and when t = nu for a large value of n and some fixed u. This was
the case in Example 6.2.6.

Example
6.2.7

Average of Geometric Random Sample. Suppose that X1, X2, . . . are i.i.d. geometric
random variables with parameter p. We would like a bound to the probability that
Xn is far from the mean (1 − p)/p. To be specific, for each fixed u > 0, we would like
a bound for

Pr
(∣∣∣∣Xn − 1 − p

p

∣∣∣∣ ≥ u

)
. (6.2.12)

Let X = ∑n
i=1 Xi − n(1 − p)/p. For each u > 0, Theorem 6.2.7 can be used to bound

both

Pr
(

Xn ≥ 1 − p

p
+ u

)
= Pr(X ≥ nu), and

Pr
(

Xn ≤ 1 − p

p
− u

)
= Pr(−X ≥ nu).

Since (6.2.12) equals Pr(X ≥ nu) + Pr(−X ≥ nu), the bound we seek is the sum of
the two bounds that we get for Pr(X ≥ nu) and Pr(−X ≥ nu).

The m.g.f. of X can be found by applying Theorem 4.4.3 with a = 1 and
b = −n(1 − p)/p together with Theorem 5.5.3. The result is

ψ(s) =
(

p exp[−s(1 − p)/p]
1 − (1 − p) exp(s)

)n

. (6.2.13)

The m.g.f. of −X is ψ(−s). According to Theorem 6.2.7,

Pr(X ≥ nu) ≤ min
s>0

ψ(s) exp(−snu). (6.2.14)
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We find the minimum of ψ(s) exp(−snu) by finding the minimum of its logarithm.
Using (6.2.13), we get that

log[ψ(s) exp(−snu)] = n

{
log(p) − s

1 − p

p
− log[1 − (1 − p) exp(s)] − su

}
.

The deriviative of this expression with respect to s equals 0 at

s = − log
[
(1 + u)p + 1 − p

up + 1 − p
(1 − p)

]
, (6.2.15)

and the second derivative is positive. If u > 0, then the value of s in (6.2.15) is positive
and ψ(s) is finite. Hence, the value of s in (6.2.15) provides the minimum in (6.2.14).
That minimum can be expressed as qn where

q = [p(1 + u) + 1 − p]
[
(1 + u)p + 1 − p

up + 1 − p
(1 − p)

]u+(1−p)/p

(6.2.16)

and 0 < q < 1. (See Exercise 19 for a proof.) Hence, Pr(X ≥ nu) ≤ qn.
For Pr(−X ≥ nu), we notice first that Pr(−X ≥ nu) = 0 if u ≥ (1 − p)/p because∑n

i=1 Xi ≥ 0. If u ≥ (1 − p)/p, then the overall bound on (6.2.12) is qn. For 0 < u <

(1 − p)/p, the value of s that minimizes ψ(−s) exp(−snu) is

s = − log
[
(1 − u)p + 1 − p

1 − p − up
(1 − p)

]
,

which is positive when 0 < u < (1 − p)/p. The value of mins>0 ψ(−s) exp(−snu) is
rn, where

r = [p(1 − u) + 1 − p]
[
(1 − u)p + 1 − p

1 − p − up
(1 − p)

]−u+(1−p)/p

and 0 < r < 1. Hence, the Chernoff bound is qn if u ≥ (1 − p)/p and is qn + rn if
0 < u < (1 − p)/p. As such, the bound decreases exponenially fast as n increases.
This is a marked impovement over the Chebyshev bound, which decreases like a
constant over n. �

Summary

The law of large numbers says that the sample mean of a random sample converges
in probability to the mean μ of the individual random variables, if the variance exists.
This means that the sample mean will be close to μ if the size of the random sample
is sufficiently large. The Chebyshev inequality provides a (crude) bound on how high
the probability is that the sample mean will be close to μ. Chernoff bounds can be
sharper, but are harder to compute.

Exercises

1. For each integer n, let Xn be a nonnegative random
variable with finite mean μn. Prove that if limn→∞ μn = 0,
then Xn

p−→ 0.

2. Suppose that X is a random variable for which

Pr(X ≥ 0) = 1 and Pr(X ≥ 10) = 1/5.

Prove that E(X) ≥ 2.

3. Suppose that X is a random variable for which E(X) =
10, Pr(X ≤ 7) = 0.2, and Pr(X ≥ 13) = 0.3. Prove that
Var(X) ≥ 9/2.

4. Let X be a random variable for which E(X) = μ and
Var(X) = σ 2. Construct a probability distribution for X

such that

Pr(|X − μ| ≥ 3σ) = 1/9.
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5. How large a random sample must be taken from a given
distribution in order for the probability to be at least 0.99
that the sample mean will be within 2 standard deviations
of the mean of the distribution?

6. Suppose that X1, . . . , Xn form a random sample of size
n from a distribution for which the mean is 6.5 and the
variance is 4. Determine how large the value of n must be
in order for the following relation to be satisfied:

Pr(6 ≤ Xn ≤ 7) ≥ 0.8.

7. Suppose that X is a random variable for which E(X) =
μ and E[(X − μ)4] = β4. Prove that

Pr(|X − μ| ≥ t) ≤ β4

t4
.

8. Suppose that 30 percent of the items in a large manu-
factured lot are of poor quality. Suppose also that a ran-
dom sample of n items is to be taken from the lot, and
let Qn denote the proportion of the items in the sam-
ple that are of poor quality. Find a value of n such that
Pr(0.2 ≤ Qn ≤ 0.4) ≥ 0.75 by using (a) the Chebyshev in-
equality and (b) the tables of the binomial distribution at
the end of this book.

9. Let Z1, Z2, . . . be a sequence of random variables, and
suppose that, for n = 1, 2, . . . , the distribution of Zn is as
follows:

Pr(Zn = n2) = 1
n

and Pr(Zn = 0) = 1 − 1
n

.

Show that

lim
n→∞ E(Zn) = ∞ but Zn

p−→ 0.

10. It is said that a sequence of random variables Z1,

Z2, . . . converges to a constant b in quadratic mean if

lim
n→∞ E[(Zn − b)2] = 0. (6.2.17)

Show that Eq. (6.2.17) is satisfied if and only if

lim
n→∞ E(Zn) = b and lim

n→∞ Var(Zn) = 0.

Hint: Use Exercise 5 of Sec. 4.3.

11. Prove that if a sequence Z1, Z2, . . . converges to a
constant b in quadratic mean, then the sequence also con-
verges to b in probability.

12. Let Xn be the sample mean of a random sample of
size n from a distribution for which the mean is μ and the
variance is σ 2, where σ 2 < ∞. Show that Xn converges to
μ in quadratic mean as n → ∞.

13. Let Z1, Z2, . . . be a sequence of random variables, and
suppose that for n = 2, 3, . . . , the distribution of Zn is as
follows:

Pr
(

Zn = 1
n

)
= 1 − 1

n2
and Pr(Zn = n) = 1

n2
.

a. Does there exist a constant c to which the sequence
converges in probability?

b. Does there exist a constant c to which the sequence
converges in quadratic mean?

14. Let f be a p.f. for a discrete distribution. Suppose
that f (x) = 0 for x 	∈ [0, 1]. Prove that the variance of
this distribution is at most 1/4. Hint: Prove that there is
a distribution supported on just the two points {0, 1} that
has variance at least as large as f does and then prove that
the variance of a distribution supported on {0, 1} is at most
1/4.

15. Prove Theorem 6.2.5.

16. Suppose that Zn

p−→ b, Yn

p−→ c, and g(z, y) is a
function that is continuous at (z, y) = (b, c). Prove that
g(Zn, Yn) converges in probability to g(b, c).

17. Let X have the binomial distribution with parameters
n and p. Let Y have the binomial distribution with param-
eters n and p/k with k > 1. Let Z = kY .

a. Show that X and Z have the same mean.

b. Find the variances of X and Z. Show that, if p is small,
then the variance of Z is approximately k times as
large as the variance of X.

c. Show why the results above explain the higher vari-
ability in the bar heights in Fig. 6.2 compared to
Fig. 6.1.

18. Prove Theorem 6.2.7.

19. Return to Example 6.2.7.

a. Prove that the mins>0 ψ(s) exp(−snu) equals qn,
where q is given in (6.2.16).

b. Prove that 0 < q < 1. Hint: First, show that 0 < q < 1
if u = 0. Next, let x = up + 1 − p and show that log(q)

is a decreasing function of x.

20. Return to Example 6.2.6. Find the Chernoff bound for
the probability in (6.2.7).

21. Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables having the exponential distribution with parameter
1. Let Yn = ∑n

i=1 Xi for each n = 1, 2, . . . .

a. For each u > 1, compute the Chernoff bound on
Pr(Yn > nu).

b. What goes wrong if we try to compute the Chernoff
bound when u < 1?

22. In this exercise, we construct an example of a se-
quence of random variables Zn such that Zn

p−→ 0 but

Pr
(

lim
n→∞ Zn = 0

)
= 0. (6.2.18)

That is, Zn converges in probability to 0, but Zn does not
converge to 0 with probability 1. Indeed, Zn converges to
0 with probability 0.
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Let X be a random variable having the uniform distri-
bution on the interval [0, 1]. We will construct a sequence
of functions hn(x) for n = 1, 2, . . . and define Zn = hn(X).
Each function hn will take only two values, 0 and 1. The
set of x where hn(x) = 1 is determined by dividing the in-
terval [0, 1] into k nonoverlappling subintervals of length
1/k for k = 1, 2, . . . , arranging these intervals in sequence,
and letting hn(x) = 1 on the nth interval in the sequence
for n = 1, 2, . . . . For each k, there are k nonoverlapping
subintervals, so the number of subintervals with lengths
1, 1/2, 1/3, . . . , 1/k is

1 + 2 + 3 + . . . + k = k(k + 1)
2

.

The remainder of the construction is based on this for-
mula. The first interval in the sequence has length 1, the
next two have length 1/2, the next three have length 1/3,
etc.

a. For each n = 1, 2, . . ., prove that there is a unique
positive integer kn such that

(kn − 1)kn

2
< n ≤ kn(kn + 1)

2
.

b. For each n = 1, 2, . . . , let jn = n − (kn − 1)kn/2. Show
that jn takes the values 1, . . . , kn as n runs through
1 + (kn − 1)kn/2, . . . , kn(kn + 1)/2.

c. Define

hn(x) =
{

1 if (jn − 1)/kn ≤ x < jn/kn,
0 if not.

Show that, for every x ∈ [0, 1), hn(x) = 1 for one
and only one n among 1 + (kn − 1)kn/2, . . . , kn(kn +
1)/2.

d. Show that Zn = hn(X) takes the value 1 infinitely
often with probability 1.

e. Show that (6.2.18) holds.

f. Show that Pr(Zn = 0) = 1 − 1/kn and limn→∞ kn =
∞.

g. Show that Zn

p−→ 0.

23. Prove that the sequence of random variables Zn in
Exercise 22 converges in quadratic mean (definition in
Exercise 10) to 0.

24. In this exercise, we construct an example of a se-
quence of random variables Zn such that Zn converges
to 0 with probability 1, but Zn fails to converge to 0 in
quadratic mean. Let X be a random variable having the
uniform distribution on the interval [0, 1]. Define the se-
quence Zn by Zn = n2 if 0 < X < 1/n and Zn = 0 otherwise.

a. Prove that Zn converges to 0 with probability 1.

b. Prove that Zn does not converge to 0 in quadratic
mean.

6.3 The Central Limit Theorem
The sample mean of a large random sample of random variables with mean μ

and finite variance σ 2 has approximately the normal distribution with mean μ

and variance σ 2/n. This result helps to justify the use of the normal distribution
as a model for many random variables that can be thought of as being made up
of many independent parts. Another version of the central limit theorem is given
that applies to independent random variables that are not identically distributed.
We also introduce the delta method, which allows us to compute approximate
distributions for functions of random variables.

Statement of the Theorem

Example
6.3.1

A Large Sample. A clinical trial has 100 patients who will receive a treatment. Patients
who don’t receive the treatment survive for 18 months with probability 0.5 each. We
assume that all patients are independent. The trial is to see whether the new treatment
can increase the probability of survival significantly. Let X be the number of patients
out of the 100 who survive for 18 months. If the probabiity of success were 0.5 for the
patients on the treatment (the same as without the treatment), then X would have the
binomial distribution with parameters n = 100 and p = 0.5. The p.f. of X is graphed
as a bar chart with the solid line in Fig. 6.3. The shape of the bar chart is reminiscent
of a bell-shaped curve. The normal p.d.f. with the same mean μ = 50 and variance
σ 2 = 25 as the binomial distribution is also graphed with the dotted line. �
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Figure 6.3 Comparison
of the binomial p.f. with
parameters 100 and 0.5 to
the normal p.d.f. with mean
50 and variance 25.
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In Examples 5.4.1 and 5.4.2, we illustrated how the Poisson distribution pro-
vides a good approximation to a binomial distribution with a large n and small p.
Example 6.3.1 shows how a normal distribution can be a good approximation to a
binomial distribution with a large n and not so small p. The central limit theorem
(Theorem 6.3.1) is a formal statement of how normal distributions can approximate
distributions of general sums or averages of i.i.d. random variables.

In Corollary 5.6.2, we saw that if a random sample of size n is taken from the
normal distribution with mean μ and variance σ 2, then the sample average Xn has
the normal distribution with mean μ and variance σ 2/n. The simple version of the
central limit theorem that we give in this section says that whenever a random sample
of size n is taken from any distribution with mean μ and variance σ 2, the sample
average Xn will have a distribution that is approximately normal with mean μ and
variance σ 2/n.

This result was established for a random sample from a Bernoulli distribution
by A. de Moivre in the early part of the eighteenth century. The proof for a random
sample from an arbitrary distribution was given independently by J. W. Lindeberg
and P. Lévy in the early 1920s. A precise statement of their theorem will be given
now, and an outline of the proof of that theorem will be given later in this section. We
shall also state another central limit theorem pertaining to the sum of independent
random variables that are not necessarily identically distributed and shall present
some examples illustrating both theorems.

Theorem
6.3.1

Central Limit Theorem (Lindeberg and Lévy). If the random variables X1, . . . , Xn form
a random sample of size n from a given distribution with mean μ and variance σ 2

(0 < σ 2 < ∞), then for each fixed number x,

lim
n→∞ Pr

[
Xn − μ

σ/n1/2
≤ x

]
= �(x), (6.3.1)

where � denotes the c.d.f. of the standard normal distribution.

The interpretation of Eq. (6.3.1) is as follows: If a large random sample is taken
from any distribution with mean μ and variance σ 2, regardless of whether this
distribution is discrete or continuous, then the distribution of the random variable
n1/2(Xn − μ)/σ will be approximately the standard normal distribution. Therefore,
the distribution of Xn will be approximately the normal distribution with mean μ

and variance σ 2/n, or, equivalently, the distribution of the sum
∑n

i=1 Xi will be
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approximately the normal distribution with mean nμ and variance nσ 2. It is in this
last form that the central limit theorem was illustrated in Example 6.3.1.

Example
6.3.2

Tossing a Coin. Suppose that a fair coin is tossed 900 times. We shall approximate the
probability of obtaining more than 495 heads.

For i = 1, . . . , 900, let Xi = 1 if a head is obtained on the ith toss and let Xi = 0
otherwise. Then E(Xi) = 1/2 and Var(Xi) = 1/4. Therefore, the values X1, . . . , X900
form a random sample of size n = 900 from a distribution with mean 1/2 and variance
1/4. It follows from the central limit theorem that the distribution of the total number
of heads H = ∑900

i=1 Xi will be approximately the normal distribution for which the
mean is (900)(1/2) = 450, the variance is (900)(1/4) = 225, and the standard deviation
is (225)1/2 = 15. Therefore, the variable Z = (H − 450)/15 will have approximately
the standard normal distribution. Thus,

Pr(H > 495) = Pr
(

H − 450
15

>
495 − 450

15

)
= Pr(Z > 3) ≈ 1 − �(3) = 0.0013. �

The exact probability 0.0012 to four decimal places.

Example
6.3.3

Sampling from a Uniform Distribution. Suppose that a random sample of size n = 12 is
taken from the uniform distribution on the interval [0, 1]. We shall approximate the

value of Pr
(∣∣∣Xn − 1

2

∣∣∣ ≤ 0.1
)

.

The mean of the uniform distribution on the interval [0, 1] is 1/2, and the variance
is 1/12 (see Exercise 3 of Sec. 4.3). Since n = 12 in this example, it follows from the
central limit theorem that the distribution of Xn will be approximately the normal
distribution with mean 1/2 and variance 1/144. Therefore, the distribution of the

variable Z = 12
(

Xn − 1
2

)
will be approximately the standard normal distribution.

Hence,

Pr
(∣∣∣∣Xn − 1

2

∣∣∣∣ ≤ 0.1
)

= Pr
[

12
∣∣∣∣Xn − 1

2

∣∣∣∣ ≤ 1.2
]

= Pr(|Z| ≤ 1.2) ≈ 2�(1.2) − 1 = 0.7698.

For the special case of n = 12, the random variable Z has the form Z = ∑12
i=1 Xi − 6.

At one time, some computers produced standard normal pseudo-random numbers
by adding 12 uniform pseudo-random numbers and subtracting 6. �

Example
6.3.4

Poisson Random Variables. Suppose that X1, . . . , Xn form a random sample from the
Poisson distribution with mean θ . Let Xn be the average. Then μ = θ and σ 2 = θ .
The central limit theorem says that n1/2(Xn − θ)/θ1/2 has approximately the standard
normal distribution. In particular, the central limit theorem says that Xn should be
close to μ with high probability. The probability that |Xn − θ | is less than some small
number c could be approximated using the standard normal c.d.f.:

Pr
(
|Xn − θ | < c

)
≈ 2�

(
cn1/2θ−1/2

)
− 1. (6.3.2)

�

The type of convergence that appears in the central limit theorem, specifically,
Eq. (6.3.1), arises in other contexts and has a special name.
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Definition
6.3.1

Convergence in Distribution/Asymptotic Distribution. Let X1, X2, . . . be a sequence of
random variables, and for n = 1, 2, . . . , let Fn denote the c.d.f. of Xn. Also, let F ∗ be
a c.d.f. Then it is said that the sequence X1, X2, . . . converges in distribution to F ∗ if

lim
n→∞ Fn(x) = F ∗(x), (6.3.3)

for all x at which F ∗(x) is continuous. Sometimes, it is simply said that Xn converges
in distribution to F ∗, and F ∗ is called the asymptotic distribution of Xn. If F ∗ has a
name, then we say that Xn converges in distribution to that name.

Thus, according to Theorem 6.3.1, as indicated in Eq. (6.3.1), the random variable
n1/2(Xn − μ)/σ converges in distribution to the standard normal distribution, or,
equivalently, the asymptotic distribution of n1/2(Xn − μ)/σ is the standard normal
distribution.

Effect of the Central Limit Theorem The central limit theorem provides a plausible
explanation for the fact that the distributions of many random variables studied in
physical experiments are approximately normal. For example, a person’s height is
influenced by many random factors. If the height of each person is determined by
adding the values of these individual factors, then the distribution of the heights of a
large number of persons will be approximately normal. In general, the central limit
theorem indicates that the distribution of the sum of many random variables can be
approximately normal, even though the distribution of each random variable in the
sum differs from the normal.

Example
6.3.5

Determining a Simulation Size. In Example 6.2.2 on page 351, an environmental engi-
neer wanted to determine the size of a simulation to estimate the mean proportion of
water contaminant that was lead. Use of the Chebyshev inequality in that example
suggested that a simulation of size 2,000,000 will guarantee that the estimate will be
less than 0.005 away from the true mean proportion with probability at least 0.98.
In this example, we shall use the central limit theorem to determine a much smaller
simulation size that should still provide the same accuracy bound. The estimate of the
mean proportion will be the average Rn of all of the simulated proportions R1, . . . , Rn

from the n simulations that will be run. As we noted in Example 6.2.2, the variance
of each Ri is σ 2 ≤ 1, and hence the central limit theorem says that Rn has approxi-
mately the normal distribution with mean equal to the true mean proportion E(Ri)

and variance at most 1/n. Since the probability of being close to the mean decreases
as the variance increases, we see that

Pr(|Rn − E(Ri)| < 0.005) ≈ �

(
0.005
σ/

√
n

)
− �

(−0.005
σ/

√
n

)
≥ �

(
0.005
1/

√
n

)
− �

(−0.005
1/

√
n

)
= 2�(0.005

√
n) − 1.

If we set 2�(0.005
√

n) − 1 = 0.98, we obtain

n = 1
0.0052

�−1(0.99)2 = 40,000 × 2.3262 = 216,411.

That is, we only need a little more than 10 percent of the simulation size that the
Chebyshev inequality suggested. (Since σ 2 is actually no more than 1/4, we really only
need n =54,103. See Exercise 14 in Sec. 6.2 for a proof that a discrete distribution on
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the interval [0, 1] can have variance at most 1/4. The continuous case is slightly more
complicated, but also true.) �

Other Examples of Convergence in Distribution In Chapter 5, we saw three exam-
ples of limit theorems involving discrete distributions. Theorems 5.3.4, 5.4.5, and 5.4.6
all showed that a sequence of p.f.’s converged to some other p.f. In Exercise 7 in
Sec. 6.5, you can prove a general result that implies that the three theorems just
mentioned are examples of convergence in distribution.

The Delta Method

Example
6.3.6

Rate of Service. Customers arrive at a queue for service, and the ith customer is served
in some time Xi after reaching the head of the queue. If we assume that X1, . . . , Xn

form a random sample of service times with mean μ and finite variance σ 2, we might
be interested in using 1/Xn to estimate the rate of service. The central limit theorem
tells us something about the approximate distribution of Xn if n is large, but what can
we say about the distribution of 1/Xn? �

Suppose that X1, . . . , Xn form a random sample from a distribution that has finite
mean μ and finite variance σ 2. The central limit theorem says that n1/2(Xn − μ)/σ has
approximately the standard normal distribution. Now suppose that we are interested
in the distribution of some function α of Xn. We shall assume that α is a differentiable
function whose derivative is nonzero at μ. We shall approximate the distribution of
α(Xn) by a method known in statistics as the delta method.

Theorem
6.3.2

Delta Method. Let Y1, Y2, . . . be a sequence of random variables, and let F ∗ be a
continuous c.d.f. Let θ be a real number, and let a1, a2, . . . be a sequence of positive
numbers that increase to ∞. Suppose that an(Yn − θ) converges in distribution to F ∗.
Let α be a function with continuous derivative such that α′(θ) 	= 0. Then an[α(Yn) −
α(θ)]/α′(θ) converges in distribution to F ∗.

Proof We shall give only an outline of the proof. Because an → ∞, Yn must get close
to θ with high probability as n → ∞. If not, |an(Yn − θ)| would go to ∞ with nonzero
probability and then the c.d.f. of an(Yn − θ) would not converge to a c.d.f. Because α

is continuous, α(Yn) must also be close to α(θ) with high probability. Therefore, we
shall use a Taylor series expansion of α(Yn) around θ ,

α(Yn) ≈ α(θ) + α′(θ)(Yn − θ), (6.3.4)

where we have ignored all terms involving (Yn − θ)2 and higher powers. Subtract α(θ)

from both sides of Eq. (6.3.4), and then multiply both sides by an/α
′(θ) to get

an

α′(θ)
(Yn − θ) ≈ an(Yn − θ). (6.3.5)

We then conclude that the distribution of the left side of Eq. (6.3.5) will be ap-
proximately the same as the distribution of the right side of the equation, which
is approximately F ∗.

The most common application of Theorem 6.3.2 occurs when Yn is the average
of a random sample from a distribution with finite variance. We state that case in the
following corollary.

Corollary
6.3.1

Delta Method for Average of a Random Sample. Let X1, X2, . . . be a sequence of i.i.d.
random variables from a distribution with mean μ and finite variance σ 2. Let α
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be a function with continuous derivative such that α′(μ) 	= 0. Then the asymptotic
distribution of

n1/2

σα′(μ)
[α(Xn) − α(μ)]

is the standard normal distribution.

Proof Apply Theorem 6.3.2 with Yn = Xn, an = n1/2/σ , θ = μ, and F ∗ being the
standard normal c.d.f.

A common way to report the result in Corollary 6.3.1 is to say that the distribution
of α(Xn) is approximately the normal distribution with mean α(μ) and variance
σ 2[α′(μ)]2/n.

Example
6.3.7

Rate of Service. In Example 6.3.6, we are interested in the distribution of α(Xn) where
α(x) = 1/x for x > 0. We can apply the delta method by finding α′(x) = −1/x2. It
follows that the asymptotic distribution of

−n1/2μ2

σ

(
1

Xn

− 1
μ

)

is the standard normal distribution. Alternatively, we might say that 1/Xn has ap-
proximately the normal distribution with mean 1/μ and variance σ 2/[nμ4]. �

Variance Stabilizing Transformations If we were to observe a random sample of
Poisson random variables as in Example 6.3.4, we would assume that θ is unknown.
In such a case we cannot compute the probability in Eq. (6.3.2), because the ap-
proximate variance of Xn depends on θ . For this reason, it is sometimes desirable
to transform Xn by a function α so that the approximate distribution of α(Xn) has a
variance that is a known value. Such a function is called a variance stabilizing transfor-
mation. We can often find a variance stabilizing transformation by running the delta
method in reverse. In general, we note that the approximate distribution of α(Xn)

has variance α′(μ)2σ 2/n. In order to make this variance constant, we need α′(μ) to
be a constant times 1/σ . If σ 2 is a function g(μ), then we achieve this goal by letting

α(μ) =
∫ μ

a

dx

g(x)1/2
, (6.3.6)

where a is an arbitrary constant that makes the integral finite.

Example
6.3.8

Poisson Random Variables. In Example 6.3.4, we have σ 2 = θ = μ, so that g(μ) = μ.
According to Eq. (6.3.6), we should let

α(μ) =
∫ μ

0

dx

x1/2
= 2μ1/2.

It follows that 2X
1/2
n

has approximately the normal distribution with mean 2θ1/2 and
variance 1/n. For each number c > 0, we have

Pr
(
|2X

1/2
n

− 2θ1/2| < c
)

≈ 2�
(
cn1/2

)
− 1. (6.3.7)

In Chapter 8, we shall see how to use Eq (6.3.7) to estimate θ when we assume
that θ is unknown. �
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The Central Limit Theorem (Liapounov) for the Sum of Independent Random Variables

We shall now state a central limit theorem that applies to a sequence of random
variables X1, X2, . . . that are independent but not necessarily identically distributed.
This theorem was first proved by A. Liapounov in 1901. We shall assume that E(Xi) =
μi and Var(Xi) = σ 2

i
for i = 1, . . . , n. Also, we shall let

Yn =
∑n

i=1 Xi − ∑n
i=1 μi(∑n

i=1 σ 2
i

)1/2
. (6.3.8)

Then E(Yn) = 0 and Var(Yn) = 1. The theorem that is stated next gives a sufficient
condition for the distribution of this random variable Yn to be approximately the
standard normal distribution.

Theorem
6.3.3

Suppose that the random variables X1, X2, . . . are independent and that E(|Xi −
μi|3) < ∞ for i = 1, 2, . . . Also, suppose that

lim
n→∞

∑n
i=1 E

(
|Xi − μi|3

)
(∑n

i=1 σ 2
i

)3/2
= 0. (6.3.9)

Finally, let the random variable Yn be as defined in Eq. (6.3.8). Then, for each fixed
number x,

lim
n→∞ Pr(Yn ≤ x) = �(x). (6.3.10)

The interpretation of this theorem is as follows: If Eq. (6.3.9) is satisfied, then for
every large value of n, the distribution of

∑n
i=1 Xi will be approximately the normal

distribution with mean
∑n

i=1 μi and variance
∑n

i=1 σ 2
i

. It should be noted that when
the random variables X1, X2, . . . are identically distributed and the third moments
of the variables exist, Eq. (6.3.9) will automatically be satisfied and Eq. (6.3.10) then
reduces to Eq. (6.3.1).

The distinction between the theorem of Lindeberg and Lévy and the theorem
of Liapounov should be emphasized. The theorem of Lindeberg and Lévy applies to
a sequence of i.i.d. random variables. In order for this theorem to be applicable, it
is sufficient to assume only that the variance of each random variable is finite. The
theorem of Liapounov applies to a sequence of independent random variables that
are not necessarily identically distributed. In order for this theorem to be applicable,
it must be assumed that the third moment of each random variable is finite and
satisfies Eq. (6.3.9).

The Central Limit Theorem for Bernoulli Random Variables By applying the
theorem of Liapounov, we can establish the following result.

Theorem
6.3.4

Suppose that the random variables X1, . . . , Xn are independent and Xi has the
Bernoulli distribution with parameter pi (i = 1, 2, . . .). Suppose also that the infinite
series

∑∞
i=1 pi(1 − pi) is divergent, and let

Yn =
∑n

i=1 Xi − ∑n
i=1 pi(∑n

i=1 pi(1 − pi)
)1/2

. (6.3.11)
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Then for every fixed number x,

lim
n→∞ Pr(Yn ≤ x) = �(x). (6.3.12)

Proof Here Pr(Xi = 1) = pi and Pr(Xi = 0) = 1 − pi. Therefore,

E(Xi) = pi, Var(Xi) = pi(1 − pi),

E
(
|Xi − pi|3

)
= pi(1 − pi)

3 + (1 − pi)p
3
i
= pi(1 − pi)

(
p2

i
+ (1 − p2

i
)
)

≤ pi(1 − pi), (6.3.13)

It follows that ∑n
i=1 E

(
|Xi − pi|3

)
(∑n

i=1 pi(1 − pi

)3/2
≤ 1(∑n

i=1 pi(1 − pi)
)1/2

. (6.3.14)

Since the infinite series
∑∞

i=1 pi(1 − pi) is divergent, then
∑n

i=1 pi(1 − pi) → ∞
as n → ∞, and it can be seen from the relation (6.3.14) that Eq. (6.3.9) will be
satisfied. In turn, it follows from Theorem 6.3.3 that Eq. (6.3.10) will be satisfied.
Since Eq. (6.3.12) is simply a restatement of Eq. (6.3.10) for the particular random
variables being considered here, the proof of the theorem is complete.

Theorem 6.3.4 implies that if the infinite series
∑∞

i=1 pi(1 − pi) is divergent, then
the distribution of the sum

∑n
i=1 Xi of a large number of independent Bernoulli

random variables will be approximately the normal distribution with mean
∑n

i=1 pi

and variance
∑n

i=1 pi(1 − pi). It should be kept in mind, however, that a typical
practical problem will involve only a finite number of random variables X1, . . . , Xn,
rather than an infinite sequence of random variables. In such a problem, it is not
meaningful to consider whether or not the infinite series

∑∞
i=1 pi(1 − pi) is divergent,

because only a finite number of values p1, . . . , pn will be specified in the problem.
In a certain sense, therefore, the distribution of the sum

∑n
i=1 Xi can always be

approximated by a normal distribution. The critical question is whether or not this
normal distribution provides a good approximation to the actual distribution of∑n

i=1 Xi. The answer depends, of course, on the values of p1, . . . , pn.
Since the normal distribution will be attained more and more closely as∑n

i=1 pi(1 − pi) → ∞, the normal distribution provides a good approximation when
the value of

∑n
i=1 pi(1 − pi) is large. Furthermore, since the value of each term

pi(1 − pi) is a maximum when pi = 1/2, the approximation will be best when n is
large and the values of p1, . . . , pn are close to 1/2.

Example
6.3.9

Examination Questions. Suppose that an examination contains 99 questions arranged
in a sequence from the easiest to the most difficult. Suppose that the probability that
a particular student will answer the first question correctly is 0.99, the probability that
he will answer the second question correctly is 0.98, and, in general, the probability
that he will answer the ith question correctly is 1 − i/100 for i = 1, . . . , 99. It is
assumed that all questions will be answered independently and that the student must
answer at least 60 questions correctly to pass the examination. We shall determine
the probability that the student will pass.

Let Xi = 1 if the ith question is answered correctly and Xi = 0 otherwise. Then
E(Xi) = pi = 1 − (i/100) and Var(Xi) = pi(1 − pi) = (i/100)[1 − (i/100)]. Also,

99∑
i=1

pi = 99 − 1
100

99∑
i=1

i = 99 − 1
100

. (99)(100)

2
= 49.5
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and
99∑
i=1

pi(1 − pi) = 1
100

99∑
i=1

i − 1
(100)2

99∑
i=1

i2

= 49.5 − 1
(100)2

. (99)(100)(199)

6
= 16.665.

It follows from the central limit theorem that the distribution of the total number
of questions that are answered correctly, which is

∑99
i=1 Xi, will be approximately

the normal distribution with mean 49.5 and standard deviation (16.665)1/2 = 4.08.
Therefore, the distribution of the variable

Z =
∑n

i=1 Xi − 49.5

4.08

will be approximately the standard normal distribution. It follows that

Pr

(
n∑

i=1

Xi ≥ 60

)
= Pr(Z ≥ 2.5735) � 1 − �(2.5735) = 0.0050. �

Outline of Proof of Central Limit Theorem

Convergence of the Moment Generating Functions Moment generating functions
are important in the study of convergence in distribution because of the following
theorem, the proof of which is too advanced to be presented here.

Theorem
6.3.5

Let X1, X2, . . . be a sequence of random variables. For n = 1, 2, . . . , let Fn denote
the c.d.f. of Xn, and let ψn denote the m.g.f. of Xn.

Also, let X∗ denote another random variable with c.d.f. F ∗ and m.g.f. ψ∗. Suppose
that the m.g.f.’s ψn and ψ∗ exist (n = 1, 2, . . .). If limn→∞ ψn(t) = ψ∗(t) for all values
of t in some interval around the point t = 0, then the sequence X1, X2, . . . converges
in distribution to X∗.

In other words, the sequence of c.d.f.’s F1, F2, . . . must converge to the c.d.f. F ∗
if the corresponding sequence of m.g.f.’s ψ1, ψ2, . . . converges to the m.g.f. ψ∗.

Outline of the Proof of Theorem 5.7.1 We are now ready to outline a proof of Theo-
rem 6.3.1, which is the central limit theorem of Lindeberg and Lévy. We shall assume
that the variables X1, . . . , Xn form a random sample of size n from a distribution
with mean μ and variance σ 2. We shall also assume, for convenience, that the m.g.f.
of this distribution exists, although the central limit theorem is true even without this
assumption.

For i = 1, . . . , n, let Yi = (Xi − μ)/σ . Then the random variables Y1, . . . , Yn are
i.i.d., and each has mean 0 and variance 1. Furthermore, let

Zn = n1/2(Xn − μ)

σ
= 1

n1/2

n∑
i=1

Yi.
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We shall show that Zn converges in distribution to a random variable having the
standard normal distribution, as indicated in Eq. (6.3.1), by showing that the m.g.f.
of Zn converges to the m.g.f. of the standard normal distribution.

If ψ(t) denotes the m.g.f. of each random variable Yi (i = 1, . . . , n), then it follows
from Theorem 4.4.4 that the m.g.f. of the sum

∑n
i=1 Yi will be [ψ(t)]n. Also, it follows

from Theorem 4.4.3 that the m.g.f. ζn(t) of Zn will be

ζn(t) =
[
ψ

(
t

n1/2

)]n

.

In this problem, ψ ′(0) = E(Yi) = 0 and ψ ′′(0) = E(Y 2
i
) = 1. Therefore, the Taylor

series expansion of ψ(t) about the point t = 0 has the following form:

ψ(t) = ψ(0) + tψ ′(0) + t2

2!
ψ ′′(0) + t3

3!
ψ ′′′(0) + . . .

= 1 + t2

2
+ t3

3!
ψ ′′′(0) + . . . .

Also,

ζn(t) =
[

1 + t2

2n
+ t3ψ ′′′(0)

3!n3/2
+ . . .

]n

. (6.3.15)

Apply Theorem 5.3.3 with 1 + an/n equal to the expression inside brackets in (6.3.15)
and cn = n. Since

lim
n→∞

[
t2

2
+ t3ψ ′′′(0)

3!n1/2
+ . . .

]
= t2

2
.

it follows that

lim
n→∞ ζn(t) = exp

(
1
2
t2
)

. (6.3.16)

Since the right side of Eq. (6.3.16) is the m.g.f. of the standard normal distribution,
it follows from Theorem 6.3.5 that the asymptotic distribution of Zn must be the
standard normal distribution.

An outline of the proof of the central limit theorem of Liapounov can also be
given by proceeding along similar lines, but we shall not consider this problem further
here.

Summary

Two versions of the central limit theorem were given. They conclude that the distri-
bution of the average of a large number of independent random variables is close
to a normal distribution. One theorem requires that the random variables all have
the same distribution with finite variance. The other theorem does not require that
the random variables be identically distributed, but instead requires that their third
moments exist and satisfy condition (6.3.9). The delta method lets us find the approx-
imate distribution of a smooth function of a sample average.
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Exercises

1. Each minute a machine produces a length of rope with
mean of 4 feet and standard deviation of 5 inches. Assum-
ing that the amounts produced in different minutes are
independent and identically distributed, approximate the
probability that the machine will produce at least 250 feet
in one hour.

2. Suppose that 75 percent of the people in a certain me-
tropolitan area live in the city and 25 percent of the people
live in the suburbs. If 1200 people attending a certain con-
cert represent a random sample from the metropolitan
area, what is the probability that the number of people
from the suburbs attending the concert will be fewer than
270?

3. Suppose that the distribution of the number of defects
on any given bolt of cloth is the Poisson distribution with
mean 5, and the number of defects on each bolt is counted
for a random sample of 125 bolts. Determine the proba-
bility that the average number of defects per bolt in the
sample will be less than 5.5.

4. Suppose that a random sample of size n is to be taken
from a distribution for which the mean is μ and the stan-
dard deviation is 3. Use the central limit theorem to de-
termine approximately the smallest value of n for which
the following relation will be satisfied:

Pr(|Xn − μ| < 0.3) ≥ 0.95.

5. Suppose that the proportion of defective items in a
large manufactured lot is 0.1. What is the smallest random
sample of items that must be taken from the lot in order
for the probability to be at least 0.99 that the proportion
of defective items in the sample will be less than 0.13?

6. Suppose that three girls A, B, and C throw snowballs at
a target. Suppose also that girl A throws 10 times, and the
probability that she will hit the target on any given throw is
0.3; girl B throws 15 times, and the probability that she will
hit the target on any given throw is 0.2; and girl C throws
20 times, and the probability that she will hit the target on
any given throw is 0.1. Determine the probability that the
target will be hit at least 12 times.

7. Suppose that 16 digits are chosen at random with re-
placement from the set {0, . . . , 9}. What is the probability
that their average will lie between 4 and 6?

8. Suppose that people attending a party pour drinks from
a bottle containing 63 ounces of a certain liquid. Suppose
also that the expected size of each drink is 2 ounces, that
the standard deviation of each drink is 1/2 ounce, and
that all drinks are poured independently. Determine the
probability that the bottle will not be empty after 36 drinks
have been poured.

9. A physicist makes 25 independent measurements of
the specific gravity of a certain body. He knows that the
limitations of his equipment are such that the standard
deviation of each measurement is σ units.

a. By using the Chebyshev inequality, find a lower
bound for the probability that the average of his mea-
surements will differ from the actual specific gravity
of the body by less than σ/4 units.

b. By using the central limit theorem, find an approxi-
mate value for the probability in part (a).

10. A random sample of n items is to be taken from a
distribution with mean μ and standard deviation σ .

a. Use the Chebyshev inequality to determine the
smallest number of items n that must be taken in
order to satisfy the following relation:

Pr
(

|Xn − μ| ≤ σ

4

)
≥ 0.99.

b. Use the central limit theorem to determine the small-
est number of items n that must be taken in order to
satisfy the relation in part (a) approximately.

11. Suppose that, on the average, 1/3 of the graduating
seniors at a certain college have two parents attend the
graduation ceremony, another third of these seniors have
one parent attend the ceremony, and the remaining third
of these seniors have no parents attend. If there are 600
graduating seniors in a particular class, what is the proba-
bility that not more than 650 parents will attend the grad-
uation ceremony?

12. Let Xn be a random variable having the binomial dis-
tribution with parameters n and pn. Assume that
limn→∞ npn = λ. Prove that the m.g.f. of Xn converges
to the m.g.f. of the Poisson distribution with mean λ.

13. Suppose that X1, . . . , Xn form a random sample from
a normal distribution with unknown mean θ and variance
σ 2. Assuming that θ 	= 0, determine the asymptotic distri-

bution of X
3
n
.

14. Suppose that X1, . . . , Xn form a random sample from
a normal distribution with mean 0 and unknown variance
σ 2.

a. Determine the asymptotic distribution of the statistic(
1
n

∑n
i=1 X2

i

)−1
.

b. Find a variance stabilizing transformation for the
statistic 1

n

∑n
i=1 X2

i
.

15. Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables each having the uniform distribution on the interval
[0, θ ] for some real number θ > 0. For each n, define Yn to
be the maximum of X1, . . . , Xn.
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a. Show that the c.d.f. of Yn is

Fn(y) =
⎧⎨⎩

0 if x ≤ 0,
(y/θ)n if 0 < y < θ ,
1 if y > θ .

Hint: Read Example 3.9.6.
b. Show that Zn = n(Yn − θ) converges in distribution

to the distribution with c.d.f.

F ∗(z) =
{

exp(z/θ) if z < 0,
1 if z > 0.

Hint: Apply Theorem 5.3.3 after finding the c.d.f. of
Zn.

c. Use Theorem 6.3.2 to find the approximate distribu-
tion of Y 2

n
when n is large.

6.4 The Correction for Continuity
Some applications of the central limit theorem allow us to approximate the proba-
bility that a discrete random variable X lies in an interval [a, b] by the probability
that a normal random variable lies in that interval. The approximation can be
improved slightly by being careful about how we approximate Pr(X = a) and
Pr(X = b).

Approximating a Discrete Distribution by a Continuous Distribution

Example
6.4.1

A Large Sample. In Example 6.3.1, we illustrated how the normal distribution with
mean 50 and variance 25 could approximate the distribution of a random variable X

that has the binomial distribution with parameters 100 and 0.5. In particular, if Y has
the normal distribution with mean 50 and variance 25, we know that Pr(Y ≤ x) is close
to Pr(X ≤ x) for all x. But the approximation has some systematic errors. Figure 6.4
shows the two c.d.f.’s over the range 30 ≤ x < 70. The two c.d.f.’s are very close at
x = n + 0.5 for each integer n. But for each integer n, Pr(Y ≤ x) < Pr(X ≤ x) for x a
little above n and Pr(Y ≤ x) > Pr(X ≤ x) for x a little below n. We ought to be able to
make use of these systematic discrepancies in order to improve the approximation.

�

Suppose that X has a discrete distribution that can be approximated by a normal
distribution, such as in Example 6.4.1. In this section, we shall describe a standard
method for improving the quality of such an approximation based on the systematic
discrepancies that were noted at the end of Example 6.4.1.

Let f (x) be the p.f. of the discrete random variable X, and suppose that we wish
to approximate the distribution of X by a continuous distribution with p.d.f. g(x). To

Figure 6.4 Comparison of
binomial and normal c.d.f.’s.
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aid the discussion, let Y be a random variable with p.d.f. g. Also, for simplicity, we
shall assume that all of the possible values of X are integers. This condition is satis-
fied for the binomial, hypergeometric, Poisson, and negative binomial distributions
described in this text.

If the distribution of Y provides a good approximation to the distribution of X,
then for all integers a and b, we can approximate the discrete probability

Pr(a ≤ X ≤ b) =
b∑

x=a

f (x) (6.4.1)

by the continuous probability

Pr(a ≤ Y ≤ b) =
∫ b

a

g(x) dx. (6.4.2)

Indeed, this approximation was used in Examples 6.3.2 and 6.3.9, where g(x) was the
appropriate normal p.d.f. derived from the central limit theorem.

This simple approximation has the following shortcoming: Although Pr(X ≥ a)

and Pr(X > a) will typically have different values for the discrete distribution of
X, Pr(Y ≥ a) = Pr(Y > a) because Y has a continuous distribution. Another way of
expressing this shortcoming is as follows: Although Pr(X = x) > 0 for each integer x

that is a possible value of X, Pr(Y = x) = 0 for all x.

Approximating a Bar Chart

The p.f. f (x) of a discrete random variable X can be represented by a bar chart, as
sketched in Fig. 6.5. For each integer x, the probability of {X = x} is represented

by the area of a rectangle with a base that extends from x − 1
2

to x + 1
2

and with a

height f (x). Thus, the area of the rectangle for which the center of the base is at the
integer x is simply f (x). An approximating p.d.f. g(x) is also sketched in Fig. 6.5. A
bar chart with areas of bars proportional to probabilities is analogous to a histogram
(see page 165) with areas of bars proportional to proportions of a sample.

From this point of view, it can be seen that Pr(a ≤ X ≤ b), as specified in
Eq. (6.4.1), is the sum of the areas of the rectangles in Fig. 6.5 that are centered
at a, a + 1, . . . , b. It can also be seen from Fig. 6.5 that the sum of these areas is

Figure 6.5 Approximating
a bar chart by using a p.d.f.
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Figure 6.6 Comparison of
binomial c.d.f. with normal
c.d.f. shifted to the right and
to the left by 0.5.
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approximated by the integral

Pr(a − 1/2 < Y < b + 1/2) =
∫ b+(1/2)

a−(1/2)

g(x) dx. (6.4.3)

The adjustment from the integral in (6.4.2) to the integral in (6.4.3) is called the
correction for continuity.

Example
6.4.2

A Large Sample. At the end of Example 6.4.1, we found that when x was a little above
an integer, the approximating probability Pr(Y ≤ x) is a bit smaller than the actual
probability Pr(X ≤ x). The correction for continuity shifts the c.d.f. of Y to the left
by 0.5 when we want to compute Pr(Y ≤ x) for x a little above an integer. This shift
replaces Pr(Y ≤ x) by Pr(Y ≤ x + 0.5), which is larger and usually closer to Pr(X ≤ x).
Similarly, when we want to compute Pr(Y ≤ x) when x is a little below an integer,
the correction for continuity shifts the c.d.f. of Y to the right by 0.5 which replaces
Pr(Y ≤ x) by Pr(Y ≤ x − 0.5). Figure 6.6 illustrates both of these shifts and shows how
they each approximate the actual binomial c.d.f. better than the unshifted normal
c.d.f. in Fig. 6.4. �

If we use the correction for continuity, we find that the probability f (a) of the
single integer a can be approximated as follows:

Pr(X = a) = Pr
(

a − 1
2

≤ X ≤ a + 1
2

)
≈

∫ a+(1/2)

a−(1/2)

g(x) dx. (6.4.4)

Similarly,

Pr(X > a) = Pr(X ≥ a + 1) = Pr
(

X ≥ a + 1
2

)
≈

∫ ∞

a+(1/2)

g(x) dx. (6.4.5)

Example
6.4.3

Examination Questions. To illustrate the use of the correction for continuity, we shall
again consider Example 6.3.9. In that example, an examination contains 99 questions
of varying difficulty and it is desired to determine Pr(X ≥ 60), where X denotes the
total number of questions that a particular student answers correctly. Then, under the
conditions of the example, it is found from the central limit theorem that the discrete
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distribution of X could be approximated by the normal distribution with mean 49.5
and standard deviation 4.08. Let Z = (X − 49.5)/4.08.

If we use the correction for continuity, we obtain

Pr(X ≥ 60) = Pr(X ≥ 59.5) = Pr
(

Z ≥ 59.5 − 49.5
4.08

)
≈ 1 − �(2.4510) = 0.007.

This value is somewhat larger than the value 0.005, which was obtained in Sec. 6.3,
without the correction. �

Example
6.4.4

Coin Tossing. Suppose that a fair coin is tossed 20 times and that all tosses are
independent. What is the probability of obtaining exactly 10 heads?

Let X denote the total number of heads obtained in the 20 tosses. According
to the central limit theorem, the distribution of X will be approximately the normal
distribution with mean 10 and standard deviation [(20)(1/2)(1/2)]1/2 = 2.236. If we
use the correction for continuity,

Pr(X = 10) = Pr(9.5 ≤ X ≤ 10.5)

= Pr
(

− 0.5
2.236

≤ Z ≤ 0.5
2.236

)
≈ �(0.2236) − �(−0.2236) = 0.177.

The exact value of Pr(X = 10) found from the table of binomial probabilities
given at the back of this book is 0.1762. Thus, the normal approximation with the
correction for continuity is quite good. �

Summary

Let X be a random variable that takes only integer values. Suppose that X has
approximately the normal distribution with mean μ and variance σ 2. Let a and b be
integers, and suppose that we wish to approximate Pr(a ≤ X ≤ b). The correction to
the normal distribution approximation for continuity is to use �([b + 1/2 − μ]/σ) −
�([a − 1/2 − μ]/σ) rather than �([b − μ]/σ) − �([a − μ]/σ) as the approximation.

Exercises

1. Let X1, . . . , X30 be independent random variables
each having a discrete distribution with p.f.

f (x) =
⎧⎨⎩

1/4 if x = 0 or 2,
1/2 if x = 1,
0 otherwise.

Use the central limit theorem and the correction for con-
tinuity to approximate the probability that X1 + . . . + X30
is at most 33.

2. Let X denote the total number of successes in 15
Bernoulli trials, with probability of success p = 0.3 on each
trial.

a. Determine approximately the value of Pr(X = 4) by
using the central limit theorem with the correction
for continuity.

b. Compare the answer obtained in part (a) with the
exact value of this probability.

3. Using the correction for continuity, determine the
probability required in Example 6.3.2.

4. Using the correction for continuity, determine the
probability required in Exercise 2 of Sec. 6.3.

5. Using the correction for continuity, determine the
probability required in Exercise 3 of Sec. 6.3.
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6. Using the correction for continuity, determine the
probability required in Exercise 6 of Sec. 6.3.

7. Using the correction for continuity, determine the
probability required in Exercise 7 of Sec. 6.3.

6.5 Supplementary Exercises
1. Suppose that a pair of balanced dice are rolled 120
times, and let X denote the number of rolls on which the
sum of the two numbers is 7. Use the central limit theorem
to determine a value of k such that Pr(|X − 20| ≤ k) is
approximately 0.95.

2. Suppose that X has a Poisson distribution with a very
large mean λ. Explain why the distribution of X can be
approximated by the normal distribution with mean λ

and variance λ. In other words, explain why (X − λ)/λ1/2

converges in distribution, as λ → ∞, to a random variable
having the standard normal distribution.

3. Suppose that X has the Poisson distribution with mean
10. Use the central limit theorem, both without and with
the correction for continuity, to determine an approximate
value for Pr(8 ≤ X ≤ 12). Use the table of Poisson proba-
bilities given in the back of this book to assess the quality
of these approximations.

4. Suppose that X is a random variable such that E(Xk)

exists and Pr(X ≥ 0) = 1. Prove that for k > 0 and t > 0,

Pr(X ≥ t) ≤ E(Xk)

tk
.

5. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with parameter p. Let Xn be
the sample average. Find a variance stabilizing transfor-
mation for Xn. Hint: When trying to find the integral of
(p[1 − p])−1/2, make the substitution z = √

p and then
think about arcsin, the inverse of the sin function.

6. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with mean θ . Let Xn be the
sample average. Find a variance stabilizing transformation
for Xn.

7. Suppose that X1, X2, . . . is a sequence of positive inte-
ger-valued random variables. Suppose that there is a func-
tion f such that for every m = 1, 2, . . . , limn→∞ Pr(Xn =
m) = f (m),

∑∞
m=1 f (m) = 1, and f (x) = 0 for every x that

is not a positive integer. Let F be the discrete c.d.f. whose
p.f. is f . Prove that Xn converges in distribution to F .

8. Let {pn}∞n=1 be a sequence of numbers such that 0 <

pn < 1 for all n. Assume that limn→∞ pn = p with 0 < p <

1. Let Xn have the binomial distribution with parameters
k and pn for some positive integer k. Prove that Xn con-
verges in distribution to the binomial distribution with
parameters k and p.

9. Suppose that the number of minutes required to serve a
customer at the checkout counter of a supermarket has an
exponential distribution for which the mean is 3. Using the
central limit theorem, approximate the probability that
the total time required to serve a random sample of 16
customers will exceed one hour.

10. Suppose that we model the ocurrence of defects on a
fabric manufacturing line as a Poisson process with rate
0.01 per square foot. Use the central limit theorem (both
with and without the correction for continuity) to approxi-
mate the probability that one would find at least 15 defects
in 2000 square feet of fabric.

11. Let X have the gamma distribution with parameters
n and 3, where n is a large integer.

a. Explain why one can use the central limit theorem
to approximate the distribution of X by a normal
distribution.

b. Which normal distribution approximates the distri-
bution of X?

12. Let X have the negative binomial distribution with
parameters n and 0.2, where n is a large integer.

a. Explain why one can use the central limit theorem
to approximate the distribution of X by a normal
distribution.

b. Which normal distribution approximates the distri-
bution of X?
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7.1 Statistical Inference
Recall our various clinical trial examples. What would we say is the probability that
a future patient will respond successfully to treatment after we observe the results
from a collection of other patients? This is the kind of question that statistical
inference is designed to address. In general, statistical inference consists of making
probabilistic statements about unknown quantities. For example, we can compute
means, variances, quantiles, probabilities, and some other quantities yet to be
introduced concerning unobserved random variables and unknown parameters
of distributions. Our goal will be to say what we have learned about the unknown
quantities after observing some data that we believe contain relevant information.
Here are some other examples of questions that statistical inference can try to
answer. What can we say about whether a machine is functioning properly after we
observe some of its output? In a civil lawsuit, what can we say about whether there
was discrimination after observing how different ethnic groups were treated? The
methods of statistical inference, which we shall develop to address these questions,
are built upon the theory of probability covered in the earlier chapters of this text.

Probability and Statistical Models

In the earlier chapters of this book, we discussed the theory and methods of probabil-
ity. As new concepts in probability were introduced, we also introduced examples of
the use of these concepts in problems that we shall now recognize as statistical infer-
ence. Before discussing statistical inference formally, it is useful to remind ourselves
of those probability concepts that will underlie inference.

Example
7.1.1

Lifetimes of Electronic Components. A company sells electronic components and they
are interested in knowing as much as they can about how long each component is
likely to last. They can collect data on components that have been used under typical
conditions. They choose to use the family of exponential distributions to model the
length of time (in years) from when a component is put into service until it fails.
They would like to model the components as all having the same failure rate θ ,
but there is uncertainty about the specific numerical value of θ . To be more precise,

376
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let X1, X2, . . . stand for a sequence of component lifetimes in years. The company
believes that if they knew the failure rate θ , then X1, X2, . . . would be i.i.d. random
variables having the exponential distribution with parameter θ . (See Sec. 5.7 for the
definition of exponential distributions. We are using the symbol θ for the parameter
of our exponential distributions rather than β to match the rest of the notation in this
chapter.) Suppose that the data that the company will observe consist of the values
of X1, . . . , Xm but that they are still interested in Xm+1, Xm+2, . . . . They are also
interested in θ because it is related to the average lifetime. As we saw in Eq. (5.7.17),
the mean of an exponential random variable with parameter θ is 1/θ , which is why
the company thinks of θ as the failure rate.

We imagine an experiment whose outcomes are sequences of lifetimes as de-
scribed above. As mentioned already, if we knew the value θ , then X1, X2, . . . would
be i.i.d. random variables. In this case, the law of large numbers (Theorem 6.2.4) says
that the average 1

n

∑n
i=1 Xi converges in probability to the mean 1/θ . And Theo-

rem 6.2.5 says that n/
∑n

i=1 Xi converges in probability to θ . Because θ is a function
of the sequence of lifetimes that constitute each experimental outcome, it can be
treated as a random variable. Suppose that, before observing the data, the com-
pany believes that the failure rate is probably around 0.5/year but there is quite a
bit of uncertainty about it. They model θ as a random variable having the gamma
distribution with parameters 1 and 2. To rephrase what was stated earlier, they also
model X1, X2, . . . as conditionally i.i.d. exponential random variables with param-
eter θ given θ . They hope to learn more about θ from examining the sample data
X1, . . . , Xm. They can never learn θ precisely, because that would require observ-
ing the entire infinite sequence X1, X2, . . . . For this reason, θ is only hypothetically
observable. �

Example 7.1.1 illustrates several features that will be common to most statistical
inference problems and which constitute what we call a statistical model.

Definition
7.1.1

Statistical Model. A statistical model consists of an identification of random variables
of interest (both observable and only hypothetically observable), a specification of a
joint distribution or a family of possible joint distributions for the observable random
variables, the identification of any parameters of those distributions that are assumed
unknown and possibly hypothetically observable, and (if desired) a specification for
a (joint) distribution for the unknown parameter(s). When we treat the unknown
parameter(s) θ as random, then the joint distribution of the observable random
variables indexed by θ is understood as the conditional distribution of the observable
random variables given θ .

In Example 7.1.1, the observable random variables of interest form the sequence
X1, X2, . . . , while the failure rate θ is hypothetically observable. The family of
possible joint distributions of X1, X2, . . . is indexed by the parameter θ . The joint
distribution of the observables corresponding to the value θ is that X1, X2, . . . are
i.i.d. random variables each having the exponential distribution with parameter θ .
This is also the conditional distribution of X1, X2, . . . given θ because we are treating
θ as a radom variable. The distribution of θ is the gamma distribution with parameters
1 and 2.

Note: Redefining Old Ideas. The reader will notice that a statistical model is nothing
more than a formal identification of many features that we have been using in various
examples throughout the earlier chapters of this book. Some examples need only
a few of the features that make up a complete specification of a statistical model,
while other examples use the complete specification. In Sections 7.1–7.4, we shall
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introduce a considerable amount of terminology, most of which is mere formalization
of concepts that have been introduced and used in several places earlier in the book.
The purpose of all of this formalism is to help us to keep the concepts organized so
that we can tell when we are applying the same ideas in new ways and when we are
introducing new ideas.

We are now ready formally to introduce statistical inference.

Definition
7.1.2

Statistical Inference. A statistical inference is a procedure that produces a probabilistic
statement about some or all parts of a statistical model.

By a “probabilistic statement” we mean a statement that makes use of any of the
concepts of probability theory that were discussed earlier in the text or are yet to
be discussed later in the text. Some examples include a mean, a conditional mean, a
quantile, a variance, a conditional distribution for a random variable given another,
the probability of an event, a conditional probability of an event given something,
and so on. In Example 7.1.1, here are some examples of statistical inferences that
one might wish to make:

. Produce a random variable Y (a function of X1, . . . , Xm) such that Pr(Y ≥
θ |θ) = 0.9.

. Produce a random variable Y that we expect to be close to θ .

. Compute how likely it is that the average of the next 10 lifetimes, 1
10

∑m+10
i=m+1 Xi,

is at least 2.
. Say something about how confident we are that θ ≤ 0.4 after observing X1, . . . ,

Xm.

All of these types of inference and others will be discussed in more detail later in this
book.

In Definition 7.1.1, we distinguished between observable and hypothetically ob-
servable random variables. We reserved the name observable for a random variable
that we are essentially certain that we could observe if we devoted the necessary ef-
fort to observe it. The name hypothetically observable was used for a random variable
that would require infinite resources to observe, such as the limit (as n → ∞) of the
sample averages of the first n observables. In this text, such hypothetically observ-
able random variables will correspond to the parameters of the joint distribution of
the observables as in Example 7.1.1. Because these parameters figure so prominently
in many of the types of inference problems that we will see, it pays to formalize the
concept of parameter.

Definition
7.1.3

Parameter/Parameter space. In a problem of statistical inference, a characteristic or
combination of characteristics that determine the joint distribution for the random
variables of interest is called a parameter of the distribution. The set � of all pos-
sible values of a parameter θ or of a vector of parameters (θ1, . . . , θk) is called the
parameter space.

All of the families of distributions introduced earlier (and to be introduced later)
in this book have parameters that are included in the names of the individual mem-
bers of the family. For example, the family of binomial distributions has parameters
that we called n and p, the family of normal distributions is parameterized by the
mean μ and variance σ 2 of each distribution, the family of uniform distributions on
intervals is parameterized by the endpoints of the intervals, the family of exponential
distributions is parameterized by the rate parameter θ , and so on.
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In Example 7.1.1, the parameter θ (the failure rate) must be positive. Therefore,
unless certain positive values of θ can be explicitly ruled out as possible values of θ ,
the parameter space � will be the set of all positive numbers. As another example,
suppose that the distribution of the heights of the individuals in a certain population
is assumed to be the normal distribution with mean μ and variance σ 2, but that the
exact values of μ and σ 2 are unknown. The mean μ and the variance σ 2 determine
the particular normal distribution for the heights of individuals. So (μ, σ 2) can be
considered a pair of parameters. In this example of heights, both μ and σ 2 must be
positive. Therefore, the parameter space � can be taken as the set of all pairs (μ, σ 2)
such that μ > 0 and σ 2 > 0. If the normal distribution in this example represents the
distribution of the heights in inches of the individuals in some particular population,
we might be certain that 30 < μ < 100 and σ 2 < 50. In this case, the parameter space �

could be taken as the smaller set of all pairs (μ, σ 2) such that 30 < μ < 100 and
0 < σ 2 < 50.

The important feature of the parameter space � is that it must contain all possible
values of the parameters in a given problem, in order that we can be certain that the
actual value of the vector of parameters is a point in �.

Example
7.1.2

A Clinical Trial. Suppose that 40 patients are going to be given a treatment for a
condition and that we will observe for each patient whether or not they recover from
the condition. We are most likely also intersted in a large collection of additional
patients besides the 40 to be observed. To be specific, for each patient i = 1, 2, . . . ,

let Xi = 1 if patient i recovers, and let Xi = 0 if not. As a collection of possible
distributions for X1, X2, . . . , we could choose to say that the Xi are i.i.d. having
the Bernoulli distribution with parameter p for 0 ≤ p ≤ 1. In this case, the parameter
p is known to lie in the closed interval [0, 1], and this interval could be taken as the
parameter space. Notice also that the law of large numbers (Theorem 6.2.4) says that
p is the limit as n goes to infinity of the proportion of the first n patients who recover.

�

In most problems, there is a natural interpretation for the parameter as a feature
of the possible distributions of our data. In Example 7.1.2, the parameter p has a
natural interpretation as the proportion out of a large population of patients given
the treatment who recover from the condition. In Example 7.1.1, the parameter θ

has a natural interpretation as a failure rate, that is, one over the average lifetime
of a large population of lifetimes. In such cases, inference about parameters can
be interpreted as inference about the feature that the parameter represents. In
this text, all parameters will have such natural interpretations. In examples that
one encounters outside of an introductory course, interpretations may not be as
straightforward.

Examples of Statistical Inference

Here are some of the examples of statistical models and inferences that were intro-
duced earlier in the text.

Example
7.1.3

A Clinical Trial. The clinical trial introduced in Example 2.1.4 was concerned with
how likely patients are to avoid relapse while under various treatments. For each i,
let Xi = 1 if patient i in the imipramine group avoids relapse and Xi = 0 otherwise.
Let P stand for the proportion of patients who avoid relapse out of a large group
receiving imipramine treatment. If P is unknown, we can model X1, X2, . . . as i.i.d.
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Bernoulli random variables with parameter p conditional on P = p. The patients in
the imipramine column of Table 2.1 should provide us with some information that
changes our uncertainty about P . A statistical inference would consist of making
a probability statement about the data and/or P , and what the data and P tell us
about each other. For instance, in Example 4.7.8, we assumed that P had the uniform
distribution on the interval [0, 1], and we found the conditional distribution of P given
the observed results of the study. We also computed the conditional mean of P given
the study results as well as the M.S.E. for trying to predict P both before and after
observing the results of the study. �

Example
7.1.4

Radioactive Particles. In Example 5.7.8, radioactive particles reach a target according
to a Poisson process with unknown rate β. In Exercise 22 of Sec. 5.7, you were asked
to find the conditional distribution of β after observing the Poisson process for a
certain amount of time. �

Example
7.1.5

Anthropometry of Flea Beetles. In Example 5.10.2, we plotted two physical measure-
ments from a sample of 31 flea beetles together with contours of a bivariate normal
distribution. The family of bivariate normal distributions is parameterized by five
quantities: the two means, the two variances, and the correlation. The choice of which
set of five parameters to use for the fitted distribution is a form of statistical inference
known as estimation. �

Example
7.1.6

Interval for Mean. Suppose that the heights of men in a certain population follow
the normal distribution with mean μ and variance 9, as in Example 5.6.7. This time,
assume that we do not know the value of the mean μ, but rather we wish to learn about
it by sampling from the population. Suppose that we decide to sample n = 36 men and

let Xn stand for the average of their heights. Then the interval
(
Xn − 0.98, Xn + 0.98

)
computed in Example 5.6.8 has the property that it will contain the value of μ with
probability 0.95. �

Example
7.1.7

Discrimination in Jury Selection. In Example 5.8.4, we were interested in whether
there was evidence of discrimination against Mexican Americans in juror selection.
Figure 5.8 shows how people who came into the case with different opinions about
the extent of discrimination (if any) could alter their opinions in the light of learning
the numerical evidence presented in the case. �

Example
7.1.8

Service Times in a Queue. Suppose that customers in a queue must wait for service,
and that we get to observe the service times of several customers. Suppose that we
are interested in the rate at which customers are served. In Example 5.7.3, we let Z

stand for the service rate, and in Example 5.7.4, we showed how to find the conditional
distribution of Z given several observed service times. �

General Classes of Inference Problems

Prediction One form of inference is to try to predict random variables that have
not yet been observed. In Example 7.1.1, we might be interested in the average of
the next 10 lifetimes, 1

10

∑m+10
i=m+1 Xi. In the clinical trial example (Example 7.1.3), we

might be interested in predicting how many patients from the next set of patients
in the imipramine group will have successful outcome. In virtually every statistical
inference problem, in which we have not observed all of the relevant data, prediction
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is possible. When the unobserved quantity to be predicted is a parameter, prediction
is usually called estimation, as in Example 7.1.5.

Statistical Decision Problems In many statistical inference problems, after the ex-
perimental data have been analyzed, we must choose a decision from some available
class of decisions with the property that the consequences of each available decision
depend on the unknown value of some parameter. For example, we might have to
estimate the unknown failure rate θ of our electronic components when the con-
sequences depend on how close our estimate is to the correct value θ . As another
example, we might have to decide whether the unknown proportion P of patients in
the imipramine group (Example 7.1.3) is larger or smaller than some specified con-
stant when the consequences depend on where P lies relative to the constant. This
last type of inference is closely related to hypothesis testing, the subject of Chapter 9.

Experimental Design In some statistical inference problems, we have some control
over the type or the amount of experimental data that will be collected. For example,
consider an experiment to determine the mean tensile strength of a certain type of
alloy as a function of the pressure and temperature at which the alloy is produced.
Within the limits of certain budgetary and time constraints, it may be possible for
the experimenter to choose the levels of pressure and temperature at which experi-
mental specimens of the alloy are to be produced, and also to specify the number of
specimens to be produced at each of these levels.

Such a problem, in which the experimenter can choose (at least to some extent)
the particular experiment that is to be carried out, is called a problem of experimental
design. Of course, the design of an experiment and the statistical analysis of the
experimental data are closely related. One cannot design an effective experiment
without considering the subsequent statistical analysis that is to be carried out on
the data that will be obtained. And one cannot carry out a meaningful statistical
analysis of experimental data without considering the particular type of experiment
from which the data were derived.

Other Inferences The general classes of problems described above, as well as the
more specific examples that appeared earlier, are intended as illustrations of types
of statistical inferences that we will be able to perform with the theory and methods
introduced in this text. The range of possible models, inferences, and methods that
can arise when data are observed in real research problems far exceeds what we can
introduce here. It is hoped that gaining an understanding of the problems that we
can cover here will give the reader an appreciation for what needs to be done when
a more challenging statistical problem arises.

Definition of a Statistic

Example
7.1.9

Failure Times of Ball Bearings. In Example 5.6.9, we had a sample of the numbers of
millions of revolutions before failure for 23 ball bearings. We modeled the lifetimes
as a random sample from a lognormal distribution. We might suppose that the
parameters μ and σ 2 of that lognormal distribution are unknown and that we might
wish to make some inference about them. We would want to make use of the 23
observed values in making any such inference. But do we need to keep track of all
23 values or are there some summaries of the data on which our inference will be
based? �
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Each statistical inference that we will learn how to perform in this book will be
based on one or a few summaries of the available data. Such data summaries arise
so often and are so fundamental to inference that they receive a special name.

Definition
7.1.4

Statistic. Suppose that the observable random variables of interest are X1, . . . , Xn.
Let r be an arbitrary real-valued function of n real variables. Then the random
variable T = r(X1, . . . , Xn) is called a statistic.

Three examples of statistics are the sample mean Xn, the maximum Yn of the
values of X1, . . . , Xn, and the function r(X1, . . . , Xn), which has the constant value
3 for all values of X1, . . . , Xn.

Example
7.1.10

Failure Times of Ball Bearings. In Example 7.1.9, suppose that we were interested in
making a statement about how far μ is from 40. Then we might want to use the statistic

T =
∣∣∣∣∣ 1
36

36∑
i=1

log(Xi) − 4

∣∣∣∣∣
in our inference procedure. In this case, T is a naı̈ve measure of how far the data
suggest that μ is from 40. �

Example
7.1.11

Interval for Mean. In Example 7.1.6, we constructed an interval that has probability
0.95 of containing μ. The endpoints of that interval, namely, Xn − 0.98 and Xn + 0.98,
are statistics. �

Many inferences can proceed without explicitly constructing statistics as a pre-
liminary step. However, most inferences will involve the use of statistics that could
be identified in advance. And knowing which statistics are useful in which inferences
can greatly simplify the implementation of the inference. Expressing an inference in
terms of statistics can also help us to decide how well the inference meets out needs.
For instance, in Example 7.1.10, if we estimate |μ − 40| by T , we can use the distri-
bution of T to help determine how likely it is that T differs from |μ − 40| by a large
amount. As we construct specific inferences later in this book, we will draw attention
to those statistics that play important roles in the inference.

Parameters as Random Variables

There is some controversy over whether parameters should be treated as random
variables or merely as numbers that index a distribution. For instance, in Exam-
ple 7.1.3, we let P stand for the proportion of the patients who avoid relapse from
a large group receiving imipramine. We then say that X1, X2, . . . are i.i.d. Bernoulli
random variables with parameter p conditional on P = p. Here, we are explicitly
thinking of P as a random variable, and we give it a distribution. An alternative
would be to say that X1, X2, . . . are i.i.d. Bernoulli random variables with parameter
p where p is unknown and leave it at that.

If we really want to compute something like the conditional probability that the
proportion P is greater than 0.5 given the observations of the first 40 patients, then
we need the conditional distribution of P given the first 40 patients, and we must
treat P as a random variable. On the other hand, if we are only interested in making
probability statements that are indexed by the value of p, then we do not need to
think about a random variable called P . For example, we might wish to find two
random variables Y1 and Y2 (functions of X1, . . . , X40) such that, no matter what p



7.1 Statistical Inference 383

equals, the probability that Y1 ≤ p ≤ Y2 is at least 0.9. Some of the inferences that
we shall discuss later in this book are of the former type that require treating P as a
random variable, and some are of the latter type in which p is merely an index for a
distribution.

Some statisticians believe that it is possible and useful to treat parameters as
random variables in every statistical inference problem. They believe that the dis-
tribution of the parameter is a subjective probability distribution in the sense that
it represents an individual experimenter’s information and subjective beliefs about
where the true value of the parameter is likely to lie. Once they assign a distribution
for a parameter, that distribution is no different from any other probability distri-
bution used in the field of statistics, and all of the rules of probability theory apply
to every distribution. Indeed, in all of the cases described in this book, the parame-
ters can actually be identified as limits of functions of large collections of potential
observations. Here is a typical example.

Example
7.1.12

Parameter as a Limit of Random Variables. In Example 7.1.3, the parameter P can be
understood as follows: Imagine an infinite sequence of potential patients receiving
imipramine treatment. Assume that for every integer n, the outcomes of every or-
dered subset of n patients from that infinite sequence has the same joint distribution
as the outcomes of every other ordered subset of n patients. In other words, assume
that the order in which the patients appear in the sequence is irrelevant to the joint
distribution of the patient outcomes. Let Pn be the proportion of patients who don’t
relapse out of the first n. It can be shown that the probability is 1 that Pn converges
to something as n → ∞. That something can be thought of as P , which we have been
calling the proportion of successes in a very large population. In this sense, P is a ran-
dom variable because it is a function of other random variables. A similar argument
can be made in all of the statistical models in this book involving parameters, but
the mathematics needed to make these arguments precise is too advanced to present
here. (Chapter 1 of Schervish (1995) contains the necessary details.) Statisticians who
argue as in this example are said to adhere to the Bayesian philosophy of statistics
and are called Bayesians. �

There is another line of reasoning that leads naturally to treating P as a ran-
dom variable in Example 7.1.12 without relying on an infinite sequence of potential
patients. Suppose that the number of potential patients is enough larger than any sam-
ple that we will see to make the approximation in Theorem 5.3.4 applicable. Then
P is just the proportion of successes among the large population of potential pa-
tients. Conditional on P = p, the number of successes in a sample of n patients will
be approximately a binomial random variable with paramters n and p according to
Theorem 5.3.4. If the outcomes of the patients in the sample are random variables,
then it makes sense that the proportion of successes among those patients is also
random.

There is another group of statisticians who believe that in many problems it
is not appropriate to assign a distribution to a parameter but claim instead that
the true value of the parameter is a certain fixed number whose value happens to
be unknown to the experimenter. These statisticians would assign a distribution to
a parameter only when there is extensive previous information about the relative
frequencies with which similar parameters have taken each of their possible values
in past experiments. If two different scientists could agree on which past experiments
were similar to the present experiment, then they might agree on a distribution
to be assigned to the parameter. For example, suppose that the proportion θ of
defective items in a certain large manufactured lot is unknown. Suppose also that
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the same manufacturer has produced many such lots of items in the past and that
detailed records have been kept about the proportions of defective items in past lots.
The relative frequencies for past lots could then be used to construct a distribution
for θ . Statisticians who would argue this way are said to adhere to the frequentist
philosophy of statistics and are called frequentists.

The frequentists rely on the assumption that there exist infinite sequences of
random variables in order to make sense of most of their probability statements. Once
one assumes the existence of such an infinite sequence, one finds that the parameters
of the distributions being used are limits of functions of the infinite sequences, just as
do the Bayesians described above. In this way, the parameters are random variables
because they are functions of random variables. The point of disagreement between
the two groups is whether it is useful or even possible to assign a distribution to such
parameters.

Both Bayesians and frequentists agree on the usefulness of families of distri-
butions for observations indexed by parameters. Bayesians refer to the distribution
indexed by parameter value θ as the conditional distribution of the observations
given that the parameter equals θ . Frequentists refer to the distribution indexed by
θ as the distribution of the observations when θ is the true value of the parameter.
The two groups agree that whenever a distribution can be assigned to a parameter,
the theory and methods to be described in this chapter are applicable and useful. In
Sections 7.2–7.4, we shall explicitly assume that each parameter is a random random
variable and we shall assign it a distribution that represents the probabilities that the
parameter lies in various subsets of the parameter space. Beginning in Sec. 7.5, we
shall consider techniques of estimation that are not based on assigning distributions
to parameters.
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this book were mentioned at the end of Sec. 1.1. Some statistics books written at
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Cramér (1946), DeGroot (1970), Ferguson (1967), Lehmann (1997), Lehmann and
Casella (1998), Rao (1973), Rohatgi (1976), and Schervish (1995).

Exercises

1. Identify the components of the statistical model (as
defined in Definition 7.1.1) in Example 7.1.3.

2. Identify two statistical inferences mentioned in Exam-
ple 7.1.3.

3. In Examples 7.1.4 and 5.7.8 (page 323), identify the
components of the statistical model as defined in Defini-
tion 7.1.1.

4. In Example 7.1.6, identify the components of the sta-
tistical model as defined in Definition 7.1.1.

5. In Example 7.1.6, identify any statistical inference men-
tioned.

6. In Example 5.8.3 (page 328), identify the components
of the statistical model as defined in Definition 7.1.1.

7. In Example 5.4.7 (page 293), identify the components
of the statistical model as defined in Definition 7.1.1.
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7.2 Prior and Posterior Distributions
The distribution of a parameter before observing any data is called the prior
distribution of the parameter. The conditional distribution of the parameter given
the observed data is called the posterior distribution. If we plug the observed values
of the data into the conditional p.f. or p.d.f. of the data given the parameter, the
result is a function of the parameter alone, which is called the likelihood function.

The Prior Distribution

Example
7.2.1

Lifetimes of Electronic Components. In Example 7.1.1, lifetimes X1, X2, . . . of elec-
tronic components were modeled as i.i.d. exponential random variables with param-
eter θ conditional on θ , and θ was interpreted as the failure rate of the components.
Indeed, we noted that n/

∑n
i=1 Xi should converge in probability to θ as n goes to

∞. We then said that θ had the gamma distribution with parameters 1 and 2. �

The distribution of θ mentioned at the end of Example 7.2.1 was assigned before ob-
serving any of the component lifetimes. For this reason, we call it a prior distribution.

Definition
7.2.1

Prior Distribution/p.f./p.d.f. Suppose that one has a statistical model with parameter θ .
If one treats θ as random, then the distribution that one assigns to θ before observing
the other random variables of interest is called its prior distribution. If the parameter
space is at most countable, then the prior distribution is discrete and its p.f. is called
the prior p.f. of θ . If the prior distribution is a continuous distribution, then its p.d.f.
is called the prior p.d.f. of θ . We shall commonly use the symbol ξ(θ) to denote the
prior p.f. or p.d.f. as a function of θ .

When one treats the parameter as a random variable, the name “prior distribu-
tion” is merely another name for the marginal distribution of the parameter.

Example
7.2.2

Fair or Two-Headed Coin. Let θ denote the probability of obtaining a head when a
certain coin is tossed, and suppose that it is known that the coin either is fair or has
a head on each side. Therefore, the only possible values of θ are θ = 1/2 and θ = 1. If
the prior probability that the coin is fair is 0.8, then the prior p.f. of θ is ξ(1/2) = 0.8
and ξ(1) = 0.2. �

Example
7.2.3

Proportion of Defective Items. Suppose that the proportion θ of defective items in a
large manufactured lot is unknown and that the prior distribution assigned to θ is the
uniform distribution on the interval [0, 1]. Then the prior p.d.f. of θ is

ξ(θ) =
{

1 for 0 < θ < 1,
0 otherwise.

(7.2.1)

�

The prior distribution of a parameter θ must be a probability distribution over
the parameter space �. We assume that the experimenter or statistician will be able
to summarize his previous information and knowledge about where in � the value of
θ is likely to lie by constructing a probability distribution on the set �. In other words,
before the experimental data have been collected or observed, the experimenter’s
past experience and knowledge will lead him to believe that θ is more likely to lie
in certain regions of � than in others. We shall assume that the relative likelihoods
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of the different regions can be expressed in terms of a probability distribution on �,
namely, the prior distribution of θ .

Example
7.2.4

Lifetimes of Fluorescent Lamps. Suppose that the lifetimes (in hours) of fluorescent
lamps of a certain type are to be observed and that the the lifetime of any particular
lamp has the exponential distribution with parameter θ . Suppose also that the exact
value of θ is unknown, and on the basis of previous experience the prior distribution
of θ is taken as the gamma distribution for which the mean is 0.0002 and the standard
deviation is 0.0001. We shall determine the prior p.d.f. of θ .

Suppose that the prior distribution of θ is the gamma distribution with param-
eters α0 and β0. It was shown in Theorem 5.7.5 that the mean of this distribution
is α0/β0 and the variance is α0/β

2
0 . Therefore, α0/β0 = 0.0002 and α

1/2
0 /β0 = 0.0001.

Solving these two equations gives α0 = 4 and β0 = 20,000. It follows from Eq. (5.7.13)
that the prior p.d.f. of θ for θ > 0 is as follows:

ξ(θ) = (20,000)4

3!
θ3e−20,000θ . (7.2.2)

Also, ξ(θ) = 0 for θ ≤ 0. �

In the remainder of this section and Sections 7.3 and 7.4, we shall focus on
statistical inference problems in which the parameter θ is a random variable of
interest and hence will need to be assigned a distribution. In such problems, we shall
refer to the distribution indexed by θ for the other random variables of interest
as the conditional distribution for those random variables given θ . For example,
this is precisely the language used in Example 7.2.1 where the parameter is θ , the
failure rate. In referring to the conditional p.f. or p.d.f. of random variables, such as
X1, X2, . . . in Example 7.2.1, we shall use the notation of conditional p.f.’s and p.d.f.’s.
For example, if we let X = (X1, . . . , Xm) in Example 7.2.1, the conditional p.d.f. of
X given θ is

fm(x|θ) =
{

θm exp(−θ [x1 + . . . + xm]) for all xi > 0,
0 otherwise.

(7.2.3)

In many problems, such as Example 7.2.1, the observable data X1, X2, . . . are
modeled as a random sample from a univariate distribution indexed by θ . In these
cases, let f (x|θ) denote the p.f. or p.d.f. of a single random variable under the
distribution indexed by θ . In such a case, using the above notation,

fm(x|θ) = f (x1|θ) . . . f (xm|θ).

When we treat θ as a random variable, f (x|θ) is the conditional p.f. or p.d.f. of
each observation Xi given θ , and the observations are conditionally i.i.d. given θ .
In summary, the following two expressions are to be understood as equivalent:

. X1, . . . , Xn form a random sample with p.f. or p.d.f. f (x|θ).

. X1, . . . , Xn are conditionally i.i.d. given θ with conditional p.f. or p.d.f. f (x|θ).

Although we shall generally use the wording in the first bullet above for simplicity,
it is often useful to remember that the two wordings are equivalent when we treat θ

as a random variable.

Sensitivity Analysis and Improper Priors In Example 2.3.8 on page 84, we saw a
situation in which two very different sets of prior probabilities were used for a col-
lection of events. After we observed data, however, the posterior probabilities were
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quite similar. In Example 5.8.4 on page 330, we used a large collection of prior dis-
tributions for a parameter in order to see how much impact the prior distribution
had on the posterior probability of a single important event. It is a common practice
to compare the posterior distributions that arise from several different prior distri-
butions in order to see how much effect the prior distribution has on the answers to
important questions. Such comparisons are called sensitivity analysis.

It is very often the case that different prior distributions do not make much
difference after the data have been observed. This is especially true if there are a lot of
data or if the prior distributions being compared are very spread out. This observation
has two important implications. First, the fact that different experimenters might not
agree on a prior distribution becomes less important if there are a lot of data. Second,
experimenters might be less inclined to spend time specifying a prior distribution if
it is not going to matter much which one is specified. Unfortunately, if one does not
specify some prior distribution, there is no way to calculate a conditional distribution
of the parameter given the data.

As an expedient, there are some calculations available that attempt to capture
the idea that the data contain much more information than is available a priori.
Usually, these calculations involve using a function ξ(θ) as if it were a prior p.d.f. for
the parameter θ but such that

∫
ξ(θ) dθ = ∞, which clearly violates the definition

of p.d.f. Such priors are called improper. We shall discuss improper priors in more
detail in Sec. 7.3.

The Posterior Distribution

Example
7.2.5

Lifetimes of Fluorescent Lamps. In Example 7.2.4, we constructed a prior distribution
for the parameter θ that specifies the exponential distribution for a collection of life-
times of fluorescent lamps. Suppose that we observe a collection of n such lifetimes.
How would we change the distribution of θ to take account of the observed data?

�

Definition
7.2.2

Posterior Distribution/p.f./p.d.f. Consider a statistical inference problem with param-
eter θ and random variables X1, . . . , Xn to be observed. The conditional distribution
of θ given X1, . . . , Xn is called the posterior distribution of θ . The conditional p.f. or
p.d.f. of θ given X1 = x1, . . . , Xn = xn is called the posterior p.f. or posterior p.d.f. of θ

and is typically denoted ξ(θ |x1, . . . , xn).

When one treats the parameter as a random variable, the name “posterior dis-
tribution” is merely another name for the conditional distribution of the parameter
given the data. Bayes’ theorem for random variables (3.6.13) and for random vec-
tors (3.7.15) tells us how to compute the posterior p.d.f. or p.f. of θ after observing
data. We shall review the derivation of Bayes’ theorem here using the specific nota-
tion of prior distributions and parameters.

Theorem
7.2.1

Suppose that the n random variables X1, . . . , Xn form a random sample from a
distribution for which the p.d.f. or the p.f. is f (x|θ). Suppose also that the value of
the parameter θ is unknown and the prior p.d.f. or p.f. of θ is ξ(θ). Then the posterior
p.d.f. or p.f. of θ is

ξ(θ |x) = f (x1|θ) . . . f (xn|θ)ξ(θ)

gn(x)
for θ ∈ �,

where gn is the marginal joint p.d.f. or p.f. of X1, . . . , Xn.
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Proof For simplicity, we shall assume that the parameter space � is either an interval
of the real line or the entire real line and that ξ(θ) is a prior p.d.f. on �, rather than
a prior p.f. However, the proof that will be given here can be adapted easily to a
problem in which ξ(θ) is a p.f.

Since the random variables X1, . . . , Xn form a random sample from the distribu-
tion for which the p.d.f. is f (x|θ), it follows from Sec. 3.7 that their conditional joint
p.d.f. or p.f. fn(x1, . . . , xn|θ) given θ is

fn(x1, . . . , xn|θ) = f (x1|θ) . . . f (xn|θ). (7.2.4)

If we use the vector notation x = (x1, . . . , xn), then the joint p.d.f. in Eq. (7.2.4)
can be written more compactly as fn(x|θ). Eq. (7.2.4) merely expresses the fact that
X1, . . . , Xn are conditionally independent and identically distributed given θ , each
having p.d.f. or p.f. f (x|θ).

If we multiply the conditional joint p.d.f. or p.f. by the p.d.f. ξ(θ), we obtain the
(n + 1)-dimensional joint p.d.f. (or p.f./p.d.f.) of X1, . . . , Xn and θ in the form

f (x, θ) = fn(x|θ)ξ(θ). (7.2.5)

The marginal joint p.d.f. or p.f. of X1, . . . , Xn can now be obtained by integrating
the right-hand side of Eq. (7.2.5) over all values of θ . Therefore, the n-dimensional
marginal joint p.d.f. or p.f. gn(x) of X1, . . . , Xn can be written in the form

gn(x) =
∫

�

fn(x|θ)ξ(θ) dθ. (7.2.6)

Eq. (7.2.6) is just an instance of the law of total probability for random vectors
(3.7.14).

Furthermore, the conditional p.d.f. of θ given that X1 = x1, . . . , Xn = xn, namely,
ξ(θ |x), must be equal to f (x, θ) divided by gn(x). Thus, we have

ξ(θ |x) = fn(x|θ)ξ(θ)

gn(x)
for θ ∈ �, (7.2.7)

which is Bayes’ theorem restated for parameters and random samples. If ξ(θ) is a
p.f., so that the prior distribution is discrete, just replace the integral in (7.2.6) by the
sum over all of the possible values of θ .

Example
7.2.6

Lifetimes of Fluorescent Lamps. Suppose again, as in Examples 7.2.4 and 7.2.5, that the
distribution of the lifetimes of fluorescent lamps of a certain type is the exponential
distribution with parameter θ , and the prior distribution of θ is a particular gamma
distribution for which the p.d.f. ξ(θ) is given by Eq. (7.2.2). Suppose also that the
lifetimes X1, . . . , Xn of a random sample of n lamps of this type are observed. We
shall determine the posterior p.d.f. of θ given that X1 = x1, . . . , Xn = xn.

By Eq. (5.7.16), the p.d.f. of each observation Xi is

f (x|θ) =
{

θe−θx for x > 0,
0 otherwise.

The joint p.d.f. of X1, . . . , Xn can be written in the following form, for xi > 0 (i =
1, . . . , n):

fn(x|θ) =
n∏

i=1

θe−θxi = θne−θy,

where y = ∑n
i=1 xi. As fn(x|θ) will be used in constructing the posterior distribution

of θ , it is now apparent that the statistic Y = ∑n
i=1 Xi will be used in any inference

that makes use of the posterior distribution.
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Since the prior p.d.f. ξ(θ) is given by Eq. (7.2.2), it follows that for θ > 0,

fn(x|θ)ξ(θ) = θn+3e−(y+20,000)θ . (7.2.8)

We need to compute gn(x), which is the integral of (7.2.8) over all θ :

gn(x) =
∫ ∞

0
θn+3e−(y+20,000)θdθ = �(n + 4)

(y + 20,000)n+4
,

where the last equality follows from Theorem 5.7.3. Hence,

ξ(θ |x) = θn+3e−(y+20,000)θ

�(n + 4)

(y + 20,000)n+4

= (y + 20,000)n+4

�(n + 4)
e−(y+20,000)θ ,

(7.2.9)

for θ > 0. When we compare this expression with Eq. (5.7.13), we can see that it is
the p.d.f. of the gamma distribution with parameters n + 4 and y + 20,000. Hence,
this gamma distribution is the posterior distribution of θ .

As a specific example, suppose that we observe the following n = 5 lifetimes
in hours: 2911, 3403, 3237, 3509, and 3118. Then y = 16,178, and the posterior
distribution of θ is the gamma distribution with parameters 9 and 36,178. The top
panel of Fig. 7.1 displays both the prior and posterior p.d.f.’s in this example. It is
clear that the data have caused the distribution of θ to change somewhat from the
prior to the posterior.

At this point, it might be appropriate to perform a sensitivity analysis. For
example, how would the posterior distribution change if we had chosen a different
prior distribution? To be specific, consider the gamma prior with parameters 1 and
1000. This prior has the same standard deviation as the original prior, but the mean
is five times as big. The posterior distribution would then be the gamma distribution
with parameters 6 and 17,178. The p.d.f.’s of this pair of prior and posterior are plotted
in the lower panel of Fig. 7.1. One can see that both the prior and the posterior in
the bottom panel are more spread out than their counterparts in the upper panel. It

Figure 7.1 Prior and poste-
rior p.d.f.’s in Example 7.2.6.
The top panel is based on the
original prior. The bottom
panel is based on the alterna-
tive prior that was part of the
sensitivity analysis.
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is clear that the choice of prior distribution is going to make a difference with this
small data set. �

The names “prior” and “posterior” derive from the Latin words for “former”
and “coming after.” The prior distribution is the distribution of θ that comes before
observing the data, and posterior distribution comes after observing the data.

The Likelihood Function

The denominator on the right side of Eq. (7.2.7) is simply the integral of the numer-
ator over all possible values of θ . Although the value of this integral depends on
the observed values x1, . . . , xn, it does not depend on θ and it may be treated as a
constant when the right-hand side of Eq. (7.2.7) is regarded as a p.d.f. of θ . We may
therefore replace Eq. (7.2.7) with the following relation:

ξ(θ |x) ∝ fn(x|θ)ξ(θ). (7.2.10)

The proportionality symbol ∝ is used here to indicate that the left side is equal to the
right side except possibly for a constant factor, the value of which may depend on
the observed values x1, . . . , xn but does not depend on θ . The appropriate constant
factor that will establish the equality of the two sides in the relation (7.2.10) can be
determined at any time by using the fact that

∫
�

ξ(θ |x) dθ = 1, because ξ(θ |x) is a
p.d.f. of θ .

One of the two functions on the right-hand side of Eq. (7.2.10) is the prior p.d.f.
of θ . The other function has a special name also.

Definition
7.2.3

Likelihood Function. When the joint p.d.f. or the joint p.f. fn(x|θ) of the observations
in a random sample is regarded as a function of θ for given values of x1, . . . , xn, it is
called the likelihood function.

The relation (7.2.10) states that the posterior p.d.f. of θ is proportional to the product
of the likelihood function and the prior p.d.f. of θ .

By using the proportionality relation (7.2.10), it is often possible to determine
the posterior p.d.f. of θ without explicitly performing the integration in Eq. (7.2.6).
If we can recognize the right side of the relation (7.2.10) as being equal to one of the
standard p.d.f.’s introduced in Chapter 5 or elsewhere in this book, except possibly
for a constant factor, then we can easily determine the appropriate factor that will
convert the right side of (7.2.10) into a proper p.d.f. of θ . We shall illustrate these
ideas by considering again Example 7.2.3.

Example
7.2.7

Proportion of Defective Items. Suppose again, as in Example 7.2.3, that the proportion
θ of defective items in a large manufactured lot is unknown and that the prior
distribution of θ is a uniform distribution on the interval [0, 1]. Suppose also that
a random sample of n items is taken from the lot, and for i = 1, . . . , n, let Xi = 1 if
the ith item is defective, and let Xi = 0 otherwise. Then X1, . . . , Xn form n Bernoulli
trials with parameter θ . We shall determine the posterior p.d.f. of θ .

It follows from Eq. (5.2.2) that the p.f. of each observation Xi is

f (x|θ) =
{

θx(1 − θ)1−x for x = 0, 1,
0 otherwise.

Hence, if we let y = ∑n
i=1 xi, then the joint p.f. of X1, . . . , Xn can be written in the

following form for xi = 0 or 1 (i = 1, . . . , n):

fn(x|θ) = θy(1 − θ)n−y. (7.2.11)
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Since the prior p.d.f. ξ(θ) is given by Eq. (7.2.1), it follows that for 0 < θ < 1,

fn(x|θ)ξ(θ) = θy(1 − θ)n−y. (7.2.12)

When we compare this expression with Eq. (5.8.3), we can see that, except for
a constant factor, it is the p.d.f. of the beta distribution with parameters α = y + 1
and β = n − y + 1. Since the posterior p.d.f. ξ(θ |x) is proportional to the right side
of Eq. (7.2.12), it follows that ξ(θ |x) must be the p.d.f. of the beta distribution with
parameters α = y + 1 and β = n − y + 1. Therefore, for 0 < θ < 1,

ξ(θ |x) = �(n + 2)

�(y + 1)�(n − y + 1)
θy(1 − θ)n−y. (7.2.13)

In this example, the statistic Y = ∑n
i=1 Xi is being used to construct the posterior

distribution, and hence will be used in any inference that is based on the posterior
distribution. �

Note: Normalizing Constant for Posterior p.d.f. The steps that got us from (7.2.12)
to (7.2.13) are an example of a very common technique for determining a posterior
p.d.f. We can drop any inconvenient constant factor from the prior p.d.f. and from the
likelihood function before we multiply them together as in (7.2.10). Then we look at
the resulting product, call it g(θ), to see if we recognize it as looking like part of a
p.d.f. that we have seen elsewhere. If indeed we find a named distribution with p.d.f.
equal to cg(θ), then our posterior p.d.f. is also cg(θ), and our posterior distribution
has the corresponding name, just as in Example 7.2.7.

Sequential Observations and Prediction

In many experiments, the observations X1, . . . , Xn, which form the random sample,
must be obtained sequentially, that is, one at a time. In such an experiment, the
value of X1 is observed first, the value of X2 is observed next, the value of X3 is then
observed, and so on. Suppose that the prior p.d.f. of the parameter θ is ξ(θ). After
the value x1 of X1 has been observed, the posterior p.d.f. ξ(θ |x1) can be calculated in
the usual way from the relation

ξ(θ |x1) ∝ f (x1|θ)ξ(θ). (7.2.14)

Since X1 and X2 are conditionally independent given θ , the conditional p.f. or
p.d.f. of X2 given θ and X1 = x1 is the same as that given θ alone, namely, f (x2|θ).
Hence, the posterior p.d.f. of θ in Eq. (7.2.14) serves as the prior p.d.f. of θ when the
value of X2 is to be observed. Thus, after the value x2 of X2 has been observed, the
posterior p.d.f. ξ(θ |x1, x2) can be calculated from the relation

ξ(θ |x1, x2) ∝ f (x2|θ)ξ(θ |x1). (7.2.15)

We can continue in this way, calculating an updated posterior p.d.f. of θ after each
observation and using that p.d.f. as the prior p.d.f. of θ for the next observation. The
posterior p.d.f. ξ(θ |x1, . . . , xn−1) after the values x1, . . . , xn−1 have been observed will
ultimately be the prior p.d.f. of θ for the final observed value of Xn. The posterior
p.d.f. after all n values x1, . . . , xn have been observed will therefore be specified by
the relation

ξ(θ |x) ∝ f (xn|θ)ξ(θ |x1, . . . , xn−1). (7.2.16)

Alternatively, after all n values x1, . . . , xn have been observed, we could calculate
the posterior p.d.f. ξ(θ |x) in the usual way by combining the joint p.d.f. fn(x|θ)

with the original prior p.d.f. ξ(θ), as indicated in Eq. (7.2.7). It can be shown (see
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Exercise 8) that the posterior p.d.f. ξ(θ |x) will be the same regardless of whether it is
calculated directly by using Eq. (7.2.7) or sequentially by using Eqs. (7.2.14), (7.2.15),
and (7.2.16). This property was illustrated in Sec. 2.3 (see page 80) for a coin that is
known either to be fair or to have a head on each side. After each toss of the coin,
the posterior probability that the coin is fair is updated.

The proportionality constants in Eqs. (7.2.14)–(7.2.16) have a useful interpreta-
tion. For example, in (7.2.16) the proportionality constant is 1 over the integral of
the right side with respect to θ . But this integral is the conditional p.d.f. or p.f. of Xn

given X1 = x1, . . . , Xn−1 = xn−1, according to the conditional version of the law of
total probability (3.7.16). For example, if θ has a continuous distribution,

f (xn|x1, . . . , xn−1) =
∫

f (xn|θ)ξ(θ |x1, . . . , xn−1)dθ. (7.2.17)

The proportionality constant in (7.2.16) is 1 over (7.2.17). So, if we are interested in
predicting the nth observation in a sequence after observing the first n − 1, we can
use (7.2.17), which is also 1 over the proportionality constant in Eq. (7.2.16), as the
conditional p.f. or p.d.f. of Xn given the first n − 1 observations.

Example
7.2.8

Lifetimes of Fluorescent Lamps. In Example 7.2.6, conditional on θ , the lifetimes of
fluorescent lamps are independent exponential random variables with parameter θ .
We also observed the lifetimes of five lamps, and the posterior distribution of θ was
found to be the gamma distribution with parameters 9 and 36,178. Suppose that we
want to predict the lifetime X6 of the next lamp.

The conditional p.d.f. of X6, the lifetime of the next lamp, given the first five
lifetimes equals the integral of ξ(θ |x)f (x6|θ) with respect to θ . The posterior p.d.f. of
θ is ξ(θ |x) = 2.633 × 1036θ8e−36,178θ for θ > 0. So, for x6 > 0

f (x6|x) =
∫ ∞

0
2.633 × 1036θ8e−36,178θθe−x6θ dθ

= 2.633 × 1036
∫ ∞

0
θ9e−(x6+36,178)θ dθ

= 2.633 × 1036 �(10)

(x6 + 36,178)10
= 9.555 × 1041

(x6 + 36,178)10
.

(7.2.18)

We can use this p.d.f. to perform any calculation we wish concerning the distribution
of X6 given the observed lifetimes. For example, the probability that the sixth lamp
lasts more than 3000 hours equals

Pr(X6 > 3000|x) =
∫ ∞

3000

9.555 × 1041

(x6 + 36,178)10
dx6 = 9.555 × 1041

9 × 39,1789
= 0.4882.

Finally, we can continue the sensitivity analysis that was started in Example 7.2.6.
If it is important to know the probability that the next lifetime is at least 3000, we can
see how much influence the choice of prior distribution has made on this calculation.
Using the second prior distribution (gamma with parameters 1 and 1000), we found
that the posterior distribution of θ was the gamma distribution with parameters 6
and 17,178. We could compute the conditional p.d.f. of X6 given the observed data
in the same way as we did with the original posterior, and it would be

f (x6|x) = 1.542 × 1026

(x6 + 17,178)7
, for x6 > 0. (7.2.19)

With this p.d.f., the probability that X6 > 3000 is
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Figure 7.2 Two possi-
ble conditional p.d.f.’s,
Eqs. (7.2.18) and (7.2.19)
for X6 given the observed
data in Example 7.2.8. The
two p.d.f.’s were computed
using the two different pos-
terior distributions that were
derived from the two dif-
ferent prior distributions in
Example 7.2.6.
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Pr(X6 > 3000|x) =
∫ ∞

3000

1.542 × 1026

(x6 + 17,178)7
dx6 = 1.542 × 1026

6 × 20,1786
= 0.3807.

As we noted at the end of Example 7.2.6, the different priors make a considerable
difference in the inferences that we can make. If it is important to have a precise value
of Pr(X6 > 3000|x), we need a larger sample. The two different p.d.f.’s of X6 given x
can be compared in Fig. 7.2. The p.d.f. from Eq. (7.2.18) is higher for intermediate
values of x6, while the one from Eq. (7.2.19) is higher for the extreme values of x6.

�

Summary

The prior distribution of a parameter describes our uncertainty about the parameter
before observing any data. The likelihood function is the conditional p.d.f. or p.f. of
the data given the parameter when regarded as a function of the parameter with the
observed data plugged in. The likelihood tells us how much the data will alter our
uncertainty. Large values of the likelihood correspond to parameter values where the
posterior p.d.f. or p.f. will be higher than the prior. Low values of the likelihood occur
at parameter values where the posterior will be lower than the prior. The posterior
distribution of the parameter is the conditional distribution of the parameter given
the data. It is obtained using Bayes’ theorem for random variables, which we first saw
on page 148. We can predict future observations that are conditionally independent
of the observed data given θ by using the conditional version of the law of total
probability that we saw on page 163.

Exercises

1. Consider again the situation described in Example
7.2.8. This time, suppose that the experimenter believes
that the prior distribution of θ is the gamma distribution
with parameters 1 and 5000. What would this experi-
menter compute as the value of Pr(X6 > 3000|x)?

2. Suppose that the proportion θ of defective items in a
large manufactured lot is known to be either 0.1 or 0.2,
and the prior p.f. of θ is as follows:

ξ(0.1) = 0.7 and ξ(0.2) = 0.3.

Suppose also that when eight items are selected at ran-
dom from the lot, it is found that exactly two of them are
defective. Determine the posterior p.f. of θ .

3. Suppose that the number of defects on a roll of mag-
netic recording tape has a Poisson distribution for which
the mean λ is either 1.0 or 1.5, and the prior p.f. of λ is as
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follows:

ξ(1.0) = 0.4 and ξ(1.5) = 0.6.

If a roll of tape selected at random is found to have three
defects, what is the posterior p.f. of λ?

4. Suppose that the prior distribution of some parameter
θ is a gamma distribution for which the mean is 10 and the
variance is 5. Determine the prior p.d.f. of θ .

5. Suppose that the prior distribution of some parameter
θ is a beta distribution for which the mean is 1/3 and the
variance is 1/45. Determine the prior p.d.f. of θ .

6. Suppose that the proportion θ of defective items in a
large manufactured lot is unknown, and the prior distribu-
tion of θ is the uniform distribution on the interval [0, 1].
When eight items are selected at random from the lot, it is
found that exactly three of them are defective. Determine
the posterior distribution of θ .

7. Consider again the problem described in Exercise 6,
but suppose now that the prior p.d.f. of θ is as follows:

ξ(θ) =
{

2(1 − θ) for 0 < θ < 1,
0 otherwise.

As in Exercise 6, suppose that in a random sample of eight
items exactly three are found to be defective. Determine
the posterior distribution of θ .

8. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. is f (x|θ), the value of θ

is unknown, and the prior p.d.f. of θ is ξ(θ). Show that the
posterior p.d.f. ξ(θ |x) is the same regardless of whether it
is calculated directly by using Eq. (7.2.7) or sequentially
by using Eqs. (7.2.14), (7.2.15), and (7.2.16).

9. Consider again the problem described in Exercise 6,
and assume the same prior distribution of θ . Suppose now,
however, that instead of selecting a random sample of
eight items from the lot, we perform the following exper-
iment: Items from the lot are selected at random one by
one until exactly three defectives have been found. If we
find that we must select a total of eight items in this exper-
iment, what is the posterior distribution of θ at the end of
the experiment?

10. Suppose that a single observation X is to be taken
from the uniform distribution on the interval [θ − 1

2 ,

θ + 1
2 ], the value of θ is unknown, and the prior distribu-

tion of θ is the uniform distribution on the interval [10, 20].
If the observed value of X is 12, what is the posterior dis-
tribution of θ?

11. Consider again the conditions of Exercise 10, and
assume the same prior distribution of θ . Suppose now,
however, that six observations are selected at random
from the uniform distribution on the interval [θ − 1

2 ,

θ + 1
2 ], and their values are 11.0, 11.5, 11.7, 11.1, 11.4, and

10.9. Determine the posterior distribution of θ .

7.3 Conjugate Prior Distributions
For each of the most popular statistical models, there exists a family of distributions
for the parameter with a very special property. If the prior distribution is chosen to
be a member of that family, then the posterior distribution will also be a member of
that family. Such a family of distributions is called a conjugate family. Choosing a
prior distribution from a conjugate family will typically make it particularly simple
to calculate the posterior distribution.

Sampling from a Bernoulli Distribution

Example
7.3.1

A Clinical Trial. In Example 5.8.5 (page 330), we were observing patients in a clini-
cal trial. The proportion P of successful outcomes among all possible patients was
a random variable for which we chose a distribution from the family of beta distri-
butions. This choice made the calculation of the conditional distribution of P given
the observed data very simple at the end of that example. Indeed, the conditional
distribution of P given the data was another member of the beta family. �

That the result in Example 7.3.1 occurs in general is the subject of the next theorem.

Theorem
7.3.1

Suppose that X1, . . . , Xn form a random sample from the Bernoulli distribution with
parameter θ , which is unknown (0 < θ < 1). Suppose also that the prior distribution
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of θ is the beta distribution with parameters α > 0 and β > 0. Then the posterior dis-
tribution of θ given that Xi = xi (i = 1, . . . , n) is the beta distribution with parameters
α + ∑n

i=1 xi and β + n − ∑n
i=1 xi.

Theorem 7.3.1 is just a restatement of Theorem 5.8.2 (page 329), and its proof is
essentially the calculation in Example 5.8.3.

Updating the Posterior Distribution One implication of Theorem 7.3.1 is the fol-
lowing: Suppose that the proportion θ of defective items in a large shipment is un-
known, the prior distribution of θ is the beta distribution with parameters α and β,
and n items are selected one at a time at random from the shipment and inspected.
Assume that the items are conditionally independent given θ . If the first item in-
spected is defective, the posterior distribution of θ will be the beta distribution with
parameters α + 1 and β. If the first item is nondefective, the posterior distribution
will be the beta distribution with parameters α and β + 1. The process can be contin-
ued in the following way: Each time an item is inspected, the current posterior beta
distribution of θ is changed to a new beta distribution in which the value of either the
parameter α or the parameter β is increased by one unit. The value of α is increased
by one unit each time a defective item is found, and the value of β is increased by
one unit each time a nondefective item is found.

Definition
7.3.1

Conjugate Family/Hyperparameters. Let X1, X2, . . . be conditionally i.i.d. given θ with
common p.f. or p.d.f. f (x|θ). Let � be a family of possible distributions over the
parameter space �. Suppose that, no matter which prior distribution ξ we choose
from �, no matter how many observations X = (X1, . . . , Xn) we observe, and no
matter what are their observed values x = (x1, . . . , xn), the posterior distribution
ξ(θ |x) is a member of �. Then � is called a conjugate family of prior distributions
for samples from the distributions f (x|θ). It is also said that the family � is closed
under sampling from the distributions f (x|θ). Finally, if the distributions in � are
parametrized by further parameters, then the associated parameters for the prior
distribution are called the prior hyperparameters and the associated parameters of
the posterior distribution are called the posterior hyperparameters.

Theorem 7.3.1 says that the family of beta distributions is a conjugate family of prior
distributions for samples from a Bernoulli distribution. If the prior distribution of θ

is a beta distribution, then the posterior distribution at each stage of sampling will
also be a beta distribution, regardless of the observed values in the sample. Also, the
family of beta distributions is closed under sampling from Bernoulli distributions.
The parameters α and β in Theorem 7.3.1 are the prior hyperparameters. The corre-
sponding parameters of the posterior distributions (α + ∑n

i=1 xi and β + n − ∑n
i=1 xi)

are the posterior hyperparameters. The statistic
∑n

i=1 Xi is needed to compute the
posterior distribution, hence it will be needed to perform any inference based on the
posterior distribution. Exercises 23 and 24 introduce a general collection of p.d.f.’s
f (x|θ) for which conjugate families of priors exist. Most of the familiar named distri-
butions are covered by these exercises. The various uniform distributions are notable
exceptions.

Example
7.3.2

The Variance of the Posterior Beta Distribution. Suppose that the proportion θ of
defective items in a large shipment is unknown, the prior distribution of θ is the
uniform distribution on the interval [0, 1], and items are to be selected at random
from the shipment and inspected until the variance of the posterior distribution of θ
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has been reduced to the value 0.01 or less. We shall determine the total number of
defective and nondefective items that must be obtained before the sampling process
is stopped.

As stated in Sec. 5.8, the uniform distribution on the interval [0, 1] is the beta
distribution with parameters 1 and 1. Therefore, after y defective items and z non-
defective items have been obtained, the posterior distribution of θ will be the beta
distribution with α = y + 1 and β = z + 1. It was shown in Theorem 5.8.3 that the vari-
ance of the beta distribution with parameters α and β is αβ/[(α + β)2(α + β + 1)].
Therefore, the variance V of the posterior distribution of θ will be

V = (y + 1)(z + 1)
(y + z + 2)2(y + z + 3)

.

Sampling is to stop as soon as the number of defectives y and the number of non-
defectives z that have been obtained are such that V ≤ 0.01. It can be shown (see
Exercise 2) that it will not be necessary to select more than 22 items, but it is neces-
sary to select at least seven items. �

Example
7.3.3

Glove Use by Nurses. Friedland et al. (1992) studied 23 nurses in an inner-city hos-
pital before and after an educational program on the importance of wearing gloves.
They recorded whether or not the nurses wore gloves during procedures in which
they might come in contact with bodily fluids. Before the educational program the
nurses were observed during 51 procedures, and they wore gloves in only 13 of them.
Let θ be the probability that a nurse will wear gloves two months after the educa-
tional program. We might be interested in how θ compares to 13/51, the observed
proportion before the program.

We shall consider two different prior distributions for θ in order to see how
sensitive the posterior distribution of θ is to the choice of prior distribution. The
first prior distribution will be uniform on the interval [0, 1], which is also the beta
distribution with parameters 1 and 1. The second prior distribution will be the beta
distribution with parameters 13 and 38. This second prior distribution has much
smaller variance than the first and has its mean at 13/51. Someone holding the second
prior distribution believes fairly strongly that the educational program will have no
noticeable effect.

Two months after the educational program, 56 procedures were observed with
the nurses wearing gloves in 50 of them. The posterior distribution of θ , based
on the first prior, would then be the beta distribution with parameters 1 + 50 = 51
and 1 + 6 = 7. In particular, the posterior mean of θ is 51/(51 + 7) = 0.88, and the
posterior probability that θ > 2 × 13/51is essentially 1. Based on the second prior, the
posterior distribution would be the beta distribution with parameters 13 + 50 = 63
and 38 + 6 = 44. The posterior mean would be 0.59, and the posterior probability that
θ > 2 × 13/51 is 0.95. So, even to someone who was initially skeptical, the educational
program seems to have been quite effective. The probability is quite high that nurses
are at least twice as likely to wear gloves after the program as they were before.

Figure 7.3 shows the p.d.f.’s of both of the posterior distributions computed
above. The distributions are clearly very different. For example, the first posterior
gives probability greater than 0.99 that θ > 0.7, while the second gives probability
less than 0.001 to θ > 0.7. However, since we are only interested in the probability
that θ > 2 × 13/51 = 0.5098, we see that both posteriors agree that this probability is
quite large. �
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Figure 7.3 Posterior p.d.f.’s
in Example 7.2.6. The curves
are labeled by the prior that
led to the corresponding
posterior.
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Sampling from a Poisson Distribution

Example
7.3.4

Customer Arrivals. A store owner models customer arrivals as a Poisson process with
unknown rate θ per hour. She assigns θ a gamma prior distribution with parameters
3 and 2. Let X be the number of customers that arrive in a specific one-hour period.
If X = 3 is observed, the store owner wants to update the distribution of θ . �

When samples are taken from a Poisson distribution, the family of gamma
distributions is a conjugate family of prior distributions. This relationship is shown
in the next theorem.

Theorem
7.3.2

Suppose that X1, . . . , Xn form a random sample from the Poisson distribution with
mean θ > 0, and θ is unknown. Suppose also that the prior distribution of θ is the
gamma distribution with parameters α > 0 and β > 0. Then the posterior distribution
of θ , given that Xi = xi (i = 1, . . . , n), is the gamma distribution with parameters
α + ∑n

i=1 xi and β + n.

Proof Let y = ∑n
i=1 xi. Then the likelihood function fn(x|θ) satisfies the relation

fn(x|θ) ∝ e−nθθy.

In this relation, a factor that involves x but does not depend on θ has been dropped
from the right side. Furthermore, the prior p.d.f. of θ has the form

ξ(θ) ∝ θα−1e−βθ for θ > 0.

Since the posterior p.d.f. ξ(θ |x) is proportional to fn(x|θ)ξ(θ), it follows that

ξ(θ |x) ∝ θα+y−1e−(β+n)θ for θ > 0.

The right side of this relation can be recognized as being, except for a constant factor,
the p.d.f. of the gamma distribution with parameters α + y and β + n. Therefore, the
posterior distribution of θ is as specified in the theorem.

In Theorem 7.3.2, the numbers α and β are the prior hyperparameters, while α +∑n
i=1 xi and β + n are the posterior hyperparameters. Note that the statistic Y =∑n
i=1 Xi is used to compute the posterior distribution of θ , and hence it will be part

of any inference based on the posterior.
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Example
7.3.5

Customer Arrivals. In Example 7.3.4, we can apply Theorem 7.3.2 with n = 1, α = 3,
β = 2, and x1 = 3. The posterior distribution of θ given X = 3 is the gamma distribu-
tion with parameters 6 and 3. �

Example
7.3.6

The Variance of the Posterior Gamma Distribution. Consider a Poisson distribution for
which the mean θ is unknown, and suppose that the prior p.d.f. of θ is as follows:

ξ(θ) =
{

2e−2θ for θ > 0,
0 for θ ≤ 0.

Suppose also that observations are to be taken at random from the given Poisson
distribution until the variance of the posterior distribution of θ has been reduced to
the value 0.01 or less. We shall determine the number of observations that must be
taken before the sampling process is stopped.

The given prior p.d.f. ξ(θ) is the p.d.f. of the gamma distribution with prior
hyperparameters α = 1 and β = 2. Therefore, after we have obtained n observed
values x1, . . . , xn, the sum of which is y = ∑n

i=1 xi, the posterior distribution of θ will
be the gamma distribution with posterior hyperparameters y + 1 and n + 2. It was
shown in Theorem 5.4.2 that the variance of the gamma distribution with parameters
α and β is α/β2. Therefore, the variance V of the posterior distribution of θ will be

V = y + 1
(n + 2)2

.

Sampling is to stop as soon as the sequence of observed values x1, . . . , xn is such that
V ≤ 0.01. Unlike Example 7.3.2, there is no uniform bound on how large n needs to
be because y can be arbitrarily large no matter what n is. Clearly, it takes at least
n = 8 observations before V ≤ 0.01. �

Sampling from a Normal Distribution

Example
7.3.7

Automobile Emissions. Consider again the sampling of automobile emissions, in par-
ticular oxides of nitrogen, described in Example 5.6.1 on page 302. Prior to observing
the data, suppose that an engineer believed that each emissions measurement had the
normal distribution with mean θ and standard deviation 0.5 but that θ was unknown.
The engineer’s uncertainty about θ might be described by another normal distribu-
tion with mean 2.0 and standard deviation 1.0. After seeing the data in Fig. 5.1, how
would this engineer describe her uncertainty about θ? �

When samples are taken from a normal distribution for which the value of the
mean θ is unknown but the value of the variance σ 2 is known, the family of normal
distributions is itself a conjugate family of prior distributions, as is shown in the next
theorem.

Theorem
7.3.3

Suppose that X1, . . . , Xn form a random sample from a normal distribution for which
the value of the mean θ is unknown and the value of the variance σ 2 > 0 is known.
Suppose also that the prior distribution of θ is the normal distribution with mean μ0
and variance v2

0. Then the posterior distribution of θ given that Xi = xi (i = 1, . . . , n)
is the normal distribution with mean μ1 and variance v2

1 where

μ1 = σ 2μ0 + nv2
0xn

σ 2 + nv2
0

(7.3.1)
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and

v2
1 = σ 2v2

0

σ 2 + nv2
0

. (7.3.2)

Proof The likelihood function. fn(x|θ) has the form

fn(x|θ) ∝ exp

[
− 1

2σ 2

n∑
i=1

(xi − θ)2

]
.

Here a constant factor has been dropped from the right side. The method of com-
pleting the square (see Exercise 24 in Sec. 5.6) tells us that

n∑
i=1

(xi − θ)2 = n(θ − xn)
2 +

n∑
i=1

(xi − xn)
2.

By omitting a factor that involves x1, . . . , xn but does not depend on θ , we may rewrite
fn(x|θ) in the following form:

fn(x|θ) ∝ exp
[
− n

2σ 2
(θ − xn)

2
]
.

Since the prior p.d.f. ξ(θ) has the form

ξ(θ) ∝ exp

[
− 1

2v2
0

(θ − μ0)
2

]
,

it follows that the posterior p.d.f. ξ(θ |x) satisfies the relation

ξ(θ |x) ∝ exp

{
− 1

2

[
n

σ 2
(θ − xn)

2 + 1

v2
0

(θ − μ0)
2

]}
.

If μ1 and v2
1 are as specified in Eqs. (7.3.1) and (7.3.2), completing the square

again establishes the following identity:

n

σ 2
(θ − xn)

2 + 1

v2
0

(θ − μ0)
2 = 1

v2
1

(θ − μ1)
2 + n

σ 2 + nv2
0

(xn − μ0)
2.

Since the final term on the right side of this equation does not involve θ , it can be
absorbed in the proportionality factor, and we obtain the relation

ξ(θ |x) ∝ exp

[
− 1

2v2
1

(θ − μ1)
2

]
.

The right side of this relation can be recognized as being, except for a constant factor,
the p.d.f. of the normal distribution with mean μ1 and variance v2

1. Therefore, the
posterior distribution of θ is as specified in the theorem.

In Theorem 7.3.3, the numbers μ0 and v2
0 are the prior hyperparameters, while μ1

and v2
1 are the posterior hyperparameters. Notice that the statistic Xn is used in the

construction of the posterior distribution, and hence will play a role in any inference
based on the posterior.

Example
7.3.8

Automobile Emissions. We can apply Theorem 7.3.3 to answer the question at the end
of Example 7.3.7. In the notation of the theorem, we have n = 46, σ 2 = 0.52 = 0.25,



400 Chapter 7 Estimation

μ0 = 2, and v2 = 1.0. The average of the 46 measurements is xn = 1.329. The posterior
distribution of θ is then the normal distribution with mean and variance given by

μ1 = 0.25 × 2 + 46 × 1 × 1.329
0.25 + 46 × 1

= 1.333,

v2
1 = 0.25 × 1

0.25 + 46 × 1
= 0.0054. �

The mean μ1 of the posterior distribution of θ , as given in Eq. (7.3.1), can be
rewritten as follows:

μ1 = σ 2

σ 2 + nv2
0

μ0 + nv2
0

σ 2 + nv2
0

xn. (7.3.3)

It can be seen from Eq. (7.3.3) that μ1 is a weighted average of the mean μ0 of the prior
distribution and the sample mean xn. Furthermore, it can be seen that the relative
weight given to xn satisfies the following three properties: (1) For fixed values of v2

0
and σ 2, the larger the sample size n, the greater will be the relative weight that is given
to xn. (2) For fixed values of v2

0 and n, the larger the variance σ 2 of each observation
in the sample, the smaller will be the relative weight that is given to xn. (3) For fixed
values of σ 2 and n, the larger the variance v2

0 of the prior distribution, the larger will
be the relative weight that is given to xn.

Moreover, it can be seen from Eq. (7.3.2) that the variance v2
1 of the posterior

distribution of θ depends on the number n of observations that have been taken
but does not depend on the magnitudes of the observed values. Suppose, therefore,
that a random sample of n observations is to be taken from a normal distribution
for which the value of the mean θ is unknown, the value of the variance is known,
and the prior distribution of θ is a specified normal distribution. Then, before any
observations have been taken, we can use Eq. (7.3.2) to calculate the actual value
of the variance v2

1 of the posterior distribution. However, the value of the mean μ1
of the posterior distribution will depend on the observed values that are obtained
in the sample. The fact that the variance of the posterior distribution depends only
on the number of observations is due to the assumption that the variance σ 2 of the
individual observations is known. In Sec. 8.6, we shall relax this assumption.

Example
7.3.9

The Variance of the Posterior Normal Distribution. Suppose that observations are to
be taken at random from the normal distribution with mean θ and variance 1, and
that θ is unknown. Assume that the prior distribution of θ is a normal distribution
with variance 4. Also, observations are to be taken until the variance of the posterior
distribution of θ has been reduced to the value 0.01 or less. We shall determine the
number of observations that must be taken before the sampling process is stopped.

It follows from Eq. (7.3.2) that after n observations have been taken, the variance
v2

1 of the posterior distribution of θ will be

v2
1 = 4

4n + 1
.

Therefore, the relation v2
1 ≤ 0.01 will be satisfied if and only if n ≥ 99.75. Hence, the

relation v2
1 ≤ 0.01 will be satisfied after 100 observations have been taken and not

before then. �

Example
7.3.10

Calorie Counts on Food Labels. Allison, Heshka, Sepulveda, and Heymsfield (1993)
sampled 20 nationally prepared foods and compared the stated calorie contents per
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Figure 7.4 Histogram of
percentage differences be-
tween observed and ad-
vertised calories in Exam-
ple 7.3.10.
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gram from the labels to calorie contents determined in the laboratory. Figure 7.4 is
a histogram of the percentage differences between the observed laboratory calorie
measurements and the advertised calorie contents on the labels of the foods. Suppose
that we model the conditional distribution of the differences given θ as the normal
distribution with mean θ and variance 100. (In this section, we assume that the
variance is known. In Sec. 8.6, we will be able to deal with the case in which the
mean and the variance are treated as random variables with a joint distribution.) We
will use a prior distribution for θ that is the normal distribution with mean 0 and a
variance of 60. The data X comprise the collection of 20 differences in Fig. 7.4, whose
average is 0.125. The posterior distribution of θ would then be the normal distribution
with mean

μ1 = 100 × 0 + 20 × 60 × 0.125
100 + 20 × 60

= 0.1154,

and variance

v2
1 = 100 × 60

100 + 20 × 60
= 4.62.

For example, we might be interested in whether or not the packagers are system-
atically understating the calories in their food by at least 1 percent. This would
correspond to θ > 1. Using Theorem 5.6.6, we can find

Pr(θ > 1|x) = 1 − �

(
1 − 0.1154)√

4.62

)
= 1 − �(1.12) = 0.3403.

There is a nonnegligible, but not overwhelming, chance that the packagers are
shaving a percent or more off of their labels. �

Sampling from an Exponential Distribution

Example
7.3.11

Lifetimes of Electronic Components. In Example 7.2.1, suppose that we observe the
lifetimes of three components, X1 = 3, X2 = 1.5, and X3 = 2.1. These were modeled
as i.i.d. exponential random variables given θ . Our prior distribution for θ was the
gamma distribution with parameters 1 and 2. What is the posterior distribution of θ

given these observed lifetimes? �
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When sampling from an exponential distribution for which the value of the
parameter θ is unknown, the family of gamma distributions serves as a conjugate
family of prior distributions, as shown in the next theorem.

Theorem
7.3.4

Suppose that X1, . . . , Xn form a random sample from the exponential distribution
with parameter θ > 0 that is unknown. Suppose also that the prior distribution of
θ is the gamma distribution with parameters α > 0 and β > 0. Then the posterior
distribution of θ given that Xi = xi (i = 1, . . . , n) is the gamma distribution with
parameters α + n and β + ∑n

i=1 xi.

Proof Again, let y = ∑n
i=1 xi. Then the likelihood function fn(x|θ) is

fn(x|θ) = θne−θy.

Also, the prior p.d.f. ξ(θ) has the form

ξ(θ) ∝ θα−1e−βθ for θ > 0.

It follows, therefore, that the posterior p.d.f. ξ(θ |x) has the form

ξ(θ |x) ∝ θα+n−1e−(β+y)θ for θ > 0.

The right side of this relation can be recognized as being, except for a constant factor,
the p.d.f. of the gamma distribution with parameters α + n and β + y. Therefore, the
posterior distribution of θ is as specified in the theorem.

The posterior distribution of θ in Theorem 7.3.4 depends on the observed value
of the statistic Y = ∑n

i=1 Xi; hence, every inference about θ based on the posterior
distribution will depend on the observed value of Y .

Example
7.3.12

Lifetimes of Electronic Components. In Example 7.3.11, we can apply Theorem 7.3.4
to find the posterior distribution. In the notation of the theorem and its proof, we
have n = 3, α = 1, β = 2, and

y =
n∑

i=1

xi = 3 + 1.5 + 2.1 = 6.6.

The posterior distribution of θ is then the gamma distribution with parameters
α = 1 + 3 = 4 and β = 2 + 6.6 = 8.6. �

The reader should note that Theorem 7.3.4 would have greatly shortened the
derivation of the posterior distribution in Example 7.2.6.

Improper Prior Distributions

In Sec. 7.2, we mentioned improper priors as expedients that try to capture the
idea that there is much more information in the data than is captured in our prior
distribution. Each of the conjugate families that we have seen in this section has an
improper prior as a limiting case.

Example
7.3.13

A Clinical Trial. What we illustrate here will apply to all examples in which the data
comprise a conditionally i.i.d. sample (given θ) from the Bernoulli distribution with
parameter θ . Consider the subjects in the imipramine group in Example 2.1.4. The
proportion of successes among all patients who might get imipramine had been called
P in earlier examples, but let us call it θ this time in keeping with the general notation
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Figure 7.5 The posterior
probabilities from Exam-
ples 2.3.7 (X) and 2.3.8 (bars)
together with the posterior
p.d.f. from Example 7.3.13
(solid line).

0.1

0.4

0.5

0.3

0.2

0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

X X X X
X

X X

X

X X X

of this chapter. Suppose that θ has the beta distribution with parameters α and β,
a general conjugate prior. There are n = 40 patients in the imipramine group, and
22 of them are successes. The posterior distribution of θ is the beta distribution with
parameters α + 22 and β + 18, as we saw in Theorem 7.3.1. The mean of the posterior
distribution is (α + 22)/(α + β + 40). If α and β are small, then the posterior mean
is close to 22/40, which is the observed proportion of successes. Indeed, if α = β = 0,
which does not correspond to a real beta distribution, then the posterior mean is
exactly 22/40. However, we can look at what happens as α and β get close to 0.
The beta p.d.f. (ignoring the constant factor) is θα−1(1 − θ)β−1. We can set α = β = 0
and pretend that ξ(θ) ∝ θ−1(1 − θ)−1 is the prior p.d.f. of θ . The likelihood function
is f40(x|θ) = (40

22

)
θ22(1 − θ)18. We can ignore the constant factor

(40
22

)
and obtain the

product

ξ(θ |x) ∝ θ21(1 − θ)17, for 0 < θ < 1.

This is easily recognized as being the same as the p.d.f. of the beta distribution with
parameters 22 and 18 except for a constant factor. So, if we use the improper “beta
distribution” prior with prior hyperparameters 0 and 0, we get the beta posterior dis-
tribution for θ with posterior hyperparameters 22 and 18. Notice that Theorem 7.3.1
yields the correct posterior distribution even in this improper prior case. Figure 7.5
adds the p.d.f. of the posterior beta distribution calculated here to Fig. 2.4 which de-
picted the posterior probabilities for two different discrete prior distributions. All
three posteriors are pretty close. �

Definition
7.3.2

Improper Prior. Let ξ be a nonnegative function whose domain includes the parameter
space of a statistical model. Suppose that

∫
ξ(θ)dθ = ∞. If we pretend as if ξ(θ) is

the prior p.d.f. of θ , then we are using an improper prior for θ .

Definition 7.3.2 is not of much use in determining an improper prior to use in a
particular application. There are many methods for choosing an improper prior, and
the hope is that they all lead to similar posterior distributions so that it does not much
matter which of them one chooses. The most straightforward method for choosing
an improper prior is to start with the family of conjugate prior distributions, if there
is such a family. In most cases, if the parameterization of the conjugate family (prior
hyperparameters) is chosen carefully, the posterior hyperparameters will each equal
the corresponding prior hyperparameter plus a statistic. One would then replace each
of those prior hyperparameters by 0 in the formula for the prior p.d.f. This generally
results in a function that satisfies Definition 7.3.2. In Example 7.3.13, each of the
posterior hyperparameters were equal to the corresponding prior hyperparameters
plus some statistic. In that example, we replaced both prior hyperparameters by
0 to obtain the improper prior. Here are some more examples. The method just
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described needs to be modified if one chooses an “inconvenient” parameterization
of the conjugate prior, as in Example 7.3.15 below.

Example
7.3.14

Prussian Army Deaths. Bortkiewicz (1898) counted the numbers of Prussian soldiers
killed by horsekick (a more serious problem in the nineteenth century than it is to-
day) in 14 army units for each of 20 years, a total of 280 counts. The 280 counts have
the following values: 144 counts are 0, 91 counts are 1, 32 counts are 2, 11 counts are
3, and 2 counts are 4. No unit suffered more than four deaths by horsekick during
any one year. (These data were reported and analyzed by Winsor, 1947.) Suppose
that we were going to model the 280 counts as a random sample of Poisson random
variables X1, . . . , X280 with mean θ conditional on the parameter θ . A conjugate
prior would be a member of the gamma family with prior hyperparameters α and
β. Theorem 7.3.2 says that the posterior distribution of θ would be the gamma dis-
tribution with posterior hyperparameters α + 196 and β + 280, since the sum of the
280 counts equals 196. Unless either α or β is very large, the posterior gamma distri-
bution is nearly the same as the gamma distribution with posterior hyperparameters
196 and 280. This posterior distribution would seem to be the result of using a con-
jugate prior with prior hyperparameters 0 and 0. Ignoring the constant factor, the
p.d.f. of the gamma distribution with parameters α and β is θα−1eβθ for θ > 0. If we
let α = 0 and β = 0 in this formula, we get the improper prior “p.d.f.” ξ(θ) = θ−1 for
θ > 0. Pretending as if this really were a prior p.d.f. and applying Bayes’ theorem for
random variables (Theorem 3.6.4) would yield

ξ(θ |x) ∝ θ195e−280θ , for θ > 0.

This is easily recognized as being the p.d.f. of the gamma distribution with parameters
196 and 280, except for a constant factor. The result in this example applies to all
cases in which we model data with Poisson distributions. The improper “gamma
distribution” with prior hyperparameters 0 and 0 can be used in Theorem 7.3.2, and
the conclusion will still hold. �

Example
7.3.15

Failure Times of Ball Bearings. Suppose that we model the 23 logarithms of failure times
of ball bearings from Example 5.6.9 as normal random variables X1, . . . , X23 with
mean θ and variance 0.25. A conjugate prior for θ would be the normal distribution
with mean μ0 and variance v2

0 for some μ0 and v2
0. The average of the 23 log-failure

times is 4.15, so the posterior distribution of θ would be the normal distribution with
mean μ1 = (0.25μ0 + 23 × 4.15v2

0)/(0.25 + 23v2
0) and variance v2

1 = (0.25v2
0)/(0.25 +

23v2
0). If we let v2

0 → ∞ in the formulas for μ1 and v2
1, we get μ1 → 4.15 and v2

1 →
0.25/23. Having infinite variance for the prior distribution of θ is like saying that θ

is equally likely to be anywhere on the real number line. This same thing happens
in every example in which we model data X1, . . . , Xn as a random sample from the
normal distribution with mean θ and known variance σ 2 conditional on θ . If we use
an improper “normal distribution” prior with variance ∞ (the prior mean does not
matter), the calculation in Theorem 7.3.3 would yield a posterior distribution that is
the normal distribution with mean xn and variance σ 2/n. The improper prior “p.d.f.”
in this case is ξ(θ) equal to a constant.

This example would be an application of the method described after Defini-
tion 7.3.2 if we had described the conjugate prior distribution in terms of the following
“more convenient” hyperparameters: 1 over the variance u0 = 1/v2

0 and the mean
over the variance t0 = μ0/v

2
0. In terms of these hyperparameters, the posterior dis-

tribution has 1 over its variance equal to u1 = u0 + n/0.25 and mean over variance
equal to t1 = μ1/v

2
1 = t0 + 23 × 4.15/0.25. Each of u1 and t1 has the form of the cor-
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responding prior hyperparamter plus a statistic. The improper prior with u0 = t0 = 0
also has ξ(θ) equal to a constant. �

There are improper priors for other sampling models, also. The reader can verify
(in Exercise 21) that the “gamma distribution” with parameters 0 and 0 leads to
results similar to those in Example 7.3.14 when the data are a random sample from
an exponential distribution. Exercises 23 and 24 introduce a general collection of
p.d.f.’s f (x|θ) for which it is easy to construct improper priors.

Improper priors were introduced for cases in which the observed data contain
much more information than is represented by our prior distribution. Implicitly, we
are assuming that the data are rather informative. When the data do not contain
much information, improper priors may be higly inappropriate.

Example
7.3.16

Very Rare Events. In Example 5.4.7, we discussed a drinking water contaminant
known as cryptosporidium that generally occurs in very low concentrations. Suppose
that a water authority models the oocysts of cryptosporidium in the water supply as
a Poisson process with rate of θ oocysts per liter. They decide to sample 25 liters of
water to learn about θ . Suppose that they use the improper gamma prior with “p.d.f.”
θ−1. (This is the same improper prior used in Example 7.3.14.) If the 25-liter sample
contains no oocysts, the water authority would be led to a posterior distribution
for θ that was the gamma distribution with parameters 0 and 5, which is not a real
distribution. No matter how many liters are sampled, the posterior distribution will
not be a real distribution until at least one oocyst is observed. When sampling for rare
events, one might be forced to quantify prior information in the form a proper prior
distribution in order to be able to make inferences based on the posterior distribution.

�

Summary

For each of several different statistical models for data given the parameter, we
found a conjugate family of distributions for the parameter. These families have the
property that if the prior distribution is chosen from the family, then the posterior
distribution is a member of the family. For data with distributions related to the
Bernoulli, such as binomial, geometric, and negative binomial, the conjugate family
for the success probability parameter is the family of beta distributions. For data with
distributions related to the Poisson process, such as Poisson, gamma (with known first
parameter), and exponential, the conjugate family for the rate parameter is the family
of gamma distributions. For data having a normal distribution with known variance,
the conjugate family for the mean is the normal family. We also described the use
of improper priors. Improper priors are not true probability distributions, but if we
pretend that they are, we will compute posterior distributions that approximate the
posteriors that we would have obtained using proper conjugate priors with extreme
values of the prior hyperparameters.

Exercises

1. Consider again the situation described in Example
7.3.10. Once again, suppose that the prior distribution of
θ is a normal distribution with mean 0, but this time let
the prior variance be v2 > 0. If the posterior mean of θ is
0.12, what value of v2 was used?

2. Show that in Example 7.3.2 it must be true that V ≤ 0.01
after 22 items have been selected. Also show that V > 0.01
until at least seven items have been selected.

3. Suppose that the proportion θ of defective items in a
large shipment is unknown and that the prior distribution
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of θ is the beta distribution with parameters 2 and 200. If
100 items are selected at random from the shipment and
if three of these items are found to be defective, what is
the posterior distribution of θ?

4. Consider again the conditions of Exercise 3. Suppose
that after a certain statistician has observed that there
were three defective items among the 100 items selected
at random, the posterior distribution that she assigns to θ

is a beta distribution for which the mean is 2/51 and the
variance is 98/[(51)2(103)]. What prior distribution had
the statistician assigned to θ?

5. Suppose that the number of defects in a 1200-foot roll
of magnetic recording tape has a Poisson distribution for
which the value of the mean θ is unknown and that the
prior distribution of θ is the gamma distribution with pa-
rameters α = 3 and β = 1. When five rolls of this tape are
selected at random and inspected, the numbers of defects
found on the rolls are 2, 2, 6, 0, and 3. Determine the pos-
terior distribution of θ .

6. Let θ denote the average number of defects per 100
feet of a certain type of magnetic tape. Suppose that the
value of θ is unknown and that the prior distribution of
θ is the gamma distribution with parameters α = 2 and
β = 10. When a 1200-foot roll of this tape is inspected,
exactly four defects are found. Determine the posterior
distribution of θ .

7. Suppose that the heights of the individuals in a certain
population have a normal distribution for which the value
of the mean θ is unknown and the standard deviation is
2 inches. Suppose also that the prior distribution of θ is a
normal distribution for which the mean is 68 inches and
the standard deviation is 1 inch. If 10 people are selected
at random from the population, and their average height is
found to be 69.5 inches, what is the posterior distribution
of θ?

8. Consider again the problem described in Exercise 7.

a. Which interval 1-inch long had the highest prior
probability of containing the value of θ?

b. Which interval 1-inch long has the highest posterior
probability of containing the value of θ?

c. Find the values of the probabilities in parts (a) and
(b).

9. Suppose that a random sample of 20 observations is
taken from a normal distribution for which the value of the
mean θ is unknown and the variance is 1. After the sample
values have been observed, it is found that Xn = 10, and
that the posterior distribution of θ is a normal distribution
for which the mean is 8 and the variance is 1/25. What was
the prior distribution of θ?

10. Suppose that a random sample is to be taken from
a normal distribution for which the value of the mean
θ is unknown and the standard deviation is 2, and the
prior distribution of θ is a normal distribution for which

the standard deviation is 1. What is the smallest number
of observations that must be included in the sample in
order to reduce the standard deviation of the posterior
distribution of θ to the value 0.1?

11. Suppose that a random sample of 100 observations is
to be taken from a normal distribution for which the value
of the mean θ is unknown and the standard deviation is
2, and the prior distribution of θ is a normal distribution.
Show that no matter how large the standard deviation
of the prior distribution is, the standard deviation of the
posterior distribution will be less than 1/5.

12. Suppose that the time in minutes required to serve a
customer at a certain facility has an exponential distribu-
tion for which the value of the parameter θ is unknown
and that the prior distribution of θ is a gamma distribu-
tion for which the mean is 0.2 and the standard deviation
is 1. If the average time required to serve a random sam-
ple of 20 customers is observed to be 3.8 minutes, what is
the posterior distribution of θ?

13. For a distribution with mean μ 	= 0 and standard devi-
ation σ > 0, the coefficient of variation of the distribution
is defined as σ/|μ|. Consider again the problem described
in Exercise 12, and suppose that the coefficient of varia-
tion of the prior gamma distribution of θ is 2. What is the
smallest number of customers that must be observed in or-
der to reduce the coefficient of variation of the posterior
distribution to 0.1?

14. Show that the family of beta distributions is a con-
jugate family of prior distributions for samples from a
negative binomial distribution with a known value of the
parameter r and an unknown value of the parameter p

(0 < p < 1).

15. Let ξ(θ) be a p.d.f. that is defined as follows for con-
stants α > 0 and β > 0:

ξ(θ) =
{

βα

�(α)
θ−(α+1)e−β/θ for θ > 0,

0 for θ ≤ 0.

A distribution with this p.d.f. is called an inverse gamma
distribution.

a. Verify that ξ(θ) is actually a p.d.f. by verifying that∫ ∞
0 ξ(θ) dθ = 1.

b. Consider the family of probability distributions that
can be represented by a p.d.f. ξ(θ) having the given
form for all possible pairs of constants α > 0 and β >

0. Show that this family is a conjugate family of prior
distributions for samples from a normal distribution
with a known value of the mean μ and an unknown
value of the variance θ .

16. Suppose that in Exercise 15 the parameter is taken as
the standard deviation of the normal distribution, rather
than the variance. Determine a conjugate family of prior
distributions for samples from a normal distribution with
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a known value of the mean μ and an unknown value of
the standard deviation σ .

17. Suppose that the number of minutes a person must
wait for a bus each morning has the uniform distribution
on the interval [0, θ ], where the value of the endpoint θ

is unknown. Suppose also that the prior p.d.f. of θ is as
follows:

ξ(θ) =
{

192
θ4 for θ ≥ 4,
0 otherwise.

If the observed waiting times on three successive mornings
are 5, 3, and 8 minutes, what is the posterior p.d.f. of θ?

18. The Pareto distribution with parameters x0 and α

(x0 > 0 and α > 0) is defined in Exercise 16 of Sec. 5.7.
Show that the family of Pareto distributions is a conjugate
family of prior distributions for samples from a uniform
distribution on the interval [0, θ ], where the value of the
endpoint θ is unknown.

19. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. f (x|θ) is as follows:

f (x|θ) =
{

θxθ−1 for 0 < x < 1,
0 otherwise.

Suppose also that the value of the parameter θ is unknown
(θ > 0), and the prior distribution of θ is the gamma dis-
tribution with parameters α and β (α > 0 and β > 0). De-
termine the mean and the variance of the posterior distri-
bution of θ .

20. Suppose that we model the lifetimes (in months) of
electronic components as independent exponential ran-
dom variables with unknown parameter β. We model β

as having the gamma distribution with parameters a and
b. We believe that the mean lifetime is four months before
we see any data. If we were to observe 10 components with
an average observed lifetime of six months, we would then
claim that the mean lifetime is five months. Determine a

and b. Hint: Use Exercise 21 in Sec. 5.7.

21. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with parameter θ . Let the
prior distribution of θ be improper with “p.d.f.” 1/θ for
θ > 0. Find the posterior distribution of θ and show that
the posterior mean of θ is 1/xn.

22. Consider the data in Example 7.3.10. This time, sup-
pose that we use the improper prior “p.d.f.” ξ(θ) = 1 (for
all θ). Find the posterior distribution of θ and the posterior
probability that θ > 1.

23. Consider a distribution for which the p.d.f. or the p.f.
is f (x|θ), where θ belongs to some parameter space �. It
is said that the family of distributions obtained by letting
θ vary over all values in � is an exponential family, or
a Koopman-Darmois family, if f (x|θ) can be written as

follows for θ ∈ � and all values of x:

f (x|θ) = a(θ)b(x) exp[c(θ) d(x)].

Here a(θ) and c(θ) are arbitrary functions of θ , and b(x)

and d(x) are arbitrary functions of x. Let

H =
{
(α, β) :

∫
�

a(θ)α exp[c(θ) β]dθ < ∞
}

.

For each (α, β) ∈ H , let

ξα,β(θ) = a(θ)α exp[c(θ) β]∫
�

a(η)α exp[c(η) β]dη
,

and let � be the set of all probability distributions that
have p.d.f.’s of the form ξα,β(θ) for some (α, β) ∈ H .

a. Show that � is a conjugate family of prior distribu-
tions for samples from f (x|θ).

b. Suppose that we observe a random sample of size n

from the distribution with p.d.f. f (x|θ). If the prior
p.d.f. of θ is ξα0,β0

, show that the posterior hyperpa-
rameters are

α1 = α0 + n, β1 = β0 +
n∑

i=1

d(xi).

24. Show that each of the following families of distribu-
tions is an exponential family, as defined in Exercise 23:

a. The family of Bernoulli distributions with an un-
known value of the parameter p

b. The family of Poisson distributions with an unknown
mean

c. The family of negative binomial distributions for
which the value of r is known and the value of p

is unknown

d. The family of normal distributions with an unknown
mean and a known variance

e. The family of normal distributions with an unknown
variance and a known mean

f. The family of gamma distributions for which the
value of α is unknown and the value of β is known

g. The family of gamma distributions for which the
value of α is known and the value of β is unknown

h. The family of beta distributions for which the value
of α is unknown and the value of β is known

i. The family of beta distributions for which the value
of α is known and the value of β is unknown

25. Show that the family of uniform distributions on the
intervals [0, θ ] for θ > 0 is not an exponential family as
defined in Exercise 23. Hint: Look at the support of each
uniform distribution.

26. Show that the family of discrete uniform distributions
on the sets of integers {0, 1, . . . , θ} for θ a nonnegative
integer is not an exponential family as defined in Exer-
cise 23.
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7.4 Bayes Estimators
An estimator of a parameter is some function of the data that we hope is close to
the parameter. A Bayes estimator is an estimator that is chosen to minimize the
posterior mean of some measure of how far the estimator is from the parameter,
such as squared error or absolute error.

Nature of an Estimation Problem

Example
7.4.1

Calorie Counts on Food Labels. In Example 7.3.10, we found the posterior distribution
of θ , the mean percentage difference between measured and advertised calorie
counts. A consumer group might wish to report a single number as an estimate of θ

without specifying the entire distribution for θ . How to choose such a single-number
estimate in general is the subject of this section. �

We begin with a definition that is appropriate for a real-valued parameter such
as in Example 7.4.1. A more general definition will follow after we become more
familiar with the concept of estimation.

Definition
7.4.1

Estimator/Estimate. Let X1, . . . , Xn be observable data whose joint distribution is
indexed by a parameter θ taking values in a subset � of the real line. An estimator
of the parameter θ is a real-valued function δ(X1, . . . , Xn). If X1 = x1, . . . , Xn = xn

are observed, then δ(x1, . . . , xn) is called the estimate of θ .

Notice that every estimator is, by nature of being a function of data, a statistic in the
sense of Definition 7.1.4.

Because the value of θ must belong to the set �, it might seem reasonable to
require that every possible value of an estimator δ(X1, . . . , Xn) must also belong
to �. We shall not require this restriction, however. If an estimator can take values
outside of the parameter space �, the experimenter will need to decide in the specific
problem whether that seems appropriate or not. It may turn out that every estimator
that takes values only inside � has other even less desirable properties.

In Definition 7.4.1, we distinguished between the terms estimator and estimate.
Because an estimator δ(X1, . . . , Xn) is a function of the random variables X1, . . . , Xn,
the estimator itself is a random variable, and its probability distribution can be
derived from the joint distribution of X1, . . . , Xn, if desired. On the other hand, an
estimate is a specific value δ(x1, . . . , xn) of the estimator that is determined by using
specific observed values x1, . . . , xn. If we use the vector notation X = (X1, . . . , Xn)

and x = (x1, . . . , xn), then an estimator is a function δ(X) of the random vector X , and
an estimate is a specific value δ(x). It will often be convenient to denote an estimator
δ(X) simply by the symbol δ.

Loss Functions

Example
7.4.2

Calorie Counts on Food Labels. In Example 7.4.1, the consumer group may feel that the
farther their estimate δ(x) is from the true mean difference θ , the more embarassment
and possible legal action they will encounter. Ideally, they would like to quantify the
amount of negative repercussions as a function of θ and the estimate δ(x). Then they
could have some idea how likely it is that they will encounter various levels of hassle
as a result of their estimation. �
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The foremost requirement of a good estimator δ is that it yield an estimate of
θ that is close to the actual value of θ . In other words, a good estimator is one for
which it is highly probable that the error δ(X) − θ will be close to 0. We shall assume
that for each possible value of θ ∈ � and each possible estimate a, there is a number
L(θ, a) that measures the loss or cost to the statistician when the true value of the
parameter is θ and her estimate is a. Typically, the greater the distance between a

and θ , the larger will be the value of L(θ, a).

Definition
7.4.2

Loss Function. A loss function is a real-valued function of two variables, L(θ, a),
where θ ∈ � and a is a real number. The interpretation is that the statistician loses
L(θ, a) if the parameter equals θ and the estimate equals a.

As before, let ξ(θ) denote the prior p.d.f. of θ on the set �, and consider a problem
in which the statistician must estimate the value of θ without being able to observe
the values in a random sample. If the statistician chooses a particular estimate a, then
her expected loss will be

E[L(θ, a)] =
∫

�

L(θ, a)ξ(θ) dθ. (7.4.1)

We shall assume that the statistician wishes to choose an estimate a for which the
expected loss in Eq. (7.4.1) is a minimum.

Definition of a Bayes Estimator

Suppose now that the statistician can observe the value x of the random vector X
before estimating θ , and let ξ(θ |x) denote the posterior p.d.f. of θ on �. (The case of
a discrete parameter can be handled in similar fashion.) For each estimate a that the
statistician might use, her expected loss in this case will be

E[L(θ, a)|x] =
∫

�

L(θ, a)ξ(θ |x) dθ. (7.4.2)

Hence, the statistician should now choose an estimate a for which the expectation in
Eq. (7.4.2) is a minimum.

For each possible value x of the random vector X , let δ∗(x) denote a value of
the estimate a for which the expected loss in Eq. (7.4.2) is a minimum. Then the
function δ∗(X) for which the values are specified in this way will be an estimator of
θ .

Definition
7.4.3

Bayes Estimator/Estimate. Let L(θ, a) be a loss function. For each possible value x of
X , let δ∗(x) be a value of a such that E[L(θ, a)|x] is minimized. Then δ∗ is called a
Bayes estimator of θ . Once X = x is observed, δ∗(x) is called a Bayes estimate of θ .

Another way to describe a Bayes estimator δ∗ is to note that, for each possible value
x of X , the value δ∗(x) is chosen so that

E[L(θ, δ∗(x))|x] = min
All a

E[L(θ, a)|x]. (7.4.3)

In summary, we have considered an estimation problem in which a random sam-
ple X = (X1, . . . , Xn) is to be taken from a distribution involving a parameter θ that
has an unknown value in some specified set �. For every given loss function L(θ, a)

and every prior p.d.f. ξ(θ), the Bayes estimator of θ is the estimator δ∗(X) for which
Eq. (7.4.3) is satisfied for every possible value x of X . It should be emphasized that
the form of the Bayes estimator will depend on both the loss function that is used



410 Chapter 7 Estimation

in the problem and the prior distribution that is assigned to θ . In the problems de-
scribed in this text, Bayes estimators will exist. However, there are more complicated
situations in which no function δ∗ satisfies (7.4.3).

Different Loss Functions

By far, the most commonly used loss function in estimation problems is the squared
error loss function.

Definition
7.4.4

Squared Error Loss Function. The loss function

L(θ, a) = (θ − a)2 (7.4.4)

is called squared error loss.

When the squared error loss function is used, the Bayes estimate δ∗(x) for each
observed value of x will be the value of a for which the expectation E[(θ − a)2|x] is a
minimum. Theorem 4.7.3 states that, when the expectation of (θ − a)2 is calculated
with respect to the posterior distribution of θ , this expectation will be a minimum
when a is chosen to be equal to the mean E(θ |x) of the posterior distribution, if that
posterior mean is finite. If the posterior mean of θ is not finite, then the expected loss
is infinite for every possible estimate a. Hence, we have the following corollary to
Theorem 4.7.3.

Corollary
7.4.1

Let θ be a real-valued parameter. Suppose that the squared error loss function (7.4.4)
is used and that the posterior mean of θ , E(θ |X), is finite. Then, a Bayes estimator
of θ is δ∗(X) = E(θ |X).

Example
7.4.3

Estimating the Parameter of a Bernoulli Distribution. Let the random sample X1, . . . , Xn

be taken from the Bernoulli distribution with parameter θ , which is unknown and
must be estimated. Let the prior distribution of θ be the beta distribution with
parameters α > 0 and β > 0. Suppose that the squared error loss function is used,
as specified by Eq. (7.4.4), for 0 < θ < 1 and 0 < a < 1. We shall determine the Bayes
estimator of θ .

For observed values x1, . . . , xn, let y = ∑n
i=1 xi. Then it follows from Theo-

rem 7.3.1 that the posterior distribution of θ will be the beta distribution with pa-
rameters α1 = α + y and β1 = β + n − y. Since the mean of the beta distribution with
parameters α1 and β1 is α1/(α1 + β1), the mean of this posterior distribution of θ will
be (α + y)/(α + β + n). The Bayes estimate δ(x) will be equal to this value for each
observed vector x. Therefore, the Bayes estimator δ∗(X) is specified as follows:

δ∗(X) = α + ∑n
i=1 Xi

α + β + n
. (7.4.5)

�

Example
7.4.4

Estimating the Mean of a Normal Distribution. Suppose that a random sample X1, . . . ,

Xn is to be taken from a normal distribution for which the value of the mean θ is
unknown and the value of the variance σ 2 is known. Suppose also that the prior
distribution of θ is the normal distribution with mean μ0 and variance v2

0. Suppose,
finally, that the squared error loss function is to be used, as specified in Eq. (7.4.4),
for −∞ < θ < ∞ and −∞ < a < ∞. We shall determine the Bayes estimator of θ .

It follows from Theorem 7.3.3 that for all observed values x1, . . . , xn, the pos-
terior distribution of θ will be a normal distribution with mean μ1 specified by
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Eq. (7.3.1). Therefore, the Bayes estimator δ∗(X) is specified as follows:

δ∗(X) = σ 2μ0 + nv2
0Xn

σ 2 + nv2
0

. (7.4.6)

The posterior variance of θ does not enter into this calculation. �

Another commonly used loss function in estimation problems is the absolute
error loss function.

Definition
7.4.5

Absolute Error Loss Function. The loss function

L(θ, a) = |θ − a| (7.4.7)

is called absolute error loss.

For every observed value of x, the Bayes estimate δ∗(x) will now be the value of a

for which the expectation E(|θ − a||x) is a minimum. It was shown in Theorem 4.5.3
that for every given probability distribution of θ , the expectation of |θ − a| will be a
minimum when a is chosen to be equal to a median of the distribution of θ . Therefore,
when the expectation of |θ − a| is calculated with respect to the posterior distribution
of θ , this expectation will be a minimum when a is chosen to be a median of the
posterior distribution of θ .

Corollary
7.4.2

When the absolute error loss function (7.4.7) is used, a Bayes estimator of a real-
valued parameter is δ∗(X) equal to a median of the posterior distribution of θ .

We shall now reconsider Examples 7.4.3 and 7.4.4, but we shall use the absolute
error loss function instead of the squared error loss function.

Example
7.4.5

Estimating the Parameter of a Bernoulli Distribution. Consider again the conditions
of Example 7.4.3, but suppose now that the absolute error loss function is used,
as specified by Eq. (7.4.7). For all observed values x1, . . . , xn, the Bayes estimate
δ∗(x) will be equal to the median of the posterior distribution of θ , which is the beta
distribution with parameters α + y and β + n − y. There is no simple expression for
this median. It must be determined by numerical approximations for each given set
of observed values. Most statistical computer software can compute the median of
an arbitrary beta distribution.

As a specific example, consider the situation described in Example 7.3.13 in
which an improper prior was used. The posterior distribution of θ in that example was
the beta distribution with parameters 22 and 18. The mean of this beta distribution
is 22/40 = 0.55. The median is 0.5508. �

Example
7.4.6

Estimating the Mean of a Normal Distribution. Consider again the conditions of Exam-
ple 7.4.4, but suppose now that the absolute error loss function is used, as specified
by Eq. (7.4.7). For all observed values x1, . . . , xn, the Bayes estimate δ∗(x) will be
equal to the median of the posterior normal distribution of θ . However, since the
mean and the median of each normal distribution are equal, δ∗(x) is also equal to
the mean of the posterior distribution. Therefore, the Bayes estimator with respect
to the absolute error loss function is the same as the Bayes estimator with respect to
the squared error loss function, and it is again given by Eq. (7.4.6). �
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Other Loss Functions Although the squared error loss function and, to a lesser
extent, the absolute error loss function are the most commonly used ones in esti-
mation problems, neither of these loss functions may be appropriate in a particular
problem. In some problems, it might be appropriate to use a loss function having the
form L(θ, a) = |θ − a|k, where k is some positive number other than 1 or 2. In other
problems, the loss that results when the error |θ − a| has a given magnitude might
depend on the actual value of θ . In such a problem, it might be appropriate to use a
loss function having the form L(θ, a) = λ(θ)(θ − a)2 or L(θ, a) = λ(θ)|θ − a|, where
λ(θ) is a given positive function of θ . In still other problems, it might be more costly
to overestimate the value of θ by a certain amount than to underestimate it by the
same amount. One specific loss function that reflects this property is as follows:

L(θ, a) =
{

3(θ − a)2 for θ ≤ a,
(θ − a)2 for θ > a.

Various other types of loss functions might be relevant in specific estimation
problems. However, in this book we shall give most of our attention to the squared
error and absolute error loss functions.

The Bayes Estimate for Large Samples

Effect of Different Prior Distributions Suppose that the proportion θ of defective
items in a large shipment is unknown and that the prior distribution of θ is the uniform
distribution on the interval [0, 1]. Suppose also that the value of θ must be estimated,
and that the squared error loss function is used. Suppose, finally, that in a random
sample of 100 items from the shipment, exactly 10 items are found to be defective.
Since the uniform distribution is the beta distribution with parameters α = 1 and
β = 1, and since n = 100 and y = 10 for the given sample, it follows from Eq. (7.4.5)
that the Bayes estimate is δ∗(x) = 11/102 = 0.108.

Next, suppose that the prior p.d.f. of θ has the form ξ(θ) = 2(1 − θ) for 0 < θ < 1,
instead of being a uniform distribution, and that again in a random sample of 100
items, exactly 10 items are found to be defective. Since ξ(θ) is the p.d.f. of the beta
distribution with parameters α = 1 and β = 2, it follows from Eq. (7.4.5) that in this
case the Bayes estimate of θ is δ(x) = 11/103 = 0.107.

The two prior distributions considered here are quite different. The mean of the
uniform prior distribution is 1/2, and the mean of the other beta prior distribution
is 1/3. Nevertheless, because the number of observations in the sample is so large
(n = 100), the Bayes estimates with respect to the two different prior distributions
are almost the same. Furthermore, the values of both estimates are very close to the
observed proportion of defective items in the sample, which is xn = 0.1.

Example
7.4.7

Chest Measurements of Scottish Soldiers. Quetelet (1846) reported (with some errors)
data on the chest measurements (in inches) of 5732 Scottish militiamen. These data
appeared earlier in an 1817 medical journal and are discussed by Stigler (1986). Fig-
ure 7.6 shows a histogram of the data. Suppose that we were to model the individual
chest measurements as a random sample (given θ) of normal random variables with
mean θ and variance 4. The average chest measurement is xn = 39.85. If θ had the
normal prior distribution with mean μ0 and variance v2

0, then using Eq. (7.3.1) the
posterior distribution of θ would be normal with mean

μ1 = 4μ0 + 5732 × v2
0 × 39.85

4 + 5732 × v2
0

,
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Figure 7.6 Histogram
of chest measurements
of Scottish militiamen in
Example 7.4.7.
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The Bayes estimate will then be δ(x) = μ1. Notice that, unless μ0 is incredibly large or
v2

0 is very small, we will have μ1 nearly equal to 39.85 and v2
1 nearly equal to 4/5732.

Indeed, if the prior p.d.f. of θ is any continuous function that is positive around
θ = 39.85 and is not extremely large when θ is far from 39.85, then the posterior
p.d.f. of θ will very nearly be the normal p.d.f. with mean 39.85 and variance 4/5732.
The mean and median of the posterior distribution are nearly xn regardless of the
prior distribution. �

Consistency of the Bayes Estimator Let X1, . . . , Xn be a random sample (given θ)
from the Bernoulli distribution with parameter θ . Suppose that we use a conjugate
prior for θ . Since θ is the mean of the distribution from which the sample is being
taken, it follows from the law of large numbers discussed in Sec. 6.2 that Xn converges
in probability to θ as n → ∞. Since the difference between the Bayes estimator δ∗(X)

and Xn converges in probability to 0 as n → ∞, it can also be concluded that δ∗(X)

converges in probability to the unknown value of θ as n → ∞.

Definition
7.4.6

Consistent Estimator. A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n → ∞, is called a consistent
sequence of estimators.

Thus, we have shown that the Bayes estimators δ∗(X) form a consistent sequence of
estimators in the problem considered here. The practical interpretation of this result
is as follows: When large numbers of observations are taken, there is high probability
that the Bayes estimator will be very close to the unknown value of θ .

The results that have just been presented for estimating the parameter of a
Bernoulli distribution are also true for other estimation problems. Under fairly
general conditions and for a wide class of loss functions, the Bayes estimators of
some parameters θ will form a consistent sequence of estimators as the sample size
n → ∞. In particular, for random samples from any one of the various families of
distributions discussed in Sec. 7.3, if a conjugate prior distribution is assigned to the
parameters and the squared error loss function is used, the Bayes estimators will
form a consistent sequence of estimators.

For example, consider again the conditions of Example 7.4.4. In that example, a
random sample is taken from a normal distribution for which the value of the mean
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θ is unknown, and the Bayes estimator δ∗(X) is specified by Eq. (7.4.6). By the law
of large numbers, Xn will converge to the unknown value of the mean θ as n → ∞. It
can now be seen from Eq. (7.4.6) that δ∗(X) will also converge to θ as n → ∞. Thus,
the Bayes estimators again form a consistent sequence of estimators. Other examples
are given in Exercises 7 and 11 at the end of this section.

More General Parameters and Estimators

So far in this section, we have considered only real-valued parameters and estima-
tors of those parameters. There are two very common generalizations of this situation
that are easy to handle with the same techniques described above. The first general-
ization is to multidimensional parameters such as the two-dimensional parameter of
a normal distribution with unknown mean and variance. The second generalization
is to functions of the parameter rather than the parameter itself. For example, if θ is
the failure rate in Example 7.1.1, we might be interested in estimating 1/θ , the mean
time to failure. As another example, if our data arise from a normal distribution with
unknown mean and variance, we might wish to estimate the mean only rather than
the entire parameter.

The necessary changes to Definition 7.4.1 in order to handle both of the gener-
alizations just mentioned are given in Definition 7.4.7.

Definition
7.4.7

Estimator/Estimate. Let X1, . . . , Xn be observable data whose joint distribution is
indexed by a parameter θ taking values in a subset � of k-dimensional space. Let
h be a function from � into d-dimensional space. Define ψ = h(θ). An estimator
of ψ is a function δ(X1, . . . , Xn) that takes values in d-dimensional space. If X1 =
x1, . . . , Xn = xn are observed, then δ(x1, . . . , xn) is called the estimate of ψ .

When h in Definition 7.4.7 is the identity function h(θ) = θ , then ψ = θ and we are
estimating the original parameter θ . When h(θ) is one coordinate of θ , then the ψ

that we are estimating is just that one coordinate.
There will be a number of examples of multidimensional parameters in later

sections and chapters of this book. Here is an example of estimating a function of a
parameter.

Example
7.4.8

Lifetimes of Electronic Components. In Example 7.3.12, suppose that we want to esti-
mate ψ = 1/θ , the mean time to failure of the electronic components. The posterior
distribution of θ is the gamma distribution with parameters 4 and 8.6. If we use the
squared error loss L(θ, a) = (ψ − a)2, Theorem 4.7.3 says that the Bayes estimate is
the mean of the posterior distribution of ψ . That is,

δ∗(x) = E(ψ |x) = E

(
1
θ

∣∣∣∣ x
)

=
∫ ∞

0

1
θ
ξ(θ |x)dθ

=
∫ ∞

0

1
θ

8.64

6
θ3e−8.6θdθ

= 8.64

6

∫ ∞

0
θ2e−8.6θdθ

= 8.64

6
2

8.63
= 2.867,
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where the final equality follows from Theorem 5.7.3. The mean of 1/θ is slightly higher
than 1/E(θ |x) = 8.6/4 = 2.15. �

Note: Loss Functions and Utility. In Sec. 4.8, we introduced the concept of utility
to measure the values to a decision maker of various random outcomes. The concept
of loss function is closely related to that of utility. In a sense, a loss function is like
the negative of a utility. Indeed, Example 4.8.8 shows how to convert absolute error
loss into a utility. In that example, Y plays the role of the parameter and d(W) plays
the role of the estimator. In a similar manner, one can convert other loss functions
into utilities. Hence, it is not surprising that the goal of maximizing expected utility
in Sec. 4.8 has been replaced by the goal of minimizing expected loss in the present
section.

Limitations of Bayes Estimators

The theory of Bayes estimators, as described in this section, provides a satisfactory
and coherent theory for the estimation of parameters. Indeed, according to statisti-
cians who adhere to the Bayesian philosophy, it provides the only coherent theory of
estimation that can possibly be developed. Nevertheless, there are certain limitations
to the applicability of this theory in practical statistical problems. To apply the the-
ory, it is necessary to specify a particular loss function, such as the squared error or
absolute error function, and also a prior distribution for the parameter. Meaningful
specifications may exist, in principle, but it may be very difficult and time-consuming
to determine them. In some problems, the statistician must determine the specifi-
cations that would be appropriate for clients or employers who are unavailable or
otherwise unable to communicate their preferences and knowledge. In other prob-
lems, it may be necessary for an estimate to be made jointly by members of a group or
committee, and it may be difficult for the members of the group to reach agreement
about an appropriate loss function and prior distribution.

Another possible difficulty is that in a particular problem the parameter θ may
actually be a vector of real-valued parameters for which all the values are unknown.
The theory of Bayes estimation, which has been developed in the preceding sections,
can easily be generalized to include the estimation of a vector parameter θ . However,
to apply this theory in such a problem it is necessary to specify a multivariate prior
distribution for the vector θ and also to specify a loss function L(θ, a) that is a function
of the vector θ and the vector a, which will be used to estimate θ . Even though
the statistician may be interested in estimating only one or two components of the
vector θ in a given problem, he must still assign a multivariate prior distribution to
the entire vector θ . In many important statistical problems, some of which will be
discussed later in this book, θ may have a large number of components. In such a
problem, it is especially difficult to specify a meaningful prior distribution on the
multidimensional parameter space �.

It should be emphasized that there is no simple way to resolve these difficulties.
Other methods of estimation that are not based on prior distributions and loss
functions typically have practical limitations, also. These other methods also typically
have serious defects in their theoretical structure as well.

Summary

An estimator of a parameter θ is a function δ of the data X . If X = x is observed, the
value δ(x) is called our estimate, the observed value of the estimator δ(X). A loss
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function L(θ, a) is designed to measure how costly it is to use the value a to estimate
θ . A Bayes estimator δ∗(X) is chosen so that a = δ∗(x) provides the minimum value
of the posterior mean of L(θ, a). That is,

E[L(θ, δ∗(x))|x] = min
a

E[L(θ, a)|x].

If the loss is squared error, L(θ, a) = (θ − a)2, then δ∗(x) is the posterior mean of
θ , E(θ |x). If the loss is absolute error, L(θ, a) = |θ − a|, then δ∗(x) is a median of
the posterior distribution of θ . For other loss functions, locating the minimum might
have to be done numerically.

Exercises

1. In a clinical trial, let the probability of successful out-
come θ have a prior distribution that is the uniform dis-
tribution on the interval [0, 1], which is also the beta dis-
tribution with parameters 1 and 1. Suppose that the first
patient has a successful outcome. Find the Bayes estimates
of θ that would be obtained for both the squared error and
absolute error loss functions.

2. Suppose that the proportion θ of defective items in a
large shipment is unknown, and the prior distribution of
θ is the beta distribution for which the parameters are
α = 5 and β = 10. Suppose also that 20 items are selected at
random from the shipment, and that exactly one of these
items is found to be defective. If the squared error loss
function is used, what is the Bayes estimate of θ?

3. Consider again the conditions of Exercise 2. Suppose
that the prior distribution of θ is as given in Exercise 2,
and suppose again that 20 items are selected at random
from the shipment.

a. For what number of defective items in the sample
will the mean squared error of the Bayes estimate be
a maximum?

b. For what number will the mean squared error of the
Bayes estimate be a minimum?

4. Suppose that a random sample of size n is taken from
the Bernoulli distribution with parameter θ , which is un-
known, and that the prior distribution of θ is a beta distri-
bution for which the mean is μ0. Show that the mean of
the posterior distribution of θ will be a weighted average
having the form γnXn + (1 − γn)μ0, and show that γn → 1
as n → ∞.

5. Suppose that the number of defects in a 1200-foot roll
of magnetic recording tape has a Poisson distribution for
which the value of the mean θ is unknown, and the prior
distribution of θ is the gamma distribution with param-
eters α = 3 and β = 1. When five rolls of this tape are
selected at random and inspected, the numbers of defects
found on the rolls are 2, 2, 6, 0, and 3. If the squared error

loss function is used, what is the Bayes estimate of θ? (See
Exercise 5 of Sec. 7.3.)

6. Suppose that a random sample of size n is taken from
a Poisson distribution for which the value of the mean θ is
unknown, and the prior distribution of θ is a gamma dis-
tribution for which the mean is μ0. Show that the mean of
the posterior distribution of θ will be a weighted average
having the form γnXn + (1 − γn)μ0, and show that γn → 1
as n → ∞.

7. Consider again the conditions of Exercise 6, and sup-
pose that the value of θ must be estimated by using the
squared error loss function. Show that the Bayes estima-
tors, for n = 1, 2, . . . , form a consistent sequence of esti-
mators of θ .

8. Suppose that the heights of the individuals in a certain
population have a normal distribution for which the value
of the mean θ is unknown and the standard deviation is
2 inches. Suppose also that the prior distribution of θ is a
normal distribution for which the mean is 68 inches and
the standard deviation is 1 inch. Suppose finally that 10
people are selected at random from the population, and
their average height is found to be 69.5 inches.

a. If the squared error loss function is used, what is the
Bayes estimate of θ?

b. If the absolute error loss function is used, what is the
Bayes estimate of θ? (See Exercise 7 of Sec. 7.3).

9. Suppose that a random sample is to be taken from a
normal distribution for which the value of the mean θ is
unknown and the standard deviation is 2, the prior distri-
bution of θ is a normal distribution for which the standard
deviation is 1, and the value of θ must be estimated by us-
ing the squared error loss function. What is the smallest
random sample that must be taken in order for the mean
squared error of the Bayes estimator of θ to be 0.01 or
less? (See Exercise 10 of Sec. 7.3.)

10. Suppose that the time in minutes required to serve a
customer at a certain facility has an exponential distribu-
tion for which the value of the parameter θ is unknown,
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the prior distribution of θ is a gamma distribution for
which the mean is 0.2 and the standard deviation is 1, and
the average time required to serve a random sample of
20 customers is observed to be 3.8 minutes. If the squared
error loss function is used, what is the Bayes estimate of
θ? (See Exercise 12 of Sec. 7.3.)

11. Suppose that a random sample of size n is taken from
an exponential distribution for which the value of the
parameter θ is unknown, the prior distribution of θ is
a specified gamma distribution, and the value of θ must
be estimated by using the squared error loss function.
Show that the Bayes estimators, for n = 1, 2, . . . , form a
consistent sequence of estimators of θ .

12. Let θ denote the proportion of registered voters in a
large city who are in favor of a certain proposition. Sup-
pose that the value of θ is unknown, and two statisticians
A and B assign to θ the following different prior p.d.f.’s
ξA(θ) and ξB(θ), respectively:

ξA(θ) = 2θ for 0 < θ < 1,

ξB(θ) = 4θ3 for 0 < θ < 1.

In a random sample of 1000 registered voters from the city,
it is found that 710 are in favor of the proposition.

a. Find the posterior distribution that each statistician
assigns to θ .

b. Find the Bayes estimate for each statistician based
on the squared error loss function.

c. Show that after the opinions of the 1000 registered
voters in the random sample had been obtained, the
Bayes estimates for the two statisticians could not
possibly differ by more than 0.002, regardless of the

number in the sample who were in favor of the prop-
osition.

13. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ], where the
value of the parameter θ is unknown. Suppose also that
the prior distribution of θ is the Pareto distribution with
parameters x0 and α (x0 > 0 and α > 0), as defined in
Exercise 16 of Sec. 5.7. If the value of θ is to be estimated
by using the squared error loss function, what is the Bayes
estimator of θ? (See Exercise 18 of Sec. 7.3.)

14. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the
parameter θ is unknown (θ > 0). Let ξ(θ) denote the prior
p.d.f. of θ , and let θ̂ denote the Bayes estimator of θ with
respect to the prior p.d.f. ξ(θ) when the squared error loss
function is used. Let ψ = θ2, and suppose that instead of
estimating θ , it is desired to estimate the value of ψ subject
to the following squared error loss function:

L(ψ, a) = (ψ − a)2 for ψ > 0 and a > 0.

Let ψ̂ denote the Bayes estimator of ψ . Explain why ψ̂ >

θ̂2. Hint: Look at Exercise 4 in Sec. 4.4.

15. Let c > 0 and consider the loss function

L(θ, a) =
{

c|θ − a| if θ < a,
|θ − a| if θ ≥ a.

Assume that θ has a continuous distribution. Prove that a
Bayes estimator of θ will be any 1/(1 + c) quantile of the
posterior distribution of θ . Hint: The proof is a lot like the
proof of Theorem 4.5.3. The result holds even if θ does
not have a continuous distribution, but the proof is more
cumbersome.

7.5 Maximum Likelihood Estimators
Maximum likelihood estimation is a method for choosing estimators of parameters
that avoids using prior distributions and loss functions. It chooses as the estimate
of θ the value of θ that provides the largest value of the likelihood function.

Introduction

Example
7.5.1

Lifetimes of Electronic Components. Suppose that we observe the data in Exam-
ple 7.3.11 consisting of the lifetimes of three electronic components. Is there a method
for estimating the failure rate θ without first constructing a prior distribution and a
loss function? �

In this section, we shall develop a relatively simple method of constructing an
estimator without having to specify a loss function and a prior distribution. It is called
the method of maximum likelihood, and it was introduced by R. A. Fisher in 1912.
Maximum likelihood estimation can be applied in most problems, it has a strong
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intuitive appeal, and it will often yield a reasonable estimator of θ . Furthermore, if
the sample is large, the method will typically yield an excellent estimator of θ . For
these reasons, the method of maximum likelihood is probably the most widely used
method of estimation in statistics.

Note: Terminology. Because maximum likelihood estimation, as well as many other
procedures to be introduced later in the text, do not involve the specification of a prior
distribution of the parameter, some different terminology is often used in describing
the statistical models to which these procedures are applied. Rather than saying that
X1, . . . , Xn are i.i.d. with p.f. or p.d.f. f (x|θ) conditional on θ , we might say that
X1, . . . , Xn form a random sample from a distribution with p.f. or p.d.f. f (x|θ) where
θ is unknown. More specifically, in Example 7.5.1, we could say that the lifetimes form
a random sample from the exponential distribution with unknown parameter θ .

Definition of a Maximum Likelihood Estimator

Let the random variables X1, . . . , Xn form a random sample from a discrete distri-
bution or a continuous distribution for which the p.f. or the p.d.f. is f (x|θ), where the
parameter θ belongs to some parameter space �. Here, θ can be either a real-valued
parameter or a vector. For every observed vector x = (x1, . . . , xn) in the sample, the
value of the joint p.f. or joint p.d.f. will, as usual, be denoted by fn(x|θ). Because of
its importance in this section, we repeat Definition 7.2.3.

Definition
7.5.1

Likelihood Function. When the joint p.d.f. or the joint p.f. fn(x|θ) of the observations
in a random sample is regarded as a function of θ for given values of x1, . . . , xn, it is
called the likelihood function.

Consider first, the case in which the observed vector x came from a discrete
distribution. If an estimate of θ must be selected, we would certainly not consider
any value of θ ∈ � for which it would be impossible to obtain the vector x that was
actually observed. Furthermore, suppose that the probability fn(x|θ) of obtaining the
actual observed vector x is very high when θ has a particular value, say, θ = θ0, and is
very small for every other value of θ ∈ �. Then we would naturally estimate the value
of θ to be θ0 (unless we had strong prior information that outweighed the evidence in
the sample and pointed toward some other value). When the sample comes from a
continuous distribution, it would again be natural to try to find a value of θ for which
the probability density fn(x|θ) is large and to use this value as an estimate of θ . For
each possible observed vector x, we are led by this reasoning to consider a value of
θ for which the likelihood function fn(x|θ) is a maximum and to use this value as an
estimate of θ . This concept is formalized in the following definition.

Definition
7.5.2

Maximum Likelihood Estimator/Estimate. For each possible observed vector x, let
δ(x) ∈ � denote a value of θ ∈ � for which the likelihood function fn(x|θ) is a max-
imum, and let θ̂ = δ(X) be the estimator of θ defined in this way. The estimator θ̂ is
called a maximum likelihood estimator of θ . After X = x is observed, the value δ(x)

is called a maximum likelihood estimate of θ .

The expressions maximum likelihood estimator and maximum likelihood estimate are
abbreviated M.L.E. One must rely on context to determine whether the abbreviation
refers to an estimator or to an estimate. Note that the M.L.E. is required to be an
element of the parameter space �, unlike general estimators/estimates for which no
such requirement exists.
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Examples of Maximum Likelihood Estimators

Example
7.5.2

Lifetimes of Electronic Components. In Example 7.3.11, the observed data are X1 = 3,
X2 = 1.5, and X3 = 2.1. The random variables had been modeled as a random sample
of size 3 from the exponential distribution with parameter θ . The likelihood function
is, for θ > 0,

f3(x|θ) = θ3 exp (−6.6θ) ,

where x = (2, 1.5, 2.1). The value of θ that maximizes the likelihood function f3(x|θ)

will be the same as the value of θ that maximizes log f3(x|θ), since log is an increasing
function. Therefore, it will be convenient to determine the M.L.E. by finding the value
of θ that maximizes

L(θ) = log f3(x|θ) = 3 log(θ) − 6.6θ.

Taking the derivative dL(θ)/dθ , setting the derivative to 0, and solving for θ yields
θ = 3/6.6 = 0.455. The second derivative is negative at this value of θ , so it provides
a maximum. The maximum likelihood estimate is then 0.455. �

It should be noted that in some problems, for certain observed vectors x, the
maximum value of fn(x|θ) may not actually be attained for any point θ ∈ �. In such
a case, an M.L.E. of θ does not exist. For certain other observed vectors x, the
maximum value of fn(x|θ) may actually be attained at more than one point in the
space �. In such a case, the M.L.E. is not uniquely defined, and any one of these
points can be chosen as the value of the estimator θ̂ . In many practical problems,
however, the M.L.E. exists and is uniquely defined.

We shall now illustrate the method of maximum likelihood and these various
possibilities by considering several examples. In each example, we shall attempt to
determine an M.L.E.

Example
7.5.3

Test for a Disease. Suppose that you are walking down the street and notice that the
Department of Public Health is giving a free medical test for a certain disease. The
test is 90 percent reliable in the following sense: If a person has the disease, there is a
probability of 0.9 that the test will give a positive response; whereas, if a person does
not have the disease, there is a probability of only 0.1 that the test will give a positive
response. This same test was considered in Example 2.3.1. We shall let X stand for
the result of the test, where X = 1 means that the test is positive and X = 0 means
that the test is negative. Let the parameter space be � = {0.1, 0.9}, where θ = 0.1
means that the person tested does not have the disease, and θ = 0.9 means that the
person has the disease. This parameter space was chosen so that, given θ , X has the
Bernoulli distribution with parameter θ . The likelihood function is

f (x|θ) = θx(1 − θ)1−x.

If x = 0 is observed, then

f (0|θ) =
{

0.9 if θ = 0.1,
0.1 if θ = 0.9.

Clearly, θ = 0.1 maximizes the likelihood when x = 0 is observed. If x = 1 is observed,
then

f (1|θ) =
{

0.1 if θ = 0.1,
0.9 if θ = 0.9.
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Clearly, θ = 0.9 maximizes the likelihood when x = 1 is observed. Hence, we have
that the M.L.E. is

θ̂ =
{

0.1 if X = 0,
0.9 if X = 1. �

Example
7.5.4

Sampling from a Bernoulli Distribution. Suppose that the random variables X1, . . . , Xn

form a random sample from the Bernoulli distribution with parameter θ , which is
unknown (0 ≤ θ ≤ 1). For all observed values x1, . . . , xn, where each xi is either 0 or
1, the likelihood function is

fn(x|θ) =
n∏

i=1

θxi(1 − θ)1−xi . (7.5.1)

Instead of maximizing the likelihood function fn(x|θ) directly, it is again easier to
maximize log fn(x|θ):

L(θ) = log fn(x|θ) =
n∑

i=1

[xi log θ + (1 − xi) log(1 − θ)]

=
(

n∑
i=1

xi

)
log θ +

(
n −

n∑
i=1

xi

)
log(1 − θ).

Now calculate the derivative dL(θ)/dθ , set this derivative equal to 0, and solve
the resulting equation for θ . If

∑n
i=1 xi 	∈ {0, n}, we find that the derivative is 0 at

θ = xn, and it can be verified (for example, by examining the second derivative)
that this value does indeed maximize L(θ) and the likelihood function defined by
Eq. (7.5.1). If

∑n
i=1 xi = 0, then L(θ) is a decreasing function of θ for all θ , and hence

L achieves its maximum at θ = 0. Similarly, if
∑n

i=1 xi = n, L is an increasing function,
and it achieves its maximum at θ = 1. In these last two cases, note that the maximum
of the likelihood occurs at θ = xn. It follows, therefore, that the M.L.E. of θ is θ̂ = Xn.

�

It follows from Example 7.5.4 that if X1, . . . , Xn are regarded as n Bernoulli trials
and if the parameter space is � = [0, 1], then the M.L.E. of the unknown probability
of success on any given trial is simply the proportion of successes observed in the
n trials. In Example 7.5.3, we have n = 1 Bernoulli trial, but the parameter space
is � = {0.1, 0.9} rather than [0, 1], and the M.L.E. differs from the proportion of
successes.

Example
7.5.5

Sampling from a Normal Distribution with Unknown Mean. Suppose that X1, . . . , Xn

form a random sample from a normal distribution for which the mean μ is unknown
and the variance σ 2 is known. For all observed values x1, . . . , xn, the likelihood
function fn(x|μ) will be

fn(x|μ) = 1
(2πσ 2)n/2

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]
. (7.5.2)

It can be seen from Eq. (7.5.2) that fn(x|μ) will be maximized by the value of μ that
minimizes

Q(μ) =
n∑

i=1

(xi − μ)2 =
n∑

i=1

x2
i
− 2μ

n∑
i=1

xi + nμ2.
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We see that Q is a quadratic in μ with positive coefficient on μ2. It follows that
Q will be minimized where its derivative is 0. If we now calculate the derivative
dQ(μ)/dμ, set this derivative equal to 0, and solve the resulting equation for μ, we
find that μ = xn. It follows, therefore, that the M.L.E. of μ is μ̂ = Xn. �

It can be seen in Example 7.5.5 that the estimator μ̂ is not affected by the value
of the variance σ 2, which we assumed was known. The M.L.E. of the unknown mean
μ is simply the sample mean Xn, regardless of the value of σ 2. We shall see this again
in the next example, in which both μ and σ 2 must be estimated.

Example
7.5.6

Sampling from a Normal Distribution with Unknown Mean and Variance. Suppose again
that X1, . . . , Xn form a random sample from a normal distribution, but suppose
now that both the mean μ and the variance σ 2 are unknown. The parameter is then
θ = (μ, σ 2). For all observed values x1, . . . , xn, the likelihood function fn(x|μ, σ 2)

will again be given by the right side of Eq. (7.5.2). This function must now be
maximized over all possible values of μ and σ 2, where −∞ < μ < ∞ and σ 2 > 0.
Instead of maximizing the likelihood function fn(x|μ, σ 2) directly, it is again easier
to maximize log fn(x|μ, σ 2). We have

L(θ) = log fn(x|μ, σ 2)

= −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑
i=1

(xi − μ)2. (7.5.3)

We shall find the value of θ = (μ, σ 2) for which L(θ) is maximum in three
stages. First, for each fixed σ 2, we shall find the value μ̂(σ 2) that maximizes the right
side of (7.5.3). Second, we shall find the value σ̂ 2 of σ 2 that maximizes L(θ ′) when
θ ′ = (μ̂(σ 2), σ 2). Finally, the M.L.E. of θ will be the random vector whose observed
value is (μ̂(σ̂ 2), σ̂ 2). The first stage has already been solved in Example 7.5.5. There,
we obtained μ̂(σ 2) = xn. For the second stage, we set θ ′ = (xn, σ 2) and maximize

L(θ ′) = −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑
i=1

(xi − xn)
2. (7.5.4)

This can be maximized by setting its derivative with respect to σ 2 equal to 0 and
solving for σ 2. The derivative is

d

dσ 2
L(θ ′) = −n

2
1
σ 2

+ 1
2(σ 2)2

n∑
i=1

(xi − xn)
2.

Setting this to 0 yields

σ 2 = 1
n

n∑
i=1

(xi − xn)
2. (7.5.5)

The second derivative of (7.5.4) is negative at the value of σ 2 in (7.5.5), so we have
found the maximum. Therefore, the M.L.E. of θ = (μ, σ 2) is

θ̂ = (μ̂, σ̂ 2) =
(

Xn,
1
n

n∑
i=1

(Xi − Xn)
2

)
. (7.5.6)

Notice that the first coordinate of the M.L.E. in Eq. (7.5.6) is called the sample
mean of the data. Likewise, we call the second coordinate of this M.L.E. the sample
variance. It is not difficult to see that the observed value of the sample variance is
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the variance of a distribution that assigns probability 1/n to each of the n observed
values x1, . . . , xn in the sample. (See Exercise 1.) �

Example
7.5.7

Sampling from a Uniform Distribution. Suppose that X1, . . . , Xn form a random sample
from the uniform distribution on the interval [0, θ ], where the value of the parameter
θ is unknown (θ > 0). The p.d.f. f (x|θ) of each observation has the following form:

f (x|θ) =
{

1
θ

for 0 ≤ x ≤ θ ,
0 otherwise.

(7.5.7)

Therefore, the joint p.d.f. fn(x|θ) of X1, . . . , Xn has the form

fn(x|θ) =
{

1
θn for 0 ≤ xi ≤ θ (i = 1, . . . , n),
0 otherwise.

(7.5.8)

It can be seen from Eq. (7.5.8) that the M.L.E. of θ must be a value of θ for
which θ ≥ xi for i = 1, . . . , n and that maximizes 1/θn among all such values. Since
1/θn is a decreasing function of θ , the estimate will be the smallest value of θ such
that θ ≥ xi for i = 1, . . . , n. Since this value is θ = max{x1, . . . , xn}, the M.L.E. of θ

is θ̂ = max{X1, . . . , Xn}. �

Limitations of Maximum Likelihood Estimation

Despite its intuitive appeal, the method of maximum likelihood is not necessarily
appropriate in all problems. For instance, in Example 7.5.7, the M.L.E. θ̂ does not
seem to be a suitable estimator of θ . Since max{X1, . . . , Xn} < θ with probability 1, it
follows that θ̂ surely underestimates the value of θ . Indeed, if any prior distribution
is assigned to θ , then the Bayes estimator of θ will surely be greater than θ̂ . The
actual amount by which the Bayes estimator exceeds θ̂ will, of course, depend on the
particular prior distribution that is used and on the observed values of X1, . . . , Xn.
Example 7.5.7 also raises another difficulty with maximum likelihood, as we illustrate
in Example 7.5.8.

Example
7.5.8

Nonexistence of an M.L.E. Suppose again that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ]. However, suppose now that instead of
writing the p.d.f. f (x|θ) of the uniform distribution in the form given in Eq. (7.5.7),
we write it in the following form:

f (x|θ) =
{

1
θ

for 0 < x < θ ,
0 otherwise.

(7.5.9)

The only difference between Eq. (7.5.7) and Eq. (7.5.9) is that the value of
the p.d.f. at each of the two endpoints 0 and θ has been changed by replacing the
weak inequalities in Eq. (7.5.7) with strict inequalities in Eq. (7.5.9). Therefore,
either equation could be used as the p.d.f. of the uniform distribution. However,
if Eq. (7.5.9) is used as the p.d.f, then an M.L.E. of θ will be a value of θ for which
θ > xi for i = 1, . . . , n and which maximizes 1/θn among all such values. It should be
noted that the possible values of θ no longer include the value θ = max{x1, . . . , xn},
because θ must be strictly greater than each observed value xi (i = 1, . . . , n). Because
θ can be chosen arbitrarily close to the value max{x1, . . . , xn} but cannot be chosen
equal to this value, it follows that the M.L.E. of θ does not exist. �

In all of our previous discussions about p.d.f.’s, we emphasized the fact that it is
irrelevant whether the p.d.f. of the uniform distribution is chosen to be equal to 1/θ
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over the open interval 0 < x < θ or over the closed interval 0 ≤ x ≤ θ . Now, however,
we see that the existence of an M.L.E. depends on this irrelevant and unimportant
choice. This difficulty is easily avoided in Example 7.5.8 by using the p.d.f. given by
Eq. (7.5.7) rather than that given by Eq. (7.5.9). In many other problems as well, a
difficulty of this type can be avoided simply by choosing one particular appropriate
version of the p.d.f. to represent the given distribution. However, as we shall see in
Example 7.5.10, the difficulty cannot always be avoided.

Example
7.5.9

Non-uniqueness of an M.L.E. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [θ, θ + 1], where the value of the parameter
θ is unknown (−∞ < θ < ∞). In this example, the joint p.d.f. fn(x|θ) has the form

fn(x|θ) =
{

1 for θ ≤ xi ≤ θ + 1, (i = 1, . . . , n),
0 otherwise.

(7.5.10)

The condition that θ ≤ xi for i = 1, . . . , n is equivalent to the condition that θ ≤
min{x1, . . . , xn}. Similarly, the condition that xi ≤ θ + 1 for i = 1, . . . , n is equivalent
to the condition that θ ≥ max{x1, . . . , xn} − 1. Therefore, instead of writing fn(x|θ)

in the form given in Eq. (7.5.10), we can use the following form:

fn(x|θ) =
{

1 for max{x1, . . . , xn} − 1 ≤ θ ≤ min{x1, . . . , xn},
0 otherwise.

(7.5.11)

Thus, it is possible to select as an M.L.E. any value of θ in the interval

max{x1, . . . , xn} − 1 ≤ θ ≤ min{x1, . . . , xn}. (7.5.12)

In this example, the M.L.E. is not uniquely specified. In fact, the method of
maximum likelihood provides very little help in choosing an estimate of θ . The
likelihood of every value of θ outside the interval (7.5.12) is actually 0. Therefore,
no value θ outside this interval would ever be estimated, and all values inside the
interval are M.L.E.’s. �

Example
7.5.10

Sampling from a Mixture of Two Distributions. Consider a random variable X that can
come with equal probability either from the normal distribution with mean 0 and
variance 1 or from another normal distribution with mean μ and variance σ 2, where
both μ and σ 2 are unknown. Under these conditions, the p.d.f. f (x|μ, σ 2) of X will
be the average of the p.d.f.’s of the two different normal distributions. Thus,

f (x|μ, σ 2) = 1
2

{
1

(2π)1/2
exp

(
−x2

2

)
+ 1

(2π)1/2σ
exp

[
− (x − μ)2

2σ 2

]}
. (7.5.13)

Suppose now that X1, . . . , Xn form a random sample from the distribution for
which the p.d.f. is given by Eq. (7.5.13). As usual, the likelihood function fn(x|μ, σ 2)

has the form

fn(x|μ, σ 2) =
n∏

i=1

f (xi|μ, σ 2). (7.5.14)

To find the M.L.E. of θ = (μ, σ 2), we must find values of μ and σ 2 for which
fn(x|μ, σ 2) is maximized.

Let xk denote any one of the observed values x1, . . . , xn. If we let μ = xk and let
σ 2 → 0, then the factor f (xk|μ, σ 2) on the right side of Eq. (7.5.14) will grow large
without bound, while each factor f (xi|μ, σ 2) for xi 	= xk will approach the value
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1
2(2π)1/2

exp

(
−x2

i

2

)
.

Hence, when μ = xk and σ 2 → 0, we find that fn(x|μ, σ 2) → ∞.
The value 0 is not a permissible estimate of σ 2, because we know in advance that

σ 2 > 0. Since the likelihood function can be made arbitrarily large by choosing μ = xk

and choosing σ 2 arbitrarily close to 0, it follows that the M.L.E. does not exist.
If we try to correct this difficulty by allowing the value 0 to be a permissible

estimate of σ 2, then we find that there are n different M.L.E.’s of μ and σ 2; namely,

θ̂k = (μ̂, σ̂ 2) = (Xk, 0) for k = 1, . . . , n.

None of these estimators seems appropriate. Consider again the description, given
at the beginning of this example, of the two normal distributions from which each
observation might come. Suppose, for example, that n = 1000, and we use the esti-
mator θ̂3 = (X3, 0). Then, we would be estimating the value of the unknown variance
to be 0; also, in effect, we would be behaving as if exactly one of the Xi’s (namely,
X3) comes from the given unknown normal distribution, whereas all the other 999
observation values come from the normal distribution with mean 0 and variance 1.
In fact, however, since each observation was equally likely to come from either of the
two distributions, it is much more probable that hundreds of observations, rather than
just one, come from the unknown normal distribution. In this example, the method of
maximum likelihood is obviously unsatisfactory. A Bayesian solution to this problem
is outlined in Exercise 10 in Sec. 12.5. �

Finally, we shall mention one point concerning the interpretation of the M.L.E.
The M.L.E. is the value of θ that maximizes the conditional p.f. or p.d.f. of the data X
given θ . Therefore, the maximum likelihood estimate is the value of θ that assigned
the highest probability to seeing the observed data. It is not necessarily the value of
the parameter that appears to be most likely given the data. To say how likely are
different values of the parameter, one would need a probability distribution for the
parameter. Of course, the posterior distribution of the parameter (Sec. 7.2) would
serve this purpose, but no posterior distribution is involved in the calculation of the
M.L.E. Hence, it is not legitimate to interpret the M.L.E. as the most likely value of
the parameter after having seen the data.

For example, consider a situation covered by Example 7.5.4. Suppose that we
are going to flip a coin a few times, and we are concerned with whether or not it
has a slight bias toward heads or toward tails. Let Xi = 1 if the ith flip is heads and
Xi = 0 if not. If we obtain four heads and one tail in the first five flips, the observed
value of the M.L.E. will be 0.8. But it would be difficult to imagine a situation in
which we would feel that the most likely value of θ , the probability of heads, is as
large as 0.8 based on just five tosses of what appeared a priori to be a typical coin.
Treating the M.L.E. as if it were the most likely value of the parameter is very much
the same as ignoring the prior information about the rare disease in the medical test
of Examples 2.3.1 and 2.3.3. If the test is positive in these examples, we found (in
Example 7.5.3) that the M.L.E. takes the value θ̂ = 0.9, which corresponds to having
the disease. However, if the prior probability that you have the disease is as small
as in Example 2.3.1, the posterior probability that you have the disease (θ = 0.9)
is still small even after the positive test result. The test is not accurate enough to
completely overcome the prior information. So too with our coin tossing; five tosses
are not enough information to overcome prior beliefs about the coin being typical.
Only when the data contain much more information than is available a priori would
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it be approximately correct to think of the M.L.E. as the value that we believe the
parameter is most likely to be near. This could happen either when the M.L.E. is
based on a lot of data or when there is very little prior information.

Summary

The maximum likelihood estimate of a parameter θ is that value of θ that provides
the largest value of the likelihood function fn(x|θ) for fixed data x. If δ(x) denotes the
maximum likelihood estimate, then θ̂ = δ(X) is the maximum likelihood estimator
(M.L.E.). We have computed the M.L.E. when the data comprise a random sample
from a Bernoulli distribution, a normal distribution with known variance, a normal
distribution with both parameters unknown, or the uniform distribution on the
interval [0, θ ] or on the interval [θ, θ + 1].

Exercises

1. Let x1, . . . , xn be distinct numbers. Let Y be a discrete
random variable with the following p.f.:

f (y) =
{

1
n

if y ∈ {x1, . . . , xn},
0 otherwise.

Prove that Var(Y ) is given by Eq. (7.5.5).

2. It is not known what proportion p of the purchases of a
certain brand of breakfast cereal are made by women and
what proportion are made by men. In a random sample of
70 purchases of this cereal, it was found that 58 were made
by women and 12 were made by men. Find the M.L.E. of p.

3. Consider again the conditions in Exercise 2, but sup-
pose also that it is known that 1

2 ≤ p ≤ 2
3 . If the observa-

tions in the random sample of 70 purchases are as given
in Exercise 2, what is the M.L.E. of p?

4. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with parameter θ , which is un-
known, but it is known that θ lies in the open interval
0 < θ < 1. Show that the M.L.E. of θ does not exist if every
observed value is 0 or if every observed value is 1.

5. Suppose that X1, . . . , Xn form a random sample from
a Poisson distribution for which the mean θ is unknown,
(θ > 0).

a. Determine the M.L.E. of θ , assuming that at least
one of the observed values is different from 0.

b. Show that the M.L.E. of θ does not exist if every
observed value is 0.

6. Suppose that X1, . . . , Xn form a random sample from
a normal distribution for which the mean μ is known, but
the variance σ 2 is unknown. Find the M.L.E. of σ 2.

7. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the
parameter β is unknown (β > 0). Find the M.L.E. of β.

8. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. f (x|θ) is as follows:

f (x|θ) =
{

eθ−x for x > θ ,
0 for x ≤ θ .

Also, suppose that the value of θ is unknown (−∞ < θ <

∞).

a. Show that the M.L.E. of θ does not exist.

b. Determine another version of the p.d.f. of this same
distribution for which the M.L.E. of θ will exist, and
find this estimator.

9. Suppose that X1, . . . , Xn form a random sample from a
distribution for which the p.d.f. f (x|θ) is as
follows:

f (x|θ) =
{

θxθ−1 for 0 < x < 1,
0 otherwise.

Also, suppose that the value of θ is unknown (θ > 0). Find
the M.L.E. of θ .

10. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. f (x|θ) is as follows:

f (x|θ) = 1
2
e−|x−θ | for −∞ < x < ∞.

Also, suppose that the value of θ is unknown (−∞ <

θ < ∞). Find the M.L.E. of θ . Hint: Compare this to the
problem of minimizing M.A.E as in Theorem 4.5.3.
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11. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [θ1, θ2], where
both θ1 and θ2 are unknown (−∞ < θ1 < θ2 < ∞). Find the
M.L.E.’s of θ1 and θ2.

12. Suppose that a certain large population contains k

different types of individuals (k ≥ 2), and let θi denote
the proportion of individuals of type i, for i = 1, . . . , k.
Here, 0 ≤ θi ≤ 1 and θ1 + . . . + θk = 1. Suppose also that
in a random sample of n individuals from this population,

exactly ni individuals are of type i, where n1 + . . . + nk =
n. Find the M.L.E.’s of θ1, . . . , θk.

13. Suppose that the two-dimensional vectors (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) form a random sample from a bi-
variate normal distribution for which the means of X and
Y are unknown but the variances of X and Y and the cor-
relation between X and Y are known. Find the M.L.E.’s of
the means.

7.6 Properties of Maximum Likelihood Estimators
In this section, we explore several properties of M.L.E.’s, including:

. The relationship between the M.L.E. of a parameter and the M.L.E. of a
function of that parameter

. The need for computational algorithms

. The behavior of the M.L.E. as the sample size increases

. The lack of dependence of the M.L.E. on the sampling plan

We also introduce a popular alternative method of estimation (method of mo-
ments) that sometimes agrees with maximum likelihood, but can sometimes be
computationally simpler.

Invariance

Example
7.6.1

Lifetimes of Electronic Components. In Example 7.1.1, the parameter θ was interpreted
as the failure rate of electronic components. In Example 7.4.8, we found a Bayes
estimate of ψ = 1/θ , the average lifetime. Is there a corresponding method for
computing the M.L.E. of ψ? �

Suppose that X1, . . . , Xn form a random sample from a distribution for which
either the p.f. or the p.d.f. is f (x|θ), where the value of the parameter θ is unknown.
The parameter may be one-dimensional or a vector of parameters. Let θ̂ denote the
M.L.E. of θ . Thus, for all observed values x1, . . . , xn, the likelihood function fn(x|θ)

is maximized when θ = θ̂ .
Suppose now that we change the parameter in the distribution as follows: Instead

of expressing the p.f. or the p.d.f. f (x|θ) in terms of the parameter θ , we shall express
it in terms of a new parameter ψ = g(θ), where g is a one-to-one function of θ . Is
there a relationship between the M.L.E. of θ and the M.L.E. of ψ?

Theorem
7.6.1

Invariance Property of M.L.E.’s. If θ̂ is the maximum likelihood estimator of θ and if g

is a one-to-one function, then g(θ̂) is the maximum likelihood estimator of g(θ).

Proof The new parameter space is �, the image of � under the function g. We
shall let θ = h(ψ) denote the inverse function. Then, expressed in terms of the new
parameter ψ , the p.f. or p.d.f. of each observed value will be f [x|h(ψ)], and the
likelihood function will be fn[x|h(ψ)].

The M.L.E. ψ̂ of ψ will be equal to the value of ψ for which fn[x|h(ψ)]
is maximized. Since fn(x|θ) is maximized when θ = θ̂ , it follows that fn[x|h(ψ)] is



7.6 Properties of Maximum Likelihood Estimators 427

maximized when h(ψ) = θ̂ . Hence, the M.L.E. ψ̂ must satisfy the relation h(ψ̂) = θ̂

or, equivalently, ψ̂ = g(θ̂).

Example
7.6.2

Lifetimes of Electronic Components. According to Theorem 7.6.1, the M.L.E. of ψ is
one over the M.L.E. of θ . In Example 7.5.2, we computed the observed value of
θ̂ = 0.455. The observed value of ψ̂ would then be 1/0.455 = 2.2. This is a bit smaller
than the Bayes estimate using squared error loss of 2.867 found in Example 7.4.8.

�

The invariance property can be extended to functions that are not one-to-one.
For example, suppose that we wish to estimate the mean μ of a normal distribution
when both the mean and the variance are unknown. Then μ is not a one-to-one
function of the parameter θ = (μ, σ 2). In this case, the function we wish to estimate
is g(θ) = μ. There is a way to define the M.L.E. of a function of θ that is not necessarily
one-to-one. One popular way is the following.

Definition
7.6.1

M.L.E. of a Function. Let g(θ) be an arbitrary function of the parameter, and let G be
the image of � under the function g. For each t ∈ G, define Gt = {θ : g(θ) = t} and
define

L∗(t) = max
θ∈Gt

log fn(x|θ).

Finally, define the M.L.E. of g(θ) to be t̂ where

L∗(t̂) = max
t∈G

L∗(t). (7.6.1)

The following result shows how to find the M.L.E. of g(θ) based on Definition 7.6.1.

Theorem
7.6.2

Let θ̂ be an M.L.E. of θ , and let g(θ) be a function of θ . Then an M.L.E. of g(θ) is
g(θ̂).

Proof We shall prove that t̂ = g(θ̂) satisfies (7.6.1). Since L∗(t) is the maximum of
log fn(x|θ) over θ in a subset of �, and since log fn(x|θ̂ ) is the maximum over all θ ,
we know that L∗(t) ≤ log fn(x|θ̂ ) for all t ∈ G. Let t̂ = g(θ̂). We are done if we can
show that L∗(t̂) = log fn(x|θ̂ ). Note that θ̂ ∈ Gt̂ . Since θ̂ maximizes fn(x|θ) over all θ ,
it also maximizes fn(x|θ) over θ ∈ Gt̂ . Hence, L∗(t̂) = log fn(x|θ̂ ) and t̂ = g(θ̂) is an
M.L.E. of g(θ).

Example
7.6.3

Estimating the Standard Deviation and the Second Moment. Suppose that X1, . . . , Xn

form a random sample from a normal distribution for which both the mean μ and the
variance σ 2 are unknown. We shall determine the M.L.E. of the standard deviation
σ and the M.L.E. of the second moment of the normal distribution E(X2). It was
found in Example 7.5.6 that the M.L.E. of θ = (μ, σ 2) is θ̂ = (μ̂, σ̂ 2). From the
invariance property, we can conclude that the M.L.E. σ̂ of the standard deviation
is simply the square root of the sample variance. In symbols, σ̂ = (σ̂ 2)1/2. Also, since
E(X2) = σ 2 + μ2, the M.L.E. of E(X2) will be σ̂ 2 + μ̂2. �

Consistency

Consider an estimation problem in which a random sample is to be taken from a
distribution involving a parameter θ . Suppose that for every sufficiently large sample
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size n, that is, for every value of n greater than some given minimum number, there
exists a unique M.L.E. of θ . Then, under certain conditions, which are typically
satisfied in practical problems, the sequence of M.L.E.’s is a consistent sequence of
estimators of θ . In other words, in such problems the sequence of M.L.E.’s converges
in probability to the unknown value of θ as n → ∞.

We have remarked in Sec. 7.4 that under certain general conditions the sequence
of Bayes estimators of a parameter θ is also a consistent sequence of estimators.
Therefore, for a given prior distribution and a sufficiently large sample size n, the
Bayes estimator and the M.L.E. of θ will typically be very close to each other, and
both will be very close to the unknown value of θ .

We shall not present any formal details of the conditions that are needed to
prove this result. (Details can be found in chapter 7 of Schervish, 1995.) We shall,
however, illustrate the result by considering again a random sample X1, . . . , Xn from
the Bernoulli distribution with parameter θ , which is unknown (0 ≤ θ ≤ 1). It was
shown in Sec. 7.4 that if the given prior distribution of θ is a beta distribution, then
the difference between the Bayes estimator of θ and the sample mean Xn converges
to 0 as n → ∞. Furthermore, it was shown in Example 7.5.4 that the M.L.E. of θ is
Xn. Thus, as n → ∞, the difference between the Bayes estimator and the M.L.E. will
converge to 0. Finally, the law of large numbers (Theorem 6.2.4) says that the sample
mean Xn converges in probability to θ as n → ∞. Therefore, both the sequence of
Bayes estimators and the sequence of M.L.E.’s are consistent sequences.

Numerical Computation

In many problems there exists a unique M.L.E. θ̂ of a given parameter θ , but this
M.L.E. cannot be expressed in closed form as a function of the observations in the
sample. In such a problem, for a given set of observed values, it is necessary to
determine the value of θ̂ by numerical computation. We shall illustrate this situation
by two examples.

Example
7.6.4

Sampling from a Gamma Distribution. Suppose that X1, . . . , Xn form a random sample
from the gamma distribution for which the p.d.f. is as follows:

f (x|α) = 1
�(α)

xα−1e−x for x > 0. (7.6.2)

Suppose also that the value of α is unknown (α > 0) and is to be estimated.
The likelihood function is

fn(x|α) = 1
�n(α)

(
n∏

i=1

xi

)α−1

exp

(
−

n∑
i=1

xi

)
. (7.6.3)

The M.L.E. of α will be the value of α that satisfies the equation

∂ log fn(x|α)

∂α
= 0. (7.6.4)

When we apply Eq. (7.6.4) in this example, we obtain the following equation:

�′(α)

�(α)
= 1

n

n∑
i=1

log xi. (7.6.5)

Tables of the function �′(α)/�(α), which is called the digamma function, are
included in various published collections of mathematical tables. The digamma func-
tion is also available in several mathematical software packages. For all given values
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of x1, . . . , xn, the unique value of α that satisfies Eq. (7.6.5) must be determined either
by referring to these tables or by carrying out a numerical analysis of the digamma
function. This value will be the M.L.E. of α. �

Example
7.6.5

Sampling from a Cauchy Distribution. Suppose that X1, . . . , Xn form a random sample
from a Cauchy distribution centered at an unknown point θ (−∞ < θ < ∞), for which
the p.d.f. is as follows:

f (x|θ) = 1
π

[
1 + (x − θ)2

] for −∞ < x < ∞. (7.6.6)

Suppose also that the value of θ is to be estimated.
The likelihood function is

fn(x|θ) = 1
πn

∏n
i=1

[
1 + (xi − θ)2

] . (7.6.7)

Therefore, the M.L.E. of θ will be the value that minimizes
n∏

i=1

[
1 + (xi − θ)2

]
. (7.6.8)

For most values of x1, . . . , xn, the value of θ that minimizes the expression (7.6.8)
must be determined by a numerical computation. �

An alternative to exact solution of Eq. (7.6.4) is to start with a heuristic estimator
of α and then apply Newton’s method.

Definition
7.6.2

Newton’s Method. Let f (θ) be a real-valued function of a real variable, and suppose
that we wish to solve the equation f (θ) = 0. Let θ0 be an initial guess at the solution.
Newton’s method replaces the initial guess with the updated guess

θ1 = θ0 − f (θ0)

f ′(θ0)
.

The rationale behind Newton’s method is illustrated in Fig. 7.7. The function
f (θ) is the solid curve. Newton’s method approximates the curve by a line tangent to
the curve, that is, the dashed line passing through the point (θ0, f (θ0)), indicated by
the circle. The approximating line crosses the horizontal axis at the revised guess θ1.
Typically, one replaces the intial guess with the revised guess and iterates Newton’s
method until the results stabilize.

Figure 7.7 Newton’s
method to approximate the
solution to f (θ) = 0. The
initial guess is θ0, and the
revised guess is θ1.

Illustration of Newton’s Method
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Example
7.6.6

Sampling from a Gamma Distribution. In Example 7.6.4, suppose that we observe
n = 20 gamma random variables X1, . . . , X20 with parameters α and 1. Suppose that
the observed values are such that 1

20

∑20
i=1 log(xi) = 1.220 and 1

20

∑20
i=1 xi = 3.679. We

wish to use Newton’s method to approximate the M.L.E. A sensible initial guess is
based on the fact that E(Xi) = α. This suggests using α0 = 3.679, the sample mean.
The function f (α) is ψ(α) − 1.220, where ψ is the digamma function. The derivative
f ′(α) is ψ ′(α), which is known as the trigamma function. Newton’s method updates
the intial guess α0 to

α1 = α0 − ψ(α0) − 1.220
ψ ′(α0)

= 3.679 − 1.1607 − 1.220
0.3120

= 3.871.

Here, we have used statistical software that computes both the digamma and
trigamma functions. After two more iterations, the approximation stabilizes at 3.876.

�

Newton’s method can fail terribly if f ′(θ)/f (θ) gets close to 0 between θ0 and the
actual solution to f (θ) = 0. There is a multidimensional version of Newton’s method,
which we will not present here. There are also many other numerical methods for
maximizing functions. Any text on numerical optimization, such as Nocedal and
Wright (2006), will describe some of them.

Method of Moments

Example
7.6.7

Sampling from a Gamma Distribution. Suppose that X1, . . . , Xn form a random sam-
ple from the gamma distribution with parameters α and β. In Example 7.6.4, we
explained how one could find the M.L.E. of α if β were known. The method involved
the digamma function, which is unfamiliar to many people. A Bayes estimate would
also be difficult to find in this example because we would have to integrate a func-
tion that includes a factor of 1/�(α)n. Is there no other way to estimate the vector
parameter θ in this example? �

The method of moments is an intuitive method for estimating parameters when
other, more attractive, methods may be too difficult. It can also be used to obtain an
initial guess for applying Newton’s method.

Definition
7.6.3

Method of Moments. Assume that X1, . . . , Xn form a random sample from a dis-
tribution that is indexed by a k-dimensional parameter θ and that has at least k

finite moments. For j = 1, . . . , k, let μj(θ) = E(X
j

1 |θ). Suppose that the function
μ(θ) = (μ1(θ), . . . , μk(θ)) is a one-to-one function of θ . Let M(μ1, . . . , μk) denote
the inverse function, that is, for all θ ,

θ = M(μ1(θ), . . . , μk(θ)).

Define the sample moments by mj = 1
n

∑n
i=1 X

j

i for j = 1, . . . , k. The method of
moments estimator of θ is M(m1, . . . , mj).

The usual way of implementing the method of moments is to set up the k equations
mj = μj(θ) and then solve for θ .

Example
7.6.8

Sampling from a Gamma Distribution. In Example 7.6.4, we considered a sample of
size n from the gamma distribution with parameters α and 1. The mean of each
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such random variable is μ1(α) = α. The method of moments estimator is then α̂ =
m1, the sample mean. This was the initial guess used to start Newton’s method in
Example 7.6.6. �

Example
7.6.9

Sampling from a Gamma Distribution with Both Parameters Unknown. Theorem 5.7.5
tells us that the first two moments of the gamma distribution with parameters α and
β are

μ1(θ) = α

β
,

μ2(θ) = α(α + 1)
β2

.

The method of moments says to replace the right-hand sides of these equations by
the sample moments and then solve for α and β. In this case, we get

α̂ = m2
1

m2 − m2
1

,

β̂ = m1

m2 − m2
1

as the method of moments estimators. Note that m2 − m2
1 is just the sample variance.

�

Example
7.6.10

Sampling from a Uniform Distribution. Suppose that X1, . . . , Xn form a random sample
from the uniform distribution on the interval [θ, θ + 1], as in Example 7.5.9. In that
example, we found that the M.L.E. is not unique and there is an interval of M.L.E.’s

max{x1, . . . , xn} − 1 ≤ θ ≤ min{x1, . . . , xn}. (7.6.9)

This interval contains all of the possible values of θ that are consistent with the ob-
served data. We shall now apply the method of moments, which will produce a single
estimator. The mean of each Xi is θ + 1/2, so the method of moments estimator is
Xn − 1/2. Typically, one would expect the observed value of the method of moments
estimator to be a number in the interval (7.6.9). However, that is not always the case.
For example, if n = 3 and X1 = 0.2, X2 = 0.99, X3 = 0.01 are observed, then (7.6.9) is
the interval [−0.01, 0.01], while X3 = 0.4. The method of moments estimate is then
−0.1, which could not possibly be the true value of θ . �

There are several examples in which method of moments estimators are also
M.L.E.’s. Some of these are the subjects of exercises at the end of this section.

Despite occasional problems such as Example 7.6.10, the method of moments
estimators will typically be consistent in the sense of Definition 7.4.6.

Theorem
7.6.3

Suppose that X1, X2, . . . are i.i.d. with a distribution indexed by a k-dimensional pa-
rameter vector θ . Suppose that the first k moments of that distribution exist and are
finite for all θ . Suppose also that the inverse function M in Definition 7.6.3 is contin-
uous. Then the sequence of method of moments estimators based on X1, . . . , Xn is
a consistent sequence of estimators of θ .

Proof The law of large numbers says that the sample moments converge in prob-
ability to the moments μ1(θ), . . . , μk(θ). The generalization of Theorem 6.2.5 to



432 Chapter 7 Estimation

functions of k variables implies that M evaluated at the sample moments (i.e., the
method of moments estimator) converges in probability to θ .

M.L.E.’s and Bayes Estimators

Bayes estimators and M.L.E.’s depend on the data solely through the likelihood
function. They use the likelihood function in different ways, but in many problems
they will be very similar. When the function f (x|θ) satisfies certain smoothness
conditions (as a function of θ), it can be shown that the likelihood function will tend to
look more and more like a normal p.d.f. as the sample size increases. More specifically,
as n increases, the likelihood function starts to look like a constant (not depending
on θ , but possibly depending on the data) times

exp
[
− 1

2Vn(θ)/n
(θ − θ̂ )2

]
, (7.6.10)

where θ̂ is the M.L.E. and Vn(θ) is a sequence of random variables that typically
converges as n → ∞ to a limit that we shall call v∞(θ). When n is large, the function
in (7.6.10) rises quickly to its peak as θ approaches θ̂ and then drops just as quickly as θ

moves away from θ̂ . Under these conditions, so long as the prior p.d.f. of θ is relatively
flat compared to the very peaked likelihood function, the posterior p.d.f. will look a
lot like the likelihood multiplied by the constant needed to turn it into a p.d.f. The
posterior mean of θ will then be approximately θ̂ . In fact, the posterior distribution of
θ will be approximately the normal distribution with mean θ̂ and variance Vn(θ̂)/n. In
similar fashion, the distribution of the maximum likelihood estimator (given θ) will
be approximately the normal distribution with mean θ and variance v∞(θ)/n. The
conditions and proofs needed to make these claims precise are beyond the scope of
this text but can be found in chapter 7 of Schervish (1995).

Example
7.6.11

Sampling from an Exponential Distribution. Suppose that X1, X2, . . . are i.i.d. having
the exponential distribution with parameter θ . Let Tn = ∑n

i=1 Xi. Then the M.L.E. of
θ is θ̂n = n/Tn. (This was found in Exercise 7 in Sec. 7.5.) Because 1/θ̂n is an average
of i.i.d. random variables with finite variance, the central limit theorem tells us that
the distribution of 1/θ̂n is approximately normal. The mean and variance, in this case,
of that approximate normal distribution are, respectively, 1/θ and 1/(θ2n). The delta
method (Theorem 6.3.2) says that θ̂ then has approximately the normal distribution
with mean θ and variance θ2/n. In the notation above, we have Vn(θ) = θ2.

Next, let the prior distribution of θ be the gamma distribution with parameters
α and β. Theorem 7.3.4 says that the posterior distribution of θ will be the gamma
distribution with parameters α + n and β + tn. We conclude by showing that this
gamma distribution is approximately a normal distribution. Assume for simplicity
that α is an integer. Then the posterior distribution of θ is the same as the distribution
of the sum of α + n i.i.d. exponential random variables with parameter β + tn. Such
a sum has approximately the normal distribution with mean (α + n)/(β + tn) and
variance (α + n)/(β + tn)

2. If α and β are small, the approximate mean is then nearly
n/tn = θ̂ , and the approximate variance is then nearly n/t2

n
= θ̂2/n = Vn(θ̂)/n. �

Example
7.6.12

Prussian Army Deaths. In Example 7.3.14, we found the posterior distribution of θ ,
the mean number of deaths per year by horsekick in Prussian army units based
on a sample of 280 observations. The posterior distribution was found to be the
gamma distribution with parameters 196 and 280. By the same argument used in
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Figure 7.8 Posterior p.d.f.
together with p.d.f. of M.L.E.
and approximating normal
p.d.f. in Example 7.6.13. For
the p.d.f of the M.L.E., the
value of θ = 3/6.6 is used to
make the p.d.f.’s as similar as
possible.
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Example 7.6.11, this gamma distribution is approximately the distribution of the sum
of 196 i.i.d. exponential random variables with parameter 280. The distribution of
this sum is approximately the normal distribution with mean 196/280 and variance
196/2802.

Using the same data as in Example 7.3.14, we can find the M.L.E. of θ , which is the
average of the 280 observations (according to Exercise 5 in Sec. 7.5). The distribution
of the average of 280 i.i.d. Poisson random variables with mean θ is approximately
the normal distribution with mean θ and variance θ/280 according to the central limit
theorem. We then have Vn(θ) = θ in the earlier notation. The maximum likelihood
estimate with the observed data is θ̂ = 196/280 the mean of the posterior distribution.
The variance of the posterior distribution is also Vn(θ̂)/n = θ̂/280. �

There are two common situations in which posterior distributions and distri-
butions of M.L.E.’s are not such similar normal distributions as in the preceding
discussion. One is when the sample size is not very large, and the other is when the
likelihood function is not smooth. An example with small sample size is our electronic
components example.

Example
7.6.13

Lifetimes of Electronic Components. In Example 7.3.12, we have a sample of n = 3
exponential random variables with parameter θ . The posterior distribution found
there was the gamma distribution with parameters 4 and 8.6. The M.L.E. is θ̂ =
3/(X1 + X2 + X3), which has the distribution of 1 over a gamma random variable
with parameters 3 and 3θ . Figure 7.8 shows the posterior p.d.f. along with the p.d.f.
of the M.L.E. assuming that θ = 3/6.6, the observed value of the M.L.E. The two
p.d.f.’s, although similar, are still different. Also, both p.d.f.’s are similar to, but still
different from, the normal p.d.f. with the same mean and variance as the posterior,
which also appears on the plot. �

An example of an unsmooth likelihood function involves the uniform distribu-
tion on the interval [0, θ ].

Example
7.6.14

Sampling from a Uniform Distribution. In Example 7.5.7, we found the M.L.E. of θ

based on a sample of size n from the uniform distribution on the interval [0, θ ]. The
M.L.E. is θ̂ = max{X1, . . . , Xn}. We can find the exact distribution of θ̂ using the
result in Example 3.9.6. The p.d.f. of Y = θ̂ is

gn(y|θ) = n[F(y|θ)]n−1f (y|θ), (7.6.11)
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where f (.|θ) is the p.d.f. of the uniform distribution on [0, θ ] and F(.|θ) is the
corresponding c.d.f. Substituting these well-known functions into Eq. (7.6.11) yields
the p.d.f. of Y = θ̂ :

gn(y|θ) = n

[
y

θ

]n−1 1
θ

= n
yn−1

θn
,

for 0 < y < θ . This p.d.f. is not the least bit like a normal p.d.f. It is very asymmetric
and has its maximum at the largest possible value of the M.L.E. In fact, one can
compute the mean and variance of θ̂ , respectively, as

E(θ̂) = n

n + 1
θ,

V ar(θ̂) = n

(n + 1)2(n + 2)
θ2.

The variance goes down like 1/n2 instead of like 1/n in the approximately normal
examples we saw earlier.

If n is large, the posterior distribution of θ will have a p.d.f. that is approximately
the likelihood function times the constant needed to make it into a p.d.f. The likeli-
hood is in Eq. (7.5.8). Integrating that function over θ to obtain the needed constant
leads to the following approximate posterior p.d.f. of θ :

ξ(θ |x) ≈
⎧⎨⎩ (n − 1)θ̂n−1

θn
for θ > θ̂ ,

0 otherwise.

The mean and variance of this approximate posterior distribution are, respectively,
(n − 1)θ̂/(n − 2) and (n − 1)θ̂2/[(n − 2)2(n − 3)]. The posterior mean is still nearly
equal to the M.L.E. (but a little larger), and the posterior variance decreases at a
rate like 1/n2, as does the variance of the M.L.E. But the posterior distribution is not
the least bit normal, as the p.d.f. has its maximum at the smallest possible value of θ

and decreases from there. �

The EM Algorithm

There are a number of complicated situations in which it is difficult to compute the
M.L.E. Many of these situations involve forms of missing data. The term “missing
data” can refer to several different types of information. The most obvious would be
observations that we had planned or hoped to observe but were not observed. For
example, imagine that we planned to collect both heights and weights for a sample of
athletes. For reasons that might be beyond our control, it is possible that we observed
both heights and weights for most of the athletes, but only heights for one subset of
atheletes and only weights for another subset. If we model the heights and weights
as having a bivariate normal distribution, we might want to compute the M.L.E. of
the parameters of that distribution. For a complete collection of pairs, Exercise 24
in this section gives formulas for the M.L.E. It is not difficult to see how much more
complicated it would be to compute the M.L.E. in the situation described above with
missing data.

The EM algorithm is an iterative method for approximating M.L.E.’s when
missing data are making it difficult to find the M.L.E.’s in closed form. One begins
(as in most iterative procedures) at stage 0 with an initial parameter vector θ(0). To
move from stage j to stage j + 1, one first writes the full-data log-likelihood, which
is what the logarithm of the likelihood function would be if we had observed the
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missing data. The values of the missing data appear in the full-data log-likelihood as
random variables rather than as observed values. The “E” step of the EM algorithm
is the following: Compute the conditional distribution of the missing data given
the observed data as if the parameter θ were equal to θ(j), and then compute the
conditional mean of the full-data log-likelihood treating θ as constant and the missing
data as random variables. The E step gets rid of the unobserved random variables
from the full-data log-likelihood and leaves θ where it was. For the “M” step, choose
θ(j+1) to maximize the expected value of the full-data log-likelihood that you just
computed. The M step takes you to stage j + 1. Ideally, the maximization step is no
harder than it would be if the missing data had actually been observed.

Example
7.6.15

Heights and Weights. Suppose that we try to observe n = 6 pairs of heights and
weights, but we get only three complete vectors plus one lone weight and two lone
heights. We model the pairs as bivariate normal random vectors, and we want to
find the M.L.E. of the parameter vector (μ1, μ2, σ 2

1 , σ 2
2 , ρ). (This example is for

illustrative purposes. One cannot expect to get a good estimate of a five-dimensional
parameter vector with only nine observed values and no prior information.) The
data are in Table 7.1. The missing weights are X4,2 and X5,2. The missing height
is X6,1. The full-data log-likelihood is the sum of the logarithms of six expressions
of the form Eq. (5.10.2) each with one of the rows of Table 7.1 substituted for the
dummy variables (x1, x2). For example, the term corresponding to the fourth row of
Table 7.1 is

− log(2πσ1σ2) − 1
2

log(1 − ρ2) − 1
2(1 − ρ2)

[(
68 − μ1

σ1

)2

− 2ρ

(
68 − μ1

σ1

) (
X4,2 − μ2

σ2

)
+

(
X4,2 − μ2

σ2

)2
]

.

(7.6.12)

As an initial parameter vector we choose a naı̈ve estimate computed from the ob-
served data:

θ(0) = (μ
(0)

1 , μ
(0)

2 , σ
2(0)

1 , σ
2(0)

2 , ρ(0)) = (69.60, 194.75, 2.87, 14.82, 0.1764).

This consists of the M.L.E.’s based on the marginal distributions of the two coor-
dinates, together with the sample correlation computed from the three complete
observations.

Table 7.1 Heights and weights for Exam-
ple 7.6.15. The missing values are
given random variable names.

Height Weight

72 197

70 204

73 208

68 X4,2

65 X5,2

X6,1 170
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The E step pretends that θ = θ(0) and computes the conditional mean of the full-
data log-likelihood given the observed data. For the fourth row of Table 7.1, the
conditional distribution of X4,2 given the observed data and θ = θ(0) can be found
from Theorem 5.10.4 to be the normal distribution with mean

194.75 + 0.1764 × (14.82)1/2
(

68 − 69.60
2.871/2

)
= 193.3

and variance (1 − 0.17642)14.822 = 212.8. The conditional mean of (X4,2 − μ2)
2

would then be 212.8 + (193.3 − μ2)
2. The conditional mean of the expression in

(7.6.12) would then be

− log(2πσ1σ2) − 1
2

log(1 − ρ2) − 1
2(1 − ρ2)

[(
68 − μ1

σ1

)2

− 2ρ

(
68 − μ1

σ1

) (
193.3 − μ2

σ2

)
+

(
193.3 − μ2

σ2

)2

+ 212.8

σ 2
2

]
.

The point to notice about this last expression is that, except for the last term 212.8/σ 2
2 ,

it is exactly the contribution to the log-likelihood that we would have obtained if X4,2
had been observed to equal 193.3, its conditional mean. Similar calculations can be
done for the other two observations with missing coordinates. Each will produce
a contribution to the log-likelihood that is the conditional variance of the missing
coordinate divided by its variance plus what the log-likelihood would have been if the
missing value had been observed to equal its conditional mean. This makes the M step
almost identical to finding the M.L.E. for a completely observed data set. The only
difference from the formulas in Exercise 24 is the following: For each observation
that is missing X, add the conditional variance of X given Y to

∑n
i=1(Xi − Xn)

2 in

both the formula for σ̂ 2
1 and ρ̂. Similarly, for each observation that is missing Y , add

the conditional variance of Y given X to
∑n

i=1(Yi − Yn)
2 in both the formula for σ̂ 2

2
and ρ̂.

We now illustrate the first iteration of the EM algorithm with the data of this
example. We already have θ(0), and we can compute the log-likelihood function
from the observed data at θ(0) as −31.359. To begin the algorithm, we have already
computed the conditional mean and variance of the missing second coordinate from
the fourth row of Table 7.1. The corresponding conditional means and variances for
the fifth and sixth rows are 190.6 and 212.8 for the fifth row and 68.76 and 7.98 for the
sixth row. For the E step, we replace the missing observations by their conditional
means and add the conditional variances to the sums of squared deviations. For the M
step, we insert the values just computed into the formulas of Exercise 24 as described
above. The new vector is

θ(1) = (69.46, 193.81, 2.88, 14.83, 0.3742),

and the log-likelihood is −31.03. After 32 iterations, the estimate and log-likelihood
stop changing. The final estmate is

θ(32) = (68.86, 189.71, 3.15, 15.03, 0.8965),

with log-likelihood −29.66. �

Example
7.6.16

Mixture of Normal Distributions. A very popular use of the EM algorithm is in fitting
mixture distributions. Let X1, . . . , Xn be random variables such that each one is
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sampled either from the normal distribution with mean μ1 and variance σ 2 (with
probability p) or from the normal distribution with mean μ2 and variance σ 2 (with
probability 1 − p), where μ1 < μ2. The restriction that μ1 < μ2 is to make the model
identifiable in the following sense. If μ1 = μ2 is allowed, then every value of p leads to
the same joint distribution of the observable data. Also, if neither mean is constrained
to be below the other, then switching the two means and changing p to 1 − p will
produce the same joint distribution for the observable data. The restriction μ1 < μ2
ensures that every distinct parameter vector produces a different joint distribution
for the observable data.

The data in Fig. 7.4 have the typical appearance of a distribution that is a mixture
of two normals with means not very far apart. Because we have assumed that the
variances of the two distributions are the same, we will not have the problem that
arose in Example 7.5.10.

The likelihood function from observations X1 = x1, . . . , Xn = xn is

n∏
i=1

[
p

(2π)1/2σ
exp

(
−(xi − μ1)

2

2σ 2

)
+ 1 − p

(2π)1/2σ
exp

(
−(xi − μ2)

2

2σ 2

)]
. (7.6.13)

The parameter vector is θ = (μ1, μ2, σ 2, p), and maximizing the likelihood as written
is a challenge. However, we can introduce missing observations Y1, . . . , Yn where
Yi = 1 if Xi was sampled from the distribution with mean μ1 and Yi = 0 if Xi was
sampled from the distribution with mean μ2. The full-data log-likelihood can be
written as the sum of the logarithm of the marginal p.f. of the missing Y data plus the
logarithm of the conditional p.d.f. of the observed X data given the Y data. That is,

n∑
i=1

Yi log(p) +
(

n −
n∑

i=1

Yi

)
log(1 − p) − n

2
log(2πσ 2)

− 1
2σ 2

n∑
i=1

[
Yi(xi − μ1)

2 + (1 − Yi)(xi − μ2)
2
]

.

(7.6.14)

At stage j with estimate θ(j) of θ , the E step first finds the conditional distribution
of Y1, . . . , Yn given the observed data and θ = θ(j). Since (X1, Y1), . . . , (Xn, Yn) are
independent pairs, we can find the conditional distribution separately for each pair.
The joint distribution of (Xi, Yi) is a mixed distribution with p.f./p.d.f.

f (xi, yi|θ(j)) = pyi(1 − p)1−yi

(2π)1/2σ (j)
exp

(
− 1

σ 2(j)

[
yi(xi − μ

(j)

1 )2 + (1 − yi)(xi − μ
(j)

2 )2
])

.

The marginal p.d.f. of Xi is the ith factor in (7.6.13). It is straightforward to deter-
mine that the conditional distribution of Yi given the observed data is the Bernoulli
distribution with parameter

q
(j)

i =
p(j) exp

(
− (xi−μ

(j)

1 )2

2σ 2(j)

)
p(j) exp

(
− (xi−μ

(j)

1 )2

2σ 2(j)

)
+ (1 − p(j)) exp

(
− (xi−μ

(j)

2 )2

2σ 2(j)

) . (7.6.15)
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Because the full-data log-likelihood is a linear function of the Yi’s, the E step simply
replaces each Yi in (7.6.14) by q

(j)

i . The result is

n∑
i=1

q
(j)

i log(p) +
(

n −
n∑

i=1

q
(j)

i

)
log(1 − p) − n

2
log(2πσ 2)

− 1
2σ 2

n∑
i=1

[
q

(j)

i (xi − μ1)
2 + (1 − q

(j)

i )(xi − μ2)
2
]

.

(7.6.16)

Maximizing (7.6.16) is straightforward. Since p appears in only the first two terms,
we see that p(j+1) is just the average of the q

(j)

i ’s. Also, μ(j+1)
1 is the weighted average

of the Xi’s with weights q
(j)

i . Similarly, μ(j+1)
2 is the weighted average of the Xi’s with

weights 1 − q
(j)

i . Finally,

σ 2(j+1) = 1
n

n∑
i=1

[
q

(j)

i (xi − μ
(j+1)
1 )2 + (1 − q

(j)

i )(xi − μ
(j+1)
2 )2

]
. (7.6.17)

We will illustrate the first E and M steps using the data in Example 7.3.10. For
the initial parameter vector θ(0), we will let μ

(0)

1 be the average of the 10 lowest

observations and μ
(0)

2 be the average of the 10 highest observations. We set p(0) = 1/2,
and σ 2(0) is the average of the sample variance of the 10 lowest observations and the
sample variance of the 10 highest observations. This makes

θ(0) = (μ
(0)

1 , μ
(0)

2 , σ 2(0), p(0)) = (−7.65, 7.36, 46.28, 0.5).

For each of the 20 observed values xi, we compute q
(0)
i . For example, x10 = −4.0.

According to (7.6.15),

q
(0)

10 =
0.5 exp

(
− (−4.0+7.65)2

2×46.28

)
0.5 exp

(
− (−4.0+7.65)2

2×46.28

)
+ 0.5 exp

(
− (−4.0−7.36)2

2×46.28

) = 0.7774.

A similar calculation for x8 = 9.0 yields q
(0)

8 = 0.0489. The initial log-likelihood, cal-

culated as the logarithm of (7.6.13), is −75.98. The average of the 20 q
(0)
i values is

p(1) = 0.4402. The weighted average of the data values using the q
(0)
i ’s as weights is

μ
(1)
1 = −7.736, and the weighted average using the 1 − q

(0)
i ’s is μ

(1)
2 = 6.3068. Using

(7.6.17), we get σ 2(1) = 56.5491. The log-likelihood rises to −75.19. After 25 iter-
ations, the results settle on θ(25) = (−21.9715, 2.6802, 48.6864, 0.1037) with a final
log-likelihood of −72.84. The histogram from Fig. 7.4 is reproduced in Fig. 7.9 to-
gether with the p.d.f. of an observation from the fitted mixture distribution, namely,

f (x) = 0.1037
(2π × 48.6864)1/2

exp

(
− (x + 21.9715)2

2 × 48.6864

)

+ 1 − 0.1037
(2π × 48.6864)1/2

exp

(
− (x − 2.6802)2

2 × 48.6864

)
.

In addition, the fitted p.d.f. based on a single normal distribution is also shown in
Fig. 7.9. The mean and variance of that single normal distribution are 0.1250 and
110.6809, respectively. �
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Figure 7.9 Histogram of data from Example 7.3.10 together
with fitted p.d.f. from Example 7.6.16 (solid curve). The p.d.f.
has been scaled up to match the fact that the histogram gives
counts rather than an estimated p.d.f. Also, the dashed curve
gives the estimated p.d.f. for a single normal distribution.

One can prove that the log-likelihood increases with each iteration of the EM
algorithm and that the algorithm converges to a local maximum of the likelihood
function. As with other numerical maximization routines, it is difficult to guarantee
convergence to a global maximum.

Sampling Plans

Suppose that an experimenter wishes to take observations from a distribution for
which the p.f. or the p.d.f. is f (x|θ) in order to gain information about the value
of the parameter θ . The experimenter could simply take a random sample of a
predetermined size from the distribution. Instead, however, he may begin by first
observing a few values at random from the distribution and noting the cost and the
time spent in taking these observations. He may then decide to observe a few more
values at random from the distribution and to study all the values thus far obtained.
At some point, the experimenter will decide to stop taking observations and will
estimate the value of θ from all the observed values that have been obtained up
to that point. He might decide to stop because either he feels that he has enough
information to be able to make a good estimate of θ or he cannot afford to spend
any more money or time on sampling.

In this experiment, the number n of observations in the sample is not fixed
beforehand. It is a random variable whose value may very well depend on the
magnitudes of the observations as they are obtained.

Suppose that an experimenter contemplates using a sampling plan in which, for
every n, the decision of whether or not to stop sampling after n observations have
been collected is a function of the n observations seen so far. Regardless of whether
the experimenter chooses such a sampling plan or decides to fix the value of n before
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any observations are taken, it can be shown that the likelihood function based on the
observed values is proportional (as a function of θ) to

f (x1|θ) . . . f (xn|θ).

In such a situation, the M.L.E. of θ will depend only on the likelihood function and
not on what type of sampling plan is used. In other words, the value of θ̂ depends
only on the values x1, . . . , xn that are actually observed and does not depend on the
plan (if there was one) that was used by the experimenter to decide when to stop
sampling.

To illustrate this property, suppose that the intervals of time, in minutes, between
arrivals of successive customers at a certain service facility are i.i.d. random variables.
Suppose also that each interval has the exponential distribution with parameter θ ,
and that a set of observed intervals X1, . . . , Xn form a random sample from this
distribution. It follows from Exercise 7 of Sec. 7.5 that the M.L.E. of θ will be
θ̂ = 1/Xn. Also, since the mean μ of the exponential distribution is 1/θ , it follows
from the invariance property of M.L.E.’s that μ̂ = Xn. In other words, the M.L.E. of
the mean is the average of the observations in the sample.

Consider now the following three sampling plans:

1. An experimenter decides in advance to take exactly 20 observations, and the
average of these 20 observations turns out to be 6. Then the M.L.E. of μ is
μ̂ = 6.

2. An experimenter decides to take observations X1, X2 . . . until she obtains a
value greater than 10. She finds that Xi < 10 for i = 1, . . . , 19 and that X20 > 10.
Hence, sampling terminates after 20 observations. If the average of these 20
observations is 6, then the M.L.E. is again μ̂ = 6.

3. An experimenter takes observations one at a time, with no particular plan in
mind, until either she is forced to stop sampling or she gets tired of sampling.
She is certain that neither of these causes (being forced to stop or getting tired)
depends in any way on μ. If for either reason she stops as soon as she has taken
20 observations and if the average of the 20 observations is 6, then the M.L.E.
is again μ̂ = 6.

Sometimes, an experiment of this type must be terminated during an interval
when the experimenter is waiting for the next customer to arrive. If a certain amount
of time has elapsed since the arrival of the last customer, this time should not be
omitted from the sample data, even though the full interval to the arrival of the next
customer has not been observed. Suppose, for example, that the average of the first 20
observations is 6, the experimenter waits another 15 minutes but no other customer
arrives, and then she terminates the experiment. In this case, we know that the M.L.E.
of μ would have to be greater than 6, since the value of the 21st observation must
be greater than 15, even though its exact value is unknown. The new M.L.E. can
be obtained by multiplying the likelihood function for the first 20 observations by
the probability that the 21st observation is greater than 15, namely, exp(−15θ), and
finding the value of θ that maximizes this new likelihood function (see Exercise 15).

Remember that the M.L.E. is determined by the likelihood function. The only
way in which the M.L.E. is allowed to depend on the sampling plan is through the
likelihood function. If the decision about when to stop observing data is based solely
on the observations seen so far, then this information has already been included in
the likelihood function. If the decision to stop is based on something else, one needs
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to evaluate the probability of that “something else” given each possible value of θ

and include that probability in the likelihood.
Other properties of M.L.E.’s will be discussed later in this chapter and in Chap-

ter 8.

Summary

The M.L.E. of a function g(θ) is g(θ̂), where θ̂ is the M.L.E. of θ . For example, if θ is
the rate at which customers are served in a queue, then 1/θ is the average service time.
The M.L.E. of 1/θ is 1 over the M.L.E. of θ . Sometimes we cannot find a closed form
expression for the M.L.E. of a parameter and we must resort to numerical methods to
find or approximate the M.L.E. In most problems, the sequence of M.L.E.’s, as sample
size increases, converges in probability to the parameter. When data are collected in
such a way that the decision to stop collecting data is based solely on the data already
observed or on other considerations that are not related to the parameter, then the
M.L.E. will not depend on the sampling plan. That is, if two different sampling plans
lead to proportional likelihood functions, then the value of θ that maximizes one
likelihood will also maximize the other.

Exercises

1. Suppose that X1, . . . , Xn form a random sample from a
distribution with the p.d.f. given in Exercise 10 of Sec. 7.5.
Find the M.L.E. of e−1/θ .

2. Suppose that X1, . . . , Xn form a random sample from
a Poisson distribution for which the mean is unknown.
Determine the M.L.E. of the standard deviation of the
distribution.

3. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the
parameter β is unknown. Determine the M.L.E. of the
median of the distribution.

4. Suppose that the lifetime of a certain type of lamp
has an exponential distribution for which the value of the
parameter β is unknown. A random sample of n lamps
of this type are tested for a period of T hours and the
number X of lamps that fail during this period is observed,
but the times at which the failures occurred are not noted.
Determine the M.L.E. of β based on the observed value
of X.

5. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [a, b], where both
endpoints a and b are unknown. Find the M.L.E. of the
mean of the distribution.

6. Suppose that X1, . . . , Xn form a random sample from
a normal distribution for which both the mean and the
variance are unknown. Find the M.L.E. of the 0.95 quan-

tile of the distribution, that is, of the point θ such that
Pr(X < θ) = 0.95.

7. For the conditions of Exercise 6, find the M.L.E. of
ν = Pr(X > 2).

8. Suppose that X1, . . . , Xn form a random sample from
a gamma distribution for which the p.d.f. is given by
Eq. (7.6.2). Find the M.L.E. of �′(α)/�(α).

9. Suppose that X1, . . . , Xn form a random sample from
a gamma distribution for which both parameters α and β

are unknown. Find the M.L.E. of α/β.

10. Suppose that X1, . . . , Xn form a random sample from
a beta distribution for which both parameters α and β are
unknown. Show that the M.L.E.’s of α and β satisfy the
following equation:

�′(α̂)

�(α̂)
− �′(β̂)

�(β̂)
= 1

n

n∑
i=1

log
Xi

1 − Xi

.

11. Suppose that X1, . . . , Xn form a random sample of
size n from the uniform distribution on the interval [0, θ ],
where the value of θ is unknown. Show that the sequence
of M.L.E.’s of θ is a consistent sequence.

12. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the pa-
rameter β is unknown. Show that the sequence of M.L.E.’s
of β is a consistent sequence.
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13. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. is as specified in Exer-
cise 9 of Section 7.5. Show that the sequence of M.L.E.’s
of θ is a consistent sequence.

14. Suppose that a scientist desires to estimate the pro-
portion p of monarch butterflies that have a special type
of marking on their wings.

a. Suppose that he captures monarch butterflies one at
a time until he has found five that have this special
marking. If he must capture a total of 43 butterflies,
what is the M.L.E. of p?

b. Suppose that at the end of a day the scientist had
captured 58 monarch butterflies and had found only
three with the special marking. What is the M.L.E.
of p?

15. Suppose that 21 observations are taken at random
from an exponential distribution for which the mean μ is
unknown (μ > 0), the average of 20 of these observations
is 6, and although the exact value of the other observation
could not be determined, it was known to be greater than
15. Determine the M.L.E. of μ.

16. Suppose that each of two statisticians A and B must
estimate a certain parameter θ whose value is unknown
(θ > 0). Statistician A can observe the value of a random
variable X, which has the gamma distribution with pa-
rameters α and β, where α = 3 and β = θ ; statistician B

can observe the value of a random variable Y , which has
the Poisson distribution with mean 2θ . Suppose that the
value observed by statistician A is X = 2 and the value ob-
served by statistician B is Y = 3. Show that the likelihood
functions determined by these observed values are pro-
portional, and find the common value of the M.L.E. of θ

obtained by each statistician.

17. Suppose that each of two statisticians A and B must
estimate a certain parameter p whose value is unknown
(0 < p < 1). Statistician A can observe the value of a ran-
dom variable X, which has the binomial distribution with
parameters n = 10 and p; statistician B can observe the
value of a random variable Y , which has the negative bi-
nomial distribution with parameters r = 4 and p. Suppose
that the value observed by statistician A is X = 4 and the
value observed by statistician B is Y = 6. Show that the
likelihood functions determined by these observed val-
ues are proportional, and find the common value of the
M.L.E. of p obtained by each statistician.

18. Prove that the method of moments estimator for the
parameter of a Bernoulli distribution is the M.L.E.

19. Prove that the method of moments estimator for the
parameter of an exponential distribution is the M.L.E.

20. Prove that the method of moments estimator of the
mean of a Poisson distribution is the M.L.E.

21. Prove that the method of moments estimators of the
mean and variance of a normal distribution are also the
M.L.E.’s.

22. Let X1, . . . , Xn be a random sample from the uniform
distribution on the interval [0, θ ].

a. Find the method of moments estimator of θ .

b. Show that the method of moments estimator is not
the M.L.E.

23. Suppose that X1, . . . , Xn form a random sample from
the beta distribution with parameters α and β. Let θ =
(α, β) be the vector parameter.

a. Find the method of moments estimator for θ .

b. Show that the method of moments estimator is not
the M.L.E.

24. Suppose that the two-dimensional vectors (X1, Y1),

(X2, Y2), . . . , (Xn, Yn) form a random sample from a bi-
variate normal distribution for which the means of X and
Y , the variances of X and Y , and the correlation between
X and Y are unknown. Show that the M.L.E.’s of these five
parameters are as follows:

μ̂1 = Xn and μ̂2 = Yn,

σ̂ 2
1 = 1

n

n∑
i=1

(Xi − Xn)
2 and σ̂ 2

2 = 1
n

n∑
i=1

(Yi − Yn)
2,

ρ̂ =
∑n

i=1(Xi − Xn)(Yi − Yn)[∑n
i=1(Xi − Xn)

2
]1/2 [∑n

i=1(Yi − Yn)
2
]1/2

.

Hint: First, rewrite the joint p.d.f. of each pair (Xi, Yi) as
the product of the marginal p.d.f. of Xi and the conditional
p.d.f. of Yi given Xi. Second, transform the parameters to
μ1, σ 2

1 and

α = μ2 − ρσ2μ1

σ1
,

β = ρσ2

σ1
,

σ 2
2.1 = (1 − ρ2)σ 2

2 .

Third, maximize the likelihood function as a function of
the new parameters. Finally, apply the invariance prop-
erty of M.L.E.’s to find the M.L.E.’s of the original pa-
rameters. The above transformation greatly simplifies the
maximization of the likelihood.

25. Consider again the situation described in Exercise 24.
This time, suppose that, for reasons unrelated to the val-
ues of the parameters, we cannot observe the values of
Yn−k+1, . . . , Yn. That is, we will be able to observe all of
X1, . . . , Xn and Y1, . . . , Yn−k, but not the last k Y values.
Using the hint given in Exercise 24, find the M.L.E.’s of
μ1, μ2, σ 2

1 , σ 2
2 , and ρ.
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� 7.7 Sufficient Statistics
In the first six sections of this chapter, we presented some inference methods that
are based on the posterior distribution of the parameter or on the likelihood
function alone. There are other inference methods that are based neither on the
posterior distribution nor on the likelihood function. These methods are based on
the conditional distributions of various functions of the data (i.e., statistics) given
the parameter. There are many statistics available in a given problem, some more
useful than others. Sufficient statistics turn out to be the most useful in some sense.

Definition of a Sufficient Statistic

Example
7.7.1

Lifetimes of Electronic Components. In Examples 7.4.8 and 7.5.2, we computed esti-
mates of the mean lifetime for electronic components based on a sample of size three
from the distribution of lifetimes. The two estimates we computed were a Bayes es-
timate (Example 7.4.8) and an M.L.E. (Example 7.5.2). Both estimates made use of
the observed data solely through the value of the statistic X1 + X2 + X3. Is there any-
thing special about this statistic, and if so, do such statistics exist in other problems?

�

In many problems in which a parameter θ must be estimated, it is possible to
find either an M.L.E. or a Bayes estimator that will be suitable. In some problems,
however, neither of these estimators may be suitable or available. There may not
be any M.L.E., or there may be more than one. Even when an M.L.E. is unique,
it may not be a suitable estimator, as in Example 7.5.7, where the M.L.E. always
underestimates the value of θ . Reasons why there may not be a suitable Bayes
estimator were presented at the end of Sec. 7.4. In such problems, the search for
a good estimator must be extended beyond the methods that have been introduced
thus far. In this section, we shall define the concept of a sufficient statistic, which was
introduced by R. A. Fisher in 1922, and we shall show how this concept can be used
to simplify the search for a good estimator in many problems.

Suppose that in a specific estimation problem, two statisticians A and B must
estimate the value of the parameter θ . Statistician A can observe the values of the
observations X1, . . . , Xn in a random sample, and statistician B cannot observe the
individual values of X1, . . . , Xn but can learn the value of a certain statistic T =
r(X1, . . . , Xn). In this case, statistician A can choose any function of the observations
X1, . . . , Xn as an estimator of θ (including a function of T ). But statistician B can use
only a function of T . Hence, it follows that A will generally be able to find a better
estimator than will B.

In some problems, however, B will be able to do just as well as A. In such a
problem, the single function T = r(X1, . . . , Xn) will in some sense summarize all
the information contained in the random sample, and knowledge of the individual
values of X1, . . . , Xn will be irrelevant in the search for a good estimator of θ . A
statistic T having this property is called a sufficient statistic. The formal definition of
a sufficient statistic is based on the following intuition. Suppose that one could learn
T and were then able to simulate random variables X′

1, . . . , X′
n

such that, for every
θ , the joint distribution of X′

1, . . . , X′
n

was exactly the same as the joint distribution
of X1, . . . , Xn. Such a statistic T is sufficient in the sense that one could, if one felt
the need, use X′

1, . . . , X′
n

in the same way that one would have used X1, . . . , Xn. The
process of simulating X′

1, . . . , X′
n

is called an auxiliary randomization.
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Definition
7.7.1

Sufficient Statistic. Let X1, . . . , Xn be a random sample from a distribution indexed
by a parameter θ . Let T be a statistic. Suppose that, for every θ and every possible
value t of T , the conditional joint distribution of X1, . . . , Xn given that T = t (and
θ) depends only on t but not on θ . That is, for each t , the conditional distribution of
X1, . . . , Xn given T = t and θ is the same for all θ . Then we say that T is a sufficient
statistic for the parameter θ .

Return now to the intuition introduced right before Definition 7.7.1. When
one simulates X′

1, . . . , X′
n

in accordance with the conditional joint distribution of
X1, . . . , Xn given T = t , it follows that for each given value of θ ∈ �, the joint distri-
bution of T, X′

1, . . . , X′
n

will be the same as the joint distribution of T, X1, . . . , Xn. By
integrating out (or summing out) T from the joint distribution, we see that the joint
distribution of X1, . . . , Xn is the same as the joint distribution of X′

1, . . . , X′
n
. Hence,

if statistician B can observe the value of a sufficient statistic T , then she can generate
n random variables X′

1, . . . , X′
n
, which have the same joint distribution as the origi-

nal random sample X1, . . . , Xn. The property that distinguishes a sufficient statistic
T from a statistic that is not sufficient may be described as follows: The auxiliary
randomization used to generate the random variables X′

1, . . . , X′
n

after the sufficient
statistic T has been observed does not require any knowledge about the value of θ ,
since the conditional joint distribution of X1, . . . , Xn when T is given does not depend
on the value of θ . If the statistic T were not sufficient, this auxiliary randomization
could not be carried out, because the conditional joint distribution of X1, . . . , Xn for
a given value of T would involve the value of θ , and this value is unknown.

If statistician B is concerned solely with the distribution of the estimator she
uses, we can now see why she can estimate θ just as well as can statistician A,
who observes the values of X1, . . . , Xn. Suppose that A plans to use a particular
estimator δ(X1, . . . , Xn) to estimate θ , and B observes the value of T and generates
X′

1, . . . , X′
n
, which have the same joint distribution as X1, . . . , Xn. If B uses the

estimator δ(X′
1, . . . , X′

n
), then it follows that the probability distribution of B’s

estimator will be the same as the probability distribution of A’s estimator. This
discussion illustrates why, when searching for a good estimator, a statistician can
restrict the search to estimators that are functions of a sufficient statistic T . We shall
return to this point in Sec. 7.9.

On the other hand, if statistician B is interested in basing her estimator on
the posterior distribution of θ , we have not yet shown why she can do just as well
as statistician A. The next result (the factorization criterion) shows why even this
is true. A sufficient statistic is sufficient for being able to compute the likelihood
function, and hence it is sufficient for performing any inference that depends on the
data only through the likelihood function. M.L.E.’s and anything based on posterior
distributions depend on the data only through the likelihood function.

The Factorization Criterion

Immediately after Example 7.2.7 and Theorems 7.3.2 and 7.3.3, we pointed out that
a particular statistic was used to compute the posterior distribution being discussed.
These statistics all had the property that they were all that was needed from the
data to be able to compute the likelihood function. This property is another way to
characterize sufficient statistics. We shall now present a simple method for finding a
sufficient statistic that can be applied in many problems. This method is based on the
following result, which was developed with increasing generality by R. A. Fisher in
1922, J. Neyman in 1935, and P. R. Halmos and L. J. Savage in 1949.
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Theorem
7.7.1

Factorization Criterion. Let X1, . . . , Xn form a random sample from either a continu-
ous distribution or a discrete distribution for which the p.d.f. or the p.f. is f (x|θ),
where the value of θ is unknown and belongs to a given parameter space �. A
statistic T = r(X1, . . . , Xn) is a sufficient statistic for θ if and only if the joint p.d.f.
or the joint p.f. fn(x|θ) of X1, . . . , Xn can be factored as follows for all values of
x = (x1, . . . , xn) ∈ Rn and all values of θ ∈ �:

fn(x|θ) = u(x)v[r(x), θ ]. (7.7.1)

Here, the functions u and v are nonnegative, the function u may depend on x but does
not depend on θ , and the function v will depend on θ but depends on the observed
value x only through the value of the statistic r(x).

Proof We shall give the proof only when the random vector X = (X1, . . . , Xn) has
a discrete distribution, in which case

fn(x|θ) = Pr(X = x|θ).

Suppose first that fn(x|θ) can be factored as in Eq. (7.7.1) for all values of x ∈ Rn

and θ ∈ �. For each possible value t of T , let A(t) denote the set of all points x ∈ Rn

such that r(x) = t . For each given value of θ ∈ �, we shall determine the conditional
distribution of X given that T = t . For every point x ∈ A(t),

Pr(X = x|T = t, θ) = Pr(X = x|θ)

Pr(T = t |θ)
= fn(x|θ)∑

y∈A(t) fn(y|θ)
.

Since r(y) = t for every point y ∈ A(t), and since x ∈ A(t), it follows from Eq. (7.7.1)
that

Pr(X = x|T = t, θ) = u(x)∑
y∈A(t) u(y)

. (7.7.2)

Finally, for every point x that does not belong to A(t),

Pr(X = x|T = t, θ) = 0. (7.7.3)

It can be seen from Eqs. (7.7.2) and (7.7.3) that the conditional distribution of X does
not depend on θ . Therefore, T is a sufficient statistic.

Conversely, suppose that T is a sufficient statistic. Then, for every given value
t of T , every point x ∈ A(t), and every value of θ ∈ �, the conditional probability
Pr(X = x|T = t, θ) will not depend on θ and will therefore have the form

Pr(X = x|T = t, θ) = u(x).

If we let v(t, θ) = Pr(T = t |θ), it follows that

fn(x|θ) = Pr(X = x|θ) = Pr(X = x|T = t, θ) Pr(T = t |θ)

= u(x)v(t, θ).

Hence, fn(x|θ) has been factored in the form specified in Eq. (7.7.1).
The proof for a random sample X1, . . . , Xn from a continuous distribution

requires somewhat different methods and will not be given here.

One way to read Theorem 7.7.1 is that T = r(X) is sufficient if and only if the like-
lihood function is proportional (as a function of θ) to a function that depends on the
data only through r(x). That function would be v[r(x), θ ]. When using the likelihood
function for finding posterior distributions, we saw that any factor not depending on
θ (such as u(x) in Eq. (7.7.1)) can be removed from the likelihood without affecting
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the calculation of the posterior distribution. So, we have the following corollary to
Theorem 7.7.1.

Corollary
7.7.1

A statistic T = r(X) is sufficient if and only if, no matter what prior distribution we
use, the posterior distribution of θ depends on the data only through the value of T .

For each value of x for which fn(x|θ) = 0 for all values of θ ∈ �, the value of the
function u(x) in Eq. (7.7.1) can be chosen to be 0. Therefore, when the factorization
criterion is being applied, it is sufficient to verify that a factorization of the form
given in Eq. (7.7.1) is satisfied for every value of x such that fn(x|θ) > 0 for at least
one value of θ ∈ �.

We shall now illustrate the use of the factorization criterion by giving four
examples.

Example
7.7.2

Sampling from a Poisson Distribution. Suppose that X = (X1, . . . , Xn) form a random
sample from a Poisson distribution for which the value of the mean θ is unknown
(θ > 0). Let r(x) = ∑n

i=1 xi. We shall show that T = r(X) = ∑n
i=1 Xi is a sufficient

statistic for θ .
For every set of nonnegative integers x1, . . . , xn, the joint p.f. fn(x|θ) of X1, . . . ,

Xn is as follows:

fn(x|θ) =
n∏

i=1

e−θθxi

xi!
=

(
n∏

i=1

1
xi!

)
e−nθθr(x).

Let u(x) = ∏n
i=1(1/xi!) and v(t, θ) = e−nθθ t . We now see that fn(x|θ) has been fac-

tored as in Eq. (7.7.1). It follows that T = ∑n
i=1 Xi is a sufficient statistic for θ . �

Example
7.7.3

Applying the Factorization Criterion to a Continuous Distribution. Suppose that X =
(X1, . . . , Xn) form a random sample from a continuous distribution with the follow-
ing p.d.f.:

f (x|θ) =
{

θxθ−1 for 0 < x < 1,
0 otherwise.

It is assumed that the value of the parameter θ is unknown (θ > 0). Let r(x) = ∏n
i=1 xi.

We shall show that T = r(X) = ∏n
i=1 Xi is a sufficient statistic for θ .

For 0 < xi < 1 (i = 1, . . . , n), the joint p.d.f. fn(x|θ) of X1, . . . , Xn is as follows:

f (x|θ) = θn

(
n∏

i=1

xi

)θ−1

= θn [r(x)]θ−1
. (7.7.4)

Furthermore, if at least one value of xi is outside the interval 0 < xi < 1, then fn(x|θ) =
0 for every value of θ ∈ �. The right side of Eq. (7.7.4) depends on x only through
the value of r(x). Therefore, if we let u(x) = 1 and v(t, θ) = θntθ−1, then fn(x|θ) in
Eq. (7.7.4) can be considered to be factored in the form specified in Eq. (7.7.1). It
follows from the factorization criterion that the statistic T = ∏n

i=1 Xi is a sufficient
statistic for θ . �

Example
7.7.4

Sampling from a Normal Distribution. Suppose that X = (X1, . . . , Xn) form a random
sample from a normal distribution for which the mean μ is unknown and the variance
σ 2 is known. Let r(x) = ∑n

i=1 xi. We shall show that T = r(X) = ∑n
i=1 Xi is a sufficient

statistic for μ.
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For −∞ < xi < ∞ (i = 1, . . . , n), the joint p.d.f. of X is as follows:

fn(x|μ) =
n∏

i=1

1
(2π)1/2σ

exp

[
− (xi − μ)2

2σ 2

]
. (7.7.5)

This equation can be rewritten in the form

fn(x|μ) = 1
(2π)n/2σn

exp

(
− 1

2σ 2

n∑
i=1

x2
i

)
exp

(
μ

σ 2

n∑
i=1

xi − nμ2

2σ 2

)
. (7.7.6)

Let u(x) be the constant factor and the first exponential factor in Eq. (7.7.6). Let
v(t, μ) = exp(μt/σ 2 − nμ2/σ 2). Then fn(x|μ) has now been factored as in Eq. (7.7.1).
It follows from the factorization criterion that T = ∑n

i=1 Xi is a sufficient statistic for
μ. �

Since
∑n

i=1 xi = nxn, we can state equivalently that the final factor in Eq. (7.7.6)
depends on x1, . . . , xn only through the value of xn. Therefore, in Example 7.7.4
the statistic Xn is also a sufficient statistic for μ. More generally (see Exercise 13 at
the end of this section), every one-to-one function of a sufficient statistic is also a
sufficient statistic.

Example
7.7.5

Sampling from a Uniform Distribution. Suppose that X = (X1, . . . , Xn) form a random
sample from the uniform distribution on the interval [0, θ ], where the value of the
parameter θ is unknown (θ > 0). Let r(x) = max{x1, . . . , xn}. We shall show that
T = r(X) = max{X1, . . . , Xn} is a sufficient statistic for θ .

The p.d.f. f (x|θ) of each individual observation Xi is

f (x|θ) =
{

1
θ

for 0 ≤ x ≤ θ ,
0 otherwise.

Therefore, the joint p.d.f. fn(x|θ) of X1, . . . , Xn is

fn(x|θ) =
{

1
θn for 0 ≤ xi ≤ θ , (i = 1, . . . , n),
0 otherwise.

It can be seen that if xi < 0 for at least one value of i (i = 1, . . . , n), then fn(x|θ) = 0
for every value of θ > 0. Therefore, it is only necessary to consider the factorization
of fn(x|θ) for values of xi ≥ 0 (i = 1, . . . , n).

Let v[t, θ ] be defined as follows:

v[t, θ ] =
{

1
θn if t ≤ θ ,
0 if t > θ .

Notice that xi ≤ θ for i = 1, . . . , n if and only if max{x1, . . . , xn} ≤ θ . Therefore, for
xi ≥ 0 (i = 1, . . . , n), we can rewrite fn(x|θ) as follows:

fn(x|θ) = v[r(x), θ ]. (7.7.7)

Letting u(x) = 1, we see that the right side of Eq. (7.7.7) is in the form of Eq. (7.7.1).
It follows that T = max{X1, . . . , Xn} is a sufficient statistic for θ . �

Summary

A statistic T = r(X) is sufficient if, for each t , the conditional distribution of X given
T = t and θ is the same for all values of θ . So, if T is sufficient, and one observed only
T instead of X , one could, at least in principle, simulate random variables X ′ with
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the same joint distribution given θ as X . In this sense, T is sufficient for obtaining
as much information about θ as one could get from X . The factorization criterion
says that T = r(X) is sufficient if and only if the joint p.f. or p.d.f. can be factored as
f (x|θ) = u(x)v[r(x), θ ] for some functions u and v. This is the most convenient way
to identify whether or not a statistic is sufficient.

Exercises

Instructions for Exercises 1 to 10: In each of these ex-
ercises, assume that the random variables X1, . . . , Xn

form a random sample of size n from the distribution
specified in that exercise, and show that the statistic T

specified in the exercise is a sufficient statistic for the
parameter.

1. The Bernoulli distribution with parameter p, which is
unknown (0 < p < 1); T = ∑n

i=1 Xi.

2. The geometric distribution with parameter p, which is
unknown (0 < p < 1); T = ∑n

i=1 Xi.

3. The negative binomial distribution with parameters r

and p, where r is known and p is unknown (0 < p < 1);
T = ∑n

i=1 Xi.

4. The normal distribution for which the mean μ is known
and the variance σ 2 > 0 is unknown; T = ∑n

i=1(Xi − μ)2.

5. The gamma distribution with parameters α and β,
where the value of α is known and the value of β is un-
known (β > 0); T = Xn.

6. The gamma distribution with parameters α and β,
where the value of β is known and the value of α is un-
known (α > 0); T = ∏n

i=1 Xi.

7. The beta distribution with parameters α and β, where
the value of β is known and the value of α is unknown
(α > 0); T = ∏n

i=1 Xi.

8. The uniform distribution on the integers 1, 2, . . . , θ ,
as defined in Sec. 3.1, where the value of θ is unknown
(θ = 1, 2, . . .); T = max{X1, . . . , Xn}.
9. The uniform distribution on the interval [a, b], where
the value of a is known and the value of b is unknown
(b > a); T = max{X1, . . . , Xn}.
10. The uniform distribution on the interval [a, b], where
the value of b is known and the value of a is unknown
(a < b); T = min{X1, . . . , Xn}.
11. Assume that X1, . . . , Xn form a random sample from
a distribution that belongs to an exponential family of
distributions as defined in Exercise 23 of Sec. 7.3. Prove
that T = ∑n

i=1 d(Xi) is a sufficient statistic for θ .

12. Suppose that a random sample X1, . . . , Xn is drawn
from the Pareto distribution with parameters x0 and α.
(See Exercise 16 in Sec. 5.7.)

a. If x0 is known and α > 0 unknown, find a sufficient
statistic.

b. If α is known and x0 unknown, find a sufficient statis-
tic.

13. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. is f (x|θ), where the value
of the parameter θ belongs to a given parameter space �.
Suppose that T = r(X1, . . . , Xn) and T ′ = r ′(X1, . . . , Xn)

are two statistics such that T ′ is a one-to-one function of
T ; that is, the value of T ′ can be determined from the
value of T without knowing the values of X1, . . . , Xn, and
the value of T can be determined from the value of T ′
without knowing the values of X1, . . . , Xn. Show that T ′
is a sufficient statistic for θ if and only if T is a sufficient
statistic for θ .

14. Suppose that X1, . . . , Xn form a random sample from
the gamma distribution specified in Exercise 6. Show that
the statistic T = ∑n

i=1 log Xi is a sufficient statistic for the
parameter α.

15. Suppose that X1, . . . , Xn form a random sample from
the beta distribution with parameters α and β, where the
value of α is known and the value of β is unknown (β > 0).
Show that the following statistic T is a sufficient statistic
for β:

T = 1
n

(
n∑

i=1

log
1

1 − Xi

)4

.

16. Let θ be a parameter with parameter space � equal
to an interval of real numbers (possibly unbounded). Let
X have p.d.f. or p.f. fn(x|θ) conditional on θ . Let T = r(X)

be a statistic. Assume that T is sufficient. Prove that, for
every possible prior p.d.f. for θ , the posterior p.d.f. of θ

given X = x depends on x only through r(x).

17. Let θ be a parameter, and let X be discrete with p.f.
fn(x|θ) conditional on θ . Let T = r(X) be a statistic. Prove
that T is sufficient if and only if, for every t and every x
such that t = r(x), the likelihood function from observ-
ing T = t is proportional to the likelihood function from
observing X = x.
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� 7.8 Jointly Sufficient Statistics
When a parameter θ is multidimensional, sufficient statistics will typically need to
be multidimensional as well. Sometimes, no one-dimensional statistic is sufficient
even when θ is one-dimensional. In either case, we need to extend the concept of
sufficient statistic to deal with cases in which more than one statistic is needed in
order to be sufficient.

Definition of Jointly Sufficient Statistics

Example
7.8.1

Sampling from a Normal Distribution. Return to Example 7.7.4, in which X = (X1, . . . ,

Xn) form a random sample from the normal distribution with mean μ and variance σ 2.
This time, assume that both coordinates of the parameter θ = (μ, σ 2) are unknown.
The joint p.d.f. of X is still given by the right side of Eq. (7.7.5). But now, we would
refer to the joint p.d.f. as fn(x|θ). With both μ and σ 2 unknown, there no longer
appears to be a single statistic that is sufficient. �

We shall continue to suppose that the variables X1, . . . , Xn form a random sam-
ple from a distribution for which the p.d.f. or the p.f. is f (x|θ), where the parameter θ

must belong to some parameter space �. However, we shall now explicitly consider
the possibility that θ may be a vector of real-valued parameters. For example, if the
sample comes from a normal distribution for which both the mean μ and the vari-
ance σ 2 are unknown, then θ would be a two-dimensional vector whose components
are μ and σ 2. Similarly, if the sample comes from a uniform distribution on some
interval [a, b] for which both endpoints a and b are unknown, then θ would be a two-
dimensional vector whose components are a and b. We shall, of course, continue to
include the possibility that θ is a one-dimensional parameter.

In almost every problem in which θ is a vector, as well as in some problems in
which θ is one-dimensional, there does not exist a one-dimensional statistic T that is
sufficient. In such a problem it is necessary to find two or more statistics T1, . . . , Tk

that together are jointly sufficient statistics in a sense that will now be described.
Suppose that in a given problem the statistics T1, . . . , Tk are defined by k different

functions of the vector of observations X = (X1, . . . , Xn). Specifically, let Ti = ri(X)

for i = 1, . . . , k. Loosely speaking, the statistics T1, . . . , Tk are jointly sufficient statis-
tics for θ if a statistician who learns only the values of the k functions r1(X), . . . , rk(X)

can estimate every component of θ and every function of the components of θ , as
well as one who observes the n individual values of X1, . . . , Xn. More formally, we
have the following definition.

Definition
7.8.1

Jointly Sufficient Statistics. Suppose that for each θ and each possible value (t1, . . . , tk)

of (T1, . . . , Tk), the conditional joint distribution of (X1, . . . , Xn) given (T1, . . . , Tk) =
(t1, . . . , tk) does not depend on θ . Then T1, . . . , Tk are called jointly sufficient statistics
for θ .

A version of the factorization criterion exists for jointly sufficient statistics. The
proof will not be given, but it is similar to the proof of Theorem 7.7.1.

Theorem
7.8.1

Factorization Criterion for Jointly Sufficient Statistics. Let r1, . . . , rk be functions of n

real variables. The statistics Ti = ri(X), i = 1, . . . , k, are jointly sufficient statistics for
θ if and only if the joint p.d.f. or the joint p.f. fn(x|θ) can be factored as follows for
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all values of x ∈ Rn and all values of θ ∈ �:

fn(x|θ) = u(x)v[r1(x), . . . , rk(x), θ ]. (7.8.1)

Here the functions u and v are nonnegative, the function u may depend on x but does
not depend on θ , and the function v will depend on θ but depends on x only through
the k functions r1(x), . . . , rk(x).

Example
7.8.2

Jointly Sufficient Statistics for the Parameters of a Normal Distribution. Suppose that
X1, . . . , Xn form a random sample from a normal distribution for which both the
mean μ and the variance σ 2 are unknown. The joint p.d.f. of X1, . . . , Xn is given by
Eq. (7.7.6), and it can be seen that this joint p.d.f. depends on x only through the
values of

∑n
i=1 xi and

∑n
i=1 x2

i
. Therefore, by the factorization criterion, the statistics

T1 = ∑n
i=1 Xi and T2 = ∑n

i=1 X2
i

are jointly sufficient statistics for μ and σ 2. �

Suppose now that in a given problem the statistics T1, . . . , Tk are jointly sufficient
statistics for some parameter vector θ . If k other statistics T ′

1, . . . , T ′
k

are obtained
from T1, . . . , Tk by a one-to-one transformation, then it can be shown that T ′

1, . . . , T ′
k

will also be jointly sufficient statistics for θ .

Example
7.8.3

Another Pair of Jointly Sufficient Statistics for the Parameters of a Normal Distribu-
tion. Suppose again that X1, . . . , Xn form a random sample from a normal distri-
bution for which both the mean μ and the variance σ 2 are unknown. Let T ′

1 = μ̂, the

sample mean, and let T ′
2 = σ̂ 2, the sample variance. Thus,

T ′
1 = Xn and T ′

2 = 1
n

n∑
i=1

(Xi − Xn)
2.

We shall show that T ′
1 and T ′

2 are jointly sufficient statistics for μ and σ 2.
Let T1 and T2 be the jointly sufficient statistics for μ and σ 2 derived in Exam-

ple 7.8.2. Then

T ′
1 = 1

n
T1 and T ′

2 = 1
n
T2 − 1

n2
T 2

1 .

Also, equivalently,

T1 = nT ′
1 and T2 = n(T ′

2 + T
′2

1 ).

Hence, the statistics T ′
1 and T ′

2 are obtained from the jointly sufficient statistics T1 and
T2 by a one-to-one transformation. It follows, therefore, that T ′

1 and T ′
2 themselves

are jointly sufficient statistics for μ and σ 2. �

We have now shown that the jointly sufficient statistics for the unknown mean
and variance of a normal distribution can be chosen to be either T1 and T2, as given
in Example 7.8.2, or T ′

1 and T ′
2, as given in Example 7.8.3.

Example
7.8.4

Jointly Sufficient Statistics for the Parameters of a Uniform Distribution. Suppose that
X1, . . . , Xn form a random sample from the uniform distribution on the interval
[a, b], where the values of both endpoints a and b are unknown (a < b). The joint p.d.f.
fn(x|a, b) of X1, . . . , Xn will be 0 unless all the observed values x1, . . . , xn lie between
a and b; that is, fn(x|a, b) = 0 unless min{x1, . . . , xn} ≥ a and max{x1, . . . , xn} ≤ b.



7.8 Jointly Sufficient Statistics 451

Furthermore, for every vector x such that min{x1, . . . , xn} ≥ a and max{x1, . . . , xn} ≤
b, we have

fn(x|a, b) = 1
(b − a)n

.

For each two numbers y and z, we shall let h(y, z) be defined as follows:

h(y, z) =
{

1 for y ≤ z,
0 for y > z.

For every value of x ∈ Rn, we can then write

fn(x|a, b) = h[a, min{x1, . . . , xn}] h[max{x1, . . . , xn}, b]
(b − a)n

.

Since this expression depends on x only through the values of min{x1, . . . , xn}
and max{x1, . . . , xn}, it follows that the statistics T1 = min{X1, . . . , Xn} and T2 =
max{X1, . . . , Xn} are jointly sufficient statistics for a and b. �

Minimal Sufficient Statistics

In a given problem, we want to try to find a sufficient statistic or a set of jointly
sufficient statistics for θ , because the values of such statistics summarize all the
relevant information about θ contained in the random sample. When a set of jointly
sufficient statistics are known, the search for a good estimator of θ is simplified
because we need consider only functions of these statistics as possible estimators.
Therefore, in a given problem it is desirable to find, not merely any set of jointly
sufficient statistics, but the simplest set of jointly sufficient statistics. That is, we want
the set of sufficient statistics that requires us to consider the smallest collection of
posible estimators. (We make this more precise in Defintion 7.8.3.) For example, it
is correct but completely useless to say that in every problem the n observations
X1, . . . , Xn are jointly sufficient statistics.

We shall now describe another set of jointly sufficient statistics that exist in every
problem and are slightly more useful.

Definition
7.8.2

Order Statistics. Suppose that X1, . . . , Xn form a random sample from some distri-
bution. Let Y1 denote the smallest value in the random sample, let Y2 denote the next
smallest value, let Y3 denote the third smallest value, and so on. In this way, Yn de-
notes the largest value in the sample, and Yn−1 denotes the next largest value. The
random variables Y1, . . . , Yn are called the order statistics of the sample.

Now let y1 ≤ y2 ≤ . . . ≤ yn denote the values of the order statistics for a given
sample. If we are told the values of y1, . . . , yn, then we know that these n values
were obtained in the sample. However, we do not know which one of the observations
X1, . . . , Xn actually yielded the value y1, which one actually yielded the value y2, and
so on. All we know is that the smallest of the values of X1, . . . , Xn was y1, the next
smallest value was y2, and so on.

Theorem
7.8.2

Order Statistics Are Sufficient in Random Samples. Let X1, . . . , Xn form a random
sample from a distribution for which the p.d.f. or the p.f. is f (x|θ). Then the order
statistics Y1, . . . , Yn are jointly sufficient for θ .
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Proof Let y1 ≤ y2 ≤ . . . ≤ yn denote the values of the order statistics. The joint p.d.f.
or joint p.f. of X1, . . . , Xn has the following form:

fn(x|θ) =
n∏

i=1

f (xi|θ). (7.8.2)

Since the order of the factors in the product on the right side of Eq. (7.8.2) is
irrelevant, Eq. (7.8.2) could just as well be rewritten in the form

fn(x|θ) =
n∏

i=1

f (yi|θ).

Hence, fn(x|θ) depends on x only through the values of y1, . . . , yn. It follows, there-
fore, that the order statistics Y1, . . . , Yn are jointly sufficient statistics for θ .

In words, Theorem 7.8.2 says that it is sufficient to know the set of n numbers that
were obtained in the sample, and it is not necessary to know which particular one of
these numbers was, for example, the value of X3.

To see how the order statistic is simpler than the full data vector in the sense
of having fewer possible estimators, note that X3 is an estimator based on the full
data vector, but X3 cannot be determined from the order statistics. Hence X3 is not
an estimator that we would need to consider if we based our inference on the order
statistics. The same is true of all of the averages of the form (Xi1

+ . . . + Xik
)/k for

{i1, . . . , ik} a proper subset of {1, . . . , n}, as well as many other functions. On the
other hand, every estimator based on the order statistics is also a function of the full
data.

In each of the examples that have been given in this section and in Sec. 7.7, we
considered a distribution for which either there was a single sufficient statistic or there
were two statistics that were jointly sufficient. For some distributions, however, the
order statistics Y1, . . . , Yn are the simplest set of jointly sufficient statistics that exist,
and no further reduction in terms of sufficient statistics is possible.

Example
7.8.5

Sufficient Statistics for the Parameter of a Cauchy Distribution. Suppose that X1, . . . , Xn

form a random sample from a Cauchy distribution centered at an unknown point
θ (−∞ < θ < ∞). The p.d.f. f (x|θ) of this distribution is given by Eq. (7.6.6), and the
joint p.d.f. fn(x|θ) of X1, . . . , Xn is given by Eq. (7.6.7). It can be shown that the only
jointly sufficient statistics that exist in this problem are the order statistics Y1, . . . , Yn

or some other set of n statistics T1, . . . , Tn that can be derived from the order statistics
by a one-to-one transformation. The details of the argument will not be given here.

�

These considerations lead us to the concepts of a minimal sufficient statistic and a
minimal set of jointly sufficient statistics. A sufficient statistic T is a minimal sufficient
statistic if every function of T , which itself is a sufficient statistic, is a one-to-one
function of T . Formally, we shall use the following definition, which is equivalent to
the informal definition just given.

Definition
7.8.3

Minimal (Jointly) Sufficient Statistic(s). A statistic T is a minimal sufficient statistic
if T is sufficient and is a function of every other sufficient statistic. A vector T =
(T1, . . . , Tk) of statistics are minimal jointly sufficient statistics if the coordinates of
T are jointly sufficient statistics and T is a function of every other jointly sufficient
statistics.
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In Example 7.8.5, the order statistics Y1, . . . , Yn are minimal jointly sufficient
statistics.

Maximum Likelihood Estimators and Bayes Estimators
as Sufficient Statistics

For the next two theorems, let X1, . . . , Xn form a random sample from a distribution
for which the p.f. or the p.d.f. is f (x|θ), where the value of the parameter θ is unknown
and one-dimensional.

Theorem
7.8.3

M.L.E. and Sufficient Statistics. Let T = r(X1, . . . , Xn) be a sufficient statistic for θ .
Then the M.L.E. θ̂ of θ depends on the observations X1, . . . , Xn only through the
statistic T . Furthermore, if θ̂ is itself sufficient, then it is minimal sufficient.

Proof We show first that θ̂ is a function of every sufficient statistic. Let T = r(X) be a
sufficient statistic. The factorization criterion Theorem 7.7.1 says that the likelihood
function fn(x|θ) can be written in the form

fn(x|θ) = u(x)v[r(x), θ ].

The M.L.E. θ̂ is the value of θ for which fn(x|θ) is a maximum. It follows, therefore,
that θ̂ will be the value of θ for which v[r(x), θ ] is a maximum. Since v[r(x), θ ]depends
on the observed vector x only through the function r(x), it follows that θ̂ will also
depend on x only through the function r(x). Thus, the estimator θ̂ is a function of
T = r(X).

Since the estimator θ̂ is a function of the observations X1, . . . , Xn and is not a
function of the parameter θ , the estimator is itself a statistic. If θ̂ is actually a sufficient
statistic, then it is minimal sufficient because we just showed that it is a function of
every other sufficient statistic.

Theorem 7.8.3 can be extended easily to the case in which the parameter θ is
multidimensional. If θ = (θ1, . . . , θk) is a vector of k real-valued parameters, then the
M.L.E. vector (θ̂1, . . . , θ̂k) will depend on the observations X1, . . . , Xn only through
the functions in a set of jointly sufficient statistics. If the vecotor of the estimators
θ̂1, . . . , θ̂k is a set of jointly sufficient statistics, then they are minimal jointly sufficient
statistics because they are functions of every set of jointly sufficient statistics.

Example
7.8.6

Minimal Jointly Sufficient Statistics for the Parameters of a Normal Distribution. Suppose
that X1, . . . , Xn form a random sample from a normal distribution for which both
the mean μ and the variance σ 2 are unknown. It was shown in Example 7.5.6 that the
M.L.E.’s μ̂ and σ̂ 2 are the sample mean and the sample variance. Also, it was shown
in Example 7.8.3 that μ̂ and σ̂ 2 are jointly sufficient statistics. Hence, μ̂ and σ̂ 2 are
minimal jointly sufficient statistics. �

The statistician in Example 7.8.6 can restrict the search for good estimators of μ

and σ 2 to functions of minimal jointly sufficient statistics. It follows, therefore, from
Example 7.8.6 that if the M.L.E.’s μ̂ and σ̂ 2 themselves are not used as estimators
of μ and σ 2, the only other estimators that need to be considered are functions of μ̂

and σ̂ 2.
The results above concerning M.L.E.’s also pertain to Bayes estimators.
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Theorem
7.8.4

Bayes Estimator and Sufficient Statistics. Let T = r(X) be a sufficient statistic for
θ . Then every Bayes estimator θ̂ of θ depends on the observations X1, . . . , Xn

only through the statistic T . Furthermore, if θ̂ is itself sufficient, then it is minimal
sufficient.

Proof Let the prior p.d.f. or p.f. of θ be ξ(θ). It follows from relation (7.2.10) and
the factorization criterion that the posterior p.d.f. ξ(θ |x) will satisfy the following
relation:

ξ(θ |x) ∝ v[r(x), θ ]ξ(θ).

It can be seen from this relation that the posterior p.d.f. of θ will depend on
the observed vector x only through the value of r(x). Since the Bayes estimator of
θ with respect to a specified loss function is calculated from this posterior p.d.f., the
estimator also will depend on the observed vector x only through the value of r(x). In
other words, the Bayes estimator is a function of T = r(X). Since the Bayes estimator
θ̂ is itself a statistic and is a function of every sufficient statistic T , if θ̂ is also sufficient,
then it is minimal sufficient.

Theorem 7.8.4 also extends to vector parameters and jointly sufficient statistics.

Summary

Statistics T1 = r1(X), . . . , Tk = rk(X) are jointly sufficient if and only if the joint p.f.
or p.d.f. can be factored as fn(x|θ) = u(x)v[r1(x), . . . , rk(x), θ ], for some functions
u and v. It is clear from this factorization that the original data X1, . . . , Xn are
jointly sufficient. In order to be useful, a sufficient statistic should be a simpler
function than the entire data. A minimal sufficient statistic is the simplest function
that is still sufficient; that is, it is a sufficient statistic that is a function of every
sufficient statistic. Since the likelihood function is a function of every sufficient
statistic, according to the factorization criterion, a sufficient statistic that can be
determined from the likelihood function is minimal sufficient. In particular, if an
M.L.E. or Bayes estimator is sufficient, then it is minimal sufficient.

Exercises

Instructions for Exercises 1 to 4: In each exercise, assume
that the random variables X1, . . . , Xn form a random sam-
ple of size n from the distribution specified in the exercise,
and show that the statistics T1 and T2 specified in the exer-
cise are jointly sufficient statistics.

1. A gamma distribution for which both parameters α

and β are unknown (α > 0 and β > 0); T1 = ∏n
i=1 Xi and

T2 = ∑n
i=1 Xi.

2. A beta distribution for which both parameters α and
β are unknown (α > 0 and β > 0); T1 = ∏n

i=1 Xi and T2 =∏n
i=1(1 − Xi).

3. A Pareto distribution (see Exercise 16 of Sec. 5.7)
for which both parameters x0 and α are unknown (x0 >

0 and α > 0); T1 = min{X1, . . . , Xn} and T2 = ∏n
i=1 Xi.

4. The uniform distribution on the interval [θ, θ + 3],
where the value of θ is unknown (−∞ < θ < ∞); T1 =
min{X1,

. . . , Xn} and T2 = max{X1, . . . , Xn}.
5. Suppose that the vectors (X1, Y1), (X2, Y2), . . . ,

(Xn, Yn) form a random sample of two-dimensional vec-
tors from a bivariate normal distribution for which the
means, the variances, and the correlation are unknown.
Show that the following five statistics are jointly sufficient:∑n

i=1 Xi,
∑n

i=1 Yi,
∑n

i=1 X2
i
,
∑n

i=1 Y 2
i
, and

∑n
i=1 XiYi.

6. Consider a distribution for which the p.d.f. or the p.f.
is f (x|θ), where the parameter θ is a k-dimensional vec-
tor belonging to some parameter space �. It is said that
the family of distributions indexed by the values of θ in
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� is a k-parameter exponential family, or a k-parameter
Koopman-Darmois family, if f (x|θ) can be written as fol-
lows for θ ∈ � and all values of x:

f (x|θ) = a(θ)b(x) exp

[
k∑

i=1

ci(θ)di(x)

]
.

Here, a and c1, . . . , ck are arbitrary functions of θ , and b

and d1, . . . , dk are arbitrary functions of x. Suppose now
that X1, . . . , Xn form a random sample from a distribution
which belongs to a k-parameter exponential family of this
type, and define the k statistics T1, . . . , Tk as follows:

Ti =
n∑

j=1

di(Xj) for i = 1, . . . , k.

Show that the statistics T1, . . . , Tk are jointly sufficient
statistics for θ .

7. Show that each of the following families of distribu-
tions is a two-parameter exponential family as defined in
Exercise 6:

a. The family of all normal distributions for which both
the mean and the variance are unknown

b. The family of all gamma distributions for which both
α and β are unknown

c. The family of all beta distributions for which both α

and β are unknown

8. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the
parameter β is unknown (β > 0). Is the M.L.E. of β a
minimal sufficient statistic?

9. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with parameter p, which is un-
known (0 ≤ p ≤ 1). Is the M.L.E. of p a minimal sufficient
statistic?

10. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ], where the
value of θ is unknown (θ > 0). Is the M.L.E. of θ a minimal
sufficient statistic?

11. Suppose that X1, . . . , Xn form a random sample from
a Cauchy distribution centered at an unknown point θ

(−∞ < θ < ∞). Is the M.L.E. of θ a minimal sufficient
statistic?

12. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. is as follows:

f (x|θ) =
{

2x

θ2 for 0 ≤ x ≤ θ ,
0 otherwise.

Here, the value of the parameter θ is unknown (θ > 0).
Determine the M.L.E. of the median of this distribution,
and show that this estimator is a minimal sufficient statistic
for θ .

13. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [a, b], where both
endpoints a and b are unknown. Are the M.L.E.’s of a and
b minimal jointly sufficient statistics?

14. For the conditions of Exercise 5, the M.L.E.’s of the
means, the variances, and the correlation are given in
Exercise 24 of Sec. 7.6. Are these five estimators minimal
jointly sufficient statistics?

15. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with parameter p, which is un-
known, and that the prior distribution of p is a certain
specified beta distribution. Is the Bayes estimator of p

with respect to the squared error loss function a minimal
sufficient statistic?

16. Suppose that X1, . . . , Xn form a random sample from
a Poisson distribution for which the value of the mean λ is
unknown, and that the prior distribution of λ is a certain
specified gamma distribution. Is the Bayes estimator of λ

with respect to the squared error loss function a minimal
sufficient statistic?

17. Suppose that X1, . . . , Xn form a random sample from
a normal distribution for which the value of the mean μ

is unknown and the value of the variance is known, and
the prior distribution of μ is a certain specified normal
distribution. Is the Bayes estimator of μ with respect to the
squared error loss function a minimal sufficient statistic?

� 7.9 Improving an Estimator
In this section, we show how to improve upon an estimator that is not a function of
a sufficient statistic by using an estimator that is a function of a sufficient statistic.

The Mean Squared Error of an Estimator

Example
7.9.1

Customer Arrivals. A store owner is interested in the probability p that exactly one
customer will arrive during a typical hour. She models customer arrivals as a Poisson
process with rate θ per hour and observes how many customers arrive during each
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of n hours, X1, . . . , Xn. She converts each Xi to Yi = 1 if Xi = 1 and Yi = 0 if Xi 	= 1.
Then Y1, . . . , Yn is a random sample from the Bernoulli distribution with parameter
p. The store owner then estimates p by δ(X) = ∑n

i=1 Yi/n. Is this a good estimator? In
particular, if the store owner wants to minimize mean squared error, is there another
estimator that we can show is better? �

In general, suppose that X = (X1, . . . , Xn) form a random sample from a distri-
bution for which the p.d.f. or the p.f. is f (x|θ), where the parameter θ must belong
to some parameter space �. In this section, θ can be a one-dimensional parameter
or a vector of parameters. For each random variable Z = g(X1, . . . , Xn), we shall let
Eθ(Z) denote the expectation of Z calculated with respect to the joint p.d.f. or joint
p.f. fn(x|θ). If we were thinking of θ as a random variable, then Eθ(Z) = E(Z|θ). For
example, if fn(x|θ) is a p.d.f., then

Eθ(Z) =
∫ ∞

−∞
. . .

∫ ∞

−∞
g(x)fn(x|θ) dx1 . . . dxn.

We shall suppose that the value of θ is unknown and that we want to estimate
some function h(θ). If θ is a vector, h(θ) might be one of the coordinates or a function
of all coordinates, and so on. We shall assume that the squared error loss function is
to be used. Also, for each given estimator δ(X) and every given value of θ ∈ �, we
shall let R(θ, δ) denote the M.S.E. of δ calculated with respect to the given value of
θ . Thus,

R(θ, δ) = Eθ([δ(X) − h(θ)]2). (7.9.1)

If we do not assign a prior distribution to θ , then it is desired to find an estimator δ

for which the M.S.E. R(θ, δ) is small for every value of θ ∈ � or, at least, for a wide
range of values of θ .

Suppose now that T is a vector of jointly sufficient statistics for θ . In the re-
mainder of this section we shall refer to T simply as the sufficient statistic. If T is
one-dimensional, just pretend that we wrote it as T . Consider a statistician A who
plans to use a particular estimator δ(X). In Sec. 7.7 we remarked that another statisti-
cian B who learns only the value of the sufficient statistic T can generate, by means of
an auxiliary randomization, an estimator that will have exactly the same distribution
as δ(X) and, in particular, will have the same mean squared error as δ(X) for every
value of θ ∈ �. We shall now show that even without using an auxiliary randomiza-
tion, statistician B can find an estimator δ0 that depends on the observations X only
through the sufficient statistic T and is at least as good an estimator as δ in the sense
that R(θ, δ0) ≤ R(θ, δ), for every value of θ ∈ �.

Conditional Expectation When a Sufficient Statistic Is Known

We shall define the estimator δ0(T) by the following conditional expectation:

δ0(T) = Eθ [δ(X)|T]. (7.9.2)

Since T is a sufficient statistic, the conditional joint distribution of X1, . . . , Xn for
each given value of T is the same for every value of θ ∈ �. Therefore, for any given
value of T, the conditional expectation of the function δ(X) will be the same for
every value of θ ∈ �. It follows that the conditional expectation in Eq. (7.9.2) will
depend on the value of T but will not actually depend on the value of θ . In other
words, the function δ0(T) is indeed an estimator of θ because it depends only on the
observations X and does not depend on the unknown value of θ . For this reason, we
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can omit the subscript θ on the expectation symbol E in Eq. (7.9.2), and we can write
the relation as follows:

δ0(T) = E[δ(X)|T]. (7.9.3)

We can now prove the following theorem, which was established independently
by D. Blackwell and C. R. Rao in the late 1940s.

Theorem
7.9.1

Let δ(X) be an estimator, let T be a sufficient statistic for θ , and let the estimator
δ0(T) be defined as in Eq. (7.9.3). Then for every value of θ ∈ �,

R(θ, δ0) ≤ R(θ, δ). (7.9.4)

Furthermore, if R(θ, δ) < ∞, there is strict inequality in (7.9.4) unless δ(X) is a
function of T.

Proof If the M.S.E. R(θ, δ) is infinite for a given value of θ ∈ �, then the relation
(7.9.4) is automatically satisfied. We shall assume, therefore, that R(θ, δ) < ∞. It
follows from part (a) of Exercise 4 in Sec. 4.4 that

Eθ([δ(X) − θ ]2) ≥ (Eθ [δ(X)] − θ)2,

and it can be shown that this same relationship must also hold if the expectations are
replaced by conditional expectations given T. Therefore,

Eθ([δ(X) − θ ]2|T) ≥ (Eθ [δ(X)|T] − θ)2 = [δ0(T) − θ ]2. (7.9.5)

It now follows from relation (7.9.5) that

R(θ, δ0) = Eθ [{δ0(T) − θ}2] ≤ Eθ{Eθ [{δ(X) − θ}2|T]}
= Eθ [{δ(X) − θ}2] = R(θ, δ),

where the next-to-last equality follows from Theorem 4.7.1, the law of total proba-
bility for expectations. Hence, R(θ, δ0) ≤ R(θ, δ) for every value of θ ∈ �.

Finally, suppose that R(θ, δ) < ∞ and that δ(X) is not a function of T. That is,
there is no function g(T) such that Pr(δ(X) = g(T)|T) = 1. Then part (b) of Exercise 4
in Sec. 4.4 (conditional on T) says that there is strict inequality in (7.9.4).

Example
7.9.2

Customer Arrivals. Return now to Example 7.9.1. Let θ stand for the rate of customer
arrivals in units per hour. Then X forms a random sample from the Poisson distribu-
tion with mean θ . Example 7.7.2 shows us that a sufficient statistic is T = ∑n

i=1 Xi.
The distribution of T is the Poisson distribution with mean nθ . We shall now compute

δ0(T ) = E[δ(X)|T ],

where δ(X) = ∑n
i=1 Yi/n was defined in Example 7.9.1. (Recall that Yi = 1 if Xi = 1

and Yi = 0 if Xi 	= 1 so that δ(X) is the proportion of hours in which exactly one
customer arrives.) For each i and each possible value t of T , it is easy to see that

E(Yi|T = t) = Pr(Xi = 1|T = t) = Pr(Xi = 1, T = t)

Pr(T = t)
=

Pr
(
Xi = 1,

∑
j 	=i Xj = t − 1

)
Pr(T = t)

.
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For t = 0, Pr(Xi = 1|T = 0) = 0 trivially. For t > 0, we see that

Pr(T = t) = e−nθ(nθ)t

t!
,

Pr

⎛⎝Xi = 1,
∑
j 	=i

Xj = t − 1

⎞⎠ = e−θθ × e−[n−1]θ([n − 1]θ)t−1

(t − 1)!
= e−nθ [n − 1]t−1θ t

(t − 1)!
.

The ratio of these two probabilities is

E(Yi|T = t) = t

n

(
1 − 1

n

)t−1

. (7.9.6)

It follows that

δ0(t) = E[δ0(x)|T = t] = E

[
1
n

n∑
i=1

Yi

∣∣∣∣∣ T = t

]
= 1

n

n∑
i=1

E(Yi|T = t).

According to Eq. (7.9.6), all E(Yi|T = t) are the same, so δ0(t) is the right-hand side
of Eq. (7.9.6). That δ0(T ) is better than δ(X) under squared error loss follows from
Theorem 7.9.1. �

A result similar to Theorem 7.9.1 holds if R(θ, δ) is defined as the M.A.E. of
an estimator for a given value of θ ∈ � instead of the M.S.E. of δ. In other words,
suppose that R(θ, δ) is defined as follows:

R(θ, δ) = Eθ(|δ(X) − θ |). (7.9.7)

Then it can be shown (see Exercise 10 at the end of this section) that Theorem 7.9.1
is still true.

Definition
7.9.1

Inadmissible/Admissible/Dominates. Suppose that R(θ, δ) is defined by either Eq.
(7.9.1) or Eq. (7.9.7). It is said that an estimator δ is inadmissible if there exists
another estimator δ0 such that R(θ, δ0) ≤ R(θ, δ) for every value of θ ∈ � and there
is strict inequality in this relation for at least one value of θ ∈ �. Under these condi-
tions, it is also said that the estimator δ0 dominates the estimator δ. An estimator δ0
is admissible if there is no other estimator that dominates δ0.

In the terminology of Definition 7.9.1, Theorem 7.9.1 can be summarized as
follows: An estimator δ that is not a function of the sufficient statistic T alone must
be inadmissible. Theorem 7.9.1 also explicitly identifies an estimator δ0 = E(δ(X)|T)

that dominates δ. However, this part of the theorem is somewhat less useful in a
practical problem, because it is usually very difficult to calculate the conditional
expectation E(δ(X)|T). Theorem 7.9.1 is valuable mainly because it provides further
strong evidence that we can restrict our search for a good estimator of θ to those
estimators that depend on the observations only through a sufficient statistic.

Example
7.9.3

Estimating the Mean of a Normal Distribution. Suppose that X1, . . . , Xn form a random
sample from a normal distribution for which the mean μ is unknown and the variance
is known, and let Y1 ≤ . . . ≤ Yn denote the order statistics of the sample, as defined
in Sec. 7.8. If n is an odd number, then the middle observation Y(n+1)/2 is called the
sample median. If n is an even number, then each value between the two middle
observations Yn/2 and Y(n/2)+1 is a sample median, but the particular value 1

2 [Yn/2 +
Y(n/2)+1] is often referred to as the sample median.
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Since the normal distribution from which the sample is drawn is symmetric with
respect to the point μ, the median of the normal distribution is μ. Therefore, we might
consider the use of the sample median, or a simple function of the sample median,
as an estimator of μ. However, it was shown in Example 7.7.4 that the sample mean
Xn is a sufficient statistic for μ. It follows from Theorem 7.9.1 that every function
of the sample median that might be used as an estimator of μ will be dominated by
some other function of Xn. In searching for an estimator of μ, we need consider only
functions of Xn. �

Example
7.9.4

Estimating the Standard Deviation of a Normal Distribution. Suppose that X1, . . . , Xn

form a random sample from a normal distribution for which both the mean μ and
the variance σ 2 are unknown, and again let Y1 ≤ . . . ≤ Yn denote the order statistics
of the sample. The difference Yn − Y1 is called the range of the sample, and we might
consider using some simple function of the range as an estimator of the standard
deviation σ . However, it was shown in Example 7.8.2 that the statistics

∑n
i=1 Xi and∑n

i=1 X2
i

are jointly sufficient for the parameters μ and σ 2. Therefore, every function
of the range that might be used as an estimator of σ will be dominated by a function
of

∑n
i=1 Xi and

∑n
i=1 X2

i
. �

Example
7.9.5

Failure Times of Ball Bearings. Suppose that we wish to estimate the mean failure time
of the ball bearings described in Example 5.6.9 based on the sample of 23 observed
failure times. Let Y1, . . . , Y23 be the observed failure times (not the logarithms). We
might consider using the average Yn = 1

23

∑23
i=1 Yi as an estimator. Suppose that we

continue to model the logarithms Xi = log(Yi) as normal random variables with mean
θ and variance 0.25. Then Yi has the lognormal distribution with parameters θ and
0.25. From Eq. (5.6.15), the mean of Yi is exp(θ + 0.125), the mean failure time.
However, we know that Xn is sufficient. Since Yn is not a function of Xn, there is
a function of Xn that improves on Yn as an estimator of the mean failure time. We
can actually find which function that is. First, write

E(Yn|Xn) = 1
n

n∑
i=1

E(Yi|Xn). (7.9.8)

In Exercise 15 of Sec. 5.10, you proved that the conditional distribution of Xi given
Xn = xn is the normal distribution with mean xn and variance 0.25(1 − 1/n) for every
i. It follows that, for each i, the conditional distribution of Yi given Xn is the lognormal
distribution with parameters Xn and 0.25(1 − 1/n). Hence, it follows from Eq. (5.6.15)
that the conditional mean of Yi given Xn is exp[Xn + 0.125(1 − 1/n)] for all i, and
Eq. (7.9.8) equals exp[Xn + 0.125(1 − 1/n)] as well. �

Limitation of the Use of Sufficient Statistics

When the foregoing theory of sufficient statistics is applied in a statistical problem,
it is important to keep in mind the following limitation. The existence and the form
of a sufficient statistic in a particular problem depend critically on the form of the
function assumed for the p.d.f. or the p.f. A statistic that is a sufficient statistic when it
is assumed that the p.d.f. is f (x|θ) may not be a sufficient statistic when it is assumed
that the p.d.f. is g(x|θ), even though g(x|θ) may be quite similar to f (x|θ) for every
value of θ ∈ �. Suppose that a statistician is in doubt about the exact form of the p.d.f.
in a specific problem but assumes for convenience that the p.d.f. is f (x|θ); suppose
also that the statistic T is a sufficient statistic under this assumption. Because of the
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statistician’s uncertainty about the exact form of the p.d.f., he may wish to use an
estimator of θ that performs reasonably well for a wide variety of possible p.d.f.’s,
even though the selected estimator may not meet the requirement that it should
depend on the observations only through the statistic T.

An estimator that performs reasonably well for a wide variety of possible p.d.f.’s,
even though it may not necessarily be the best available estimator for any particular
family of p.d.f.’s, is often called a robust estimator. We shall consider robust estimators
further in Chapter 10.

The preceding discussion also raises another useful point to keep in mind. In
Sec. 7.2, we introduced sensitivity analysis as a way to study the effect of the choice
of prior distribution on an inference. The same idea can be applied to any feature of
a statistical model that is chosen by a statistician. In particular, the distribution for
the observations given the parameters, as defined through f (x|θ), is often chosen for
convenience rather than through a careful analysis. One can perform an inference
repeatedly using different distributions for the observable data. The comparison of
the resulting inferences from each choice is another form of sensitivity analysis.

Summary

Suppose that T is a sufficient statistic, and we are trying to estimate a parameter with
squared error loss. Suppose that an estimator δ(X) is not a function of T. Then δ can
be improved by using δ0(T), the conditional mean of δ(X) given T. Because δ0(T) has
the same mean as δ(X) and its variance is no larger, it follows that δ0(T) has M.S.E.
that is no larger than that of δ(X).

Exercises

1. Suppose that the random variables X1, . . . , Xn form a
random sample of size n (n ≥ 2) from the normal distribu-
tion with mean 0 and unknown variance θ . Suppose also
that for every estimator δ(X1, . . . , Xn), the M.S.E. R(θ, δ)

is defined by Eq. (7.9.1). Explain why the sample variance
is an inadmissible estimator of θ .

2. Suppose that the random variables X1, . . . , Xn form
a random sample of size n (n ≥ 2) from the uniform dis-
tribution on the interval [0, θ ], where the value of the
parameter θ is unknown (θ > 0) and must be estimated.
Suppose also that for every estimator δ(X1, . . . , Xn), the
M.S.E. R(θ, δ) is defined by Eq. (7.9.1). Explain why the
estimator δ1(X1, . . . , Xn) = 2Xn is inadmissible.

3. Consider again the conditions of Exercise 2, and let the
estimator δ1 be as defined in that exercise. Determine the
value of the M.S.E. R(θ, δ1) for θ > 0.

4. Consider again the conditions of Exercise 2. Let Yn =
max{X1, . . . , Xn} and consider the estimator δ2(X1, . . . ,

Xn) = Yn.

a. Determine the M.S.E. R(θ, δ2) for θ > 0.

b. Show that for n = 2, R(θ, δ2) = R(θ, δ1) for θ > 0.

c. Show that for n ≥ 3, the estimator δ2 dominates the
estimator δ1.

5. Consider again the conditions of Exercises 2 and 4.
Show that there exists a constant c∗ such that the estimator
c∗Yn dominates every other estimator having the form cYn

for c 	= c∗.

6. Suppose that X1, . . . , Xn form a random sample of size
n (n ≥ 2) from the gamma distribution with parameters α

and β, where the value of α is unknown (α > 0) and the
value of β is known. Explain why Xn is an inadmissible es-
timator of the mean of this distribution when the squared
error loss function is used.

7. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution for which the value of the pa-
rameter β is unknown (β > 0) and must be estimated by
using the squared error loss function. Let δ be the estima-
tor such that δ(X1, . . . , Xn) = 3 for all possible values of
X1, . . . , Xn.

a. Determine the value of the M.S.E. R(β, δ) for β > 0.

b. Explain why the estimator δ must be admissible.
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8. Suppose that a random sample of n observations is
taken from a Poisson distribution for which the value of
the mean θ is unknown (θ > 0), and the value of β = e−θ

must be estimated by using the squared error loss function.
Since β is equal to the probability that an observation from
this Poisson distribution will have the value 0, a natural
estimator of β is the proportion β̂ of observations in the
random sample that have the value 0. Explain why β̂ is an
inadmissible estimator of β.

9. For every random variable X, show that |E(X)| ≤
E(|X|).
10. Let X1, . . . , Xn form a random sample from a distri-
bution for which the p.d.f. or the p.f. is f (x|θ), where θ ∈ �.
Suppose that the value of θ must be estimated, and that
T is a sufficient statistic for θ . Let δ be an arbitrary esti-
mator of θ , and let δ0 be another estimator defined by the
relation δ0 = E(δ|T ). Show that for every value of θ ∈ �,

Eθ(|δ0 − θ |) ≤ Eθ(|δ − θ |).
11. Suppose that the variables X1, . . . , Xn form a random
sample from a distribution for which the p.d.f. or the p.f.
is f (x|θ), where θ ∈ �, and let θ̂ denote the M.L.E. of
θ . Suppose also that the statistic T is a sufficient statistic
for θ , and let the estimator δ0 be defined by the relation
δ0 = E(θ̂ |T ). Compare the estimators θ̂ and δ0.

12. Suppose that X1, . . . , Xn form a sequence of n Ber-
noulli trials for which the probability p of success on any
given trial is unknown (0 ≤ p ≤ 1), and let T = ∑n

i=1 Xi.
Determine the form of the estimator E(X1|T ).

13. Suppose that X1, . . . , Xn form a random sample from
a Poisson distribution for which the value of the mean θ is
unknown (θ > 0). Let T = ∑n

i=1 Xi, and for i = 1, . . . , n,
let the statistic Yi be defined as follows:

Yi =
{

1 if Xi = 0,
0 if Xi > 0.

Determine the form of the estimator E(Yi|T ).

14. Consider again the conditions of Exercise 8. Deter-
mine the form of the estimator E(β̂|T ). You may wish to
use results obtained while solving Exercise 13.

15. Find the M.L.E. of exp(θ + 0.125) in Example 7.9.5.
Both the M.L.E. and the estimator in Example 7.9.5 have
the form exp(Xn + c) for some constant c. Find the value c

so that the estimator exp(Xn + c) has the smallest possible
M.S.E.

16. In Example 7.9.1, find the formula for p in terms of
θ , the mean of each Xi. Also find the M.L.E. of p and
show that the estimator δ0(T ) in Example 7.9.2 is nearly
the same as the M.L.E. if n is large.

7.10 Supplementary Exercises
1. A program will be run with 25 different sets of input.
Let θ stand for the probability that an execution error will
occur during a single run. We believe that, conditional on
θ , each run of the program will encounter an error with
probability θ and that the different runs are independent.
Prior to running the program, we believe that θ has the
uniform distribution on the interval [0, 1]. Suppose that
we get errors during 10 of the 25 runs.

a. Find the posterior distribution of θ .

b. If we wanted to estimate θ by θ̂ using squared error
loss, what would our estimate θ̂ be?

2. Suppose that X1, . . . , Xn are i.i.d. with Pr(Xi = 1) = θ

and Pr(Xi =0)=1 − θ , where θ is unknown (0≤θ ≤1). Find
the M.L.E. of θ2.

3. Suppose that the proportion θ of bad apples in a large
lot is unknown and has the following prior p.d.f.:

ξ(θ) =
{

60θ2(1 − θ)3 for 0 < θ < 1,
0 otherwise.

Suppose that a random sample of 10 apples is drawn from
the lot, and it is found that three are bad. Find the Bayes

estimate of θ with respect to the squared error loss func-
tion.

4. Suppose that X1, . . . , Xn form a random sample from
a uniform distribution with the following p.d.f.:

f (x|θ) =
{

1
θ

for θ ≤ x ≤ 2θ ,
0 otherwise.

Assuming that the value of θ is unknown (θ > 0), deter-
mine the M.L.E. of θ .

5. Suppose that X1 and X2 are independent random vari-
ables, and that Xi has the normal distribution with mean
biμ and variance σ 2

i
for i = 1, 2. Suppose also that b1, b2,

σ 2
1, and σ 2

2 are known positive constants, and that μ is an
unknown parameter. Determine the M.L.E. of μ based on
X1 and X2.

6. Let ψ(α) = �′(α)/�(α) for α > 0 (the digamma func-
tion). Show that

ψ(α + 1) = ψ(α) + 1
α

.
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7. Suppose that a regular light bulb, a long-life light bulb,
and an extra-long-life light bulb are being tested. The life-
time X1 of the regular bulb has the exponential distribu-
tion with mean θ , the lifetime X2 of the long-life bulb has
the exponential distribution with mean 2θ , and the life-
time X3 of the extra-long-life bulb has the exponential
distribution with mean 3θ .

a. Determine the M.L.E. of θ based on the observations
X1, X2, and X3.

b. Let ψ = 1/θ , and suppose that the prior distribution
of ψ is the gamma distribution with parameters α and
β. Determine the posterior distribution of ψ given
X1, X2, and X3.

8. Consider a Markov chain with two possible states s1
and s2 and with stationary transition probabilities as given
in the following transition matrix P :

s1 s2

P = s1

s2

[
θ 1 − θ

3/4 1/4

]
,

where the value of θ is unknown (0 ≤ θ ≤ 1). Suppose that
the initial state X1 of the chain is s1, and let X2, . . . , Xn+1
denote the state of the chain at each of the next n suc-
cessive periods. Determine the M.L.E. of θ based on the
observations X2, . . . , Xn+1.

9. Suppose that an observation X is drawn from a distri-
bution with the following p.d.f.:

f (x|θ) =
{

1
θ

for 0 < x < θ ,
0 otherwise.

Also, suppose that the prior p.d.f. of θ is

ξ(θ) =
{

θe−θ for θ > 0
0 otherwise.

Determine the Bayes estimator of θ with respect to (a) the
mean squared error loss function and (b) the absolute
error loss function.

10. Suppose that X1, . . . , Xn form n Bernoulli trials with
parameter θ = (1/3)(1 + β), where the value of β is un-
known (0 ≤ β ≤ 1). Determine the M.L.E. of β.

11. The method of randomized response is sometimes
used to conduct surveys on sensitive topics. A simple ver-
sion of the method can be described as follows: A random
sample of n persons is drawn from a large population. For
each person in the sample there is probability 1/2 that the
person will be asked a standard question and probability
1/2 that the person will be asked a sensitive question. Fur-
thermore, this selection of the standard or the sensitive
question is made independently from person to person.
If a person is asked the standard question, then there is
probability 1/2 that she will give a positive response; how-
ever if she is asked the sensitive question, then there is

an unknown probability p that she will give a positive re-
sponse. The statistician can observe only the total number
X of positive responses that were given by the n persons
in the sample. He cannot observe which of these persons
were asked the sensitive question or how many persons in
the sample were asked the sensitive question. Determine
the M.L.E. of p based on the observation X.

12. Suppose that a random sample of four observations is
to be drawn from the uniform distribution on the interval
[0, θ ], and that the prior distribution of θ has the following
p.d.f.:

ξ(θ) =
{

1
θ2 for θ ≥ 1,
0 otherwise.

Suppose that the values of the observations in the sam-
ple are found to be 0.6, 0.4, 0.8, and 0.9. Determine the
Bayes estimate of θ with respect to the squared error loss
function.

13. For the conditions of Exercise 12, determine the
Bayes estimate of θ with respect to the absolute error loss
function.

14. Suppose that X1, . . . , Xn form a random sample from
a distribution with the following p.d.f.:

f (x|β, θ) =
{

βe−β(x−θ) for x ≥ θ ,
0 otherwise,

where β and θ are unknown (β > 0, −∞ < θ < ∞). De-
termine a pair of jointly sufficient statistics.

15. Suppose that X1, . . . , Xn form a random sample from
the Pareto distribution with parameters x0 and α (see Ex-
ercise 16 of Sec. 5.7), where x0 is unknown and α is known.
Determine the M.L.E. of x0.

16. Determine whether the estimator found in Exer-
cise 15 is a minimal sufficient statistic.

17. Consider again the conditions of Exercise 15, but sup-
pose now that both parameters x0 and α are unknown.
Determine the M.L.E.’s of x0 and α.

18. Determine whether the estimators found in Exer-
cise 17 are minimal jointly sufficient statistics.

19. Suppose that the random variable X has a binomial
distribution with an unknown value of n and a known
value of p (0 < p < 1). Determine the M.L.E. of n based
on the observation X. Hint: Consider the ratio

f (x|n + 1, p)

f (x|n, p)
.

20. Suppose that two observations X1 and X2 are drawn
at random from a uniform distribution with the following
p.d.f.:

f (x|θ) =
{ 1

2θ
for 0 ≤ x ≤ θ or 2θ ≤ x ≤ 3θ ,

0 otherwise,
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where the value of θ is unknown (θ > 0). Determine the
M.L.E. of θ for each of the following pairs of observed
values of X1 and X2:

a. X1 = 7 and X2 = 9

b. X1 = 4 and X2 = 9

c. X1 = 5 and X2 = 9

21. Suppose that a random sample X1, . . . , Xn is to be
taken from the normal distribution with unknown mean
θ and variance 100, and the prior distribution of θ is the
normal distribution with specified mean μ0 and variance
25. Suppose that θ is to be estimated using the squared
error loss function, and the sampling cost of each obser-
vation is 0.25 (in appropriate units). If the total cost of the
estimation procedure is equal to the expected loss of the
Bayes estimator plus the sampling cost (0.25)n, what is the
sample size n for which the total cost will be a minimum?

22. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean θ , and the
variance of this distribution is to be estimated using the
squared error loss function. Determine whether or not the
sample variance is an admissible estimator.

23. The formulas (7.5.6) for the sample mean and sam-
ple variance are of theoretical importance, but they can
be inefficient or produce inaccurate results if used for nu-
merical calculation with very large samples. For example,

let x1, x2, . . . be a sequence of real numbers. Computing∑n
i=1(xi − xn)

2 directly requires that we first compute xn

and then still have all n observations available so that we
can compute xi − xn for each i. Also, if n is very large,
then computing xn by adding the xi’s together can pro-
duce large rounding errors once the next xi becomes very
small relative to the accummulated sum.

a. Prove the seemingly more efficient formula

n∑
i=1

(xi − xn)
2 =

n∑
i=1

x2
i

− nx2
n
.

With this formula, we could accummulate the sum
of the xi’s and x2

i
’s separately and forget each obser-

vation afterward. We would still suffer the rounding
error problem mentioned above.

b. Prove the following formulas that reduce the round-
ing error problem in accummulating a sum. For each
integer n

xn+1 = xn + 1
n + 1

(xn+1 − xn),

n+1∑
i=1

(xi − xn+1)
2 =

n∑
i=1

(xi − xn)
2 + n

n + 1
(xn+1 − xn)

2.

These formulas allow us to forget each xi after we use
it to update the two formulas.
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8.1 The Sampling Distribution of a Statistic
A statistic is a function of some observable random variables, and hence is itself a
random variable with a distribution. That distribution is its sampling distribution,
and it tells us what values the statistic is likely to assume and how likely it is to
assume those values prior to observing our data. When the distribution of the
observable data is indexed by a parameter, the sampling distribution is specified
as the distribution of the statistic for a given value of the parameter.

Statistics and Estimators

Example
8.1.1

A Clinical Trial. In the clinical trial first introduced in Example 2.1.4, let θ stand for
the proportion who do not relapse among all possible imipramine patients. We could
use the observed proportion of patients without relapse in the imipramine group to
estimate θ . Prior to observing the data, the proportion of sampled patients with no
relapse is a random variable T that has a distribution and will not exactly equal the
parameter θ . However, we hope that T will be close to θ with high probability. For
example, we could try to compute the probability that |T − θ | < 0.1. Such calculations
require that we know the distribution of the random variable T . In the clinical trial,
we modeled the responses of the 40 patients in the imipramine group as conditionally
(given θ) i.i.d. Bernoulli random variables with parameter θ . It follows that the
conditional distribution of 40T given θ is the binomial distribution with parameters
40 and θ . The distribution of T can be derived easily from this. Indeed T has the
following p.f. given θ :

f (t |θ) =
(

40
40t

)
θ40t (1 − θ)40(1−t), for t = 0, 1

40 , 2
40 , . . . , 39

40 , 1,

and f (t |θ) = 0 otherwise. �

The distribution at the end of Example 8.1.1 is called the sampling distribution of
the statistic T , and we can use it to help address questions such as how close we expect
T to be to θ prior to observing the data. We can also use the sampling distribution
of T to help to determine how much we will learn about θ by observing T . If we are

464
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trying to decide which of two different statistics to use as an estimator, their sampling
distributions can be useful for helping us to compare them.

The concept of sampling distribution applies to a larger class of random variables
than statistics.

Definition
8.1.1

Sampling Distribution. Suppose that the random variables X = (X1, . . . , Xn) form a
random sample from a distribution involving a parameter θ whose value is unknown.
Let T be a function of X and possibly θ . That is, T = r(X1, . . . , Xn, θ). The distribu-
tion of T (given θ) is called the sampling distribution of T . We will use the notation
Eθ(T ) to denote the mean of T calculated from its sampling distribution.

The name “sampling distribution” comes from the fact that T depends on a random
sample and so its distribution is derived from the distribution of the sample.

Often, the random variable T in Definition 8.1.1 will not depend on θ , and hence
will be a statistic as defined in Definition 7.1.4. In particular, if T is an estimator
of θ (as defined in Definition 7.4.1), then T is also a statistic because it is a function
of X . Therefore, in principle, it is possible to derive the sampling distribution of each
estimator of θ . In fact, the distributions of many estimators and statistics have already
been found in previous parts of this book.

Example
8.1.2

Sampling Distribution of the M.L.E. of the Mean of a Normal Distribution. Supppose
that X1, . . . , Xn form a random sample from the normal distribution with mean μ

and variance σ 2. We found in Examples 7.5.5 and 7.5.6 that the sample mean Xn is
the M.L.E. of μ. Furthermore, it was found in Corollary 5.6.2 that the distribution of
Xn is the normal distribution with mean μ and variance σ 2/n. �

In this chapter, we shall derive, for random samples from a normal distribution,
the distribution of the sample variance and the distributions of various functions
of the sample mean and the sample variance. These derivations will lead us to
the definitions of some new distributions that play important roles in problems
of statistical inference. In addition, we shall study certain general properties of
estimators and their sampling distributions.

Purpose of the Sampling Distribution

Example
8.1.3

Lifetimes of Electronic Components. Consider the company in Example 7.1.1 that
sells electronic components. They model the lifetimes of these components as i.i.d.
exponential random variables with parameter θ conditional on θ . They model θ as
having the gamma distribution with parameters 1 and 2. Now, suppose that they are
about to observe n = 3 lifetimes, and they will use the posterior mean of θ as an
estimator. According to Theorem 7.3.4, the posterior distribution of θ will be the
gamma distribution with parameters 1 + 3 = 4 and 2 + ∑3

i=1 Xi. The posterior mean
will then be θ̂ = 4/(2 + ∑3

i=1 Xi).
Prior to observing the three lifetimes, the company may want to know how likely

it is that θ̂ will be close to θ . For example, they may want to compute Pr(|θ̂ − θ | < 0.1).
In addition, other interested parties such as customers might be interested in how
close the estimator is going to be to θ . But these others might not wish to assign
the same prior distribution to θ . Indeed, some of them may wish to assign no prior
distribution at all. We shall soon see that all of these people will find it useful to de-
termine the sampling distribution of θ̂ . What they do with that sampling distribution
will differ, but they will all be able to make use of the sampling distribution. �
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In Example 8.1.3, after the company observes the three lifetimes, they will be
interested only in the posterior distribution of θ . They could then compute the
posterior probability that |θ̂ − θ | < 0.1. However, before the sample is taken, both θ̂

and θ are random and Pr(|θ̂ − θ | < 0.1) involves the joint distribution of θ̂ and θ . The
sampling distribution is merely the conditional distribution of θ̂ given θ . Hence, the
law of total probability says that

Pr(|θ̂ − θ | < 0.1) = E
[
Pr(|θ̂ − θ | < 0.1|θ)

]
.

In this way, the company makes use of the sampling distribution of θ̂ as an interme-
diate calculation on the way to computing Pr(|θ̂ − θ | < 0.1).

Example
8.1.4

Lifetimes of Electronic Components. In Example 8.1.3, the sampling distribution of θ̂

does not have a name, but it is easy to see that θ̂ is a monotone function of the statistic
T = ∑3

i=1 Xi that has the gamma distribution with parameters 3 and θ (conditional
on θ). So, we can compute the c.d.f. F(.|θ) for the sampling distribution of θ̂ from the
c.d.f. G(.|θ) of the distribution of T . Argue as follows. For t > 0,

F(t |θ) = Pr(θ̂ ≤ t |θ)

= Pr
(

4
2 + T

≤ t

∣∣∣∣ θ

)
= Pr

(
T ≥ 4

t
− 2

∣∣∣∣ θ

)
= 1 − G

(
4
t

− 2
∣∣∣∣ θ

)
.

For t ≤ 0, F(t |θ) = 0. Most statistical computer packages include the function G,
which is the c.d.f. of a gamma distribution. The company can now compute, for each
θ ,

Pr(|θ̂ − θ | < 0.1|θ) = F(θ + 0.1|θ) − F(θ − 0.1|θ). (8.1.1)

Figure 8.1 shows a graph of this probability as a function of θ . To complete the calcu-
lation of Pr(|θ̂ − θ | < 0.1), we must integrate (8.1.1) with respect to the distribution
of θ , that is, the gamma distribution with parameters 1 and 2. This integral cannot
be performed in closed form and requires a numerical approximation. One such ap-
proximation would be a simulation, which will be discussed in Chapter 12. In this
example, the approximation yields Pr(|θ̂ − θ | < 0.1) ≈ 0.478.

Also included in Fig. 8.1 is the calculation of Pr(|θ̂ − θ | < 0.1|θ) using θ̂ = 3/T , the
M.L.E. of θ . The sampling distribution of the M.L.E. can be derived in Exercise 9 at
the end of this section. Notice that the posterior mean has higher probability of being
close to θ than does the M.L.E. when θ is near the mean of the prior distribution.
When θ is far from the prior mean, the M.L.E. has higher probability of being close
to θ . �

Another case in which the sampling distribution of an estimator is needed is
when the statistician must decide which one of two or more available experiments
should be performed in order to obtain the best estimator of θ . For example, if she
must choose which sample size to use for an experiment, then she will typically base
her decision on the sampling distributions of the different estimators that might be
used for each sample size.
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Figure 8.1 Plot of Pr(|θ̂ −
θ | < 0.1|θ) for both θ̂ equal
to the posterior mean and
θ̂ equal to the M.L.E. in
Example 8.1.4.
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As mentioned at the end of Example 8.1.3, there are statisticians who do not wish
to assign a prior distribution to θ . Those statisticians would not be able to calculate a
posterior distribution for θ . Instead, they would base all of their statistical inferences
on the sampling distribution of whatever estimators they chose. For example, a
statistician who chose to use the M.L.E. of θ in Example 8.1.4 would need to deal
with the entire curve in Fig. 8.1 corresponding to the M.L.E. in order to decide how
likely it is that the M.L.E. will be closer to θ than 0.1. Alternatively, she might choose
a different measure of how close the M.L.E. is to θ .

Example
8.1.5

Lifetimes of Electronic Components. Suppose that a statistician chooses to estimate
θ by the M.L.E., θ̂ = 3/T instead of the posterior mean in Example 8.1.4. This
statistician may not find the graph in Fig. 8.1 very useful unless she can decide which
θ values are most important to consider. Instead of calculating Pr(|θ̂ − θ | < 0.1|θ),
she might compute

Pr

(∣∣∣∣∣ θ̂θ − 1

∣∣∣∣∣ < 0.1

∣∣∣∣∣ θ

)
. (8.1.2)

This is the probability that θ̂ is within 10% of the value of θ . The probability in (8.1.2)
could be computed from the sampling distribution of the M.L.E. Alternatively, one
can notice that θ̂/θ = 3/(θT ), and the distribution of θT is the gamma distribution
with parameters 3 and 1. Hence, θ̂/θ has a distribution that does not depend on θ .
It follows that Pr(|θ̂/θ − 1| < 0.1|θ) is the same number for all θ . In the notation of
Example 8.1.4, the c.d.f. of θT is G(.|1), and hence

Pr

(∣∣∣∣∣ θ̂θ − 1

∣∣∣∣∣ < 0.1

∣∣∣∣∣ θ

)
= Pr

(∣∣∣∣ 3
θT

− 1
∣∣∣∣ < 0.1

∣∣∣∣ θ

)

= Pr
(

0.9 <
3

θT
< 1.1

∣∣∣∣ θ

)
= Pr(2.73 < θT < 3.33|θ)

= G(3.33|1) − G(2.73|1) = 0.134.

The statistician can now claim that the probability is 0.134 that the M.L.E. of θ will
be within 10% of the value of θ , no matter what θ is. �

The random variable θ̂/θ in Example 8.1.5 is an example of a pivotal quantity,
which will be defined and used extensively in Sec. 8.5.
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Figure 8.2 Plot of Pr(|T −
θ | < 0.1|θ) in Example 8.1.6.
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Example
8.1.6

A Clinical Trial. In Example 8.1.1, we found the sampling distribution of T , the pro-
portion of patients without relapse in the imipramine group. Using that distribution,
we can draw a plot similar to that in Fig. 8.1. That is, for each θ , we can compute
Pr(|T − θ | < 0.1|θ). The plot appears in Fig. 8.2. The jumps and cyclic nature of the
plot are due the discreteness of the distribution of T . The smallest probability is
0.7318 at θ = 0.5. (The isolated points that appear below the main part of the graph
at θ equal to each multiple of 1/40 would appear equally far above the main part of
the graph, if we had plotted Pr(|T − θ | ≤ 0.1|θ) instead of Pr(|T − θ | < 0.1|θ).) �

Summary

The sampling distribution of an estimator θ̂ is the conditional distribution of the esti-
mator given the parameter. The sampling distribution can be used as an intermediate
calculation in assessing the properties of a Bayes estimator prior to observing data.
More commonly, the sampling distribution is used by those statisticians who prefer
not to use prior and posterior distributions. For example, before the sample has been
taken, the statistician can use the sampling distribution of θ̂ to calculate the proba-
bility that θ̂ will be close to θ . If this probability is high for every possible value of
θ , then the statistician can feel confident that the observed value of θ̂ will be close
to θ . After the data are observed and a particular estimate is obtained, the statisti-
cian would like to continue feeling confident that the particular estimate is likely to
be close to θ , even though explicit posterior probabilities cannot be given. It is not
always safe to draw such a conclusion, however, as we shall illustrate at the end of
Example 8.5.11.

Exercises

1. Suppose that a random sample X1, . . . , Xn is to be
taken from the uniform distribution on the interval [0, θ ]
and that θ is unknown. How large a random sample must
be taken in order that

Pr
(| max{X1, . . . , Xn} − θ | ≤ 0.1θ

) ≥ 0.95,

for all possible θ?

2. Suppose that a random sample is to be taken from the
normal distribution with unknown mean θ and standard
deviation 2. How large a random sample must be taken
in order that Eθ(|Xn − θ |2) ≤ 0.1 for every possible value
of θ?

3. For the conditions of Exercise 2, how large a random
sample must be taken in order that Eθ(|Xn − θ |) ≤ 0.1 for
every possible value of θ?
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4. For the conditions of Exercise 2, how large a random
sample must be taken in order that Pr(|Xn − θ | ≤ 0.1) ≥
0.95 for every possible value of θ?

5. Suppose that a random sample is to be taken from the
Bernoulli distribution with unknown parameter p. Sup-
pose also that it is believed that the value of p is in the
neighborhood of 0.2. How large a random sample must
be taken in order that Pr(|Xn − p| ≤ 0.1) ≥ 0.75 when
p = 0.2?

6. For the conditions of Exercise 5, use the central limit
theorem in Sec. 6.3 to find approximately the size of a

random sample that must be taken in order that Pr(|Xn −
p| ≤ 0.1) ≥ 0.95 when p = 0.2.

7. For the conditions of Exercise 5, how large a random
sample must be taken in order that Ep(|Xn − p|2) ≤ 0.01
when p = 0.2?

8. For the conditions of Exercise 5, how large a random
sample must be taken in order that Ep(|Xn − p|2) ≤ 0.01
for every possible value of p (0 ≤ p ≤ 1)?

9. Let X1, . . . , Xn be a random sample from the expo-
nential distribution with parameter θ . Find the c.d.f. for
the sampling distribution of the M.L.E. of θ . (The M.L.E.
itself was found in Exercise 7 in Sec. 7.5.)

8.2 The Chi-Square Distributions
The family of chi-square (χ2) distributions is a subcollection of the family of
gamma distributions. These special gamma distributions arise as sampling dis-
tributions of variance estimators based on random samples from a normal distri-
bution.

Definition of the Distributions

Example
8.2.1

M.L.E. of the Variance of a Normal Distribution. Suppose that X1, . . . , Xn form a
random sample from the normal distribution with known mean μ and unknown
variance σ 2. The M.L.E. of σ 2 is found in Exercise 6 in Sec. 7.5. It is

σ̂ 2
0 = 1

n

n∑
i=1

(Xi − μ)2.

The distributions of σ̂ 2
0 and σ̂ 2

0 /σ 2 are useful in several statistical problems, and we
shall derive them in this section. �

In this section, we shall introduce and discuss a particular class of gamma dis-
tributions known as the chi-square (χ2) distributions. These distributions, which are
closely related to random samples from a normal distribution, are widely applied in
the field of statistics. In the remainder of this book, we shall see how they are applied
in many important problems of statistical inference. In this section, we shall present
the definition of the χ2 distributions and some of their basic mathematical properties.

Definition
8.2.1

χ2 Distributions. For each positive number m, the gamma distribution with parame-
ters α = m/2 and β = 1/2 is called the χ2 distribution with m degrees of freedom. (See
Definition 5.7.2 for the definition of the gamma distribution with parameters α and
β.)

It is common to restrict the degrees of freedom m in Definition 8.2.1 to be an integer.
However, there are situations in which it will be useful for the degrees of freedom to
not be integers, so we will not make that restriction.
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If a random variable X has the χ2 distribution with m degrees of freedom, it
follows from Eq. (5.7.13) that the p.d.f. of X for x > 0 is

f (x) = 1
2m/2�(m/2)

x(m/2)−1e−x/2. (8.2.1)

Also, f (x) = 0 for x ≤ 0.
A short table of p quantiles for the χ2 distribution for various values of p and

various degrees of freedom is given at the end of this book. Most statistical software
packages include functions to compute the c.d.f. and the quantile function of an
arbitrary χ2 distribution.

It follows from Definition 8.2.1, and it can be seen from Eq. (8.2.1), that the
χ2 distribution with two degrees of freedom is the exponential distribution with
parameter 1/2 or, equivalently, the exponential distribution for which the mean is
2. Thus, the following three distributions are all the same: the gamma distribution
with parameters α = 1 and β = 1/2, the χ2 distribution with two degrees of freedom,
and the exponential distribution for which the mean is 2.

Properties of the Distributions

The means and variances of χ2 distributions follow immediately from Theorem 5.7.5,
and are given here without proof.

Theorem
8.2.1

Mean and Variance. If a random variable X has the χ2 distribution with m degrees of
freedom, then E(X) = m and Var(X) = 2m.

Furthermore, it follows from the moment generating function given in Eq.
(5.7.15) that the m.g.f. of X is

ψ(t) =
(

1
1 − 2t

)m/2

for t <
1
2
.

The additivity property of the χ2 distribution, which is presented without proof
in the next theorem, follows directly from Theorem 5.7.7.

Theorem
8.2.2

If the random variables X1, . . . , Xk are independent and if Xi has the χ2 distribution
with mi degrees of freedom (i = 1, . . . , k), then the sum X1 + . . . + Xk has the χ2

distribution with m1 + . . . + mk degrees of freedom.

We shall now establish the basic relation between the χ2 distributions and the
standard normal distribution.

Theorem
8.2.3

Let X have the standard normal distribution. Then the random variable Y = X2 has
the χ2 distribution with one degree of freedom.

Proof Let f (y) and F(y) denote, respectively, the p.d.f. and the c.d.f. of Y . Also,
since X has the standard normal distribution, we shall let φ(x) and �(x) denote the
p.d.f. and the c.d.f. of X. Then for y > 0,

F(y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−y1/2 ≤ X ≤ y1/2)

= �(y1/2) − �(−y1/2).
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Since f (y) = F ′(y) and φ(x) = �′(x), it follows from the chain rule for derivatives
that

f (y) = φ(y1/2)

(
1
2
y−1/2

)
+ φ(−y1/2)

(
1
2
y−1/2

)
.

Furthermore, since φ(y1/2) = φ(−y1/2) = (2π)−1/2e−y/2, it now follows that

f (y) = 1
(2π)1/2

y−1/2e−y/2 for y > 0.

By comparing this equation with Eq. (8.2.1), it is seen that the p.d.f. of Y is indeed
the p.d.f. of the χ2 distribution with one degree of freedom.

We can now combine Theorem 8.2.3 with Theorem 8.2.2 to obtain the follow-
ing result, which provides the main reason that the χ2 distribution is important in
statistics.

Corollary
8.2.1

If the random variables X1, . . . , Xm are i.i.d. with the standard normal distribution,
then the sum of squares X2

1 + . . . + X2
m

has the χ2 distribution with m degrees of
freedom.

Example
8.2.2

M.L.E. of the Variance of a Normal Distribution. In Example 8.2.1, the random variables
Zi = (Xi − μ)/σ for i = 1, . . . , n form a random sample from the standard normal
distribution. It follows from Corollary 8.2.1 that the distribution of

∑n
i=1 Z2

i
is the

χ2 distribution with n degrees of freedom. It is easy to see that
∑n

i=1 Z2
i

is precisely

the same as nσ̂ 2
0 /σ 2, which appears in Example 8.2.1. So the distribution of nσ̂ 2

0 /σ 2

is the χ2 distribution with n degrees of freedom. The reader should also be able to
see that the distribution of σ̂ 2

0 itself is the gamma distribution with parameters n/2
and n/(2σ 2) (Exercise 13). �

Example
8.2.3

Acid Concentration in Cheese. Moore and McCabe (1999, p. D-1) describe an experi-
ment conducted in Australia to study the relationship between taste and the chemical
composition of cheese. One chemical whose concentration can affect taste is lactic
acid. Cheese manufacturers who want to establish a loyal customer base would like
the taste to be about the same each time a customer purchases the cheese. The vari-
ation in concentrations of chemicals like lactic acid can lead to variation in the taste
of cheese. Suppose that we model the concentration of lactic acid in several chunks
of cheese as independent normal random variables with mean μ and variance σ 2.
We are interested in how much these concentrations differ from the value μ. Let
X1, . . . , Xk be the concentrations in k chunks, and let Zi = (Xi − μ)/σ . Then

Y = 1
k

k∑
i=1

|Xi − μ|2 = σ 2

k

k∑
i=1

Z2
i

is one measure of how much the k concentrations differ from μ. Suppose that a dif-
ference of u or more in lactic acid concentration is enough to cause a noticeable
difference in taste. We might then wish to calculate Pr(Y ≤ u2). According to Corol-
lary 8.2.1, the distribution of W = kY/σ 2 is χ2 with k degrees of freedom. Hence,
Pr(Y ≤ u2) = Pr(W ≤ ku2/σ 2).

For example, suppose that σ 2 = 0.09, and we are interested in k = 10 cheese
chunks. Furthermore, suppose that u = 0.3 is the critical difference of interest. We
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can write

Pr(Y ≤ 0.32) = Pr
(

W ≤ 10 × 0.09
0.09

)
= Pr(W ≤ 10). (8.2.2)

Using the table of quantiles of the χ2 distribution with 10 degrees of freedom, we
see that 10 is between the 0.5 and 0.6 quantiles. In fact, the probability in Eq. (8.2.2)
can be found by computer software to equal 0.56, so there is a 44 percent chance
that the average squared difference between lactic acid concentration and mean
concentration in 10 chunks will be more than the desired amount. If this probability is
too large, the manufacturer might wish to invest some effort in reducing the variance
of lactic acid concentration. �

Summary

The chi-square distribution with n degrees of freedom is the same as the gamma
distribution with parameters m/2 and 1/2. It is the distribution of the sum of squares
of a sample of m independent standard normal random variables. The mean of the
χ2 distribution with m degrees of freedom is m, and the variance is 2m.

Exercises

1. Suppose that we will sample 20 chunks of cheese in
Example 8.2.3. Let T = ∑20

i=1(Xi − μ)2/20, where Xi is the
concentration of lactic acid in the ith chunk. Assume that
σ 2 = 0.09. What number c satisfies Pr(T ≤ c) = 0.9?

2. Find the mode of the χ2 distribution with m degrees of
freedom (m = 1, 2, . . .).

3. Sketch the p.d.f. of the χ2 distribution with m degrees of
freedom for each of the following values of m. Locate the
mean, the median, and the mode on each sketch. (a) m = 1;
(b) m = 2; (c) m = 3; (d) m = 4.

4. Suppose that a point (X, Y ) is to be chosen at random
in the xy-plane, where X and Y are independent random
variables and each has the standard normal distribution.
If a circle is drawn in the xy-plane with its center at the
origin, what is the radius of the smallest circle that can be
chosen in order for there to be probability 0.99 that the
point (X, Y ) will lie inside the circle?

5. Suppose that a point (X, Y, Z) is to be chosen at ran-
dom in three-dimensional space, where X, Y , and Z are
independent random variables and each has the standard
normal distribution. What is the probability that the dis-
tance from the origin to the point will be less than 1 unit?

6. When the motion of a microscopic particle in a liquid
or a gas is observed, it is seen that the motion is irregular
because the particle collides frequently with other parti-
cles. The probability model for this motion, which is called
Brownian motion, is as follows: A coordinate system is
chosen in the liquid or gas. Suppose that the particle is
at the origin of this coordinate system at time t = 0, and

let (X, Y, Z) denote the coordinates of the particle at any
time t > 0. The random variables X, Y , and Z are i.i.d.,
and each of them has the normal distribution with mean
0 and variance σ 2t . Find the probability that at time t = 2
the particle will lie within a sphere whose center is at the
origin and whose radius is 4σ .

7. Suppose that the random variables X1, . . . , Xn are in-
dependent, and each random variable Xi has a continuous
c.d.f. Fi. Also, let the random variable Y be defined by the
relation Y = −2

∑n
i=1 log Fi(Xi). Show that Y has the χ2

distribution with 2n degrees of freedom.

8. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, 1], and let
W denote the range of the sample, as defined in Exam-
ple 3.9.7. Also, let gn(x) denote the p.d.f. of the random
variable 2n(1 − W), and let g(x) denote the p.d.f. of the
χ2 distribution with four degrees of freedom. Show that

lim
n→∞ gn(x) = g(x) for x > 0.

9. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2. Find
the distribution of

n(Xn − μ)2

σ 2
.

10. Suppose that six random variables X1, . . . , X6 form
a random sample from the standard normal distribution,
and let

Y = (X1 + X2 + X3)
2 + (X4 + X5 + X6)

2.
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Determine a value of c such that the random variable cY

will have a χ2 distribution.

11. If a random variable X has the χ2 distribution with m

degrees of freedom, then the distribution of X1/2 is called a
chi (χ) distribution with m degrees of freedom. Determine
the mean of this distribution.

12. Consider again the situation described in Example
8.2.3. How small would σ 2 need to be in order for Pr(Y ≤
0.09) ≥ 0.9?

13. Prove that the distribution of σ̂ 2
0 in Examples 8.2.1

and 8.2.2 is the gamma distribution with parameters n/2
and n/(2σ 2).

8.3 Joint Distribution of the Sample Mean
and Sample Variance

Suppose that our data form a random sample from a normal distribution. The
sample mean μ̂ and sample variance σ̂ 2 are important statistics that are computed
in order to estimate the parameters of the normal distribution. Their marginal
distributions help us to understand how good each of them is as an estimator of
the corresponding parameter. However, the marginal distribution of μ̂ depends
on σ . The joint distribution of μ̂ and σ̂ 2 will allow us to make inferences about μ

without reference to σ .

Independence of the Sample Mean and Sample Variance

Example
8.3.1

Rain from Seeded Clouds. Simpson, Olsen, and Eden (1975) describe an experiment
in which a random sample of 26 clouds were seeded with silver nitrate to see if they
produced more rain than unseeded clouds. Suppose that, on a log scale, unseeded
clouds typically produced a mean rainfall of 4. In comparing the mean of the seeded
clouds to the unseeded mean, one might naturally see how far the average log-rainfall
of the seeded clouds μ̂ is from 4. But the variation in rainfall within the sample is also
important. For example, if one compared two different samples of seeded clouds,
one would expect the average rainfalls in the two samples to be different just due
to variation between clouds. In order to be confident that seeding the clouds really
produced more rain, we would want the average log-rainfall to exceed 4 by a large
amount compared to the variation between samples, which is closely related to the
variation within samples. Since we do not know the variance for seeded clouds, we
compute the sample variance σ̂ 2. Comparing μ̂ − 4 to σ̂ 2 requires us to consider the
joint distribution of the sample mean and the sample variance. �

Suppose that X1, . . . , Xn form a random sample from the normal distribution
with unknown mean μ and unknown variance σ 2. Then, as was shown in Exam-
ple 7.5.6, the M.L.E.’s of μ and σ 2 are the sample mean Xn and the sample variance
(1/n)

∑n
i=1(Xi − Xn)

2. In this section, we shall derive the joint distribution of these
two estimators.

We already know from Corollary 5.6.2 that the sample mean itself has the normal
distribution with mean μ and variance σ 2/n. We shall establish the noteworthy
property that the sample mean and the sample variance are independent random
variables, even though both are functions of the same random variables X1, . . . , Xn.
Furthermore, we shall show that, except for a scale factor, the sample variance has
the χ2 distribution with n − 1 degrees of freedom. More precisely, we shall show that
the random variable

∑n
i=1(Xi − Xn)

2/σ 2 has the χ2 distribution with n − 1 degrees
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of freedom. This result is also a rather striking property of random samples from a
normal distribution, as the following discussion indicates.

Because the random variables X1, . . . , Xn are independent, and because each
has the normal distribution with mean μ and variance σ 2, the random variables
(X1 − μ)/σ, . . . , (Xn − μ)/σ are also independent, and each of these variables has
the standard normal distribution. It follows from Corollary 8.2.1 that the sum of their
squares

∑n
i=1(Xi − μ)2/σ 2 has the χ2 distribution with n degrees of freedom. Hence,

the striking property mentioned in the previous paragraph is that if the population
mean μ is replaced by the sample mean Xn in this sum of squares, the effect is simply
to reduce the degrees of freedom in the χ2 distribution from n to n − 1. In summary,
we shall establish the following theorem.

Theorem
8.3.1

Suppose that X1, . . . , Xn form a random sample from the normal distribution
with mean μ and variance σ 2. Then the sample mean Xn and the sample variance
(1/n)

∑n
i=1(Xi − Xn)

2 are independent random variables, Xn has the normal distribu-
tion with mean μ and variance σ 2/n, and

∑n
i=1(Xi − Xn)

2/σ 2 has the χ2 distribution
with n − 1 degrees of freedom.

Furthermore, it can be shown that the sample mean and the sample variance are
independent only when the random sample is drawn from a normal distribution. We
shall not consider this result further in this book. However, it does emphasize the
fact that the independence of the sample mean and the sample variance is indeed a
noteworthy property of samples from a normal distribution.

The proof of Theorem 8.3.1 makes use of transformations of several variables as
described in Sec. 3.9 and of the properties of orthogonal matrices. The proof appears
at the end of this section.

Example
8.3.2

Rain from Seeded Clouds. Figure 8.3 is a histogram of the logarithms of the rainfalls
from the seeded clouds in Example 8.3.1. Suppose that these logarithms X1, . . . , X26
are modeled as i.i.d. normal random variables with mean μ and variance σ 2. If we
are interested in how much variation there is in rainfall among the seeded clouds,
we can compute the sample variance σ̂ 2 = ∑26

i=1(Xi − Xn)
2/26. The distribution of

U = 26σ̂ 2/σ 2 is the χ2 distribution with 25 degrees of freedom. We can use this
distribution to tell us how likely it is that σ̂ 2 will overestimate or underestimate σ 2

by various amounts. For example, the χ2 table in this book says that the 0.25 quantile
of the χ2 distribution with 25 degrees of freedom is 19.94, so Pr(U ≤ 19.94) = 0.25.

Figure 8.3 Histogram of
log-rainfalls from seeded
clouds.
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It follows that

0.25 = Pr

(
σ̂ 2

σ 2
≤ 19.94

26

)
= Pr(σ̂ 2 ≤ 0.77σ 2). (8.3.1)

That is, there is probability 0.25 that σ̂ 2 will underestimate σ 2 by 23 percent or more.
The observed value of σ̂ 2 is 2.460 in this example. The probability calculated in
Eq. (8.3.1) has nothing to do with how far 2.460 is from σ 2. Eq. (8.3.1) tells us the
probability (prior to observing the data) that σ̂ 2 would be at least 23% below σ 2. �

Estimation of the Mean and Standard Deviation

We shall assume that X1, . . . , Xn form a random sample from the normal distribution
with unknown mean μ and unknown standard deviation σ . Also, as usual, we shall
denote the M.L.E.’s of μ and σ by μ̂ and σ̂ . Thus,

μ̂ = Xn and σ̂ =
(

1
n

n∑
i=1

(Xi − Xn)
2

)1/2

.

Notice that σ̂ 2 = σ̂ 2, the M.L.E. of σ 2. For the remainder of this book, when referring
to the M.L.E. of σ 2, we shall use whichever symbol σ̂ 2 or σ̂ 2 is more convenient. As an
illustration of the application of Theorem 8.3.1, we shall now determine the smallest
possible sample size n such that the following relation will be satisfied:

Pr
(

|μ̂ − μ| ≤ 1
5
σ and |σ̂ − σ | ≤ 1

5
σ

)
≥ 1

2
. (8.3.2)

In other words, we shall determine the minimum sample size n for which the proba-
bility will be at least 1/2 that neither μ̂ nor σ̂ will differ from the unknown value it is
estimating by more than (1/5)σ .

Because of the independence of μ̂ and σ̂ , the relation (8.3.2) can be rewritten as
follows:

Pr
(

|μ̂ − μ| <
1
5
σ

)
Pr

(
|σ̂ − σ | <

1
5
σ

)
≥ 1

2
. (8.3.3)

If we let p1 denote the first probability on the left side of the relation (8.3.3), and let
U be a random variable that has the standard normal distribution, this probability
can be written in the following form:

p1 = Pr
(√

n|μ̂ − μ|
σ

<
1
5

√
n

)
= Pr

(
|U | <

1
5

√
n

)
.

Similarly, if we let p2 denote the second probability on the left side of the relation
(8.3.3), and let V = nσ̂ 2/σ 2, this probability can be written in the following form:

p2 = Pr
(

0.8 <
σ̂

σ
< 1.2

)
= Pr

(
0.64n <

nσ̂ 2

σ 2
< 1.44n

)
= Pr(0.64n < V < 1.44n).

By Theorem 8.3.1, the random variable V has the χ2 distribution with n − 1 degrees
of freedom.

For each specific value of n, the values of p1 and p2 can be found, at least
approximately, from the table of the standard normal distribution and the table of
the χ2 distribution given at the end of this book. In particular, after various values
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of n have been tried, it will be found that for n = 21 the values of p1 and p2 are
p1 = 0.64 and p2 = 0.78. Hence, p1p2 = 0.50, and it follows that the relation (8.3.2)
will be satisfied for n = 21.

Proof of Theorem 8.3.1

We already knew from Corollary 5.6.2 that the distribution of the sample mean was
as stated in Theorem 8.3.1. What remains to prove is the stated distribution of the
sample variance and the independence of the sample mean and sample variance.

Orthogonal Matrices

We begin with some properties of orthogonal matrices that are essential for the proof.

Definition
8.3.1

Orthogonal Matrix. It is said that an n × n matrix A is orthogonal if A−1 = A′, where
A′ is the transpose of A.

In other words, a matrix A is orthogonal if and only if AA′ = A′A = I , where I is the
n × n identity matrix. It follows from this latter property that a matrix is orthogonal
if and only if the sum of the squares of the elements in each row is 1 and the sum
of the products of the corresponding elements in every pair of different rows is 0.
Alternatively, a matrix is orthogonal if and only if the sum of the squares of the
elements in each column is 1 and the sum of the products of the corresponding
elements in every pair of different columns is 0.

Properties of Orthogonal Matrices We shall now derive two important properties
of orthogonal matrices.

Theorem
8.3.2

Determinant is 1. If A is orthogonal, then |det A| = 1.

Proof To prove this result, it should be recalled that det A = det A′ for every square
matrix A. Also recall that det AB = (det A)(det B) for square matrices A and B.
Therefore,

det(AA′) = (det A)(det A′) = (det A)2.

Also, if A is orthogonal, then AA′ = I , and it follows that

det(AA′) = det I = 1.

Hence (det A)2 = 1 or, equivalently, |det A| = 1.

Theorem
8.3.3

Squared Length Is Preserved. Consider two n-dimensional random vectors

X =
⎡⎢⎣ X1

...
Xn

⎤⎥⎦ and Y =
⎡⎢⎣ Y1

...
Yn

⎤⎥⎦, (8.3.4)

and suppose that Y = AX , where A is an orthogonal matrix. Then
n∑

i=1

Y 2
i

=
n∑

i=1

X2
i
. (8.3.5)
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Proof This result follows from the fact that A′A = I , because
N∑

i=1

Y 2
i

= Y ′Y = X ′A′AX = X ′X =
n∑

i=1

X2
i
.

Multiplication of a vector X by an orthogonal matrix A corresponds to a rotation
of X in n-dimensional space possibly followed by changing the signs of some coor-
dinates. Neither of these operations can change the length of the original vector X ,
and that length equals (

∑n
i=1 X2

i
)1/2.

Together, these two properties of orthogonal matrices imply that if a random
vector Y is obtained from a random vector X by an orthogonal linear transformation
Y = AX , then the absolute value of the Jacobian of the transformation is 1 and∑n

i=1 Y 2
i

= ∑n
i=1 X2

i
.

We combine Theorems 8.3.2 and 8.3.3 to obtain a useful fact about orthogonal
transformations of a random sample of standard normal random variables.

Theorem
8.3.4

Suppose that the random variables, X1, . . . , Xn are i.i.d. and each has the standard
normal distribution. Suppose also that A is an orthogonal n × n matrix, and Y = AX .
Then the random variables Y1, . . . , Yn are also i.i.d., each also has the standard normal
distribution, and

∑n
i=1 X2

i
= ∑n

i=1 Y 2
i
.

Proof The joint p.d.f. of X1, . . . , Xn is as follows, for −∞ < xi < ∞ (i = 1, . . . , n):

fn(x) = 1
(2π)n/2

exp

(
− 1

2

n∑
i=1

x2
i

)
. (8.3.6)

If A is an orthogonal n × n matrix, and the random variables Y1, . . . , Yn are defined by
the relation Y = AX , where the vectors X and Y are as specified in Eq. (8.3.4). This is
a linear transformation, so the joint p.d.f. of Y1, . . . , Yn is obtained from Eq. (3.9.20)
and equals

gn( y) = 1
|det A|fn(A

−1y).

Let x = A−1y. Since A is orthogonal, |det A| = 1 and
∑n

i=1 y2
i
= ∑n

i=1 x2
i
, as we just

proved. So,

gn( y) = 1
(2π)n/2

exp

(
− 1

2

n∑
i=1

y2
i

)
. (8.3.7)

It can be seen from Eq. (8.3.7) that the joint p.d.f. of Y1, . . . , Yn is exactly the
same as the joint p.d.f. of X1, . . . , Xn.

Proof of Theorem 8.3.1

Random Samples from the Standard Normal Distribution We shall begin by
proving Theorem 8.3.1 under the assumption that X1, . . . , Xn form a random sample
from the standard normal distribution. Consider the n-dimensional row vector u, in
which each of the n components has the value 1/

√
n:

u =
[

1√
n

. . .
1√
n

]
. (8.3.8)

Since the sum of the squares of the n components of the vector u is 1, it is possible
to construct an orthogonal matrix A such that the components of the vector u form
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the first row of A. This construction, called the Gram-Schmidt method, is described
in textbooks on linear algebra such as Cullen (1972) and will not be discussed here.
We shall assume that such a matrix A has been constructed, and we shall again define
the random variables Y1, . . . , Yn by the transformation Y = AX .

Since the components of u form the first row of A, it follows that

Y1 = uX =
n∑

i=1

1√
n
Xi = √

n Xn. (8.3.9)

Furthermore, by Theorem 8.3.4,
∑n

i=1 X2
i
= ∑n

i=1 Y 2
i
. Therefore,

n∑
i=2

Y 2
i

=
n∑

i=1

Y 2
i

− Y 2
1 =

n∑
i=1

X2
i
− nX

2
n
=

n∑
i=1

(Xi − Xn)
2.

We have thus obtained the relation

n∑
i=2

Y 2
i

=
n∑

i=1

(Xi − Xn)
2. (8.3.10)

It is known from Theorem 8.3.4 that the random variables Y1, . . . , Yn are in-
dependent. Therefore, the two random variables Y1 and

∑n
i=2 Y 2

i
are independent,

and it follows from Eqs. (8.3.9) and (8.3.10) that Xn and
∑n

i=1(Xi − Xn)
2 are in-

dependent. Furthermore, it is known from Theorem 8.3.4 that the n − 1 random
variables Y2, . . . , Yn are i.i.d., and that each of these random variables has the stan-
dard normal distribution. Hence, by Corollary 8.2.1 the random variable

∑n
i=2 Y 2

i

has the χ2 distribution with n − 1 degrees of freedom. It follows from Eq. (8.3.10)
that

∑n
i=1(Xi − Xn)

2 also has the χ2 distribution with n − 1 degrees of freedom.

Random Samples from an Arbitrary Normal Distribution Thus far, in proving
Theorem 8.3.1, we have considered only random samples from the standard normal
distribution. Suppose now that the random variables X1, . . . , Xn form a random
sample from an arbitrary normal distribution with mean μ and variance σ 2.

If we let Zi = (Xi − μ)/σ for i = 1, . . . , n, then the random variables Z1, . . . , Zn

are independent, and each has the standard normal distribution. In other words, the
joint distribution of Z1, . . . , Zn is the same as the joint distribution of a random
sample from the standard normal distribution. It follows from the results that have
just been obtained that Zn and

∑n
i=1(Zi − Zn)

2 are independent, and
∑n

i=1(Zi − Zn)
2

has the χ2 distribution with n − 1 degrees of freedom. However, Zn = (Xn − μ)/σ

and

n∑
i=1

(Zi − Zn)
2 = 1

σ 2

n∑
i=1

(Xi − Xn)
2. (8.3.11)

We now conclude that the sample mean Xn and the sample variance (1/n)
∑n

i=1(Xi −
Xn)

2 are independent, and that the random variable on the right side of Eq. (8.3.11)
has the χ2 distribution with n − 1 degrees of freedom. All the results stated in
Theorem 8.3.1 have now been established.
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Summary

Let X1, . . . , Xn be a random sample from the normal distribution with mean μ

and variance σ 2. Then the sample mean μ̂ = Xn = 1
n

∑n
i=1 Xi and sample variance

σ̂ 2 = 1
n

∑n
i=1(Xi − Xn)

2 are independent random variables. Furthermore, μ̂ has the

normal distribution with mean μ and variance σ 2/n, and nσ̂ 2/σ 2 has a chi-square
distribution with n − 1 degrees of freedom.

Exercises

1. Assume that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2.
Show that σ̂ 2 has the gamma distribution with parameters
(n − 1)/2 and n/(2σ 2).

2. Determine whether or not each of the five following
matrices is orthogonal:

a.

[ 0 1 0
0 0 1
1 0 0

]
b.

[ 0.8 0 0.6
−0.6 0 0.8

0 −1 0

]

c.

[ 0.8 0 0.6
−0.6 0 0.8

0 0.5 0

]
d.

⎡⎢⎢⎢⎢⎣
− 1√

3
1√
3

1√
3

1√
3

− 1√
3

1√
3

1√
3

1√
3

− 1√
3

⎤⎥⎥⎥⎥⎦

e.

⎡⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1
2

1
2 − 1

2
1
2

− 1
2

1
2

1
2 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎦
3.a. Construct a 2 × 2 orthogonal matrix for which the

first row is as follows:

[ 1√
2

1√
2

] .

b. Construct a 3 × 3 orthogonal matrix for which the
first row is as follows:

[ 1√
3

1√
3

1√
3

] .

4. Suppose that the random variables X1, X2, and X3 are
i.i.d., and that each has the standard normal distribution.
Also, suppose that

Y1 = 0.8X1 + 0.6X2,

Y2 = √
2(0.3X1 − 0.4X2 − 0.5X3),

Y3 = √
2(0.3X1 − 0.4X2 + 0.5X3).

Find the joint distribution of Y1, Y2, and Y3.

5. Suppose that the random variables X1 and X2 are inde-
pendent, and that each has the normal distribution with
mean μ and variance σ 2. Prove that the random variables
X1 + X2 and X1 − X2 are independent.

6. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2. As-
suming that the sample size n is 16, determine the values
of the following probabilities:

a. Pr
[

1
2 σ 2 ≤ 1

n

∑n
i=1(Xi − μ)2 ≤ 2σ 2

]
b. Pr

[
1
2 σ 2 ≤ 1

n

∑n
i=1(Xi − Xn)

2 ≤ 2σ 2
]

7. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2, and
let σ̂ 2 denote the sample variance. Determine the smallest
values of n for which the following relations are satisfied:

a. Pr
(

σ̂ 2

σ 2 ≤ 1.5
)

≥ 0.95

b. Pr
(
|σ̂ 2 − σ 2| ≤ 1

2 σ 2
)

≥ 0.8

8. Suppose that X has the χ2 distribution with 200 degrees
of freedom. Explain why the central limit theorem can be
used to determine the approximate value of Pr(160 < X <

240) and find this approximate value.

9. Suppose that each of two statisticians, A and B, inde-
pendently takes a random sample of 20 observations from
the normal distribution with unknown mean μ and known
variance 4. Suppose also that statistician A finds the sam-
ple variance in his random sample to be 3.8, and statis-
tician B finds the sample variance in her random sample
to be 9.4. For which random sample is the sample mean
likely to be closer to the unknown value of μ?
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8.4 The t Distributions
When our data are a sample from the normal distribution with mean μ and vari-
ance σ 2, the distribution of Z = n1/2(μ̂ − μ)/σ is the standard normal distribution,
where μ̂ is the sample mean. If σ 2 is unknown, we can replace σ by an estimator
(similar to the M.L.E.) in the formula for Z. The resulting random variable has
the t distribution with n − 1 degrees of freedom and is useful for making inferences
about μ alone even when both μ and σ 2 are unknown.

Definition of the Distributions

Example
8.4.1

Rain from Seeded Clouds. Consider the same sample of log-rainfall measurements
from 26 seeded clouds from Example 8.3.2. Suppose now that we are interested in
how far the sample average Xn of those measurements is from the mean μ. We know
that n1/2(Xn − μ)/σ has the standard normal distribution, but we do not know σ . If
we replace σ by an estimator σ̂ such as the M.L.E., or something similar, what is the
distribution of n1/2(Xn − μ)/σ̂ , and how can we make use of this random variable to
make inferences about μ? �

In this section, we shall introduce and discuss another family of distributions,
called the t distributions, which are closely related to random samples from a normal
distribution. The t distributions, like the χ2 distributions, have been widely applied in
important problems of statistical inference. The t distributions are also known as Stu-
dent’s distributions (see Student, 1908), in honor of W. S. Gosset, who published his
studies of this distribution in 1908 under the pen name “Student.” The distributions
are defined as follows.

Definition
8.4.1

t Distributions. Consider two independent random variables Y and Z, such that Y

has the χ2 distribution with m degrees of freedom and Z has the standard normal
distribution. Suppose that a random variable X is defined by the equation

X = Z(
Y

m

)1/2
. (8.4.1)

Then the distribution of X is called the t distribution with m degrees of freedom.

The derivation of the p.d.f. of the t distribution with m degrees of freedom makes
use of the methods of Sec. 3.9 and will be given at the end of this section. But we state
the result here.

Theorem
8.4.1

Probability Density Function. The p.d.f. of the t distribution with m degrees of freedom
is

�
(

m+1
2

)
(mπ)1/2�

(
m
2

)(1 + x2

m

)−(m+1)/2

for − ∞ < x < ∞. (8.4.2)

Moments of the t Distributions Although the mean of the t distribution does not
exist when m ≤ 1, the mean does exist for every value of m > 1. Of course, whenever
the mean does exist, its value is 0 because of the symmetry of the t distribution.
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In general, if a random variable X has the t distribution with m degrees of
freedom (m > 1), then it can be shown that E(|X|k) < ∞ for k < m and that E(|X|k) =
∞ for k ≥ m. If m is an integer, the first m − 1 moments of X exist, but no moments
of higher order exist. It follows, therefore, that the m.g.f. of X does not exist.

It can be shown (see Exercise 1 at the end of this section) that if X has the t

distribution with m degrees of freedom (m > 2), then Var(X) = m/(m − 2).

Relation to Random Samples from a Normal Distribution

Example
8.4.2

Rain from Seeded Clouds. Return to Example 8.4.1. We have already seen that Z =
n1/2(Xn − μ)/σ has the standard normal distribution. Furthermore, Theorem 8.3.1
says that Xn (and hence Z) is independent of Y = nσ̂ 2/σ 2, which has the χ2 dis-
tribution with n − 1 degrees of freedom. It follows that Z/(Y/[n − 1])1/2 has the t

distribution with n − 1 degrees of freedom. We shall show how to use this fact after
stating the general version of this result. �

Theorem
8.4.2

Suppose that X1, . . . , Xn form a random sample from the normal distribution with
mean μ and variance σ 2. Let Xn denote the sample mean, and define

σ ′ =
[∑n

i=1(Xi − Xn)
2

n − 1

]1/2

. (8.4.3)

Then n1/2(Xn − μ)/σ ′ has the t distribution with n − 1 degrees of freedom.

Proof Define S2
n
=∑n

i=1(Xi − Xn)
2. Next, define Z = n1/2(Xn − μ)/σ and Y = S2

n
/σ 2.

It follows from Theorem 8.3.1 that Y and Z are independent, Y has the χ2 distribution
with n − 1 degrees of freedom, and Z has the standard normal distribution. Finally,
define U by

U = Z(
Y

n − 1

)1/2
.

It follows from the definition of the t distribution that U has the t distribution with
n − 1 degrees of freedom. It is easily seen that U can be rewritten as

U = n1/2(Xn − μ)(
S2

n

n − 1

)1/2
. (8.4.4)

The denominator of the expression on the right side of Eq. (8.4.4) is easily recognized
as σ ′ defined in Eq. (8.4.3).

The first rigorous proof of Theorem 8.4.2 was given by R. A. Fisher in 1923.
One important aspect of Eq. (8.4.4) is that neither the value of U nor the

distribution of U depends on the value of the variance σ 2. In Example 8.4.1, we tried
replacing σ in the random variable Z = n1/2(Xn − μ)/σ by σ̂ . Instead, Theorem 8.4.2
suggests that we should replace σ by σ ′ defined in Eq. (8.4.3). If we replace σ by σ ′,
we produce the random variable U in Eq. (8.4.4) that does not involve σ and also
has a distribution that does not depend on σ .
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The reader should notice that σ ′ differs from the M.L.E. σ̂ of σ by a constant
factor,

σ ′ =
[

S2
n

n − 1

]1/2

=
(

n

n − 1

)1/2

σ̂ . (8.4.5)

It can be seen from Eq. (8.4.5) that for large values of n the estimators σ ′ and σ̂ will
be very close to each other. The estimator σ ′ will be discussed further in Sec. 8.7.

If the sample size n is large, the probability that the estimator σ ′ will be close to σ

is high. Hence, replacing σ by σ ′ in the random variable Z will not greatly change the
standard normal distribution of Z. For this reason, it is plausible that the t distribution
with n − 1 degrees of freedom should be close to the standard normal distribution if
n is large. We shall return to this point more formally later in this section.

Example
8.4.3

Rain from Seeded Clouds. Return to Example 8.4.2. Under the assumption that the
observations X1, . . . , Xn (log-rainfalls) are independent with common normal distri-
bution, the distribution of U = n1/2(Xn − μ)/σ ′ is the t distribution with n − 1degrees
of freedom. With n = 26, the table of the t distribution tells us that the 0.9 quantile
of the t distribution with 25 degrees of freedom is 1.316, so Pr(U ≤ 1.316) = 0.9. It
follows that

Pr
(
Xn ≤ μ + 0.2581σ ′) = 0.9,

because 1.316/(26)1/2 = 0.2581. That is, the probability is 0.9 that Xn will be no more
than 0.2581 times σ ′ above μ. Of course, σ ′ is a random variable as well as Xn, so this
result is not as informative as we might have hoped. In Sections 8.5 and 8.6, we will
show how to make use of the t distribution to make some standard inferences about
the unknown mean μ. �

Relation to the Cauchy Distribution and to the Standard
Normal Distribution

It can be seen from Eq. (8.4.2) (and Fig. 8.4) that the p.d.f. g(x) is a symmetric, bell-
shaped function with its maximum value at x = 0. Thus, its general shape is similar
to that of the p.d.f. of a normal distribution with mean 0. However, as x → ∞ or
x → −∞, the tails of the p.d.f. g(x) approach 0 much more slowly than do the tails
of the p.d.f. of a normal distribution. In fact, it can be seen from Eq. (8.4.2) that the t

distribution with one degree of freedom is the Cauchy distribution, which was defined
in Example 4.1.8. The p.d.f. of the Cauchy distribution was sketched in Fig. 4.3. It
was shown in Example 4.1.8 that the mean of the Cauchy distribution does not exist,
because the integral that specifies the value of the mean is not absolutely convergent.
It follows that, although the p.d.f. of the t distribution with one degree of freedom
is symmetric with respect to the point x = 0, the mean of this distribution does not
exist.

It can also be shown from Eq. (8.4.2) that, as n → ∞, the p.d.f. g(x) converges to
the p.d.f. φ(x) of the standard normal distribution for every value of x (−∞ < x < ∞).
This follows from Theorem 5.3.3 and the following result:

lim
m→∞

�
(
m + 1

2

)
�(m)m1/2

= 1. (8.4.6)
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Figure 8.4 p.d.f.’s of stan-
dard normal and t distribu-
tions.
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(See Exercise 7 for a way to prove the above result.) Hence, when n is large, the t

distribution with n degrees of freedom can be approximated by the standard normal
distribution. Figure 8.4 shows the p.d.f. of the standard normal distribution together
with the p.d.f.’s of the t distributions with 1, 5, and 20 degrees of freedom so that the
reader can see how the t distributions get closer to normal as the degrees of freedom
increase.

A short table of p quantiles for the t distribution with m degrees of freedom for
various values of p and m is given at the end of this book. The probabilities in the
first line of the table, corresponding to m = 1, are those for the Cauchy distribution.
The probabilities in the bottom line of the table corresponding to m = ∞ are those
for the standard normal distribution. Most statistical packages include a function to
compute the c.d.f. and the quantile function of an arbitrary t distribution.

Derivation of the p.d.f.

Suppose that the joint distribution of Y and Z is as specified in Definition 8.4.1. Then,
because Y and Z are independent, their joint p.d.f. is equal to the product f1(y)f2(z),
where f1(y) is the p.d.f. of the χ2 distribution with m degrees of freedom and f2(z) is
the p.d.f. of the standard normal distribution. Let X be defined by Eq. (8.4.1) and, as
a convenient device, let W = Y . We shall determine first the joint p.d.f. of X and W .

From the definitions of X and W ,

Z = X

(
W

m

)1/2

and Y = W. (8.4.7)

The Jacobian of the transformation (8.4.7) from X and W to Y and Z is (W/m)1/2.
The joint p.d.f. f (x, w) of X and W can be obtained from the joint p.d.f. f1(y)f2(z) by
replacing y and z by the expressions given in (8.4.7) and then multiplying the result
by (w/m)1/2. It is then found that the value of f (x, w) is as follows, for −∞ < x < ∞
and w > 0:

f (x, w) = f1(w)f2

(
x

[
w

m

]1/2
) (

w

m

)1/2

= cw(m+1)/2−1 exp

[
− 1

2

(
1 + x2

m

)
w

]
, (8.4.8)

where
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c =
[

2(m+1)/2(mπ)1/2�

(
m

2

)]−1

.

The marginal p.d.f. g(x) of X can be obtained from Eq. (8.4.8) by using the
relation

g(x) =
∫

f (x, w) dw

= c

∫ ∞

0
w(m+1)/2−1 exp[−wh(x)] dw,

where h(x) = [1 + x2/m]/2. It follows from Eq. (5.7.10) that

g(x) = c
�((m + 1)/2)

h(x)(m+1)/2
.

Substituting the formula for c into this yields the function in (8.4.2).

Summary

Let X1, . . . , Xn be a random sample from the normal distribution with mean μ

and variance σ 2. Let Xn = 1
n

∑n
i=1 Xi and σ ′ =

(
1

n−1

∑n
i=1(Xi − Xn)

2
)1/2

. Then the

distribution of n1/2(Xn − μ)/σ ′ is the t distribution with n − 1 degrees of freedom.

Exercises

1. Suppose that X has the t distribution with m degrees
of freedom (m > 2). Show that Var(X) = m/(m − 2). Hint:
To evaluate E(X2), restrict the integral to the positive half
of the real line and change the variable from x to

y =
x2

m

1 + x2

m

.

Compare the integral with the p.d.f. of a beta distribution.
Alternatively, use Exercise 21 in Sec. 5.7.

2. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known standard deviation σ , and let μ̂ and σ̂ denote the
M.L.E.’s of μ and σ . For the sample size n = 17, find a
value of k such that

Pr(μ̂ > μ + kσ̂ ) = 0.95.

3. Suppose that the five random variables X1, . . . , X5 are
i.i.d. and that each has the standard normal distribution.
Determine a constant c such that the random variable

c(X1 + X2)

(X2
3 + X2

4 + X2
5)

1/2

will have a t distribution.

4. By using the table of the t distribution given in the back
of this book, determine the value of the integral∫ 2.5

−∞
dx

(12 + x2)2
.

5. Suppose that the random variables X1 and X2 are in-
dependent and that each has the normal distribution with
mean 0 and variance σ 2. Determine the value of

Pr

[
(X1 + X2)

2

(X1 − X2)
2

< 4

]
.

Hint:

(X1 − X2)
2 = 2

[(
X1 − X1 + X2

2

)2

+
(

X2 − X1 + X2

2

)2
]

.
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6. In Example 8.2.3, suppose that we will observe n = 20
cheese chunks with lactic acid concen-
trations X1, . . . , X20. Find a number c so that
Pr(X20 ≤ μ + cσ ′) = 0.95.

7. Prove the limit formula Eq. (8.4.6). Hint: Use Theo-
rem 5.7.4.

8. Let X have the standard normal distribution, and let
Y have the t distribution with five degrees of freedom.
Explain why c = 1.63 provides the largest value of the
difference Pr(−c < X < c) − Pr(−c < Y < c). Hint: Start
by looking at Fig. 8.4.

8.5 Confidence Intervals
Confidence intervals provide a method of adding more information to an estimator
θ̂ when we wish to estimate an unknown parameter θ . We can find an interval
(A, B) that we think has high probability of containing θ . The length of such an
interval gives us an idea of how closely we can estimate θ .

Confidence Intervals for the Mean of a Normal Distribution

Example
8.5.1

Rain from Seeded Clouds. In Example 8.3.2, the average of the n = 26 log-rainfalls
from the seeded clouds is Xn. This may be a sensible estimator of the μ, the mean
log-rainfall from a seeded cloud, but it doesn’t give any idea how much stock we
should place in the estimator. The standard deviation of Xn is σ/(26)1/2, and we could
estimate σ by an estimator like σ ′ from Eq. (8.4.3). Is there a sensible way to combine
these two estimators into an inference that tells us both what we should estimate for
μ and how much confidence we should place in the estimator? �

Assume that X1, . . . , Xn, form a random sample from the normal distribution
with mean μ and variance σ 2. Construct the estimators Xn of μ and σ ′ of σ . We shall
now show how to make use of the random variable

U = n1/2(Xn − μ)

σ ′ (8.5.1)

from Eq. (8.4.4) to address the question at the end of Example 8.5.1. We know that U

has the t distribution with n − 1 degrees of freedom. Hence, we can calculate the c.d.f.
of U and/or quantiles of U using either statistical software or tables such as those
in the back of this book. In particular, we can compute Pr(−c < U < c) for every
c > 0. The inequalities −c < U < c can be translated into inequalities involving μ by
making use of the formula for U in Eq. (8.5.1). Simple algebra shows that −c < U < c

is equivalent to

Xn − cσ ′

n1/2
< μ < Xn + cσ ′

n1/2
. (8.5.2)

Whatever probability we can assign to the event {−c < U < c} we can also assign to
the event that Eq. (8.5.2) holds. For example, if Pr(−c < U < c) = γ , then

Pr
(

Xn − cσ ′

n1/2
< μ < Xn + cσ ′

n1/2

)
= γ. (8.5.3)

One must be careful to understand the probability statement in Eq. (8.5.3) as being
a statement about the joint distribution of the random variables Xn and σ ′ for fixed
values of μ and σ . That is, it is a statement about the sampling distribution of Xn and
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σ ′, and is conditional on μ and σ . In particular, it is not a statement about μ even if
we treat μ as a random variable.

The most popular version of the calculation above is to choose γ and then figure
out what c must be in order to make (8.5.3) true. That is, what value of c makes
Pr(−c < U < c) = γ ? Let Tn−1 denote the c.d.f. of the t distribution with n − 1 degrees
of freedom. Then

γ = Pr(−c < U < c) = Tn−1(c) − Tn−1(−c).

Since the t distributions are symmetric around 0, Tn−1(−c) = 1 − Tn−1(c), so γ =
2Tn−1(c) − 1 or, equivalently, c = T −1

n−1([1 + γ ]/2). That is, c must be the (1 + γ )/2
quantile of the t distribution with n − 1 degrees of freedom.

Example
8.5.2

Rain from Seeded Clouds. In Example 8.3.2, we have n = 26. If we want γ = 0.95 in
Eq. (8.5.3), then we need c to be the 1.95/2 = 0.975 quantile of the t distribution with
25 degrees of freedom. This can be found in the table of t distribution quantiles in the
back of the book to be c = 2.060. We can plug this value into Eq. (8.5.3) and combine
the constants c/n1/2 = 2.060/261/2 = 0.404. Then Eq. (8.5.3) states that regardless of
the unknown values of μ and σ , the probability is 0.95 that the two random variables
A = Xn − 0.404σ ′ and B = Xn + 0.404σ ′ will lie on opposite sides of μ. �

The interval (A, B), whose endpoints were computed at the end of Example 8.5.2,
is called a confidence interval.

Definition
8.5.1

Confidence Interval. Let X = (X1, . . . , Xn) be a random sample from a distribution
that depends on a parameter (or parameter vector) θ . Let g(θ) be a real-valued
function of θ . Let A ≤ B be two statistics that have the property that for all values
of θ ,

Pr(A < g(θ) < B) ≥ γ. (8.5.4)

Then the random interval (A, B) is called a coefficient γ confidence interval for g(θ)

or a 100γ percent confidence interval for g(θ). If the inequality “≥ γ ” in Eq. (8.5.4)
is an equality for all θ , the confidence interval is called exact. After the values of the
random variables X1, . . . , Xn in the random sample have been observed, the values
of A = a and B = b are computed, and the interval (a, b) is called the observed value
of the confidence interval.

In Example 8.5.2, θ = (μ, σ 2), and the interval (A, B) found in that example is an
exact 95% confidence interval for g(θ) = μ.

Based on the discussion preceding Definition 8.5.1, we have established the
following.

Theorem
8.5.1

Confidence Interval for the Mean of a Normal Distribution. Let X1, . . . , Xn be a random
sample from the normal distribution with mean μ and variance σ 2. For each 0 < γ < 1,
the interval (A, B) with the following endpoints is an exact coefficient γ confidence
interval for μ:

A = Xn − T −1
n−1

(
1 + γ

2

)
σ ′

n1/2
,

B = Xn + T −1
n−1

(
1 + γ

2

)
σ ′

n1/2
.
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Figure 8.5 A sample of
one hundred observed 95%
confidence intervals based
on samples of size 26 from
the normal distribution with
mean μ = 5.1 and standard
deviation σ = 1.6. In this
figure, 94% of the intervals
contain the value of μ. 20
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Example
8.5.3

Rain from Seeded Clouds. In Example 8.5.2, the average of the 26 log-rainfalls from
the seeded clouds is Xn = 5.134. The observed value of σ ′ is 1.600. The observed
values of A and B are, respectively, a = 5.134 − 0.404 × 1.600 = 4.488 and b = 5.134 +
0.404 × 1.600 = 5.780. The observed value of the 95% confidence interval is then
(4.488, 5.780). For comparison, the mean unseeded level of 4 is a bit below the lower
endpoint of this interval. �

Interpretaton of Confidence Intervals The interpretation of the confidence inter-
val (A, B) defined in Definition 8.5.1 is straightforward, so long as one remembers
that Pr(A < g(θ) < B) = γ is a probability statement about the joint distribution of
the two random variables A and B given a particular value of θ . Once we compute the
observed values a and b, the observed interval (a, b) is not so easy to interpret. For
example, some people would like to interpret the interval in Example 8.5.3 as mean-
ing that we are 95% confident that μ is between 4.488 and 5.780. Later in this section,
we shall show why such an interpretation is not safe in general. Before observing the
data, we can be 95% confident that the random interval (A, B) will contain μ, but
after observing the data, the safest interpretation is that (a, b) is simply the observed
value of the random interval (A, B). One way to think of the random interval (A, B)

is to imagine that the sample that we observed is one of many possible samples that
we could have observed (or may yet observe in the future). Each such sample would
allow us to compute an observed interval. Prior to observing the samples, we would
expect 95% of the intervals to contain μ. Even if we observed many such intervals,
we won’t know which ones contain μ and which ones don’t. Figure 8.5 contains a
plot of 100 observed values of confidence intervals, each computed from a sample of
size n = 26 from the normal distribution with mean μ = 5.1 and standard deviation
σ = 1.6. In this example, 94 of the 100 intervals contain the value of μ.

Example
8.5.4

Acid Concentration in Cheese. In Example 8.2.3, we discussed a random sample of
10 lactic acid measurements from cheese. Suppose that we desire to compute a 90%
confidence interval for μ, the unknown mean lactic acid concentration. The number c

that we need in Eq. (8.5.3) when n = 10 and γ = 0.9 is the (1 + 0.9)/2 = 0.95 quantile
of the t distribution with nine degrees of freedom, c = 1.833. According to Eq. (8.5.3),
the endpoints will be Xn plus and minus 1.833σ ′/(10)1/2. Suppose that we observe
the following 10 lactic acid concentrations as reported by Moore and McCabe (1999,
p. D-1):

0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58.
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The average of these 10 values is xn = 1.379, and the value of σ ′ = 0.3277. The
endpoints of the observed value of our 90% confidence interval are then 1.379 −
1.833 × 0.3277/(10)1/2 = 1.189 and 1.379 + 1.833 × 0.3277/(10)1/2 = 1.569. �

Note: Alternative Definitions of Confidence Interval. Many authors define confi-
dence intervals precisely as we have done here. Some others define the confidence
interval to be what we called the observed value of the confidence interval, namely,
(a, b), and they need another name for the random interval (A, B). Throughout this
book, we shall stay with the definition we have given, but the reader who studies
statistics further might encounter the other definition at a later date. Also, some
authors define confidence intervals to be closed intervals rather than open intervals.

One-Sided Confidence Intervals

Example
8.5.5

Rain from Seeded Clouds. Suppose that we are interested only in obtaining a lower
bound on μ, the mean log-rainfall of seeded clouds. In the spirit of confidence
intervals, we could then seek a random variable A such that Pr(A < μ) = γ . If we
let B = ∞ in Definition 8.5.1, we see that (A, ∞) is then a coefficient γ confidence
interval for μ. �

For a given confidence coefficient γ , it is possible to construct many different
confidence intervals for μ. For example, let γ2 > γ1 be two numbers such that γ2 −
γ1 = γ , and let U be as in Eq. (8.5.1). Then

Pr
(
T −1

n−1(γ1) < U < T −1
n−1(γ2)

)
= γ,

and the following statistics are the endpoints of a coefficient γ confidence interval
for μ:

A = Xn + T −1
n−1(γ1)

σ ′

n1/2
and B = Xn + T −1

n−1(γ2)
σ ′

n1/2
.

Among all such coefficient γ confidence intervals, the symmetric interval with γ1 =
1 − γ2 is the shortest one.

Nevertheless, there are cases, such as Example 8.5.5, in which an asymmetric
confidence interval is useful. In general, it is a simple matter to extend Definition 8.5.1
to allow either A = −∞ or B = ∞ so that the confidence interval either has the form
(−∞, B) or (A, ∞).

Definition
8.5.2

One-Sided Confidence Intervals/Limits. Let X = (X1, . . . , Xn) be a random sample
from a distribution that depends on a parameter (or parameter vector) θ . Let g(θ)

be a real-valued function of θ . Let A be a statistic that has the property that for all
values of θ ,

Pr(A < g(θ)) ≥ γ. (8.5.5)

Then the random interval (A, ∞) is called a one-sided coefficient γ confidence interval
for g(θ) or a one-sided 100γ percent confidence interval for g(θ). Also, A is called a
coefficient γ lower confidence limit for g(θ) or a 100γ percent lower confidence limit
for g(θ). Similarly, if B is a statistic such that

Pr(g(θ) < B) ≥ γ, (8.5.6)

then (−∞, B) is a one-sided coefficient γ confidence interval for g(θ) or a one-sided
100γ percent confidence interval for g(θ) and B is a coefficient γ upper confidence limit
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for g(θ) or a 100γ percent upper confidence limit for g(θ). If the inequality “≥ γ ” in
either Eq. (8.5.5) or Eq. (8.5.6) is equality for all θ , the corresponding confidence
interval and confidence limit are called exact.

The following result follows in much the same way as Theorem 8.5.1.

Theorem
8.5.2

One-Sided Confidence Intervals for the Mean of a Normal Distribution. Let X1, . . . , Xn

be a random sample from the normal distribution with mean μ and variance σ 2.
For each 0 < γ < 1, the following statistics are, respectively, exact lower and upper
coefficient γ confidence limits for μ:

A = Xn − T −1
n−1 (γ )

σ ′

n1/2
,

B = Xn + T −1
n−1 (γ )

σ ′

n1/2
.

Example
8.5.6

Rain from Seeded Clouds. In Example 8.5.5, suppose that we want a 90% lower
confidence limit for μ. We find T −1

25 (0.9) = 1.316. Using the observed data from
Example 8.5.3, we compute the observed lower confidence limit as

a = 5.134 − 1.316
1.600
261/2

= 4.727. �

Confidence Intervals for Other Parameters

Example
8.5.7

Lifetimes of Electronic Components. Recall the company in Example 8.1.3 that is es-
timating the failure rate θ of electronic components based on a sample of n = 3
observed lifetimes X1, X2, X3. The statistic T = ∑3

i=1 Xi was used in Examples 8.1.4
and 8.1.5 to make some inferences. We can use the distribution of T to construct con-
fidence intervals for θ . Recall from Example 8.1.5 that θT has the gamma distribution
with parameters 3 and 1 for all θ . Let G stand for the c.d.f. of this gamma distribution.
Then Pr(θT < G−1(γ )) = γ for all θ . It follows that Pr(θ < G−1(γ )/T ) = γ for all θ ,
and G−1(γ )/T is an exact coefficient γ upper confidence limit for θ . For example, if
the company would like to have a random variable B so that they can be 98% confi-
dent that the failure rate θ is bounded above by B, they can find G−1(0.98) = 7.516.
Then B = 7.516/T is the desired upper confidence limit. �

In Example 8.5.7, the random variable θT has the property that its distribution
is the same for all θ . The random variable U in Eq. (8.5.1) has the property that its
distribution is the same for all μ and σ . Such random variables greatly facilitate the
construction of confidence intervals.

Definition
8.5.3

Pivotal. Let X = (X1, . . . , Xn) be a random sample from a distribution that depends
on a parameter (or vector of parameters) θ . Let V (X, θ) be a random variable whose
distribution is the same for all θ . Then V is called a pivotal quantity (or simply a
pivotal).

In order to be able to use a pivotal to construct a confidence interval for g(θ), one
needs to be able to “invert” the pivotal. That is, one needs a function r(v, x) such
that

r (V (X, θ), X) = g(θ). (8.5.7)

If such a function exists, then one can use it to construct confidence intervals.
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Theorem
8.5.3

Confidence Interval from a Pivotal. Let X = (X1, . . . , Xn) be a random sample from a
distribution that depends on a parameter (or vector of parameters) θ . Suppose that
a pivotal V exists. Let G be the c.d.f. of V , and assume that G is continuous. Assume
that a function r exists as in Eq. (8.5.7), and assume that r(v, x) is strictly increasing in
v for each x. Let 0 < γ < 1 and let γ2 > γ1 be such that γ2 − γ1 = γ . Then the following
statistics are the endpoints of an exact coefficient γ confidence interval for g(θ):

A = r
(
G−1(γ1), X

)
,

B = r
(
G−1(γ2), X

)
.

If r(v, x) is strictly decreasing in v for each x, then switch the definitions of A and B.

Proof If r(v, x) is strictly increasing in v for each x, we have

V (X, θ) < c if and only if g(θ) < r(c, X). (8.5.8)

Let c = G−1(γi) in Eq. (8.5.8) for each of i = 1, 2 to obtain

Pr(g(θ) < A) = γ1,

Pr(g(θ) < B) = γ2. (8.5.9)

Because V has a continuous distribution and r is strictly increasing,

Pr(A = g(θ)) = Pr(V (X, θ) = G−1(γ1)) = 0.

Similarly, Pr(B = g(θ)) = 0. The two equations in (8.5.9) combine to give Pr(A <

g(θ) < B) = γ . The proof when r is strictly decreasing is similar and is left to the
reader.

Example
8.5.8

Pivotal for Estimating the Variance of a Normal Distribution. Let X1, . . . , Xn be a ran-
dom sample from the normal distribution with mean μ and variance σ 2 In Theo-
rem 8.3.1, we found that the random variable V (X, θ) = ∑n

i=1(Xi − Xn)
2/σ 2 has the

χ2 distribution with n − 1 degrees of freedom for all θ = (μ, σ 2). This makes V a piv-
otal. The reader can use this pivotal in Exercise 5 in this section to find a confidence
interval of g(θ) = σ 2. �

Sometimes pivotals do not exist. This is common when the data have a discrete
distribution.

Example
8.5.9

A Clinical Trial. Consider the imipramine treatment group in the clinical trial in
Example 2.1.4. Let θ stand for the proportion of successes among a very large
population of imipramine patients. Suppose that the clinicians desire a random
variable A such that, for all θ , Pr(A < θ) ≥ 0.9. That is, they want to be 90% confident
that the success proportion is at least A. The observable data consist of the number X

of successes in a random sample of n = 40 patients. No pivotal exists in this example,
and confidence intervals are more difficult to construct. In Example 9.1.16, we shall
see a method that applies to this case. �

Even with discrete data, if the sample size is large enough to apply the central
limit theorem, one can find approximate confidence intervals.

Example
8.5.10

Approximate Confidence Interval for Poisson Mean. Suppose that X1, . . . , Xn have the
Poisson distribution with unknown mean θ . Suppose that n is large enough so that
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Xn has approximately a normal distribution. In Example 6.3.8 on page 365, we found
that

Pr
(
|2X

1/2
n

− 2θ1/2| < c
)

≈ 2�(cn1/2) − 1. (8.5.10)

After we observe Xn = x, Eq. (8.5.10) says that(
−c + 2x1/2, c + 2x1/2

)
(8.5.11)

is the observed value of an approximate confidence interval for 2θ1/2 with coefficient
2�(cn1/2) − 1. For example, if c = 0.196 and n = 100, then 2�(cn1/2) − 1 = 0.95. The
inverse of g(θ) = 2θ1/2 is g−1(y) = y2/4, which is an increasing function of y for
y ≥ 0. If both endpoints of (8.5.11) are nonnegative, then we know that 2θ1/2 is in
the interval (8.5.11) if and only if θ is in the interval(

1
4

[−c + 2x1/2]2,
1
4

[c + 2x1/2]2
)

. (8.5.12)

If −c + 2x1/2 < 0, the left endpoints of (8.5.11) and (8.5.12) should be replaced by
0. With this modification, (8.5.12) is the observed value of an approximate coefficient
2�(cn1/2) − 1 confidence interval for θ . �

Shortcoming of Confidence Intervals

Interpretation of Confidence Intervals Let (A, B) be a coefficient γ confidence
interval for a parameter θ , and let (a, b) be the observed value of the interval. It
is important to understand that it is not correct to say that θ lies in the interval
(a, b) with probability γ . We shall explain this point further here. Before the values
of the statistics A(X1, . . . , Xn) and B(X1, . . . , Xn) are observed, these statistics are
random variables. It follows, therefore, from Definition 8.5.1 that θ will lie in the
random interval having endpoints A(X1, . . . , Xn) and B(X1, . . . , Xn) with probability
γ . After the specific values A(X1, . . . , Xn) = a and B(X1, . . . , Xn) = b have been
observed, it is not possible to assign a probability to the event that θ lies in the
specific interval (a, b) without regarding θ as a random variable, which itself has a
probability distribution. In order to calculate the probability that θ lies in the interval
(a, b), it is necessary first to assign a prior distribution to θ and then use the resulting
posterior distribution. Instead of assigning a prior distribution to the parameter θ ,
many statisticians prefer to state that there is confidence γ , rather than probability
γ , that θ lies in the interval (a, b). Because of this distinction between confidence
and probability, the meaning and the relevance of confidence intervals in statistical
practice is a somewhat controversial topic.

Information Can Be Ignored In accordance with the preceding explanation, the
interpretation of a confidence coefficient γ for a confidence interval is as follows: Be-
fore a sample is taken, there is probability γ that the interval that will be constructed
from the sample will include the unknown value of θ . After the sample values are
observed, however, there might be additional information about whether or not the
interval formed from these particular values actually does include θ . How to adjust
the confidence coefficient γ in the light of this information is another controversial
topic.
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Figure 8.6 p.d.f. of X2 in Example 8.5.11.

Example
8.5.11

Uniforms on an Interval of Length One. Suppose that two observations X1 and X2

are taken at random from the uniform distribution on the interval
[
θ − 1

2 , θ + 1
2

]
,

where the value of θ is unknown (−∞ < θ < ∞). If we let Y1 = min{X1, X2} and
Y2 = max{X1, X2}, then

Pr(Y1 < θ < Y2) = Pr(X1 < θ < X2) + Pr(X2 < θ < X1)

= Pr(X1 < θ) Pr(X2 > θ) + Pr(X2 < θ) Pr(X1 > θ)

= (1/2)(1/2) + (1/2)(1/2) = 1/2. (8.5.13)

It follows from Eq. (8.5.13) that (Y1, Y2) is a confidence interval for θ with confidence
coefficient 1/2. However, the analysis can be carried further.

Since both observations X1 and X2 must be at least θ − (1/2), and both must be
at most θ + (1/2), we know with certainty that Y1 ≥ θ − (1/2) and Y2 ≤ θ + (1/2). In
other words, we know with certainty that

Y2 − (1/2) ≤ θ ≤ Y1 + (1/2). (8.5.14)

Suppose now that Y1 = y1 and Y2 = y2 are observed such that (y2 − y1) > 1/2. Then
y1 < y2 − (1/2), and it follows from Eq. (8.5.14) that y1 < θ . Moreover, because
y1 + (1/2) < y2, it also follows from Eq. (8.5.14) that θ < y2. Thus, if (y2 − y1) > 1/2,
then y1 < θ < y2. In other words, if (y2 − y1) > 1/2, then we know with certainty that
the observed value (y1, y2) of the confidence interval includes the unknown value of
θ , even though the confidence coefficient of this interval is only 1/2.

Indeed, even when (y2 − y1) ≤ 1/2, the closer the value of (y2 − y1) is to 1/2, the
more certain we feel that the interval (y1, y2) includes θ . Also, the closer the value
of (y2 − y1) is to 0, the more certain we feel that the interval (y1, y2) does not include
θ . However, the confidence coefficient necessarily remains 1/2 and does not depend
on the observed values y1 and y2.

This example also helps to illustrate the statement of caution made at the end of
Sec. 8.1. In this problem, it might seem natural to estimate θ by X2 = 0.5(X1 + X2).
Using the methods of Sec. 3.9, we can find the p.d.f. of X2:

g(x) =

⎧⎪⎨⎪⎩
4x − 4θ + 2 if θ − 1

2 < x ≤ θ ,
4θ − 4x + 2 if θ < x < θ + 1

2 ,
0 otherwise.
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Figure 8.6 shows the p.d.f. g, which is triangular. This makes it fairly simple to compute
the probability that X2 is close to θ :

Pr(|X2 − θ | < c) = 4c(1 − c),

for 0 < c < 1/2, and the probability is 1 for c ≥ 1/2. For example, if c = 0.3, Pr(|X2 −
θ | < 0.3) = 0.84. However, the random variable Z = Y2 − Y1 contains useful informa-
tion that is not accounted for in this calculation. Indeed, the conditional distribution
of X2 given Z = z is uniform on the interval

[
θ − 1

2 (1 − z), θ + 1
2 (1 − z)

]
. We see that

the larger the observed value of z, the shorter the range of possible values of X2. In
particular, the conditional probability that X2 is close to θ given Z = z is

Pr(|X2 − θ | < c|Z = z) =
{

2c
1−z

if c ≤ (1 − z)/2,

1 if c > (1 − z)/2.
(8.5.15)

For example, if z = 0.1, then Pr(|X2 − θ | < 0.3|Z = 0.1) = 0.6667, which is quite a bit
smaller than the marginal probability of 0.84. This illustrates why it is not always safe
to assume that our estimate is close to the parameter just because the sampling dis-
tribution of the estimator had high probability of being close. There may be other
information available that suggests to us that the estimate is not as close as the sam-
pling distribution suggests, or that it is closer than the sampling distribution suggests.
(The reader should calculate Pr(|X2 − θ | < 0.3|Z = 0.9) for the other extreme.) �

In the next section, we shall discuss Bayesian methods for analyzing a random
sample from a normal distribution for which both the mean μ and the variance σ 2

are unknown. We shall assign a joint prior distribution to μ and σ 2, and shall then
calculate the posterior probability that μ belongs to any given interval (a, b). It can
be shown [see, e.g., DeGroot (1970)] that if the joint prior p.d.f. of μ and σ 2 is fairly
smooth and does not assign high probability to any particular small set of values of
μ and σ 2, and if the sample size n is large, then the confidence coefficient assigned to
a particular confidence interval (A, B) for the mean μ will be approximately equal
to the posterior probability that μ lies in the observed interval (a, b). An example
of this approximate equality is included in the next section. Therefore, under these
conditions, the differences between the results obtained by the practical application
of methods based on confidence intervals and methods based on prior probabilities
will be small. Nevertheless interpretations of these methods will differ. As an aside,
a Bayesian analysis of Example 8.5.11 will necessarily take into account the extra
information contained in the random variable Z. See Exercise 10 for an example.

Summary

Let X1, . . . , Xn be a random sample of independent random variables from the nor-
mal distribution with mean μ and variance σ 2. Let the observed values be x1, . . . , xn.
Let Xn = 1

n

∑n
i=1 Xi and σ ′2 = 1

n−1

∑n
i=1(Xi − Xn)

2. The interval (Xn − cσ ′/n1/2,

X + cσ ′/n1/2) is a coefficient γ confidence interval for μ, where c is the (1 + γ )/2
quantile of the t distribution with n − 1 degrees of freedom.
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Exercises

1. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance σ 2. Let � stand for the c.d.f. of the standard
normal distribution, and let �−1 be its inverse. Show that
the following interval is a coefficient γ confidence interval
for μ if Xn is the observed average of the data values:(

Xn − �−1
(

1 + γ

2

)
σ

n1/2
, Xn + �−1

(
1 + γ

2

)
σ

n1/2

)
.

2. Suppose that a random sample of eight observations is
taken from the normal distribution with unknown mean
μ and unknown variance σ 2, and that the observed values
are 3.1, 3.5, 2.6, 3.4, 3.8, 3.0, 2.9, and 2.2. Find the shortest
confidence interval for μ with each of the following three
confidence coefficients: (a) 0.90, (b) 0.95, and (c) 0.99.

3. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known variance σ 2, and let the random variable L denote
the length of the shortest confidence interval for μ that
can be constructed from the observed values in the sam-
ple. Find the value of E(L2) for the following values of the
sample size n and the confidence coefficient γ :

a. n = 5, γ = 0.95 d. n = 8, γ = 0.90

b. n = 10, γ = 0.95 e. n = 8, γ = 0.95

c. n = 30, γ = 0.95 f. n = 8, γ = 0.99

4. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance σ 2. How large a random sample must be taken
in order that there will be a confidence interval for μ with
confidence coefficient 0.95 and length less than 0.01σ?

5. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known variance σ 2. Describe a method for constructing a
confidence interval for σ 2 with a specified confidence co-
efficient γ (0 < γ < 1). Hint: Determine constants c1 and
c2 such that

Pr

[
c1 <

∑n
i=1(Xi − Xn)

2

σ 2
< c2

]
= γ.

6. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with unknown mean μ. De-
scribe a method for constructing a confidence interval for
μ with a specified confidence coefficient γ (0 < γ < 1).
Hint: Determine constants c1 and c2 such that Pr[c1 <

(1/μ)
∑n

i=1 Xi < c2] = γ .

7. In the June 1986 issue of Consumer Reports, some data
on the calorie content of beef hot dogs is given. Here are
the numbers of calories in 20 different hot dog brands:

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152, 111, 141, 153, 190, 157, 131, 149, 135, 132.

Assume that these numbers are the observed values from
a random sample of twenty independent normal random
variables with mean μ and variance σ 2, both unknown.
Find a 90% confidence interval for the mean number of
calories μ.

8. At the end of Example 8.5.11, compute the probability
that |X2 − θ | < 0.3 given Z = 0.9. Why is it so large?

9. In the situation of Example 8.5.11, suppose that we
observe X1 = 4.7 and X2 = 5.3.

a. Find the 50% confidence interval described in Exam-
ple 8.5.11.

b. Find the interval of possible θ values that are consis-
tent with the observed data.

c. Is the 50% confidence interval larger or smaller than
the set of possible θ values?

d. Calculate the value of the random variable Z = Y2 −
Y1 as described in Example 8.5.11.

e. Use Eq. (8.5.15) to compute the conditional proba-
bility that |X2 − θ | < 0.1 given Z equal to the value
computed in part (d).

10. In the situation of Exercise 9, suppose that a prior dis-
tribution is used for θ with p.d.f. ξ(θ) = 0.1 exp(−0.1θ) for
θ > 0. (This is the exponential distribution with parameter
0.1.)

a. Prove that the posterior p.d.f. of θ given the data
observed in Exercise 9 is

ξ(θ |x) =
{

4.122 exp(−0.1θ) if 4.8 < θ < 5.2,

0 otherwise.

b. Calculate the posterior probability that |θ − x2| <

0.1, where x2 is the observed average of the data
values.

c. Calculate the posterior probability that θ is in the
confidence interval found in part (a) of Exercise 9.

d. Can you explain why the answer to part (b) is so close
to the answer to part (e) of Exercise 9? Hint: Com-
pare the posterior p.d.f. in part (a) to the function in
Eq. (8.5.15).

11. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with parameter p. Let Xn be
the sample average. Use the variance stabilizing transfor-
mation found in Exercise 5 of Section 6.5 to construct an
approximate coefficient γ confidence interval for p.

12. Complete the proof of Theorem 8.5.3 by dealing with
the case in which r(v, x) is strictly decreasing in v for each
x.



8.6 Bayesian Analysis of Samples from a Normal Distribution 495

� 8.6 Bayesian Analysis of Samples from a
Normal Distribution

When we are interested in constructing a prior distribution for the parameters μ

and σ 2 of a normal distribution, it is more convenient to work with τ = 1/σ 2, called
the precision. A conjugate family of prior distributions is introduced for μ and τ ,
and the posterior distribution is derived. Interval estimates of μ can be constructed
from the posterior and these are similar to confidence intervals in form, but they
are interpreted differently.

The Precision of a Normal Distribution

Example
8.6.1

Rain from Seeded Clouds. In Example 8.3.1, we mentioned that it was of interest
whether the mean log-rainfall μ from seeded clouds exceeded the mean log-rainfall
of unseeded clouds, namely, 4. Although we were able to find an estimator of μ and we
were able to construct a confidence interval for μ, we have not yet directly addressed
the question of whether or not μ > 4 or how likely it is that μ > 4. If we construct a
joint prior distribution for both μ and σ 2, we can then find the posterior distribution
of μ and finally provide direct answers to these questions. �

Suppose that X1, . . . , Xn form a random sample from the normal distribution
with unknown mean μ and unknown variance σ 2. In this section, we shall consider
the assignment of a joint prior distribution to the parameters μ and σ 2 and study
the posterior distribution that is then derived from the observed values in the sam-
ple. Manipulating prior and posterior distributions for the parameters of a normal
distribution turns out to be simpler if we reparameterize from μ and σ 2 to μ and
τ = 1/σ 2.

Definition
8.6.1

Precision of a Normal Distribution. The precision τ of a normal distribution is defined
as the reciprocal of the variance; that is, τ = 1/σ 2.

If a random variable has the normal distribution with mean μ and precision τ ,
then its p.d.f. f (x|μ, τ) is specified as follows, for −∞ < x < ∞:

f (x|μ, τ) =
(

τ

2π

)1/2

exp
[
− 1

2
τ(x − μ)2

]
.

Similarly, if X1, . . . , Xn form a random sample from the normal distribution
with mean μ and precision τ , then their joint p.d.f. fn(x|μ, τ) is as follows, for
−∞ < xi < ∞ (i = 1, . . . , n):

fn(x|μ, τ) =
(

τ

2π

)n/2

exp

[
− 1

2
τ

n∑
i=1

(xi − μ)2

]
.

A Conjugate Family of Prior Distributions

We shall now describe a conjugate family of joint prior distributions for μ and τ .
We shall specify the joint distribution of μ and τ by specifying both the conditional
distribution of μ given τ and the marginal distribution of τ . In particular, we shall
assume that the conditional distribution of μ for each given value of τ is a normal
distribution for which the precision is proportional to the given value of τ , and also
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that the marginal distribution of τ is a gamma distribution. The family of all joint
distributions of this type is a conjugate family of joint prior distributions. If the joint
prior distribution of μ and τ belongs to this family, then for every possible set of
observed values in the random sample, the joint posterior distribution of μ and τ

will also belong to the family. This result is established in Theorem 8.6.1. We shall
use the following notation in the theorem and the remainder of this section:

xn = 1
n

n∑
i=1

xi, s2
n

=
n∑

i=1

(xi − xn)
2.

Theorem
8.6.1

Suppose that X1, . . . , Xn form a random sample from the normal distribution with
unknown mean μ and unknown precision τ (−∞ < μ < ∞ and τ > 0). Suppose also
that the joint prior distribution of μ and τ is as follows: The conditional distribution
of μ given τ is the normal distribution with mean μ0 and precision λ0τ (−∞ < μ0 <

∞ and λ0 > 0), and the marginal distribution of τ is the gamma distribution with
parameters α0 and β0 (α0 > 0 and β0 > 0). Then the joint posterior distribution of μ

and τ , given that Xi = xi for i = 1, . . . , n, is as follows: The conditional distribution
of μ given τ is the normal distribution with mean μ1 and precision λ1τ , where

μ1 = λ0μ0 + nxn

λ0 + n
and λ1 = λ0 + n, (8.6.1)

and the marginal distribution of τ is the gamma distribution with parameters α1 and
β1, where

α1 = α0 + n

2
and β1 = β0 + 1

2
s2
n

+ nλ0(xn − μ0)
2

2(λ0 + n)
. (8.6.2)

Proof The joint prior p.d.f. ξ(μ, τ) of μ and τ can be found by multiplying the
conditional p.d.f. ξ1(μ|τ) of μ given τ by the marginal p.d.f. ξ2(τ ) of τ . By the
conditions of the theorem, we have, for −∞ < μ < ∞ and τ > 0,

ξ1(μ|τ) ∝ τ 1/2 exp
[
− 1

2
λ0τ(μ − μ0)

2
]

and

ξ2(τ ) ∝ τα0−1e−β0τ .

A constant factor involving neither μ nor τ has been dropped from the right side of
each of these relations.

The joint posterior p.d.f. ξ(μ, τ |x) for μ and τ satisfies the relation

ξ(μ, τ |x) ∝ fn(x|μ, τ)ξ1(μ|τ)ξ2(τ ) (8.6.3)

∝ τα0+(n+1)/2−1 exp

[
−τ

2

(
λ0[μ − μ0]2 +

n∑
i=1

(xi − μ)2

)
− β0τ

]
.

By adding and subtracting xn inside the (xi − μ)2 terms, we can prove that
n∑

i=1

(xi − μ)2 = s2
n

+ n(xn − μ)2. (8.6.4)

Next, combine the last term in Eq. (8.6.4) with the term λ0(μ − μ0)
2 in (8.6.3) by

completing the square (see Exercise 24 in Sec. 5.6) to get

n(xn − μ)2 + λ0(μ − μ0)
2 = (λ0 + n)(μ − μ1)

2 + nλ0(xn − μ0)
2

λ0 + n
, (8.6.5)
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where μ1 is defined in Eq. (8.6.1). Combining (8.6.4) with (8.6.5) yields

n∑
i=1

(xi − μ)2 + λ0(μ − μ0)
2 = (λ0 + n)(μ − μ1)

2 + s2
n

+ nλ0(xn − μ0)
2

λ0 + n
. (8.6.6)

Using (8.6.2) and λ1 = λ0 + n together with (8.6.6) allows us to write Eq. (8.6.3) in
the form

ξ(μ, τ |x) ∝
{
τ 1/2 exp

[
− 1

2
λ1τ(μ − μ1)

2
]}

(τα1−1e−β1τ ), (8.6.7)

where λ1, α1, and β1 are defined by Eqs. (8.6.1) and (8.6.2).
When the expression inside the braces on the right side of Eq. (8.6.7) is regarded

as a function of μ for a fixed value of τ , this expression can be recognized as
being (except for a factor that depends on neither μ nor τ ) the p.d.f. of the normal
distribution with mean μ1 and precision λ1τ . Since the variable μ does not appear
elsewhere on the right side of Eq. (8.6.7), it follows that this p.d.f. must be the
conditional posterior p.d.f. of μ given τ . It now follows in turn that the expression
outside the braces on the right side of Eq. (8.6.7) must be proportional to the marginal
posterior p.d.f. of τ . This expression can be recognized as being (except for a constant
factor) the p.d.f. of the gamma distribution with parameters α1 and β1. Hence, the
joint posterior distribution of μ and τ is as specified in the theorem.

We shall give a name to the family of joint distributions described in Theo-
rem 8.6.1.

Definition
8.6.2

Normal-Gamma Family of Distributions. Let μ and τ be random variables. Suppose
that the conditional distribution of μ given τ is the normal distribution with mean
μ0 and precision λ0τ . Suppose also that the marginal distribution of τ is the gamma
distribution with parameters α0 and β0. Then we say that the joint distribution of μ

and τ is the normal-gamma distribution with hyperparameters μ0, λ0, α0, and β0.

The prior distribution in Theorem 8.6.1 is the normal-gamma distribution with hy-
perparameters μ0, λ0, α0, and β0. The posterior distribution derived in that theorem
is the normal-gamma distribution with hyperparameters μ1, λ1, α1, and β1. As in
Sec. 7.3, we shall refer to the hyperparameters of the prior distribution as prior hyper-
parameters, and we shall refer to the hyperparameters of the posterior distribution
as posterior hyperparameters.

By choosing appropriate values of the prior hyperparameters, it is usually possi-
ble in a particular problem to find a normal-gamma distribution that approximates
an experimenter’s actual prior distribution of μ and τ sufficiently well. It should be
emphasized, however, that if the joint distribution of μ and τ is a normal-gamma
distribution, then μ and τ are not independent. Thus, it is not possible to use a normal-
gamma distribution as a joint prior distribution of μ and τ in a problem in which the
experimenter wishes μ and τ to be independent in the prior. Although this character-
istic of the family of normal-gamma distributions is a deficiency, it is not an important
deficiency, because of the following fact: Even if a joint prior distribution under which
μ and τ are independent is chosen from outside the conjugate family, it will be found
that after just a single value of X has been observed, μ and τ will have a posterior
distribution under which they are dependent. In other words, it is not possible for μ
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and τ to remain independent in the light of even one observation from the underlying
normal distribution.

Example
8.6.2

Acid Concentration in Cheese. Consider again the example of lactic acid concentra-
tion in cheese as discussed in Example 8.5.4. Suppose that the concentrations are
independent normal random variables with mean μ and precision τ . Suppose that
the prior opinion of the experimenters could be expressed as a normal-gamma dis-
tribution with hyperparameters μ0 = 1, λ0 = 1, α0 = 0.5, and β0 = 0.5. We can use the
data on page 487 to find the posterior distribution of μ and τ . In this case, n = 10,
xn = 1.379, and s2

n
= 0.9663. Applying the formulas in Theorem 8.6.1, we get

μ1 = 1 × 1 + 10 × 1.379
1 + 10

= 1.345, λ1 = 1 + 10 = 11, α1 = 0.5 + 10
2

= 5.5,

β1 = 0.5 + 1
2

0.9663 + 10 × 1 × (1.379 − 1)2

2(1 + 10)
= 1.0484.

So, the posterior distribution of μ and τ is the normal-gamma distribution with these
four hyperparameters. In particular, we can now address the issue of variation in
lactic acid concentration more directly. For example, we can compute the posterior
probability that σ = τ−1/2 is larger than some value such as 0.3:

Pr(σ > 0.3|x) = Pr(τ < 11.11|x) = 0.984.

This can be found using any computer program that calculates the c.d.f. of a gamma
distribution. Alternatively, we can use the relationship between the gamma and χ2

distributions that allows us to say that the posterior distribution of U = 2 × 1.0484 × τ

is the χ2 distribution with 2 × 5.5 = 11degrees of freedom. (See Exercise 1 in Sec. 5.7.)
Then Pr(τ < 11.11|x) = Pr(U ≤ 23.30|x) ≈ 0.982 by interpolating in the table of the
χ2 distributions in the back of the book. If σ > 0.3 is considered a large standard
deviation, the cheese manufacturer might wish to look into better quality-control
measures. �

The Marginal Distribution of the Mean

When the joint distribution of μ and τ is a normal-gamma distribution of the type
described in Theorem 8.6.1, then the conditional distribution of μ for a given value of
τ is a normal distribution and the marginal distribution of τ is a gamma distribution.
It is not clear from this specification, however, what the marginal distribution of μ

will be. We shall now derive this marginal distribution.

Theorem
8.6.2

Marginal Distribution of the Mean. Suppose that the prior distribution of μ and τ is
the normal-gamma distribution with hyperparameters μ0, λ0, α0, and β0. Then the
marginal distribution of μ is related to a t distribution in the following way:(

λ0α0

β0

)1/2

(μ − μ0)

has the t distribution with 2α0 degrees of freedom.

Proof Since the conditional distribution of μ given τ is the normal distribution
with mean μ0 and variance (λ0τ)−1, we can use Theorem 5.6.4 to conclude that
the conditional distribution of Z = (λ0τ)1/2(μ − μ0) given τ is the standard normal
distribution. We shall continue to let ξ2(τ ) be the marginal p.d.f. of τ , and let ξ1(μ|τ)
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be the conditional p.d.f. of μ given τ . Then the joint p.d.f. of Z and τ is

f (z, τ ) = (λ0τ)−1/2ξ1((λ0τ)−1/2z + μ0|τ)ξ2(τ ) = φ(z)ξ2(τ ), (8.6.8)

where φ is the standard normal p.d.f. of Eq. (5.6.6). We see from Eq. (8.6.8) that
Z and τ are independent with Z having the standard normal distribution. Next, let
Y = 2β0τ . Using the result of Exercise 1 in Sec. 5.7, we find that the distribution of
Y is the gamma distribution with parameters α0 and 1/2, which is also known as the
χ2 distribution with 2α0 degrees of freedom. In summary, Y and Z are independent
with Z having the standard normal distribution and Y having the χ2 distribution with
2α0 degrees of freedom. It follows from the definition of the t distributions in Sec. 8.4
that

U = Z(
Y

2α0

)1/2
= (λ0τ)1/2(μ − μ0)(

2β0τ

2α0

)1/2
=

(
λ0α0

β0

)1/2

(μ − μ0) (8.6.9)

has the t distribution with 2α0 degrees of freedom.

Theorem 8.6.2 can also be used to find the posterior distribution of μ after data
are observed. To do that, just replace μ0 by μ1, λ0 by λ1, α0 by α1, and β0 by β1
in the statement of the theorem. The reason for this is that the prior and posterior
distributions both have the same form, and the theorem depends only on that form.
This same reasoning applies to the discussion that follows, including Theorem 8.6.3.

An alternative way to describe the marginal distribution of μ starts by rewriting
(8.6.9) as

μ =
(

β0

λ0α0

)1/2

U + μ0. (8.6.10)

Now we see that the distribution of μ can be obtained from a t distribution by
translating the t distribution so that it is centered at μ0 rather than at 0, and also
changing the scale factor. This makes it straightforward to find the moments (if they
exist) of the distribution of μ.

Theorem
8.6.3

Suppose that μ and τ have the joint normal-gamma distribution with hyperparame-
ters μ0, λ0, α0, and β0. If α0 > 1/2, then E(μ) = μ0. If α0 > 1, then

Var(μ) = β0

λ0(α0 − 1)
. (8.6.11)

Proof The mean and the variance of the marginal distribution of μ can easily be
obtained from the mean and the variance of the t distributions that are given in
Sec. 8.4. Since U in Eq. (8.6.9) has the t distribution with 2α0 degrees of freedom, it
follows from Section 8.4 that E(U) = 0 if α0 > 1/2 and that Var(U) = α0/(α0 − 1) if
α0 > 1. Now use Eq. (8.6.10) to see that if α0 > 1/2, then E(μ) = μ0. Also, if α0 > 1,
then

Var(μ) =
(

β0

λ0α0

)
Var(U).

Eq. (8.6.11) now follows directly.

Furthermore, the probability that μ lies in any specified interval can, in principle,
be obtained from a table of the t distribution or appropriate software. Most statistical
packages include functions that can compute the c.d.f. and the quantile function of
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a t distribution with arbitrary degrees of freedom, not just integers. Tables typically
deal solely with integer degrees of freedom. If necessary, one can interpolate between
adjacent degrees of freedom.

As we pointed out already, we can change the prior hyperparameters to pos-
terior hyperparameters in Theorems 8.6.2 and 8.6.3 and translate them into results
concerning the posterior marginal distribution of μ. In particular, the posterior dis-
tribution of the following random variable is the t distribution with 2α1 degrees of
freedom: (

λ1α1

β1

)1/2

(μ − μ1). (8.6.12)

A Numerical Example

Example
8.6.3

Nursing Homes in New Mexico. In 1988, the New Mexico Department of Health
and Social Services recorded information from many of its licensed nursing homes.
The data were analyzed by Smith, Piland, and Fisher (1992). In this example, we
shall consider the annual medical in-patient days X (measured in hundreds) for a
sample of 18 nonrural nursing homes. Prior to observing the data, we shall model
the value of X for each nursing home as a normal random variable with mean μ and
precision τ . To choose a prior mean and variance for μ and τ , we could speak with
experts in the field, but for simplicity, we shall just base these on some additional
information we have about the numbers of beds in these nursing homes. There are,
on average, 111 beds with a sample standard deviation of 43.5 beds. Suppose that
our prior opinion is that there is a 50 percent occupancy rate. Then we can naı̈vely
scale up the mean and standard deviation by a factor of 0.5 × 365 to obtain a prior
mean and standard deviation for the number of in-patient days in a year. In units of
hundreds of in-patient days per year, this gives us a mean of 0.5 × 365 × 1.11 ≈ 200
and a standard deviation of 0.5 × 365 × 0.435 ≈ 63001/2. To map these values into
prior hyperparameters, we shall split the variance of 6300 so that half of it is due to
variance between the nursing homes and half is the variance of μ. That is, we shall set
Var(μ) = 3150 and E(τ) = 1/3150. We choose α0 = 2 to reflect only a small amount of
prior information. Then, since E(τ) = α0/β0, we find that β0 = 6300. Using E(μ) = μ0
and (8.6.11), we get μ0 = 200 and λ0 = 2.

Next, we shall determine an interval for μ centered at the point μ0 = 200 such
that the probability that μ lies in this interval is 0.95. Since the random variable U

defined by Eq. (8.6.9) has the t distribution with 2α0 degrees of freedom, it follows
that, for the numerical values just obtained, the random variable 0.025(μ − 200) has
the t distribution with four degrees of freedom. The table of the t distribution gives
the 0.975 quantile of the t distribution with four degrees of freedom as 2.776. So,

Pr[−2.776 < 0.025(μ − 200) < 2.776] = 0.95. (8.6.13)

An equivalent statement is that

Pr(89 < μ < 311) = 0.95. (8.6.14)

Thus, under the prior distribution assigned to μ and τ , there is probability 0.95 that
μ lies in the interval (89, 311).

Suppose now that the following is our sample of 18 observed numbers of medical
in-patient days (in hundreds):

128 281 291 238 155 148 154 232 316 96 146 151 100 213 208 157 48 217.
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For these observations, which we denote x, xn = 182.17 and s2
n

= 88678.5. Then, it
follows from Theorem 8.6.1 that the joint posterior distribution of μ and τ is the
normal-gamma distribution with hyperparameters

μ1 = 183.95, λ1 = 20, α1 = 11, β1 = 50925.37. (8.6.15)

Hence, the values of the means and the variances of μ and τ , as found from this joint
posterior distribution, are

E(μ|x) = μ1 = 183.95, Var(μ|x) = β1

λ1(α1 − 1)
= 254.63,

E(τ |x) = α1

β1
= 2.16 × 10−4, Var(τ |x) = α1

β2
1

= 4.24 × 10−9.

(8.6.16)

It follows from Eq. (8.6.1) that the mean μ1 of the posterior distribution of μ is a
weighted average of μ0 and xn. In this numerical example, it is seen that μ1 is quite
close to xn.

Next, we shall determine the marginal posterior distribution of μ. Let U be
the random variable in Eq. (8.6.12), and use the values computed in (8.6.15). Then
U = (0.0657)(μ − 183.95), and the posterior distribution of U is the t distribution
with 2α1 = 22 degrees of freedom. The 0.975 quantile of this t distribution is 2.074,
so

Pr(−2.074 < U < 2.074|x) = 0.95. (8.6.17)

An equivalent statement is that

Pr(152.38 < μ < 215.52|x) = 0.95. (8.6.18)

In other words, under the posterior distribution of μ and τ , the probability that μ

lies in the interval (152.38, 215.52) is 0.95.
It should be noted that the interval in Eq. (8.6.18) determined from the posterior

distribution of μ is much shorter than the interval in Eq. (8.6.14) determined from
the prior distribution. This result reflects the fact that the posterior distribution of
μ is much more concentrated around its mean than was the prior distribution. The
variance of the prior distribution of μ was 3150, and the variance of the posterior
distribution is 254.63. Graphs of the prior and posterior p.d.f.’s of μ are in Fig. 8.7
together with the posterior interval (8.6.18). �

Figure 8.7 Plots of prior
and posterior p.d.f.’s of μ in
Example 8.6.3. The posterior
probability interval (8.6.18)
is indicated at the bottom of
the graph. The corresponding
prior probability interval
(8.6.14) would extend far
beyond both sides of the plot.
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Comparison with Confidence Intervals Continue using the nursing home data
from Example 8.6.3. We shall now construct a confidence interval for μ with con-
fidence coefficient 0.95 and compare this interval with the interval in Eq. (8.6.18) for
which the posterior probability is 0.95. Since the sample size n in Example 8.6.3 is
18, the random variable U defined by Eq. (8.4.4) on page 481 has the t distribution
with 17 degrees of freedom. The 0.975 quantile of this t distribution is 2.110. It now
follows from Theorem 8.5.1 that the endpoints of a confidence interval for μ with
confidence coefficient 0.95 will be

A = Xn − 2.110
σ ′

n1/2
,

B = Xn + 2.110
σ ′

n1/2
.

When the observed values of xn = 182.17 and s2
n

= 88678.5 are used here, we
get σ ′ = (88678.5/17)1/2 = 72.22. The observed confidence interval for μ is then
(146.25, 218.09).

This interval is close to the interval (152.38, 215.52) in Eq. (8.6.18), for which
the posterior probability is 0.95. The similarity of the two intervals illustrates the
statement made at the end of Sec. 8.5. That is, in many problems involving the normal
distribution, the method of confidence intervals and the method of using posterior
probabilities yield similar results, even though the interpretations of the two methods
are quite different.

Improper Prior Distributions

As we discussed at the end of Sec. 7.3 on page 402, it is often convenient to use
improper priors that are not real distributions, but do lead to posteriors that are
real distributions. These improper priors are chosen more for convenience than to
represent anyone’s beliefs. When there is a sizeable amount of data, the posterior
distribution that results from use of an improper prior is often very close to one
that would result from a proper prior distribution. For the case that we have been
considering in this section, we can combine the improper prior that we introduced for
a location parameter like μ together with the improper prior for a scale parameter
like σ = τ−1/2 into the usual improper prior for μ and τ . The typical improper prior
“p.d.f.” for a location parameter was found (in Example 7.3.15) to be the constant
function ξ1(μ) = 1. The typical improper prior “p.d.f.” for a scale parameter σ is
g(σ ) = 1/σ . Since σ = τ−1/2, we can apply the techniques of Sec. 3.8 to find the
improper “p.d.f.” of τ = σ−2. The derivative of the inverse function is − 1

2τ−3/2, so
the improper “p.d.f.” of τ would be∣∣∣∣1

2
τ−3/2

∣∣∣∣ g(1/τ−1/2) = 1
2
τ−1,

for τ > 0. Since this function has infinite integral, we shall drop the factor 1/2 and set
ξ2(τ ) = τ−1. If we act as if μ and τ were independent, then the joint improper prior
“p.d.f.” for μ and τ is

ξ(μ, τ) = 1
τ

, for −∞ < μ < ∞, τ > 0.

If we were to pretend as if this function were a p.d.f., the posterior p.d.f. ξ(μ, τ |x)

would be proportional to
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ξ(μ, τ)fn(x|μ, τ) ∝ τ−1τn/2 exp
(

−τ

2
s2
n
− nτ

2
(μ − xn)

2
)

(8.6.19)

=
{
τ 1/2 exp

[
−nτ

2
(μ − xn)

2
]}

τ (n−1)/2−1 exp

[
−τ

s2
n

2

]
.

When the expression inside the braces on the far right side of (8.6.19) is regarded as a
function of μ for fixed value of τ , this expression can be recognized as being (except
for a factor that depends on neither μ nor τ ) the p.d.f. of the normal distribution with
mean xn and precision nτ . Since the variable μ does not appear elsewhere, it follows
that this p.d.f. must be the conditional posterior p.d.f. of μ given τ . It now follows in
turn that the expression outside the braces on the far right side of (8.6.19) must be
proportional to the marginal posterior p.d.f. of τ . This expression can be recognized
as being (except for a constant factor) the p.d.f. of the gamma distribution with
parameters (n − 1)/2 and s2

n
/2. This joint distribution would be in precisely the same

form as the distribution in Theorem 8.6.1 if our prior distribution had been of the
normal-gamma form with hyperparameters μ0 = β0 = λ0 = 0 and α0 = −1/2. That is,
if we pretend as if μ0 = β0 = λ0 = 0 and α0 = −1/2, and then we apply Theorem 8.6.1,
we get the posterior hyperparameters μ1 = xn, λ1 = n, α1 = (n − 1)/2, and β1 = s2

n
/2.

There is no probability distribution in the normal-gamma family with μ0 = β0 =
λ0 = 0 and α0 = −1/2; however, if we pretend as if this were our prior, then we
are said to be using the usual improper prior distribution. Notice that the posterior
distribution of μ and τ is a real member of the normal-gamma family so long as n ≥ 2.

Example
8.6.4

An Improper Prior for Seeded Cloud Rainfall. Suppose that we use the usual improper
prior for the parameters in Examples 8.3.2 and 8.5.3 with prior hyperparameters
μ0 = β0 = λ0 = 0 and α0 = −1/2. The data summaries are x̄n = 5.134 and s2

n
= 63.96.

The posterior distribution will then be the normal-gamma distribution with hyperpa-
rameters μ1 = xn = 5.134, λ1 = n = 26, α1 = (n − 1)/2 = 12.5, and β1 = s2

n
/2 = 31.98.

Also, the marginal posterior distribution of μ is given by (7.6.12). In particular,

U =
(

26 × 12.5
31.98

)1/2

(μ − 5.134) = 3.188(μ − 5.134) (8.6.20)

has the t distribution with 25 degrees of freedom. Suppose that we want an interval
(a, b) such that the posterior probability of a < μ < b is 0.95. The 0.975 quantile of
the t distribution with 25 degrees of freedom is 2.060. So, we have that Pr(−2.060 <

U < 2.060) = 0.95. Combining this with (8.6.20), we get

Pr(5.134 − 2.060/3.188 < μ < 5.134 + 2.060/3.188|x) = 0.95.

The interval we need runs from a = 5.134 − 2.060/3.188 = 4.488 to b = 5.134 +
2.060/3.188 = 5.780. Notice that the interval (4.488, 5.780) is precisely the same as
the 95% confidence interval for μ that was computed in Example 8.5.3.

Another calculation that we can do with this posterior distribution is to see how
likely it is that μ > 4, where 4 is the mean of log-rainfall for unseeded clouds:

Pr(μ > 4|x) = Pr(U > 3.188(4 − 5.134)|x) = 1 − T25(−3.615) = 0.9993,

where the final value is calculated using statistical software that includes the c.d.f.’s
of all t distributions. It appears quite likely, after observing the data, that the mean
log-rainfall of seeded clouds is more than 4. �

Note: Improper Priors Lead to Confidence Intervals. Example 8.6.4 illustrates one
of the more interesting properties of the usual improper prior. If one uses the usual
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improper prior with normal data, then the posterior probability is γ that μ is in the
observed value of a coefficient γ confidence interval. In general, if we apply (8.6.9)
after using an improper prior, we find that the posterior distribution of

U =
(

n(n − 1)
s2
n

)1/2

(μ − xn) (8.6.21)

is the t distribution with n − 1 degrees of freedom. It follows that if Pr(−c < U < c) =
γ , then

Pr
(

xn − c
σ ′

n1/2
< μ < xn + c

σ ′

n1/2

∣∣∣∣ x
)

= γ. (8.6.22)

The reader will notice the striking similarity between (8.6.22) and (8.5.3). The differ-
ence between the two is that (8.6.22) is a statement about the posterior distribution
of μ after observing the data, while (8.5.3) is a statement about the conditional dis-
tribution of the random variables Xn and σ ′ given μ and σ before observing the data.
That these two probabilities are the same for all possible data and all possible values
of γ follows from the fact that they are both equal to Pr(−c < U < c) where U is
defined either in Eq. (8.4.4) or Eq. (8.6.21). The sampling distribution (conditional
on μ and τ ) of U is the t distribution with n − 1 degrees of freedom, as we found in
Eq. (8.4.4). The posterior distribution from the improper prior (conditional on the
data) of U is also the t distribution with n − 1 degrees of freedom.

The same kind of thing happens when we try to estimate σ 2 = 1/τ . The sampling
distribution (conditional on μ and τ ) of V = (n − 1)σ ′2τ = (n − 1)σ ′2/σ 2 is the χ2

distribution with n − 1 degrees of freedom, as we saw in Eq. (8.3.11). The posterior
distribution from the improper prior (conditional on the data) of V is also the χ2

distribution with n − 1 degrees of freedom (see Exercise 4). Therefore, a coefficient
γ confidence interval (a, b) for σ 2 based on the sampling distribution of V will satisfy
Pr(a < σ 2 < b|x) = γ as a posterior probability statement given the data if we used
an improper prior.

There are many situations in which the sampling distribution of a pivotal quantity
like U above is the same as its posterior distribution when an improper prior is used.
A very mathematical treatment of these situations can be found in Schervish (1995,
chapter 6). The most common situations are those involving location parameters (like
μ) and/or scale parameters (like σ ).

Summary

We introduced a family of conjugate prior distributions for the parameters μ and
τ = 1/σ 2 of a normal distribution. The conditional distribution of μ given τ is normal
with mean μ0 and precision λ0τ , and the marginal distribution of τ is the gamma
distribution with parameters α0 and β0. If X1 = x1, . . . , Xn = xn is an observed sample
of size n from the normal distribution with mean μ and precision τ , then the posterior
distribution of μ given τ is the normal distribution with mean μ1 and precision λ1τ ,
and the posterior distribution of τ is the gamma distribution with parameters α1 and
β1 where the values of μ1, λ1, α1, and β1 are given in Eq. (8.6.1) and (8.6.2). The
marginal posterior distribution of μ is given by saying that (λ1α1/β1)

1/2(μ − μ1) has
the t distribution with 2α1 degrees of freedom. An interval containing probability
1 − α of the posterior distribution of μ is(

μ1 − T −1
2α1

(1 − α/2)

[
β1

α1λ1

]1/2

, μ1 + T −1
2α1

(1 − α/2)

[
β1

α1λ1

]1/2
)

.
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If we use the improper prior with prior hyperparameters α0 = −1/2 and μ0 =
λ0 = β0 = 0, then the random variable n1/2(Xn − μ)/σ ′ has the t distribution with
n − 1 degrees of freedom both as its posterior distribution given the data and as
its sampling distribution given μ and σ . Also, (n − 1)σ ′2/σ 2 has the χ2 distribution
with n − 1 degrees of freedom both as its posterior distribution given the data and
as its sampling distribution given μ and σ . Hence, if we use the improper prior,
interval estimates of μ or σ based on the posterior distribution will also be confidence
intervals, and vice versa.

Exercises

1. Suppose that a random variable X has the normal dis-
tribution with mean μ and precision τ . Show that the
random variable Y = aX + b (a 	= 0) has the normal dis-
tribution with mean aμ + b and precision τ/a2.

2. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ (−∞ <

μ < ∞) and known precision τ . Suppose also that the prior
distribution of μ is the normal distribution with mean μ0
and precision λ0. Show that the posterior distribution of μ,
given that Xi = xi (i = 1, . . . , n) is the normal distribution
with mean

λ0μ0 + nτxn

λ0 + nτ

and precision λ0 + nτ .

3. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with known mean μ and unknown
precision τ (τ > 0). Suppose also that the prior distribu-
tion of τ is the gamma distribution with parameters α0 and
β0 (α0 > 0 and β0 > 0). Show that the posterior distribu-
tion of τ given that Xi = xi (i = 1, . . . , n) is the gamma
distribution with parameters α0 + (n/2) and

β0 + 1
2

N∑
i=1

(xi − μ)2.

4. Suppose that X1, . . . , Xn are i.i.d. having the normal
distribution with mean μ and precision τ given (μ, τ). Let
(μ, τ) have the usual improper prior. Let σ ′2 = s2

n
/(n − 1).

Prove that the posterior distribution of V = (n − 1)σ ′2τ is
the χ2 distribution with n − 1 degrees of freedom.

5. Suppose that two random variables μ and τ have
the joint normal-gamma distribution such that E(μ) =
−5. Var(μ) = 1, E(τ) = 1/2, and Var(τ ) = 1/8. Find the
prior hyperparameters μ0, λ0, α0, and β0 that specify the
normal-gamma distribution.

6. Show that two random variables μ and τ cannot have
a joint normal-gamma distribution such that E(μ) = 0,
Var(μ) = 1, E(τ) = 1/2, and Var(τ ) = 1/4.

7. Show that two random variables μ and τ cannot have
the joint normal-gamma distribution such that E(μ) =
0, E(τ) = 1, and Var(τ ) = 4.

8. Suppose that two random variables μ and τ have the
joint normal-gamma distribution with hyperparameters
μ0 = 4, λ0 = 0.5, α0 = 1, and β0 = 8. Find the values of (a)
Pr(μ > 0) and (b) Pr(0.736 < μ < 15.680).

9. Using the prior and data in the numerical example
on nursing homes in New Mexico in this section, find
(a) the shortest possible interval such that the posterior
probability that μ lies in the interval is 0.90, and (b) the
shortest possible confidence interval for μ for which the
confidence coefficient is 0.90.

10. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known precision τ , and also that the joint prior distribu-
tion of μ and τ is the normal-gamma distribution satisfying
the following conditions: E(μ) = 0, E(τ) = 2, E(τ 2) = 5,
and Pr(|μ| < 1.412) = 0.5. Determine the prior hyperpa-
rameters μ0, λ0, α0, and β0.

11. Consider again the conditions of Exercise 10. Suppose
also that in a random sample of size n = 10, it is found that
xn = 1 and s2

n
= 8. Find the shortest possible interval such

that the posterior probability that μ lies in the interval
is 0.95.

12. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known precision τ , and also that the joint prior distribu-
tion of μ and τ is the normal-gamma distribution satisfying
the following conditions: E(τ) = 1, Var(τ ) = 1/3, Pr(μ >

3) = 0.5, and Pr(μ > 0.12) = 0.9. Determine the prior hy-
perparameters μ0, λ0, α0, and β0.

13. Consider again the conditions of Exercise 12. Suppose
also that in a random sample of size n = 8, it is found that∑n

i=1 xi = 16 and
∑n

i=1 x2
1 = 48. Find the shortest possible

interval such that the posterior probability that μ lies in
the interval is 0.99.
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14. Continue the analysis in Example 8.6.2 on page 498.
Compute an interval (a, b) such that the posterior proba-
bility is 0.9 that a < μ < b. Compare this interval with the
90% confidence interval from Example 8.5.4 on page 487.

15. We will draw a sample of size n = 11 from the normal
distribution with mean μ and precision τ . We will use a
natural conjugate prior for the parameters (μ, τ) from
the normal-gamma family with hyperparameters α0 = 2,
β0 = 1, μ0 = 3.5, and λ0 = 2. The sample yields an average
of xn = 7.2 and s2

n
= 20.3.

a. Find the posterior hyperparameters.

b. Find an interval that contains 95% of the posterior
distribution of μ.

16. The study on acid concentration in cheese included
a total of 30 lactic acid measurements, the 10 given in
Example 8.5.4 on page 487 and the following additional
20:

1.68, 1.9, 1.06, 1.3, 1.52, 1.74, 1.16, 1.49, 1.63, 1.99,

1.15, 1.33, 1.44, 2.01, 1.31, 1.46, 1.72, 1.25, 1.08, 1.25.

a. Using the same prior as in Example 8.6.2 on page 498,
compute the posterior distribution of μ and τ based
on all 30 observations.

b. Use the posterior distribution found in Example 8.6.2
on page 498 as if it were the prior distribution before
observing the 20 observations listed in this problem.
Use these 20 new observations to find the posterior

distribution of μ and τ and compare the result to the
answer to part (a).

17. Consider the analysis performed in Example 8.6.2.
This time, use the usual improper prior to compute the
posterior distribution of the parameters.

18. Treat the posterior distribution conditional on the first
10 observations found in Exercise 17 as a prior and then
observe the 20 additional observations in Exercise 16.
Find the posterior distribution of the parameters after ob-
serving all of the data and compare it to the distribution
found in part (b) of Exercise 16.

19. Consider the situation described in Exercise 7 of
Sec. 8.5. Use a prior distribution from the normal-gamma
family with values α0 = 1, β0 = 4, μ0 = 150, and λ0 = 0.5.

a. Find the posterior distribution of μ and τ = 1/σ 2.

b. Find an interval (a, b) such that the posterior proba-
bility is 0.90 that a < μ < b.

20. Consider the calorie count data described in Exam-
ple 7.3.10 on page 400. Now assume that each observation
has the normal distribution with unknown mean μ and
unknown precision τ given the parameter (μ, τ). Use the
normal-gamma conjugate prior distribution with prior hy-
perparameters μ0 = 0, λ0 = 1, α0 = 1, and β0 = 60. The
value of s2

n
is 2102.9.

a. Find the posterior distribution of (μ, τ).

b. Compute Pr(μ > 1|x).

8.7 Unbiased Estimators
Let δ be an estimator of a function g of a parameter θ . We say that δ is unbiased
if Eθ [δ(X)] = g(θ) for all values of θ . This section provides several examples of
unbiased estimators.

Definition of an Unbiased Estimator

Example
8.7.1

Lifetimes of Electronic Components. Consider the company in Example 8.1.3 that
wants to estimate the failure rate θ of electronic components. Based on a sample
X1, X2, X3 of lifetimes, the M.L.E. of θ is θ̂ = 3/T , where T = X1 + X2 + X3. The
company hopes that θ̂ will be close to θ . The mean of a random variable, such as θ̂ ,
is one measure of where we expect the random variable to be. The mean of 3/T is
(according to Exercise 21 in Sec. 5.7) 3θ/2. If the mean tells us where we expect the
estimator to be, we expect this estimator to be 50% larger than θ . �

Let X = (X1, . . . , Xn) be a random sample from a distribution that involves a
parameter (or parameter vector) θ whose value is unknown. Suppose that we wish
to estimate a function g(θ) of the parameter. In a problem of this type, it is desirable to
use an estimator δ(X) that, with high probability, will be close to g(θ). In other words,
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it is desirable to use an estimator δ whose distribution changes with the value of θ in
such a way that no matter what the true value of θ is, the probability distribution of
δ is concentrated around g(θ).

For example, suppose that X = (X1, . . . , Xn) form a random sample from a
normal distribution for which the mean θ is unknown and the variance is 1. In this
case, the M.L.E. of θ is the sample mean Xn. The estimator Xn is a reasonably good
estimator of θ because its distribution is the normal distribution with mean θ and
variance 1/n. This distribution is concentrated around the unknown value of θ , no
matter how large or how small θ is.

These considerations lead to the following definition.

Definition
8.7.1

Unbiased Estimator/Bias. An estimator δ(X) is an unbiased estimator of a function g(θ)

of the parameter θ if Eθ [δ(X)] = g(θ) for every possible value of θ . An estimator that
is not unbiased is called a biased estimator. The difference between the expectation
of an estimator and g(θ) is called the bias of the estimator. That is, the bias of δ as an
estimator of g(θ) is Eθ [δ(X)] − g(θ), and δ is unbiased if and only if the bias is 0 for
all θ .

In the case of a sample from a normal distribution with unknown mean θ , Xn is
an unbiased estimator of θ because Eθ(Xn) = θ for −∞ < θ < ∞.

Example
8.7.2

Lifetimes of Electronic Components. In Example 8.7.1, the bias of θ̂ = 3/T as an
estimator of θ is 3θ/2 − θ = θ/2. It is easy to see that an unbiased estimator of θ

is δ(X) = 2/T . �

If an estimator δ of some nonconstant function g(θ) of the parameter is unbiased,
then the distribution of δ must indeed change with the value of θ , since the mean
of this distribution is g(θ). It should be emphasized, however, that this distribution
might be either closely concentrated around g(θ) or widely spread out. For example,
an estimator that is equally likely to underestimate g(θ) by 1,000,000 units or to
overestimate g(θ) by 1,000,000 units would be an unbiased estimator, but it would
never yield an estimate close to g(θ). Therefore, the mere fact that an estimator is
unbiased does not necessarily imply that the estimator is good or even reasonable.
However, if an unbiased estimator also has a small variance, it follows that the
distribution of the estimator will necessarily be concentrated around its mean g(θ),
and there will be high probability that the estimator will be close to g(θ).

For the reasons just mentioned, the study of unbiased estimators is largely
devoted to the search for an unbiased estimator that has a small variance. However,
if an estimator δ is unbiased, then its M.S.E. Eθ [(δ − g(θ))2] is equal to its variance
Varθ(δ). Therefore, the search for an unbiased estimator with a small variance is
equivalent to the search for an unbiased estimator with a small M.S.E. The following
result is a simple corollary to Exercise 4 in Sec. 4.3.

Corollary
8.7.1

Let δ be an estimator with finite variance. Then the M.S.E. of δ as an estimator of
g(θ) equals its variance plus the square of its bias.

Example
8.7.3

Lifetimes of Electronic Components. We can compare the two estimators θ̂ and δ(X)

in Example 8.7.2 using M.S.E. According to Exercise 21 in Sec. 5.7, the variance of
1/T is θ2/4. So, the M.S.E. of δ(X) is θ2. For θ̂ , the variance is 9θ2/4 and the square
of the bias is θ2/4, so the M.S.E. is 5θ2/2, which is 2.5 times as large as the M.S.E.
of δ(X). If M.S.E. were the sole concern, the estimator δ∗(X) = 1/T has variance
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Figure 8.8 M.S.E. for each
of the four estimators in
Example 8.7.3.
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and squared bias both equal to θ2/4, so the M.S.E. is θ2/2, half the M.S.E. of the
unbiased estimator. Figure 8.8 plots the M.S.E. for each of these estimators together
with the M.S.E. of the Bayes estimator 4/(2 + T ) found in Example 8.1.3. Calculation
of the M.S.E. of the Bayes estimator required simulation. Eventually (above θ = 3.1),
the M.S.E. of the Bayes estimator crosses above the M.S.E. of 1/T , but it stays below
the other two for all θ . �

Example
8.7.4

Unbiased Estimation of the Mean. Let X = (X1, . . . , Xn) be a random sample from a
distribution that depends on a parameter (or parameter vector) θ . Assume that the
mean and variance of the distribution are finite. Define g(θ) = Eθ(X1). The sample
mean Xn is obviously an unbiased estimator of g(θ). Its M.S.E. is Varθ(X1)/n. In
Example 8.7.1, g(θ) = 1/θ and Xn = 1/θ̂ is an unbiased estimator the mean. �

Unbiased Estimation of the Variance

Theorem
8.7.1

Sampling from a General Distribution. Let X = (X1, . . . , Xn) be a random sample from
a distribution that depends on a parameter (or parameter vector) θ . Assume that the
variance of the distribution is finite. Define g(θ) = Varθ(X1). The following statistic
is an unbiased estimator of the variance g(θ):

σ̂ 2
1 = 1

n − 1

n∑
i=1

(Xi − Xn)
2.

Proof Let μ = Eθ(X1), and let σ 2 stand for g(θ) = Varθ(X1). Since the sample mean
is an unbiased estimator of μ, it is more or less natural to consider first the sample
variance σ̂ 2

0 = (1/n)
∑n

i=1(Xi − Xn)
2 and to attempt to determine if it is an unbiased

estimator of the variance σ 2. We shall use the identity

n∑
i=1

(Xi − μ)2 =
n∑

i=1

(Xi − Xn)
2 + n(Xn − μ)2.

Then it follows that
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E(σ̂ 2
0) = E

[
1
n

∑n

i=1
(Xi − Xn)

2
]

= E

[
1
n

∑n

i=1
(Xi − μ)2

]
− E[(Xn − μ)2].

(8.7.1)

Since each observation Xi has mean μ and variance σ 2, then E[(Xi − μ)2] = σ 2 for
i = 1, . . . , n. Therefore,

E

[
1
n

n∑
i=1

(Xi − μ)2

]
= 1

n

n∑
i=1

E[(Xi − μ)2] = 1
n
nσ 2 = σ 2. (8.7.2)

Furthermore, the sample mean Xn has mean μ and variance σ 2/n. Therefore,

E[(Xn − μ)2] = Var(Xn) = σ 2

n
. (8.7.3)

It now follows from Eqs. (8.7.1), (8.7.2), and (8.7.3) that

E(σ̂ 2
0) = σ 2 − 1

n
σ 2 = n − 1

n
σ 2. (8.7.4)

It can be seen from Eq. (8.7.4) that the sample variance σ̂ 2
0 is not an unbiased

estimator of σ 2, because its expectation is [(n − 1)/n]σ 2, rather than σ 2. However, if
σ̂ 2

0 is multiplied by the factor n/(n − 1) to obtain the statistic σ̂ 2
1, then the expectation

of σ̂ 2
1 will indeed be σ 2. Therefore, σ̂ 2

1 is an unbiased estimator of σ 2.

In light of Theorem 8.7.1, many textbooks define the sample variance as σ̂ 2
1,

rather than as σ̂ 2
0.

Note: Special Case of Normal Random Sample. The estimator σ̂ 2
0 is the same as

the maximum likelihood estimator σ̂ 2 of σ 2 when X1, . . . , Xn have the normal
distribution with mean μ and variance σ 2. Also, σ̂ 2

1 is the same as the random variable
σ ′2 that appears in confidence intervals for μ. We have chosen to use different names
for these estimators in this section because we are discussing general distributions
for which σ 2 might be some function g(θ) whose M.L.E. is completely different from
σ̂ 2

0. (See Exercise 1 for one such example.)

Sampling from a Specific Family of Distributions When it can be assumed that
X1, . . . , Xn form a random sample from a specific family of distributions, such as the
family of Poisson distributions, it will generally be desirable to consider not only σ̂ 2

1
but also other unbiased estimators of the variance.

Example
8.7.5

Sample from a Poisson Distribution. Suppose that we observe a random sample from
the Poisson distribution for which the mean θ is unknown. We have already seen that
Xn will be an unbiased estimator of the mean θ . Moreover, since the variance of a
Poisson distribution is also equal to θ , it follows that Xn is also an unbiased estimator
of the variance. In this example, therefore, both Xn and σ̂ 2

1 are unbiased estimators
of the unknown variance θ . Furthermore, any combination of Xn and σ̂ 2

1 having the
form αXn + (1 − α)σ̂ 2

1, where α is a given constant (−∞ < α < ∞), will also be an
unbiased estimator of θ because its expectation will be

E[αXn + (1 − α)σ̂ 2
1] = αE(Xn) + (1 − α)E(σ̂ 2

1) = αθ + (1 − α)θ = θ. (8.7.5)

Other unbiased estimators of θ can also be constructed. �
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If an unbiased estimator is to be used, the problem is to determine which one of
the possible unbiased estimators has the smallest variance or, equivalently, has the
smallest M.S.E. We shall not derive the solution to this problem right now. However,
it will be shown in Sec. 8.8 that in Example 8.7.5, for every possible value of θ , the
estimator Xn has the smallest variance among all unbiased estimators of θ . This result
is not surprising. We know from Example 7.7.2 that Xn is a sufficient statistic for θ ,
and it was argued in Sec. 7.9 that we can restrict our attention to estimators that
are functions of the sufficient statistic alone. (See also Exercise 13 at the end of this
section.)

Example
8.7.6

Sampling from a Normal Distribution. Assume that X = (X1, . . . , Xn) form a random
sample from the normal distribution with unknown mean μ and unknown variance
σ 2. We shall consider the problem of estimating σ 2. We know from Theorem 8.7.1
that the estimator σ̂ 2

1 is an unbiased estimator of σ 2. Moreover, we know from
Example 7.5.6 that the sample variance σ̂ 2

0 is the M.L.E. of σ 2. We want to determine
whether the M.S.E. E[(σ̂ 2

i
− σ 2)2] is smaller for the estimator σ̂ 2

0 or for the estimator
σ̂ 2

1, and also whether or not there is some other estimator of σ 2 that has a smaller
M.S.E. than both σ̂ 2

0 and σ̂ 2
1.

Both the estimator σ̂ 2
0 and the estimator σ̂ 2

1 have the following form:

Tc = c

n∑
i=1

(Xi − Xn)
2, (8.7.6)

where c = 1/n for σ̂ 2
0 and c = 1/(n − 1) for σ̂ 2

1. We shall now determine the M.S.E.
for an arbitrary estimator having the form in Eq. (8.7.6) and shall then determine
the value of c for which this M.S.E. is minimum. We shall demonstrate the striking
property that the same value of c minimizes the M.S.E. for all possible values of the
parameters μ and σ 2. Therefore, among all estimators having the form in Eq. (8.7.6),
there is a single one that has the smallest M.S.E. for all possible values of μ and σ 2.

It was shown in Sec. 8.3 that when X1, . . . , Xn form a random sample from a
normal distribution, the random variable

∑n
i=1(Xi − Xn)

2/σ 2 has the χ2 distribution
with n − 1 degrees of freedom. By Theorem 8.2.1, the mean of this variable is n − 1,
and the variance is 2(n − 1). Therefore, if Tc is defined by Eq. (8.7.6), then

E(Tc) = (n − 1)cσ 2 and Var(Tc) = 2(n − 1)c2σ 4. (8.7.7)

Thus, by Corollary 8.7.1, the M.S.E. of Tc can be found as follows:

E[(Tc − σ 2)2] = [E(Tc) − σ 2]2 + Var(T 2)

= [(n − 1)c − 1]2σ 4 + 2(n − 1)c2σ 4 (8.7.8)

= [(n2 − 1)c2 − 2(n − 1)c + 1]σ 4.

The coefficient of σ 4 in Eq. (8.7.8) is simply a quadratic function of c. Hence, no mat-
ter what σ 2 equals, the minimizing value of c is found by elementary differentiation
to be c = 1/(n + 1).

In summary, we have established the following fact: Among all estimators of
σ 2 having the form in Eq. (8.7.6), the estimator that has the smallest M.S.E. for all
possible values of μ and σ 2 is T1/(n+1) = [1/(n + 1)]

∑n
i=1(Xi − Xn)

2. In particular,
T1/(n+1) has a smaller M.S.E. than both the M.L.E. σ̂ 2

0 and the unbiased estimator
σ̂ 2

1. Therefore, the estimators σ̂ 2
0 and σ̂ 2

1, as well as all other estimators having the
form in Eq. (8.7.6) with c 	= 1/(n + 1), are inadmissible. Furthermore, it was shown
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by C. Stein in 1964 that even the estimator T1/(n+1) is dominated by other estimators
and that T1/(n+1) itself is therefore inadmissible.

The estimators σ̂ 2
0 and σ̂ 2

1 are compared in Exercise 6 at the end of this section.
Of course, when the sample size n is large, it makes little difference whether n, n − 1,
or n + 1 is used as the divisor in the estimate of σ 2; all three estimators σ̂ 2

0, σ̂ 2
1, and

T1/(n+1) will be approximately equal. �

Limitations of Unbiased Estimation

The concept of unbiased estimation has played an important part in the historical
development of statistics, and the feeling that an unbiased estimator should be pre-
ferred to a biased estimator is prevalent in current statistical practice. Indeed, what
scientist wishes to be biased or to be accused of being biased? The very terminology
of the theory of unbiased estimation seems to make the use of unbiased estimators
highly desirable.

However, as explained in this section, the quality of an unbiased estimator must
be evaluated in terms of its variance or its M.S.E. Examples 8.7.3 and 8.7.6 illustrate
the following fact: In many problems, there exist biased estimators that have smaller
M.S.E. than every unbiased estimator for every possible value of the parameter.
Furthermore, it can be shown that a Bayes estimator, which makes use of all relevant
prior information about the parameter and which minimizes the overall M.S.E., is
unbiased only in trivial problems in which the parameter can be estimated perfectly.

Some other limitations of the theory of unbiased estimation will now be de-
scribed.

Nonexistence of an Unbiased Estimator In many problems, there does not exist
any unbiased estimator of the function of the parameter that must be estimated. For
example, suppose that X1, . . . , Xn form n Bernoulli trials for which the parameter p

is unknown (0 ≤ p ≤ 1). Then the sample mean Xn will be an unbiased estimator of p,
but it can be shown that there will be no unbiased estimator of p1/2. (See Exercise 7.)
Furthermore, if it is known in this example that p must lie in the interval 1

3 ≤ p ≤ 2
3 ,

then there is no unbiased estimator of p whose possible values are confined to that
same interval.

Inappropriate Unbiased Estimators Consider an infinite sequence of Bernoulli
trials for which the parameter p is unknown (0 < p < 1), and let X denote the number
of failures that occur before the first success is obtained. Then X has the geometric
distribution with parameter p whose p.f. is given by Eq. (5.5.3). If it is desired to
estimate the value of p from the observation X, then it can be shown (see Exercise 8)
that the only unbiased estimator of p yields the estimate 1 if X = 0 and yields the
estimate 0 if X > 0. This estimator seems inappropriate. For example, if the first
success is obtained on the second trial, that is, if X = 1, then it is silly to estimate
that the probability of success p is 0. Similarly, if X = 0 (the first trial is success), it
seems silly to estimate p to be as large as 1.

As another example of an inappropriate unbiased estimator, suppose that the
random variable X has the Poisson distribution with unknown mean λ (λ > 0), and
suppose also that it is desired to estimate the value of e−2λ. It can be shown (see
Exercise 9) that the only unbiased estimator of e−2λ yields the estimate 1 if X is an
even integer and the estimate −1if X is an odd integer. This estimator is inappropriate
for two reasons. First, it yields the estimate 1 or −1 for a parameter e−2λ, which must



512 Chapter 8 Sampling Distributions of Estimators

lie between 0 and 1. Second, the value of the estimate depends only on whether X is
odd or even, rather than on whether X is large or small.

Ignoring Information One more criticism of the concept of unbiased estimation
is that the principle of always using an unbiased estimator for a parameter θ (when
such exists) sometimes ignores valuable information that is available. As an example,
suppose that the average voltage θ in a certain electric circuit is unknown; this voltage
is to be measured by a voltmeter for which the reading X has the normal distribution
with mean θ and known variance σ 2. Suppose also that the observed reading on the
voltmeter is 2.5 volts. Since X is an unbiased estimator of θ in this example, a scientist
who wished to use an unbiased estimator would estimate the value of θ to be 2.5 volts.

However, suppose also that after the scientist reported the value 2.5 as his
estimate of θ , he discovered that the voltmeter actually truncates all readings at
3 volts, just as in Example 3.2.7 on page 106. That is, the reading of the voltmeter is
accurate for any voltage less than 3 volts, but a voltage greater than 3 volts would be
reported as 3 volts. Since the actual reading was 2.5 volts, this reading was unaffected
by the truncation. Nevertheless, the observed reading would no longer be an unbiased
estimator of θ because the distribution of the truncated reading X is not a normal
distribution with mean θ . Therefore, if the scientist still wished to use an unbiased
estimator, he would have to change his estimate of θ from 2.5 volts to a different
value.

Ignoring the fact that the observed reading was accurate seems unacceptable.
Since the actual observed reading was only 2.5 volts, it is the same as what would
have been observed if there had been no truncation. Since the observed reading
is untruncated, it would seem that the fact that there might have been a truncated
reading is irrelevant to the estimation of θ . However, since this possibility does
change the sample space of X and its probability distribution, it will also change
the form of the unbiased estimator of θ .

Summary

An estimator δ(X) of g(θ) is unbiased if Eθ [δ(X)] = g(θ) for all possible values of θ .
The bias of an estimator of g(θ) is Eθ [δ(X)] − g(θ). The M.S.E. of an estimator equals
its variance plus the square of its bias. The M.S.E. of an unbiased estimator equals
its variance.

Exercises

1. Let X1, . . . , Xn be a random sample from the Poisson
distribution with mean θ .

a. Express the Varθ(Xi) as a function σ 2 = g(θ).

b. Find the M.L.E. of g(θ) and show that it is
unbiased.

2. Suppose that X is a random variable whose distribu-
tion is completely unknown, but it is known that all the
moments E(Xk), for k = 1, 2, . . . , are finite. Suppose also
that X1, . . . , Xn form a random sample from this distribu-

tion. Show that for k = 1, 2, . . . , the kth sample moment
(1/n)

∑n
i=1 Xk

i
is an unbiased estimator of E(Xk).

3. For the conditions of Exercise 2, find an unbiased esti-
mator of [E(X)]2. Hint: [E(X)]2 = E(X2) − Var(X).

4. Suppose that a random variable X has the geometric
distribution with unknown parameter p. (See Sec. 5.5.)
Find a statistic δ(X) that will be an unbiased estimator of
1/p.
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5. Suppose that a random variable X has the Poisson dis-
tribution with unknown mean λ (λ > 0). Find a statistic
δ(X) that will be an unbiased estimator of eλ. Hint: If
E[δ(X)] = eλ, then

∞∑
x=0

δ(x)e−λλx

x!
= eλ.

Multiply both sides of this equation by eλ, expand the right
side in a power series in λ, and then equate the coefficients
of λx on both sides of the equation for x = 0, 1, 2, . . . .

6. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known variance σ 2. Let σ̂ 2

0 and σ̂ 2
1 be the two estimators

of σ 2, which are defined as follows:

σ̂ 2
0 = 1

n

n∑
i=1

(Xi − Xn)
2 and σ̂ 2

1 = 1
n − 1

n∑
i−1

(Xi − Xn)
2.

Show that the M.S.E. of σ̂ 2
0 is smaller than the M.S.E. of

σ̂ 2
1 for all possible values of μ and σ 2.

7. Suppose that X1, . . . , Xn form n Bernoulli trials for
which the parameter p is unknown (0 ≤ p ≤ 1). Show that
the expectation of every function δ(X1, . . . , Xn) is a poly-
nomial in p whose degree does not exceed n.

8. Suppose that a random variable X has the geometric
distribution with unknown parameter p (0 < p < 1). Show
that the only unbiased estimator of p is the estimator δ(X)

such that δ(0) = 1 and δ(X) = 0 for X > 0.

9. Suppose that a random variable X has the Poisson dis-
tribution with unknown mean λ (λ > 0). Show that the
only unbiased estimator of e−2λ is the estimator δ(X) such
that δ(X) = 1 if X is an even integer and δ(X) = −1 if X is
an odd integer.

10. Consider an infinite sequence of Bernoulli trials for
which the parameter p is unknown (0 < p < 1), and sup-
pose that sampling is continued until exactly k successes
have been obtained, where k is a fixed integer (k ≥ 2). Let
N denote the total number of trials that are needed to ob-
tain the k successes. Show that the estimator (k − 1)/(N −
1) is an unbiased estimator of p.

11. Suppose that a certain drug is to be administered to
two different types of animals A and B. It is known that
the mean response of animals of type A is the same as
the mean response of animals of type B, but the common
value θ of this mean is unknown and must be estimated. It
is also known that the variance of the response of animals
of type A is four times as large as the variance of the
response of animals of type B. Let X1, . . . , Xm denote
the responses of a random sample of m animals of type A,
and let Y1, . . . , Yn denote the responses of an independent
random sample of n animals of type B. Finally, consider
the estimator θ̂ = αXm + (1 − α)Y n.

a. For what values of α, m, and n is θ̂ an unbiased esti-
mator of θ?

b. For fixed values of m and n, what value of α yields an
unbiased estimator with minimum variance?

12. Suppose that a certain population of individuals is
composed of k different strata (k ≥ 2), and that for i =
1, . . . , k, the proportion of individuals in the total pop-
ulation who belong to stratum i is pi, where pi > 0 and∑k

i=1 pi = 1. We are interested in estimating the mean
value μ of a certain characteristic among the total pop-
ulation. Among the individuals in stratum i, this charac-
teristic has mean μi and variance σ 2

i
, where the value of

μi is unknown and the value of σ 2
i

is known. Suppose that
a stratified sample is taken from the population as follows:
From each stratum i, a random sample of ni individuals is
taken, and the characteristic is measured for each of these
individuals. The samples from the k strata are taken inde-
pendently of each other. Let Xi denote the average of the
ni measurements in the sample from stratum i.

a. Show that μ = ∑k
i=1 piμi, and show also that μ̂ =∑k

i=1 piXi is an unbiased estimator of μ.

b. Let n = ∑k
i=1 ni denote the total number of observa-

tions in the k samples. For a fixed value of n, find the
values of n1, . . . , nk for which the variance of μ̂ will
be a minimum.

13. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. or the p.f. is f (x|θ),
where the value of the parameter θ is unknown. Let X =
(X1, . . . , Xn), and let T be a statistic. Assume that δ(X)

is an unbiased estimator of θ such that Eθ [δ(X)|T ] does
not depend on θ . (If T is a sufficient statistic, as defined in
Sec. 7.7, then this will be true for every estimator δ. The
condition also holds in other examples.) Let δ0(T ) denote
the conditional mean of δ(X) given T .

a. Show that δ0(T ) is also an unbiased estimator of θ .

b. Show that Varθ(δ0) ≤ Varθ(δ) for every possible
value of θ . Hint: Use the result of Exercise 11 in
Sec. 4.7.

14. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ], where
the value of the parameter θ is unknown; and let Yn =
max(X1, . . . , Xn). Show that [(n + 1)/n]Yn is an unbiased
estimator of θ .

15. Suppose that a random variable X can take only the
five values x = 1, 2, 3, 4, 5 with the following probabilities:

f (1|θ) = θ3, f (2|θ) = θ2(1 − θ),

f (3|θ) = 2θ(1 − θ), f (4|θ) = θ(1 − θ)2,

f (5|θ) = (1 − θ)3.
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Here, the value of the parameter θ is unknown (0 ≤ θ ≤ 1).

a. Verify that the sum of the five given probabilities is
1 for every value of θ .

b. Consider an estimator δc(X) that has the following
form:

δc(1) = 1, δc(2) = 2 − 2c, δc(3) = c,

δc(4) = 1 − 2c, δc(5) = 0.

Show that for each constant c, δc(X) is an unbiased
estimator of θ .

c. Let θ0 be a number such that 0 < θ0 < 1. Determine
a constant c0 such that when θ = θ0, the variance of
δc0

(X) is smaller than the variance of δc(X) for every
other value of c.

16. Reconsider the conditions of Exercise 3. Suppose that
n = 2, and we observe X1 = 2 and X2 = −1. Compute the
value of the unbiased estimator of [E(X)]2 found in Ex-
ercise 3. Describe a flaw that you have discovered in the
estimator.

� 8.8 Fisher Information
This section introduces a method for measuring the amount of information that
a sample of data contains about an unknown parameter. This measure has the
intuitive properties that more data provide more information, and more precise
data provide more information. The information measure can be used to find
bounds on the variances of estimators, and it can be used to approximate the
variances of estimators obtained from large samples.

Definition and Properties of Fisher Information

Example
8.8.1

Studying Customer Arrivals. A store owner is interested in learning about customer
arrivals. She models arrivals during the day as a Poisson process (see Definition 5.4.2)
with unknown rate θ . She thinks of two different possible sampling plans to obtain
information about customer arrivals. One plan is to choose a fixed number, n, of
customers and to see how long, X, it takes until n customers arrive. The other plan
is to observe for a fixed length of time, t , and count how many customers, Y , arrive
during time t . That is, the store owner can either observe a Poisson random variable,
Y , with mean tθ or observe a gamma random variable, X, with parameters n and θ .
Is there any way to address the question of which sampling plan is likely to be more
informative? �

The Fisher information is one property of a distribution that can be used to
measure how much information one is likely to obtain from a random variable or
a random sample.

The Fisher Information in a Single Random Variable In this section, we shall
introduce a concept, called the Fisher information, that enters various aspects of
the theory of statistical inference, and we shall describe a few uses of this concept.

Consider a random variable X for which the p.f. or the p.d.f. is f (x|θ). It is
assumed that f (x|θ) involves a parameter θ whose value is unknown but must lie in a
given open interval � of the real line. Furthermore, it is assumed that X takes values
in a specified sample space S, and f (x|θ) > 0 for each value of x ∈ S and each value
of θ ∈ �. This assumption eliminates from consideration the uniform distribution on
the interval [0, θ ], where the value of θ is unknown, because, for that distribution,
f (x|θ) > 0 only when x < θ and f (x|θ) = 0 when x > θ . The assumption does not
eliminate any distribution where the set of values of x for which f (x|θ) > 0 is a fixed
set that does not depend on θ .
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Next, we define λ(x|θ) as follows:

λ(x|θ) = log f (x|θ).

It is assumed that for each value of x ∈ S, the p.f. or p.d.f. f (x|θ) is a twice
differentiable function of θ , and we let

λ′(x|θ) = ∂

∂θ
λ(x|θ) and λ′′(x|θ) = ∂2

∂θ2
λ(x|θ).

Definition
8.8.1

Fisher Information in a Random Variable. Let X be a random variable whose distribu-
tion depends on a parameter θ that takes values in an open interval � of the real line.
Let the p.f. or p.d.f. of X be f (x|θ). Assume that the set of x such that f (x|θ) > 0 is
the same for all θ and that λ(x|θ) = log f (x|θ) is twice differentiable as a function of
θ . The Fisher information I (θ) in the random variable X is defined as

I (θ) = Eθ{[λ′(X|θ)]2}. (8.8.1)

Thus, if f (x|θ) is a p.d.f., then

I (θ) =
∫

S

[λ′(x|θ)]2f (x|θ) dx. (8.8.2)

If f (x|θ) is a p.f., the integral in Eq. (8.8.2) is replaced by a sum over the points in S.
In the discussion that follows, we shall assume for convenience that f (x|θ) is a p.d.f.
However, all the results hold also when f (x|θ) is a p.f.

An alternative method for calculating the Fisher information sometimes proves
more useful.

Theorem
8.8.1

Assume the conditions of Definition 8.8.1. Also, assume that two derivatives of∫
S

f (x|θ)dx with respect to θ can be calculated by reversing the order of integration
and differentiation. Then the Fisher information also equals

I (θ) = −Eθ [λ′′(X|θ)]. (8.8.3)

Another expression for the Fisher information is

I (θ) = Varθ [λ′(X|θ)]. (8.8.4)

Proof We know that
∫
S

f (x|θ) dx = 1 for every value of θ ∈ �. Therefore, if the
integral on the left side of this equation is differentiated with respect to θ , the result
will be 0. We have assumed that we can reverse the order in which we perform the
integration with respect to x, and the differentiation with respect to θ , and will still
obtain the value 0. In other words, we shall assume that we can take the derivative
inside the integral sign and obtain∫

S

f ′(x|θ) dx = 0 for θ ∈ �. (8.8.5)

Furthermore, we have assumed that we can take a second derivative with respect to
θ “inside the integral sign” and obtain∫

S

f ′′(x|θ) dx = 0 for θ ∈ �. (8.8.6)

Since λ′(x|θ) = f ′(x|θ)/f (x|θ), then

Eθ [λ′(X|θ)] =
∫

S

λ′(x|θ)f (x|θ) dx =
∫

S

f ′(x|θ) dx.
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Hence, it follows from Eq. (8.8.5) that

Eθ [λ′(X|θ)] = 0. (8.8.7)

Since the mean of λ′(X|θ) is 0, it follows from Eq. (8.8.1) that Eq. (8.8.4) holds.
Next, note that

λ′′(x|θ) = f (x|θ)f ′′(x|θ) − [f ′(x|θ)]2

[f (x|θ)]2

= f ′′(x|θ)

f (x|θ)
− [λ′(x|θ)]2.

Therefore,

Eθ [λ′′(X|θ)] =
∫

S

f ′′(x|θ) dx − I (θ). (8.8.8)

It follows from Eqs. (8.8.8) and (8.8.6) that Eq. (8.8.3) holds.

In many problems, it is easier to determine the value of I (θ) from Eq. (8.8.3) than
from Eqs. (8.8.1) or (8.8.4).

Example
8.8.2

The Bernoulli Distributions. Suppose that X has the Bernoulli distribution with pa-
rameter p. We shall determine the Fisher information I (p) in X.

In this example, the possible values of X are the two values 0 and 1. For x = 0
or 1,

λ(x|p) = log f (x|p) = x log p + (1 − x) log(1 − p).

Hence,

λ′(x|p) = x

p
− 1 − x

1 − p

and

λ′′(x|p) = −
[

x

p2
+ 1 − x

(1 − p)2

]
.

Since E(X) = p, the Fisher information is

I (p) = −E[λ′′(X|p)] = 1
p

+ 1
1 − p

= 1
p(1 − p)

.

Recall from Eq. (4.3.3) that Var(X) = p(1 − p), so the more precise (smaller vari-
ance) X is the more information it provides.

In this example, it can be readily verified that the assumptions made in the proof
of Theorem 8.8.1 are satisfied. Indeed, because X can take only the two values 0
and 1, the integrals in Eqs. (8.8.5) and (8.8.6) reduce to summations over the two
values x = 0 and x = 1. Since it is always possible to take a derivative “inside a finite
summation” and to differentiate the sum term by term, Eqs. (8.8.5) and (8.8.6) must
be satisfied. �

Example
8.8.3

The Normal Distributions. Suppose that X has the normal distribution with unknown
mean μ and known variance σ 2. We shall determine the Fisher information I (μ) in X.

For −∞ < x < ∞,

λ(x|μ) = − 1
2

log(2πσ 2) − (x − μ)2

2σ 2
.
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Hence,

λ′(x|μ) = x − μ

σ 2
and λ′′(x|μ) = − 1

σ 2
.

It now follows from Eq. (8.8.3) that the Fisher information is

I (μ) = 1
σ 2

.

Since Var(X) = σ 2, we see again that the more precise (smaller variance) X is, the
more information it provides.

In this example, it can be verified directly (see Exercise 1 at the end of this
section) that Eqs. (8.8.5) and (8.8.6) are satisfied. �

It should be emphasized that the concept of Fisher information cannot be applied
to a distribution, such as the uniform distribution on the interval [0, θ ], for which the
necessary assumptions are not satisfied.

The Fisher Information in a Random Sample When we have a random sample
from a distribution, the Fisher information is defined in an analogous manner. In-
deed, Definition 8.8.2 subsumes Definition 8.8.1 as the special case in which n = 1.

Definition
8.8.2

Fisher Information in a Random Sample. Suppose that X = (X1, . . . , Xn) form a ran-
dom sample from a distribution for which the p.f. or p.d.f. is f (x|θ), where the value
of the parameter θ must lie in an open interval � of the real line. Let fn(x|θ) denote
the joint p.f. or joint p.d.f. of X . Define

λn(x|θ) = log fn(x|θ). (8.8.9)

Assume that the set of x such that fn(x|θ) > 0 is the same for all θ and that log fn(x|θ)

is twice differentiable with respect to θ . The Fisher information In(θ) in the random
sample X is defined as

In(θ) = Eθ{[λ′
n
(X |θ)]2}.

For continuous distributions, the Fisher information In(θ) in the entire sample is
given by the following n-dimensional integral:

In(θ) =
∫

S

. . .

∫
S

[λ′
n
(x|θ)]2fn(x|θ) dx1 . . . dxn.

For discrete distributions, replace the n-dimensional integral by an n-fold summation.
Furthermore, if we again assume that derivatives can be passed under the inte-

grals, then we may express In(θ) in either of the following two ways:

In(θ) = Varθ [λ′
n
(X |θ)] (8.8.10)

or

In(θ) = −Eθ [λ′′
n
(X |θ)]. (8.8.11)

We shall now show that there is a simple relation between the Fisher information
In(θ) in the entire sample and the Fisher information I (θ) in a single observation Xi.

Theorem
8.8.2

Under the conditions of Definitions 8.8.1 and 8.8.2,

In(θ) = nI (θ). (8.8.12)
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In words, the Fisher information in a random sample of n observations is simply n

times the Fisher information in a single observation.

Proof Since fn(x|θ) = f (x1|θ) . . . f (xn|θ), it follows that

λn(x|θ) =
n∑

i=1

λ(xi|θ).

Hence,

λ′′
n
(x|θ) =

n∑
i=1

λ′′(xi|θ). (8.8.13)

Since each observation Xi has the p.d.f. f (x|θ), the Fisher information in each Xi

is I (θ). It follows from Eqs. (8.8.3) and (8.8.11) that by taking expectations on both
sides of Eq. (8.8.13), we obtain Eq. (8.8.12).

Example
8.8.4

Studying Customer Arrivals. Return to the store owner in Example 8.8.1 who is trying
to choose between sampling a Poisson random variable, Y , with mean tθ or sampling
a gamma random variable, X, with parameters n and θ . The reader can compute the
Fisher information in each random variable in Exercises 3 and 19 in this section. We
shall label them IY (θ) and IX(θ). They are

IX(θ) = n

θ2
and IY (θ) = t

θ
.

Which is larger will clearly depend on the particular values of n, t , and θ . Both n and
t can be chosen by the store owner, but θ is unknown. In order for IX(θ) = IY (θ), it
is necessary and sufficient that n = tθ . This relation actually makes intuitive sense.
For example, if the store owner chooses to observe Y , then the total number N of
customers observed will be random and N = Y . The mean of N is then E(Y ) = tθ .
Similarly, if the store owner chooses to observe X, then the length of time T that it
takes to observe n customers will be random. In fact, T = X, and the mean of T θ

is n. So long as the manufacturer is comparing sampling plans that are expected to
observe the same numbers of customers or observe for the same length of time, the
two sampling plans should provide the same amount of information. �

The Information Inequality

Example
8.8.5

Studying Customer Arrivals. Another way that the store owner in Example 8.8.4 could
choose between the two sampling plans is to compare the estimators that she will
use to make inferential statements about customer arrivals. For example, she may
want to estimate θ , the rate of customer arrivals. Alternatively, she may want to
estimate 1/θ , the mean time between customer arrivals. Each sampling plan lends
itself to estimation of both parameters. Indeed, there are unbiased estimators of both
parameters available from at least one of these sampling plans. �

As one application of the results that have been derived concerning Fisher
information, we shall show how the Fisher information can be used to determine
a lower bound for the variance of an arbitrary estimator of the parameter θ in a
given problem. The following result was independently developed by H. Cramér and
C. R. Rao during the 1940s.

Theorem
8.8.3

Cramér-Rao (Information) Inequality. Suppose that X = (X1, . . . , Xn) form a random
sample from a distribution for which the p.d.f. is f (x|θ). Suppose also that all the
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assumptions which have been made about f (x|θ) thus far in this section continue to
hold. Let T = r(X) be a statistic with finite variance. Let m(θ) = Eθ(T ). Assume that
m(θ) is a differentiable function of θ . Then

Varθ(T ) ≥ [m′(θ)]2

nI (θ)
. (8.8.14)

There will be equality in (8.8.14) if and only if there exist functions u(θ) and v(θ) that
may depend on θ but do not depend on X and that satisfy the relation

T = u(θ)λ′
n
(X |θ) + v(θ). (8.8.15)

Proof The inequality derives from applying Theorem 4.6.3 to the covariance be-
tween T and the random variable λ′

n
(X |θ) defined in Eq. (8.8.9). Since λ′

n
(x|θ) =

f ′
n
(x|θ)/fn(x|θ), it follows just as for a single observation that

Eθ [λ′
n
(X |θ)] =

∫
S

. . .

∫
S

f ′
n
(x|θ) dx1 . . . dxn = 0.

Therefore,

Covθ [T, λ′
n
(X |θ)] = Eθ [T λ′

n
(X |θ)]

=
∫

S

. . .

∫
S

r(x)λ′
n
(x|θ)fn(x|θ) dx1 . . . dxn

=
∫

S

. . .

∫
S

r(x)f ′
n
(x|θ) dx1 . . . dxn. (8.8.16)

Next, write

m(θ) =
∫

S

. . .

∫
S

r(x)fn(x|θ) dx1 . . . dxn for θ ∈ �. (8.8.17)

Finally, suppose that when both sides of Eq. (8.8.17) are differentiated with respect
to θ , the derivative can be taken “inside the integrals” on the left side. Then

m′(θ) =
∫

S

. . .

∫
S

r(x)f ′
n
(x|θ) dx1 . . . dxn for θ ∈ �. (8.8.18)

It follows from Eqs. (8.8.16) and (8.8.18) that

Covθ [T, λ′
n
(X |θ)] = m′(θ) for θ ∈ �. (8.8.19)

Theorem 4.6.3 says that

{Covθ [T, λ′
n
(X |θ)]}2 ≤ Varθ(T ) Varθ [λ′

n
(X |θ)]. (8.8.20)

Therefore, it follows from Eqs. (8.8.10), (8.8.12), (8.8.19), and (8.8.20) that Eq.
(8.8.14) holds.

Finally, notice that (8.8.14) is an equality if and only if (8.8.20) is an equality. This,
in turn, is an equality if and only if there exist nonzero constants a and b and a constant
c such that aT + bλn(X |θ) = c. This last claim follows from the similar statement in
Theorem 4.6.3. In all of the calculations concerned with Fisher infomration, we have
been treating θ as a constant; hence, the constants a, b, and c just mentioned can
depend on θ , but must not depend on X . Then u(θ) = b/a and v(θ) = c/a.

The following simple corollary to Theorem 8.8.3 gives a lower bound on the
variance of an unbiased estimator of θ .
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Corollary
8.8.1

Cramér-Rao Lower Bound on the Variance of an Unbiased Estimator. Assume the as-
sumptions of Theorem 8.8.3. Let T be an unbiased estimator of θ . Then

Varθ(T ) ≥ 1
nI (θ)

.

Proof Because T is an unbiased estimator of θ , m(θ) = θ and m′(θ) = 1 for every
value of θ ∈ �. Now apply Eq. (8.8.14).

In words, Corollary 8.8.1 says that the variance of an unbiased estimator of θ cannot
be smaller than the reciprocal of the Fisher information in the sample.

Example
8.8.6

Unbiased Estimation of the Parameter of an Exponential Distribution. Let X1, . . . , Xn

be a random sample of size n > 2 from the exponential distribution with parameter
β. That is, each Xi has p.d.f. f (x|β) = β exp(−βx) for x > 0. Then

λ(x|β) = log(β) − βx,

λ′(x|β) = 1
β

− x,

λ′′(x|β) = − 1
β2

.

It can be verified that the conditions required to establish (8.8.3) hold in this example.
Then the Fisher information in one observation is

I (β) = −Eθ

[
− 1

β2

]
= 1

β2
.

The information in the whole sample is then In(β) = n/β2. Consider the estimator
T = (n − 1)/

∑n
i=1 Xi. Theorem 5.7.7 says that

∑n
i=1 Xi has the gamma distribution

with parameters n and β. In Exercise 21 in Sec. 5.7, you proved that the mean and
variance of 1/

∑n
i=1 Xi are β/(n − 1) and β2/[(n − 1)2(n − 2)], respectively. Thus, T is

unbiased and its variance is β2/(n − 2). The variance is indeed larger than the lower
bound, 1/In(β) = β2/n. The reason the inequality is strict is that T is not a linear
function of λ′

n
(X |θ). Indeed, T is 1 over a linear function of λ′

n
(X |θ).

On the other hand, if we wish to estimate m(β) = 1/β, U = Xn is an unbiased
estimator with variance 1/(nβ2). The information inequality says that the lower
bound on the variance of an estimator of 1/β is

m′(β)2

n/β2
= (−1/β2)2

n/β2
= 1

nβ2
.

In this case, we see that there is equality in (8.8.14). �

Example
8.8.7

Studying Customer Arrivals. Return to the store owner in Example 8.8.5 who wants
to compare the estimators of θ and 1/θ that she could compute from either the
Poisson random variable Y or the gamma random variable X. The case of unbiased
estimators based on X was already handled in Example 8.8.6, where our X has the
same distribution as

∑n
i=1 Xi in that example when θ = β. Hence, X/n is an unbiased

estimator of 1/θ whose variance equals the Cramér-Rao lower bound, and (n − 1)/X

is an unbiased estimator of θ whose variance is strictly larger than the lower bound.
Since Eθ(Y ) = tθ , we see that Y/t is an unbiased estimator of θ whose variance is also
known to be θ/t , which is the Cramér-Rao lower bound. Unfortunately, there is no
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unbiased estimator of 1/θ based on Y alone. The estimator δ(Y ) = t/(Y + 1) satisfies

Eθ [δ(Y )] = 1
θ

[
1 − e−tθ

]
.

If t is large and θ is not too small, the bias will be small, but it is impossible to find an
unbiased estimator. The reason is that the mean of every function of Y is exp(−tθ)

times a power series in θ . Every such function is differentiable in a neighborhood of
θ = 0. The function 1/θ is not differentiable at θ = 0. �

Efficient Estimators

Example
8.8.8

Variance of a Poisson Distribution. In Example 8.7.5, we presented a collection of
different unbiased estimators of the the variance of a Poisson distribution based
on a random sample X = (X1, . . . , Xn) from that distribution. After that example,
we made the claim that one of the estimators has the smallest variance among the
entire collection. The information inequality gives us a way to address comparisons
of such collections of estimators without necessarily listing them all or computing
their variances. �

An estimator whose variance equals the Cramér-Rao lower bound makes the
most efficient use of the data X in some sense.

Definition
8.8.3

Efficient Estimator. It is said that an estimator T is an efficient estimator of its expec-
tation m(θ) if there is equality in (8.8.14) for every value of θ ∈ �.

One difficulty with Definition 8.8.3 is that, in a given problem, there may be no
estimator of a particular function m(θ) whose variance actually attains the Cramér-
Rao lower bound. For example, if the random variable X has the normal distribution
for which the mean is 0 and the standard deviation σ is unknown (σ > 0), then it
can be shown that the variance of every unbiased estimator of σ based on the single
observation X is strictly greater than 1/I (σ ) for every value of σ > 0 (see Exercise 9).
In Example 8.8.6, no efficient estimator of β exists.

On the other hand, in many standard estimation problems there do exist efficient
estimators. Of course, the estimator that is identically equal to a constant is an effi-
cient estimator of that constant, since the variance of this estimator is 0. However, as
we shall now show, there are often efficient estimators of more interesting functions
of θ as well.

According to Theorem 8.8.3, there will be equality in the information inequality
(8.8.14) if and only if the estimator T is a linear function of λ′

n
(X |θ). It is possible

that the only efficient estimators in a given problem will be constants. The reason is
as follows: Because T is an estimator, it cannot involve the parameter θ . Therefore,
in order for T to be efficient, it must be possible to find functions u(θ) and v(θ) such
that the parameter θ will actually be canceled from the right side of Eq. (8.8.15), and
the value of T will depend only on the observations X and not on θ .

Example
8.8.9

Sampling from a Poisson Distribution. Suppose that X1, . . . , Xn form a random sample
from the Poisson distribution with unknown mean θ (θ > 0). We shall show that Xn

is an efficient estimator of θ .
The joint p.f. of X1, . . . , Xn can be written in the form

fn(x|θ) = e−nθθnxn

�n
i=I (xi!)

.
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Therefore,

λn(X |θ) = −nθ + nXn log θ −
n∑

i=1

log(Xi!)

and

λ′
n
(X |θ) = −n + nXn

θ
. (8.8.21)

If we now let u(θ) = θ/n and v(θ) = θ , then it is found from Eq. (8.8.21) that

Xn = u(θ)λ′
n
(X |θ) + v(θ).

Since the statistic Xn has been represented as a linear function of λ′
n
(X |θ), it

follows that Xn is an efficient estimator of its expectation θ . In other words, the
variance of Xn will attain the lower bound given by the information inequality, which
in this example is θ/n (see Exercise 3). This fact can also be verified directly. �

Unbiased Estimators with Minimum Variance Suppose that in a given problem
a particular estimator T is an efficient estimator of its expectation m(θ), and let T1
denote any other unbiased estimator of m(θ). Then for every value of θ ∈ �, Varθ(T )

will be equal to the lower bound provided by the information inequality, and Varθ(T1)

will be at least as large as that lower bound. Hence, Varθ(T ) ≤ Varθ(T1) for θ ∈ �. In
other words, if T is an efficient estimator of m(θ), then among all unbiased estimators
of m(θ), T will have the smallest variance for every possible value of θ .

Example
8.8.10

Variance of a Poisson Distribution. In Example 8.8.9, we saw that Xn is an efficient
estimator of the mean θ of a Poisson distribution. Therefore, for every value of θ > 0,
Xn has the smallest variance among all unbiased estimators of θ . Since θ is also the
variance of the Poisson distribution with mean θ , we know that Xn has the smallest
variance among all unbiased estimators of the variance. This establishes the claim
that was made without proof after Example 8.7.5. In particular, the estimator σ̂ 2

1
in Example 8.7.5 is not a linear function of λ′

n
(X |θ), and hence its variance must

be strictly larger than Cramér-Rao lower bound. Similarly, the other estimators in
Eq. (8.7.5) must each have variance larger than the Cramér-Rao lower bound. �

Properties of Maximum Likelihood Estimators for Large Samples

Suppose that X1, . . . , Xn form a random sample from a distribution for which the
p.d.f. or the p.f. is f (x|θ), and suppose also that f (x|θ) satisfies conditions similar to
those which were needed to derive the information inequality. For each sample size
n, let θ̂n denote the M.L.E. of θ . We shall show that if n is large, then the distribution
of θ̂n is approximately the normal distribution with mean θ and variance 1/[nI (θ)].

Theorem
8.8.4

Asymptotic Distribution of an Efficient Estimator. Assume the assumptions of Theo-
rem 8.8.3. Let T be an efficient estimator of its mean m(θ). Assume that m′(θ) is
never 0. Then the asymptotic distribution of

[nI (θ)]1/2

m′(θ)
[T − m(θ)]

is the standard normal distribution.
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Proof Consider first the random variable λ′
n
(X |θ). Since λn(X |θ) = ∑n

i=1 λ(Xi|θ),
then

λ′
n
(X |θ) =

n∑
i=1

λ′(Xi|θ).

Furthermore, since the n random variables X1, . . . , Xn are i.i.d., the n random vari-
ables λ′(X1|θ), . . . , λ′(Xn|θ) will also be i.i.d. We know from Eqs. (8.8.7) and (8.8.4)
that the mean of each of these variables is 0, and the variance of each is I (θ). Hence,
it follows from the central limit theorem of Lindeberg and Lévy (Theorem 6.3.1) that
the asymptotic distribution of the random variable λ′

n
(X |θ)/[nI (θ)]1/2 is the standard

normal distribution.
Since T is an efficient estimator of m(θ), we have

Eθ(T ) = m(θ) and Varθ(T ) = [m′(θ)]2

nI (θ)
. (8.8.22)

Furthermore, there must exist functions u(θ) and v(θ) that satisfy Eq. (8.8.15). Be-
cause the random variable λ′

n
(X |θ) has mean 0 and variance nI (θ), it follows from

Eq. (8.8.15) that

Eθ(T ) = v(θ) and Varθ(T ) = [u(θ)]2nI (θ).

When these values for the mean and the variance of T are compared with the values
in Eq. (8.8.22), we find that v(θ) = m(θ) and |u(θ)| = |m′(θ)|/[nI (θ)]. To be specific,
we shall assume that u(θ) = m′(θ)/[nI (θ)], although the same conclusions would be
obtained if u(θ) = −m′(θ)/[nI (θ)].

Next, substitute the values u(θ) = m′(θ)/[nI (θ)]and v(θ) = m(θ) into Eq. (8.8.15)
to obtain

T = m′(θ)

nI (θ)
λ′

n
(X |θ) + m(θ).

Rearranging this equation slightly yields

[nI (θ)]1/2

m′(θ)
[T − m(θ)] = λ′

n
(X |θ)

[nI (θ)]1/2
. (8.8.23)

We have already shown that the asymptotic distribution of the random variable
on the right side of Eq. (8.8.23) is the standard normal distribution. Therefore, the
asymptotic distribution of the random variable on the left side of Eq. (8.8.23) is also
the standard normal distribution.

Asymptotic Distribution of an M.L.E It follows from Theorem 8.8.4 that if the
M.L.E. θ̂n is an efficient estimator of θ for each value of n, then the asymptotic
distribution of [nI (θ)]1/2(θ̂n − θ) is the standard normal distribution. However, it can
be shown that even in an arbitrary problem in which θ̂n is not an efficient estimator,
[nI (θ)]1/2(θ̂n − θ) has this same asymptotic distribution under certain conditions.
Without presenting all the required conditions in full detail, we can state the following
result. The proof of this result can be found in Schervish (1995, chapter 7).

Theorem
8.8.5

Asymptotic Distribution of M.L.E. Suppose that in an arbitrary problem the M.L.E. θ̂n

is determined by solving the equation λ′
n
(x|θ) = 0, and in addition both the second

and third derivatives λ′′
n
(x|θ) and λ′′′

n
(x|θ) exist and satisfy certain regularity condi-

tions. Then the asymptotic distribution of [nI (θ)]1/2(θ̂n − θ) is the standard normal
distribution.
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In practical terms, Theorem 8.8.5 states that in most problems in which the sam-
ple size n is large, and the M.L.E. θ̂n is found by differentiating the likelihood function
fn(x|θ) or its logarithm, the distribution of [nI (θ)]1/2(θ̂n − θ) will be approximately
the standard normal distribution. Equivalently, the distribution of θ̂n will be approx-
imately the normal distribution with mean θ and variance 1/[nI (θ)]. Under these
conditions, it is said that θ̂n is an asymptotically efficient estimator.

Example
8.8.11

Estimating the Standard Deviation of a Normal Distribution. Suppose that X1, . . . , Xn

form a random sample from the normal distribution with known mean 0 and un-
known standard deviation σ (σ > 0). It can be shown that the M.L.E. of σ is

σ̂ =
[

1
n

n∑
i=1

X2
i

]1/2

.

Also, it can be shown (see Exercise 4) that the Fisher information in a single observa-
tion is I (σ ) = 2/σ 2. Therefore, if the sample size n is large, the distribution of σ̂ will
be approximately the normal distribution with mean σ and variance σ 2/(2n). �

For cases in which it is difficult to compute the M.L.E., there is a result similar
to Theorem 8.8.5. The proof of Theorem 8.8.6 can also be found as a special case of
theorem 7.75 in Schervish (1995).

Theorem
8.8.6

Efficient Estimation. Assume the same smoothness conditions on the likelihood func-
tion as in Theorem 8.8.5. Assume that θ̃n is a sequence of estimators of θ such that√

n(θ̃n − θ) converges in distribution to some distribution (it doesn’t matter what dis-
tribution). Use θ̃n as the starting value, and perform one step of Newton’s method
(Definition 7.6.2) toward finding the M.L.E. of θ . Let the result of this one step be
called θ∗

n
. Then the asymptotic distribution of [nI (θ)]1/2(θ∗

n
− θ) is the standard nor-

mal distribution.

A typical choice of θ̃n in Theorem 8.8.6 is a method of moments estimator (Defi-
nition 7.6.3). Example 7.6.6 illustrates such an application of Theorem 8.8.6 when
sampling from a gamma distribution.

The Bayesian Point of View Another general property of the M.L.E. θ̂n pertains
to making inferences about a parameter θ from the Bayesian point of view. Suppose
that the prior distribution of θ is represented by a positive and differentiable p.d.f.
over the interval �, and the sample size n is large. Then under conditions similar to
the regularity conditions that are needed to assure the asymptotic normality of the
distribution of θ̂n, it can be shown that the posterior distribution of θ , after the values
of X1, . . . , Xn have been observed, will be approximately the normal distribution
with mean θ̂n and variance 1/[nI (θ̂n)].

Example
8.8.12

The Posterior Distribution of the Standard Deviation. Suppose again that X1, . . . , Xn

form a random sample from the normal distribution with known mean 0 and un-
known standard deviation σ . Suppose also that the prior p.d.f. of σ is a positive and
differentiable function for σ > 0, and the sample size n is large. Since I (σ ) = 2/σ 2, it
follows that the posterior distribution of σ will be approximately the normal distri-
bution with mean σ̂ and variance σ̂ 2/(2n), where σ̂ is the M.L.E. of σ calculated from
the observed values in the sample. Figure 8.9 illustrates this approximation based on a
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Figure 8.9 Posterior p.d.f. of
σ and approximation based
on Fisher information in
Example 8.8.12.
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sample of n = 40 i.i.d. simulated normal random variables with mean 0 and variance 1.
In this sample, the M.L.E. was σ̂ = 1.061. Figure 8.9 shows the actual posterior p.d.f.
based on an improper prior with “p.d.f.” 1/σ together with the approximate normal
posterior p.d.f. with mean 1.061 and variance 1.0612/80 = 0.0141. �

Fisher Information for Multiple Parameters

Example
8.8.13

Sample from a Normal Distribution. Let X = (X1, . . . , Xn) be a random sample from
the normal distribution with mean μ and variance σ 2. Is there an analog to Fisher
information for the vector parameter θ = (μ, σ 2)? �

In the spirit of Definition 8.8.1 and Theorem 8.8.1, we define Fisher information
in terms of derivatives of the logarithm of the likelihood function. We shall define
the Fisher information in a random sample of size n with the understanding that the
Fisher information in a single random variable corresponds to a sample size of n = 1.

Definition
8.8.4

Fisher Information for a Vector Parameter. Suppose that X = (X1, . . . , Xn) form a
random sample from a distribution for which the p.d.f. is f (x|θ), where the value
of the parameter θ = (θ1, . . . , θk) must lie in an open subset � of a k-dimensional
real space. Let fn(x|θ) denote the joint p.d.f. or joint p.f. of X . Define

λn(x|θ) = log fn(x|θ).

Assume that the set of x such that fn(x|θ) > 0 is the same for all θ and that log fn(x|θ)

is twice differentiable with respect to θ . The Fisher information matrix In(θ) in the
random sample X is defined as the k × k matrix with (i, j) element equal to

In,i,j (θ) = Covθ

[
∂

∂θi

λ′
n
(X |θ),

∂

∂θj

λ′
n
(X |θ)

]
.

Example
8.8.14

Sample from a Normal Distribution. In Example 8.8.13, let θ1 = μ and θ2 = σ 2. As in
Eq. (7.5.3), we obtain

λn(X |θ) = −n

2
log(2π) − n

2
log(θ2) − 1

2θ2

n∑
i=1

(Xi − θ1)
2.



526 Chapter 8 Sampling Distributions of Estimators

The first partial derivatives are

∂

∂θ1
λn(x|θ) = 1

θ2

n∑
i=1

(Xi − θ1), (8.8.24)

∂

∂θ2
λn(x|θ) = n

2θ2
+ 1

2θ2
2

n∑
i=1

(Xi − θ1)
2. (8.8.25)

Since the means of the two random variables above are both 0, their covariances
are the means of the products. The distribution of

∑n
i=1(Xi − θ1) is the normal

distribution with mean 0 and variance nθ2. The distribution of
∑n

i=1(Xi − θ1)
2/θ2 is

the χ2 distribution with n degrees of freedom. So the variance of (8.8.24) is n/θ2, and
the variance of (8.8.25) is 2n/θ2

2 . The mean of the product of (8.8.24) and (8.8.25) is
0 because the third central moment of a normal distribution is 0. This makes

In(θ) =
⎛⎝ n

θ2
0

0
n

θ2
2

⎞⎠ . �

The results for one-dimensional parameters all have versions for k-dimensional
parameters. For example, in Eq. (8.8.3), λ′′(X|θ) is replaced by the k × k matrix of
second partial derivatives. In the Cramér-Rao inequality, we need the inverse of
the matrix In(θ), and m′(θ) must be replaced by the vector of partial derivatives.
Specifically, if T is a statistic with finite variance and mean m(θ), then

Varθ(T ) ≥
(

∂

∂θ1
m(θ), . . . ,

∂

∂θk

m(θ)

)
In(θ)−1

⎛⎝ ∂
∂θ1

m(θ)
...

∂
∂θk

m(θ)

⎞⎠ . (8.8.26)

Also, the inequality in (8.8.26) is equality if and only if T is a linear function of the
vector (

∂

∂θ1
λn(x|θ), . . . ,

∂

∂θk

λn(x|θ)

)
. (8.8.27)

Example
8.8.15

Sample from a Normal Distribution. In Example 8.8.14, the coordinates of the vector
in (8.8.27) are linear functions of the two random variables

∑n
i=1 Xi and

∑n
i=1 X2

i
.

So, the only statistics whose variances equal the lower bound in (8.8.26) are of the
form T = a

∑n
i=1 Xi + b

∑n
i=1 X2

i
+ c. The mean of such a statistic T is

Eθ(T ) = anθ1 + bn(θ2 + θ2
1 ) + c. (8.8.28)

In particular, it is impossible to obtain θ2 as a special case of (8.8.28). There is no
efficient unbiased estimator of θ2 = σ 2. It can be proven that (σ ′)2, which was defined
in Eq. (8.4.3), is an unbiased estimator that has minimum variance among all unbiased
estimators. The proof of this fact is beyond the scope of this text. The variance of (σ ′)2

is 2θ2
2 /(n − 1), while the Cramér-Rao lower bound is 2θ2

2 /n. �

Example
8.8.16

Multinomial Distributions. Let X = (X1, . . . , Xk) have the multinomial distribution
with parameters n and p = (p1, . . . , pk) as defined in Definition 5.9.1. Finding the
Fisher information in this example involves a subtle point. The parameter vector p
takes values in the set

{p : p1 + . . . + pk = 1, all pi ≥ 0}.
No subset of this set is open. Hence, no matter what set we choose for the param-
eter space, Definition 8.8.4 does not apply to this parameter. However, there is an
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equivalent paramter p∗ = (p1, . . . , pk−1) that takes values in the set

{p∗ : p1 + . . . + pk−1 ≤ 1, all pi ≥ 0},
which has nonempty interior. With this version of the parameter, and assuming that
the parameter space is the interior of the set above, it is straightforward to calculate
the Fisher information, as in Exercise 20. �

Summary

Fisher information attempts to measure the amount of information about a parame-
ter that a random variable or sample contains. Fisher information from independent
random variables adds together to form the Fisher information in the sample. The
information inequality (Cramér-Rao lower bound) provides lower bounds on the
variances of all estimators. An estimator is efficient if its variance equals the lower
bound. The asymptotic distribution of a maximum likelihood estimator of θ is (under
regularity conditions) normal with mean θ and variance equal to 1 over the Fisher
information in the sample. Also, for large sample sizes, the posterior distribution of
θ is approximately normal with mean equal to the M.L.E. and variance equal to 1
over the Fisher information in the sample evaluated at the M.L.E.

Exercises

1. Suppose that a random variable X has a normal distri-
bution for which the mean μ is unknown (−∞ < μ < ∞)

and the variance σ 2 is known. Let f (x|μ) denote the p.d.f.
of X, and let f ′(x|μ) and f ′′(x|μ) denote the first and sec-
ond partial derivatives with respect to μ. Show that∫ ∞

−∞
f ′(x|μ) dx = 0 and

∫ ∞

−∞
f ′′(x|μ) dx = 0.

2. Suppose that X has the geometric distribution with
parameter p. (See Sec. 5.5.) Find the Fisher information
I (p) in X.

3. Suppose that a random variable X has the Poisson dis-
tribution with unknown mean θ > 0. Find the Fisher infor-
mation I (θ) in X.

4. Suppose that a random variable has the normal dis-
tribution with mean 0 and unknown standard deviation
σ > 0. Find the Fisher information I (σ ) in X.

5. Suppose that a random variable X has the normal dis-
tribution with mean 0 and unknown variance σ 2 > 0. Find
the Fisher information I (σ 2) in X. Note that in this exer-
cise the variance σ 2 is regarded as the parameter, whereas
in Exercise 4 the standard deviation σ is regarded as the
parameter.

6. Suppose that X is a random variable for which the p.d.f.
or the p.f. is f (x|θ), where the value of the parameter θ

is unknown but must lie in an open interval �. Let I0(θ)

denote the Fisher information in X. Suppose now that the
parameter θ is replaced by a new parameter μ, where
θ = ψ(μ), and ψ is a differentiable function. Let I1(μ)

denote the Fisher information in X when the parameter
is regarded as μ. Show that

I1(μ) = [ψ ′(μ)]2I0[ψ(μ)].

7. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with unknown parameter p.
Show that Xn is an efficient estimator of p.

8. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance σ 2 > 0. Show that Xn is an efficient estimator
of μ.

9. Suppose that a single observation X is taken from the
normal distribution with mean 0 and unknown standard
deviation σ > 0. Find an unbiased estimator of σ , deter-
mine its variance, and show that this variance is greater
than 1/I (σ ) for every value of σ > 0. Note that the value
of I (σ ) was found in Exercise 4.

10. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean 0 and unknown stan-
dard deviation σ > 0. Find the lower bound specified by
the information inequality for the variance of any unbi-
ased estimator of log σ .

11. Suppose that X1, . . . , Xn form a random sample from
an exponential family for which the p.d.f. or the p.f. f (x|θ)

is as specified in Exercise 23 of Sec. 7.3. Suppose also that
the unknown value of θ must belong to an open interval �
of the real line. Show that the estimator T = ∑n

i=1 d(Xi)

is an efficient estimator. Hint: Show that T can be repre-
sented in the form given in Eq. (8.8.15).
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12. Suppose that X1, . . . , Xn form a random sample from
a normal distribution for which the mean is known and
the variance is unknown. Construct an efficient estimator
that is not identically equal to a constant, and determine
the expectation and the variance of this estimator.

13. Determine what is wrong with the following argu-
ment: Suppose that the random variable X has the uniform
distribution on the interval [0, θ ], where the value of θ is
unknown (θ > 0). Then f (x|θ) = 1/θ , λ(x|θ) = − log θ and
λ′(x|θ) = −(1/θ). Therefore,

I (θ) = Eθ{[λ′(X|θ)]2} = 1
θ2

.

Since 2X is an unbiased estimator of θ , the information
inequality states that

Var(2X) ≥ 1
I (θ)

= θ2.

But

Var(2X) = 4 Var(X) = 4 . θ2

12
= θ2

3
< θ2.

Hence, the information inequality is not correct.

14. Suppose that X1, . . . , Xn form a random sample from
the gamma distribution with parameters α and β, where
α is unknown and β is known. Show that if n is large, the
distribution of the M.L.E. of α will be approximately a
normal distribution with mean α and variance

[�(α)]2

n{�(α)�′′(α) − [�′(α)]2} .

15. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with uknown mean μ and known
variance σ 2, and the prior p.d.f. of μ is a positive and dif-
ferentiable function over the entire real line. Show that if
n is large, the posterior distribution of μ given that Xi = xi

(i = 1, . . . , n) will be approximately a normal distribution
with mean xn and variance σ 2/n.

16. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with unknown parameter p, and
the prior p.d.f. of p is a positive and differentiable function
over the interval 0 < p < 1. Suppose, furthermore, that n

is large, the observed values of X1, . . . , Xn are x1, . . . , xn,
and 0 < xn < 1. Show that the posterior distribution of p

will be approximately a normal distribution with mean xn

and variance xn(1 − xn)/n.

17. Let X have the binomial distribution with parameters
n and p. Assume that n is known. Show that the Fisher
information in X is I (p) = n/[p(1 − p)].

18. Let X have the negative binomial distribution with
parameters r and p. Assume that r is known. Show that
the Fisher information in X is I (p) = r/[p2(1 − p)].

19. Let X have the gamma distribution with parameters n

and θ with θ unknown. Show that the Fisher information
in X is I (θ) = n/θ2.

20. Find the Fisher information matrix about p∗ in Exam-
ple 8.8.16.

8.9 Supplementary Exercises
1. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with known mean 0 and unknown
variance σ 2. Show that

∑n
i=1 X2

i
/n is the unbiased esti-

mator of σ 2 that has the smallest possible variance for all
possible values of σ 2.

2. Prove that if X has the t distribution with one degree
of freedom, then 1/X also has the t distribution with one
degree of freedom.

3. Suppose that U and V are independent random vari-
ables, and that each has the standard normal distribution.
Show that U/V , U/|V |, and |U |/V each has the t distribu-
tion with one degree of freedom.

4. Suppose that X1 and X2 are independent random vari-
ables, and that each has the normal distribution with mean
0 and variance σ 2. Show that (X1 + X2)/(X1 − X2) has the
t distribution with one degree of freedom.

5. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with parameter β. Show that

2β
∑n

i=1 Xi has the χ2 distribution with 2n degrees of
freedom.

6. Suppose that X1, . . . , Xn form a random sample from
an unknown probability distribution P on the real line.
Let A be a given subset of the real line, and let θ = P(A).
Construct an unbiased estimator of θ , and specify its vari-
ance.

7. Suppose that X1, . . . , Xm form a random sample from
the normal distribution with mean μ1 and variance σ 2, and
Y1, . . . , Yn form an independent random sample from the
normal distribution with mean μ2 and variance 2σ 2. Let
S2

X
= ∑m

i=1(Xi − Xm)2 and S2
Y

= ∑n
i=1(Yi − Yn)

2.

a. For what pairs of values of α and β is αS2
X

+ βS2
Y

an
unbiased estimator of σ 2?

b. Determine the values of α and β for which αS2
X

+
βS2

Y
will be an unbiased estimator with minimum

variance.
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8. Suppose that X1, . . . , Xn+1 form a random sample
from a normal distribution, and let Xn = 1

n

∑n
i=1 Xi and

Tn =
[

1
n

∑n
i=1(Xi − Xn)

2
]1/2

. Determine the value of a

constant k such that the random variable k(Xn+1 − Xn)/Tn

will have a t distribution.

9. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2, and
Y is an independent random variable having the normal
distribution with mean 0 and variance 4σ 2. Determine a
function of X1, . . . , Xn and Y that does not involve μ or σ 2

but has the t distribution with n − 1 degrees of freedom.

10. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with mean μ and variance σ 2,
where both μ and σ 2 are unknown. A confidence interval
for μ is to be constructed with confidence coefficient 0.90.
Determine the smallest value of n such that the expected
squared length of this interval will be less than σ 2/2.

11. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known variance σ 2. Construct a lower confidence limit
L(X1, . . . , Xn) for μ such that

Pr[μ > L(X1, . . . , Xn)] = 0.99.

12. Consider again the conditions of Exercise 11. Con-
struct an upper confidence limit U(X1, . . . , Xn) for σ 2

such that

Pr[σ 2 < U(X1, . . . , Xn)] = 0.99.

13. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean θ and known
variance σ 2. Suppose also that the prior distribution of θ

is normal with mean μ and variance ν2.

a. Determine the shortest interval I such that Pr(θ ∈
I |x1, . . . , xn) = 0.95, where the probability is calcu-
lated with respect to the posterior distribution of θ ,
as indicated.

b. Show that as ν2 → ∞, the interval I converges to
an interval I ∗ that is a confidence interval for θ with
confidence coefficient 0.95.

14. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean θ , and let
Y = ∑n

i=1 Xi.

a. Determine the value of a constant c such that the
estimator e−cY is an unbiased estimator of e−θ .

b. Use the information inequality to obtain a lower
bound for the variance of the unbiased estimator
found in part (a).

15. Suppose that X1, . . . , Xn form a random sample from
a distribution for which the p.d.f. is as follows:

f (x|θ) =
{

θxθ−1 for 0 < x < 1,
0 otherwise,

where the value of θ is unknown (θ > 0). Determine the
asymptotic distribution of the M.L.E. of θ . (Note: The
M.L.E. was found in Exercise 9 of Sec. 7.5.)

16. Suppose that a random variable X has the exponential
distribution with mean θ , which is unknown (θ > 0). Find
the Fisher information I (θ) in X.

17. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with unknown parameter p.
Show that the variance of every unbiased estimator of
(1 − p)2 must be at least 4p(1 − p)3/n.

18. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with unknown parameter β.
Construct an efficient estimator that is not identically
equal to a constant, and determine the expectation and
the variance of this estimator.

19. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with unknown parameter β.
Show that if n is large, the distribution of the M.L.E. of β

will be approximately a normal distribution with mean β

and variance β2/n.

20. Consider again the conditions of Exercise 19, and let
β̂n denote the M.L.E. of β.

a. Use the delta method to determine the asymptotic
distribution of 1/β̂n.

b. Show that 1/β̂n = Xn, and use the central limit theo-
rem to determine the asymptotic distribution of 1/β̂n.

21. Let X1, . . . , Xn be a random sample from the Poisson
distribution with mean θ . Let Y = ∑n

i=1 Xi.

a. Prove that there is no unbiased estimator of 1/θ .
(Hint: Write the equation that is equivalent to
Eθ(r(X)) = 1/θ . Simplify it, and then use what you
know from calculus of infinite series to show that no
function r can satisfy the equation.)

b. Suppose that we wish to estimate 1/θ . Consider
r(Y ) = n/(Y + 1) as an estimator of θ . Find the bias
of r(Y ), and show that the bias goes to 0 as n → ∞.

c. Use the delta method to find the asymptotic (as n →
∞) distribution of n/(Y + 1).

22. Let X1, . . . , Xn be conditionally i.i.d. with the uniform
distribution on the interval [0, θ ]. Let Yn = max{X1, . . . ,

Xn}.
a. Find the p.d.f. and the quantile function of Yn/θ .

b. Yn is often used as an estimator of θ even though it
has bias. Compute the bias of Yn as an estimator of θ .

c. Prove that Yn/θ is a pivotal.

d. Find a confidence interval for θ with coefficient γ .
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9.1 Problems of Testing Hypotheses
In Example 8.3.1 on page 473, we were interested in whether or not the mean
log-rainfall μ from seeded clouds was greater than some constant, specifically
4. Hypothesis testing problems are similar in nature to the decision problem of
Example 8.3.1. In general, hypothesis testing concerns trying to decide whether
a parameter θ lies in one subset of the parameter space or in its complement.
When θ is one-dimensional, at least one of the two subsets will typically be an
interval, possibly degenerate. In this section, we introduce the notation and some
common methodology associated with hypothesis testing. We also demonstrate an
equivalence between hypothesis tests and confidence intervals.

The Null and Alternative Hypotheses

Example
9.1.1

Rain from Seeded Clouds. In Example 8.3.1, we modeled the log-rainfalls from 26
seeded clouds as normal random variables with unknown mean μ and unknown
variance σ 2. Let θ = (μ, σ 2) denote the parameter vector. We are interested in
whether or not μ > 4. To word this in terms of the parameter vector, we are interested
in whether or not θ lies in the set {(μ, σ 2) : μ > 4}. In Example 8.6.4, we calculated
the probability that μ > 4 as part of a Bayesian analysis. If one does not wish to do
a Bayesian analysis, one must address the question of whether or not μ > 4 by other
means, such as those introduced in this chapter. �

Consider a statistical problem involving a parameter θ whose value is unknown
but must lie in a certain parameter space �. Suppose now that � can be partitioned
into two disjoint subsets �0 and �1, and the statistician is interested in whether θ lies
in �0 or in �1.

We shall let H0 denote the hypothesis that θ ∈ �0 and let H1 denote the hypothesis
that θ ∈ �1. Since the subsets �0 and �1 are disjoint and �0 ∪ �1 = �, exactly one
of the hypotheses H0 and H1 must be true. The statistician must decide which of the
hypotheses H0 or H1 appears to be true. A problem of this type, in which there are
only two possible decisions, is called a problem of testing hypotheses. If the statistician
makes the wrong decision, he might suffer a certain loss or pay a certain cost. In many
problems, he will have an opportunity to observe some data before he has to make his

530
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decision, and the observed values will provide him with information about the value
of θ . A procedure for deciding which hypothesis to choose is called a test procedure
or simply a test.

In our discussion up to this point, we have treated the hypotheses H0 and H1
on an equal basis. In most problems, however, the two hypotheses are treated quite
differently.

Definition
9.1.1

Null and Alternative Hypotheses/Reject. The hypothesis H0 is called the null hypothesis
and the hypothesis H1 is called the alternative hypothesis. When performing a test, if
we decide that θ lies in �1, we are said to reject H0. If we decide that θ lies in �0, we
are said not to reject H0.

The terminology referring to the decisions in Definition 9.1.1 is asymmetric with
regard to the null and alternative hypotheses. We shall return to this point later in
the section.

Example
9.1.2

Egyptian Skulls. Manly (1986, p.4) reports measurements of various dimensions of
human skulls found in Egypt from various time periods. These data are attributed to
Thomson and Randall-Maciver (1905). One time period is approximately 4000 b.c.
We might model the observed breadth measurements (in mm) of the skulls as normal
random variables with unknown mean μ and variance 26. Interest might lie in how μ

compares to the breadth of a modern-day skull, about 140mm. The parameter space
� could be the positive numbers, and we could let �0 be the interval [140, ∞) while
�1 = (0, 140). In this case, we would write the null and alternative hypotheses as

H0: μ ≥ 140,

H1: μ < 140.

More realistically, we would assume that both the mean and variance of breadth mea-
surements were unknown. That is, each measurement is a normal random variable
with mean μ and variance σ 2. In this case, the parameter would be two-dimensional,
for example, θ = (μ, σ 2). The parameter space � would then be pairs of real numbers.
In this case, �0 = [140, ∞) × (0, ∞) and �1 = (0, 140) × (0, ∞), since the hypothe-
ses only concern the first coordinate μ. The hypotheses to be tested are the same as
above, but now μ is only one coordinate of a two-dimensional parameter vector. We
will address problems of this type in Sec. 9.5. �

How did we decide that the null hypothesis should be H0 : μ ≥ 140 in Exam-
ple 9.1.2 rather than μ ≤ 140? Would we be led to the same conclusion either way?
We can address these issues after we introduce the possible errors that can arise in
hypothesis testing (Definition 9.1.7).

Simple and Composite Hypotheses

Suppose that X1, . . . , Xn form a random sample from a distribution for which the
p.d.f. or the p.f. is f (x|θ), where the value of the parameter θ must lie in the parameter
space �; �0 and �1 are disjoint sets with �0 ∪ �1 = �; and it is desired to test the
following hypotheses:

H0: θ ∈ �0,

H1: θ ∈ �1.

For i = 0 or i = 1, the set �i may contain just a single value of θ or it might be a
larger set.
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Definition
9.1.2

Simple and Composite Hypotheses. If �i contains just a single value of θ , then Hi is
a simple hypothesis. If the set �i contains more than one value of θ , then Hi is a
composite hypothesis.

Under a simple hypothesis, the distribution of the observations is completely spec-
ified. Under a composite hypothesis, it is specified only that the distribution of the
observations belongs to a certain class. For example, a simple null hypothesis H0 must
have the form

H0: θ = θ0. (9.1.1)

Definition
9.1.3

One-Sided and Two-Sided Hypotheses. Let θ be a one-dimensional parameter. One-
sided null hypotheses are of the form H0 : θ ≤ θ0 or H0 : θ ≥ θ0, with the corresponding
one-sided alternative hypotheses being H1 : θ > θ0 or H1 : θ < θ0. When the null hy-
pothesis is simple, such as (9.1.1), the alternative hypothesis is usually two-sided,
H1 : θ 	= θ0.

The hypotheses in Example 9.1.2 are one-sided. In Example 9.1.3 (coming up
shortly), the alternative hypothesis is two-sided. One-sided and two-sided hypotheses
will be discussed in more detail in Sections 9.3 and 9.4.

The Critical Region and Test Statistics

Example
9.1.3

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. Sup-
pose that X = (X1, . . . , Xn) is a random sample from the normal distribution with
unknown mean μ and known variance σ 2. We wish to test the hypotheses

H0: μ = μ0,

H1: μ 	= μ0.
(9.1.2)

It might seem reasonable to reject H0 if Xn is far from μ0. For example, we could
choose a number c and reject H0 if the distance from Xn to μ0 is more than c. One
way to express this is by dividing the set S of all possible data vectors x = (x1, . . . , xn)

(the sample space) into the two sets

S0 = {x : −c ≤ Xn − μ0 ≤ c}, and S1 = SC
0 .

We then reject H0 if X ∈ S1, and we don’t reject H0 if X ∈ S0. A simpler way to express
the procedure is to define the statistic T = |Xn − μ0|, and reject H0 if T ≥ c. �

In general, consider a problem in which we wish to test the following hypotheses:

H0: θ ∈ �0, and H1: θ ∈ �1. (9.1.3)

Suppose that before the statistician has to decide which hypothesis to choose, she
can observe a random sample X = (X1, . . . , Xn) drawn from a distribution that
involves the unknown parameter θ . We shall let S denote the sample space of the
n-dimensional random vector X . In other words, S is the set of all possible values of
the random sample.

In a problem of this type, the statistician can specify a test procedure by par-
titioning the sample space S into two subsets. One subset S1 contains the values of
X for which she will reject H0, and the other subset S0 contains the values of X for
which she will not reject H0.

Definition
9.1.4

Critical Region. The set S1 defined above is called the critical region of the test.
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In summary, a test procedure is determined by specifying the critical region of the
test. The complement of the critical region must then contain all the outcomes for
which H0 will not be rejected.

In most hypothesis-testing problems, the critical region is defined in terms of a
statistic, T = r(X).

Definition
9.1.5

Test Statistic/Rejection Region. Let X be a random sample from a distribution that
depends on a parameter θ . Let T = r(X) be a statistic, and let R be a subset of the
real line. Suppose that a test procedure for the hypotheses (9.1.3) is of the form “reject
H0 if T ∈ R.” Then we call T a test statistic, and we call R the rejection region of the
test.

When a test is defined in terms of a test statistic T and rejection region R, as in
Definition 9.1.5, the set S1 = {x : r(x) ∈ R} is the critical region from Definition 9.1.4.

Typically, the rejection region for a test based on a test statistic T will be some
fixed interval or the outside of some fixed interval. For example, if the test rejects H0
when T ≥ c, the rejection region is the interval [c, ∞). Once a test statistic is being
used, it is simpler to express everything in terms of the test statistic rather than try
to compute the critical region from Definition 9.1.4. All of the tests in the rest of this
book will be based on test statistics. Indeed, most of the tests can be written in the
form “reject H0 if T ≥ c.” (Example 9.1.7 is one of the rare exceptions.)

In Example 9.1.3, the test statistic is T = |Xn − μ0|, and the rejection region
is the interval [c, ∞). One can choose a test statistic using intuitive criteria, as in
Example 9.1.3, or based on theoretical considerations. Some theoretical arguments
are given in Sections 9.2–9.4 for choosing certain test statistics in a variety of problems
involving a single parameter. Although these theoretical results provide optimal tests
in the situations in which they apply, many practical problems do not satisfy the
conditions required to apply these results.

Example
9.1.4

Rain from Seeded Clouds. We can formulate the problem described in Example 9.1.1
as that of testing the hypotheses H0 : μ ≤ 4 versus H1 : μ > 4. We could use the
same test statistic as in Example 9.1.3. Alternatively, we could use the statistic
U = n1/2(Xn − 4)/σ ′, which looks a lot like the random variable from Eq. (8.5.1)
on which confidence intervals were based. It makes sense, in this case, to reject H0 if
U is large, since that would correspond to Xn being large compared to 4. �

Note: Dividing Both Parameter Space and Sample Space. In the various definitions
given so far, the reader needs to keep straight two different divisions. First, we divided
the parameter space � into two disjoint subsets, �0 and �1. Next, we divided the
sample space S into two disjoint subsets S0 and S1. These divisions are related to
each other, but they are not the same. For one thing, the parameter space and the
sample space usually are of different dimensions, so �0 will necessarily be different
from S0. The relation between the two divisions is the following: If the random sample
X lies in the critical region S1, then we reject the null hypothesis �0. If X ∈ S0, we
don’t reject �0. We eventually learn which set S0 or S1 contains X . We rarely learn
which set �0 or �1 contains θ .

The Power Function and Types of Error

Let δ stand for a test procedure of the form discussed earlier in this section, either
based on a critical region or based on a test statistic. The interesting probabilistic
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properties of δ can be summarized by computing, for each value of θ ∈ �, either the
probability π(θ |δ) that the test δ will reject H0 or the probability 1 − π(θ |δ) that it
does not reject H0.

Definition
9.1.6

Power Function. Let δ be a test procedure. The function π(θ |δ) is called the power
function of the test δ. If S1 denotes the critical region of δ, then the power func-
tion π(θ |δ) is determined by the relation

π(θ |δ) = Pr(X ∈ S1|θ) for θ ∈ �. (9.1.4)

If δ is described in terms of a test statistic T and rejection region R, the power
function is

π(θ |δ) = Pr(T ∈ R|θ) for θ ∈ �. (9.1.5)

Since the power function π(θ |δ) specifies, for each possible value of the param-
eter θ , the probability that δ will reject H0, it follows that the ideal power function
would be one for which π(θ |δ) = 0 for every value of θ ∈ �0 and π(θ |δ) = 1 for ev-
ery value of θ ∈ �1. If the power function of a test δ actually had these values, then
regardless of the actual value of θ , δ would lead to the correct decision with probabil-
ity 1. In a practical problem, however, there would seldom exist any test procedure
having this ideal power function.

Example
9.1.5

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. In
Example 9.1.3, the test δ is based on the test statistic T = |Xn − μ0| with rejection
region R = [c, ∞). The distribution of Xn is the normal distribution with mean μ and
variance σ 2/n. The parameter is μ because we have assumed that σ 2 is known. The
power function can be computed from this distribution. Let � denote the standard
normal c.d.f. Then

Pr(T ∈ R|μ) = Pr(Xn ≥ μ0 + c|μ) + Pr(Xn ≤ μ0 − c|μ)

= 1 − �

(
n1/2 μ0 + c − μ

σ

)
+ �

(
n1/2 μ0 − c − μ

σ

)
.

The final expression above is the power function π(μ|δ). Figure 9.1 plots the power
functions of three different tests with c = 1, 2, 3 in the specific example in which
μ0 = 4, n = 15, and σ 2 = 9. �

Since the possibility of error exists in virtually every testing problem, we should
consider what kinds of errors we might make. For each value of θ ∈ �0, the decision

Figure 9.1 Power functions
of three different tests in
Example 9.1.5.
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to reject H0 is an incorrect decision. Similarly, for each value of θ ∈ �1, the decision
not to reject H0 is an incorrect decision.

Definition
9.1.7

Type I/II Error. An erroneous decision to reject a true null hypothesis is a type I error,
or an error of the first kind. An erroneous decision not to reject a false null hypothesis
is called a type II error, or an error of the second kind.

In terms of the power function, if θ ∈ �0, π(θ |δ) is the probability that the statistician
will make a type I error. Similarly, if θ ∈ �1, 1 − π(θ |δ) is the probability of making a
type II error. Of course, either θ ∈ �0 or θ ∈ �1, but not both. Hence, only one type
of error is possible conditional on θ , but we never know which it is.

If we have our choice between several tests, we would like to choose a test δ that
has small probability of error. That is, we would like the power function π(θ |δ) to be
low for values of θ ∈ �0, and we would like π(θ |δ) to be high for θ ∈ �1. Generally,
these two goals work against each other. That is, if we choose δ to make π(θ |δ) small
for θ ∈ �0, we will usually find that π(θ |δ) is small for θ ∈ �1 as well. For example,
the test procedure δ0 that never rejects H0, regardless of what data are observed,
will have π(θ |δ0) = 0 for all θ ∈ �0. However, for this procedure π(θ |δ0) = 0 for all
θ ∈ �1 as well. Similarly, the test δ1 that always rejects H0 will have π(θ |δ1) = 1 for all
θ ∈ �1, but it will also have π(θ |δ1) = 1 for all θ ∈ �0. Hence, there is a need to strike
an appropriate balance between the two goals of low power in �0 and high power
in �1.

The most popular method for striking a balance between the two goals is to
choose a number α0 between 0 and 1 and require that

π(θ |δ) ≤ α0, for all θ ∈ �0. (9.1.6)

Then, among all tests that satisfy (9.1.6), the statistician seeks a test whose power
function is as high as can be obtained for θ ∈ �1. This method is discussed in Sec-
tions 9.2 and 9.3. Another method of balancing the probabilities of type I and type
II errors is to minimize a linear combination of the different probabilities of error.
We shall discuss this method in Sec. 9.2 and again in Sec. 9.8.

Note: Choosing Null and Alternative Hypotheses. If one chooses to balance type
I and type II error probabilities by requiring (9.1.6), then one has introduced an
asymmetry in the treatment of the null and alternative hypotheses. In most testing
problems, such asymmetry can be quite natural. Generally, one of the two errors
(type I or type II) is more costly or less palatable in some sense. It would make sense
to put tighter controls on the probability of the more serious error. For this reason,
one generally arranges the null and alternative hypotheses so that type I error is the
error most to be avoided. For cases in which neither hypothesis is naturally the null,
switching the names of null and alternative hypotheses can have a variety of different
effects on the results of testing procedures. (See Exercise 21 in this section.)

Example
9.1.6

Egyptian Skulls. In Example 9.1.2, suppose that the experimenters have a theory
saying that skull breadths should increase (albeit slightly) over long periods of time. If
μ is the mean breadth of skulls from 4000 b.c. and 140 is the mean breadth of modern-
day skulls, the theory would say μ < 140. The experimenters could mistakenly claim
that the data support their theory (μ < 140) when, in fact, μ > 140, or they might
mistakenly claim that the data fail to support their theory (μ > 140) when, in fact,
μ < 140. In scientific studies, it is common to treat the false confirmation of one’s own
theory as a more serious error than falsely failing to confirm ones’ own theory. This
would mean type I error should be to say that μ < 140 (confirm the theory, reject
H0) when, in fact, μ > 140 (theory is false, H0 is true). Traditionally, one includes the
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endpoints of interval hypotheses in the null, so we would formulate the hypotheses
to be tested as

H0: μ ≥ 140,

H1: μ < 140,

as we did in Example 9.1.2. �

The quantities in Eq. (9.1.6) play a fundamental role in hypothesis testing and
have special names.

Definition
9.1.8

Level/Size. A test that satisfies (9.1.6) is called a level α0 test, and we say that the test
has level of significance α0. In addition, the size α(δ) of a test δ is defined as follows:

α(δ) = sup
θ∈�0

π(θ |δ). (9.1.7)

The following results are immediate consequences of Definition 9.1.8.

Corollary
9.1.1

A test δ is a level α0 test if and only if its size is at most α0 (i.e., α(δ) ≤ α0). If the null
hypothesis is simple, that is, H0 : θ = θ0, then the size of δ will be α(δ) = π(θ0|δ).

Example
9.1.7

Testing Hypotheses about a Uniform Distribution. Suppose that a random sample
X1, . . . , Xn is taken from the uniform distribution on the interval [0, θ], where the
value of θ is unknown (θ > 0); and suppose also that it is desired to test the following
hypotheses:

H0: 3 ≤ θ ≤ 4,

H1: θ < 3 or θ > 4.
(9.1.8)

We know from Example 6.5.15 that the M.L.E. of θ is Yn = max{X1, . . . , Xn}.
Although Yn must be less than θ , there is a high probability that Yn will be close to
θ if the sample size n is fairly large. For illustrative purposes, suppose that the test δ

does not reject H0 if 2.9 < Yn < 4, and δ rejects H0 if Yn does not lie in this interval.
Thus, the critical region of the test δ contains all the values of X1, . . . , Xn for which
either Yn ≤ 2.9 or Yn ≥ 4. In terms of the test statistic Yn, the rejection region is the
union of two intervals (−∞, 2.9] ∪ [4, ∞).

The power function of δ is specified by the relation

π(θ |δ) = Pr(Yn ≤ 2.9|θ) + Pr(Yn ≥ 4|θ).

If θ ≤ 2.9, then Pr(Yn ≤ 2.9|θ) = 1 and Pr(Yn ≥ 4|θ) = 0. Therefore, π(θ |δ) = 1 if θ ≤
2.9. If 2.9 < θ ≤ 4, then Pr(Yn ≤ 2.9|θ) = (2.9/θ)n and Pr(Yn ≥ 4|θ) = 0. In this case,
π(θ |δ) = (2.9/θ)n. Finally, if θ > 4, then Pr(Yn ≤ 2.9|θ) = (2.9/θ)n and Pr(Yn ≥ 4|θ) =
1 − (4/θ)n. In this case, π(θ |δ) = (2.9/θ)n + 1 − (4/θ)n. The power function π(θ |δ) is
sketched in Fig. 9.2.

By Eq. (9.1.7), the size of δ is α(δ) = sup3≤θ≤4 π(θ |δ). It can be seen from Fig. 9.2
and the calculations just given that α(δ) = π(3|δ) = (29/30)n. In particular, if the
sample size is n = 68, then the size of δ is (29/30)68 = 0.0997. So δ is a level α0 test for
every level of significance α0 ≥ 0.0997. �

Making a Test Have a Specific Significance Level

Suppose that we wish to test the hypotheses

H0: θ ∈ �0,

H1: θ ∈ �1.
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Figure 9.2 The power func-
tion π(θ |δ) in Example 9.1.7.

1 2 43
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Let T be a test statistic, and suppose that our test will reject the null hypothesis if
T ≥ c, for some constant c. Suppose also that we desire our test to have the level of
significance α0. The power function of our test is π(θ |δ) = Pr(T ≥ c|θ), and we want

sup
θ∈�0

Pr(T ≥ c|θ) ≤ α0. (9.1.9)

It is clear that the power function, and hence the left side of (9.1.9), are nonincreasing
functions of c. Hence, (9.1.9) will be satisfied for large values of c, but not for small
values. If we want the power function to be as large as possible for θ ∈ �1, we
should make c as small as we can while still satisfying (9.1.9). If T has a continuous
distribution, then it is usually simple to find an appropriate c.

Example
9.1.8

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. In
Example 9.1.5, our test is to reject H0 : μ = μ0 if |Xn − μ0| ≥ c. Since the null hy-
pothesis is simple, the left side of (9.1.9) reduces to the probability (assuming that
μ = μ0) that |Xn − μ0| ≥ c. Since Y = Xn − μ0 has the normal distribution with mean
0 and variance σ 2/n when μ = μ0, we can find a value c that makes the size exactly
α0 for each α0. Figure 9.3 shows the p.d.f. of Y and the size of the test indicated
as the shaded area under the p.d.f. Since the normal p.d.f. is symmetric around the
mean (0 in this case), the two shaded areas must be the same, namely, α0/2. This
means that c must be the 1 − α0/2 quantile of the distribution of Y . This quantile is
c = �−1(1 − α0/2)σn−1/2.

When testing hypotheses about the mean of a normal distribution, it is traditional
to rewrite this test in terms of the statistic

Z = n1/2 Xn − μ0

σ
. (9.1.10)

Then the test rejects H0 if |Z| ≥ �−1(1 − α0/2). �

Figure 9.3 The p.d.f. of
Y = Xn − μ0 given μ = μ0
for Example 9.1.8. The
shaded areas represent the
probability that |Y | ≥ c.
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Figure 9.4 Power functions
of two tests. The plot on the
left is the power function of
the test from Example 9.1.8
with n = 10, μ0 = 5, σ = 1,
and α0 = 0.05. The plot on the
right is the power function of
the test from Example 9.1.9
with n = 10, p0 = 0.3, and
α0 = 0.1.

 

3 4 5 6 7

 

0.2 0.4 0.6 0.8 1.0

0.2

0

0.4

0.6

0.8

1.0

p
(p

|d
)

0.2

0

0.4

0.6

0.8

1.0

p
(m

|d
)

m p

Example
9.1.9

Testing Hypotheses about a Bernoulli Parameter. Suppose that X1, . . . , Xn form a
random sample from the Bernoulli distribution with parameter p. Suppose that we
wish to test the hypotheses

H0: p ≤ p0,

H1: p > p0.
(9.1.11)

Let Y = ∑n
i=1 Xi, which has the binomial distribution with parameters n and p. The

larger p is, the larger we expect Y to be. So, suppose that we choose to reject H0 if
Y ≥ c, for some constant c. Suppose also that we want the size of the test to be as
close to α0 as possible without exceeding α0. It is easy to check that Pr(Y ≥ c|p) is
an increasing function of p; hence, the size of the test will be Pr(Y ≥ c|p = p0). So,
c should be the smallest number such that Pr(Y ≥ c|p = p0) ≤ α0. For example, if
n = 10, p0 = 0.3, and α0 = 0.1, we can use the table of binomial probabilities in the
back of this book to determine c. We can compute

∑10
y=6 Pr(Y = y|p = 0.3) = 0.0473

and
∑10

y=5 Pr(Y = y|p = 0.3) = 0.1503. In order to keep the size of the test at most
0.1, we must choose c > 5. Every value of c in the interval (5, 6] produces the same
test, since Y takes only integer values. �

Whenever we choose a test procedure, we should also examine the power func-
tion. If one has made a good choice, then the power function should generally be
larger for θ ∈ �1 than for θ ∈ �0. Also, the power function should increase as θ moves
away from �0. For example, Fig. 9.4 shows plots of the power functions for two of the
examples in this section. In both cases, the power function increases as the parameter
moves away from �0.

The p-value

Example
9.1.10

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. In
Example 9.1.8, suppose that we choose to test the null hypothesis at level α0 = 0.05.
We would then compute the test statistic in Eq. (9.1.10) and reject H0 if Z ≥ �−1(1 −
0.05/2) = 1.96. For example, suppose that Z = 2.78 is observed. Then we would reject
H0. Suppose that we were to report the result by saying that we rejected H0 at level
0.05. What would another statistician, who felt it more appropriate to test the null
hypothesis at a different level, be able to do with this report? �
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The result of a test of hypotheses might appear to be a rather inefficient use of
our data. For instance, in Example 9.1.10, we decided to reject H0 at level α0 = 0.05
if the statistic Z in Eq. (9.1.10) is at least 1.96. This means that whether we observe
Z = 1.97 or Z = 6.97, we shall report the same result, namely, that we rejected H0 at
level 0.05. The report of the test result does not carry any sense of how close we were
to making the other decision. Furthermore, if another statistician chooses to use a
size 0.01 test, then she would not reject H0 with Z = 1.97, but she would reject H0
with Z = 6.97. What would she do with Z = 2.78?

For these reasons, an experimenter does not typically choose a value of α0 in
advance of the experiment and then simply report whether or not H0 was rejected
at level α0. In many fields of application, it has become standard practice to report,
in addition to the observed value of the appropriate test statistic such as Z, all the
values of α0 for which the level α0 test would lead to the rejection of H0.

Example
9.1.11

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. As
the observed value of Z in Example 9.1.8 is 2.78, the hypothesis H0 would be rejected
for every level of significance α0 such that 2.78 ≥ �−1(1 − α0/2). Using the table
of the normal distribution given at the end of this book, this inequality translates
to α0 ≥ 0.0054. The value 0.0054 is called the p-value for the observed data and
the tested hypotheses. Since 0.01 > 0.0054, the statistician who wanted to test the
hypotheses at level 0.01 would also reject H0. �

Definition
9.1.9

p-value. In general, the p-value is the smallest level α0 such that we would reject the
null-hypothesis at level α0 with the observed data.

An experimenter who rejects a null hypothesis if and only if the p-value is at most
α0 is using a test with level of significance α0. Similarly, an experimenter who wants
a level α0 test will reject the null hypothesis if and only if the p-value is at most α0.
For this reason, the p-value is sometimes called the observed level of significance.

An experimenter in Example 9.1.10 would typically report that the observed
value of Z was 2.78 and that the corresponding p-value was 0.0054. It is then said
that the observed value of Z is just significant at the level of significance 0.0054. One
advantage to the experimenter of reporting experimental results in this manner is
that he does not need to select beforehand an arbitrary level of significance α0 at
which to carry out the test. Also, when a reader of the experimenter’s report learns
that the observed value of Z was just significant at the level of significance 0.0054,
she immediately knows that H0 would be rejected for every larger value of α0 and
would not be rejected for any smaller value.

Calculating p-values If all of our tests are of the form “reject the null hypothesis
when T ≥ c” for a single test statistic T , there is a straightforward way to compute
p-values. For each t , let δt be the test that rejects H0 if T ≥ t . Then the p-value when
T = t is observed is the size of the test δt . (See Exercise 18.) That is, the p-value equals

sup
θ∈�0

π(θ |δt) = sup
θ∈�0

Pr(T ≥ t |θ). (9.1.12)

Typically, π(θ |δt) is maximized at some θ0 on the boundary between �0 and �1.
Because the p-value is calculated as a probability in the upper tail of the distribution
of T , it is sometimes called a tail area.
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Example
9.1.12

Testing Hypotheses about a Bernoulli Parameter. For testing the hypotheses (9.1.11) in
Example 9.1.9, we used a test that rejects H0 if Y ≥ c. The p-value, when Y = y is
observed, will be supp≤p0

Pr(Y ≥ y|p). In this example, it is easy to see that Pr(Y ≥
y|p) increases as a function of p. Hence, the p-value is Pr(Y ≥ y|p = p0). For example,
let p0 = 0.3 and n = 10. If Y = 6 is observed, then Pr(Y ≥ 6|p = 0.3) = 0.0473, as we
calculated in Example 9.1.9. �

The calculation of the p-value is more complicated when the test cannot be put
into the form “reject H0 if T ≥ c.” In this text, we shall calculate p-values only for
tests that do have this form.

Equivalence of Tests and Confidence Sets

Example
9.1.13

Rain from Seeded Clouds. In Examples 8.5.5 and 8.5.6, we found a coefficient γ one-
sided (lower limit) confidence interval for μ, the mean log-rainfall from seeded
clouds. For γ = 0.9, the observed interval is (4.727, ∞). One of the controversial
interpretations of this interval is that we have confidence 0.9 (whatever that means)
that μ > 4.727. Although this statement is deliberately ambiguous and difficult to
interpret, it sounds as if it could help us address the problem of testing the hypotheses
H0 : μ ≤ 4 versus H1 : μ > 4. Does the fact that 4 is not in the observed coefficient 0.9
confidence interval tell us anything about whether or not we should reject H0 at some
significance level or other? �

We shall now illustrate how confidence intervals (see Sec. 8.5) can be used as an
alternative method to report the results of a test of hypotheses. In particular, we shall
show that a coefficient γ confidence set (a generalization of confidence interval to
be defined shortly) can be thought of as a set of null hypotheses that would not be
rejected at significance level 1 − γ .

Theorem
9.1.1

Defining Confidence Sets from Tests. Let X = (X1, . . . , Xn) be a random sample from
a distribution that depends on a parameter θ . Let g(θ) be a function, and suppose
that for each possible value g0 of g(θ), there is a level α0 test δg0

of the hypotheses

H0,g0
: g(θ) = g0, H1,g0

: g(θ) 	= g0. (9.1.13)

For each possible value x of X , define

ω(x) = {g0 : δg0
does not reject H0,g0

if X = x is observed}. (9.1.14)

Let γ = 1 − α0. Then, the random set ω(X) satisfies

Pr[g(θ0) ∈ ω(X)|θ = θ0] ≥ γ. (9.1.15)

for all θ0 ∈ �.

Proof Let θ0 be an arbitrary element of �, and define g0 = g(θ0). Because δg0
is a

level α0 test, we know that

Pr[δg0
does not reject H0,g0

|θ = θ0] ≥ 1 − α0 = γ. (9.1.16)

For each x, we know that g(θ0) ∈ ω(x) if and only if the test δg0
does not reject H0,g0

when X = x is observed. It follows that the left-hand side of Eq. (9.1.15) is the same
as the left-hand side of Eq. (9.1.16).
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Definition
9.1.10

Confidence Set. If a random set ω(X) satisfies (9.1.15) for every θ0 ∈ �, we call it a
coefficient γ confidence set for g(θ). If the inequality in (9.1.15) is equality for all θ0,
then we call the confidence set exact.

A confidence set is a generalization of the concept of a confidence interval introduced
in Sec. 8.5. What Theorem 9.1.1 shows is that a collection of level α0 tests of the
hypotheses (9.1.13) can be used to construct a coefficient γ = 1 − α0 confidence set
for g(θ). The reverse construction is also possible.

Theorem
9.1.2

Defining Tests from Confidence Sets. Let X = (X1, . . . , Xn) be a random sample from
a distribution that depends on a parameter θ . Let g(θ) be a function of θ , and let
ω(X) be a coefficient γ confidence set for g(θ). For each possible value g0 of g(θ),
construct the following test δg0

of the hypotheses in Eq. (9.1.13): δg0
does not reject

H0,g0
if and only if g0 ∈ ω(X). Then δg0

is a level α0 = 1 − γ test of the hypotheses in
Eq. (9.1.13).

Proof Because ω(X) is a coefficient γ confidence set for g(θ), it satisfies Eq. (9.1.15)
for all θ0 ∈ �. As in the proof of Theorem 9.1.1, the left-hand sides of Eqs. (9.1.15)
and (9.1.16) are the same, which makes δg0

a level α0 test.

Example
9.1.14

A Confidence Interval for the Mean of a Normal Distribution. Consider the test found
in Example 9.1.8 for the hypotheses (9.1.2). Let α0 = 1 − γ . The size α0 test δμ0

is to
reject H0 if |Xn − μ0| ≥ �−1(1 − α0/2)σn−1/2. If Xn = xn is observed, the set of μ0
such that we would not reject H0 is the set of μ0 such that

|xn − μ0| < �−1
(

1 − α0

2

)
σn−1/2.

This inequality easily translates to

xn − �−1
(

1 − α0

2

)
σn−1/2 < μ0 < xn + �−1

(
1 − α0

2

)
σn−1/2.

The coefficient γ confidence interval becomes

(A, B) =
(

Xn − �−1
(

1 − α0

2

)
σn−1/2, Xn + �−1

(
1 − α0

2

)
σn−1/2

)
.

It is easy to check that Pr(A < μ0 < B|μ = μ0) = γ for all μ0. This confidence interval
is exact. �

Example
9.1.15

Constructing a Test from a Confidence Interval. In Sec. 8.5, we learned how to construct
a confidence interval for the unknown mean of a normal distribution when the
variance was also unknown. Let X1, . . . , Xn be a random sample from a normal
distribution with unknown mean μ and unknown variance σ 2. In this case, the
parameter is θ = (μ, σ 2), and we are interested in g(θ) = μ. In Sec. 8.5, we used the
statistics

Xn = 1
n

n∑
i=1

Xi, σ ′ =
(

1
n − 1

n∑
i=1

(Xi − Xn)
2

)1/2

. (9.1.17)

The coefficient γ confidence interval for g(θ) is the interval(
Xn − T −1

n−1

(
1 + γ

2

)
σ ′

n1/2
, Xn + T −1

n−1

(
1 + γ

2

)
σ ′

n1/2

)
, (9.1.18)
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where T −1
n−1(

.) is the quantile function of the t distribution with n − 1 degrees of
freedom. For each μ0, we can use this interval to find a level α0 = 1 − γ test of the
hypotheses

H0: μ = μ0,

H1: μ 	= μ0.

The test will reject H0 if μ0 is not in the interval (9.1.18). A little algebra shows that
μ0 is not in the interval (9.1.18) if and only if∣∣∣∣∣n1/2 Xn − μ0

σ ′

∣∣∣∣∣ ≥ T −1
(

1 + γ

2

)
.

This test is identical to the t test that we shall study in more detail in Sec. 9.5. �

One-Sided Confidence Intervals and Tests Theorems 9.1.1 and 9.1.2 establish the
equivalence between confidence sets and tests of hypotheses of the form (9.1.13). It
is often necessary to test other forms of hypotheses, and it would be nice to have
versions of Theorems 9.1.1 and 9.1.2 to deal with these cases. Example 9.1.13 is one
such case in which the hypotheses are of the form

H0,g0
: g(θ) ≤ g0, H1,g0

: g(θ) > g0. (9.1.19)

Theorem 9.1.1 extends immediately to such cases. We leave the proof of Theo-
rem 9.1.3 to the reader.

Theorem
9.1.3

One-Sided Confidence Intervals from One-Sided Tests. Let X = (X1, . . . , Xn) be a
random sample from a distribution that depends on a parameter θ . Let g(θ) be a
real-valued function, and suppose that for each possible value g0 of g(θ), there is a
level α0 test δg0

of the hypotheses (9.1.19). For each possible value x of X , define ω(x)

by Eq. (9.1.14). Let γ = 1 − α0. Then the random set ω(X) satisfies Eq. (9.1.15) for
all θ0 ∈ �.

Example
9.1.16

One-Sided Confidence Interval for a Bernoulli Parameter. In Example 9.1.9, we showed
how to construct a level α0 test of the one-sided hypotheses (9.1.11). Let Y = ∑n

i=1 Xi.
The test rejects H0 if Y ≥ c(p0) where c(p0) is the smallest number c such that
Pr(Y ≥ c|p = p0) ≤ α0. After observing the data X , we can check, for each p0, whether
or not we reject H0. That is, for each p0 we check whether or not Y ≥ c(p0). All those
p0 for which Y < c(p0) (i.e., we don’t reject H0) will form an interval ω(X). This
interval will satisfy Pr(p0 ∈ ω(X)|p = p0) ≥ 1 − α0 for all p0. For example, suppose
that n = 10, α0 = 0.1, and Y = 6 is observed. In order not to reject H0 : p ≤ p0 at
level 0.1, we must have a rejection region that does not contain 6. This will happen
if and only if Pr(Y ≥ 6|p = p0) > 0.1. By trying various values of p0, we find that
this inequality holds for all p0 > 0.3542. So, if Y = 6 is observed, our coefficient 0.9
confidence interval is (0.3542, 1). Notice that 0.3 is not in the interval, so we would
reject H0 : p ≤ 0.3 with a level 0.1 test as we did in Example 9.1.9. For other observed
values Y = y, the confidence intervals will all be of the form (q(y), 1) where q(y) can
be computed as outlined in Exercise 17. For n = 10 and α0 = 0.1, the values of q(y)

are

y 0 1 2 3 4 5 6 7 8 9 10

q(y) 0 0.0104 0.0545 0.1158 0.1875 0.2673 0.3542 0.4482 0.5503 0.6631 0.7943

This confidence interval is not exact. �
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Unfortunately, Theorem 9.1.2 does not immediately extend to one-sided hy-
potheses for the following reason. The size of a one-sided test for hypotheses of the
form (9.1.19) depends on all of the values of θ such that g(θ) ≤ g0, not just on those
for which g(θ) = g0. In particular, the size of the test δg0

defined in Theorem 9.1.2 is

sup
{θ :g(θ)≤g0}

Pr[g0 	∈ ω(X)|θ ]. (9.1.20)

The confidence coefficient, on the other hand, is

1 − sup
{θ :g(θ)=g0}

Pr[g0 	∈ ω(X)|θ].

If we could prove that the supremum in Eq. (9.1.20) occurred at a θ for which
g(θ) = g0, then the size of the test would be 1 minus the confidence coefficient. Most
of the cases with which we shall deal in this book will have the property that the
supremum in Eq. (9.1.20) does indeed occur at a θ for which g(θ) = g0. Example 9.1.16
is one such case. Example 9.1.13 is another. The following example is the general
version of what we need in Example 9.1.13.

Example
9.1.17

One-Sided Tests and Confidence Intervals for a Normal Mean with Unknown Vari-
ance. Let X1, . . . , Xn be a random sample from a normal distribution with unknown
mean μ and unknown variance σ 2. Here θ = (μ, σ 2). Let g(θ) = μ. In Theorem 8.5.1,
we found that (

Xn − T −1
n−1 (γ )

σ ′

n1/2
, ∞

)
(9.1.21)

is a one-sided coefficient γ confidence interval for g(θ). Now, suppose that we use
this interval to test hypotheses. We shall reject the null hypothesis that μ = μ0 if μ0
is not in the interval (9.1.21). It is easy to see that μ0 is not in the interval (9.1.21)
if and only if Xn ≥ μ0 + σ ′n−1/2T −1

n−1(γ ). Such a test would seem to make sense for
testing the hypotheses

H0: μ ≤ μ0, H1: μ > μ0. (9.1.22)

In particular, in Example 9.1.13, the fact that 4 is not in the observed confidence
interval means that the test constructed above (with μ0 = 4 and γ = 0.9) would reject
H0 : μ ≤ 4 at level α0 = 0.1. �

The test constructed in Example 9.1.17 is another t test that we shall study in Sec. 9.5.
In particular, we will show in Sec. 9.5 that this t test is a level 1 − γ test. In Exercise 19,
you can find the one-sided confidence interval that corresponds to testing the reverse
hypotheses.

Likelihood Ratio Tests

A very popular form of hypothesis test is the likelihood ratio test. We shall give a
partial theoretical justification for likelihood ratio tests in Sec. 9.2. Such tests are
based on the likelihood function fn(x|θ). (See Definition 7.2.3 on page 390.) The
likelihood function tends to be highest near the true value of θ . Indeed, this is why
maximum likelihood estimation works well in so many cases. Now, suppose that we
wish to test the hypotheses

H0: θ ∈ �0,

H1: θ ∈ �1.
(9.1.23)

In order to compare these two hypotheses, we might wish to see whether the likeli-
hood function is higher on �0 or on �1, and if not, how much smaller the likelihood
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function is on �0. When we computed M.L.E.’s, we maximized the likelihood func-
tion over the entire parameter space �. In particular, we calculated supθ∈� fn(x|θ).
If we restrict attention to H0, then we can compute the largest value of the likelihood
among those parameter values in �0: supθ∈�0

fn(x|θ). The ratio of these two suprema
can then be used for testing the hypotheses (9.1.23).

Definition
9.1.11

Likelihood Ratio Test. The statistic

�(x) = supθ∈�0
fn(x|θ)

supθ∈� fn(x|θ)
(9.1.24)

is called the likelihood ratio statistic. A likelihood ratio test of hypotheses (9.1.23) is
to reject H0 if �(x) ≤ k for some constant k.

In words, a likelihood ratio test rejects H0 if the likelihood function on �0 is suffi-
ciently small compared to the likelihood function on all of �. Generally, k is chosen
so that the test has a desired level α0, if that is possible.

Example
9.1.18

Likelihood Ratio Test of Two-Sided Hypotheses about a Bernoulli Parameter. Suppose
that we shall observe Y , the number of successes in n independent Bernoulli trials
with unknown parameter θ . Consider the hypotheses H0 : θ = θ0 versus H0 : θ 	= θ0.
After the value Y = y has been observed, the likelihood function is

f (y|θ) =
(

n

y

)
θy(1 − θ)n−y.

In this case, �0 = {θ0} and � = [0, 1]. The likelihood ratio statistic is

�(y) = θ
y

0 (1 − θ0)
n−y

supθ∈[0,1] θ
y(1 − θ)n−y

. (9.1.25)

The supremum in the denominator of Eq. (9.1.25) can be found as in Example 7.5.4.
The maximum occurs where θ equals the M.L.E., θ̂ = y/n. So,

�(y) =
(

nθ0

y

)y (
n(1 − θ0)

n − y

)n−y

.

It is not difficult to see that �(y) is small for y near 0 and near n and largest near
y = nθ0. As a specific example, suppose that n = 10 and θ0 = 0.3. Table 9.1 shows the 11
possible values of �(y) for y = 0, . . . , 10. If we desired a test with level of significance
α0, we would order the values of y according to values of �(y) from smallest to largest
and choose k so that the sum of the probabilities Pr(Y = y|θ = 0.3) corresponding to
those values of y with �(y) ≤ k was at most α0. For example, if α0 = 0.05, we see from
Table 9.1 that we can add up the probabilities corresponding to y = 10, 9, 8, 7, 0 to
get 0.039. But if we include y = 6, corresponding to the next smallest value of �(y),
the sum jumps to 0.076, which is too large. The set of y ∈ {10, 9, 8, 7, 0} corresponds
to �(y) ≤ k for every k in the half-open interval [0.028, 0.147). The size of the test
that rejects H0 when y ∈ {10, 9, 8, 7, 0} is 0.039. �

Likelihood Ratio Tests with Large Samples

Likelihood ratio tests are most popular in problems involving large sample sizes. The
following result, whose precise statement and proof are beyond the scope of this text,
shows how to use them in such cases.
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Table 9.1 Values of the likelihood ratio statistic in Example 9.1.18

y 0 1 2 3 4 5 6 7 8 9 10

�(y) 0.028 0.312 0.773 1.000 0.797 0.418 0.147 0.034 0.005 3 × 10−4 6 × 10−6

Pr(Y = y|θ = 0.3) 0.028 0.121 0.233 0.267 0.200 0.103 0.037 0.009 0.001 1 × 10−4 6 × 10−6

Theorem
9.1.4

Large-Sample Likelihood Ratio Tests. Let � be an open subset of p-dimensional space,
and suppose that H0 specifies that k coordinates of θ are equal to k specific values.
Assume that H0 is true and that the likelihood function satisfies the conditions needed
to prove that the M.L.E. is asymptotically normal and asymptotically efficient. (See
page 523.) Then, as n → ∞, −2 log �(X) converges in distribution to the χ2 distri-
bution with k degrees of freedom.

Example
9.1.19

Likelihood Ratio Test of Two-Sided Hypotheses about a Bernoulli Parameter. We shall
apply the idea in Theorem 9.1.4 to the case at the end of Example 9.1.18. Set � = (0, 1)
so that p = 1 and k = 1. To get an approximate level α0 test, we would reject H0 if
−2 log �(y) is greater than the 1 − α0 quantile of the χ2 distribution with one degree
of freedom. With α0 = 0.05, this quantile is 3.841. By taking logarithms of the numbers
in the �(y) row of Table 9.1, one sees that −2 log �(y) > 3.841 for y ∈ {10, 9, 8, 7, 0}.
Rejecting H0 when −2 log �(y) > 3.841 is then the same test as we constructed in
Example 9.1.18. �

Theorem 9.1.4 can also be applied if the null hypothesis specifies that a collection
of k functions of θ are equal to k specific values. For example, suppose that the param-
eter is θ = (μ, σ 2), and we wish to test H0 : (μ − 2)/σ = 1 versus H1 : (μ − 2)/σ 	= 1.
We could first transform to the equivalent parameter θ ′ = ([μ − 2]/σ, σ ) and then ap-
ply Theorem 9.1.4. Because of the invariance property of M.L.E.’s (Theorem 7.6.1,
which extends to multidimensional parameters) one does not actually need to per-
form the transformation in order to compute �. One merely needs to maximize the
likelihood function over the two sets �0 and � and take the ratio.

On a final note, one must be careful not to apply Theorem 9.1.4 to problems of
one-sided hypothesis testing. In such cases, the �(X) usually has a distribution that
is neither discrete nor continuous and doesn’t converge to a χ2 distribution. Also,
Theorem 9.1.4 fails to apply when the parameter space � is a closed set and the null
hypothesis is that θ takes a value on the boudary of �.

Hypothesis-Testing Terminology

We noted after Definition 9.1.1 that there is asymmetry in the terminology with
regard to choosing between hypotheses. Both choices are stated relative to H0,
namely, to reject H0 or not to reject H0. When hypothesis testing was first being
developed, there was controversy over whether alternative hypotheses should even
be formulated. Focus centered on null hypotheses and whether or not to reject them.
The operational meaning of “do not reject H0” has never been articulated clearly. In
particular, it does not mean that we should accept H0 as true in any sense. Nor does
it mean that we are necessarily more confident that H0 is true than that it is false. For
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that matter, “reject H0” does not mean that we are more confident that H0 is false
than that it is true.

Part of the problem is that hypothesis testing is set up as if it were a statistical
decision problem, but neither a loss function nor a utility function is involved. Hence,
we are not weighing the relative likelihoods of various hypotheses against the costs
or benefits of making various decisions. In Sec. 9.8, we shall illustrate one method for
treating the hypothesis-testing problem as a statistical decision problem. Many, but
not all, of the popular testing procedures will turn out to have interpretations in the
framework of decision problems. In the remainder of this chapter, we shall continue
to develop the theory of hypothesis testing as it is generally practiced.

There are two other points of terminology that should be clarified here. The first
concerns the terms “critical region” and “rejection region.” Readers of other books
might encounter either of the terms “critical region” or “rejection region” referring
to either the set S1 in Definition 9.1.4 or the set R in Definition 9.1.5. Those books
generally define only one of the two terms. We choose to give the two sets S1 and
R different names because they are mathematically different objects. One, S1, is a
subset of the set of possible data vectors, while the other, R, is a subset of the set of
possible values of a test statistic. Each has its use in different parts of the development
of hypothesis testing. In most practical problems, tests are more easily expressed in
terms of test statistics and rejection regions. For proving some theorems in Sec. 9.2,
it is more convenient to define tests in terms of critical regions.

The final point of terminology concerns the terms “level of significance” and
“size,” as well as the term “level α0 test.” Some authors define level of significance
(or significance level) for a test using a phrase such as “the probability of type I error”
or “the probability that the data lie in the critical region when the null hypothesis is
true.” If the null hypothesis is simple, these phrases are easily understood, and they
match what we defined as the size of the test in such cases. On the other hand, if
the null hypothesis is composite, such phrases are ill-defined. For each θ ∈ �0, there
will usually be a different probability that the test rejects H0. Which, if any, is the
level of significance? We have defined the size of a test to be the supremum of all
of these probabilities. We have said that the test “has level of significance α0” if the
size is less than or equal to α0. This means that a test has one size but many levels
of significance. Every number from the size up to 1 is a level of significance. There
is a sound reason for distinguishing the concepts of size and level of significance. In
Example 9.1.9, the investigator wants to constrain the probability of type I error to
be less than 0.1. The test statistic Y has a discrete distribution, and we saw that no test
with size 0.1 is available. In that example, the investigator needed to choose a test
whose size was 0.0473. This test still has level of significance 0.1 and is a level 0.1 test,
despite having a different size. There are other more complicated situations in which
one can construct a test δ that satisfies Eq. (9.1.6), that is, it has level of significance α0,
but for which it is not possible (without sophisticated numerical methods) to compute
the actual size. An investigator who insists on using a particular level of significance
α0 can use such a test, and call it a level α0 test, without being able to compute its
size exactly. The most common example of this latter situation is one in which we
wish to test hypotheses concerning two parameters simultaneously. For example, let
θ = (θ1, θ2), and suppose that we wish to test the hypotheses

H0 : θ1 = 0 and θ2 = 1 versus H1 : θ1 	= 0 or θ2 	= 1 or both. (9.1.26)

The following result gives a way to contruct a level α0 test of H0.
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Theorem
9.1.5

For i = 1, . . . , n, let H0,i be a null hypothesis, and let δi be a level α0,i test of H0,i.
Define the combined null hypothesis H0 that all of H0,1, . . . , H0,n are simultaneously
true. Let δ be the test that rejects H0 if at least one of δ1, . . . , δn rejects its corre-
sponding null hypothesis. Then δ is a level

∑n
i=1 α0,i test of H0.

Proof For i = 1, . . . , n, let Ai be the event that δi rejects H0,i. Apply Theorem 1.5.8.

To test H0 in (9.1.26), find two tests δ1 and δ2 such that δ1 is a test with size α0/2 for
testing θ1 = 0 versus θ1 	= 0 and δ2 is a test with size α0/2 for testing θ2 = 1 versus
θ2 	= 1. Let δ be the test that rejects H0 if either δ1 rejects θ1 = 0 or δ2 rejects θ2 = 1
or both. Theorem 9.1.5 says that δ is a level α0 test of H0 versus H1, but its exact size
requires us to be able to calculate the probability that both δ1 and δ2 simultaneously
reject their corresponding null hypotheses. Such a calculation is often intractable.

Finally, our definition of level of significance matches nicely with the use of p-
values, as pointed out immediately after Definition 9.1.9.

Summary

Hypothesis testing is the problem of deciding whether θ lies in a particular subset �0
of the parameter space or in its complement �1. The statement that θ ∈ �0 is called
the null hypothesis and is denoted by H0. The alternative hypothesis is the statement
H1 : θ ∈ �1. If S is the set of all possible data values (vectors) that we might observe,
a subset S1 ⊂ S is called the critical region of a test of H0 versus H1 if we choose to
reject H0 whenever the observed data X are in S1 and not reject H0 whenever X 	∈ S1.
The power function of this test δ is π(θ |δ) = Pr(X ∈ S1|θ). The size of the test δ is
supθ∈�0

π(θ |δ). A test is said to be a level α0 test if its size is at most α0. The null
hypothesis H0 is simple if �0 is a set with only one point; otherwise, H0 is composite.
Similarly, H1 is simple if �1 has a single point, and H1 is composite otherwise. A type
I error is rejecting H0 when it is true. A type II error is not rejecting H0 when it is
false.

Hypothesis tests are typically constructed by using a test statistic T . The null
hypothesis is rejected if T lies in some interval or if T lies outside of some interval.
The interval is chosen to make the test have a desired significance level. The p-
value is a more informative way to report the results of a test. The p-value can be
computed easily whenever our test has the form “reject H0 if T ≥ c” for some statistic
T . The p-value when T = t is observed equals supθ∈�0

Pr(T ≥ t |θ). We also showed
how a confidence set can be considered as a way of reporting the results of a test of
hypotheses. A coefficient 1 − α0 confidence set for θ is the set of all θ0 ∈ �, such that
we would not reject H0 : θ = θ0 using a level α0 test. These confidence sets are intervals
when we test hypotheses about a one-dimensional parameter or a one-dimensional
function of the parameter.
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Exercises

1. Let X have the exponential distribution with parameter
β. Suppose that we wish to test the hypotheses H0 : β ≥ 1
versus H1 : β < 1. Consider the test procedure δ that rejects
H0 if X ≥ 1.

a. Determine the power function of the test.

b. Compute the size of the test.

2. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ], and that the
following hypotheses are to be tested:

H0: θ ≥ 2,

H1: θ < 2.

Let Yn = max{X1, . . . , Xn}, and consider a test procedure
such that the critical region contains all the outcomes for
which Yn ≤ 1.5.

a. Determine the power function of the test.

b. Determine the size of the test.

3. Suppose that the proportion p of defective items in a
large population of items is unknown, and that it is desired
to test the following hypotheses:

H0: p = 0.2,

H1: p 	= 0.2.

Suppose also that a random sample of 20 items is drawn
from the population. Let Y denote the number of defec-
tive items in the sample, and consider a test procedure δ

such that the critical region contains all the outcomes for
which either Y ≥ 7 or Y ≤ 1.

a. Determine the value of the power function π(p|δ) at
the points p = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1; sketch the power function.

b. Determine the size of the test.

4. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance 1. Suppose also that μ0 is a certain specified num-
ber, and that the following hypotheses are to be tested:

H0: μ = μ0,

H1: μ 	= μ0.

Finally, suppose that the sample size n is 25, and consider a
test procedure such that H0 is to be rejected if |Xn − μ0| ≥
c. Determine the value of c such that the size of the test
will be 0.05.

5. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known variance σ 2. Classify each of the following hy-
potheses as either simple or composite:

a. H0: μ = 0 and σ = 1

b. H0: μ > 3 and σ < 1

c. H0: μ = −2 and σ 2 < 5

d. H0: μ = 0

6. Suppose that a single observation X is to be taken from

the uniform distribution on the interval
[
θ − 1

2 , θ + 1
2

]
,

and suppose that the following hypotheses are to be
tested:

H0: θ ≤ 3,
H1: θ ≥ 4.

Construct a test procedure δ for which the power function
has the following values: π(θ |δ) = 0 for θ ≤ 3 and π(θ |δ) =
1 for θ ≥ 4.

7. Return to the situation described in Example 9.1.7.
Consider a different test δ∗ that rejects H0 if Yn ≤ 2.9 or
Yn ≥ 4.5. Let δ be the test described in Example 9.1.7.

a. Prove that π(θ |δ∗) = π(θ |δ) for all θ ≤ 4.

b. Prove that π(θ |δ∗) < π(θ |δ) for all θ > 4.

c. Which of the two tests seems better for testing the
hypotheses (9.1.8)?

8. Assume that X1, . . . , Xn are i.i.d. with the normal dis-
tribution that has mean μ and variance 1. Suppose that we
wish to test the hypotheses

H0: μ ≤ μ0,

H1: μ > μ0.

Consider the test that rejects H0 if Z≥c, where Z is defined
in Eq. (9.1.10).

a. Show that Pr(Z ≥ c|μ) is an increasing function of μ.

b. Find c to make the test have size α0.

9. Assume that X1, . . . , Xn are i.i.d. with the normal dis-
tribution that has mean μ and variance 1. Suppose that we
wish to test the hypotheses

H0: μ ≥ μ0,

H1: μ < μ0.

Find a test statistic T such that, for every c, the test δc that
rejects H0 when T ≥ c has power function π(μ|δc) that is
decreasing in μ.

10. In Exercise 8, assume that Z = z is observed. Find a
formula for the p-value.

11. Assume that X1, . . . , X9 are i.i.d. having the Bernoulli
distribution with parameter p. Suppose that we wish to
test the hypotheses

H0: p = 0.4,

H1: p 	= 0.4.
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Let Y = ∑9
i=1 Xi.

a. Find c1 and c2 such that

Pr(Y ≤ c1|p = 0.4) + Pr(Y ≥ c2|p = 0.4)

is as close as possible to 0.1 without being larger than
0.1.

b. Let δ be the test that rejects H0 if either Y ≤ c1 or
Y ≥ c2. What is the size of the test δc?

c. Draw a graph of the power function of δc.

12. Consider a single observation X from a Cauchy distri-
bution centered at θ . That is, the p.d.f. of X is

f (x|θ) = 1
π [1 + (x − θ)2]

, for −∞ < x < ∞.

Suppose that we wish to test the hypotheses

H0: θ ≤ θ0,

H1: θ > θ0.

Let δc be the test that rejects H0 if X ≥ c.

a. Show that π(θ |δc) is an increasing function of θ .

b. Find c to make δc have size 0.05.

c. If X = x is observed, find a formula for the p-value.

13. Let X have the Poisson distribution with mean θ . Sup-
pose that we wish to test the hypotheses

H0: θ ≤ 1.0,

H1: θ > 1.0.

Let δc be the test that rejects H0 if X ≥ c. Find c to make
the size of δc as close as possible to 0.1 without being larger
than 0.1.

14. Let X1, . . . , Xn be i.i.d. with the exponential distribu-
tion with parameter θ . Suppose that we wish to test the
hypotheses

H0: θ ≥ θ0,

H1: θ < θ0.

Let X = ∑n
i=1 Xi. Let δc be the test that rejects H0 if X ≥ c.

a. Show that π(θ |δc) is a decreasing function of θ .

b. Find c in order to make δc have size α0.

c. Let θ0 = 2, n = 1, and α0 = 0.1. Find the precise form
of the test δc and sketch its power function.

15. Let X have the uniform distribution on the interval
[0, θ ], and suppose that we wish to test the hypotheses

H0: θ ≤ 1,
H1: θ > 1.

We shall consider test procedures of the form “reject H0
if X ≥ c.” For each possible value x of X, find the p-value
if X = x is observed.

16. Consider the confidence interval found in Exercise 5
in Sec. 8.5. Find the collection of hypothesis tests that are
equivalent to this interval. That is, for each c > 0, find
a test δc of the null hypothesis H0,c : σ 2 = c versus some
alternative such that δc rejects H0,c if and only if c is not
in the interval. Write the test in terms of a test statistic
T = r(X) being in or out of some nonrandom interval that
depends on c.

17. Let X1, . . . , Xn be i.i.d. with a Bernoulli distribu-
tion that has parameter p. Let Y = ∑n

i=1 Xi. We wish
to find a coefficient γ confidence interval for p of the
form (q(y), 1). Prove that, if Y = y is observed, then q(y)

should be chosen to be the smallest value p0 such that
Pr(Y ≥ y|p = p0) ≥ 1 − γ .

18. Consider the situation described immediately before
Eq. (9.1.12). Prove that the expression (9.1.12) equals the
smallest α0 such that we would reject H0 at level of signif-
icance α0.

19. Return to the situation described in Example 9.1.17.
Suppose that we wish to test the hypotheses

H0: μ ≥ μ0,

H1: μ < μ0
(9.1.27)

at level α0. It makes sense to reject H0 if Xn is small. Con-
struct a one-sided coefficient 1 − α0 confidence interval for
μ such that we can reject H0 if μ0 is not in the interval.
Make sure that the test formed in this way rejects H0 if Xn

is small.

20. Prove Theorem 9.1.3.

21. Return to the situations described in Example 9.1.17
and Exercise 19. We wish to compare what might happen
if we switch the null and alternative hypotheses. That is, we
want to compare the results of testing the hypotheses in
(9.1.22) at level α0 to the results of testing the hypotheses
in (9.1.27) at level α0.

a. Let α0 < 0.5. Prove that there are no possible data
sets such that we would reject both of the null hy-
potheses simultaneously. That is, for every possible
Xn and σ ′, we must fail to reject at least one of the
two null hypotheses.

b. Let α0 < 0.5. Prove that there are data sets that would
lead to failing to reject both null hypotheses. Also
prove that there are data sets that would lead to
rejecting each of the null hypotheses while failing to
reject the other.

c. Let α0 > 0.5. Prove that there are data sets that would
lead to rejecting both null hypotheses.
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� 9.2 Testing Simple Hypotheses
The simplest hypothesis-testing situation is that in which there are only two possible
values of the parameter. In such cases, it is possible to identify a collection of test
procedures that have certain optimal properties.

Introduction

Example
9.2.1

Service Times in a Queue. In Example 3.7.5, we modeled the service times X =
(X1, . . . , Xn) of n customers in a queue as having the joint distribution with joint
p.d.f.

f1(x) =
⎧⎨⎩

2(n!)(
2 + ∑n

i=1 xi

)n+1
for all xi > 0,

0 otherwise.

(9.2.1)

Suppose that a service manager is not sure how well this joint distribution describes
the service times. As an alternative, she proposes to model the service times as a
random sample of exponential random variables with parameter 1/2. This model says
that the joint p.d.f. is

f0(x) =

⎧⎪⎨⎪⎩
1
2n

exp

(
− 1

2

n∑
i=1

xi

)
for all xi > 0,

0 otherwise.

(9.2.2)

For illustration, Fig. 9.5 shows both of these p.d.f.’s for the case of n = 1. If the manager
observes several service times, how can she test which of the two distributions appears
to describe the data? �

In this section, we shall consider problems of testing hypotheses in which a vector
of observations comes from one of two possible joint distributions, and the statistician
must decide from which distribution the vector actually came. In many problems,
each of the two joint distributions is actually the distribution of a random sample
from a univariate distribution. However, nothing that we present in this section will
depend on whether or not the observations form a random sample. In Example 9.2.1,
one of the joint distributions is that of a random sample, but the other is not. In
problems of this type, the parameter space � contains exactly two points, and both
the null hypothesis and the alternative hypothesis are simple.

Figure 9.5 Graphs of the
two competing p.d.f.’s in
Example 9.2.1 with n = 1.
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Specifically, we shall assume that the random vector X = (X1, . . . , Xn) comes
from a distribution for which the joint p.d.f., p.f., or p.f./p.d.f. is either f0(x) or f1(x). To
correspond with notation earlier and later in the book, we can introduce a parameter
space � = {θ0, θ1} and let θ = θi stand for the case in which the data have p.d.f., p.f.,
or p.f./p.d.f. fi(x) for i = 0, 1. We are then interested in testing the following simple
hypotheses:

H0: θ = θ0,

H1: θ = θ1.
(9.2.3)

In this case, �0 = {θ0} and �1 = {θ1} are both singleton sets.
For the special case in which X is a random sample from a distribution with

univariate p.d.f. or p.f. f (x|θ), we then have, for i = 0 or i = 1,

fi(x) = f (x1|θi)f (x2|θi) . . . f (xn|θi).

The Two Types of Errors

When a test of the hypotheses (9.2.3) is being carried out, we have special notation
for the probabilities of type I and type II errors. For each test procedure δ, we shall
let α(δ) denote the probability of an error of type I and shall let β(δ) denote the
probability of an error of type II. Thus,

α(δ) = Pr(Rejecting H0|θ = θ0),

β(δ) = Pr(Not Rejecting H0|θ = θ1).

Example
9.2.2

Service Times in a Queue. The manager in Example 9.2.1 looks at the two p.d.f.’s
in Fig. 9.5 and decides that f1 gives higher probability to large service times than
does f0. So she decides to reject H0 : θ = θ0 if the service times are large. Specifically,
suppose that she observes n = 1 service time, X1. The test δ that she chooses rejects
H0 if X1 ≥ 4. The two error probabilities can be calculated from the two different
possible distributions of X1. Given θ = θ0, X1 has the exponential distribution with
parameter 0.5. The c.d.f. of this distribution is F0(x) = 1 − exp(−0.5x) for x ≥ 0. The
type I error probability is the probability that X1 ≥ 4, which equals α(δ) = 0.135.
Given θ = θ1, the distribution of X1 has the p.d.f. 2/(2 + x1)

2 for x1 ≥ 0. The c.d.f. is
then F1(x) = 1 − 2/(2 + x), for x ≥ 0. The type II error probability is β(δ) = Pr(X1 <

4) = F1(4) = 0.667. �

It is desirable to find a test procedure for which the probabilities α(δ) and β(δ)

of the two types of error will be small. For a given sample size, it is typically not
possible to find a test procedure for which both α(δ) and β(δ) will be arbitrarily small.
Therefore, we shall now show how to construct a procedure for which the value of a
specific linear combination of α and β will be minimized.

Optimal Tests

Minimizing a Linear Combination Suppose that a and b are specified positive
constants, and it is desired to find a procedure δ for which aα(δ) + bβ(δ) will be a
minimum. Theorem 9.2.1 shows that a procedure that is optimal in this sense has a
very simple form. In Sec. 9.8, we shall give a rationale for choosing a test to minimize
a linear combination of the error probabilities.
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Theorem
9.2.1

Let δ∗ denote a test procedure such that the hypothesis H0 is not rejected if af0(x) >

bf1(x) and the hypothesis H0 is rejected if af0(x) < bf1(x). The null hypothesis H0 can
be either rejected or not if af0(x) = bf1(x). Then for every other test procedure δ,

aα(δ∗) + bβ(δ∗) ≤ aα(δ) + bβ(δ). (9.2.4)

Proof For convenience, we shall present the proof for a problem in which the random
sample X1, . . . , Xn is drawn from a discrete distribution. In this case, fi(x) represents
the joint p.f. of the observations in the sample when Hi is true (i = 0, 1). If the sample
comes from a continuous distribution, in which case fi(x) is a joint p.d.f., then each
of the sums that will appear in this proof should be replaced by an n-dimensional
integral.

If we let S1 denote the critical region of an arbitrary test procedure δ, then S1
contains every sample outcome x for which δ specifies that H0 should be rejected, and
S0 = Sc

1 contains every outcome x for which H0 should not be rejected. Therefore,

aα(δ) + bβ(δ) = a
∑
x∈S1

f0(x) + b
∑
x∈S0

f1(x)

= a
∑
x∈S1

f0(x) + b

⎡⎣1 −
∑
x∈S1

f1(x)

⎤⎦ (9.2.5)

= b +
∑
x∈S1

[af0(x) − bf1(x)].

It follows from Eq. (9.2.5) that the value of the linear combination aα(δ) + bβ(δ)

will be a minimum if the critical region S1 is chosen so that the value of the final
summation in Eq. (9.2.5) is a minimum. Furthermore, the value of this summation will
be a minimum if the summation includes every point x for which af0(x) − bf1(x) < 0
and includes no point x for which af0(x) − bf1(x) > 0. In other words, aα(δ) + bβ(δ)

will be a minimum if the critical region S1 is chosen to include every point x such
that af0(x) < bf1(x) and exclude every point x such that this inequality is reversed.
If af0(x) = bf1(x) for some point x, then it is irrelevant whether or not x is included
in S1, because the corresponding term would contribute zero to the final summation
in Eq. (9.2.5). The critical region described above corresponds to the test procedure
δ∗ defined in the statement of the theorem.

The ratio f1(x)/f0(x) is sometimes called the likelihood ratio of the sample.
It is related to, but not the same as, the likelihood ratio statistic from Defini-
tion 9.1.11. In the present context, the likelihood ratio statistic �(x) would equal
f0(x)/ max{f0(x), f1(x)}. In particular, the likelihood ratio f1(x)/f0(x) is large when
�(x) is small, and vice versa. In fact,

�(x) =
⎧⎨⎩

(
f1(x)

f0(x)

)−1

if f0(x) ≤ f1(x)

1 otherwise.
The important point to remember about this confusing choice of names is the follow-
ing: The theoretical justification for tests based on the likelihood ratio defined here
(provided in Theorems 9.2.1 and 9.2.2) is the rationale for expecting the likelihood
ratio tests of Defintion 9.1.11 to be sensible.

When a, b > 0, Theorem 9.2.1 can be reworded as follows.

Corollary
9.2.1

Assume the conditions of Theorem 9.2.1, and assume that a > 0 and b > 0. Then
the test δ for which the value of aα(δ) + bβ(δ) is a minimum rejects H0 when the
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likelihood ratio exceeds a/b and does not reject H0 when the likelihood ratio is less
than a/b.

Example
9.2.3

Service Times in a Queue. Instead of rejecting H0 if X1 ≥ 4 in Example 9.2.2, the
manager could apply Theorem 9.2.1. She must choose two numbers a and b to balance
the two types of error. Suppose that she chooses them to be equal to each other. Then
the test will be to reject H0 if f1(x1)/f0(x1) > 1. That is, if

4
(2 + x1)

2
exp

(
x1

2

)
> 1. (9.2.6)

At x1 = 0 the left side of Eq. (9.2.6) equals 1, and it decreases until x1 = 2 and then
increases ever after. Hence, Eq. (9.2.6) holds for all values of x1 > c where c is the
unique strictly positive value where the left side of Eq. (9.2.6) equals 1. By numerical
approximation, we find that this value is x1 = 5.025725. The type I and type II error
probabilities for the test δ∗ that rejects H0 if X1 > 5.025725 are

α(δ∗) = 1 − F0(5.025725) = exp(−2.513) = 0.081,

β(δ∗) = F1(5.025725) = 1 − 2
7.026

= 0.715.

The sum of these error probabilities is 0.796. By comparison, the sum of the two error
probabilities in Example 9.2.2 is 0.802, slightly higher. �

Minimizing the Probability of an Error of Type II Next, suppose that the proba-
bility α(δ) of an error of type I is not permitted to be greater than a specified level of
significance, and it is desired to find a procedure δ for which β(δ) will be a minimum.
In this problem, we can apply the following result, which is closely related to Theo-
rem 9.2.1 and is known as the Nayman-Pearson lemma in honor of the statisticians J.
Neyman and E. S. Pearson, who developed these ideas in 1933.

Theorem
9.2.2

Nayman-Pearson lemma. Suppose that δ′ is a test procedure that has the following
form for some constant k > 0: The hypothesis H0 is not rejected if f1(x) < kf0(x) and
the hypothesis H0 is rejected if f1(x) > kf0(x). The null hypothesis H0 can be either
rejected or not if f1(x) = kf0(x). If δ is another test procedure such that α(δ) ≤ α(δ′),
then it follows that β(δ) ≥ β(δ′). Furthermore, if α(δ) < α(δ′), then β(δ) > β(δ′).

Proof From the description of the procedure δ′ and from Theorem 9.2.1, it follows
that for every test procedure δ,

kα(δ′) + β(δ′) ≤ kα(δ) + β(δ). (9.2.7)

If α(δ) ≤ α(δ′), then it follows from the relation (9.2.7) that β(δ) ≥ β(δ′). Also, if
α(δ) < α(δ′), then it follows that β(δ) > β(δ′).

To illustrate the use of the Nayman-Pearson lemma, we shall suppose that a
statistician wishes to use a test procedure for which α(δ) = α0 and β(δ) is a minimum.
According to the lemma, she should try to find a value of k for which α(δ′) = α0. The
procedure δ′ will then have the minimum possible value of β(δ). If the distribution
from which the sample is taken is continuous, then it is usually (but not always)
possible to find a value of k such that α(δ′) is equal to a specified value such as α0.
However, if the distribution from which the sample is taken is discrete, then it is
typically not possible to choose k so that α(δ′) is equal to a specified value. These
remarks are considered further in the following examples and in the exercises at the
end of this section.
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Example
9.2.4

Service Times in a Queue. In Example 9.2.3, the distribution of X1 is continuous,
and we can find a value k such that the test δ′ that results from Theorem 9.2.2 has
α(δ′) = 0.07, say. The test δ∗ in Example 9.2.3 has α(δ∗) > 0.07 and k = 1. We will need
a larger value of k in order to get the type I error probability down to 0.07. As we
noted in Example 9.2.3, the left side of Eq. (9.2.6) is increasing for x1 > 2, and hence
the set of x1 values such that

4
(2 + x1)

2
exp

(
x1

2

)
> k (9.2.8)

will be an interval of the form (c, ∞) where c is the unique value that makes the
left side of Eq. (9.2.8) equal to k. The resulting test will then have the form “reject
H0 if X1 ≥ c.” At this point, we don’t care any more about k because we just need
to choose c to make sure that Pr(X1 ≥ c|θ = θ0) = 0.07. That is, we need 1 − F0(c) =
0.07. Recall that F0(c) = 1 − exp(−0.5c), so c = −2 log(0.07) = 5.318. We can then
compute β(δ′) = F1(5.318) = 0.727. This test is very close to δ∗ from Example 9.2.3.

�

Example
9.2.5

Random Sample from a Normal Distribution. Suppose that X = (X1, . . . , Xn) is a ran-
dom sample from the normal distribution with unknown mean θ and known variance
1, and the following hypotheses are to be tested:

H0: θ = 0,

H1: θ = 1.
(9.2.9)

We shall begin by determining a test procedure for which β(δ) will be a minimum
among all test procedures for which α(δ) ≤ 0.05.

When H0 is true, the variables X1, . . . , Xn form a random sample from the stan-
dard normal distribution. When H1 is true, these variables form a random sample
from the normal distribution for which both the mean and the variance are 1. There-
fore,

f0(x) = 1
(2π)n/2

exp

(
− 1

2

n∑
i=1

x2
i

)
(9.2.10)

and

f1(x) = 1
(2π)n/2

exp

[
− 1

2

n∑
i=1

(xi − 1)2

]
. (9.2.11)

After some algebraic simplification, the likelihood ratio f1(x)/f0(x) can be written
in the form

f1(x)

f0(x)
= exp

[
n

(
xn − 1

2

)]
. (9.2.12)

It now follows from Eq. (9.2.12) that rejecting the hypothesis H0 when the likelihood
ratio is greater than a specified positive constant k is equivalent to rejecting H0 when
the sample mean xn is greater than (1/2) + (1/n) log k.

Let k′ = (1/2) + (1/n) log k, and suppose that we can find a value of k′ such that

Pr
(
Xn > k′|θ = 0

)
= 0.05. (9.2.13)

Then the procedure δ′, which rejects H0 when Xn > k′, will satisfy α(δ′) = 0.05.
Furthermore, by the Nayman-Pearson lemma, δ′ will be an optimal procedure in the
sense of minimizing the value of β(δ) among all procedures for which α(δ) ≤ 0.05.
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It is easy to see that the value of k′ that satisfies Eq. (9.2.13) must be the 0.95
quantile of the distribution of Xn given θ = 0. When θ = 0, the distribution of Xn is
the normal distribution with mean 0 and variance 1/n. Therefore, its 0.95 quantile
is 0 + �−1(0.95)n−1/2, where �−1 is the standard normal quantile function. From a
table of the standard normal distribution, it is found that the 0.95 quantile of the
standard normal distribution is 1.645, so k′ = 1.645n−1/2.

In summary, among all test procedures for which α(δ) ≤ 0.05, the procedure that
rejects H0 when Xn > 1.645n−1/2 has the smallest probability of type II error.

Next, we shall determine the probability β(δ′) of an error of type II for this
procedure δ′. Since β(δ′) is the probability of not rejecting H0 when H1 is true,

β(δ′) = Pr(Xn < 1.645n−1/2|θ = 1). (9.2.14)

When θ = 1, the distribution of Xn is the normal distribution with mean 1 and variance
1/n. The probability in Eq. (9.2.14) can then be written as

β(δ′) = �

(
1.645n−1/2 − 1

n−1/2

)
= �(1.645 − n1/2). (9.2.15)

For instance, when n = 9, it is found from a table of the standard normal distribution
that

β(δ′) = �(−1.355) = 1 − �(1.355) = 0.0877.

Finally, for this same random sample and the same hypotheses (9.2.9), we shall
determine the test procedure δ0 for which the value of 2α(δ) + β(δ) is a minimum,
and we shall calculate the value of 2α(δ0) + β(δ0) when n = 9.

It follows from Theorem 9.2.1 that the procedure δ0 for which 2α(δ) + β(δ) is a
minimum rejects H0 when the likelihood ratio is greater than 2. By Eq. (9.2.12), this
procedure is equivalent to rejecting H0 when Xn > (1/2) + (1/n) log 2. Thus, when
n = 9, the optimal procedure δ0 rejects H0 when Xn > 0.577. For this procedure we
then have

α(δ0) = Pr(Xn > 0.577|θ = 0) (9.2.16)

and

β(δ0) = Pr(Xn < 0.577|θ = 1). (9.2.17)

Since Xn has the normal distribution with mean θ and variance 1/n, we have

α(δ0) = 1 − �

(
0.577 − 0

1/3

)
= 1 − �(1.731) = 0.0417

and

β(δ0) = �

(
0.577 − 1

1/3

)
= �(−1.269) = 0.1022.

The minimum value of 2α(δ) + β(δ) is therefore

2α(δ0) + β(δ0) = 2(0.0417) + (0.1022) = 0.1856. �

Example
9.2.6

Sampling from a Bernoulli Distribution. Suppose that X1, . . . , Xn form a random sam-
ple from the Bernoulli distribution with unknown parameter p, and the following
hypotheses are to be tested:

H0: p = 0.2,

H1: p = 0.4.
(9.2.18)
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It is desired to find a test procedure for which α(δ) = 0.05 and β(δ) is a minimum.
In this example, each observed value xi must be either 0 or 1. If we let y = ∑n

i=1 xi,
then the joint p.f. of X1, . . . , Xn when p = 0.2 is

f0(x) = (0.2)y(0.8)n−y (9.2.19)

and the joint p.f. when p = 0.4 is

f1(x) = (0.4)y(0.6)n−y. (9.2.20)

Hence, the likelihood ratio is

f1(x)

f0(x)
=

(
3
4

)n (
8
3

)y

. (9.2.21)

It follows that rejecting H0 when the likelihood ratio is greater than a specified
positive constant k is equivalent to rejecting H0 when y is greater than k′, where

k′ = log k + n log(4/3)
log(8/3)

. (9.2.22)

To find a test procedure for which α(δ) = 0.05 and β(δ) is a minimum, we use the
Nayman-Pearson lemma. If we let Y = ∑n

i=1 Xi, we should try to find a value of k′
such that

Pr(Y > k′|p = 0.2) = 0.05. (9.2.23)

When the hypothesis H0 is true, the random variable Y has the binomial distri-
bution with parameters n and p = 0.2. However, because of the discreteness of this
distribution, it generally will not be possible to find a value of k′ for which Eq. (9.2.23)
is satisfied. For example, suppose that n = 10. Then it is found from a table of the
binomial distribution that Pr(Y > 4|p = 0.2) = 0.0328 and also Pr(Y > 3|p = 0.2) =
0.1209. Therefore, there is no critical region of the desired form for which α(δ) = 0.05.
If it is desired to use a level 0.05 test δ based on the likelihood ratio as specified by
the Nayman-Pearson lemma, then one must reject H0 when Y > 4 and α(δ) = 0.0328.

�

Randomized Tests

It has been emphasized by some statisticians that α(δ) can be made exactly 0.05 in
Example 9.2.6 if a randomized test procedure is used. Such a procedure is described
as follows: When the rejection region of the test procedure contains all values of y

greater than 4, we found in Example 9.2.6 that the size of the test is α(δ) = 0.0328.
Also, when the point y = 4 is added to this rejection region, the value of α(δ) jumps to
0.1209. Suppose, however, that instead of choosing between including the point y = 4
in the rejection region and excluding that point, we use an auxiliary randomization
to decide whether or not to reject H0 when y = 4. For example, we may toss a coin or
spin a wheel to arrive at this decision. Then, by choosing appropriate probabilities
to be used in this randomization, we can make α(δ) exactly 0.05.

Specifically, consider the following test procedure: The hypothesis H0 is rejected
if y > 4, and H0 is not rejected if y < 4. However, if y = 4, then an auxiliary random-
ization is carried out in which H0 will be rejected with probability 0.195, and H0 will
not be rejected with probability 0.805. The size α(δ) of this test will then be

α(δ) = Pr(Y > 4|p = 0.2) + (0.195) Pr(Y = 4|p = 0.2)

= 0.0328 + (0.195)(0.0881) = 0.05. (9.2.24)
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Randomized tests do not seem to have any place in practical applications of
statistics. It does not seem reasonable for a statistician to decide whether or not
to reject a null hypothesis by tossing a coin or performing some other type of
randomization for the sole purpose of obtaining a value of α(δ) that is equal to some
arbitrarily specified value such as 0.05. The main consideration for the statistician is
to use a nonrandomized test procedure δ′ having the form specified in the Nayman-
Pearson lemma.

The proofs of Theorems 9.2.1 and 9.2.2 can be extended to find optimal tests
among all tests regardless of whether they are randomized or nonrandomized. The
optimal test in the extension of Theorem 9.2.2 has the same form as δ∗ except that
randomization is allowed whenever f1(x) = kf0(x). The only real need for random-
ized tests, in this book, will be the simplification that they provide for one step in the
proof of Theorem 9.3.1 (page 562).

Furthermore, rather than fixing a specific size α(δ) and trying to minimize β(δ),
it might be more reasonable for the statistician to minimize a linear combination of
the form aα(δ) + bβ(δ). As we have seen in Theorem 9.2.1, such a minimization can
always be achieved without recourse to an auxiliary randomization. In Sec. 9.9, we
shall present another argument that indicates why it might be more reasonable to
minimize a linear combination of the form aα(δ) + bβ(δ) than to specify a value of
α(δ) and then minimize β(δ).

Summary

For the special case in which there are only two possible values, θ0 and θ1, for
the parameter, we found a collection of procedures for testing H0 : θ = θ0 versus
H1 : θ = θ1 that contains the optimal test procedure for each of the following criteria:

. Choose the test δ with the smallest value of aα(δ) + bβ(δ).

. Among all tests δ with α(δ) ≤ α0, choose the test with the smallest value of β(δ).

Here, α(δ) = Pr(Reject H0|θ = θ0) and β(δ) = Pr(Don’t Reject H0|θ = θ1) are, re-
spectively, the probabilities of type I and type II errors. The tests all have the fol-
lowing form for some positive constant k: reject H0 if f0(x) < kf1(x), don’t reject H0
if f0(x) > kf1(x), and do either if f0(x) = kf1(x).

Exercises

1. Let f0(x) be the p.f. of the Bernoulli distribution with
parameter 0.3, and let f1(x) be the p.f. of the Bernoulli
distribution with parameter 0.6. Suppose that a single ob-
servation X is taken from a distribution for which the p.d.f.
f (x) is either f0(x) or f1(x), and the following simple hy-
potheses are to be tested:

H0: f (x) = f0(x),

H1: f (x) = f1(x).

Find the test procedure δ for which the value of α(δ) + β(δ)

is a minimum.

2. Consider two p.d.f.’s f0(x) and f1(x) that are defined as
follows:

f0(x) =
{

1 for 0 ≤ x ≤ 1,

0 otherwise,

and

f1(x) =
{

2x for 0 ≤ x ≤ 1,

0 otherwise.

Suppose that a single observation X is taken from a dis-
tribution for which the p.d.f. f (x) is either f0(x) or f1(x),
and the following simple hypotheses are to be tested:

H0: f (x) = f0(x),

H1: f (x) = f1(x).
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a. Describe a test procedure for which the value of
α(δ) + 2β(δ) is a minimum.

b. Determine the minimum value of α(δ) + 2β(δ) at-
tained by that procedure.

3. Consider again the conditions of Exercise 2, but sup-
pose now that it is desired to find a test procedure for
which the value of 3α(δ) + β(δ) is a minimum.

a. Describe the procedure.

b. Determine the minimum value of 3α(δ) + β(δ) at-
tained by the procedure.

4. Consider again the conditions of Exercise 2, but sup-
pose now that it is desired to find a test procedure for
which α(δ) ≤ 0.1 and β(δ) is a minimum.

a. Describe the procedure.

b. Determine the minimum value of β(δ) attained by
the procedure.

5. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean θ and known
variance is 1, and the following hypotheses are to be
tested:

H0: θ = 3.5,
H1: θ = 5.0.

a. Among all test procedures for which β(δ) ≤ 0.05, de-
scribe a procedure for which α(δ) is a minimum.

b. For n = 4, find the minimum value of α(δ) attained
by the procedure described in part (a).

6. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with unknown parameter p. Let
p0 and p1 be specified values such that 0 < p1 < p0 < 1,
and suppose that it is desired to test the following simple
hypotheses:

H0: p = p0,

H1: p = p1.

a. Show that a test procedure for which α(δ) + β(δ) is a
minimum rejects H0 when Xn < c.

b. Find the value of the constant c.

7. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with known mean μ and unknown
variance σ 2, and the following simple hypotheses are to be
tested:

H0: σ 2 = 2,

H1: σ 2 = 3.

a. Show that among all test procedures for which α(δ) ≤
0.05, the value of β(δ) is minimized by a procedure
that rejects H0 when

∑n
i=1(Xi − μ)2 > c.

b. For n = 8, find the value of the constant c that appears
in part (a).

8. Suppose that a single observation X is taken from the
uniform distribution on the interval [0, θ ], where the value
of θ is unknown, and the following simple hypotheses are
to be tested:

H0: θ = 1,
H1: θ = 2.

a. Show that there exists a test procedure for which
α(δ) = 0 and β(δ) < 1.

b. Among all test procedures for which α(δ) = 0, find
the one for which β(δ) is a minimum.

9. Suppose that a random sample X1, . . . , Xn is drawn
from the uniform distribution on the interval [0, θ ], and
consider again the problem of testing the simple hypothe-
ses described in Exercise 8. Find the minimum value of
β(δ) that can be attained among all test procedures for
which α(δ) = 0.

10. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean λ. Let λ0 and
λ1 be specified values such that λ1 > λ0 > 0, and suppose
that it is desired to test the following simple hypotheses:

H0: λ = λ0,

H1: λ = λ1.

a. Show that the value of α(δ) + β(δ) is minimized by a
test procedure which rejects H0 when Xn > c.

b. Find the value of c.

c. For λ0 = 1/4, λ1 = 1/2, and n = 20, determine the
minimum value of α(δ) + β(δ) that can be attained.

11. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
standard deviation 2, and the following simple hypotheses
are to be tested:

H0: μ = −1,
H1: μ = 1.

Determine the minimum value of α(δ) + β(δ) that can be
attained for each of the following values of the sample
size n:

a. n = 1 b. n = 4 c. n = 16 d. n = 36

12. Let X1, . . . , Xn be a random sample from the expo-
nential distribution with unknown parameter θ . Let 0 <

θ0 < θ1 be two possible values of the parameter. Suppose
that we wish to test the following hypotheses:

H0: θ = θ0,

H1: θ = θ1.

For each α0 ∈ (0, 1), show that among all tests δ satisfying
α(δ) ≤ α0, the test with the smallest probability of type II
error will reject H0 if

∑n
i=1 Xi < c, where c is the α0 quan-

tile of the gamma distribution with parameters n and θ0.
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13. Consider the series of examples in this section con-
cerning service times in a queue. Suppose that the man-
ager observes two service times X1 and X2. It is easy to
see that both f1(x) in (9.2.1) and f0(x) in (9.2.2) depend
on the observed data only through the value t = x1 + x2
of the statistic T = X1 + X2. Hence, the tests from Theo-
rems 9.2.1 and 9.2.2 both depend only on the value of T .

a. Using Theorem 9.2.1, determine the test procedure
that minimizes the sum of the probabilities of type I
and type II errors.

b. Suppose that X1 = 4 and X2 = 3 are observed. Per-
form the test in part (a) to see whether H0 is rejected.

c. Prove that the distribution of T , given that H0 is true,
is the gamma distribution with parameters 2 and 1/2.

d. Using Theorem 9.2.2, determine the test procedure
with level at most 0.01 that has minimum probability
of type II error. Hint: It looks like you need to solve
a system of nonlinear equations, but for a level 0.01
test, the equations collapse to a single simple equa-
tion.

e. Suppose that X1 = 4 and X2 = 3 are observed. Per-
form the test in part (d) to see whether H0 is rejected.

� 9.3 Uniformly Most Powerful Tests
When the null and/or alternative hypothesis is composite, we can still find a class of
tests that has optimal properties in certain circumstances. In particular, the null and
alternative hypotheses must be of the form H0 : θ ≤ θ0 and H1 : θ > θ0, or H0 : θ ≥ θ0
and H1 : θ < θ0. In addition, the family of distributions of the data must have a
property called “monotone likelihood ratio,” which is defined in this section.

Definition of a Uniformly Most Powerful Test

Example
9.3.1

Service Times in a Queue. In Example 9.2.1, a manager was interested in testing
which of two joint distributions described the service times in a queue that she was
managing. Suppose, now, that instead of considering only two joint distributions,
the manager wishes to consider all of the joint distributions that can be described by
saying that the service times form a random sample from the exponential distribution
with parameter θ conditional on θ . That is, for each possible rate θ > 0, the manager
is willing to consider the possibility that the service times are i.i.d. exponential
random variables with parameter θ . In particular, the manager is interested in testing
H0 : θ ≤ 1/2 versus H1 : θ > 1/2. For each θ ′ > 1/2, the manager could use the methods
of Sec. 9.2 to test the hypotheses H ′

0 : θ = 1/2 versus H ′
1 : θ = θ ′. She could obtain the

level α0 test with the smallest possible type II error probability when θ = θ ′. But can
she find a single level α0 test that has the largest possible type II error probability
simultaneously for all θ > 1/2? And will that test have probability of type I error at
most α0 for all θ ≤ 1/2? �

Consider a problem of testing hypotheses in which the random variables X =
(X1, . . . , Xn) form a random sample from a distribution for which either the p.d.f. or
the p.f. is f (x|θ). We suppose that the value of the parameter θ is unknown but must
lie in a specified parameter space � that is a subset of the real line. As usual, we shall
suppose that �0 and �1 are disjoint subsets of �, and the hypotheses to be tested are

H0: θ ∈ �0,

H1: θ ∈ �1.
(9.3.1)

We shall assume that the subset �1 contains at least two distinct values of θ , in which
case the alternative hypothesis H1 is composite. The null hypothesis H0 may be either
simple or composite. Example 9.3.1 is of the type just described with �0 = (0, 1/2]
and �1 = (1/2, ∞).
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We shall also suppose that it is desired to test the hypotheses (9.3.1) at a specified
level of significance α0, where α0 is a given number in the interval 0 < α0 < 1. In other
words, we shall consider only procedures in which Pr(Rejecting H0|θ) ≤ α0 for every
value of θ ∈ �0. If π(θ |δ) denotes the power function of a given test procedure δ, this
requirement can be written simply as

π(θ |δ) ≤ α0 for θ ∈ �0. (9.3.2)

Equivalently, if α(δ) denotes the size of a test procedure δ, as defined by Eq. (9.1.7),
then the requirement (9.3.2) can also be expressed by the relation

α(δ) ≤ α0. (9.3.3)

Finally, among all test procedures that satisfy the requirement (9.3.3), we want to
find one that has the smallest possible probability of type II error for every θ ∈ �1.
In terms of the power function, we want the value of π(θ |δ) to be as large as possible
for every value of θ ∈ �1.

It may not be possible to satisfy this last criterion. If θ1 and θ2 are two different
values of θ in �1, then the test procedure for which the value of π(θ1|δ) is a maximum
might be different from the test procedure for which the value of π(θ2|δ) is a maxi-
mum. In other words, there might be no single test procedure δ that maximizes the
power function π(θ |δ) simultaneously for every value of θ in �1. In some problems,
however, there will exist a test procedure that satisfies this criterion. Such a proce-
dure, when it exists, is called a uniformly most powerful test, or, more briefly, a UMP
test. The formal definition of a UMP test is as follows.

Definition
9.3.1

Uniformly Most Powerful (UMP) Test. A test procedure δ∗ is a uniformly most powerful
(UMP) test of the hypotheses (9.3.1) at the level of significance α0 if α(δ∗) ≤ α0 and,
for every other test procedure δ such that α(δ) ≤ α0, it is true that

π(θ |δ) ≤ π(θ |δ∗) for every value of θ ∈ �1. (9.3.4)

In this section, we shall show that a UMP test exists in many problems in which the
random sample comes from one of the standard families of distributions that we have
been considering in this book.

Monotone Likelihood Ratio

Example
9.3.2

Service Times in a Queue. Suppose that the manager in Example 9.3.1 observes a
random sample X = (X1, . . . , Xn) of service times and tries to find the level α0 test
of H ′

0 : θ = 1/2 versus H ′
1 : θ = θ ′ that has the largest power at θ = θ ′ > 1/2. According

to Exercise 12 in Sec. 9.2, the test will reject H ′
0 if

∑n
i=1 Xi is less than the α0 quantile of

the gamma distribution with parameters n and 1/2. This test is the same test regardless
of which θ ′ > 1/2 the manager considers. Hence, the test is UMP at the level of
significance α0 for testing H ′

0 : θ = 1/2 versus H1 : θ > 1/2. �

The family of exponential distributions in Example 9.3.2 has a special property
called monotone likelihood ratio that allows the manager to find a UMP test.

Definition
9.3.2

Monotone Likelihood Ratio. Let fn(x|θ) denote the joint p.d.f. or the joint p.f. of the
observations X = (X1, . . . , Xn). Let T = r(X) be a statistic. It is said that the joint
distribution of X has a monotone likelihood ratio (MLR) in the statistic T if the
following property is satisfied: For every two values θ1 ∈ � and θ2 ∈ �, with θ1 < θ2,
the ratio fn(x|θ2)/fn(x|θ1) depends on the vector x only through the function r(x),
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and this ratio is a monotone function of r(x) over the range of possible values of r(x).
Specifically, if the ratio is increasing, we say that the distribution of X has increasing
MLR, and if the ratio is decreasing, we say that the distribution has decreasing MLR.

Example
9.3.3

Sampling from a Bernoulli Distribution. Suppose that X1, . . . , Xn form a random sam-
ple from the Bernoulli distribution with unknown parameter p (0 < p < 1). If we let
y = ∑n

i=1 xi, then the joint p.f. fn(x|p) is as follows:

fn(x|p) = py(1 − p)n−y.

Therefore, for every two values p1 and p2 such that 0 < p1 < p2 < 1,

fn(x|p2)

fn(x|p1)
=

[
p2(1 − p1)

p1(1 − p2)

]y (
1 − p2

1 − p1

)n

. (9.3.5)

It can be seen from Eq. (9.3.5) that the ratio fn(x|p2)/fn(x|p1) depends on the vector x
only through the value of y, and this ratio is an increasing function of y. Therefore,
fn(x|p) has increasing monotone likelihood ratio in the statistic Y = ∑n

i=1 Xi. �

Example
9.3.4

Sampling from an Exponential Distribution. Let X = (X1, . . . , Xn) be a random sample
from the exponential distribution with unknown parameter θ > 0. The joint p.d.f. is

fn(x|θ) =
{

θn exp
(−θ

∑n
i=1 xi

)
for all xi > 0,

0 otherwise.

For 0 < θ1 < θ2, we have

fn(x|θ2)

fn(x|θ1)
=

(
θ2

θ1

)n

exp

(
[θ1 − θ2]

n∑
i=1

xi

)
, (9.3.6)

if all xi > 0. If we let r(x) = ∑n
i=1 xi, then we see that the ratio in Eq. (9.3.6) depends

on x only through r(x) and is a decreasing function of r(x). Hence, the joint distri-
bution of a random sample of exponential random variables has decreasing MLR in
T = ∑n

i=1 Xi. �

In Example 9.3.4, we could have defined the statistic T ′ = − ∑n
i=1 Xi or T ′ =

1/
∑n

i=1 Xi, and then the distribution would have had increasing MLR in T ′. This
can be done in general in Definition 9.3.2. For this reason, when we prove theorems
that assume that a distribution has MLR, we shall state and prove the theorems
for increasing MLR only. When a distribution has decreasing MLR, the reader can
transform the statistic by a strictly decreasing function and then transform the result
back to the original statistic, if desired.

Example
9.3.5

Sampling from a Normal Distribution. Suppose that X1, . . . , Xn form a random sample
from the normal distribution with unknown mean μ (−∞ < μ < ∞) and known
variance σ 2. The joint p.d.f. fn(x|μ) is as follows:

fn(x|μ) = 1
(2π)n/2σn

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]
.

Therefore, for every two values μ1 and μ2 such that μ1 < μ2,

fn(x|μ2)

fn(x|μ1)
= exp

{
n(μ2 − μ1)

σ 2

[
xn − 1

2
(μ2 + μ1)

]}
. (9.3.7)
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It can be seen from Eq. (9.3.7) that the ratio fn(x|μ2)/fn(x|μ1) depends on the
vector x only through the value of xn, and this ratio is an increasing function of xn.
Therefore, fn(x|μ) has increasing monotone likelihood ratio in the statistic Xn. �

One-Sided Alternatives

In Example 9.3.2, we found a UMP level α0 test for a simple null hypothesis H ′
0 : θ =

1/2 against a one-sided alternative H1 : θ > 1/2. It is more common in such problems
to test hypotheses of the form

H0: θ ≤ θ0,

H1: θ > θ0.
(9.3.8)

That is, both the null and alternative hypotheses are one-sided. Because the one-
sided null hypothesis is larger than the simple null H ′

0 : θ = θ0, it is not necessarily
the case that a level α0 test of H ′

0 will be a level α0 test of H0. However, if the joint
distribution of the observations has MLR, we will be able to show that there will exist
UMP level α0 tests of the hypotheses (9.3.8). Furthermore (see Exercise 12), there
will exist UMP tests of the hypotheses obtained by reversing the inequalities in both
H0 and H1 in (9.3.8).

Theorem
9.3.1

Suppose that the joint distribution of X has increasing monotone likelihood ratio in
the statistic T = r(X). Let c and α0 be constants such that

Pr(T ≥ c|θ = θ0) = α0. (9.3.9)

Then the test procedure δ∗ that rejects H0 if T ≥ c is a UMP test of the hypotheses
(9.3.8) at the level of significance α0. Also, π(θ |δ∗) is a monotone increasing function
of θ .

Proof Let θ ′ < θ ′′ be arbitrary values of θ . Let α′
0 = π(θ ′|δ∗). It follows from the

Nayman-Pearson lemma that among all procedures δ for which

π(θ ′|δ) ≤ α′
0, (9.3.10)

the value of π(θ ′′|δ) will be maximized (1 − π(θ ′′|δ) minimized) by a procedure that
rejects H0 when fn(x|θ ′′)/fn(x|θ ′) ≥ k. The constant k is to be chosen so that

π(θ ′|δ) = α′
0. (9.3.11)

Because the distribution of X has increasing MLR, the likelihood ratio fn(x|θ ′′)/
fn(x|θ ′) is an increasing function of r(x). Therefore, a procedure that rejects H0
when the likelihood ratio is at least equal to k will be equivalent to a procedure
that rejects H0 when r(x) is at least equal to some other number c. The value of c

is to be chosen so that (9.3.11) holds. The test δ∗ satisfies Eq. (9.3.11) and has the
correct form; hence, it maximizes the power function at θ = θ ′′ among all tests that
satisfy Eq. (9.3.10). Another test δ that satisfies Eq. (9.3.10) is the following: Flip a
coin that has probability of heads equal to α′

0, and reject H0 if the coin lands heads.
This test has π(θ |δ) = α′

0 for all θ including θ ′ and θ ′′. Because δ∗ maximizes the power
function at θ ′′, we have

π(θ ′′|δ∗) ≥ π(θ ′|δ) = α′
0 = π(θ ′|δ∗). (9.3.12)

Hence, we have proven the claim that π(θ |δ∗) is a monotone increasing function of θ .
Next, consider the special case of what we have just proven with θ ′ = θ0. Then

α′
0 = α0, and we have proven that, for every θ ′′ > θ0, δ∗ maximizes π(θ ′′|δ) among all
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tests δ that satisfy

π(θ0|δ) ≤ α0. (9.3.13)

Every level α0 test δ satisfies Eq. (9.3.13). Hence, δ∗ has power at θ ′′ at least as high
as the power of every level α0 test. All that remains to complete the proof is to show
that δ∗ is itself a level α0 test.

We have already shown that the power function π(θ |δ∗) is monotone increasing.
Hence, π(θ |δ∗) ≤ α0 for all θ ≤ θ0, and δ∗ is a level α0 test.

Example
9.3.6

Service Times in a Queue. The manager in Example 9.3.2 might be interested in the
hypotheses H0 : θ ≤ 1/2 versus H1 : θ > 1/2. The distribution in that example has
decreasing MLR in the statistic T = ∑n

i=1 Xi, and hence it has increasing MLR in −T .
Theorem 9.3.1 says that a UMP level α0 test is to reject H0 when −T is greater than the
1 − α0 quantile of the distribution of −T given θ = 1/2. This is the same as rejecting
H0 when T is less than the α0 quantile of the distribution of T . The distribution of
T given θ = 1/2 is the gamma distribution with parameters n and 1/2, which is also
the χ2 distribution with 2n degrees of freedom. For example, if n = 10 and α0 = 0.1,
the quantile is 12.44, which can be found in the table in the back of the book or from
computer software. �

Example
9.3.7

Testing Hypotheses about the Proportion of Defective Items. Suppose that the propor-
tion p of defective items in a large manufactured lot is unknown, 20 items are to be
selected at random from the lot and inspected, and the following hypotheses are to
be tested:

H0: p ≤ 0.1,
H1: p > 0.1.

(9.3.14)

We shall show first that there exist UMP tests of the hypotheses (9.3.14). We shall
then determine the form of these tests and discuss the different levels of significance
that can be attained with nonrandomized tests.

Let X1, . . . , X20 denote the 20 random variables in the sample. Then X1, . . . , X20
form a random sample of size 20 from the Bernoulli distribution with parameter p,
and it is known from Example 9.3.3 that the joint p.f. of X1, . . . , X20 has increasing
monotone likelihood ratio in the statistic Y = ∑20

i=1 Xi. Therefore, by Theorem 9.3.1,
a test procedure that rejects H0 when Y ≥ c will be a UMP test of the hypothe-
ses (9.3.14).

For each specific choice of the constant c, the size of the UMP test will be
α0 = Pr(Y ≥ c|p = 0.1). When p = 0.1, the random variable Y has the binomial dis-
tribution with parameters n = 20 and p = 0.1. Because Y has a discrete distribu-
tion and assumes only a finite number of different possible values, it follows that
there are only a finite number of different possible values for α0. To illustrate this
remark, it is found from a table of the binomial distribution that if c = 7, then
α0 = Pr(Y ≥ 7|p = 0.1) = 0.0024, and if c = 6, then α0 = Pr(Y ≥ 6|p = 0.1) = 0.0113.
Therefore, if an experimenter wants the size of the test to be approximately 0.01,
she could choose either c = 7 and α0 = 0.0024 or c = 6 and α0 = 0.0113. The test with
c = 7 is a level 0.01 test while the test with c = 6 is not, because the size of the former
test is less than 0.01 while the size of the latter test is greater than 0.01.

If the experimenter wants the size of the test to be exactly 0.01, then she can use
a randomized test procedure of the type described in Sec. 9.2. �

Example
9.3.8

Testing Hypotheses about the Mean of a Normal Distribution. Let X1, . . . , Xn form a
random sample from the normal distribution with mean μ and variance σ 2. Assume
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that σ 2 is known. Let μ0 be a specified number, and suppose that the following
hypotheses are to be tested:

H0: μ ≤ μ0,

H1: μ > μ0.
(9.3.15)

We shall show first that, for every specified level of significance α0 (0 < α0 < 1), there
is a UMP test of the hypotheses (9.3.15) with size equal to α0. We shall then determine
the power function of the UMP test.

It is known from Example 9.3.5 that the joint p.d.f. of X1, . . . , Xn has an increas-
ing monotone likelihood ratio in the statistic Xn. Therefore, by Theorem 9.3.1, a test
procedure δ1 that rejects H0 when Xn ≥ c is a UMP test of the hypotheses (9.3.15).
The size of this test is α0 = Pr(Xn ≥ c|μ = μ0).

Since Xn has a continuous distribution, c is the 1 − α0 quantile of the distribution
of Xn given μ = μ0. That is, c is the 1 − α0 quantile of the normal distribution with
mean μ0 and variance σ 2/n. As we learned in Chapter 5, this quantile is

c = μ0 + �−1(1 − α0)σn−1/2, (9.3.16)

where �−1 is the quantile function of the standard normal distribution. For simplicity,
we shall let zα0

= �−1(1 − α0) for the rest of this example.
We shall now determine the power function π(μ|δ1) of this UMP test. By defini-

tion,

π(μ|δ1) = Pr(Rejecting H0|μ) = Pr(Xn ≥ μ0 + zα0
σn−1/2|μ). (9.3.17)

For every value of μ, the random variable Z′ = n1/2(Xn − μ)/σ will have the stan-
dard normal distribution. Therefore, if � denotes the c.d.f. of the standard normal
distribution, then

π(μ|δ1) = Pr

[
Z′ ≥ zα0

+ n1/2(μ0 − μ)

σ

]

= 1 − �

[
zα0

+ n1/2(μ0 − μ)

σ

]
= �

[
n1/2(μ − μ0)

σ
− zα0

]
.

(9.3.18)

The power function π(μ|δ1) is sketched in Fig. 9.6. �

In each of the pairs of hypotheses (9.3.8), (9.3.14), and (9.3.15), the alternative
hypothesis H1 is called a one-sided alternative because the set of possible values of
the parameter under H1 lies entirely on one side of the set of possible values under
the null hypothesis H0. In particular, for the hypotheses (9.3.8), (9.3.14), or (9.3.15),
every possible value of the parameter under H1 is larger than every possible value
under H0.

Figure 9.6 The power func-
tion π(μ|δ1) for the UMP test
of the hypotheses (9.3.15).
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Figure 9.7 The power func-
tion π(μ|δ2) for the UMP test
of the hypotheses (9.3.19).
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Example
9.3.9

One-Sided Alternatives in the Other Direction. Suppose now that instead of testing
the hypotheses (9.3.15) in Example 9.3.8, we are interested in testing the following
hypotheses:

H0: μ ≥ μ0,

H1: μ < μ0.
(9.3.19)

In this case, the hypothesis H1 is again a one-sided alternative, and it can be shown
(see Exercise 12) that there exists a UMP test of the hypotheses (9.3.19) at every
specified level of significance α0 (0 < α0 < 1). By analogy with Eq. (9.3.16), the UMP
test δ2 will reject H0 when Xn ≤ c, where

c = μ0 − �−1(1 − α0)σn−1/2. (9.3.20)

The power function π(μ|δ2) of the test δ2 will be

π(μ|δ2) = Pr(Xn ≤ c|μ) = �

[
n1/2(μ0 − μ)

σ
− �−1(1 − α0)

]
. (9.3.21)

This function is sketched in Fig. 9.7. Indeed, Exercise 12 extends Theorem 9.3.1 to
one-sided hypotheses of the form (9.3.19) in every monotone likelihood ratio family.
In Sec. 9.8, we shall show that for all one-sided cases with monotone likelihood ratio,
the tests of the form given in Theorem 9.3.1 and Exercise 12 are also optimal when
one focuses on the posterior distribution of θ rather than on the power function. �

Two-Sided Alternatives

Suppose, finally, that instead of testing either the hypotheses (9.3.15) in Example 9.3.8
or the hypotheses (9.3.19), we are interested in testing the following hypotheses:

H0: μ = μ0,

H1: μ 	= μ0.
(9.3.22)

In this case, H0 is a simple hypothesis and H1 is a two-sided alternative. Since H0 is a
simple hypothesis, the size of every test procedure δ will simply be equal to the value
π(μ0|δ) of the power function at the point μ = μ0.

Indeed, for each α0 (0 < α0 < 1), there is no UMP test of the hypotheses (9.3.22)
at level of significance α0. For every value of μ such that μ > μ0, the value of π(μ|δ)
will be maximized by the test procedure δ1 in Example 9.3.8, whereas for every value
of μ such that μ < μ0, the value of π(μ|δ) will be maximized by the test procedure δ2 in
Example 9.3.9. It can be shown (see Exercise 19) that δ1 is essentially the unique test
that maximizes π(μ|δ) for μ > μ0. Since δ1 does not maximize π(μ|δ) for μ < μ0, no
test could maximize π(μ|δ) simultaneously for μ > μ0 and μ < μ0. In the next section,
we shall discuss the selection of an appropriate test procedure in this problem.
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Summary

A uniformly most powerful (UMP) level α0 test is a level α0 test whose power function
on the alternative hypothesis is always at least as high as the power function of every
level α0 test. If the family of distributions for the data has a monotone likelihood
ratio in a statistic T , and if the null and alternative hypotheses are both one-sided,
then there exists a UMP level α0 test. In these cases, the UMP level α0 test is either
of the form “reject H0 if T ≥ c” or “reject H0 if T ≤ c.”

Exercises

1. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean λ (λ > 0).
Show that the joint p.f. of X1, . . . , Xn has a monotone
likelihood ratio in the statistic

∑n
i=1 Xi.

2. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with known mean μ and un-
known variance σ 2 (σ 2 > 0). Show that the joint p.d.f. of
X1, . . . , Xn has a monotone likelihood ratio in the statistic∑n

i=1(Xi − μ)2.

3. Suppose that X1, . . . , Xn form a random sample from
the gamma distribution with parameters α and β. Assume
that α is unknown (α > 0) and that β is known. Show that
the joint p.d.f. of X1, . . . , Xn has a monotone likelihood
ratio in the statistic

∏n
i=1 Xi.

4. Suppose that X1, . . . , Xn form a random sample from
the gamma distribution with parameters α and β. Assume
that α is known and that β is unknown (β > 0). Show that
the joint p.d.f. of X1, . . . , Xn has a monotone likelihood
ratio in the statistic −Xn.

5. Suppose that X1, . . . , Xn form a random sample from
a distribution that belongs to an exponential family, as
defined in Exercise 23 of Sec. 7.3, and the p.d.f. or the
p.f. of this distribution is f (x|θ), as given in that exercise.
Suppose also that c(θ) is a strictly increasing function of θ .
Show that the joint p.d.f. or the joint p.f. of X1, . . . , Xn has
a monotone likelihood ratio in the statistic

∑n
i=1 d(Xi).

6. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ]. Show that
the joint p.d.f. of X1, . . . , Xn has a monotone likelihood
ratio in the statistic max{X1, . . . , Xn}.
7. Suppose that X1, . . . , Xn form a random sample from
a distribution involving a parameter θ whose value is un-
known, and suppose that it is desired to test the following
hypotheses:

H0: θ ≤ θ0,

H1: θ > θ0.

Suppose also that the test procedure to be used ignores
the observed values in the sample and, instead, depends
only on an auxiliary randomization in which an unbal-
anced coin is tossed so that a head will be obtained with

probability 0.05, and a tail will be obtained with proba-
bility 0.95. If a head is obtained, then H0 is rejected, and
if a tail is obtained, then H0 is not rejected. Describe the
power function of this randomized test procedure.

8. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with known mean 0 and unknown
variance σ 2, and suppose that it is desired to test the
following hypotheses:

H0: σ 2 ≤ 2,

H1: σ 2 > 2.

Show that there exists a UMP test of these hypotheses at
every level of significance α0 (0 < α0 < 1).

9. Show that the UMP test in Exercise 8 rejects H0 when∑n
i=1 X2

i
≥ c, and determine the value of c when n = 10

and α0 = 0.05.

10. Suppose that X1, . . . , Xn form a random sample from
the Bernoulli distribution with unknown parameter p, and
suppose that it is desired to test the following hypotheses:

H0: p ≤ 1
2 ,

H1: p > 1
2 .

Show that if the sample size is n = 20, then there exists a
nonrandomized UMP test of these hypotheses at the level
of significance α0 = 0.0577 and at the level of significance
α0 = 0.0207.

11. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean λ, and sup-
pose that it is desired to test the following hypotheses:

H0: λ ≤ 1,
H1: λ > 1.

Show that if the sample size is n = 10, then there exists a
nonrandomized UMP test of these hypotheses at the level
of significance α0 = 0.0143.

12. Suppose that X1, . . . , Xn form a random sample from
a distribution that involves a parameter θ whose value is
unknown, and the joint p.d.f. or the joint p.f. fn(x|θ) has a
monotone likelihood ratio in the statistic T = r(X). Let θ0
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be a specified value of θ , and suppose that the following
hypotheses are to be tested:

H0: θ ≥ θ0,

H1: θ < θ0.

Let c be a constant such that Pr(T ≤ c|θ = θ0) = α0. Show
that the test procedure which rejects H0 if T ≤ c is a UMP
test at the level of significance α0.

13. Suppose that four observations are taken at random
from the normal distribution with unknown mean μ and
known variance 1. Suppose also that the following hy-
potheses are to be tested:

H0: μ ≥ 10,

H1: μ < 10.

a. Determine a UMP test at the level of significance
α0 = 0.1.

b. Determine the power of this test when μ = 9.

c. Determine the probability of not rejecting H0 if μ =
11.

14. Suppose that X1, . . . , Xn form a random sample from
the Poisson distribution with unknown mean λ, and sup-
pose that it is desired to test the following hypotheses:

H0: λ ≥ 1,
H1: λ < 1.

Suppose also that the sample size is n = 10. At what levels
of significance α0 in the interval 0 < α0 < 0.03 do there
exist nonrandomized UMP tests?

15. Suppose that X1, . . . , Xn form a random sample from
the exponential distribution with unknown parameter β,
and suppose that it is desired to test the following hypothe-
ses:

H0: β ≥ 1
2 ,

H1: β < 1
2 .

Show that at every level of significance α0 (0 < α0 < 1),
there exists a UMP test that specifies rejecting H0 when
Xn ≥ c, for some constant c.

16. Consider again the conditions of Exercise 15, and sup-
pose that the sample size is n = 10. Determine the value
of the constant c that defines the UMP test at the level of

significance α0 = 0.05. Hint: Use the table of the χ2 distri-
bution.

17. Consider a single observation X from the Cauchy dis-
tribution with unknown location parameter θ . That is, the
p.d.f. of X is

f (x|θ) = 1
π [1 + (x − θ)2]

for −∞ < x < ∞.

Suppose that it is desired to test the following hypotheses:

H0: θ = 0,

H1: θ > 0.

Show that, for every α0 (0 < α0 < 1), there does not exist
a UMP test of these hypotheses at level of significance α0.

18. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance 1. Suppose also that the following hypotheses are
to be tested:

H0: μ ≤ 0,

H1: μ > 0.

Let δ∗ denote the UMP test of these hypotheses at the
level of significance α0 = 0.025, and let π(μ|δ∗) denote the
power function of δ∗.

a. Determine the smallest value of the sample size n for
which π(μ|δ∗) ≥ 0.9 for μ ≥ 0.5.

b. Determine the smallest value of n for which
π(μ|δ∗) ≤ 0.001 for μ ≤ −0.1.

19. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance σ 2. In this problem, you will prove the missing
steps from the proof that there is no UMP level α0 test
for the hypotheses in (9.3.22). Let δ1 be the test procedure
with level α0 defined in Example 9.3.8.

a. Let A be a set of possible values for the random vec-
tor X = (X1 . . . , Xn). Let μ1 	= μ0. Prove that Pr(X ∈
A|μ = μ0) > 0 if and only if Pr(X ∈ A|μ = μ1) > 0.

b. Let δ be a size α0 test for the hypotheses in (9.3.22)
that differs from δ1 in the following sense: There is
a set A for which δ rejects its null hypothesis when
X ∈ A, δ1 does not reject its null hypothesis when X ∈
A, and Pr(X ∈ A|μ = μ0) > 0. Prove that π(μ|δ) <

π(μ|δ1) for all μ > μ0.

� 9.4 Two-Sided Alternatives
When testing a simple null hypothesis against a two-sided alternative (as at the
end of Sec. 9.3), the choice of a test procedure requires a bit more care than in the
one-sided case. This section discusses some of the issues and describes the most
common choices.
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General Form of the Procedure

Example
9.4.1

Egyptian Skulls. In Example 9.1.2, we considered how to compare measurements of
skulls found in Egypt to modern measurements. For example, the average breadth
of a modern-day skull is about 140mm. Suppose that we model the breadths of
skulls from 4000 b.c. as normal random variables with unknown mean μ and known
variance of 26. Unlike Example 9.1.6, suppose now that the researchers have no
theory suggesting that skull breadths should increase over time. Instead, they are
merely interested in whether breadths changed at all. How would they choose a test
of the hypotheses H0 : μ = 140 versus H1 : μ 	= 140? �

In this section, we shall suppose that X = (X1, . . . , Xn) is a random sample from a
normal distribution for which the mean μ is unknown and the variance σ 2 is known,
and that it is desired to test the following hypotheses:

H0: μ = μ0,

H1: μ 	= μ0.
(9.4.1)

In most practical problems, we would assume that both μ and σ 2 were unknown. We
shall address that case in Sec. 9.5.

It was claimed at the end of Sec. 9.3 that there is no UMP test of the hypothe-
ses (9.4.1) at any specified level of significance α0 (0 < α0 < 1). Neither the test pro-
cedure δ1 nor the procedure δ2 defined in Examples 9.3.8 and 9.3.9 is appropriate
for testing the hypotheses (9.4.1), because each of those procedures has high power
function only on one side of two-sided alternative H1 and they each have low power
function on the other side. However, the properties of the procedures δ1 and δ2 given
in Sec. 9.3 and the fact that the sample mean Xn is the M.L.E. of μ suggest that a
reasonable test of the hypotheses (9.4.1) would be to reject H0 if Xn is far from μ0.
In other words, it seems reasonable to use a test procedure δ that rejects H0 if either
Xn ≤ c1 or Xn ≥ c2, where c1 and c2 are two suitably chosen constants, presumably
with c1 < μ0 and c2 > μ0.

If the size of the test is to be α0, then the values of c1 and c2 must be chosen so
as to satisfy the following relation:

Pr(Xn ≤ c1|μ = μ0) + Pr(Xn ≥ c2|μ = μ0) = α0. (9.4.2)

There are an infinite number of pairs of values of c1 and c2 that satisfy Eq. (9.4.2).
When μ = μ0, the random variable n1/2(Xn − μ0)/σ has the standard normal distri-
bution. If, as usual, we let � denote the c.d.f. of the standard normal distribution,
then it follows that Eq. (9.4.2) is equivalent to the following relation:

�

[
n1/2(c1 − μ0)

σ

]
+ 1 − �

[
n1/2(c2 − μ0)

σ

]
= α0. (9.4.3)

Corresponding to every pair of positive numbers α1 and α2 such that α1 + α2 = α0,
there exists a pair of numbers c1 and c2 such that �[n1/2(c1 − μ0)/σ ] = α1 and 1−
�[n1/2(c2 − μ0)/σ ] = α2. Every such pair of values of c1 and c2 will satisfy Eqs. (9.4.2)
and (9.4.3).

For example, suppose that α0 = 0.05. Then, choosing α1 = 0.025 and α2 = 0.025
yields a test procedure δ3, which is defined by the values c1 = μ0 − 1.96σn−1/2 and
c2 = μ0 + 1.96σn−1/2. Also, choosing α1 = 0.01 and α2 = 0.04 yields a test procedure
δ4, which is defined by the values c1 = μ0 − 2.33σn−1/2 and c2 = μ0 + 1.75σn−1/2. The
power functions π(μ|δ3) and π(μ|δ4) of these test procedures δ3 and δ4 are sketched
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Figure 9.8 The power func-
tions of four test procedures.
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in Fig. 9.8, along with the power functions π(μ|δ1) and π(μ|δ2), which had previously
been sketched in Figs. 9.6 and 9.7.

As the values of c1 and c2 in Eq. (9.4.2) or Eq. (9.4.3) are decreased, the power
function π(μ|δ) will become smaller for μ < μ0 and larger for μ > μ0. For α0 =
0.05, the limiting case is obtained by choosing c1 = −∞ and c2 = μ0 + 1.645σn−1/2.
The test procedure defined by these values is just δ1. Similarly, as the values of c1
and c2 in Eq. (9.4.2) or Eq. (9.4.3) are increased, the power function π(μ|δ) will
become larger for μ < μ0 and smaller for μ > μ0. For α0 = 0.05, the limiting case is
obtained by choosing c2 = ∞ and c1 = μ0 − 1.645σn−1/2. The test procedure defined
by these values is just δ2. Something between these two extreme limiting cases seems
appropriate for hypotheses (9.4.1).

Selection of the Test Procedure

For a given sample size n, the values of the constants c1 and c2 in Eq. (9.4.2) should
be chosen so that the size and shape of the power function are appropriate for the
particular problem to be solved. In some problems, it is important not to reject the
null hypothesis unless the data strongly indicate that μ differs greatly from μ0. In
such problems, a small value of α0 should be used. In other problems, not rejecting
the null hypothesis H0 when μ is slightly larger than μ0 is a more serious error than
not rejecting H0 when μ is slightly less than μ0. Then it is better to select a test having
a power function such as π(μ|δ4) in Fig. 9.8 than to select a test having a symmetric
function such as π(μ|δ3).

In general, the choice of a particular test procedure in a given problem should be
based both on the cost of rejecting H0 when μ = μ0 and on the cost, for each possible
value of μ, of not rejecting H0 when μ 	= μ0. Also, when a test is being selected, the
relative likelihoods of different values of μ should be considered. For example, if it
is more likely that μ will be greater than μ0 than that μ will be less than μ0, then it
is better to select a test for which the power function is large when μ > μ0, and not
so large when μ < μ0, than to select one for which these relations are reversed.

Example
9.4.2

Egyptian Skulls. Suppose that, in Example 9.4.1, it is equally important to reject the
null hypothesis that the mean breadth μ equals 140 when μ < 140 as when μ > 140.
Then we should choose a test that rejects H0 when the sample average Xn is either
at most c1 or at least c2 where c1 and c2 are symmetric around 140. Suppose that we
want a test of size α0 = 0.05. There are n = 30 skulls from 4000 b.c., so

c1 = 140 − 1.96(26)1/230−1/2 = 138.18,

c2 = 140 + 1.96(26)1/230−1/2 = 141.82.
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Figure 9.9 The power func-
tions for the level α0 = 0.05
tests in Example 9.4.3 (equal
tailed) and Example 9.4.4
(likelihood ratio). The hori-
zontal line is at height 0.05.
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The observed value of Xn is 131.37 in this case, and we would reject H0 at the level
of significance 0.05. �

In Examples 9.4.1 and 9.4.2, we would probably not wish to assume that the
variance of the skull breadths was known to be 26, but rather we would assume that
both the mean and the variance were unknown. We will see how to handle such a
case in Sec. 9.5.

Other Distributions

The principles introduced above for samples from a normal distribution can be
extended to any random sample. The details of implementation can be more tedious
and less satisfying for other distributions.

Example
9.4.3

Service Times in a Queue. The manager in Example 9.3.2 models service times
X1, . . . , Xn as i.i.d. exponential random variables with parameter θ conditional on θ .
Suppose that she wishes to test the null hypothesis H0 : θ = 1/2 versus the alternative
H1 : θ 	= 1/2. For the one-sided alternative θ > 1/2, we found (in Example 9.3.2) that
the UMP level α0 test was to reject H0 if T = ∑n

i=1 Xi is less than the α0 quantile of
the gamma distribution with parameters n and 1/2. By similar reasoning, the UMP
level α0 test of H0 versus the other one-sided alternative θ < 1/2 would be to reject
H0 if T is greater than the 1 − α0 quantile of the gamma distribution with parameters
n and 1/2. A simple way to construct a level α0 test of H0 : θ = 1/2 versus H1 : θ 	= 1/2
would be to apply the same reasoning that we applied immediately after Eq. (9.4.2).
That is, combine two one-sided tests with levels α1 and α2 where α1 + α2 = α0.

As a specific example, let α1 = α2 = α0/2, and let G−1(.; n, 1/2) be the quantile
function of the gamma distribution with parameters n and 1/2. Then, we reject H0
if T ≤ G−1(α0/2; n, 1/2) or T ≥ G−1(1 − α0/2; n, 1/2). For the case of α0 = 0.05 and
n = 3, the graph of the power function of this test appears in Fig. 9.9 together with
the power function of the likelihood ratio test that will be derived in Example 9.4.4.

�

An alternative test in Example 9.4.3 would be the likelihood ratio test. In Exam-
ple 9.4.3, the likelihood ratio test requires solving some nonlinear equations.

Example
9.4.4

Service Times in a Queue. Instead of the ad hoc two-sided test constructed in Exam-
ple 9.4.3, suppose that the manager decides to find a likelihood ratio test. Suppose
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that
∑n

i=1 Xi = t is observed. The likelihood function is then

fn(x|θ) = θn exp(−tθ), for θ > 0.

The M.L.E. of θ is θ̂ = n/t , so the likelihood ratio statistic from Definition 9.1.11 is

�(x) = (1/2)n exp(−t/2)

(n/t)n exp(−n)
=

(
t

2n

)n

exp(n − t/2). (9.4.4)

The likelihood ratio test rejects H0 if �(x) ≤ c for some constant c. From (9.4.4), we
see that �(x) ≤ c is equivalent to t ≤ c1 or t ≥ c2 where c1 < c2 satisfy(

c1

2n

)n

exp(n − c1/2) =
(

c2

2n

)n

exp(n − c2/2).

In order for the test to have level α0, c1 and c2 must also satisfy

G(c1; n, 1/2) + 1 − G(c2; n, 1/2) = α0,

where G(.; n, 1/2) is the c.d.f. of the gamma distribution with parameters n and 1/2.
Solving these two equations for c1 and c2 would give us the likelihood ratio test. Using
numerical methods, the solution is c1 = 1.425 and c2 = 15.897. The power function of
the likelihood ratio test is plotted in Fig. 9.9 together with the power function of the
equal-tailed test. �

Composite Null Hypothesis

From one point of view, it makes little sense to carry out a test of the hypothe-
ses (9.4.1) in which the null hypothesis H0 specifies a single exact value μ0 for the
parameter μ. This is particularly true if we think of μ as the limit of the averages
of increasing samples of future observations. Since it is inconceivable that μ will be
exactly equal to μ0 in any real problem, we know that the hypothesis H0 cannot be
true. Therefore, H0 should be rejected as soon as it has been formulated.

This criticism is valid when it is interpreted literally. In many problems, however,
the experimenter is interested in testing the null hypothesis H0 that the value of μ

is close to some specified value μ0 against the alternative hypothesis that μ is not
close to μ0. In some of these problems, the simple hypothesis H0 that μ = μ0 can be
used as an idealization or simplification for the purpose of choosing a decision. At
other times, it is worthwhile to use a more realistic composite null hypothesis, which
specifies that μ lies in an explicit interval around the value μ0. We shall now consider
hypotheses of this type.

Example
9.4.5

Testing an Interval Null Hypothesis. Suppose that X1, . . . , Xn form a random sample
from the normal distribution with unknown mean μ and known variance σ 2 = 1, and
suppose that the following hypotheses are to be tested:

H0: 9.9 ≤ μ ≤ 10.1,

H1: μ < 9.9 or μ > 10.1.
(9.4.5)

Since the alternative hypothesis H1 is two-sided, it is again appropriate to use a test
procedure δ that rejects H0 if either Xn ≤ c1 or Xn ≥ c2. We shall determine the values
of c1 and c2 for which the probability of rejecting H0, when either μ = 9.9 or μ = 10.1,
will be 0.05.
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Let π(μ|δ) denote the power function of δ. When μ = 9.9, the random variable
n1/2(Xn − 9.9) has the standard normal distribution. Therefore,

π(9.9|δ) = Pr(Rejecting H0|μ = 9.9)

= Pr(Xn ≤ c1|μ = 9.9) + Pr(Xn ≥ c2|μ = 9.9) (9.4.6)

= �[n1/2(c1 − 9.9)] + 1 − �[n1/2(c2 − 9.9)].

Similarly, when μ = 10.1, the random variable n1/2(Xn − 10.1) has the standard nor-
mal distribution and

π(10.1|δ) = �[n1/2(c1 − 10.1)] + 1 − �[n1/2(c2 − 10.1)]. (9.4.7)

Both π(9.9|δ) and π(10.1|δ) must be made equal to 0.05. Because of the symmetry
of the normal distribution, it follows that if the values of c1 and c2 are chosen
symmetrically with respect to the value 10, then the power function π(μ|δ) will be
symmetric with respect to the point μ = 10. In particular, it will then be true that
π(9.9|δ) = π(10.1|δ).

Accordingly, let c1 = 10 − c and c2 = 10 + c. Then it follows from Eqs. (9.4.6) and
(9.4.7) that

π(9.9|δ) = π(10.1|δ) = �[n1/2(0.1 − c)] + 1 − �[n1/2(0.1 + c)]. (9.4.8)

The value of c must be chosen so that π(9.9|δ) = π(10.1|δ) = 0.05. Therefore, c must
be chosen so that

�[n1/2(0.1 + c)] − �[n1/2(0.1 − c)] = 0.95. (9.4.9)

For each given value of n, the value of c that satisfies Eq. (9.4.9) can be found by
trial and error from a table of the standard normal distribution or using statistical
software.

For example, if n = 16, then c must be chosen so that

�(0.4 + 4c) − �(0.4 − 4c) = 0.95. (9.4.10)

After trying various values of c, we find that Eq. (9.4.10) will be satisfied when
c = 0.527. Hence,

c1 = 10 − 0.527 = 9.473 and c2 = 10 + 0.527 = 10.527.

Thus, when n = 16, the procedure δ rejects H0 when either Xn ≤ 9.437 or Xn ≥
10.527. This procedure has a power function π(μ|δ), which is symmetric with respect
to the point μ = 10 and for which π(9.9|δ) = π(10.1|δ) = 0.05. Furthermore, it is true
that π(μ|δ) < 0.05 for 9.9 < μ < 10.1 and π(μ|δ) > 0.05 for μ < 9.9 or μ > 10.1. The
function π(μ|δ) is sketched in Fig. 9.10. �

Figure 9.10 The power
function π(μ|δ) for a test
of the hypotheses (9.4.5).
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Unbiased Tests

Consider the general problem of testing the following hypotheses:

H0: θ ∈ �0,

H1: θ ∈ �1.

As usual, let π(θ |δ) denote the power function of an arbitrary test procedure δ.

Definition
9.4.1

Unbiased Test. A test procedure δ is said to be unbiased if, for every θ ∈ �0 and
θ ′ ∈ �1,

π(θ |δ) ≤ π(θ ′|δ). (9.4.11)

In words, δ is unbiased if its power function throughout �1 is at least as large as it is
throughout �0.

If one closely examines Fig. 9.9, one sees that for values of θ slightly above 1/2,
the power function of the equal-tailed test dips below 0.05 (the value of the power
function at θ = 1/2). This means that the test is not unbiased. This is typical in cases
where the distribution of the test statistic T is not symmetric but a two-sided test
is created by combining two one-sided tests. It is easy to see that an unbiased test
would need to have a power function with derivative equal to 0 at θ = 1/2; otherwise,
it would dip below 0.05 on one side or the other of θ = 1/2.

In many problems, the power function of every test is differentiable as a function
of θ . In such cases, in order to create an unbiased level α0 test δ of H0 : θ = θ0 versus
H1 : θ 	= θ0, we would need

π(θ0|δ) = α0, and

d

dθ
π(θ |δ)

∣∣∣∣
θ=θ0

= 0. (9.4.12)

Such equations would need to be solved numerically in any real problem. Typically,
researchers don’t think it is worth the trouble to solve such equations just to find an
unbiased test.

Example
9.4.6

Service Times in a Queue. In Example 9.4.4, let T = ∑n
i=1 Xi. If we want an unbiased

test of the form “reject H0 if T ≤ c1 or if T ≥ c2,” the power function will be

π(θ |δ) = G(c1; n, θ) + 1 − G(c2; n, θ),

where G(.; n, θ) is the c.d.f. of T given θ ,

G(x; n, θ) =
∫ x

0

θn

(n − 1)!
tn−1 exp(−tθ)dt,

for t > 0. Eq. (9.4.12) requires that we compute the derivative of G with respect to
θ . The derivative with respect to θ can be passed under the integral, and the result is

∂

∂θ
G(x; n, θ) =

∫ x

0

nθn−1

(n − 1)!
tn−1 exp(−tθ)dt

−
∫ x

0
t

θn

(n − 1)!
tn−1 exp(−tθ)dt.

(9.4.13)

The reader can show (see Exercise 13 in this section) that (9.4.13) can be rewritten as

∂

∂θ
G(x; n, θ) = n

θ
[G(x; n, θ) − G(x; n + 1, θ)] . (9.4.14)
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For α0 = 0.05 and n = 3, the two equations we need to solve for c1 and c2 are

G(c1; 3, 1/2) + 1 − G(c2; 3, 1/2) = 0.05,

3
1/2

[G(x; 3, 1/2) − G(x; 4, 1/2)] = 0.

Solving these two equations numerically gives the same solution as the likelihood
ratio test to the number of significant digits reported in Example 9.4.4. This explains
why the power function of the likelihood ratio test appears not to dip below 0.05
anywhere. �

Intuitively, the notion of an unbiased test sounds appealing. Since the goal of a
test procedure is to reject H0 when θ ∈ �1 and not to reject H0 when θ ∈ �0, it seems
desirable that the probability of rejecting H0 should be at least as large when θ ∈ �1
as it is whenever θ ∈ �0. It can be seen that the test δ for which the power function
is sketched in Fig. 9.10 is an unbiased test of the hypotheses (9.4.5). Also, among the
four tests for which the power functions are sketched in Fig. 9.8, only δ3 is an unbiased
test of the hypotheses (9.4.1). Although it is beyond the scope of this book, one can
show that δ3 is UMP among all unbiased level α0 = 0.05 tests of (9.4.1).

The requirement that a test is to be unbiased can sometimes narrow the selection
of a test procedure. However, unbiased procedures should be sought only under
relatively special circumstances. For example, when testing the hypotheses (9.4.5),
the statistician should use the unbiased test δ represented in Fig. 9.10 only under the
following conditions: He believes that, for every value a > 0, it is just as important
to reject H0 when θ = 10.1 + a as to reject H0 when θ = 9.9 − a, and he also believes
that these two values of θ are equally likely. In practice, the statistician might very
well forego the use of an unbiased test in order to use a biased test that has higher
power in certain regions of �1 that he regards as particularly important or most likely
to contain the true value of θ when H0 is false.

In the remainder of this chapter, we shall consider special testing situations that
arise very often in applied work. In these situations, there do not exist UMP tests.
We shall study the most popular tests in these situations, and we shall show that these
tests are likelihood ratio tests. However, in more advanced courses, it can be shown
that the t tests and F tests derived in Sections 9.5, 9.6, and 9.7 are all UMP among
various classes of unbiased tests of their sizes.

Summary

For the case of testing that the mean of a normal distribution with known variance
equals a specific value against the two-sided alternative, one can construct level α0
tests by combining the rejection regions of two one-sided tests of sizes α1 and α2 such
that α0 = α1 + α2. A popular choice is α1 = α2 = α0/2. In this case, if X1, . . . , Xn form a
random sample from a normal distribution with mean μ and variance σ 2, one can test
H0 : μ = μ0 versus H1 : μ 	= μ0 by rejecting H0 if Xn > μ0 + �−1(1 − α0/2)σ/n1/2 or if
Xn < μ0 − �−1(1 − α0/2)σ/n1/2, where �−1 is the quantile function of the standard
normal distribution. A test is unbiased if its power function is greater at every point
in the alternative hypothesis than at every point in the null hypothesis. The normal
distribution test just described, with α1 = α2 = α0/2, is unbiased.
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Exercises

1. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance 1, and it is desired to test the following hypothe-
ses for a given number μ0:

H0: μ = μ0,

H1: μ 	= μ0.

Consider a test procedure δ such that the hypothesis H0
is rejected if either Xn ≤ c1 or Xn ≥ c2, and let π(μ|δ)
denote the power function of δ. Determine the values of
the constants c1 and c2 such that π(μ0|δ) = 0.10 and the
function π(μ|δ) is symmetric with respect to the point
μ = μ0.

2. Consider again the conditions of Exercise 1, and sup-
pose that

c1 = μ0 − 1.96n−1/2.

Determine the value of c2 such that π(μ0|δ) = 0.10.

3. Consider again the conditions of Exercise 1 and also the
test procedure described in that exercise. Determine the
smallest value of n for which π(μ0|δ) = 0.10 and π(μ0 +
1|δ) = π(μ0 − 1|δ) ≥ 0.95.

4. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and known
variance 1, and it is desired to test the following hypothe-
ses:

H0: 0.1 ≤ μ ≤ 0.2,

H1: μ < 0.1 or μ > 0.2.

Consider a test procedure δ such that the hypothesis H0 is
rejected if either Xn ≤ c1 or Xn ≥ c2, and let π(μ|δ) denote
the power function of δ. Suppose that the sample size is
n = 25. Determine the values of the constants c1 and c2
such that π(0.1|δ) = π(0.2|δ) = 0.07.

5. Consider again the conditions of Exercise 4, and sup-
pose also that n = 25. Determine the values of the con-
stants c1 and c2 such that π(0.1|δ) = 0.02 and π(0.2|δ) =
0.05.

6. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution on the interval [0, θ ], where the
value of θ is unknown, and it is desired to test the following
hypotheses:

H0: θ ≤ 3,
H1: θ > 3.

a. Show that for each level of significance α0 (0 ≤ α0 <

1), there exists a UMP test that specifies that H0
should be rejected if max{X1, . . . , Xn} ≥ c.

b. Determine the value of c for each possible value
of α0.

7. For a given sample size n and a given value of α0, sketch
the power function of the UMP test found in Exercise 6.

8. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution described in Exercise 6, but sup-
pose now that it is desired to test the following hypotheses:

H0: θ ≥ 3,
H1: θ < 3.

a. Show that at each level of significance α0
(0 < α0 < 1), there exists a UMP test that specifies
that H0 should be rejected if max{X1, . . . , Xn} ≤ c.

b. Determine the value of c for each possible value of
α0.

9. For a given sample size n and a given value of α0, sketch
the power function of the UMP test found in Exercise 8.

10. Suppose that X1, . . . , Xn form a random sample from
the uniform distribution described in Exercise 6, but sup-
pose now that it is desired to test the following hypotheses:

H0: θ = 3,
H1: θ 	= 3.

(9.4.15)

Consider a test procedure δ such that the hypothesis H0 is
rejected if either max{X1, . . . , Xn} ≤ c1 or max{X1, . . . ,

Xn} ≥ c2, and let π(θ |δ) denote the power function of δ.

a. Determine the values of the constants c1 and c2 such
that π(3|δ) = 0.05 and δ is unbiased.

b. Prove that the test found in part (a) is UMP of level
0.05 for testing the hypotheses in (9.4.15). Hint: Com-
pare this test to the UMP tests of level α0 = 0.05 in
Exercises 6 and 8.

c. Determine the values of the constants c1 and c2 such
that π(3|δ) = 0.05 and δ is unbiased.

11. Consider again the conditions of Exercise 1. De-
termine the values of the constants c1 and c2 such that
π(μ0|δ) = 0.10 and δ is unbiased.

12. Let X have the exponential distribution with param-
eter β. Suppose that we wish to test the hypotheses

H0: β = 1,
H1: β 	= 1.

We shall use a test procedure that rejects H0 if either
X ≤ c1 or X ≥ c2.

a. Find the equation that must be satisfied by c1 and
c2 in order for the test procedure to have level of
significance α0.

b. Find a pair of finite, nonzero values (c1, c2) such that
the test procedure has level of significance α0 = 0.1.

13. Prove Eq. (9.4.14) in Example 9.4.6.Hint: Both parts
of the integrand in Eq. (9.4.13) differ from gamma distri-
bution p.d.f.’s by some factor that does not depend on t .
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9.5 The t Test
We begin the treatment of several special cases of testing hypotheses about param-
eters of a normal distribution. In this section, we handle the case in which both the
mean and the variance are unknown. We develop tests for hypotheses concerning
the mean. These tests will be based on the t distribution.

Testing Hypotheses about the Mean of a Normal Distribution
When the Variance Is Unknown

Example
9.5.1

Nursing Homes in New Mexico. In Example 8.6.3, we described a study of medical
in-patient days in nursing homes in New Mexico. As in that example, we shall model
the numbers of medical in-patient days as a random sample of n = 18 normal random
variables with unknown mean μ and unknown variance σ 2. Suppose that we are
interested in testing the hypotheses H0 : μ ≥ 200 versus H1 : μ < 200. What test should
we use, and what are its properties? �

In this section we shall consider the problem of testing hypotheses about the
mean of a normal distribution when both the mean and the variance are unknown.
Specifically, we shall suppose that the random variables X1, . . . , Xn form a random
sample from a normal distribution for which the mean μ and the variance σ 2 are
unknown, and we shall consider testing the following hypotheses:

H0: μ ≤ μ0,

H1: μ > μ0.
(9.5.1)

The parameter space � in this problem comprises every two-dimensional vector
(μ, σ 2), where −∞ < μ < ∞ and σ 2 > 0. The null hypothesis H0 specifies that the
vector (μ, σ 2) lies in the subset �0 of �, comprising all vectors for which μ ≤ μ0 and
σ 2 > 0, as illustrated in Fig. 9.11. The alternative hypothesis H1 specifies that (μ, σ 2)

belongs to the subset �1 of �, comprising all the vectors that do not belong to �0.
In Example 9.1.17 on page 543, we showed how to derive a test of the hy-

potheses (9.5.1) from a one-sided confidence interval for μ. To be specific, define
Xn = ∑n

i=1 Xi/n, σ ′ = (
∑n

i=1(Xi − Xn)
2/[n − 1])1/2, and

U = n1/2 Xn − μ0

σ ′ . (9.5.2)

The test rejects H0 if U ≥ c. When μ = μ0, it follows from Theorem 8.4.2 that the
distribution of the statistic U defined in Eq. (9.5.2) is the t distribution with n − 1

Figure 9.11 The subsets
�0 and �1 of the parameter
space � for the hypothe-
ses (9.5.1).
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degrees of freedom, regardless of the value of σ 2. For this reason, tests based on U

are called t tests. When we want to test
H0: μ ≥ μ0,

H1: μ < μ0,
(9.5.3)

the test is of the form “reject H0 if U ≤ c.”

Example
9.5.2

Nursing Homes in New Mexico. In Example 9.5.1, if we desired a level α0 test, we
could use the t test that rejects H0 if the statistic U in Eq. (9.5.2) is at most equal to
the constant c chosen to make the size of the test equal to α0. �

Properties of the t Tests

Theorem 9.5.1 gives some useful properties of t tests.

Theorem
9.5.1

Level and Unbiasedness of t Tests. Let X = (X1, . . . , Xn) be a random sample from the
normal distribution with mean μ and variance σ 2, let U be the statistic in Eq. (9.5.2),
and let c be the 1 − α0 quantile of the t distribution with n − 1 degrees of freedom.
Let δ be the test that rejects H0 in (9.5.1) if U ≥ c. The power function π(μ, σ 2|δ) has
the following properties:

i. π(μ, σ 2|δ) = α0 when μ = μ0,

ii. π(μ, σ 2|δ) < α0 when μ < μ0,

iii. π(μ, σ 2|δ) > α0 when μ > μ0,

iv. π(μ, σ 2|δ) → 0 as μ → −∞,

v. π(μ, σ 2|δ) → 1 as μ → ∞.

Furthermore, the test δ has size α0 and is unbiased.

Proof If μ = μ0, then U has the t distribution with n − 1 degrees of freedom. Hence,

π(μ0, σ 2|δ) = Pr(U ≥ c|μ0, σ 2) = α0.

This proves (i) above. For (ii) and (iii), define

U∗ = n1/2(Xn − μ)

σ ′ and W = n1/2(μ0 − μ)

σ ′ .

Then U = U∗ − W . First, assume that μ < μ0 so that W > 0. It follows that

π(μ, σ 2|δ) = Pr(U ≥ c|μ, σ 2) = Pr(U∗ − W ≥ c|μ, σ 2)

= Pr(U∗ ≥ c + W |μ, σ 2) < Pr(U∗ ≥ c|μ, σ 2). (9.5.4)

Since U∗ has the t distribution with n − 1 degrees of freedom, the last probability
in (9.5.4) is α0. This proves (ii). For (iii), let μ > μ0 so that W < 0. The less-than in
(9.5.4) becomes a greater-than, and (iii) is proven.

That the size of the test is α0 is immediate from parts (i) and (ii). That the test is
unbiased is immediate from parts (i) and (iii).

The proofs of (iv) and (v) are more difficult and will not be given here in detail.
Intuitively, if μ is very large, then W in Eq. (9.5.4) will tend to be very negative, and
the probability will be close to 1 that U∗ ≥ c + W . Similarly, if μ is very much less
than 0, then W will tend to be very positive, and the chance of U∗ ≥ c + W will be
close to 0.

For the hypotheses of Eq. (9.5.3), very similar properties hold.
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Corollary
9.5.1

t Tests for Hypotheses of Eq. (9.5.3). Let X = (X1, . . . , Xn) be a random sample
from the normal distribution with mean μ and variance σ 2, let U be the statistic
in Eq. (9.5.2), and let c be the α0 quantile of the t distribution with n − 1 degrees
of freedom. Let δ be the test that rejects H0 in (9.5.3) if U ≤ c. The power function
π(μ, σ 2|δ) has the following properties:

i. π(μ, σ 2|δ) = α0 when μ = μ0,

ii. π(μ, σ 2|δ) > α0 when μ < μ0,

iii. π(μ, σ 2|δ) < α0 when μ > μ0,

iv. π(μ, σ 2|δ) → 1 as μ → −∞,

v. π(μ, σ 2|δ) → 0 as μ → ∞.

Furthermore, the test δ has size α0 and is unbiased.

Example
9.5.3

Nursing Homes in New Mexico. In Examples 9.5.1 and 9.5.2, suppose that we desire
a test with level of significance α0 = 0.1. Then we reject H0 if U ≤ c where c is the
0.1 quantile of the t distribution with 17 degrees of freedom, namely, −1.333. Using
the data from Example 8.6.3, we calculate the observed value of X18 = 182.17 and
σ ′ = 72.22. The observed value of U is then (17)1/2(182.17 − 200)/72.22 = −1.018.
We would not reject H0 : μ ≥ 200 at level of significance 0.1, because the observed
value of U is greater than −1.333. �

p-Values for t Tests The p-value from the observed data and a specific test is the
smallest α0 such that we would reject the null hypothesis at level of significance α0. For
the t tests that we have just discussed, it is straightforward to compute the p-values.

Theorem
9.5.2

p-Values for t Tests. Suppose that we are testing either the hypotheses in Eq. (9.5.1)
or the hypotheses in Eq. (9.5.3). Let u be the observed value of the statistic U in
Eq. (9.5.2), and let Tn−1(.) be the c.d.f. of the t distribution with n − 1 degrees of
freedom. Then the p-value for the hypotheses in Eq. (9.5.1) is 1 − Tn−1(u) and the
p-value for the hypotheses in Eq. (9.5.3) is Tn−1(u).

Proof Let T −1
n−1(

.) stand for the quantile function of the t distribution with n − 1
degrees of freedom. This is the inverse of the strictly increasing function Tn−1. We
would reject the hypotheses in Eq. (9.5.1) at level α0 if and only if u ≥ T −1

n−1(1 − α0),
which is equivalent to Tn−1(u) ≥ 1 − α0, which is equivalent to α0 ≥ 1 − Tn−1(u).
Hence, the smallest level α0 at which we could reject H0 is 1 − Tn−1(u). Similarly,
we would reject the hypotheses in Eq. (9.5.3) if and only if u ≤ T −1

n−1(α0), which is
equivalent to α0 ≥ Tn−1(u).

Example
9.5.4

Lengths of Fibers. Suppose that the lengths in millimeters of metal fibers produced by
a certain process have the normal distribution with unknown mean μ and unknown
variance σ 2, and the following hypotheses are to be tested:

H0: μ ≤ 5.2,

H1: μ > 5.2.
(9.5.5)

Suppose that the lengths of 15 fibers selected at random are measured, and it is found
that the sample mean X15 is 5.4 and σ ′ = 0.4226. Based on these measurements, we
shall carry out a t test at the level of significance α0 = 0.05.

Since n = 15 and μ0 = 5.2, the statistic U defined by Eq. (9.5.2) will have the t

distribution with 14 degrees of freedom when μ = 5.2. It is found in the table of the
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t distribution that T −1
14 (0.95) = 1.761. Hence, the null hypothesis H0 will be rejected

if U > 1.761. Since the numerical value of U calculated from Eq. (9.5.2) is 1.833, H0
would be rejected at level 0.05.

With observed value u = 1.833 for the statistic U and n = 15, we can compute the
p-value for the hypotheses (9.5.1) using computer software that includes the c.d.f. of
various t distributions. In particular, we find 1 − T14(1.833) = 0.0441. �

The Complete Power Function For all values of μ, the power function of a t test
can be determined if we know the distribution of U defined in Eq. (9.5.2). We can
rewrite U as

U = n1/2(Xn − μ0)/σ

σ ′/σ
. (9.5.6)

The numerator of the right side in Eq. (9.5.6) has the normal distribution with mean
n1/2(μ − μ0)/σ and variance 1. The denominator is the square-root of a χ2 random
variable divided by its degrees of freedom, n − 1. Were it not for the nonzero mean,
the ratio would have the t distribution with n − 1 degrees of freedom as we have
already shown. When the mean of the numerator is not 0, U has a noncentral t

distribution.

Definition
9.5.1

Noncentral t Distributions. Let Y and W be independent random variables with W

having the normal distribution with mean ψ and variance 1 and Y having the χ2

distribution with m degrees of freedom. Then the distribution of

X = W(
Y

m

)1/2
,

is called the noncentral t distribution with m degrees of freedom and noncentrality
parameter ψ . We shall let Tm(t |ψ) denote the c.d.f. of this distribution. That is,
Tm(t |ψ) = Pr(X ≤ t).

It should be obvious that the noncentral t distribution with m degrees of free-
dom and noncentrality parameter ψ = 0 is also the t distribution with m degrees of
freedom. The following result is also immediate from Definition 9.5.1.

Theorem
9.5.3

Let X1, . . . , Xn be a random sample from the normal distribution with mean μ and
variance σ 2. The distribution of the statistic U in Eq. (9.5.2) is the noncentral t

distribution with n − 1degrees of freedom and noncentrality parameter ψ = n1/2(μ −
μ0)/σ . Let δ be the test that rejects H0 : μ ≤ μ0 when U ≥ c. Then the power function
of δ is π(μ, σ 2|δ) = 1 − Tn−1(c|ψ). Let δ′ be the test that rejects H0 : μ ≥ μ0 when
U ≤ c. Then the power function of δ′ is π(μ, σ 2|δ′) = Tn−1(c|ψ).

In Exercise 11, you can prove that 1 − Tm(t |ψ) = Tm(−t | − ψ). There are computer
programs to calculate the c.d.f.’s of noncentral t distributions, and some statistical
software packages include such programs. Figure 9.12 plots the power functions of
level 0.05 and level 0.01 t tests for various degrees of freedom and various values
of the noncentrality parameter. The horizontal axis is labeled |ψ | because the same
graphs can be used for both types of one-sided hypotheses. The next example illus-
trates how to use Fig. 9.12 to approximate the power function.

Example
9.5.5

Lengths of Fibers. In Example 9.5.4, we tested the hypotheses (9.5.5) at level 0.05.
Suppose that we are interested in the power of our test when μ is not equal to 5.2. In
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Figure 9.12 The power
functions on the alternative
of one-sided level 0.05
and level 0.01 t tests with
various degrees of freedom
for various values of the
noncentrality parameter ψ .
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particular, suppose that we are interested in the power when μ = 5.2 + σ/2, one-half
standard deviation above 5.2. Then the noncentrality parameter is

ψ = 151/2
(

5.2 + σ/2 − 5.2
σ

)
= 1.936.

There is no curve for 14 degrees of freedom in Fig. 9.12; however, there is not much
difference between the curves for 10 and 60 degrees of freedom, so we can assume
that our answer is somewhere between those two. If we look at the level 0.05 plot in
Fig. 9.12 and move up from 1.936 (about 2) on the horizontal axis until we get a little
above the curve for degrees of freedom equal to 10, we find that the power is about
0.6. (The actual power is 0.578.) �

Note: Power is a Function of the Noncentrality Parameter. In Example 9.5.5, we
cannot answer a question like “What is the power of a level 0.05 test when μ = 5.5?”
The reason is that the power is a function of both μ and σ through the noncentrality
parameter. (See Exercise 6.) For each possible σ and μ = 5.5, the noncentrality
parameter is ψ = 151/2 × 0.3/σ , which varies from 0 to ∞ depending on σ . This is
why, whenever we want a numerical value for the power of a t test, we need either
to specify both μ and σ or to specify how far μ is from μ0 in multiples of σ .

Choosing a Sample Size It is possible to use the power function of a test to help
determine what would be an appropriate sample size to observe.

Example
9.5.6

Lengths of Fibers. In Example 9.5.5, we found that the power of the test was 0.578
when μ = 5.2 + σ/2. Suppose that we want the power to be close to 0.8, when
μ = 5.2 + σ/2. It will take more than n = 15 observations to achieve this. In Fig. 9.12,
we can see what size of noncentrality parameter ψ that we need in order for the
power to reach 0.8. For degrees of freedom between 10 and 60, we need ψ to be
about 2.5. But ψ = n1/2/2 when μ = 5.2 + σ/2. So we need n = 25 approximately.
Precise calculation shows that, with n = 25, the power of the level 0.05 test is 0.7834
when μ = 5.2 + σ/2. With n = 26, the power is 0.7981, and with n = 27 the power is
0.8118. �

The Paired t Test

In many experiments, the same variable is measured under two different conditions
on the same experimental unit, and we are interested in whether the mean value is
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Figure 9.13 Plot of loga-
rithms of head injury mea-
sures for dummies on driver’s
side and passenger’s side. The
line indicates where the two
measures are equal.
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greater in one condition than in the other. In such cases, it is common to subtract
the two measurements and treat the differences as a random sample from a normal
distribution. We can then test hypotheses concerning the mean of the differences.

Example
9.5.7

Crash Test Dummies. The National Transportation Safety Board collects data from
crash tests concerning the amount and location of damage on dummies placed in
the tested cars. In one series of tests, one dummy was placed in the driver’s seat
and another was placed in the front passenger’s seat of each car. One variable
measured was the amount of injury to the head for each dummy. Figure 9.13 shows
a plot of the pairs of logarithms of head injury measures for dummies in the two
different seats. Among other things, interest lies in whether and/or to what extent
the amount of head injury differs between the driver’s seat and the passenger’s seat.
Let X1, . . . , Xn be the differences between the logarithms of head injury measures
for driver’s side and passenger’s side. We can model X1, . . . , Xn as a random sample
from a normal distribution with mean μ and variance σ 2. Suppose that we wish to
test the null hypothesis H0 : μ ≤ 0 against the alternative H1 : μ > 0 at level α0 = 0.01.
There are n = 164 cars represented in Fig. 9.13. The test would be to reject H0 if
U ≥ T −1

163(0.99) = 2.35.
The average of the differences of the coordinates in Fig. 9.13 is xn = 0.2199. The

value of σ ′ is 0.5342. The statistic U is then 5.271. This is larger than 2.35, and the null
hypothesis would be rejected at level 0.01. Indeed, the p-value is less than 1.0 × 10−6.

Suppose also that we are interested in the power function under H1 of the level
0.01 test. Suppose that the mean difference between driver’s side and passenger’s side
logarithm of head injury is σ/4. Then the noncentrality parameter is (164)1/2/4 = 3.20.
In the right panel of Fig. 9.12, it appears that the power is just about 0.8. (In fact, it
is 0.802.) �

Testing with a Two-Sided Alternative

Example
9.5.8

Egyptian Skulls. In Examples 9.4.1 and 9.4.2, we modeled the breadths of skulls from
4000 b.c. as a random sample of size n = 30 from a normal distribution with unknown
mean μ and known variance. We shall now generalize that model to allow the more
realisitc assumption that the variance σ 2 is unknown. Suppose that we wish to test
the null hypothesis H0 : μ = 140 versus the alternative hypothesis H1 : μ 	= 140. We
can still calculate the statistic U in Eq. (9.5.2), but now it would make sense to reject
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H0 if either U ≤ c1 or U ≥ c2 for suitably chosen numbers c1 and c2. How should we
choose c1 and c2, and what are the properties of the resulting test? �

As before, assume that X = (X1, . . . , Xn) is a random sample from a normal
distribution for which both the mean μ and the variance σ 2 are unknown. Suppose
now that the following hypotheses are to be tested:

H0: μ = μ0,

H1: μ 	= μ0.
(9.5.7)

Here, the alternative hypothesis H1 is two-sided.
In Example 9.1.15, we derived a level α0 test of the hypotheses (9.5.7) from the

confidence interval that was developed in Sec. 8.5. That test has the form “reject H0
if |U | ≥ T −1

n−1(1 − α0/2),” where T −1
n−1 is the quantile function of the t distribution with

n − 1 degrees of freedom and U is defined in Eq. (9.5.2).

Example
9.5.9

Egyptian Skulls. In Example 9.5.8, suppose that we want a level α0 = 0.05 test of
H0 : μ = 140 versus H1 : μ 	= 140. If we use the test described above (derived in
Example 9.1.15), then the two numbers c1 and c2 will be of opposite signs and equal
in magnitude. Specifically, c1 = −T −1

29 (0.975) = −2.045 and c2 = 2.045. The observed
value of X30 is 131.37, and the observed value of σ ′ is 5.129. The observed value u of
the statistic U is u = (30)1/2(131.37 − 140)/5.129 = −9.219. This is less than −2.045,
so we would reject H0 at level 0.05. �

Example
9.5.10

Lengths of Fibers. We shall consider again the problem discussed in Example 9.5.4, but
we shall suppose now that, instead of the hypotheses (9.5.5), the following hypotheses
are to be tested:

H0: μ = 5.2,

H1: μ 	= 5.2.
(9.5.8)

We shall again assume that the lengths of 15 fibers are measured, and the value of U

calculated from the observed values is 1.833. We shall test the hypotheses (9.5.8) at
the level of significance α0 = 0.05.

Since α0 = 0.05, our critical value will be the 1 − 0.05/2 = 0.975 quantile of the t

distribution with 14 degrees of freedom. From the table of t distributions in this book,
we find T −1

14 (0.975) = 2.145. So the t test specifies rejecting H0 if either U ≤ −2.145
or U ≥ 2.145. Since U = 1.833, the hypothesis H0 would not be rejected. �

The numerical values in Examples 9.5.4 and 9.5.10 emphasize the importance
of deciding whether the appropriate alternative hypothesis in a given problem is
one-sided or two-sided. When the hypotheses (9.5.5) were tested at the level of signif-
icance 0.05, the hypothesis H0 that μ ≤ 5.2 was rejected. When the hypotheses (9.5.8)
were tested at the same level of significance, and the same data were used, the hy-
pothesis H0 that μ = 5.2 was not rejected.

Power Functions of Two-Sided Tests The power function of the test δ that rejects
H0 : μ = μ0 when |U | ≥ c, where c = T −1

n−1(1 − α0/2), can be found by using the non-
central t distribution. If μ 	= μ0, then U has the noncentral t distribution with n − 1
degrees of freedom and noncentrality parameter ψ = n1/2(μ − μ0)/σ , just as it did
when we tested one-sided hypotheses. The power function of δ is then

π(μ, σ 2|δ) = Tn−1(−c|ψ) + 1 − Tn−1(c|ψ).
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Figure 9.14 The power
functions of two-sided level
0.05 and level 0.01 t tests with
various degrees of freedom
for various values of the
noncentrality parameter ψ .
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Figure 9.14 plots these power functions for various degrees of freedom and noncen-
trality parameters. We could use Fig. 9.14 to find the power of the test in Exam-
ple 9.5.10 when μ = 5.2 + σ/2, that is, when ψ = 1.936. It appears to be about 0.45.
(The actual power is 0.438.)

Theorem
9.5.4

p-Values for Two-Sided t Tests. Suppose that we are testing the hypotheses in Eq.
(9.5.7). Let u be the observed value of the statistic U , and let Tn−1(.) be the c.d.f. of
the t distribution with n − 1 degrees of freedom. Then the p-value is 2[1 − Tn−1(|u|)].

Proof Let T −1
n−1(

.) stand for the quantile function of the t distribution with n − 1
degrees of freedom. We would reject the hypotheses in Eq. (9.5.7) at level α0 if
and only if |u| ≥ T −1

n−1(1 − α0/2), which is equivalent to Tn−1(|u|) ≥ 1 − α0/2, which
is equivalent to α0 ≥ 2[1 − Tn−1(|u|)]. Hence, the smallest level α0 at which we could
reject H0 is 2[1 − Tn−1(|u|)].

Example
9.5.11

Lengths of Fibers. In Example 9.5.10, the p-value is 2[1 − T14(1.833)] = 0.0882. Note
that this is twice the p-value when the hypotheses were (9.5.1). �

For t tests, if the p-value for testing hypotheses (9.5.1) or (9.5.3) is p, then the p-value
for hypotheses (9.5.7) is the smaller of 2p and 2(1 − p).

The t Test as a Likelihood Ratio Test

We introduced likelihood ratio tests in Sec. 9.1. We can compute such tests for the
hypotheses of this section.

Example
9.5.12

Likelihood Ratio Test of One-Sided Hypotheses about the Mean of a Normal Distribu-
tion. Consider the hypotheses (9.5.1). After the values x1, . . . , xn in the random
sample have been observed, the likelihood function is

fn(x|μ, σ 2) = 1
(2πσ 2)n/2

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]
. (9.5.9)

In this case, �0 = {(μ, σ 2) : μ ≤ μ0} and �1 = {(μ, σ 2) : μ > μ0}. The likelihood ratio
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statistic is

�(x) = sup{(μ,σ 2):μ>μ0} fn(x|μ, σ 2)

sup(μ,σ 2) fn(x|μ, σ 2)
. (9.5.10)

We shall now derive an explicit form for the likelihood ratio test based on
(9.5.10). As in Sec. 7.5, we shall let μ̂ and σ̂ 2 denote the M.L.E.’s of μ and σ 2 when it
is known only that the point (μ, σ 2) belongs to the parameter space �. It was shown
in Example 7.5.6 that

μ̂ = xn and σ̂ 2 = 1
n

n∑
i=1

(xi − xn)
2.

It follows that the denominator of �(x) equals

sup
(μ,σ 2)

fn(x|μ, σ 2) = 1
(2πσ̂ 2)n/2

exp
(

−n

2

)
. (9.5.11)

Similarly, we shall let μ̂0 and σ̂ 2
0 denote the M.L.E.’s of μ and σ 2 when the point

(μ, σ 2) is constrained to lie in the subset �0. Suppose first that the observed sample
values are such that xn ≤ μ0. Then the point (μ̂, σ̂ 2) will lie in �0 so that μ̂0 = μ̂ and
σ̂ 2

0 = σ̂ 2 and the numerator of �(x) also equals (9.5.11). In this case, �(x) = 1.
Next, suppose that the observed sample values are such that xn > μ0. Then the

point (μ̂, σ̂ 2) does not lie in �0. In this case, it can be shown that fn(x|μ, σ 2) attains its
maximum value among all points (μ, σ 2) ∈ �0 if μ is chosen to be as close as possible
to xn. The value of μ closest to xn among all points in the subset �0 is μ = μ0. Hence,
μ̂0 = μ0. In turn, it can be shown, as in Example 7.5.6, that the M.L.E. of σ 2 will be

σ̂ 2
0 = 1

n

n∑
i=1

(xi − μ̂0)
2 = 1

n

n∑
i=1

(xi − μ0)
2.

In this case, the numerator of �(x) is then

sup
{(μ,σ 2):μ>μ0}

fn(x|μ, σ 2) = 1

(2πσ̂ 2
0 )n/2

exp
(

−n

2

)
. (9.5.12)

Taking the ratio of (9.5.12) to (9.5.11), we find that

�(x) =

⎧⎪⎨⎪⎩
(

σ̂ 2

σ̂ 2
0

)n/2

if xn > μ0,

1 otherwise.

(9.5.13)

Next, use the relation
n∑

i=1

(xi − μ0)
2 =

n∑
i=1

(xi − xn)
2 + n(xn − μ0)

2

to write the top branch of (9.5.13) as[
1 + n(xn − μ0)

2∑n
i=1(xi − xn)

2

]−n/2

. (9.5.14)

If u is the observed value of the statistic U in Eq. (9.5.2), then one can easily check
that

n(xn − μ0)
2∑n

i=1(xi − xn)
2

= u2

n − 1
.
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It follows that �(x) is a nonincreasing function of u. Hence, for k < 1, �(x) ≤ k if and
only if u ≥ c, where

c =
([

1
k2/n

− 1
]

(n − 1)
)1/2

.

It follows that the likelihood ratio test is a t test. �

It is not difficult to adapt the argument in Example 9.5.12 to find the likelihood
ratio tests for hypotheses (9.5.3) and (9.5.7). (See Exercises 17 and 18, for example.)

Summary

When X1, . . . , Xn form a random sample from the normal distribution with unknown
mean μ and unknown variance σ 2, we can test hypotheses about μ by using the fact
that n1/2(Xn − μ)/σ ′ has the t distribution with n − 1 degrees of freedom. Let T −1

n−1
denote the quantile function of the t distribution with n − 1 degrees of freedom.
Then, to test H0 : μ ≤ μ0 versus H1 : μ > 0 at level α0, for instance, we reject H0 if
n1/2(Xn − μ0)/σ

′ > T −1
n−1(1 − α0). To test H0 : μ = μ0 versus H1 : μ 	= μ0, reject H0 if

|n1/2(Xn − μ0)/σ
′| ≥ T −1

n−1(1 − α0/2). The power functions of each of these tests can
be written in terms of the c.d.f. of a noncentral t distribution with n − 1 degrees of
freedom and noncentrality parameter ψ = n1/2(μ − μ0)/σ .

Exercises

1. Use the data in Example 8.5.4, comprising a sample of
n = 10 lactic acid measurements in cheese. Assume, as we
did there, that the lactic acid measurements are a random
sample from the normal distribution with unknown mean
μ and unknown variance σ 2. Suppose that we wish to test
the following hypotheses:

H0: μ ≤ 1.2,

H1: μ > 1.2.

a. Perform the level α0 = 0.05 test of these hypotheses.

b. Compute the p-value.

2. Suppose that nine observations are selected at random
from the normal distribution with unknown mean μ and
unknown variance σ 2, and for these nine observations it
is found that Xn = 22 and

∑n
i=1(Xi − Xn)

2 = 72.

a. Carry out a test of the following hypotheses at the
level of significance 0.05:

H0: μ ≤ 20,

H1: μ > 20.

b. Carry out a test of the following hypotheses at the
level of significance 0.05 by using the two-sided t test:

H0: μ = 20,

H1: μ 	= 20.

c. From the data, construct the observed confidence
interval for μ with confidence coefficient 0.95.

3. The manufacturer of a certain type of automobile
claims that under typical urban driving conditions the au-
tomobile will travel on average at least 20 miles per gallon
of gasoline. The owner of this type of automobile notes
the mileages that she has obtained in her own urban driv-
ing when she fills her automobile’s tank with gasoline on
nine different occasions. She finds that the results, in miles
per gallon, are as follows: 15.6, 18.6, 18.3, 20.1, 21.5, 18.4,
19.1, 20.4, and 19.0. Test the manufacturer’s claim by car-
rying out a test at the level of significance α0 = 0.05. List
carefully the assumptions you make.

4. Suppose that a random sample of eight observations
X1, . . . , X8 is taken from the normal distribution with
unknown mean μ and unknown variance σ 2, and it is
desired to test the following hypotheses:

H0: μ = 0,

H1: μ 	= 0.

Suppose also that the sample data are such that
∑8

i=1 Xi =
−11.2 and

∑8
i=1 X2

i
= 43.7. If a symmetric t test is per-

formed at the level of significance 0.10 so that each tail
of the critical region has probability 0.05, should the hy-
pothesis H0 be rejected or not?
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5. Consider again the conditions of Exercise 4, and sup-
pose again that a t test is to be performed at the level of
significance 0.10. Suppose now, however, that the t test
is not to be symmetric and the hypothesis H0 is to be re-
jected if either U ≤ c1 or U ≥ c2, where Pr(U ≤ c1) = 0.01
and Pr(U ≥ c2) = 0.09. For the sample data specified in Ex-
ercise 4, should H0 be rejected or not?

6. Suppose that the variables X1, . . . , Xn form a random
sample from the normal distribution with unknown mean
μ and unknown variance σ 2, and a t test at a given level
of significance α0 is to be carried out to test the following
hypotheses:

H0: μ ≤ μ0,

H1: μ > μ0.

Let π(μ, σ 2|δ) denote the power function of this t test,
and assume that (μ1, σ 2

1) and (μ2, σ 2
2) are values of the

parameters such that

μ1 − μ0

σ1
= μ2 − μ0

σ2
.

Show that π(μ1, σ 2
1 |δ) = π(μ2, σ 2

2 |δ).
7. Consider the normal distribution with unknown mean
μ and unknown variance σ 2, and suppose that it is desired
to test the following hypotheses:

H0: μ ≤ μ0,

H1: μ > μ0.

Suppose that it is possible to observe only a single value of
X from this distribution, but that an independent random
sample of n observations Y1, . . . , Yn is available from the
normal distribution with known mean 0 and the same
variance σ 2 as for X. Show how to carry out a test of the
hypotheses H0 and H1 based on the t distribution with n

degrees of freedom.

8. Suppose that the variables X1, . . . , Xn form a random
sample from the normal distribution with unknown mean
μ and unknown variance σ 2. Let σ 2

0 be a given positive
number, and suppose that it is desired to test the following
hypotheses at a specified level of significance α0 (0 < α0 <

1):

H0: σ 2 ≤ σ 2
0,

H1: σ 2 > σ 2
0.

Let S2
n

= ∑n
i=1(Xi − Xn)

2, and suppose that the test pro-
cedure to be used specifies that H0 should be rejected if
S2

n
/σ 2

0 ≥ c. Also, let π(μ, σ 2|δ) denote the power func-
tion of this procedure. Explain how to choose the con-
stant c so that, regardless of the value of μ, the follow-
ing requirements are satisfied: π(μ, σ 2|δ) < α0 if σ 2 < σ 2

0,
π(μ, σ 2|δ) = α0 if σ 2 = σ 2

0, and π(μ, σ 2|δ) > α0 if σ 2 > σ 2
0.

9. Suppose that a random sample of 10 observations
X1, . . . , X10 is taken from the normal distribution with

unknown mean μ and unknown variance σ 2, and it is de-
sired to test the following hypotheses:

H0: σ 2 ≤ 4,

H1: σ 2 > 4.

Suppose that a test of the form described in Exercise 8 is
to be carried out at the level of significance α0 = 0.05. If
the observed value of S2

n
is 60, should the hypothesis H0

be rejected or not?

10. Suppose again, as in Exercise 9, that a random sample
of 10 observations is taken from the normal distribution
with unknown mean μ and unknown variance σ 2, but sup-
pose now that the following hypotheses are to be tested at
the level of significance 0.05:

H0: σ 2 = 4,

H1: σ 2 	= 4.

Suppose that the null hypothesis H0 is to be rejected if
either S2

n
≤ c1 or S2

n
≥ c2, where the constants c1 and c2 are

to be chosen so that, when the hypothesis H0 is true,

Pr(S2
n

≤ c1) = Pr(S2
n

≥ c2) = 0.025.

Determine the values of c1 and c2.

11. Suppose that U1 has the noncentral t distribution with
m degrees of freedom and noncentrality parameter ψ , and
suppose that U2 has the noncentral t distribution with
m degrees of freedom and noncentrality parameter −ψ .
Prove that Pr(U1 ≥ c) = Pr(U2 ≤ −c).

12. Suppose that a random sample X1, . . . , Xn is to be
taken from the normal distribution with unknown mean
μ and unknown variance σ 2, and the following hypotheses
are to be tested:

H0: μ ≤ 3,
H1: μ > 3.

Suppose also that the sample size n is 17, and it is found
from the observed values in the sample that Xn = 3.2 and
(1/n)

∑n
i=1(Xi − Xn)

2 = 0.09. Calculate the value of the
statistic U , and find the corresponding p-value.

13. Consider again the conditions of Exercise 12, but sup-
pose now that the sample size n is 170, and it is again found
from the observed values in the sample that Xn = 3.2 and
(1/n)

∑n
i=1(Xi − Xn)

2 = 0.09. Calculate the value of the
statistic U and find the corresponding p-value.

14. Consider again the conditions of Exercise 12, but sup-
pose now that the following hypotheses are to be tested:

H0: μ = 3.1,
H1: μ 	= 3.1.

Suppose, as in Exercise 12, that the sample size n is 17,
and it is found from the observed values in the sample that
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Xn = 3.2 and (1/n)
∑n

i=1(Xi − Xn)
2 = 0.09. Calculate the

value of the statistic U and find the corresponding p-value.

15. Consider again the conditions of Exercise 14, but sup-
pose now that the sample size n is 170, and it is again found
from the observed values in the sample that Xn = 3.2 and
(1/n)

∑n
i=1(Xi − Xn)

2 = 0.09. Calculate the value of the
statistic U and find the corresponding p-value.

16. Consider again the conditions of Exercise 14. Sup-
pose, as in Exercise 14, that the sample size n is 17, but sup-
pose now that it is found from the observed values in the

sample that Xn = 3.0 and (1/n)
∑n

i=1(Xi − Xn)
2 = 0.09.

Calculate the value of the statistic U and find correspond-
ing p-value.

17. Prove that the likelihood ratio test for hypotheses
(9.5.7) is the two-sided t test that rejects H0 if |U | ≥ c,
where U is defined in Eq. (8.5.1). The argument is slightly
simpler than, but very similar to, the one given in the text
for the one-sided case.

18. Prove that the likelihood ratio test for hypotheses
(9.5.3) is to reject H0 if U ≤ c, where U is defined in
Eq. (8.5.1).

9.6 Comparing the Means of Two Normal
Distributions

It is very common to compare two distributions to see which has the higher mean or
just to see how different the two means are. When the two distributions are normal,
the tests and confidence intervals based on the t distribution are very similar to the
ones that arose when we considered a single distribution.

The Two-Sample t Test

Example
9.6.1

Rain from Seeded Clouds. In Example 8.3.1, we were interested in whether or not the
mean log-rainfall from seeded clouds was greater than 4, which we supposed to have
been the mean log-rainfall from unseeded clouds. If we want to compare rainfalls
from seeded and unseeded clouds under otherwise similar conditions, we would
normally observe two random samples of rainfalls: one from seeded clouds and one
from unseeded clouds but otherwise under similar conditions. We would then model
these samples as being random samples from two different normal distributions,
and we would want to compare their means and possibly their variances to see how
different the distributions are. �

Consider first a problem in which random samples are available from two normal
distributions with common unknown variance, and it is desired to determine which
distribution has the larger mean. Specifically, we shall assume that X = (X1, . . . , Xm)

form a random sample of m observations from a normal distribution for which both
the mean μ1 and the variance σ 2 are unknown, and that Y = (Y1, . . . , Yn) form an
independent random sample of n observations from another normal distribution for
which both the mean μ2 and the variance σ 2 are unknown. We will then be interested
in testing hypotheses such as

H0: μ1 ≤ μ2 versus H1: μ1 > μ2. (9.6.1)

For each test procedure δ, we shall let π(μ1, μ2, σ 2|δ) denote the power function of δ.
We shall assume that the variance σ 2 is the same for both distributions, even though
the value of σ 2 is unknown. If this assumption seems unwarranted, the two-sample
t test that we shall derive next would not be appropriate. A different test procedure
is discussed later in this section for the case in which the two populations might have
different variances. Later in this section, we shall derive the likelihood ratio test.
In Sec. 9.7, we discuss some procedures for comparing the variances of two normal
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distributions, which includes testing the null hypothesis that the variances are the
same.

Intuitively, it makes sense to reject H0 in (9.6.1) if the difference between the
sample means is large. Theorem 9.6.1 derives the distribution of a natural test statistic
to use.

Theorem
9.6.1

Two-Sample t Statistic. Assume the structure described in the preceding paragraphs.
Define

Xm = 1
m

m∑
i=1

Xi, Y n = 1
n

n∑
i=1

Yi,

S2
X

=
m∑

i=1

(Xi − Xm)2, and S2
Y

=
n∑

i=1

(Yi − Yn)
2. (9.6.2)

Define the test statistic

U = (m + n − 2)1/2(Xm − Yn)(
1
m

+ 1
n

)1/2

(S2
X + S2

Y )1/2

. (9.6.3)

For all values of θ = (μ1, μ2, σ 2) such that μ1 = μ2, the distribution of U is the t

distribution with m + n − 2 degrees of freedom.

Proof Assume that μ1 = μ2. Define the following two random variables:

Z = Xm − Yn(
1
m

+ 1
n

)1/2

σ

, (9.6.4)

W = S2
X

+ S2
Y

σ 2
. (9.6.5)

The statistic U can now be represented in the form

U = Z

[W/(m + n − 2)]1/2
. (9.6.6)

The remainder of the proof consists of proving that Z has the standard normal
distribution, that W has the χ2 distribution with m + n − 2 degrees of freedom, and
that Z and W are independent. The result then follows from Definition 8.4.1, the
definition of the family of t distributions.

We have assumed that X and Y are independent given θ . It follows that every
function of X is independent of every function of Y . In particular, (Xm, S2

X
) is

independent of (Y n, S2
Y
). By Theorem 8.3.1, Xm and S2

X
are independent, and Yn

and S2
Y

are also independent. It follows that all four of Xm, Yn, S2
X

, and S2
Y

are
mutually independent. Hence, Z and W are also independent. It also follows from
Theorem 8.3.1 that S2

X
/σ 2 and S2

Y
/σ 2 have, respectively, the χ2 distributions with

m − 1 and n − 1 degrees of freedom. Hence, W is the sum of two independent random
variables with χ2 distributions and so has the χ2 distribution with the sum of the
two degrees of freedom, namely, m + n − 2. Xm − Yn has the normal distribution
with mean μ1 − μ2 = 0 and variance σ 2/n + σ 2/m. It follows that Z has the standard
normal distribution.
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A two-sample t test with level of significance α0 is the procedure δ that rejects H0
if U ≥ T −1

m+n−2(1 − α0). Theorem 9.6.2 states some useful properties of two-sample t

tests analogous to those of Theorem 9.5.1. The proof is so similar to that of Theo-
rem 9.5.1 that we shall not present it here.

Theorem
9.6.2

Level and Unbiasedness of Two-Sample t Tests. Let δ be the two-sample t test defined
above. The power function π(μ1, μ2, σ 2|δ) has the following properties:

i. π(μ1, μ2, σ 2|δ) = α0 when μ1 = μ2,

ii. π(μ1, μ2, σ 2|δ) < α0 when μ1 < μ2,

iii. π(μ1, μ2, σ 2|δ) > α0 when μ1 > μ2,

iv. π(μ1, μ2, σ 2|δ) → 0 as μ1 − μ2 → −∞,

v. π(μ1, μ2, σ 2|δ) → 1 as μ1 − μ2 → ∞.

Furthermore, the test δ has size α0 and is unbiased.

Note: The Other One-Sided Hypotheses. If the hypotheses are

H0: μ1 ≥ μ2 versus H1: μ1 < μ2, (9.6.7)

the corresponding level α0 t test is to reject H0 when U ≤ −T −1
m+n−2(1 − α0). This test

has properties analogous to those of the other one-sided test.
P -values are computed in much the same way as they were for the one-sample t

test. The proof of Theorem 9.6.3 is virtually the same as the proof of Theorem 9.5.2
and is not given here.

Theorem
9.6.3

p-Values for Two-Sample t Tests. Suppose that we are testing either the hypotheses
in Eq. (9.6.1) or the hypotheses in Eq. (9.6.7). Let u be the observed value of the
statistic U in Eq. (9.6.3), and let Tm+n−2(.) be the c.d.f. of the t distribution with
m + n − 2 degrees of freedom. Then the p-value for the hypotheses in Eq. (9.6.1) is
1 − Tm+n−2(u) and the p-value for the hypotheses in Eq. (9.6.7) is Tm+n−2(u).

Example
9.6.2

Rain from Seeded Clouds. In Example 9.6.1, we actually have 26 observations of
unseeded clouds to go with the 26 observations of seeded clouds. Let X1, . . . , X26
be the log-rainfall measurements from the seeded clouds, and let Y1, . . . , Y26 be
the measurements from the unseeded clouds. We model all of the measurements as
independent with the Xi’s having the normal distribution with mean μ1 and variance
σ 2, and the Yi’s having the normal distribution with mean μ2 and variance σ 2. For
now, we model the two distributions as having a common variance. Suppose that
we wish to test whether or not the mean log-rainfall from seeded clouds is larger
than the mean log-rainfall from unseeded clouds. We choose the null and alternative
hypotheses so that type I error corresponds to claiming that seeding increases rainfall
when, in fact, it does not increase rainfall. That is, the null hypothesis is H0 : μ1 ≤ μ2
and the alternative hypothesis is H1 : μ1 > μ2. We choose a level of significance of
α0 = 0.01. Before proceeding with the formal test, it is a good idea to look at the
data first. Figure 9.15 contains histograms of the log-rainfalls of both seeded and
unseeded clouds. The two samples look different, with the seeded clouds appearing
to have larger log-rainfalls. The formal test requires us to compute the statistics

Xm = 5.13, Y n = 3.99,

S2
X

= 63.96, and S2
Y

= 67.39.
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Figure 9.15 Histograms of
seeded and unseeded clouds
in Example 9.6.2.
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The critical value is T −1
50 (0.99) = 2.403, and the test statistic is

U = 501/2(5.13 − 3.99)(
1

26
+ 1

26

)1/2

(63.96 + 67.39)1/2

= 2.544,

which is greater than 2.403. So, we would reject the null hypothesis at level of
significance α0 = 0.01. The p-value is the smallest level at which we would reject H0,
namely, 1 − T50(2.544) = 0.007. �

Example
9.6.3

Roman Pottery in Britain. Tubb, Parker, and Nickless (1980) describe a study of
samples of pottery from the Roman era found in various locations in Great Britain.
One measurement made on each sample of pottery was the percentage of the sample
that was aluminum oxide. Suppose that we are interested in comparing the aluminum
oxide percentages at two different locations. There were m = 14 samples analyzed
from Llanederyn, with sample average of Xm = 12.56 and S2

X
= 24.65. Another n = 5

samples came from Ashley Rails, with Yn = 17.32 and S2
Y

= 11.01. One of the sample
sizes is too small for the histogram to be very illuminating. Suppose that we model the
data as normal random variables with two different means μ1 and μ2 but common
variance σ 2. We want to test the null hypothesis H0 : μ1 ≥ μ2 against the alternative
hypothesis H1 : μ1 < μ2. The observed value of U defined by Eq. (9.6.3) is −6.302.
From the table of the t distribution in this book, with m + n − 2 = 17 degrees of
freedom, we find that T −1

17 (0.995) = 2.898 and U < −2.898. So, we would reject
H0 at any level α0 ≥ 0.005. Indeed, the p-value associated with this value of U is
T17(−6.302) = 4 × 10−6. �

Power of the Test

For each parameter vector θ = (μ1, μ2, σ 2), the power function of the two-sample
t test can be computed using the noncentral t distribution introduced in Defini-
tion 9.5.1. Almost identical reasoning to that which led to Theorem 9.5.3 proves the
following.

Theorem
9.6.4

Power of Two-Sample t Test. Assume the conditions stated earlier in this section. Let
U be defined in Eq. (9.6.6). Then U has the noncentral t distribution with m + n − 2
degrees of freedom and noncentrality parameter
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ψ = μ1 − μ2

σ

(
1
m

+ 1
n

)1/2
. (9.6.8)

We can use Fig. 9.12 on page 580 to approximate power calculations if we do not
have an appropriate computer program handy.

Example
9.6.4

Roman Pottery in Britain. In Example 9.6.3, if the Llanederyn mean is less than the
Ashley Rails mean by 1.5σ , then ψ = 1.5/(1/14 + 1/5)1/2 = 2.88. The power of a level
0.01 test of H0 : μ1 ≥ μ2 appears to be about 0.65 in the right panel of Fig. 9.12. (The
actual power is 0.63.) �

Two-Sided Alternatives

The two-sample t test can easily be adapted to testing the following hypotheses at a
specified level of significance α0:

H0: μ1 = μ2, versus H1: μ1 	= μ2. (9.6.9)

The size α0 two-sided t test rejects H0 if |U | ≥ c where c = T −1
m+n−2(1 − α0/2), and

the statistic U is defined in Eq. (9.6.3). The p-value when U = u is observed equals
2[1 − Tm+n−2(|u|)]. (See Exercise 9.)

Example
9.6.5

Comparing Copper Ores. Suppose that a random sample of eight specimens of ore
is collected from a certain location in a copper mine, and the amount of copper in
each of the specimens is measured in grams. We shall denote these eight amounts
by X1, . . . , X8 and shall suppose that the observed values are such that X8 = 2.6
and S2

X
= 0.32. Suppose also that a second random sample of 10 specimens of ore is

collected from another part of the mine. We shall denote the amounts of copper in
these specimens by Y1, . . . , Y10 and shall suppose that the observed values in grams
are such that Y 10 = 2.3, and S2

Y
= 0.22. Let μ1 denote the mean amount of copper in

all the ore at the first location in the mine, let μ2 denote the mean amount of copper
in all the ore at the second location, and suppose that the hypotheses (9.6.9) are to
be tested.

We shall assume that all the observations have a normal distribution, and the
variance is the same at both locations in the mine, even though the means may be
different. In this example, the sample sizes are m = 8 and n = 10, and the value of
the statistic U defined by Eq. (9.6.3) is 3.442. Also, by the use of a table of the t

distribution with 16 degrees of freedom, it is found that T −1
16 (0.995) = 2.921, so that

the tail area corresponding to this observed value of U is less than 2 × 0.005. Hence,
the null hypothesis will be rejected for any specified level of significance α0 ≥ 0.01.
(In fact, the two-sided tail area associated with U = 3.442 is 0.003.) �

The power function of the two-sided two-sample t test is based on the noncentral
t distribution in the same way as was the power function of the one-sample two-sided
t test. The test δ that rejects H0 : μ1 = μ2 when |U | ≥ c has power function

π(μ1, μ2, σ 2|δ) = Tm+n−2(−c|ψ) + 1 − Tm+n−2(c|ψ),

where Tm+n−2(.|ψ) is the c.d.f. of the noncentral t distribution with m + n − 2 degrees
of freedom and noncentrality parameter ψ given in Eq. (9.6.8). Figure 9.14 on
page 583 can be used to approximate the power function if appropriate software
is not available.
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The Two-Sample t Test as a Likelihood Ratio Test

In this section, we shall show that the two-sample t test for the hypotheses (9.6.1) is
a likelihood ratio test. After the values x1, . . . , xm and y1, . . . , yn in the two samples
have been observed, the likelihood function g(x, y|μ1, μ2, σ 2) is

g(x, y|μ1, μ2, σ 2) = fm(x|μ1, σ 2)fn( y|μ2, σ 2).

Here, both fm(x|μ1, σ 2) and fn( y|μ2, σ 2) have the form given in Eq. (9.5.9), and the
value of σ 2 is the same in both terms. In this case, �0 = {(μ1, μ2, σ 2) : μ1 ≤ μ2}. The
likelihood ratio statistic is

�(x, y) = sup{(μ1,μ2,σ
2):μ1≤μ2} g(x, y|μ1, μ2, σ 2)

sup(μ1,μ2,σ
2) g(x, y|μ1, μ2, σ 2)

. (9.6.10)

The likelihood ratio test procedure then specifies that H0 should be rejected if
�(x, y) ≤ k, where k is typically chosen so that the test has a desired level α0.

To facilitate the maximizations in (9.6.10), let

s2
x

=
m∑

i=1

(xi − xm)2, and s2
y

=
n∑

i=1

(yi − yn)
2.

Then we can write

g(x, y|μ1, μ2, σ 2)

= 1
(2πσ 2)(m+n)/2

exp
(

− 1
2σ 2

[
m(xm − μ1)

2 + n(yn − μ2)
2 + s2

x
+ s2

y

])
.

The denominator of (9.6.10) is maximized by the overall M.L.E.’s, that is, when

μ1 = xm, μ2 = yn, and σ 2 = 1
m + n

(s2
x

+ s2
y
). (9.6.11)

For the numerator of (9.6.10), when xm ≤ yn, the parameter vector in (9.6.11) is in �0,
and hence the maximum also occurs at the values in Eq. (9.6.11). Hence, �(x, y) = 1
if xm ≤ yn.

For the other case, when xm > yn, it is not difficult to see that μ1 = μ2 is required
in order to achieve the maximum. In these cases, the maximum occurs when

μ1 = μ2 = mxm + nyn

m + n
,

σ 2 = mn(xm − yn)
2/(m + n) + s2

x
+ s2

y

m + n
.

Substituting all of these values into (9.6.10) yields

�(x, y) =
{

1 if xm ≤ yn,

(1 + v2)−(m+n)/2 if xm > yn,

where

v = (xm − yn)(
1
m

+ 1
n

)1/2

(s2
x

+ s2
y
)1/2

. (9.6.12)

If k < 1, it is straightforward to show that �(x, y) ≤ k is equivalent to v ≥ k′ for some
other constant k′. Finally, note that (m + n − 2)1/2v is the observed value of U , so
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the likelihood ratio test is to reject H0 when U ≥ c, for some constant c. This is the
same as the two-sample t test. The preceding argument can easily be adapted to
handle the other one-sided hypotheses and the two-sided case. (See Exercise 13 for
the two-sided case.)

Unequal Variances

Known Ratio of Variances The t test can be extended to a problem in which the
variances of the two normal distributions are not equal but the ratio of one variance
to the other is known. Specifically, suppose that X1, . . . , Xm form a random sample
from the normal distribution with mean μ1 and variance σ 2

1, and Y1, . . . , Yn form
an independent random sample from another normal distribution with mean μ2 and
variance σ 2

2. Suppose also that the values of μ1, μ2, σ 2
1, and σ 2

2 are unknown but that
σ 2

2 = kσ 2
1, where k is a known positive constant. Then it can be shown (see Exercise 4

at the end of this section) that when μ1 = μ2, the following random variable U will
have the t distribution with m + n − 2 degrees of freedom:

U = (m + n − 2)1/2(Xm − Yn)(
1
m

+ k

n

)1/2
(

S2
X + S2

Y

k

)1/2
. (9.6.13)

Hence, the statistic U defined by Eq. (9.6.13) can be used for testing either the
hypotheses (9.6.1) or the hypotheses (9.6.9).

The Behrens-Fisher Problem If the values of all four parameters μ1, μ2, σ 2
1, and σ 2

2
are unknown, and if the value of the ratio σ 2

1/σ
2
2 is also unknown, then the problem of

testing the hypotheses (9.6.1) or the hypotheses (9.6.9) becomes very difficult. Even
the likelihood ratio statistic � has no known distribution. This problem is known
as the Behrens-Fisher problem. Some simulation methods for the Behrens-Fisher
problem will be described in Chapter 12 (Examples 12.2.4 and 12.6.10). Various other
test procedures have been proposed, but most of them have been the subject of
controversy in regard to their appropriateness or usefulness. The most popular of
the proposed methods was developed in a series of articles by Welch (1938, 1947,
1951). Welch proposed using the statistic

V = Xm − Yn(
S2

X

m(m − 1)
+ S2

Y

n(n − 1)

)1/2
. (9.6.14)

Even when μ1 = μ2, the distribution of V is not known in closed form. However,
Welch approximated the distribution of V by a t distribution as follows. Let

W = S2
X

m(m − 1)
+ S2

Y

n(n − 1)
, (9.6.15)

and approximate the distribution of W by a gamma distribution with the same mean
and variance as W . (See Exercise 12.) If we were now to assume that W actually had
this approximating gamma distribution, then V would have the t distribution with
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degrees of freedom (
σ 2

1

m
+ σ 2

2

n

)2

1
m − 1

(
σ 2

1

m

)2

+ 1
n − 1

(
σ 2

2

n

)2
. (9.6.16)

Next, substitute the unbiased estimates s2
x
/(m − 1) and s2

y
/(n − 1) for σ 2

1 and σ 2
2,

respectively, in (9.6.16) to obtain the degrees of freedom for Welch’s t distribution
approximation:

ν =

(
s2
x

m(m − 1)
+ s2

y

n(n − 1)

)2

1
(m − 1)3

(
s2
x

m

)2

+ 1
(n − 1)3

(
s2
y

n

)2
. (9.6.17)

In Eq. (9.6.17), s2
x

and s2
y

are the observed values of S2
X

and S2
Y

. To summarize Welch’s
procedure, act as if V in Eq. (9.6.14) had the t distribution with ν degrees of freedom
when μ1 = μ2. Tests of one-sided and two-sided hypotheses are then constructed by
comparing V to various quantiles of the t distribution with ν degrees of freedom. If
ν is not an integer, round it to the nearest integer or use a computer program that
can handle t distributions with noninteger degrees of freedom.

Example
9.6.6

Comparing Copper Ores. Using the data from Example 9.6.5, we compute

V = 2.6 − 2.3(
0.32
8 × 7

+ 0.22
10 × 9

)1/2
= 3.321,

ν =

(
0.32
8 × 7

+ 0.22
10 × 9

)2

1
73

(
0.32

8

)2

+ 1
93

(
0.22
10

)2
= 12.49.

The p-value associated with the observed data for the hypotheses (9.6.9) is 2[1 −
T12.49(3.321)] = 0.0058, not much different than what we obtained in Example 9.6.5.

�

Likelihood Ratio Test An alternative to the Welch approximation described above
would be to apply the large-sample approximation of Theorem 9.1.4. Using the same
notation as earlier in the section, we can write the likelihood function as

g(x, y|μ1, μ2, σ 2
1 , σ 2

2 ) (9.6.18)

= 1

(2πσ 2
1 )m/2(2πσ 2

2 )n/2
exp

(
−m(xm − μ1)

2 + s2
x

2σ 2
1

− n(yn − μ2)
2 + s2

y

2σ 2
2

)
.

The overall M.L.E.’s are

μ̂1 = xm, μ̂2 = yn, σ̂ 2
1 = s2

x

m
, σ̂ 2

2 = s2
y

n
. (9.6.19)
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Under H0 : μ1 = μ2, we cannot find formulas for the M.L.E.’s. However, if we let μ̂

stand for the common value of μ̂1 = μ̂2, we find that the M.L.E.’s satisfy the following
equations:

σ̂ 2
1 = 1

m

[
s2
x

+ m(xm − μ̂)2
]

, (9.6.20)

σ̂ 2
2 = 1

n

[
s2
y

+ n(yn − μ̂)2
]

, (9.6.21)

μ̂ =
mxm

σ̂ 2
1

+ nyn

σ̂ 2
2

m

σ̂ 2
1

+ n

σ̂ 2
2

. (9.6.22)

These equations can be solved recursively even though we do not have a closed-form
solution. One algorithm is the following:

1. Set k = 0 and pick a starting value μ̂(0), such as (mxm + nyn)/(m + n).

2. Compute σ̂
2(k)

1 and σ̂
2(k)

2 by substituting μ̂(k) into Eqs. (9.6.20) and (9.6.21).

3. Compute μ̂(k+1) by substituting σ̂
2(k)

1 and σ̂
2(k)

2 into Eq. (9.6.22).

4. If μ̂(k+1) is close enough to μ̂(k) stop. Otherwise, replace k by k + 1 and return
to step 2.

Example
9.6.7

Comparing Copper Ores. Using the data in Example 9.6.5, we will start with μ̂(0) =
(8 × 2.6 + 10 × 2.3)/18 = 2.433. Plugging this value into Eqs. (9.6.20) and (9.6.21)
gives us σ̂

2(0)

1 = 0.068 and σ̂
2(0)

2 = 0.0398. Plugging these into Eq. (9.6.22) gives μ̂(1) =
2.396. After 13 iterations the values stop changing and our final M.L.E.’s are μ̂ =
2.347, σ̂ 2

1 = 0.1039, and σ̂ 2
2 = 0.0242. We can then substitute these M.L.E.’s into the

likelihood function (9.6.18) to get the numerator of the likelihood ratio statistic
�(x, y). (Remember to substitute μ̂ for both μ1 and μ2.) We can also substitute the
overall M.L.E.’s (9.6.19) into (9.6.18) to get the denominator of �(x, y). The result is
�(x, y) = 0.01356. Theorem 9.1.4 says that we should compare −2 log �(x, y) = 8.602
to a critical value of the χ2 distribution with one degree of freedom. The p-value
associated with the observed statistic is the probability that a χ2 random variable
with one degree of freedom is greater than 8.602, namely, 0.003. This is the same
as the p-value that we obtained in Example 9.6.5 when we assumed that the two
variances were the same. �

For the cases of one-sided hypotheses such as (9.6.1) and (9.6.7), the likelihood
ratio statistic is a bit more complicated. For example, if μ1 = μ2, −2 log �(X, Y )

converges in distribution to a distribution that is neither discrete nor continuous. We
will not discuss this case further in this book.

Summary

Suppose that we observe independent random samples from two normal distribu-
tions: X1, . . . , Xm having mean μ1 and variance σ 2

1, and Y1, . . . , Yn having mean
μ2 and variance σ 2

2. For testing hypotheses about μ1 and μ2, t tests are available
if we assume that σ 2

1 = σ 2
2. The t tests all make use of the statistic U defined in

Eq. (9.6.3). To test H0 : μ1 = μ2 versus H1 : μ1 	= μ2 at level α0, reject H0 if |U | ≥
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T −1
m+n−2(1 − α0/2), where T −1

m+n−2 is the quantile function of the t distribution with
m + n − 2 degrees of freedom. To test H0 : μ1 ≤ μ2 versus H1 : μ1 > μ2 at level α0,
reject H0 if U > T −1

m+n−2(1 − α0). To test H0 : μ1 ≥ μ2 versus H1 : μ1 < μ2 at level α0,

reject H0 if U < −T −1
m+n−2(1 − α0). The power functions of these tests can be com-

puted using the family of noncentral t distributions. Approximate tests are available
if we do not assume that σ 2

1 = σ 2
2 .

Exercises

1. In Example 9.6.3, we discussed Roman pottery found
at two different locations in Great Britain. There were
samples found at other locations as well. One other lo-
cation, Island Thorns, had five samples X1, . . . , Xn with
an average aluminum oxide percentage of X = 18.18 with∑5

i=1(Xi − X)2 = 12.61. Let Y1, . . . , Y5 be the five sam-
ple measurements from Ashley Rails in Example 9.6.3.
Test the null hypothesis that the mean aluminum oxide
percentages at Ashely Rails and Island Thorns are the
same versus the alternative that they are different at level
α0 = 0.05.

2. Suppose that a certain drug A was administered to eight
patients selected at random, and after a fixed time period,
the concentration of the drug in certain body cells of each
patient was measured in appropriate units. Suppose that
these concentrations for the eight patients were found to
be as follows:

1.23, 1.42, 1.41, 1.62, 1.55, 1.51, 1.60, and 1.76.

Suppose also that a second drug B was administered to
six different patients selected at random, and when the
concentration of drug B was measured in a similar way
for these six patients, the results were as follows:

1.76, 1.41, 1.87, 1.49, 1.67, and 1.81.

Assuming that all the observations have a normal distribu-
tion with a common unknown variance, test the following
hypotheses at the level of significance 0.10: The null hy-
pothesis is that the mean concentration of drug A among
all patients is at least as large as the mean concentration of
drug B. The alternative hypothesis is that the mean con-
centration of drug B is larger than that of drug A.

3. Consider again the conditions of Exercise 2, but sup-
pose now that it is desired to test the following hypotheses:
The null hypothesis is that the mean concentration of drug
A among all patients is the same as the mean concentration
of drug B. The alternative hypothesis, which is two-sided,
is that the mean concentrations of the two drugs are not
the same. Find the number c so that the level 0.05 two-
sided t test will reject H0 when |U | ≥ c, where U is defined
by Eq. (9.6.3). Also, perform the test.

4. Suppose that X1, . . . , Xm form a random sample from
the normal distribution with mean μ1 and variance σ 2

1, and

Y1, . . . , Yn form an independent random sample from the
normal distribution with mean μ2 and variance σ 2

2. Show
that if μ1 = μ2 and σ 2

2 = kσ 2
1, then the random variable U

defined by Eq. (9.6.13) has the t distribution with m + n −
2 degrees of freedom.

5. Consider again the conditions and observed values of
Exercise 2. However, suppose now that each observation
for drug A has an unknown variance σ 2

1, and each obser-
vation for drug B has an unknown variance σ 2

2, but it is
known that σ 2

2 = (6/5)σ 2
1. Test the hypotheses described

in Exercise 2 at the level of significance 0.10.

6. Suppose that X1, . . . , Xm form a random sample from
the normal distribution with unknown mean μ1 and un-
known variance σ 2, and Y1, . . . , Yn form an independent
random sample from another normal distribution with un-
known mean μ2 and the same unknown variance σ 2. For
each constant λ (−∞ < λ < ∞), construct a t test of the
following hypotheses with m + n − 2 degrees of freedom:

H0: μ1 − μ2 = λ,

H1: μ1 − μ2 	= λ.

7. Consider again the conditions of Exercise 2. Let μ1
denote the mean of each observation for drug A, and
let μ2 denote the mean of each observation for drug B.
It is assumed, as in Exercise 2, that all the observations
have a common unknown variance. Use the results of
Exercise 6 to construct a confidence interval for μ1 − μ2
with confidence coefficient 0.90.

8. In Example 9.6.5, determine the power of a level 0.01
test if |μ1 − μ2| = σ .

9. Suppose that we wish to test the hypotheses (9.6.9). We
shall use the statistic U defined in Eq. (9.6.3) and reject
H0 if |U | is large. Prove that the p-value when U = u is
observed is 2[1 − Tm+n−2(|u|)].
10. Lyle et al. (1987) ran an experiment to study the ef-
fect of a calcium supplement on the blood pressure of
African American males. A group of 10 men received a
calcium supplement, and another group of 11 men re-
ceived a placebo. The experiment lasted 12 weeks. Both
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Table 9.2 Blood pressure data for Exercise 10

Calcium 7 −4 18 17 −3 −5 1 10 11 −2

Placebo −1 12 −1 −3 3 −5 5 2 −11 −1 −3

before and after the 12-week period, each man had his sys-
tolic blood pressure measured while at rest. The changes
(after minus before) are given in Table 9.2. Test the null
hypothesis that the mean change in blood pressure for the
calcium supplement group is lower than the mean change
in blood pressure for the placebo group. Use level α0 = 0.1.

11. Frisby and Clatworthy (1975) studied the times that it
takes subjects to fuse random-dot stereograms. Random-
dot stereograms are pairs of images that appear at first to
be random dots. After a subject looks at the pair of images
from the proper distance and her eyes cross just the right
amount, a recognizable object appears from the fusion of
the two images. The experimenters were concerned with
the extent to which prior information about the recogniz-
able object affected the time it took to fuse the images.

One group of 43 subjects was not shown a picture of
the object before being asked to fuse the images. Their
average time was X43 = 8.560 and S2

X
= 2745.7. The sec-

ond group of 35 subjects was shown a picture of the ob-
ject, and their sample statistics were Y 35 = 5.551 and S2

Y
=

783.9. The null hypothesis is that the mean time of the

first group is no larger than the mean time of the sec-
ond group, while the alternative hypothesis is that the first
group takes longer.

a. Test the hypotheses at the level of significance α0 =
0.01, assuming that the variances are equal for the
two groups.

b. Test the hypotheses at the level of significance α0 =
0.01, using Welch’s approximate test.

12. Find the mean a and variance b of the random vari-
able W in Eq. (9.6.15). Now, let a and b be the mean and
variance, respectively, of the gamma distribution with pa-
rameters α and β. Prove that 2α equals the expression in
(9.6.16).

13. Let U be as defined in Eq. (9.6.3), and suppose that
it is desired to test the hypotheses in Eq. (9.6.9). Prove
that each likelihood ratio test has the following form: re-
ject H0 if |U | ≥ c, where c is a constant. Hint: First prove
that �(x, y) = (1 + v2)−(m+n)/2, where v was defined in
Eq. (9.6.12).

9.7 The F Distributions
In this section, we introduce the family of F distributions. This family is useful in
two different hypothesis-testing situations. The first situation is when we wish to
test hypotheses about the variances of two different normal distributions. These
tests, which we shall derive in this section, are based on a statistic that has an F

distribution. The second situation will arise in Chapter 11 when we test hypotheses
concerning the means of more than two normal distributions.

Definition of the F Distribution

Example
9.7.1

Rain from Seeded Clouds. In Example 9.6.1, we were interested in comparing the
distributions of log-rainfalls from seeded and unseeded clouds. In Example 9.6.2, we
used the two-sample t test to compare the means of these distributions under the
assumption that the variances of the two distributions were the same. It would be
good to have a procedure for testing whether or not such an assumption is warranted.

�

In this section, we shall introduce a family of distributions, called the F distribu-
tions, that arises in many important problems of testing hypotheses in which two or
more normal distributions are to be compared on the basis of random samples from
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each of the distributions. In particular, it arises naturally when we wish to compare
the variances of two normal distributions.

Definition
9.7.1

The F distributions. Let Y and W be independent random variables such that Y has
the χ2 distribution with m degrees of freedom and W has the χ2 distribution with n

degrees of freedom, where m and n are given positive integers. Define a new random
variable X as follows:

X = Y/m

W/n
= nY

mW
. (9.7.1)

Then the distribution of X is called the F distribution with m and n degrees of freedom.

Theorem 9.7.1 gives the general p.d.f. of an F distribution. Its proof relies on the
methods of Sec. 3.9 and will be postponed until the end of this section.

Theorem
9.7.1

Probability Density Function. Let X have the F distribution with m and n degrees of
freedom. Then its p.d.f. f (x) is as follows, for x > 0:

f (x) =
�

[
1
2
(m + n)

]
mm/2nn/2

�

(
1
2
m

)
�

(
1
2
n

) . x(m/2)−1

(mx + n)(m+n)/2
, (9.7.2)

and f (x) = 0 for x ≤ 0.

Properties of the F Distributions

When we speak of the F distribution with m and n degrees of freedom, the order in
which the numbers m and n are given is important, as can be seen from the definition
of X in Eq. (9.7.1). When m 	= n, the F distribution with m and n degrees of freedom
and the F distribution with n and m degrees of freedom are two different distribu-
tions. Theorem 9.7.2 gives a result relating the two distributions just mentioned along
with a relationship between F distributions and t distributions.

Theorem
9.7.2

If X has the F distribution with m and n degrees of freedom, then its reciprocal 1/X

has the F distribution with n and m degrees of freedom. If Y has the t distribution
with n degrees of freedom, then Y 2 has the F distribution with 1 and n degrees of
freedom.

Proof The first statement follows from the representation of X as the ratio of two
random variables, in Definition 9.7.1. The second statement follows from the repre-
sentation of a t random variable in the form of Eq. (8.4.1).

Two short tables of quantiles for F distributions are given at the end of this book.
In these tables, we give only the 0.95 quantile and the 0.975 quantile for different
possible pairs of values of m and n. In other words, if G denotes the c.d.f. of the F

distribution with m and n degrees of freedom, then the tables give the values of x1 and
x2 such that G(x1) = 0.95 and G(x2) = 0.975. By applying Theorem 9.7.2, it is possible
to use the tables to obtain the 0.05 and 0.025 quantiles of an F distribution. Most
statistical software will compute the c.d.f. and quatiles for general F distributions.

Example
9.7.2

Determining the 0.05 Quantile of an F Distribution. Suppose that a random variable
X has the F distribution with 6 and 12 degrees of freedom. We shall determine the
0.05 quantile of X, that is, the value of x such that Pr(X < x) = 0.05.
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If we let Y = 1/X, then Y will have the F distribution with 12 and 6 degrees
of freedom. It can be found from the table given at the end of this book that
Pr(Y ≤ 4.00) = 0.95; hence, Pr(Y > 4.00) = 0.05. Since Y > 4.00 if and only if X < 0.25,
it follows that Pr(X < 0.25) = 0.05. Because F distributions are continuous, Pr(X ≤
0.25) = 0.05, and 0.25 is the 0.05 quantile of X. �

Comparing the Variances of Two Normal Distributions

Suppose that the random variables X1, . . . , Xm form a random sample of m observa-
tions from a normal distribution for which both the mean μ1 and the variance σ 2

1 are
unknown, and suppose also that the random variables Y1, . . . , Yn form an indepen-
dent random sample of n observations from another normal distribution for which
both the mean μ2 and the variance σ 2

2 are unknown. Suppose finally that the following
hypotheses are to be tested at a specified level of significance α0 (0 < α0 < 1):

H0: σ 2
1 ≤ σ 2

2,

H1: σ 2
1 > σ 2

2.
(9.7.3)

For each test procedure δ, we shall let π(μ1, μ2, σ 2
1, σ 2

2|δ) denote the power
function of δ. Later in this section, we shall derive the likelihood ratio test. For now,
define S2

X
and S2

Y
to be the sums of squares defined in Eq. (9.6.2). Then S2

X
/(m − 1)

and S2
Y
/(n − 1) are estimators of σ 2

1 and σ 2
2, respectively. It makes intuitive sense that

we should reject H0 if the ratio of these two estimators is large. That is, define

V = S2
X
/(m − 1)

S2
Y/(n − 1)

, (9.7.4)

and reject H0 if V ≥ c, where c is chosen to make the test have a desired level of
significance.

Definition
9.7.2

F test. The test procedure defined above is called an F test.

Properties of F Tests

Theorem
9.7.3

Distribution of V . Let V be the statistic in Eq. (9.7.4). The distribution of (σ 2
2 /σ 2

1 )V is
the F distribution with m − 1 and n − 1 degrees of freedom. In particular, if σ 2

1 = σ 2
2,

then the distribution of V itself is the F distribution with m − 1 and n − 1 degrees of
freedom.

Proof We know from Theorem 8.3.1 that the random variable S2
X
/σ 2

1 has the χ2

distribution with m − 1degrees of freedom, and the random variable S2
Y
/σ 2

2 has the χ2

distribution with n − 1degrees of freedom. Furthermore, these two random variables
are independent, since they are calculated from two independent samples. Therefore,
the following random variable V ∗ has the F distribution with m − 1 and n − 1 degrees
of freedom:

V ∗ = S2
X
/[(m − 1)σ 2

1]

S2
Y/[(n − 1)σ 2

2]
. (9.7.5)

It can be seen from Eqs. (9.7.4) and (9.7.5) that V ∗ = (σ 2
2/σ

2
1)V . This proves the first

claim in the theorem. If σ 2
1 = σ 2

2, then V = V ∗, which proves the second claim.
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If σ 2
1 = σ 2

2 , it is possible to use a table of the F distribution to choose a constant c

such that Pr(V ≥ c) = α0, regardless of the common value of σ 2
1 and σ 2

2, and regardless
of the values of μ1 and μ2. In fact, c will be the 1 − α0 quantile of the corresponding F

distribution. We prove next that the test that rejects H0 in (9.7.3) if V ≥ c has level α0.

Theorem
9.7.4

Level, Power Function, and P-Values. Let V be the statistic defined in Eq. (9.7.4). Let c

be the 1 − α0 quantile of the F distribution with m − 1 and n − 1 degrees of freedom,
and let Gm−1,n−1 be the c.d.f. of that F distribution. Let δ be test that rejects H0 in
(9.7.3) when V ≥ c. The power function π(μ1, μ2, σ 2

1 , σ 2
2 |δ) satisfies the following

properties:

i. π(μ1, μ2, σ 2
1, σ 2

2|δ) = 1 − Gm−1,n−1

(
σ 2

2
σ 2

1
c

)
,

ii. π(μ1, μ2, σ 2
1, σ 2

2|δ) = α0 when σ 2
1 = σ 2

2,

iii. π(μ1, μ2, σ 2
1, σ 2

2|δ) < α0 when σ 2
1 < σ 2

2,

iv. π(μ1, μ2, σ 2
1, σ 2

2|δ) > α0 when σ 2
1 > σ 2

2,

v. π(μ1, μ2, σ 2
1, σ 2

2|δ) → 0 as σ 2
1/σ

2
2 → 0,

vi. π(μ1, μ2, σ 2
1, σ 2

2|δ) → 1 as σ 2
1/σ

2
2 → ∞.

The test δ has level α0 and is unbiased. The p-value when V = v is observed equals
1 − Gm−1,n−1(v).

Proof The power function is the probability of rejecting H0, i.e., the probability that
V ≥ c. Let V ∗ be as defined in Eq. (9.7.5) so that V ∗ has the F distribution with m − 1
and n − 1 degrees of freedom. Then

π(μ1, μ2, σ 2
1, σ 2

2|δ) = Pr(V ≥ c) = Pr

(
σ 2

1

σ 2
2

V ∗ ≥ c

)
= Pr

(
V ∗ ≥ σ 2

2

σ 2
1

c

)

= 1 − Gm−1,n−1

(
σ 2

2

σ 2
1

c

)
, (9.7.6)

which proves property (i). Property (ii) follows from Theorem 9.7.3. For property
(iii), let σ 2

1 < σ 2
2 in Eq. (9.7.6). Since (σ 2

2 /σ 2
1 )c > c, the expression on the far right

of (9.7.6) is less than 1 − Gm−1,n−1(c) = α0. Similarly, if σ 2
1 > σ 2

2 , the expression on
the far right of (9.7.6) is greater than 1 − Gm−1,n−1(c) = α0, proving property (iv).
Properties (v) and (vi) follow from property (i) and elementary properties of c.d.f.’s,
namely, Property 3.3.2. The fact that δ has level α0 follows from properties (ii) and
(iii). The fact that δ is unbiased follows from properties (ii) and (iv). Finally, the p-
value is the smallest α0 such that we would reject H0 at level α0 if V = v were observed.
We reject H0 at level α0 if and only if v ≥ G−1

m−1,n−1(1 − α0), which is equivalent to
α0 ≥ 1 − Gm−1,n−1(v). Hence, 1 − Gm−1,n−1(v) is the smallest α0 such that we would
reject H0.

Example
9.7.3

Performing an F Test. Suppose that six observations X1, . . . , X6 are selected at ran-
dom from a normal distribution for which both the mean μ1 and the variance σ 2

1 are
unknown, and it is found that S2

X
= 30. Suppose also that 21 observations, Y1, . . . , Y21,

are selected at random from another normal distribution for which both the mean
μ2 and the variance σ 2

2 are unknown, and that it is found that S2
Y

= 40. We shall carry
out an F test of the hypotheses (9.7.3).



9.7 The F Distributions 601

In this example, m = 6 and n = 21. Therefore, when H0 is true, the statistic V

defined by Eq. (9.7.4) will have the F distribution with 5 and 20 degrees of freedom.
It follows from Eq. (9.7.4) that the value of V for the given samples is

V = 30/5
40/20

= 3.

It is found from the tables given at the end of this book that the 0.95 quantile of the
F distribution with 5 and 20 degrees of freedom is 2.71, and the 0.975 quantile of
that distribution is 3.29. Hence, the tail area corresponding to the value V = 3 is less
than 0.05 and greater than 0.025. The hypothesis H0 that σ 2

1 ≤ σ 2
2 would therefore

be rejected at the level of significance α0 = 0.05, and H0 would not be rejected at
the level of significance α0 = 0.025. (Using a computer program to evaluate the c.d.f.
of an F distribution provides the p-value equal to 0.035.) Finally, suppose that it is
important to reject H0 if σ 2

1 is three times as large as σ 2
2. We would then want the

power function to be high when σ 2
1 = 3σ 2

2. We use a computer program to compute

1 − F5,20

(
2.71 × 1

3

)
= 0.498.

Even if σ 2
1 is three times as large as σ 2

2, the level 0.05 test only has about a 50 percent
chance of rejecting H0. �

Two-Sided Alternative

Suppose that we wish to test the hypotheses

H0: σ 2
1 = σ 2

2,

H1: σ 2
1 	= σ 2

2.
(9.7.7)

It would make sense to reject H0 if either V ≤ c1 or V ≥ c2, where V is defined in
Eq. (9.7.4) and c1 and c2 are constants such that Pr(V ≤ c1) + Pr(V ≥ c2) = α0 when
σ 2

1 = σ 2
2. The most convenient choice of c1 and c2 is the one that makes Pr(V ≤ c1) =

Pr(V ≥ c2) = α0/2. That is, choose c1 and c2 to be the α0/2 and 1 − α0/2 quantiles of
the appropriate F distribution.

Example
9.7.4

Rain from Seeded Clouds. In Example 9.6.2, we compared the means of log-rainfalls
from seeded and unseeded clouds under the assumption that the two variances were
the same. We can now test the null hypothesis that the two variances are the same
against the alternative hypothesis that the two variances are different at level of
significance α0 = 0.05. Using the statistics given in Example 9.6.2, the value of V

is 63.96/67.39 = 0.9491, since m = n. We need to compare this to the 0.025 and 0.975
quantiles of the F distribution with 25 and 25 degrees of freedom. Since our table of
F distribution quantiles does not have rows or columns for 25 degrees of freedom,
we can either interpolate between 20 and 30 degrees of freedom or use a computer
program to compute these quantiles. The quantiles are 0.4484 and 2.2303. Since V is
between these two numbers, we would not reject the null hypothesis at level α0 = 0.05.

�

When m 	= n, the two-sided F test constructed above is not unbiased. (See
Exercise 19.) Also, if m 	= n, it is not possible to write the two-sided F test described
above in the form “reject the null hypothesis if T ≥ c” using the same statistic T for
each significance level α0. Nevertheless, we can still compute the smallest α0 such
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that the two-sided F test with level of significance α0 would reject H0. The proof of
the following result is left to Exercise 15 in this section.

Theorem
9.7.5

P-Value of Equal-Tailed Two-Sided F Test. Let V be as defined in (9.7.4). Suppose that
we wish to test the hypotheses (9.7.7). Let δα0

be the equal-tailed two-sided F test
that rejects H0 when V ≤ c1 or V ≥ c2, where c1 and c2 are, respectively, the α0/2 and
1 − α0/2 quantiles of the appropriate F distribution. Then the smallest α0 such that
δα0

rejects H0 when V = v is observed is

2 min{1 − Gm−1, n−1(v), Gm−1, n−1(v)}. (9.7.8)

The F Test as a Likelihood Ratio Test

Next, we shall show that the F test for hypotheses (9.7.3) is a likelihood ratio test.
After the values x1, . . . , xm and y1, . . . , yn in the two samples have been observed,
the likelihood function g(x, y|μ1, μ2, σ 2

1, σ 2
2) is

g(x, y|μ1, μ2, σ 2
1, σ 2

2) = fm(x|μ1, σ 2
1)fn(y|μ2, σ 2

2).

Here, both fm(x|μ1, σ 2
1) and fn(y|μ2, σ 2

2) have the general form given in Eq. (9.5.9).
For the hypotheses in (9.7.3), �0 contains all parameters θ = (μ1, μ2, σ 2

1, σ 2
2) with

σ 2
1 ≤ σ 2

2, and �1 contains all θ with σ 2
1 > σ 2

2. The likelihood ratio statistic is

�(x, y) =
sup{(μ1,μ2,σ

2
1,σ

2
2):σ

2
1≤σ 2

2} g(x, y|μ1, μ2, σ 2
1, σ 2

2)

sup(μ1,μ2,σ
2
1,σ

2
2)

g(x, y|μ1, μ2, σ 2
1, σ 2

2)
. (9.7.9)

The likelihood ratio test then specifies that H0 should be rejected if �(x, y) ≤ k, where
k is typically chosen to make the test have a desired level α0.

To facilitate the maximizations in (9.7.9), let

s2
x

=
m∑

i=1

(xi − xm)2, and s2
y

=
n∑

i=1

(yi − yn)
2.

Then we can write

g(x, y|μ1, μ2, σ 2
1 , σ 2

2)

= 1
(2π)(m+n)/2σm

1 σn
2

exp

(
− 1

2σ 2
1

[
n(xm − μ1)

2 + s2
x

]
− 1

2σ 2
2

[
n(yn − μ2)

2 + s2
y

])
.

For both the numerator and denominator of (9.7.9), we need μ1 = xm and μ2 = yn in
order to maximize the likelihood. If s2

x
/m ≤ s2

y
/n, then the numerator is maximized

at σ 2
1 = s2

x
/m and σ 2

2 = s2
y
/n. These values also maximize the denominator. Hence,

�(x, y) = 1 if s2
x
/m ≤ s2

y
/n. For the other case (the numerator when s2

x
/m > s2

y
/n), it

is straightforward to show that σ 2
1 = σ 2

2 is required in order to achieve the maximum.
In these cases, the maximum occurs when

σ 2
1 = σ 2

2 = s2
x

+ s2
y

m + n
.

Substituting all of these values into (9.7.9) yields

�(x, y) =
{

1 if s2
x
/m ≤ s2

y
/n,

dwm/2(1 − w)n/2 if s2
x
/m > s2

y
/m,
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where

w = s2
x

s2
x

+ s2
y

, and d = (m + n)(m+n)/2

mm/2nn/2
.

Note that s2
x
/m ≤ s2

y
/n if and only if w ≤ m/(m + n). Next, use the fact that the

function h(w) = wm/2(1 − w)n/2 is decreasing for m/(m + n) < w < 1. Finally, note
that h(m/[m + n]) = 1/d. For k < 1, it follows that �(x, y) ≤ k if and only if w ≥ k′
for some other constant k′. This, in turn, is equivalent to s2

x
/s2

y
≥ k′′. Since s2

x
/s2

y
is a

positive constant times the observed value of V , the likelihood ratio test rejects H0
when V is large. This is the same as the F test.

One can easily adapt the above argument for the case in which the inequalities
are reversed in the hypotheses. When the hypotheses are (9.7.7), that is, the alter-
native is two-sided, one can show (see Exercise 16) that the size α0 likelihood ratio
test will reject H0 if either V ≤ c1 or V ≥ c2. Unfortunately, it is usually tedious to
compute the necessary values c1 and c2. For this reason, people often abandon the
strict likelihood ratio criterion in this case and simply let c1 and c2 be the α0/2 and
1 − α0/2 quantiles of the appropriate F distribution.

Derivation of the p.d.f. of an F distribution

Since the random variables Y and W in Definition 9.7.1 are independent, their joint
p.d.f. g(y, w) is the product of their individual p.d.f.’s. Furthermore, since both Y and
W have χ2 distributions, it follows from the p.d.f. of the χ2 distribution, as given in
Eq. 8.2.1, that g(y, w) has the following form, for y > 0 and w > 0:

g(y, w) = cy(m/2)−1w(n/2)−1e−(y+w)/2, (9.7.10)
where

c = 1

2(m+n)/2�

(
1
2
m

)
�

(
1
2
n

) . (9.7.11)

We shall now change variables from Y and W to X and W , where X is defined
by Eq. (9.7.1). The joint p.d.f. h(x, w) of X and W is obtained by first replacing y in
Eq. (9.7.10) with its expression in terms of x and w and then multiplying the result by
|∂y/∂x|. It follows from Eq. (9.7.1) that y = (m/n)xw and ∂y/∂x = (m/n)w. Hence,
the joint p.d.f. h(x, w) has the following form, for x > 0 and w > 0:

h(x, w) = c

(
m

n

)m/2

x(m/2)−1w[(m+n)/2]−1 exp
[
− 1

2

(
m

n
x + 1

)
w

]
. (9.7.12)

Here, the constant c is again given by Eq. (9.7.11).
The marginal p.d.f f (x) of X can be obtained for each value of x > 0 from the

relation

f (x) =
∫ ∞

0
h(x, w) dw. (9.7.13)

It follows from Theorem 5.7.3 that

∫ ∞

0
w[(m+n)/2]−1 exp

[
− 1

2

(
m

n
x + 1

)
w

]
dw =

�

[
1
2
(m + n)

]
[

1
2

(
m

n
x + 1

)](m+n)/2
. (9.7.14)
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From Eqs. (9.7.11) to (9.7.14), we can conclude that the p.d.f f (x) has the form given
in Eq. (9.7.2).

Summary

If Y and W are independent with Y having the χ2 distribution with m degrees of free-
dom and W having the χ2 distribution with n degrees of freedom, then (Y/m)/(W/n)

has the F distribution with m and n degrees of freedom. Suppose that we observe two
independent random samples from two normal distributions with possibly different
variances. The ratio V of the usual unbiased estimators of the two variances will have
an F distribution when the two variances are equal. Tests of hypotheses about the two
variances can be constructed by comparing V to various quantiles of F distributions.

Exercises

1. Consider again the situation described in Exercise 11 of
Sec. 9.6. Test the null hypothesis that the variance of the
fusion time for subjects who saw a picture of the object
is no smaller than the variance for subjects who did see a
picture. The alternative hypothesis is that the variance for
subjects who saw a picture is smaller than the variance
for subjects who did not see a picture. Use a level of
significance of 0.05.

2. Suppose that a random variable X has the F distribu-
tion with three and eight degrees of freedom. Determine
the value of c such that Pr(X > c) = 0.975.

3. Suppose that a random variable X has the F distribu-
tion with one and eight degrees of freedom. Use the table
of the t distribution to determine the value of c such that
Pr(X > c) = 0.3.

4. Suppose that a random variable X has the F distribu-
tion with m and n degrees of freedom (n > 2). Show that
E(X) = n/(n − 2). Hint: Find the value of E(1/Z), where
Z has the χ2 distribution with n degrees of freedom.

5. What is the value of the median of the F distribution
with m and n degrees of freedom when m = n?

6. Suppose that a random variable X has the F distri-
bution with m and n degrees of freedom. Show that the
random variable mX/(mX + n) has the beta distribution
with parameters α = m/2 and β = n/2.

7. Consider two different normal distributions for which
both the means μ1 and μ2 and the variances σ 2

1 and σ 2
2

are unknown, and suppose that it is desired to test the
following hypotheses:

H0: σ 2
1 ≤ σ 2

2,

H1: σ 2
1 > σ 2

2.

Suppose further that a random sample consisting of 16 ob-
servations for the first normal distribution yields the val-
ues

∑16
i=1 Xi = 84 and

∑16
i=1 X2

i
= 563, and an independent

random sample consisting of 10 observations from the sec-
ond normal distribution yields the values

∑10
i=1 Yi = 18 and∑10

i=1 Y 2
i
= 72.

a. What are the M.L.E.’s of σ 2
1 and σ 2

2?

b. If an F test is carried out at the level of significance
0.05, is the hypothesis H0 rejected or not?

8. Consider again the conditions of Exercise 7, but sup-
pose now that it is desired to test the following hypotheses:

H0: σ 2
1 ≤ 3σ 2

2,

H1: σ 2
1 > 3σ 2

2.

Describe how to carry out an F test of these hypotheses.

9. Consider again the conditions of Exercise 7, but sup-
pose now that it is desired to test the following hypotheses:

H0: σ 2
1 = σ 2

2,

H1: σ 2
1 	= σ 2

2.

Suppose also that the statistic V is defined by Eq.
(9.7.4), and it is desired to reject H0 if either V ≤ c1 or V ≥
c2, where the constants c1 and c2 are chosen so that when
H0 is true, Pr(V ≤ c1) = Pr(V ≥ c2) = 0.025. Determine
the values of c1 and c2 when m = 16 and n = 10, as in
Exercise 7.

10. Suppose that a random sample consisting of 16 obser-
vations is available from the normal distribution for which
both the mean μ1 and the variance σ 2

1 are unknown, and
an independent random sample consisting of 10 observa-
tions is available from the normal distribution for which
both the mean μ2 and the variance σ 2

2 are also unknown.
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For each constant r > 0, construct a test of the following
hypotheses at the level of significance 0.05:

H0:
σ 2

1

σ 2
2

= r, H1:
σ 2

1

σ 2
2

	= r.

11. Consider again the conditions of Exercise 10. Use the
results of that exercise to construct a confidence interval
for σ 2

1/σ
2
2 with confidence coefficient 0.95.

12. Suppose that a random variable Y has the χ2 distribu-
tion with m0 degrees of freedom, and let c be a constant
such that Pr(Y > c) = 0.05. Explain why, in the table of
0.95 quantile of the F distribution, the entry for m = m0
and n = ∞ will be equal to c/m0.

13. The final column in the table of the 0.95 quantile of the
F distribution contains values for which m = ∞. Explain
how to derive the entries in this column from a table of
the χ2 distribution.

14. Consider again the conditions of Exercise 7. Find the
power function of the F test when σ 2

1 = 2σ 2
2.

15. Prove Theorem 9.7.5. Also, compute the p-value for
Example 9.7.4 using the formula in Eq. (9.7.8).

16. Let V be as defined in Eq. (9.7.4). We wish to deter-
mine the size α0 likelihood ratio test of the hypotheses
(9.7.7). Prove that the likelihood ratio test will reject H0 if

either V ≤ c1 or V ≥ c2, where Pr(V ≤ c1) + Pr(V ≥ c2) =
α0 when σ 2

1 = σ 2
2.

17. Prove that the test found in Exercise 9 is not a likeli-
hood ratio test.

18. Let δ be the two-sided F test that rejects H0 in (9.7.3)
when either V ≤ c1 or V ≥ c2 with c1 < c2. Prove that the
power function of δ is

π(μ1, μ2, σ 2
1 , σ 2

2 |δ)

= Gm−1,n−1

(
σ 2

2

σ 2
1

c1

)
+ 1 − Gm−1,n−1

(
σ 2

2

σ 2
1

c2

)
.

19. Suppose that X1, . . . , X11 form a random sample from
the normal distribution with unknown mean μ1 and un-
known variance σ 2

1 . Suppose also that Y1, . . . , Y21 form
an independent random sample from the normal distribu-
tion with unknown mean μ2 and unknown variance σ 2

2 .
Suppose that we wish to test the hypotheses in Eq. (9.7.7).
Let δ be the equal-tailed two-sided F test with level of
significance α0 = 0.5.

a. Compute the power function of δ when σ 2
1 = 1.01σ 2

2 .

b. Compute the power function of δ when σ 2
1 = σ 2

2 /1.01.

c. Show that δ is not an unbiased test. (You will proba-
bly need computer software that computes the func-
tion Gm−1,n−1. And try to minimize the amount of
rounding you do.)

� 9.8 Bayes Test Procedures
Here we summarize how one tests hypotheses from the Bayesian perspective. The
general idea is to choose the action (reject H0 or not) that leads to the smaller
posterior expected loss. We assume that the loss of making an incorrect decision is
larger than the loss of making a correct decision. Many of the Bayes test procedures
have the same forms as the tests we have already seen, but their interpretations are
different.

Simple Null and Alternative Hypotheses

Example
9.8.1

Service Times in a Queue. In Example 9.2.1, a manager was trying to decide which of
two joint distributions better describes customer service times. She was comparing
the two joint p.d.f.’s f1 and f0 in Eqs. (9.2.1) and (9.2.2), respectively. Suppose that
there are costs involved in making a bad choice. For example, if she chooses a joint
distribution that models the service times as shorter than they really tend to be,
there may be a cost due to customers becoming frustrated and taking their business
elsewhere. On the other hand, if she chooses a joint distribution that models the
service times as longer than they really tend to be, there may be a cost due to hiring
additional unnecessary servers. How should the manager weigh these costs together
with available evidence about how long she believes service times tend to be in order
to choose between the two joint distributions? �
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Consider a general problem in which the parameter space consists of two values
� = {θ0, θ1}. If θ = θi (for i = 0, 1), let X1, . . . , Xn form a random sample from a
distribution for which the p.d.f. or the p.f. is fi(x). Suppose that it is desired to test
the following simple hypotheses:

H0: θ = θ0,

H1: θ = θ1.
(9.8.1)

We shall let d0 denote the decision not to reject the hypothesis H0 and let d1
denote the decision to reject H0. Also, we shall assume that the losses resulting from
choosing an incorrect decision are as follows: If decision d1 is chosen when H0 is
actually the true hypothesis (type I error), then the loss is w0 units; if decision d0 is
chosen when H1 is actually the true hypothesis (type II error), then the loss is w1
units. If the decision d0 is chosen when H0 is the true hypothesis or if the decision d1
is chosen when H1 is the true hypothesis, then the correct decision has been made
and the loss is 0. Thus, for i = 0, 1 and j = 0, 1, the loss L(θi, dj) that occurs when θi

is the true value of θ and the decision dj is chosen is given by the following table:

(9.8.2)
d0 d1

θ0 0 w0

θ1 w1 0

Next, suppose that the prior probability that H0 is true is ξ0, and the prior
probability that H1 is true is ξ1 = 1 − ξ0. Then the expected loss r(δ) of each test
procedure δ will be

r(δ) = ξ0E(Loss |θ = θ0) + ξ1E(Loss|θ = θ1). (9.8.3)

If α(δ) and β(δ) again denote the probabilities of the two types of errors for the
procedure δ, and if the table of losses just given is used, it follows that

E(Loss|θ = θ0) = w0 Pr(Choosing d1|θ = θ0) = w0α(δ),

E(Loss|θ = θ1) = w1 Pr(Choosing d0|θ = θ1) = w1β(δ).
(9.8.4)

Hence,

r(δ) = ξ0w0α(δ) + ξ1w1β(δ). (9.8.5)

A procedure δ for which this expected loss r(δ) is minimized is called a Bayes test
procedure.

Since r(δ) is simply a linear combination of the form aα(δ) + bβ(δ) with a =
ξ0w0 and b = ξ1w1, a Bayes test procedure can immediately be determined from
Theorem 9.2.1. Thus, a Bayes procedure will not reject H0 whenever ξ0w0f0(x) >

ξ1w1f1(x) and will reject H0 whenever ξ0w0f0(x) < ξ1w1f1(x). We can either reject
H0 or not if ξ0w0f0(x) = ξ1w1f1(x). For simplicity, in the remainder of this section,
we shall assume that H0 is rejected whenever ξ0w0f0(x) = ξ1w1f1(x).

Note: Bayes Test Depends Only on the Ratio of Costs. Notice that choosing δ to
minimize r(δ) in Eq. (9.8.5) is not affected if we multiply w0 and w1 by the same
positive constant, such as 1/w0. That is, the Bayes test δ is also the test that minimizes

r∗(δ) = ξ0α(δ) + ξ1
w1

w0
β(δ).

So, a decision maker does not need to choose both of the two costs of error, but
rather just the ratio of the two costs. One can think of choosing the ratio of costs as
a replacement for specifying a level of significance when selecting a test procedure.
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Example
9.8.2

Service Times in a Queue. Suppose that the manager believes that each of the two
models for service times is equally likely before observing any data so that ξ0 = ξ1 =
1/2. The model with joint p.d.f. f1 predicts both extremely large service times and
extremely small service times to be more likely than does the model with joint p.d.f.
f0. Suppose that the cost of modeling extremely large service times as being less likely
than they really are is the same as the cost of modeling extremely large service times
to be more likely than they really are. The ratio of the cost of type II error w1 to the
cost of type I error w0 is then w1/w0 = 1. The Bayes test is then to choose d1 (reject
H0) if f0(x) < f1(x). This is equivalent to f1(x)/f0(x) > 1. �

Tests Based on the Posterior Distribution

From the Bayesian viewpoint, it is more natural to base a test on the posterior
distribution of θ rather than on the prior distribution and the probabilities of error
as we did in the preceding discussion. Fortunately, the same test procedure arises
regardless of how one derives it. For example, Exercise 5 in this section asks you to
prove that the test derived by minimizing a linear combination of error probabilities
is the same as what one would obtain by minimizing the posterior expected value
of the loss. The same is true in general when the losses are bounded, but the proof
is more difficult. For the remainder of this section, we shall take the more natural
approach of trying to minimize the posterior expected value of the loss directly.

Return again to the general situation in which the null hypothesis is H0 : θ ∈ �0
and the alternative hypothesis is H1 : θ ∈ �1, where �0 ∪ �1 is the entire parameter
space. As we did above, we shall let d0 denote the decision not to reject the null
hypothesis H0 and let d1 denote the decision to reject H0. As before, we shall assume
that we incur a loss of w0 by making decision d1 when H0 is actually true, and a loss of
w1 is incurred if we make decision d0 when H1 is true. (More realistic loss functions
are available, but this simple type of loss will suffice for an introduction.) The loss
function L(θ, di) can be summarized in the following table:

(9.8.6)
d0 d1

If H0 is true 0 w0

If H1 is true w1 0

We shall now take the approach outlined in Exercise 5. Suppose that ξ(θ |x) is the
posterior p.d.f. for θ . Then the posterior expected loss r(di|x) for choosing decision
di (i = 0, 1) is

r(di|x) =
∫

L(θ, di)ξ(θ |x) dθ.

We can write a simpler formula for this posterior expected loss for each of i = 0, 1:

r(d0|x) =
∫

�1

w1ξ(θ |x) dθ = w1[1 − Pr(H0 true|x)],

r(d1|x) =
∫

�0

w0ξ(θ |x) dθ = w0 Pr(H0 true|x).

The Bayes test procedure is to choose the decision that has the smaller posterior
expected loss, that is, choose d0 if r(d0|x) < r(d1|x), choose d1 if r(d0|x) ≥ r(d1|x).
Using the expressions above, it is easy to see that the inequality r(d0|x) ≥ r(d1|x)
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(when to reject H0) can be rewritten as

Pr(H0 true|x) ≤ w1

w0 + w1
, (9.8.7)

just as in part (c) of Exercise 5.
The test procedure that rejects H0 when (9.8.7) holds is the Bayes test in all

situations in which the loss function is given by the table in (9.8.6). This result holds
whether or not the distributions have monotone likelihood ratio, and it even applies
when the alternative is two-sided or when the parameter is discrete rather than
continuous. Furthermore, the Bayes test produces the same result if one were to
switch the names of H0 and H1, as well as the losses w0 and w1 and the names of the
decisions d0 and d1. (See Exercise 11 in this section.)

Despite the generality of (9.8.7), it is instructive to examine what the procedure
looks like in special cases that we have already encountered.

One-Sided Hypotheses

Suppose that the family of distributions has a monotone likelihood ratio and that the
hypotheses are

H0: θ ≤ θ0,

H1: θ > θ0.
(9.8.8)

We shall prove next that the Bayes procedure that rejects H0 when (9.8.7) holds is a
one-sided test as in Theorem 9.3.1.

Theorem
9.8.1

Suppose that fn(x|θ) has a monotone likelihood ratio in the statistic T = r(X). Let
the hypotheses be as in Eq. (9.8.8), and assume that the loss function is of the form

d0 d1

θ ≤ θ0 0 w0

θ > θ0 w1 0

where w0, w1 > 0 are constants. Then a test procedure that minimizes the posterior
expected loss is to reject H0 when T ≥ c for some constant c (possibly infinite).

Proof According to Bayes’ theorem for parameters and samples, (7.2.7), the poste-
rior p.d.f. ξ(θ |x) can be expressed as

ξ(θ |x) = fn(x|θ)ξ(θ)∫
�

fn(x|ψ)ξ(ψ) dψ
.

The ratio of the posterior expected loss from making decision d0 to the posterior
expected loss from making decision d1 after observing X = x is

�(x) =
∫ ∞
θ0

w1ξ(θ |x) dθ∫ θ0
−∞ w0ξ(ψ |x) dψ

=
w1

∫ ∞
θ0

fn(x|θ)ξ(θ) dθ

w0
∫ θ0
−∞ fn(x|ψ)ξ(ψ) dψ

. (9.8.9)

What we need to prove is that �(x) ≥ 1 is equivalent to T ≥ c. It suffices to show
that �(x) is a nondecreasing function in T = r(x). Let x1 and x2 be two possible
observations with the property that r(x1) ≤ r(x2). We want to prove that �(x1) ≤ �(x2).
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We can write

�(x1) − �(x2) =
w1

∫ ∞
θ0

fn(x1|θ)ξ(θ) dθ

w0
∫ θ0
−∞ fn(x1|ψ)ξ(ψ) dψ

−
w1

∫ ∞
θ0

fn(x2|θ)ξ(θ) dθ

w0
∫ θ0
−∞ fn(x2|ψ)ξ(ψ) dψ

. (9.8.10)

We can put the two fractions on the right side of Eq. (9.8.10) over the common
denominator w2

0

∫ θ0
−∞ fn(x2|ψ)ξ(ψ) dψ

∫ θ0
−∞ fn(x1|ψ)ξ(ψ) dψ . The numerator of the

resulting fraction is w0w1 times∫ ∞

θ0

fn(x1|θ)ξ(θ) dθ

∫ θ0

−∞
fn(x2|ψ)ξ(ψ) dψ

−
∫ ∞

θ0

fn(x2|θ)ξ(θ) dθ

∫ θ0

−∞
fn(x1|ψ)ξ(ψ) dψ. (9.8.11)

We only need to show that (9.8.11) is at most 0. The difference in (9.8.11) can be
written as the double integral∫ ∞

θ0

∫ θ0

−∞
ξ(θ)ξ(ψ)[fn(x1|θ)fn(x2|ψ) − fn(x2|θ)fn(x1|ψ)] dψ dθ. (9.8.12)

Notice that for all θ and ψ in this double integral, θ ≥ θ0 ≥ ψ . Since r(x1) ≤ r(x2),
monotone likelihood ratio implies that

fn(x1|θ)

fn(x1|ψ)
− fn(x2|θ)

fn(x2|ψ)
≤ 0.

If one multiplies both sides of this last expression by the product of the two denom-
inators, the result is

fn(x1|θ)fn(x2|ψ) − fn(x2|θ)fn(x1|ψ) ≤ 0. (9.8.13)

Notice that the left side of Eq. (9.8.13) appears inside the square brackets in the
integrand of (9.8.12). Since this is nonpositive, it implies that (9.8.12) is at most 0,
and so (9.8.11) is at most 0.

Example
9.8.3

Calorie Counts on Food Labels. In Example 7.3.10 on page 400, we were interested in
the percentage differences between the observed and advertised calorie counts for
nationally prepared foods. We modeled the differences X1, . . . , X20 as normal ran-
dom variables with mean θ and variance 100. The prior for θ was a normal distribution
with mean 0 and variance 60. The family of normal distributions has a monotone like-
lihood ratio in the statistic X20 = 1

20

∑20
i=1 Xi. The posterior distribution of θ is the

normal distribution with mean

μ1 = 100 × 0 + 20 × 60 × X20

100 + 20 × 60
= 0.923X20

and variance v2
1 = 4.62. Suppose that we wish to test the null hypothesis H0 : θ ≤ 0

versus the alternative H1 : θ > 0. The posterior probability that H0 is true is

Pr(θ ≤ 0|X20) = �

(
0 − μ1

v1

)
= �(−0.429X20).

The Bayes test will reject H0 if this probability is at most w1/(w0 + w1). Since �

is a strictly increasing function, �(−0.429X20) ≤ w1/(w0 + w1) if and only if X20 ≥
−�−1(w1/(w0 + w1))/0.492. This is in the form of a one-sided test. �



610 Chapter 9 Testing Hypotheses

Two-Sided Alternatives

On page 571, we argued that the hypotheses

H0: θ = θ0,

H1: θ 	= θ0
(9.8.14)

might be a useful surrogate for the null hypothesis that θ is close to θ0 against the
alternative that it is not close. If the prior distribution of θ is continuous, then the
posterior distribution will usually be continuous as well. In such cases, the posterior
probability that H0 is true will be 0, and H0 would be rejected without having to refer
to the data. If one believed that θ = θ0 with positive probability, one should use a
prior distribution that is not continuous, but we shall not take that approach here.
(See a more advanced text, such as Schervish, 1995, section 4.2, for treatment of that
approach.) Instead, we can calculate the posterior probability that θ is close to θ0. If
this probability is too small, we can reject the null hypothesis that θ is close to θ0. To
be specific, let d > 0, and consider the hypotheses

H0: |θ − θ0| ≤ d,

H1: |θ − θ0| > d.
(9.8.15)

Many experimenters might choose to test the hypotheses in (9.8.14) rather than those
in (9.8.15) because they are not ready to specify a particular value of d. In such cases,
one could calculate the posterior probability of |θ − θ0| ≤ d for all d and draw a little
plot.

Example
9.8.4

Calorie Counts on Food Labels. Suppose that we wish to test the hypotheses (9.8.15)
with θ0 = 0 in the situation described in Example 9.8.3. In Example 7.3.10, we found
that the posterior distribution of θ was the normal distribution with mean 0.1154 and
variance 4.62. We can easily calculate

Pr(|θ − 0| ≤ d|x) = Pr(−d ≤ θ ≤ d|x) = �

(
d − 0.1154

4.621/2

)
− �

(−d − 0.1154
4.621/2

)
,

for every value of d that we want. Figure 9.16 shows a plot of the posterior probability
that |θ | is at most d for all values of d between 0 and 5. In particular, we see that
Pr(|θ | ≤ 5|x) is very close to 1. If 5 percent is considered a small discrepancy, then we
can be pretty sure that |θ | is small. On the other hand, Pr(|θ | ≥ 1|x) is greater than
0.6. If 1 percent is considered large, then there is a substantial chance that |θ | is large.

�

Figure 9.16 Plot of Pr(|θ | ≤
d|x) against d for Exam-
ple 9.8.4. The dotted lines
indicate that the median of
the posterior distribution of
|θ | is 1.455.
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Note: What Counts as a Meaningful Difference?. The method illustrated in Ex-
ample 9.8.4 raises a useful point. In order to complete the test procedure, we need
to decide what counts as a meaningful difference between θ and θ0. Otherwise, we
cannot say whether or not the probability is large that a meaningful difference ex-
ists. Forcing experimenters to think about what counts as a meaningful difference is
a good idea. Testing the hypotheses (9.8.14) at a fixed level, such as 0.05, does not
require anyone to think about what counts as a meaningful difference. Indeed, if an
experimenter did bother to decide what counted as a meaningful difference, it is not
clear how to make use of that information in choosing a significance level at which
to test the hypotheses in (9.8.14).

Testing the Mean of a Normal Distribution with Unknown Variance

In Sec. 8.6, we considered the case in which a random sample is drawn from a normal
distribution with unknown mean and variance. We introduced a family of conjugate
prior distributions and found that the posterior distribution of a linear function of the
mean μ is a t distribution. If we wish to test the null hypothesis that μ lies in an interval
using (9.8.7) as the condition for rejecting the null hypothesis, then we only need a
table or computer program to calculate the c.d.f. of an arbitrary t distribution. Most
statistical software packages allow calculation of the c.d.f. and the quantile function of
an arbitrary t distribution, and hence we can perform Bayes tests of null hypotheses
of the form μ ≤ μ0, μ ≥ μ0, or d1 ≤ μ ≤ d2.

Example
9.8.5

Pesticide Residue on Celery. Sharpe and Van Middelem (1955) describe an experiment
in which n = 77 samples of parathion residue were measured on celery after the
vegetable had been taken from fields sprayed with parathion. Figure 9.17 shows
a histogram of the observations. (Each concentration Z in parts per million was
transformed to X = 100(Z − 0.7) for ease of recording.) Suppose that we model the
X values as normal with mean μ and variance σ 2. We will use an improper prior for
μ and σ 2. The sample average is xn = 50.23, and

s2
n

=
77∑
i=1

(xi − x77)
2 = 34106.

As we saw in Eq. (8.6.21), this means that the posterior distribution of

n1/2(μ − xn)

(s2
n
/(n − 1))1/2

= 771/2(μ − 50.23)
(34106/76)1/2

= 0.4142μ − 20.81

Figure 9.17 Histogram of
parathion measurements on
77 celery samples.
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is the t distribution with 76 degrees of freedom. Suppose that we are interested in
testing the null hypothesis H0 : μ ≥ 55 against the alternative H1 : μ < 55. Suppose
that our losses are described by (9.8.6). Then we should reject H0 if its posterior
probability is at most α0 = w1/(w0 + w1). If we let Tn−1 stand for the c.d.f. of the t

distribution with n − 1 degrees of freedom, we can write this probability as

Pr(μ ≥ 55|x) = Pr

(
n1/2(μ − xn)

(s2
n
/(n − 1))1/2

≥ n1/2(55 − xn)

(s2
n
/(n − 1))1/2

∣∣∣∣∣ x

)

= 1 − Tn−1

(
n1/2(55 − xn)

(s2
n
/(n − 1))1/2

)
. (9.8.16)

Simple manipulation shows that this last probability is at most α0 if and only if
U ≤ T −1

n−1(1 − α0), where U is the random variable in Eq. (9.5.2) that was used to
define the t test. Indeed, the level α0 t test of H0 versus H1 is precisely to reject H0
if U ≤ T −1

n−1(1 − α0). For the data in this example, the probability in Eq. (9.8.16) is
1 − T76(1.974) = 0.026. �

Note: Look at Your Data. The histogram in Fig. 9.17 has a strange feature. Can you
specify what it is? If you take a course in data analysis, you will probably learn some
methods for dealing with data having features like this.

Note: Bayes Tests for One-Sided Nulls with Improper Priors Are t Tests. In Exam-
ple 9.8.5, we saw that the Bayes test for one-sided hypotheses was the level α0 t test
for the same hypotheses where α0 = w1/(w0 + w1). This holds in general for normal
data with improper priors. It also follows that the p-values in these cases must be the
same as the posterior probabilities that the null hypotheses are true. (See Exercise 7
in this section.)

Comparing the Means of Two Normal Distributions

Next, consider the case in which we shall observe two independent normal random
samples with common variance σ 2: X1, . . . , Xm with mean μ1 and Y1, . . . , Yn with
mean μ2. In order to use the Bayesian approach, we need the posterior distribution
of μ1 − μ2. We could introduce a family of conjugate prior distributions for the three
parameters μ1, μ2, and τ = 1/σ 2, and then proceed as we did in Sec. 8.6. For simplicity,
we shall only handle the case of improper priors in this section, although there are
proper conjugate priors that will lead to more general results. The usual improper
prior for each parameter μ1 and μ2 is the constant function 1, and the usual improper
prior for τ is 1/τ for τ > 0. If we combine these as if the parameters were independent,
the improper prior p.d.f. would be ξ(μ1, μ2, τ ) = 1/τ for τ > 0. We can now find the
posterior joint distribution of the parameters.

Theorem
9.8.2

Suppose that X1, . . . , Xm form a random sample from a normal distribution with
mean μ1 and precision τ while Y1, . . . , Yn form a random sample from a normal
distribution with mean μ2 and precision τ . Suppose that the parameters have the
improper prior with “p.d.f.” ξ(μ1, μ2, τ ) = 1/τ for τ > 0. The posterior distribution
of

(m + n − 2)1/2 μ1 − μ2 − (xm − yn)(
1
m

+ 1
n

)1/2

(s2
x

+ s2
y
)1/2

(9.8.17)
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is the t distribution with m + n − 2 degrees of freedom, where s2
x

and s2
y

are the

observed values of S2
X

and S2
Y

, respectively.

The proof of Theorem 9.8.2 is left as Exercise 8 because it is very similar to results
proven in Sec. 8.6.

For testing the hypotheses

H0: μ1 − μ2 ≤ 0,

H1: μ1 − μ2 > 0,

we need the posterior probability that μ1 − μ2 ≤ 0, which is easily obtained from
the posterior distribution. Using the same idea as in Eq. (9.8.16), we can write
Pr(μ1 − μ2 ≤ 0|x, y) as the probability that the random variable in (9.8.17) is at most
−u, where u is the observed value of the random variable U in Eq. (9.6.3). It follows
that

Pr(μ1 − μ2 ≤ 0|x, y) = Tm+n−2(−u),

where Tm+n−2 is the c.d.f. of the t distribution with m + n − 2 degrees of freedom.
Hence, the posterior probability that H0 is true is less than w1/(w0 + w1) if and only
if

Tm+n−2(−u) <
w1

w0 + w1
.

This, in turn is true if and only if

−u < T −1
m+n−2

(
w1

w0 + w1

)
.

This is true if and only if

u > T −1
m+n−2

(
1 − w1

w0 + w1

)
. (9.8.18)

If α0 = w1/(w0 + w1), then the Bayes test procedure that rejects H0 when Eq. (9.8.18)
occurs is the same as the level α0 two-sample t test derived in Sec. 9.6. Put another
way, the one-sided level α0 two-sample t test rejects the null hypothesis H0 if and only
if the posterior probability that H0 is true (based on the improper prior) is at most α0.
It follows from Exercise 7 that the posterior probability of the null hypothesis being
true must equal the p-value in this case.

Example
9.8.6

Roman Pottery in Britain. In Example 9.6.3, we observed 14 samples of Roman pottery
from Llanederyn in Great Britain and another five samples from Ashley Rails, and
we were interested in whether the mean aluminum oxide percentage in Llanederyn
μ1 was larger than that in Ashley Rails μ2. We tested H0 : μ1 ≥ μ2 against H1 : μ1 < μ2
and found that the p-value was 4 × 10−6. If we had used an improper prior for the
parameters, then Pr(μ1 ≥ μ2|x) = 4 × 10−6. �

Two-Sided Alternatives with Unknown Variance To test the hypothesis that the
mean μ of a normal distribution is close to μ0, we could specify a specific value d and
test

H0: |μ − μ0| ≤ d,

H1: |μ − μ0| > d.

If we do not feel comfortable selecting a single value of d to represent “close,” we
could compute Pr(|μ − μ0| ≤ d|x) for all d and draw a plot as we did in Example 9.8.4.
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Figure 9.18 Plot of Pr(|μ1 −
μ2| ≤ d|x) against d. The
dotted lines indicate that
the median of the posterior
distribution of |μ1 − μ2| is
4.76.
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The case of testing that two means are close together can be dealt with in the same
way.

Example
9.8.7

Roman Pottery in Britain. In Example 9.8.6, we tested one-sided hypotheses about the
difference in aluminum oxide contents in samples of pottery from two sites in Great
Britain. Unless we are specifically looking for a difference in a particular direction,
it might make more sense to test hypotheses of the form

H0: |μ1 − μ2| ≤ d,

H1: |μ1 − μ2| > d,
(9.8.19)

where d is some critical difference that is worth detecting. As we did in Example 9.8.4,
we can draw a plot that allows us to test all hypotheses of the form (9.8.19) simultane-
ously. We just plot Pr(|μ1 − μ2| ≤ d|x) against d . The posterior distribution of μ1 − μ2
was found in Eq. (9.8.17), using the improper prior. In this case, the following random
variable has the t distribution with 17 degrees of freedom:

(m + n − 2)1/2 μ1 − μ2 − (xm − yn)(
1
m

+ 1
n

)1/2
(s2

x
+ s2

y
)1/2

= 171/2 μ1 − μ2 − (12.56 − 17.32)(
1

14 + 1
5

)1/2
(24.65 + 11.01)1/2

= 1.33(μ1 − μ2 + 4.76),

where the data summaries come from Example 9.6.3. It follows that

Pr(|μ1 − μ2| ≤ d|x)

= Pr(1.33(−d + 4.76) ≤ 1.33(μ1 − μ2 + 4.76) ≤ 1.33(d + 4.76)|x)

= T17(1.33(d + 4.76)) − T17(1.33(−d + 4.76)),

where T17 is the c.d.f. of the t distribution with 17 degrees of freedom. Figure 9.18 is
the plot of this posterior probability against d. �

Comparing the Variances of Two Normal Distributions

In order to test hypotheses concerning the variances of two normal distributions, we
can make use of the posterior distribution of the ratio of the two variances. Suppose
that X1, . . . , Xm is a random sample from the normal distribution with mean μ1
and variance σ 2

1 , and Y1, . . . , Yn is a random sample from the normal distribution
with mean μ2 and variance σ 2

2 . If we model the X data and associated parameters
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as independent of the Y data and associated parameters, then we can perform two
separate analyses just like the one in Sec. 8.6. In particular, we let τi = 1/σ 2

i
for i = 1, 2,

and the joint posterior distribution will have (μ1, τ1) independent of (μ2, τ2) and
each pair will have a normal-gamma distribution just as in Sec. 8.6. For convenience,
we shall only do the remaining calculations using improper priors. With improper
priors, the posterior distribution of τ1 is the gamma distribution with parameters
(m − 1)/2 and s2

x
/2, where s2

x
is defined in Theorem 9.8.2. We also showed in Sec. 8.6

(using Exercise 1 in Sec. 5.7) that τ1s
2
x

has the χ2 distribution with m − 1 degrees of
freedom. Similarly, τ2s

2
y

has the χ2 distribution with n − 1 degrees of freedom. Since

τ1s
2
x
/(m − 1) and τ2s

2
y
/(n − 1) are independent, their ratio has the F distribution with

m − 1 and n − 1 degrees of freedom. That is, the posterior distribution of

τ1s
2
x
/(m − 1)

τ2s
2
y
/(n − 1)

= s2
x
/[(m − 1)σ 2

1]

s2
y
/[(n − 1)σ 2

2]
(9.8.20)

is the F distribution with m − 1 and n − 1 degrees of freedom. Notice that the
expression on the right side of Eq. (9.8.20) is the same as the random variable V ∗
in Eq. (9.7.5). This is another case in which the sampling distribution of a random
variable is the same as its posterior distribution. It will then follow that level α0 tests
of one-sided hypotheses about σ 2

1/σ
2
2 based on the sampling distribution of V ∗ will be

the same as Bayes tests of the form (9.8.7) so long as α0 = w1/(w0 + w1). The reader
can prove this in Exercise 9.

Summary

From a Bayesian perspective, one chooses a test procedure by minimizing the pos-
terior expected loss. When the loss has the simple form of (9.8.6), then the Bayes
test procedure is to reject H0 when its posterior probability is at most w1/(w0 + w1).
In many one-sided cases, with improper priors, this procedure turns out to be the
same as the most commonly used level α0 = w1/(w0 + w1) test. In two-sided cases,
as an alternative to testing H0 : θ = θ0 against H1 : θ 	= θ0, one can draw a plot of
Pr(|θ − θ0| ≤ d|x) against d. One then needs to decide which values of d count as
meaningful differences.

Exercises

1. Suppose that a certain industrial process can be either
in control or out of control, and that at any specified time
the prior probability that it will be in control is 0.9, and
the prior probability that it will be out of control is 0.1. A
single observation X of the output of the process is to be
taken, and it must be decided immediately whether the
process is in control or out of control. If the process is
in control, then X will have the normal distribution with
mean 50 and variance 1.If the process is out of control,
then X will have the normal distribution with mean 52 and
variance 1.

If it is decided that the process is out of control when
in fact it is in control, then the loss from unnecessarily
stopping the process will be $1000. If it is decided that the
process is in control when in fact it is out of control, then

the loss from continuing the process will be $18,000. If a
correct decision is made, then the loss will be 0. It is desired
to find a test procedure for which the expected loss will be
a minimum. For what values of X should it be decided that
the process is out of control?

2. A single observation X is to be taken from a continuous
distribution for which the p.d.f. is either f0 or f1, where

f0(x) =
{

1 for 0 < x < 1,
0 otherwise,

and

f1(x) =
{

4x3 for 0 < x < 1,
0 otherwise.
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On the basis of the observation X, it must be decided
whether f0 or f1 is the correct p.d.f. Suppose that the prior
probability that f0 is correct is 2/3 and the prior probability
that f1 is correct is 1/3. Suppose also that the loss from
choosing the correct decision is 0, the loss from deciding
that f1 is correct when in fact f0 is correct is 1 unit, and
the loss from deciding that f0 is correct when in fact f1 is
correct is 4 units. If the expected loss is to be minimized,
for what values of X should it be decided that f0 is correct?

3. Suppose that a failure in a certain electronic system can
occur because of either a minor or a major defect. Suppose
also that 80 percent of the failures are caused by minor
defects, and 20 percent of the failures are caused by major
defects. When a failure occurs, n independent soundings
X1, . . . , Xn are made on the system. If the failure was
caused by a minor defect, these soundings form a random
sample from the Poisson distribution with mean 3. If the
failure was caused by a major defect, these soundings form
a random sample from a Poisson distribution for which
the mean is 7. The cost of deciding that the failure was
caused by a major defect when it was actually caused
by a minor defect is $400. The cost of deciding that the
failure was caused by a minor defect when it was actually
caused by a major defect is $2500. The cost of choosing a
correct decision is 0. For a given set of observed values of
X1, . . . , Xn, which decision minimizes the expected cost?

4. Suppose that the proportion p of defective items in a
large manufactured lot is unknown, and it is desired to test
the following simple hypotheses:

H0: p = 0.3,
H1: p = 0.4.

Suppose that the prior probability that p = 0.3 is 1/4, and
the prior probability that p = 0.4 is 3/4; also suppose that
the loss from choosing an incorrect decision is 1 unit, and
the loss from choosing a correct decision is 0. Suppose that
a random sample of n items is selected from the lot. Show
that the Bayes test procedure is to reject H0 if and only if
the proportion of defective items in the sample is greater
than

log
(

7
6

)
+ 1

n
log

(
1
3

)
log

(
14
9

) .

5. Suppose that we wish to test the hypotheses (9.8.1). Let
the loss function have the form of (9.8.2).

a. Prove that the posterior probability of θ = θ0 is
ξ0f0(x)/[ξ0f0(x) + ξ1f1(x)].

b. Prove that a test that minimizes r(δ) also minimizes
the posterior expected value of the loss given X = x
for all x.

c. Prove that the following test is one of the tests de-
scribed in part (b): “reject H0 if Pr(H0 true|x) ≤
w1/(w0 + w1).”

6. Prove that the conclusion of Theorem 9.8.1 still holds
when the loss function is given by

d0 d1

θ ≤ θ0 0 w0(θ)

θ > θ0 w1(θ) 0

for arbitrary positive functions w0(θ) and w1(θ). Hint:
Replicate the proof of Theorem 9.8.1, but replace the con-
stants w0 and w1 by the functions above and keep them
inside of the integrals instead of factoring them out.

7. Suppose that we have a situation in which the Bayes
test that rejects H0 when Pr(H0 true |x) ≤ α0 is the same
as the level α0 test of H0 for all α0. (Example 9.8.5 has this
property, but so do many other situations.) Prove that the
p-value equals the posterior probability that H0 is true.

8. In this exercise you will prove Theorem 9.8.2.

a. Prove that the joint p.d.f. of the data given the pa-
rameters μ1, μ2, and τ can be written as a constant
times

τ (m+n)/2 exp
(
−0.5mτ(μ1 − xm)2

−0.5nτ(μ2 − yn)
2 − 0.5(s2

x
+ s2

y
)τ

)
.

b. Multiply the prior p.d.f. times the p.d.f. in part (a).
Bayes’ theorem for random variables says that the
result is proportional (as a function of the parame-
ters) to the posterior p.d.f.

i. Show that the posterior p.d.f., as a function of
μ1 for fixed μ2 and τ , is the p.d.f. of the normal
distribution with mean xm and variance (mτ)−1.

ii. Show that the posterior p.d.f., as a function of
μ2 for fixed μ1 and τ , is the p.d.f. of the normal
distribution with mean yn and variance
(nτ)−1.

iii. Show that, conditional on τ , μ1 and μ2 are inde-
pendent with the two normal distributions found
above.

iv. Show that the marginal posterior distribution
of τ is the gamma distribution with parameters
(m + n − 2)/2 and (s2

x
+ s2

y
)/2.

c. Show that the conditional distribution of

Z = τ 1/2 μ1 − μ2 − (xm − yn)(
1
m

+ 1
n

)1/2

given τ is a standard normal distribution and hence
Z is independent of τ .
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d. Show that the distribution of W = (s2
x

+ s2
y
)τ is the

gamma distribution with parameters (m + n − 2)/2
and 1/2, which is the same as the χ2 distribution with
m + n − 2 degrees of freedom.

e. Prove that Z/(W/(m + n − 2))1/2 has the t distribu-
tion with m + n − 2 degrees of freedom and that it
equals the expression in Eq. (9.8.17).

9. Suppose that X1, . . . , Xm form a random sample from
the normal distribution with mean μ1 and variance σ 2

1 ,
and Y1, . . . , Yn form a random sample from the normal
distribution with mean μ2 and variance σ 2

2 . Suppose that
we use the usual improper prior and that we wish to test
the hypotheses

H0: σ 2
1 ≤ σ 2

2,

H1: σ 2
1 > σ 2

2.

a. Prove that the level α0 F test is the same as the test
in (9.8.7) when α0 = w1/(w0 + w1).

b. Prove that the p-value for the F test is the posterior
probability that H0 is true.

10. Consider again the situation in Example 9.6.2. Let μ1
be the mean of log-rainfall from seeded clouds, and let μ2
be the mean of log-rainfall from unseeded clouds. Use the
improper prior for the parameters.

a. Find the posterior distribution of μ1 − μ2.

b. Draw a graph of the posterior probability that
|μ1 − μ2| ≤ d as a function of d .

11. Let θ be a general parameter taking values in a param-
eter space �. Let �′ ⋃ �′′ = � be a partition of � into two
disjoint sets �′ and �′′. We want to choose between two
decisions: d ′ says that θ ∈ �′, and d ′′ says that θ ∈ �′′. We
have the following loss function:

d ′ d ′′

If θ ∈ �′ 0 w′

If θ ∈ �′′ w′′ 0

We have two choices for expressing this decision problem
as a hypothesis-testing problem. One choice would be to
define H0 : θ ∈ �′ and H1 : θ ∈ �′′. The other choice would
be to define H0 : θ ∈ �′′ and H1 : θ ∈ �′. In this problem,
we show that the Bayes test makes the same decision
regardless of which hypothesis we call the null and which
we call the alternative.

a. For each choice, say how we would define each of
the following in order to make this problem fit the
hypothesis-testing framework described in this sec-
tion: w0, w1, d0, d1, �0, and �1.

b. Now suppose that we can observe data X = x and
compute the posterior distribution of θ , ξ(θ |x). Show
that, for each of the two setups constructed in the
previous part, the Bayes test chooses the same deci-
sion d ′ or d ′′. That is, observing x leads to choosing
d ′ in the first setup if and only if observing x leads to
choosing d ′ in the second setup. Similarly, observing
x leads to choosing d ′′ in the first setup if and only if
observing x leads to choosing d ′′ in the second setup.

� 9.9 Foundational Issues
We discuss the relationship between significance level and sample size. We also
distinguish between results that are significant in the statistical sense and those that
are significant in a practical sense.

The Relationship between Level of Significance and Sample Size

In many statistical applications, it has become standard practice for an experimenter
to specify a level of significance α0, and then to find a test procedure with a large
power function on the alternative hypothesis among all procedures whose size α(δ) ≤
α0. Alternatively, the experimenter will compute a p-value and report whether or
not it was less than α0. For the case of testing simple null and alternative hypotheses,
the Nayman-Pearson lemma explicitly describes how to construct such a procedure.
Furthermore, it has become traditional in many applications to choose the level of
significance α0 to be 0.10, 0.05, or 0.01. The selected level depends on how serious the
consequences of an error of type I are judged to be. The value of α0 most commonly
used is 0.05. If the consequences of an error of type I are judged to be relatively mild
in a particular problem, the experimenter may choose α0 to be 0.10. On the other
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hand, if these consequences are judged to be especially serious, the experimenter
may choose α0 to be 0.01.

Because these values of α0 have become established in statistical practice, the
choice of α0 = 0.01 is sometimes made by an experimenter who wishes to use a
cautious test procedure, or one that will not reject H0 unless the sample data provide
strong evidence that H0 is not true. We shall now show, however, that when the sample
size n is large, the choice of α0 = 0.01 can actually lead to a test procedure that will
reject H0 for certain samples that, in fact, provide stronger evidence for H0 than they
do for H1.

To illustrate this property, suppose, as in Example 9.2.5, that a random sample
is taken from the normal distribution with unknown mean θ and known variance 1,
and that the hypotheses to be tested are

H0: θ = 0,

H1: θ = 1.

It follows from the discussion in Example 9.2.5 that, among all test procedures for
which α(δ) ≤ 0.01, the probability of type II error β(δ) will be a minimum for the
procedure δ∗ that rejects H0 when Xn ≥ k′, where k′ is chosen so that Pr(Xn ≥ k′|θ =
0) = 0.01. When θ = 0, the random variable Xn has the normal distribution with mean
0 and variance 1/n. Therefore, it can be found from a table of the standard normal
distribution that k′ = 2.326n−1/2.

Furthermore, it follows from Eq. (9.2.12) that this test procedure δ∗ is equiv-
alent to rejecting H0 when f1(x)/f0(x) ≥ k, where k = exp(2.326n1/2 − 0.5n). The
probability of an error of type I will be α(δ∗) = 0.01. Also, by an argument simi-
lar to the one leading to Eq. (9.2.15), the probability of an error of type II will be
β(δ∗) = �(2.326 − n1/2), where � denotes the c.d.f. of the standard normal distribu-
tion. For n = 1, 25, and 100, the values of β(δ∗) and k are as follows:

n α(δ∗) β(δ∗) k

1 0.01 0.91 6.21

25 0.01 0.0038 0.42

100 0.01 8 × 10−15 2.5 × 10−12

It can be seen from this tabulation that when n = 1, the null hypothesis H0 will be
rejected only if the likelihood ratio f1(x)/f0(x) exceeds the value k = 6.21. In other
words, H0 will not be rejected unless the observed values x1, . . . , xn in the sample are
at least 6.21 times as likely under H1 as they are under H0. In this case, the procedure
δ∗ therefore satisfies the experimenter’s desire to use a test that is cautious about
rejecting H0.

If n = 100, however, the procedure δ∗ will reject H0 whenever the likelihood
ratio exceeds the value k = 2.5 × 10−12. Therefore, H0 will be rejected for certain
observed values x1, . . . , xn that are actually millions of times more likely under H0
as they are under H1. The reason for this result is that the value of β(δ∗) that can be
achieved when n = 100, which is 8 × 10−15, is extremely small relative to the specified
value α0 = 0.01. Hence, the procedure δ∗ actually turns out to be much more cautious
about an error of type II than it is about an error of type I. We can see from this
discussion that a value of α0 that is an appropriate choice for a small value of n might
be unnecessarily large for a large value of n. Hence, it would be sensible to let the
level of significance α0 decrease as the sample size increases.
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Suppose now that the experimenter regards an error of type I to be much more
serious than an error of type II, and she therefore desires to use a test procedure for
which the value of the linear combination 100α(δ) + β(δ) will be a minimum. Then it
follows from Theorem 9.2.1 that she should reject H0 if and only if the likelihood
ratio exceeds the value k = 100, regardless of the sample size n. In other words,
the procedure that minimizes the value of 100α(δ) + β(δ) will not reject H0 unless
the observed values x1, . . . , xn are at least 100 times as likely under H1 as they are
under H0.

From this discussion, it seems more reasonable for the experimenter to take the
values of both α(δ) and β(δ) into account when choosing a test procedure, rather
than to fix a value of α(δ) and minimize β(δ). For example, one could minimize the
value of a linear combination of the form aα(δ) + bβ(δ). In Sec. 9.8, we saw how the
Bayesian point of view also leads to the conclusion that one should try to minimize
a linear combination of this form. Lehmann (1958) suggested choosing a number k

and requiring that β(δ) = kα(δ). Both the Bayesian method and Lehmann’s method
have the advantage of forcing the probabilities of both type I and type II errors to
decrease as one obtains more data. Similar problems with fixing the significance level
of a test arise when hypotheses are composite, as we illustrate later in this section.

Statistically Significant Results

When the observed data lead to rejecting a null hypothesis H0 at level α0, it is often
said that one has obtained a result that is statistically significant at level α0. When
this occurs, it does not mean that the experimenter should behave as if H0 is false.
Similarly, if the data do not lead to rejecting H0, the result is not statistically significant
at level α0, but the experimenter should not necessarily become convinced that H0
is true. Indeed, qualifying “significant” with the term “statistically” is a warning that
a statistically significant result might be different than a practically significant result.
Consider, once again, Example 9.5.10 on page 582, in which the hypotheses to be
tested are

H0: μ = 5.2,

H1: μ 	= 5.2.

It is extremely important for the experimenter to distinguish a statistically significant
result from any claim that the parameter μ is significantly different from the hypoth-
esized value 5.2. Even if the data suggest that μ is not equal to 5.2, this does not
necessarily provide any evidence that the actual value of μ is significantly different
from 5.2. For a given set of data, the tail area corresponding to the observed value of
the test statistic U might be very small, and yet the data might suggest that the actual
value of μ is so close to 5.2 that, for practical purposes, the experimenter would not
regard μ as being significantly different from 5.2.

The situation just described can arise when the statistic U is based on a very large
random sample. Suppose, for instance, that in Example 9.5.10 the lengths of 20,000
fibers in a random sample are measured, rather than the lengths of only 15 fibers. For
a given level of significance, say, α0 = 0.05, let π(μ, σ 2|δ) denote the power function
of the t test based on these 20,000 observations. Then π(5.2, σ 2|δ) = 0.05 for every
value of σ 2 > 0. However, because of the very large number of observations on which
the test is based, the power π(μ, σ 2|δ) will be very close to 1 for each value of μ that
differs only slightly from 5.2 and for a moderate value of σ 2. In other words, even
if the value of μ differs only slightly from 5.2, the probability is close to 1 that one
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would obtain a statistically significant result. For example, with n = 20,000, the power
of the level 0.05 test when |μ − 5.2| = 0.03σ is 0.99.

As explained in Sec. 9.4, it is inconceivable that the mean length μ of all the
fibers in the entire population will be exactly 5.2. However, μ may be very close to
5.2, and when it is, the experimenter will not want to reject the null hypothesis H0.
Nevertheless, it is very likely that the t test based on the sample of 20,000 fibers will
lead to a statistically significant result. Therefore, when an experimenter analyzes a
powerful test based on a very large sample, he must exercise caution in interpreting
the actual significance of a “statistically significant” result. He knows in advance that
there is a high probability of rejecting H0 even when the true value of μ differs only
slightly from the value 5.2 specified under H0.

One way to handle this situation, as discussed earlier in this section, is to rec-
ognize that a level of significance much smaller than the traditional value of 0.05 or
0.01 is appropriate for a problem with a large sample size. Another way is to replace
the single value of μ in the null hypothesis by an interval, as we did on pages 571
and 610. A third way is to regard the statistical problem as one of estimation rather
than one of testing hypotheses.

When a large random sample is available, the sample mean and the sample vari-
ance will be excellent estimators of the parameters μ and σ 2. Before the experimenter
chooses any decision involving the unknown values of μ and σ 2, she should calculate
and consider the values of these estimators as well as the value of the statistic U .

Summary

When we reject a null hypothesis, we say that we have obtained a statistically sig-
nificant result. The power function of a level α0 test becomes very large, even for
parameter values close to the null hypothesis, as the size of the sample increases. For
the case of simple hypotheses, the probability of type II error can become very small
while the probability of type I error stays as large as α0. One way to avoid this is
to let the level of significance decrease as the sample size increases. If one rejects a
null hypothesis at a particular level of significance α0, one must be careful to check
whether the data actually suggest any deviation of practical importance from the null
hypothesis.

Exercises

1. Suppose that a single observation X is taken from the
normal distribution with unknown mean μ and known
variance is 1. Suppose that it is known that the value of
μ must be −5, 0, or 5, and it is desired to test the following
hypotheses at the level of significance 0.05:

H0: μ = 0,

H1: μ = −5 or μ = 5.

Suppose also that the test procedure to be used specifies
rejecting H0 when |X| > c, where the constant c is chosen
so that Pr(|X| > c|μ = 0) = 0.05.

a. Find the value of c, and show that if X = 2, then H0
will be rejected.

b. Show that if X = 2, then the value of the likelihood
function at μ = 0 is 12.2 times as large as its value at
μ = 5 and is 5.9 × 109 times as large as its value at
μ = −5.

2. Suppose that a random sample of 10,000 observations is
taken from the normal distribution with unknown mean
μ and known variance is 1, and it is desired to test the
following hypotheses at the level of significance 0.05:

H0: μ = 0,

H1: μ 	= 0.

Suppose also that the test procedure specifies rejecting
H0 when |Xn| ≥ c, where the constant c is chosen so that
Pr(|Xn| ≥ c|μ = 0) = 0.05. Find the probability that the
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test will reject H0 if (a) the actual value of μ is 0.01, and
(b) the actual value of μ is 0.02.

3. Consider again the conditions of Exercise 2, but sup-
pose now that it is desired to test the following hypotheses:

H0: μ ≤ 0,

H1: μ > 0.

Suppose also that in the random sample of 10,000 ob-
servations, the sample mean Xn is 0.03. At what level of
significance is this result just significant?

4. Suppose that X1, . . . , Xn comprise a random sample
from the normal distribution with unknown mean θ and
known variance 1. Suppose that it is desired to test the
same hypotheses as in Exercise 3. This time, however,
the test procedure δ will be chosen so as to minimize
19π(0|δ) + 1 − π(0.5|δ).

a. Find the value cn so that the test procedure δ rejects
H0 if Xn ≥ cn for each value n = 1, n = 100, and n =
10,000.

b. For each value of n in part (a), find the size of the test
procedure δ.

5. Suppose that X1, . . . , Xn comprise a random sample
from the normal distribution with unknown mean θ and
variance 1. Suppose that it is desired to test the same
hypotheses as in Exercise 3. This time, however, the test
procedure δ will be chosen so that 19π(0|δ) = 1 − π(0.5|δ).

a. Find the value cn so that the test procedure δ rejects
H0 if Xn ≥ cn for each value n = 1, n = 100, and n =
10,000.

b. For each value of n in part (a), find the size of the test
procedure δ.

9.10 Supplementary Exercises
1. I will flip a coin three times and let X stand for the
number of times that the coin comes up heads. Let θ stand
for the probability that the coin comes up heads on a single
flip, and assume that the flips are independent given θ . I
wish to test the null hypothesis H0 : θ = 1/2 against the
alternative hypothesis H1 : θ = 3/4. Find the test δ that
minimizes α(δ) + β(δ), the sum of the type I and type II
error probabilities, and find the two error probabilities for
the test.

2. Suppose that a sequence of Bernoulli trials is to be
carried out with an unknown probability θ of success on
each trial, and the following hypotheses are to be tested:

H0: θ = 0.1,
H1: θ = 0.2.

Let X denote the number of trials required to obtain a
success, and suppose that H0 is to be rejected if X ≤ 5.
Determine the probabilities of errors of type I and type II.

3. Consider again the conditions of Exercise 2. Suppose
that the losses from errors of type I and type II are equal,
and the prior probabilities that H0 and H1 are true are
equal. Determine the Bayes test procedure based on the
observation X.

4. Suppose that a single observation X is to be drawn from
the following p.d.f.:

f (x|θ) =
{

2(1 − θ)x + θ for 0 ≤ x ≤ 1,
0 otherwise,

where the value of θ is unknown (0 ≤ θ ≤ 2). Suppose also
that the following hypotheses are to be tested:

H0: θ = 2,

H1: θ = 0.

Determine the test procedure δ for which α(δ) + 2β(δ) is
a minimum, and calculate this minimum value.

5. Consider again the conditions of Exercise 4, and sup-
pose that α(δ) is required to be a given value α0 (0 < α0 <

1). Determine the test procedure δ for which β(δ) will be
a minimum, and calculate this minimum value.

6. Consider again the conditions of Exercise 4, but sup-
pose now that the following hypotheses are to be tested:

H0: θ ≥ 1,
H1: θ < 1.

a. Determine the power function of the test δ that spec-
ifies rejecting H0 if X ≥ 0.9.

b. What is the size of the test δ?

7. Consider again the conditions of Exercise 4. Show that
the p.d.f. f (x|θ) has a monotone likelihood ratio in the
statistic r(X) = −X, and determine a UMP test of the
following hypotheses at the level of significance α0 = 0.05:

H0: θ ≤ 1
2 ,

H1: θ > 1
2 .

8. Suppose that a box contains a large number of chips of
three different colors, red, brown, and blue, and it is de-
sired to test the null hypothesis H0 that chips of the three
colors are present in equal proportions against the alter-
native hypothesis H1 that they are not present in equal
proportions. Suppose that three chips are to be drawn at
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random from the box, and H0 is to be rejected if and only
if at least two of the chips have the same color.

a. Determine the size of the test.

b. Determine the power of the test if 1/7 of the chips
are red, 2/7 are brown, and 4/7 are blue.

9. Suppose that a single observation X is to be drawn from
an unknown distribution P , and that the following simple
hypotheses are to be tested:

H0: P is the uniform distribution on the interval [0, 1],

H1: P is the standard normal distribution.

Determine the most powerful test of size 0.01, and calcu-
late the power of the test when H1 is true.

10. Suppose that the 12 observations X1, . . . , X12 form
a random sample from the normal distribution with un-
known mean μ and unknown variance σ 2. Describe how
to carry out a t test of the following hypotheses at the level
of significance α0 = 0.005:

H0: μ ≥ 3,
H1: μ < 3.

11. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean θ and known
variance 1, and it is desired to test the following hypothe-
ses:

H0: θ ≤ 0,

H1: θ > 0.

Suppose also that it is decided to use a UMP test for which
the power is 0.95 when θ = 1. Determine the size of this
test if n = 16.

12. Suppose that eight observations X1, . . . , X8 are drawn
at random from a distribution with the following p.d.f.:

f (x|θ) =
{

θxθ−1 for 0 < x < 1,
0 otherwise.

Suppose also that the value of θ is unknown (θ > 0), and
it is desired to test the following hypotheses:

H0: θ ≤ 1,
H1: θ > 1.

Show that the UMP test at the level of significance α0 =
0.05 specifies rejecting H0 if

∑8
i=1 log Xi ≥ −3.981.

13. Suppose that X1, . . . , Xn form a random sample from
the χ2 distribution with unknown degrees of freedom θ

(θ = 1, 2, . . .), and it is desired to test the following hy-
potheses at a given level of significance α0 (0 < α0 < 1):

H0: θ ≤ 8,

H1: θ ≥ 9.

Show that there exists a UMP test, and the test specifies
rejecting H0 if

∑n
i=1 log Xi ≥ k for some appropriate con-

stant k.

14. Suppose that X1, . . . , X10 form a random sample from
a normal distribution for which both the mean and the
variance are unknown. Construct a statistic that does not
depend on any unknown parameters and has the F distri-
bution with three and five degrees of freedom.

15. Suppose that X1, . . . , Xm form a random sample from
the normal distribution with unknown mean μ1 and un-
known variance σ 2

1, and that Y1, . . . , Yn form an indepen-
dent random sample from the normal distribution with
unknown mean μ2 and unknown variance σ 2

2. Suppose
also that it is desired to test the following hypotheses with
the usual F test at the level of significance α0 = 0.05:

H0: σ 2
1 ≤ σ 2

2,

H1: σ 2
1 > σ 2

2.

Assuming that m = 16 and n = 21, show that the power of
the test when σ 2

1 = 2σ 2
2 is given by Pr(V ∗ ≥ 1.1), where V ∗

is a random variable having the F distribution with 15 and
20 degrees of freedom.

16. Suppose that the nine observations X1, . . . , X9 form
a random sample from the normal distribution with un-
known mean μ1 and unknown variance σ 2, and the nine
observations Y1, . . . , Y9 form an independent random
sample from the normal distribution with unknown mean
μ2 and the same unknown variance σ 2. Let S2

X
and S2

Y
be

as defined in Eq. (9.6.2) (with m = n = 9), and let

T = max

{
S2

X

S2
Y

,
S2

Y

S2
X

}
.

Determine the value of the constant c such that Pr(T >

c) = 0.05.

17. An unethical experimenter desires to test the follow-
ing hypotheses:

H0: θ = θ0,

H1: θ 	= θ0.

She draws a random sample X1, . . . , Xn from a distribu-
tion with the p.d.f. f (x|θ), and carries out a test of size α. If
this test does not reject H0, she discards the sample, draws
a new independent random sample of n observations, and
repeats the test based on the new sample. She continues
drawing new independent samples in this way until she
obtains a sample for which H0 is rejected.

a. What is the overall size of this testing procedure?

b. If H0 is true, what is the expected number of samples
that the experimenter will have to draw until she
rejects H0?

18. Suppose that X1, . . . , Xn form a random sample from
the normal distribution with unknown mean μ and un-
known precision τ , and the following hypotheses are to
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be tested:

H0: μ ≤ 3,
H1: μ > 3.

Suppose that the prior joint distribution of μ and τ is
the normal-gamma distribution, as described in Theorem
8.6.1, with μ0 = 3, λ0 = 1, α0 = 1, and β0 = 1. Suppose fi-
nally that n = 17, and it is found from the observed val-
ues in the sample that Xn = 3.2 and

∑n
i=1(Xi − Xn)

2 = 17.
Determine both the prior probability and the posterior
probability that H0 is true.

19. Consider a problem of testing hypotheses in which the
following hypotheses about an arbitrary parameter θ are
to be tested:

H0: θ ∈ �0,

H1: θ ∈ �1.

Suppose that δ is a test procedure of size α (0 < α < 1)
based on some vector of observations X , and let π(θ |δ)
denote the power function of δ. Show that if δ is unbiased,
then π(θ |δ) ≥ α at every point θ ∈ �1.

20. Consider again the conditions of Exercise 19. Suppose
now that we have a two-dimensional vector θθθ = (θ1, θ2),
where θ1 and θ2 are real-valued parameters. Suppose also
that A is a particular circle in the θ1θ2-plane, and that the
hypotheses to be tested are as follows:

H0: θ ∈ A,

H1: θ 	∈ A.

Show that if the test procedure δ is unbiased and of size α,
and if its power function π(θ |δ) is a continuous function
of θ , then it must be true that π(θ |δ) = α at each point θ

on the boundary of the circle A.

21. Consider again the conditions of Exercise 19. Suppose
now that θ is a real-valued parameter, and the following
hypotheses are to be tested:

H0: θ = θ0,

H1: θ 	= θ0.

Assume that θ0 is an interior point of the parameter
space �. Show that if the test procedure δ is unbiased and
if its power function π(θ |δ) is a differentiable function of
θ , then π ′(θ0|δ) = 0, where π ′(θ0|δ) denotes the derivative
of π(θ |δ) evaluated at the point θ = θ0.

22. Suppose that the differential brightness θ of a certain
star has an unknown value, and it is desired to test the
following simple hypotheses:

H0: θ = 0,

H1: θ = 10.

The statistician knows that when he goes to the observa-
tory at midnight to measure θ , there is probability 1/2 that
the meteorological conditions will be good, and he will be

able to obtain a measurement X having the normal dis-
tribution with mean θ and variance 1. He also knows that
there is probability 1/2 that the meteorological conditions
will be poor, and he will obtain a measurement Y having
the normal distribution with mean θ and variance 100. The
statistician also learns whether the meteorological condi-
tions were good or poor.

a. Construct the most powerful test that has conditional
size α = 0.05, given good meteorological conditions,
and one that has conditional size α = 0.05, given poor
meteorological conditions.

b. Construct the most powerful test that has condi-
tional size α = 2.0 × 10−7, given good meteorolog-
ical conditions, and one that has conditional size
α = 0.0999998, given poor meteorological condi-
tions. (You will need a computer program to do this.)

c. Show that the overall size of both the test found in
part (a) and the test found in part (b) is 0.05, and
determine the power of each of these two tests.

23. Consider again the situation described in Exercise 22.
This time, assume that there is a loss function of the form
(9.8.6). Also, assume that the prior probability of θ = 0 is
ξ0 and the prior probability of θ = 10 is ξ1.

a. Find the formula for the Bayes test for general loss
function of the form (9.8.6).

b. Prove that the test in part (a) of Exercise 22 is not a
special case of the Bayes test found in part (a) of the
present exercise.

c. Prove that the test in part (b) of Exercise 22 is (up to
rounding error) a special case of the Bayes test found
in part (a) of the present exercise.

24. Let X1, . . . , Xn be i.i.d. with the Poisson distribution
having mean θ . Let Y = ∑n

i=1 Xi.

a. Suppose that we wish to test the hypotheses H0 : θ ≥ 1
versus H1 : θ < 1. Show that the test “reject H0 if
Y = 0” is uniformly most powerful level α0 for some
number α0. Also find α0.

b. Find the power function of the test from part (a).

25. Consider a family of distributions with parameter θ

and monotone likelihood ratio in a statistic T . We learned
how to find a uniformly most powerful level α0 test δc of
the null hypothesis H0,c : θ ≤ c versus H1,c : θ > c for every
c. We also know that these tests are equivalent to a co-
efficient 1 − α0 confidence interval, where the confidence
interval contains c if and only if δc does not reject H0,c.
The confidence interval is called uniformly most accurate
coefficient 1 − α0. Based on the equivalence of the tests
and the confidence interval, figure out what the definition
of “uniformly most accurate coefficient 1 − α0” must be.
Write the definition in terms of the conditional probabil-
ity that the interval covers θ1 given that θ = θ2 for various
pairs of values θ1 and θ2.
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10.1 Tests of Goodness-of-Fit
In some problems, we have one specific distribution in mind for the data we will
observe. If that one distribution is not appropriate, we do not necessarily have a
parametric family of alternative distributions in mind. In these cases, and others, we
can still test the null hypothesis that the data come from the one specific distribution
against the alternative hypothesis that the data do not come from that distribution.

Description of Nonparametric Problems

Example
10.1.1

Failure Times of Ball Bearings. In Example 5.6.9, we observed the failure times of 23
ball bearings, and we modeled the logarithms of these failure times as normal random
variables. Suppose that we are not so confident that the normal distribution is a good
model for the logarithms of the failure times. Is there a way to test the null hypothesis
that a normal distribution is a good model against the alternative that no normal
distribution is a good model? Is there a way to estimate features of the distribution
of failure times (such as the median, variance, etc.) if we are unwilling to model the
data as normal random variables? �

In each of the problems of estimation and testing hypotheses that we considered
in Chapters 7, 8, and 9, we have assumed that the observations that are available to the
statistician come from distributions for which the exact form is known, even though
the values of some parameters are unknown. For example, it might be assumed
that the observations form a random sample from a Poisson distribution for which
the mean is unknown, or it might be assumed that the observations come from
two normal distributions for which the means and variances are unknown. In other
words, we have assumed that the observations come from a certain parametric family
of distributions, and a statistical inference must be made about the values of the
parameters defining that family.

In many of the problems to be discussed in this chapter, we shall not assume that
the available observations come from a particular parametric family of distributions.
Rather, we shall study inferences that can be made about the distribution from which
the observations come, without making special assumptions about the form of that
distribution. As one example, we might simply assume that the observations form

624
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a random sample from a continuous distribution, without specifying the form of
this distribution any further, and we might then investigate the possibility that this
distribution is a normal distribution. As a second example, we might be interested
in making an inference about the value of the median of the distribution from which
the sample was drawn, and we might assume only that this distribution is continuous.
As a third example, we might be interested in investigating the possibility that two
independent random samples actually come from the same distribution, and we
might assume only that both distributions from which the samples are taken are
continuous.

Problems in which the possible distributions of the observations are not re-
stricted to a specific parametric family are called nonparametric problems, and the
statistical methods that are applicable in such problems are called nonparametric
methods.

Categorical Data

Example
10.1.2

Blood Types. In Example 5.9.3, we learned about a study of blood types among a
sample of 6004 white Californians. Suppose that the actual counts of people with the
four blood types are given in Table 10.1. We might be interested in whether or not
these data are consistent with a theory that predicts a particular set of probabilities
for the blood types. Table 10.2 gives theoretical probabilities for the four blood types.
How can we go about testing the null hypothesis that the theoretical probabilities in
Table 10.2 are the probabilities with which the data in Table 10.1 were sampled? �

In this section and the next four sections, we shall consider statistical problems
based on data such that each observation can be classified as belonging to one of
a finite number of possible categories or types. Observations of this type are called
categorical data. Since there are only a finite number of possible categories in these
problems, and since we are interested in making inferences about the probabilities of
these categories, these problems actually involve just a finite number of parameters.
However, as we shall see, methods based on categorical data can be usefully applied
in both parametric and nonparametric problems.

Table 10.1 Counts of blood types for white
Californians

A B AB O

2162 738 228 2876

Table 10.2 Theoretical probabilities of blood
types for white Californians

A B AB O

1/3 1/8 1/24 1/2
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The χ2 Test

Suppose that a large population consists of items of k different types, and let pi

denote the probability that an item selected at random will be of type i (i = 1, . . . , k).
Example 10.1.2 is of this type with k = 4. Of course, pi ≥ 0 for i = 1, . . . , k and∑k

i=1 pi = 1. Let p0
1, . . . , p0

k
be specific numbers such that p0

i
> 0 for i = 1, . . . , k

and
∑k

i=1 p0
i
= 1, and suppose that the following hypotheses are to be tested:

H0: pi = p0
i

for i = 1, . . . , k,

H1: pi 	= p0
i

for at least one value of i.
(10.1.1)

We shall assume that a random sample of size n is to be taken from the given
population. That is, n independent observations are to be taken, and there is proba-
bility pi that each observation will be of type i (i = 1, . . . , k). On the basis of these
n observations, the hypotheses (10.1.1) are to be tested.

For i = 1, . . . , k, we shall let Ni denote the number of observations in the random
sample that are of type i. Thus, N1, . . . , Nk are nonnegative integers such that∑k

i=1 Ni = n. Indeed, (N1, . . . , Nn) has the multinomial distribution (see Sec. 5.9)
with parameters n and p = (p1, . . . , pk). When the null hypothesis H0 is true, the
expected number of observations of type i is np0

i
(i = 1, . . . , k). The difference

between the actual number of observations Ni and the expected number np0
i

will tend
to be smaller when H0 is true than when H0 is not true. It seems reasonable, therefore,
to base a test of the hypotheses (10.1.1) on values of the differences Ni − np0

i
for

i = 1, . . . , k and reject H0 when the magnitudes of these differences are relatively
large.

In 1900, Karl Pearson proved the following result, whose proof will not be given
here.

Theorem
10.1.1

χ2 Statistic. The following statistic

Q =
k∑

i=1

(Ni − np0
i
)2

np0
i

(10.1.2)

has the property that if H0 is true and the sample size n → ∞, then Q converges in dis-
tribution to the χ2 distribution with k − 1 degrees of freedom. (See Definition 6.3.1.)

Theorem 10.1.1 says that if H0 is true and the sample size n is large, the distribution
of Q will be approximately the χ2 distribution with k − 1 degrees of freedom. The
discussion that we have presented indicates that H0 should be rejected when Q ≥ c,
where c is an appropriate constant. If it is desired to carry out the test at the level of
significance α0, then c should be chosen to be the 1 − α0 quantile of the χ2 distribution
with k − 1 degrees of freedom. This test is called the χ2 test of goodness-of-fit.

Note: General form of χ2 test statistic. The form of the statistic Q in (10.1.2) is
common to all χ2 tests including those that will be introduced later in this chap-
ter. The form is a sum of terms, each of which is the square of the difference be-
tween an observed count and an expected count divided by the expected count:∑

(observed−expected)2/expected. The expected counts are computed under the
assumption that the null hypothesis is true.

Whenever the value of each expected count, np0
i

(i = 1, . . . , k), is not too small,
the χ2 distribution will be a good approximation to the actual distribution of Q.
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Specifically, the approximation will be very good if np0
i
≥ 5 for i = 1, . . . , k, and the

approximation should still be satisfactory if np0
i
≥ 1.5 for i = 1, . . . , k.

We shall now illustrate the use of the χ2 test of goodness-of-fit by some examples.

Example
10.1.3

Blood Types. In Example 10.1.2, we have specified a hypothetical vector of proba-
bilities (p0

1, . . . , p0
4) for the four blood types in Table 10.2. We can use the data in

Table 10.1 to test the null hypothesis H0 that the probabilities (p1, . . . , p4) of the four
blood types equal (p0

1, . . . , p0
4). The four expected counts under H0 are

np0
1 = 6004 × 1

3
= 2001.3, np0

2 = 6004 × 1
8

= 750.5,

np0
3 = 6004 × 1

24
= 250.2, and np0

4 = 6004 × 1
2

= 3002.0.

The χ2 test statistic is then

Q = (2162 − 2001.3)2

2001.3
+ 738 − 750.5

750.5
+ (228 − 250.2)2

250.2
+ (2876 − 3002.0)2

3002.0
= 20.37.

To test H0 at level α0, we would compare Q to the 1 − α0 quantile of the χ2 distribution
with three degrees of freedom. Alternatively, we can compute the p-value, which
would be the smallest α0 at which we could reject H0. In the case of the χ2 goodness of
fit test, the p-value equals 1 − X2

k−1(Q), where X2
k−1 is the c.d.f. of the χ2 distribution

with k − 1 degrees of freedom. In this example, k = 4 and the p-value is 1.42 × 10−4.
�

Example
10.1.4

Montana Outlook Poll. The Bureau of Business and Economic Research at the Uni-
versity of Montana conducted a poll of opinions of Montana residents in May 1992.
Among other things, respondents were asked whether their personal financial status
was worse, the same, or better than one year ago. Table 10.3 displays some results. We
might be interested in whether the respondents’ answers are uniformly distributed
over the three possible responses. That is, we can test the null hypothesis that the
probabilities of the three responses are all equal to 1/3. We calculate

Q = (58 − 189/3)2

189/3
+ (64 − 189/3)2

189/3
+ (67 − 189/3)2

189/3
= 0.6667.

Since 0.6667 is the 0.283 quantile of the χ2 distribution with two degrees of freedom,
we would only reject the null at levels greater than 1 − 0.283 = 0.717. �

Example
10.1.5

Testing Hypotheses about a Proportion. Suppose that the proportion p of defective
items in a large population of manufactured items is unknown and that the following

Table 10.3 Responses to personal financial
status question from Montana
Outlook Poll

Worse Same Better Total

58 64 67 189
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hypotheses are to be tested:

H0: p = 0.1,
H1: p 	= 0.1.

(10.1.3)

Suppose also that in a random sample of 100 items, it is found that 16 are defective.
We shall test the hypotheses (10.1.3) by carrying out a χ2 test of goodness-of-fit.

Since there are only two types of items in this example, namely, defective items
and nondefective items, we know that k = 2. Furthermore, if we let p1 denote the
unknown proportion of defective items and let p2 denote the unknown proportion
of nondefective items, then the hypotheses (10.1.3) can be rewritten in the following
form:

H0: p1 = 0.1 and p2 = 0.9,

H1: The hypothesis H0 is not true.
(10.1.4)

For the sample size n = 100, the expected number of defective items if H0 is
true is np0

1 = 10, and the expected number of nondefective items is np0
2 = 90. Let N1

denote the number of defective items in the sample, and let N2 denote the number
of nondefective items in the sample. Then, when H0 is true, the distribution of the
statistic Q defined by Eq. (10.1.2) will be approximately the χ2 distribution with one
degree of freedom.

In this example, N1 = 16 and N2 = 84, and it is found that the value of Q is 4. It
can now be determined, either from interpolation in a table of the χ2 distribution
with one degree of freedom or from statistical software, that the tail area (p-value)
corresponding to the value Q = 4 is approximately 0.0455. Hence, the null hypothesis
H0 would be rejected at levels of significance greater than 0.0455, but not at smaller
levels. For hypotheses about a single proportion, we developed tests in Sec. 9.1. (See
Exercise 11 in Sec. 9.1, for example.) You can compare the test from Sec. 9.1 to the
test in this example in Exercise 1 at the end of this section. �

Testing Hypotheses about a Continuous Distribution

Consider a random variable X that takes values in the interval 0 < X < 1 but has an
unknown p.d.f. over this interval. Suppose that a random sample of 100 observations
is taken from this unknown distribution, and it is desired to test the null hypothe-
sis that the distribution is the uniform distribution on the interval [0, 1] against the
alternative hypothesis that the distribution is not uniform. This problem is a nonpara-
metric problem, since the distribution of X might be any continuous distribution on
the interval [0, 1]. However, as we shall now show, the χ2 test of goodness-of-fit can
be applied to this problem.

Suppose that we divide the interval [0, 1] into 20 subintervals of equal length,
namely, the interval [0, 0.05), the interval [0.05, 0.10), and so on. If the actual distri-
bution is a uniform distribution, then the probability that each observation will fall
within the ith subinterval is 1/20, for i = 1, . . . , 20. Since the sample size in this exam-
ple is n = 100, it follows that the expected number of observations in each subinterval
is 5. If Ni denotes the number of observations in the sample that actually fall within
the ith subinterval, then the statistic Q defined by Eq. (10.1.2) can be rewritten simply
as follows:

Q = 1
5

20∑
i=1

(Ni − 5)2. (10.1.5)
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If the null hypothesis is true, and the distribution from which the observations
were taken is indeed a uniform distribution, then Q will have approximately the
χ2 distribution with 19 degrees of freedom.

The method that has been presented in this example obviously can be applied
to every continuous distribution. To test whether a random sample of observations
comes from a particular distribution, the following procedure can be adopted:

i. Partition the entire real line, or any particular interval that has probability 1,
into a finite number k of disjoint subintervals. Generally, k is chosen so that the
expected number of observations in each subinterval is at least 5 if H0 is true.

ii. Determine the probability p0
i

that the particular hypothesized distribution
would assign to the ith subinterval, and calculate the expected number np0

i

of observations in the ith subinterval (i = 1, . . . , k).

iii. Count the number Ni of observations in the sample that fall within the ith
subinterval (i = 1, . . . , k).

iv. Calculate the value of Q as defined by Eq. (10.1.2). If the hypothesized dis-
tribution is correct, Q will have approximately the χ2 distribution with k − 1
degrees of freedom.

Example
10.1.6

Failure Times of Ball Bearings. Return to Example 10.1.1. Suppose that we wish to use
the χ2 test to test the null hypothesis that the logarithms of the lifetimes are an i.i.d.
sample from the normal distribution with mean log(50) = 3.912 and variance 0.25.
In order to have the expected count in each interval be at least 5, we can use at most
k = 4 intervals. We shall make these intervals each have probability 0.25 under the
null hypothesis. That is, we shall divide the intervals at the 0.25, 0.5, and 0.75 quantiles
of the hypothesized normal distribution. These quantiles are

3.912 + 0.5�−1(0.25) = 3.192 + 0.5 × (−0.674) = 3.575,

3.912 + 0.5�−1(0.5) = 3.192 + 0.5 × 0 = 3.912,

3.912 + 0.5�−1(0.75) = 3.192 + 0.5 × 0.674 = 4.249,

because the 0.25 and 0.75 quantiles of the standard normal distribution are ±0.674.
The observed logarithms are

2.88 3.36 3.50 3.73 3.74 3.82 3.88 3.95

3.95 3.99 4.02 4.22 4.23 4.23 4.23 4.43

4.53 4.59 4.66 4.66 4.85 4.85 5.16

The numbers of observations in each of the four intervals are then 3, 4, 8, and 8. We
then calculate

Q = (3 − 23 × 0.25)2

23 × 0.25
+ (4 − 23 × 0.25)2

23 × 0.25
+ (8 − 23 × 0.25)2

23 × 0.25

+ (8 − 23 × 0.25)2

23 × 0.25
= 3.609.

Our table of the χ2 distribution with three degrees of freedom indicates that 3.609
is between the 0.6 and 0.7 quantiles, so we would not reject the null hypothesis at
levels less 0.3 and reject the null hypothesis at levels greater than 0.4. (Actually, the
p-value is 0.307.) �
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One arbitrary feature of the procedure just described is the way in which the
subintervals are chosen. Two statisticians working on the same problem might very
well choose the subintervals in two different ways. Generally speaking, it is a good
policy to choose the subintervals so that the expected numbers of observations in
the individual subintervals are approximately equal, and also to choose as many
subintervals as possible without allowing the expected number of observations in
any subinterval to become small. This is what we did in Example 10.1.6.

Likelihood Ratio Tests for Proportions

In Examples 10.1.3 and 10.1.4, we used the χ2 goodness-of-fit test to test hypotheses
of the form (10.1.4). Although χ2 tests are commonly used in such examples, we could
actually use parametric tests in these examples. For example, the vector of responses
in Table 10.3 can be thought of as the observed value of a multinomial random
vector with parameters 189 and p = (p1, p2, p3). (See Sec. 5.9.) The hypotheses in
Eq. (10.1.4) are then of the form

H0 : p = p(0) versus H1 : H0 is not true.

As such, we can use the method of likelihood ratio tests for testing the hypotheses.
Specifically, we shall apply Theorem 9.1.4. The likelihood function from a multino-
mial vector x = (N1, . . . , Nk) is

f (x|p) =
(

n

N1, . . . , Nk

)
p

N1
1

. . . p
Nk

k . (10.1.6)

In order to apply Theorem 9.1.4, the parameter space must be an open set in k-
dimensional space. This is not true for the multinomial distribution if we let p be the
parameter. The set of probability vectors lies in a (k − 1)-dimensional subset of k-
dimensional space because the coordinates are constrained to add up to 1. However,
we can just as effectively treat the vector θ = (p1, . . . , pk−1) as the parameter because
pk = 1 − p1 − . . . − pk−1 is a function of θ . As long as we believe that all coordinates
of p are strictly between 0 and 1, the set of possible values of the (k − 1)-dimensional
parameter θ is open. The likelihood function (10.1.6) can then be rewritten as

g(x|θ) =
(

n

N1, . . . , Nk

)
θ

N1
1

. . . θ
Nk−1
k−1 (1 − θ1 − . . . − θk−1)

Nk. (10.1.7)

If H0 is true, there is only one possible value for (10.1.7), namely,(
n

N1, . . . , Nk

)
(p

(0)

1 )N1 . . . (p
(0)
k )Nk,

which is then the numerator of the likelihood ratio statistic �(x) from Defini-
tion 9.1.11. The denominator of �(x) is found by maximizing (10.1.7). It is not difficult
to show that the M.L.E.’s are θ̂i = Ni/n for i = 1, . . . , k − 1. The large-sample likeli-
hood ratio test statistic is then

−2 log �(x) = −2
k∑

i=1

Ni log

(
np

(0)
i

Ni

)
.

The large-sample test rejects H0 at level of significance α0 if this statistic is greater
than the 1 − α0 quantile of the χ2 distribution with k − 1 degrees of freedom.

Example
10.1.7

Blood Types. Using the data in Table 10.1, we can test the null hypothesis that the
vector of probabilities equals the vector of numbers in Table 10.2. The values of np

(0)
i
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for i = 1, 2, 3, 4 were already calculated in Example 10.1.3. The test statistic is

− 2
[

2162 log
(

2001.3
2162

)
+ 738 log

(
750.5
738

)
+ 228 log

(
250.2
228

)
+ 2876 log

(
3002.0
2876

)]
= 20.16.

The p-value is the probability that a χ2 random variable with three degrees of
freedom is greater than 20.16, namely, 1.57 × 10−4. This is nearly the same as the
p-value from the χ2 test in Example 10.1.3. �

Discussion of the Test Procedure

The χ2 test of goodness-of-fit is subject to the criticisms of tests of hypotheses
that were presented in Sec. 9.9. In particular, the null hypothesis H0 in the χ2 test
specifies the distribution of the observations exactly, but it is not likely that the actual
distribution of the observations will be exactly the same as that of a random sample
from this specific distribution. Therefore, if the χ2 test is based on a very large number
of observations, we can be almost certain that the tail area corresponding to the
observed value of Q will be very small. For this reason, a very small tail area should
not be regarded as strong evidence against the hypothesis H0 without further analysis.
Before a statistician concludes that the hypothesis H0 is unsatisfactory, he should be
certain that there exist reasonable alternative distributions for which the observed
values provide a much better fit. For example, the statistician might calculate the
values of the statistic Q for a few reasonable alternative distributions in order to be
certain that, for at least one of these distributions, the tail area corresponding to the
calculated value of Q is substantially larger than it is for the distribution specified by
H0.

A particular feature of the χ2 test of goodness-of-fit is that the procedure is
designed to test the null hypothesis H0 that pi = p0

i
for i = 1, . . . , k against the general

alternative that H0 is not true. If it is desired to use a test procedure that is especially
effective for detecting certain types of deviations of the actual values of p1, . . . , pk

from the hypothesized values p0
1, . . . , p0

k
, then the statistician should design special

tests that have higher power for these types of alternatives and lower power for
alternatives of lesser interest. This topic will not be discussed in this book.

Because the random variables N1, . . . , Nk in Eq. (10.1.2) are discrete, the χ2

approximation to the distribution of Q can sometimes be improved by introducing a
correction for continuity of the type described in Sec. 6.4. However, we shall not use
the correction in this book.

Summary

The χ2 test of goodness-of-fit was introduced as a method for testing the null hy-
pothesis that our data form an i.i.d. sample from a specific distribution against the
alternative hypothesis that the data have some other distribution. The test is most
natural when the specific distribution is discrete. Suppose that there are k possible
values for each observation, and we observe Ni with value i for i = 1, . . . , k. Suppose
that the null hypothesis says that the probability of the ith possible value is p0

i
for
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i = 1, . . . , k. Then we compute

Q =
k∑

i=1

(Ni − np0
i
)2

np0
i

,

where n = ∑k
i=1 Ni is the sample size. When the null hypothesis says that the data

have a continuous distribution, then one must first create a corresponding discrete
distribution. One does this by dividing the real line into finitely many (say, k) in-
tervals, calculating the probability of each interval p0

1, . . . , p0
k
, and then pretending

as if all we learned from the data were into which intervals each observation fell.
This converts the original data into discrete data with k possible values. For ex-
ample, the value of Ni used in the formula for Q is the number of observations
that fell into the ith interval. All of the χ2 test statistics in this text have the form∑

(observed−expected)2/expected, where “observed” stands for an observed count
and “expected” stands for the expected value of the observed count under the as-
sumption that the null hypothesis is true.

Exercises

1. Consider the hypotheses being tested in Example
10.1.5. Use a test procedure of the form outlined in Exer-
cise 11 of Sec. 9.1 and compare the result to the numerical
result obtained in Example 10.1.5.

2. Show that if p0
i
= 1/k for i = 1, . . . , k, then the statistic

Q defined by Eq. (10.1.2) can be written in the form

Q =
(

k

n

k∑
i=1

N2
i

)
− n.

3. Investigate the “randomness” of your favorite pseudo-
random number generator as follows. Simulate 200
pseudo-random numbers between 0 and 1 and divide the
unit interval into k = 10 intervals of length 0.1 each. Apply
the χ2 test of the hypothesis that each of the 10 intervals
has the same probability of containing a pseudo-random
number.

4. According to a simple genetic principle, if both the
mother and the father of a child have genotype Aa, then
there is probability 1/4 that the child will have genotype
AA, probability 1/2 that she will have genotype Aa, and
probability 1/4 that she will have genotype aa. In a random
sample of 24 children having both parents with genotype
Aa, it is found that 10 have genotype AA, 10 have genotype
Aa, and four have genotype aa. Investigate whether the
simple genetic principle is correct by carrying out a χ2 test
of goodness-of-fit.

5. Suppose that in a sequence of n Bernoulli trials, the
probability p of success on each trial is unknown. Suppose
also that p0 is a given number in the interval (0, 1), and it
is desired to test the following hypotheses:

H0: p = p0,

H1: p 	= p0.

Let Xn denote the proportion of successes in the n trials,
and suppose that the given hypotheses are to be tested by
using a χ2 test of goodness-of-fit.

a. Show that the statistic Q defined by Eq. (10.1.2) can
be written in the form

Q = n(Xn − p0)
2

p0(1 − p0)
.

b. Assuming that H0 is true, prove that as n → ∞, the
c.d.f. of Q converges to the c.d.f. of the χ2 distribution
with one degree of freedom. Hint: Show that Q = Z2,
where it is known from the central limit theorem that
Z is a random variable whose c.d.f. converges to the
c.d.f. of the standard normal distribution.

6. It is known that 30 percent of small steel rods produced
by a standard process will break when subjected to a load
of 3000 pounds. In a random sample of 50 similar rods pro-
duced by a new process, it was found that 21 of them broke
when subjected to a load of 3000 pounds. Investigate the
hypothesis that the breakage rate for the new process is
the same as the rate for the old process by carrying out a
χ2 test of goodness-of-fit.

7. In a random sample of 1800 observed values from the
interval (0, 1), it was found that 391 values were between
0 and 0.2, 490 values were between 0.2 and 0.5, 580 values
were between 0.5 and 0.8, and 339 values were between
0.8 and 1. Test the hypothesis that the random sample was
drawn from the uniform distribution on the interval [0, 1]
by carrying out a χ2 test of goodness-of-fit at the level of
significance 0.01.
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8. Suppose that the distribution of the heights of men who
reside in a certain large city is the normal distribution for
which the mean is 68 inches and the standard deviation
is 1 inch. Suppose also that when the heights of 500 men
who reside in a certain neighborhood of the city were
measured, the distribution in Table 10.4 was obtained. Test
the hypothesis that, with regard to height, these 500 men
form a random sample from all the men who reside in the
city.

Table 10.4 Data for Exercise 8

Height Number of men

Less than 66 in. 18

Between 66 and 67.5 in. 177

Between 67.5 and 68.5 in. 198

Between 68.5 and 70 in. 102

Greater than 70 in. 5

9. The 50 values in Table 10.5 are intended to be a random
sample from the standard normal distribution.

Table 10.5 Data for Exercise 9

−1.28 −1.22 −0.45 −0.35 0.72

−0.32 −0.80 −1.66 1.39 0.38

−1.38 −1.26 0.49 −0.14 −0.85

2.33 −0.34 −1.96 −0.64 −1.32

−1.14 0.64 3.44 −1.67 0.85

0.41 −0.01 0.67 −1.13 −0.41

−0.49 0.36 −1.24 −0.04 −0.11

1.05 0.04 0.76 0.61 −2.04

0.35 2.82 −0.46 −0.63 −1.61

0.64 0.56 −0.11 0.13 −1.81

a. Carry out a χ2 test of goodness-of-fit by dividing the
real line into five intervals, each of which has proba-
bility 0.2 under the standard normal distribution.

b. Carry out a χ2 test of goodness-of-fit by dividing the
real line into 10 intervals, each of which has prob-
ability 0.1 under the standard normal distribution.

10.2 Goodness-of-Fit for Composite Hypotheses
We can extend the goodness-of-fit test to deal with the case in which the null
hypothesis is that the distribution of our data belongs to a particular parametric
family. The alternative hypothesis is that the data have a distribution that is not a
member of that parametric family. There are two changes to the test procedure
in going from the case of a simple null hypothesis to the case of a composite
null hypothesis. First, in the test statistic Q, the probabilities p0

i
are replaced by

estimated probabilities based on the parametric family. Second, the degrees of
freedom are reduced by the number of parameters.

Composite Null Hypotheses

Example
10.2.1

Failure Times of Ball Bearings. In Example 10.1.6, we tested the null hypothesis that
the logarithms of ball bearing lifetimes have the normal distribution with mean 3.912
and variance 0.25. Suppose that we are not even sure that a normal distribution is
a good model for the log-lifetimes. Is there a way for us to test the composite null
hypothesis that the distribution of log-lifetimes is a member of the normal family?

�

We shall consider again a large population that consists of items of k different
types and again let pi denote the probability that an item selected at random will
be of type i (i = 1, . . . , k). We shall suppose now, however, that instead of testing
the simple null hypothesis that the parameters p1, . . . , pk have specific values, we
are interested in testing the composite null hypothesis that the values of p1, . . . , pk

belong to some specified subset of possible values. In particular, we shall consider
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problems in which the null hypothesis specifies that the parameters p1, . . . , pk can
actually be represented as functions of a smaller number of parameters.

Example
10.2.2

Genetics. Consider a gene (such as in Example 1.6.4 on page 23) that has two dif-
ferent alleles. Each individual in a given population must have one of three possible
genotypes. If the alleles arrive independently from the two parents, and if every par-
ent has the same probability θ of passing the first allele to each offspring, then the
probabilities p1, p2, and p3 of the three different genotypes can be represented in the
following form:

p1 = θ2, p2 = 2θ(1 − θ), p3 = (1 − θ)2. (10.2.1)

Here, the value of the parameter θ is unknown and can lie anywhere in the interval
0 < θ < 1. For each value of θ in this interval, it can be seen that pi > 0 for i = 1, 2, or 3,
and p1 + p2 + p3 = 1. In this problem, a random sample is taken from the population,
and the statistician must use the observed numbers of individuals who have each of
the three genotypes to determine whether it is reasonable to believe that there is
some value of θ in the interval 0 < θ < 1 such that p1, p2, and p3 can be represented
in the hypothesized form (10.2.1).

If a gene has three different alleles, each individual in the population must have
one of six possible genotypes. Once again, if the alleles pass independently from the
parents, and if each parent has probabilities θ1 and θ2 of passing the first and second
alleles, respectively, to an offspring, then the probabilities p1, . . . , p6 of the different
genotypes can be represented in the following form, for some values of θ1 and θ2 such
that θ1 > 0, θ2 > 0, and θ1 + θ2 < 1:

p1 = θ2
1, p2 = θ2

2, p3 = (1 − θ1 − θ2)
2, p4 = 2θ1θ2,

p5 = 2θ1(1 − θ1 − θ2), p6 = 2θ2(1 − θ1 − θ2).
(10.2.2)

Again, for all values of θ1 and θ2 satisfying the stated conditions, it can be verified
that pi > 0 for i = 1, . . . , 6 and

∑6
i=1 pi = 1. On the basis of the observed numbers

N1, . . . , N6 of individuals having each genotype in a random sample, the statisti-
cian must decide whether or not to reject the null hypothesis that the probabilities
p1, . . . , p6 can be represented in the form (10.2.2) for some values of θ1 and θ2. �

In formal terms, in a problem like those in Example 10.2.2, we are interested in
testing the hypothesis that for i = 1, . . . , k, each probability pi can be represented as
a particular function πi(θ) of a vector of parameters θ = (θ1, . . . , θs). It is assumed
that s < k − 1 and no component of the vector θ can be expressed as a function
of the other s − 1 components. We shall let � denote the s-dimensional parameter
space of all possible values of θ . Furthermore, we shall assume that the functions
π1(θ), . . . , πk(θ) always form a feasible set of values of p1, . . . , pk in the sense that
for every value of θ ∈ �, πi(θ) > 0 for i = 1, . . . , k and

∑k
i=1 πi(θ) = 1.

The hypotheses to be tested can be written in the following form:

H0: There exists a value of θ ∈ � such that
pi = πi(θ) for i = 1, . . . , k, (10.2.3)

H1: The hypothesis H0 is not true.

The assumption that s < k − 1 guarantees that the hypothesis H0 actually restricts
the values of p1, . . . , pk to a proper subset of the set of all possible values of these
probabilities. In other words, as the vector θ runs through all the values in the set �,
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the vector [π1(θ), . . . , πk(θ)] runs through only a proper subset of the possible values
of (p1, . . . , pk).

The χ2 Test for Composite Null Hypotheses

In order to carry out a χ2 test of goodness-of-fit of the hypotheses (10.2.3), the statistic
Q defined by Eq. (10.1.2) must be modified because the expected number np0

i
of

observations of type i in a random sample of n observations is no longer completely
specified by the null hypothesis H0. The modification that is used is simply to replace
np0

i
by the M.L.E. of this expected number under the assumption that H0 is true. In

other words, if θ̂ denotes the M.L.E. of the parameter vector θ based on the observed
numbers N1, . . . , Nk, then the statistic Q is defined as follows:

Q =
k∑

i=1

[Ni − nπi(θ̂)]2

nπi(θ̂)
. (10.2.4)

Again, it is reasonable to base a test of the hypotheses (10.2.3) on this statistic
Q by rejecting H0 if Q ≥ c, where c is an appropriate constant. In 1924, R. A. Fisher
proved the following result, whose precise statement and proof are not given here.
(See Schervish 1995, theorem 7.133.)

Theorem
10.2.1

χ2 Test for Composite Null. Suppose that the null hypothesis H0 in (10.2.3) is true and
certain regularity conditions are satisfied. Then as the sample size n → ∞, the c.d.f.
of Q in (10.2.4) converges to the c.d.f. of the χ2 distribution with k − 1 − s degrees
of freedom.

When the sample size n is large and the null hypothesis H0 is true, the distribution
of Q will be approximately a χ2 distribution. To determine the number of degrees of
freedom, we must subtract s from the number k − 1 used in Sec. 10.1 because we are
now estimating the s parameters θ1, . . . , θs when we compare the observed number
Ni with the expected number nπi(θ̂) for i = 1, . . . , k. In order that this result will hold,
it is necessary to satisfy the following regularity conditions: First, the M.L.E. θ̂ of the
vector θ must occur at a point where the partial derivatives of the likelihood function
with respect to each of the parameters θ1, . . . , θs equal 0. Furthermore, these partial
derivatives must satisfy certain conditions of the type alluded to in Sec. 8.8 when we
discussed the asymptotic properties of M.L.E.’s.

Example
10.2.3

Genetics. As examples of the use of the statistic Q defined by Eq. (10.2.4), consider
the two types of genetics problems described in Example 10.2.2. In a problem of the
first type, k = 3, and it is desired to test the null hypothesis H0 that the probabilities
p1, p2, and p3 can be represented in the form (10.2.1) against the alternative H1 that
H0 is not true. In this problem, s = 1. Therefore, when H0 is true, the distribution of
the statistic Q defined by Eq. (10.2.4) will be approximately the χ2 distribution with
one degree of freedom.

In a problem of the second type, k = 6, and it is desired to test the null hypothesis
H0 that the probabilities p1, . . . , p6 can be represented in the form (10.2.2) against
the alternative H1 that H0 is not true. In this problem, s = 2. Therefore, when H0
is true, the distribution of Q will be approximately the χ2 distribution with three
degrees of freedom. �
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Determining the Maximum Likelihood Estimates

When the null hypothesis H0 in (10.2.3) is true, the likelihood function L(θ) for the
observed numbers N1, . . . , Nk will be

L(θ) =
(

n

N1, . . . , Nk

)
[π1(θ)]N1 . . . [πk(θ)]Nk. (10.2.5)

Thus,

log L(θ) = log
(

n

N1, . . . , Nk

)
+

k∑
i=1

Ni log πi(θ). (10.2.6)

The M.L.E. θ̂ will be the value of θ for which log L(θ) is a maximum. The multinomial
coefficient in (10.2.6) does not affect the maximization, and we shall ignore it for the
remainder of this section.

Example
10.2.4

Genetics. In the first parts of Examples 10.2.2 and 10.2.3, k = 3 and H0 specifies that
the probabilities p1, p2, and p3 can be represented in the form (10.2.1). In this case,

log L(θ) = N1 log(θ2) + N2 log[2θ(1 − θ)] + N3 log[(1 − θ)2]

= (2N1 + N2) log θ + (2N3 + N2) log(1 − θ) + N2 log 2.
(10.2.7)

It can be found by differentiation that the value of θ for which log L(θ) is a maxi-
mum is

θ̂ = 2N1 + N2

2(N1 + N2 + N3)
= 2N1 + N2

2n
. (10.2.8)

The value of the statistic Q defined by Eq. (10.2.4) can now be calculated from
the observed numbers N1, N2, and N3. As previously mentioned, when H0 is true and
n is large, the distribution of Q will be approximately the χ2 distribution with one
degree of freedom. Hence, the tail area corresponding to the observed value of Q

can be found from that χ2 distribution. �

Testing Whether a Distribution Is Normal

Consider now a problem in which a random sample X1, . . . , Xn is taken from some
continuous distribution for which the p.d.f. is unknown, and it is desired to test the null
hypothesis H0 that this distribution is a normal distribution against the alternative
hypothesis H1 that the distribution is not normal. To perform a χ2 test of goodness-
of-fit in this problem, divide the real line into k subintervals and count the number Ni

of observations in the random sample that fall into the ith subinterval (i = 1, . . . , k).
If H0 is true, and if μ and σ 2 denote the unknown mean and variance of the

normal distribution, then the parameter vector θ is the two-dimensional vector θ =
(μ, σ 2). The probability πi(θ), or πi(μ, σ 2), that an observation will fall within the ith
subinterval, is the probability assigned to that subinterval by the normal distribution
with mean μ and variance σ 2. In other words, if the ith subinterval is the interval
from ai to bi, then

πi(μ, σ 2) =
∫ bi

ai

1
(2π)1/2σ

exp

[
− (x − μ)2

2σ 2

]
dx

= �

(
bi − μ

σ

)
− �

(
ai − μ

σ

)
,

(10.2.9)
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where �(.) is the standard normal c.d.f., and �(−∞) = 0 and �(∞) = 1.
It is important to note that in order to calculate the value of the statistic Q defined

by Eq. (10.2.4), the M.L.E.’s μ̂ and σ̂ 2 must be found by using the numbers N1, . . . , Nk

of observations in the different subintervals. The M.L.E.’s should not be found by
using the observed values of X1, . . . , Xn themselves. In other words, μ̂ and σ̂ 2 will
be the values of μ and σ 2 that maximize the likelihood function

L(μ, σ 2) = [π1(μ, σ 2)]N1 . . . [πk(μ, σ 2)]Nk. (10.2.10)

Because of the complicated nature of the function πi(μ, σ 2), as given by Eq.
(10.2.9), a lengthy numerical computation would usually be required to determine
the values of μ and σ 2 that maximize L(μ, σ 2). On the other hand, we know that
the M.L.E.’s of μ and σ 2 based on the n observed values X1, . . . , Xn in the original
sample are simply the sample mean Xn and the sample variance S2

n
/n. Furthermore, if

the estimators that maximize the likelihood function L(μ, σ 2) are used to calculate
the statistic Q, then we know that when H0 is true, the distribution of Q will be
approximately the χ2 distribution with k − 3 degrees of freedom. On the other hand,
if the M.L.E.’s Xn and S2

n
/n, which are based on the observed values in the original

sample, are used to calculate Q, then this χ2 approximation to the distribution of
Q will not be appropriate. Because of the simple nature of the estimators Xn and
S2

n
/n, we shall use these estimators to calculate Q, but we shall describe how their

use modifies the distribution of Q.
In 1954, H. Chernoff and E. L. Lehmann established the following general result,

which we shall not prove here.

Theorem
10.2.2

Let X1, . . . , Xn be a random sample from a distribution with a p-dimensional pa-
rameter θ . Let θ̂n denote the M.L.E. as defined in Definition 7.5.2. Partition the real
line into k > p + 1 disjoint intervals I1, . . . , Ik. Let Ni be the number of observations
that fall into Ii for i = 1, . . . , k. Let πi(θ) = Pr(Xi ∈ Ii|θ). Let

Q′ =
k∑

i=1

[Ni − nπi(θ̂n)]
2

nπi(θ̂n)
. (10.2.11)

Assume the regularity conditions needed for asymptotic normality of the M.L.E.
Then, as n → ∞, the c.d.f. of Q′ converges to a c.d.f. that lies between the c.d.f. of the
χ2 distribution with k − p − 1 degrees of freedom and the c.d.f. of the χ2 distribution
with k − 1 degrees of freedom.

For the case of testing that the distribution is normal, suppose that we use the
M.L.E.’s Xn and S2

n
/n and calculate the statistic Q′ in Eq. (10.2.11) instead of the

statistic Q in Eq. (10.2.4). If the null hypothesis H0 is true, then as n → ∞, the c.d.f.
of Q′ converges to a c.d.f. that lies between the c.d.f. of the χ2 distribution with k − 3
degrees of freedom and the c.d.f. of the χ2 distribution with k − 1 degrees of freedom.
It follows that if the value of Q′ is calculated in this simplified way, then the tail area
corresponding to this value of Q′ is actually larger than the tail area found from a
table of the χ2 distribution with k − 3 degrees of freedom. In fact, the appropriate tail
area lies somewhere between the tail area found from a table of the χ2 distribution
with k − 3 degrees of freedom and the larger tail area found from a table of the χ2

distribution with k − 1 degrees of freedom. Thus, when the value of Q′ is calculated
in this simplified way, the corresponding tail area will be bounded by two values that
can be obtained from a table of the χ2 distribution.



638 Chapter 10 Categorical Data and Nonparametric Methods

Example
10.2.5

Failure Times of Ball Bearings. Return to Example 10.2.1. We are now in a position
to try to test the composite null hypothesis that the logarithms of ball bearing
lifetimes have some normal distribution. We shall divide the real line into the same
subintervals that we used in Example 10.1.6, namely, (−∞, 3.575], (3.575, 3.912],
(3.912, 4.249], and (4.249, ∞). The counts for the four intervals are still 3, 4, 8, and
8. We shall use Theorem 10.2.2, which allows us to use the M.L.E.’s based on the
original data. This yields μ̂ = 4.150 and σ̂ 2 = 0.2722. The probabilities of the four
intervals are

π1(μ̂, σ̂ 2) = �

(
3.575 − 4.150
(0.2722)1/2

)
= 0.1350,

π2(μ̂, σ̂ 2) = �

(
3.912 − 4.150
(0.2722)1/2

)
− �

(
3.575 − 4.150
(0.2722)1/2

)
= 0.1888,

π3(μ̂, σ̂ 2) = �

(
4.249 − 4.150
(0.2722)1/2

)
− �

(
3.912 − 4.150
(0.2722)1/2

)
= 0.2511,

π4(μ̂, σ̂ 2) = 1 − �

(
4.249 − 4.150
(0.2722)1/2

)
= 0.4251.

This makes the value of Q′ equal to

Q′ = (3 − 23 × 0.1350)2

23 × 0.1350
+ (4 − 23 × 0.1888)2

23 × 0.1888
+ (8 − 23 × 0.2511)2

23 × 0.2511

+ (8 − 23 × 0.4251)2

23 × 0.4251
= 1.211.

The tail area corresponding to 1.211 needs to be computed for χ2 distributions with
k − 1 = 3 and k − 3 = 1 degrees of freedom. For one degree of freedom, the p-value
is 0.2711, and for three degrees of freedom the p-value is 0.7504. So, our actual p-
value lies in the interval [0.2711, 0.7504]. Although this interval is wide, it tells not to
reject H0 at level α0 if α0 < 0.2711. �

Note: Testing Composite Hypotheses about an Arbitrary Distribution. Theorem
10.2.2 is very general and applies to both continuous and discrete distributions.
Suppose, for example, that a random sample of n observations is taken from a discrete
distribution for which the possible values are the nonnegative integers 0, 1, 2, . . . .

Suppose also that it is desired to test the null hypothesis H0 that this distribution is a
Poisson distribution against the alternative hypothesis H1 that the distribution is not
Poisson. Finally, suppose that the nonnegative integers 0, 1, 2, . . . are divided into k

classes such that each observation will lie in one of these classes.
It is known from Exercise 5 of Sec. 7.5 that if H0 is true, then the sample

mean Xn is the M.L.E. of the unknown mean θ of the Poisson distribution based
on the n observed values in the original sample. Therefore, if the estimator θ̂ = Xn

is used to calculate the statistic Q′ defined by Eq. (10.2.11) rather than the Q in
Eq. (10.2.4), then the approximate distribution of Q′ when H0 is true lies between
the χ2 distribution with k − 2 degrees of freedom and the χ2 distribution with k − 1
degrees of freedom.

Example
10.2.6

Prussian Army Deaths. In Example 7.3.14, we modeled the numbers of deaths by
horsekick in Prussian army units as Poisson random variables. Suppose that we wish
to test the null hypothesis that the numbers are a random sample from some Poisson
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distribution versus the alternative hypothesis that they are not a Poisson random
sample. The numbers of counts reported in Example 7.3.14 are repeated here:

Count 0 1 2 3 ≥ 4

Number of Observations 144 91 32 11 2

The likelihood function, assuming that the data form a random sample from a Poisson
distribution, is proportional (as a function of θ) to exp(−280θ)θ196. The M.L.E. is
θ̂n = 196/280 = 0.7. We can use the k = 5 classes above to compute the statistic Q′.
The five class probabilities are

Count 0 1 2 3 ≥ 4

πi(θ̂n) 0.4966 0.3476 0.1217 0.0283 0.0058

Then

Q′ = (144 − 280 × 0.4966)2

280 × 0.4966
+ (91 − 280 × 0.3476)2

280 × 0.3476
+ (32 − 280 × 0.1217)2

280 × 0.1217

+ (11 − 280 × 0.0283)2

280 × 0.0283
+ (2 − 208 × 0.0058)2

208 × 0.0005
= 1.979.

The tail areas corresponding to the observed Q′ and degrees of freedom four and
three are, respectively, 0.7396 and 0.5768. We would not be able to reject H0 at level
α0 for α0 < 0.5768. �

Summary

If we want to test the composite hypothesis that our data have a distribution from
a parametric family, we must estimate the parameter θ . We do this by first dividing
the real numbers into k disjoint intervals. Then we reduce the data to the counts
N1, . . . , Nk of how many observations fall into each of the k intervals. We then
construct the likelihood function L(θ) = ∏k

i=1 πi(θ)Ni , where πi(θ) is the probability
that one observation falls into the ith interval. We estimate θ to be the value θ̂ that
maximizes L(θ). We then compute the test statistic Q = ∑k

i=1[Ni − nπi(θ̂)]2/[nπi(θ̂)],
which has the form

∑
(observed−expected)2/expected. In order to test the null

hypothesis at level α0, we compare Q to the 1 − α0 quantile of the χ2 distribution
with k − 1 − s degrees of freedom, where s is the dimension of θ . Alternatively, we
can find the usual M.L.E. θ̂ based on the original observations. In this case, we need
to compare Q to a number between the 1 − α0 quantile of the χ2 distribution with
k − 1 − s degrees of freedom and the 1 − α0 quantile of the χ2 distribution with k − 1
degrees of freedom.
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Exercises

1. The 41 numbers in Table 10.6 are average sulfur diox-
ide contents over the years 1969–71 (micrograms per cubic
meter) measured in the air in 41 U.S. cities. The data ap-
pear on pp. 619–620 of Sokal and Rohlf (1981).

a. Test the null hypothesis that these data arise from a
normal distribution.

b. Test the null hypothesis that these data arise from a
lognormal distribution.

Table 10.6 Sulfur dioxide in the air of 41 U.S. cities

10 13 12 17 56 36 29

14 10 24 110 28 17 8

30 9 47 35 29 14 56

14 11 46 11 23 65 26

69 61 94 10 18 9 10

28 31 26 29 31 16

2. At the fifth hockey game of the season at a certain
arena, 200 people were selected at random and asked how
many of the previous four games they had attended. The
results are given in Table 10.7. Test the hypothesis that
these 200 observed values can be regarded as a random
sample from a binomial distribution; that is, there exists
a number θ (0 < θ < 1) such that the probabilities are as
follows:

p0 = (1 − θ)4, p1 = 4θ(1 − θ)3, p2 = 6θ2(1 − θ)2,

p3 = 4θ3(1 − θ), p4 = θ4.

Table 10.7 Data for Exercise 2

Number of games Number of
previously attended people

0 33

1 67

2 66

3 15

4 19

3. Consider a genetics problem in which each individual
in a certain population must have one of six genotypes,
and it is desired to test the null hypothesis H0 that the
probabilities of the six genotypes can be represented in
the form specified in Eq. (10.2.2).

a. Suppose that in a random sample of n individuals,
the observed numbers of individuals having the six

genotypes are N1, . . . , N6. Find the M.L.E.’s of θ1 and
θ2 when the null hypothesis H0 is true.

b. Suppose that in a random sample of 150 individuals,
the observed numbers are as follows:

N1 = 2, N2 = 36, N3 = 14, N4 = 36,

N5 = 20, N6 = 42.

Determine the value of Q and the corresponding tail
area.

4. Consider again the sample consisting of the heights of
500 men given in Exercise 8 of Sec. 10.1. Suppose that
before these heights were grouped into the intervals given
in that exercise, it was found that for the 500 observed
heights in the original sample, the sample mean was Xn =
67.6 and the sample variance was S2

n
/n = 1.00. Test the

hypothesis that these observed heights form a random
sample from a normal distribution.

5. In a large city, 200 persons were selected at random,
and each person was asked how many tickets he purchased
that week in the state lottery. The results are given in
Table 10.8. Suppose that among the seven persons who
had purchased five or more tickets, three persons had
purchased exactly five tickets, two persons had purchased
six tickets, one person had purchased seven tickets, and
one person had purchased 10 tickets. Test the hypothesis
that these 200 observations form a random sample from a
Poisson distribution.

Table 10.8 Data for Exercise 5

Number of tickets Number of
previously purchased persons

0 52

1 60

2 55

3 18

4 8

5 or more 7

6. Rutherford and Geiger (1910) counted the numbers
of alpha particles emitted by a certain mass of polonium
during 2608 disjoint time periods, each of which lasted
7.5 seconds. The results are given in Table 10.9. Test the
hypothesis that these 2608 observations form a random
sample from a Poisson distribution.
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Table 10.9 Data for Exercise 6 from Rutherford
and Geiger (1910)

Number of Number of
particles emitted time periods

0 57

1 203

2 383

3 525

4 532

5 408

6 273

7 139

8 45

9 27

10 10

11 4

12 0

13 1

14 1

15 or more 0

Total 2608

7. Test the hypothesis that the 50 observations in Table
10.10 form a random sample from a normal distribution.

Table 10.10 Data for Exercise 7

9.69 8.93 7.61 8.12 −2.74

2.78 7.47 8.46 7.89 5.93

5.21 2.62 0.22 −0.59 8.77

4.07 5.15 8.32 6.01 0.68

9.81 5.61 13.98 10.22 7.89

0.52 6.80 2.90 2.06 11.15

10.22 5.05 6.06 14.51 13.05

9.09 9.20 7.82 8.67 7.52

3.03 5.29 8.68 11.81 7.80

16.80 8.07 0.66 4.01 8.64

8. Test the hypothesis that the 50 observations in Table
10.11 form a random sample from an exponential distri-
bution.

Table 10.11 Data for Exercise 8

0.91 1.22 1.28 0.22 2.33

0.90 0.86 1.45 1.22 0.55

0.16 2.02 1.59 1.73 0.49

1.62 0.56 0.53 0.50 0.24

1.28 0.06 0.19 0.29 0.74

1.16 0.22 0.91 0.04 1.41

3.65 3.41 0.07 0.51 1.27

0.61 0.31 0.22 0.37 0.06

1.75 0.89 0.79 1.28 0.57

0.76 0.05 1.53 1.86 1.28

10.3 Contingency Tables
When each observation in our sample is a bivariate discrete random vector (a pair
of discrete random variables), then there is a simple way to test the hypothesis that
the two random variables are independent. The test is another form of χ2 test like
the ones used earlier in this chapter.

Independence in Contingency Tables

Example
10.3.1

College Survey. Suppose that 200 students are selected at random from the entire
enrollment at a large university, and each student in the sample is classified both
according to the curriculum in which he is enrolled and according to his preference for
either of two candidates A and B in a forthcoming election. Suppose that the results
are as presented in Table 10.12. We might be interested in whether the choices of
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Table 10.12 Classification of students by curriculum and candidate preference

Candidate preferred

Curriculum A B Undecided Totals

Engineering and science 24 23 12 59

Humanities and social sciences 24 14 10 48

Fine arts 17 8 13 38

Industrial and public administration 27 19 9 55

Totals 92 64 44 200

curriculum and candidate are independent of each other. To be more precise, suppose
that a student is selected at random from the entire enrollment at the university.
Independence means that for each i and j , the probability that such a randomly
chosen student prefers candidate j and is in curriculum i equals the product of the
probability that he prefers candidate j times the probability that he is enrolled in
curriculum i. �

Tables of data like Table 10.12 are very common and have a special name.

Definition
10.3.1

Contingency Tables. A table in which each observation is classified in two or more
ways is called a contingency table.

In Table 10.12, only two classifications are considered for each student, namely,
the curriculum in which he is enrolled and the candidate he prefers. Such a table is
called a two-way contingency table.

In general, we shall consider a two-way contingency table containing R rows and
C columns. For i = 1, . . . , R and j = 1, . . . , C, we shall let pij denote the probability
that an individual selected at random from a given population will be classified in
the ith row and the j th column of the table. Furthermore, we shall let pi+ denote the
marginal probability that the individual will be classified in the ith row of the table
and p+j denote the marginal probability that the individual will be classified in the
j th column of the table. Thus,

pi+ =
C∑

j=1

pij and p+j =
R∑

i=1

pij .

Furthermore, since the sum of the probabilities for all the cells of the table must be 1,
we have

R∑
i=1

C∑
j=1

pij =
R∑

i=1

pi+ =
C∑

j=1

p+j = 1.

Suppose now that a random sample of n individuals is taken from the given
population. For i = 1, . . . , R, and j = 1, . . . , C, we shall let Nij denote the number
of individuals who are classified in the ith row and the j th column of the table.
Furthermore, we shall let Ni+ denote the total number of individuals classified in the
ith row and N+j denote the total number of individuals classified in the j th column.
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Thus,

Ni+ =
C∑

j=1

Nij and N+j =
R∑

i=1

Nij . (10.3.1)

Also,

R∑
i=1

C∑
j=1

Nij =
R∑

i=1

Ni+ =
C∑

j=1

N+j = n. (10.3.2)

On the basis of these observations, the following hypotheses are to be tested:

H0: pij = pi+p+j for i = 1, . . . , R and j = 1, . . . , C,

H1: The hypothesis H0 is not true.
(10.3.3)

The χ2 Test of Independence

The χ2 tests described in Sec. 10.2 can be applied to the problem of testing the
hypotheses (10.3.3). Each individual in the population from which the sample is taken
must belong in one of the RC cells of the contingency table. Under the null hypothesis
H0, the unknown probabilities pij of these cells have been expressed as functions
of the unknown parameters pi+ and p+j . Since

∑R
i=1 pi+ = 1 and

∑C
j=1 p+j = 1,

the actual number of unknown parameters to be estimated when H0 is true is s =
(R − 1) + (C − 1), or s = R + C − 2.

For i = 1, . . . , R, and j = 1, . . . , C, let Êij denote the M.L.E., when H0 is true,
of the expected number of observations that will be classified in the ith row and the
j th column of the table. In this problem, the statistic Q defined by Eq. (10.2.4) will
have the following form:

Q =
R∑

i=1

C∑
j=1

(Nij − Êij )
2

Êij

. (10.3.4)

Furthermore, since the contingency table contains RC cells, and since s = R + C − 2
parameters are to be estimated when H0 is true, it follows that when H0 is true and
n → ∞, the c.d.f. of Q converges to the c.d.f. of the χ2 distribution for which the
number of degrees of freedom is RC − 1 − s = (R − 1)(C − 1).

Next, we shall consider the form of the estimator Êij . The expected number
of observations in the ith row and the j th column is simply npij . When H0 is true,
pij = pi+p+j . Therefore, if p̂i+ and p̂+j denote the M.L.E.’s of pi+ and p+j , then it
follows that Êij = np̂i+p̂+j . Next, since pi+ is the probability that an observation will
be classified in the ith row, p̂i+ is simply the proportion of observations in the sample
that are classified in the ith row; that is, p̂i+ = Ni+/n. Similarly, p̂+j = N+j/n, and it
follows that

Êij = n

(
Ni+
n

) (
N+j

n

)
= Ni+N+j

n
. (10.3.5)

If we substitute this value of Êij into Eq. (10.3.4), we can calculate the value
of Q from the observed values of Nij . The null hypothesis H0 should be rejected if
Q ≥ c, where c is an appropriately chosen constant. When H0 is true, and the sample
size n is large, the distribution of Q will be approximately the χ2 distribution with
(R − 1)(C − 1) degrees of freedom.
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Table 10.13 Expected cell counts for Example 10.3.2

Candidate preferred

Curriculum A B Undecided Totals

Engineering and science 27.14 18.88 12.98 59

Humanities and social sciences 22.08 15.36 10.56 48

Fine arts 17.48 12.16 8.36 38

Industrial and public administrations 25.30 17.60 12.10 55

Totals 92 64 44 200

Example
10.3.2

College Survey. Suppose that we wish to test the hypotheses (10.3.3) on the basis of
the data in Table 10.12. By using the totals given in the table, we find that N1+ = 59,
N2+ = 48, N3+ = 38, and N4+ = 55, and also N+1 = 92, N+2 = 64, and N+3 = 44.
Because n = 200, it follows from Eq. (10.3.5) that the 4 × 3 table of values of Êij

is as shown in Table 10.13.
The values of Nij given in Table 10.12 can now be compared with the values of

Êij in Table 10.13. The value of Q defined by Eq. (10.3.4) turns out to be 6.68. Since
R = 4 and C = 3, the corresponding tail area is to be found from a table of the χ2

distribution with (R − 1)(C − 1) = 6 degrees of freedom. Its value is larger than 0.3.
Therefore, we would only reject H0 at level α0 if α0 ≥ 0.3. �

Example
10.3.3

Montana Outlook Poll. In Example 10.1.4, we examined the surveyed opinions of
Montana residents on their personal financial status. Another question that survey
participants were asked was an income range. Table 10.14 gives a cross-tabulation of
the answers to both questions. We can use the χ2 test to test the null hypothesis that
income is independent of opinion on personal financial status. Table 10.15 gives the
expected counts for each cell of Table 10.14 under the null hypothesis. We can now
compute the test statistic Q = 5.210 with (3 − 1) × (3 − 1) = 4 degrees of freedom.
The p-value associated with this value of Q is 0.266, so we would only reject the null
hypothesis at a level α0 greater than 0.266. �

Table 10.14 Responses to two questions from Montana
Outlook Poll

Personal financial status

Income range Worse Same Better Total

Under $20,000 20 15 12 47

$20,000 –$35,000 24 27 32 83

Over $35,000 14 22 23 59

Total 58 64 67 189
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Table 10.15 Expected cell counts for Table 10.14 under the
assumption of independence

Personal financial status

Income range Worse Same Better Total

Under $20,000 14.42 15.92 16.66 47

$20,000–$35,000 25.47 28.11 29.42 83

Over $35,000 18.11 19.98 20.92 59

Total 58 64 67 189

Summary

We learned how to test the null hypothesis that two discrete random variables
are independent based on a random sample of n pairs. First, form a contingency
table of the counts for every pair of possible observed values. Then, estimate the
two marginal distributions of the two random variables. Under the null hypothe-
sis that the random variables are independent, the expected count for value i of
the first variable and value j of the second variable is n times the product of the
two estimated marginal probabilities. We then form the χ2 statistic Q by summing
(observed−expected)2/expected over all of the cells in the contingency table. The
degrees of freedom is (R − 1)(C − 1), where R is the number of rows in the table and
C is the number of columns.

Exercises

1. Chase and Dummer (1992) studied the attitudes of
school-aged children in Michigan. The children were
asked which of the following was most important to them:
good grades, athletic ability, or popularity. Additional
information about each child was also collected, and
Table 10.16 shows the results for 478 children classified
by sex and their response to the survey question. Test the
null hypothesis that a child’s answer to the survey question
is independent of his or her sex.

Table 10.16 Data for Exercise 1 from Chase and Dummer
(1992)

Good grades Athletic ability Popularity

Boys 117 60 50

Girls 130 30 91

2. Show that the statistic Q defined by Eq. (10.3.4) can be
rewritten in the form

Q =
⎛⎝ R∑

i=1

C∑
j=1

N2
ij

Êij

⎞⎠ − n.

3. Show that if C = 2, the statistic Q defined by Eq.
(10.3.4) can be rewritten in the form

Q = n

N+2

(
R∑

i=1

N2
i1

Êi1
− N+1

)
.

4. Suppose that an experiment is carried out to see if
there is any relation between a man’s age and whether
he wears a moustache. Suppose that 100 men, 18 years
of age or older, are selected at random, and each man
is classified according to whether or not he is between
18 and 30 years of age and also according to whether
or not he wears a moustache. The observed numbers are
given in Table 10.17. Test the hypothesis that there is no
relationship between a man’s age and whether he wears a
moustache.
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Table 10.17 Data for Exercise 4

Wears a Does not wear
moustache a moustache

Between 18 and 30 12 28

Over 30 8 52

5. Suppose that 300 persons are selected at random from
a large population, and each person in the sample is clas-
sified according to blood type, O, A, B, or AB, and also
according to Rh, positive or negative. The observed num-
bers are given in Table 10.18. Test the hypothesis that the
two classifications of blood types are independent.

Table 10.18 Data for Exercise 5

O A B AB

Rh positive 82 89 54 19

Rh negative 13 27 7 9

6. Suppose that a store carries two different brands, A

and B, of a certain type of breakfast cereal. Suppose that
during a one-week period the store noted whether each
package of this type of cereal that was purchased was
brand A or brand B and also noted whether the purchaser
was a man or a woman. (A purchase made by a child
or by a man and a woman together was not counted.)
Suppose that 44 packages were purchased, and that the
results were as shown in Table 10.19. Test the hypothesis
that the brand purchased and the sex of the purchaser are
independent.

Table 10.19 Data for Exercise 6

Brand A Brand B

Men 9 6

Women 13 16

7. Consider a two-way contingency table with three rows
and three columns. Suppose that, for i = 1, 2, 3 and j =
1, 2, 3, the probability pij that an individual selected at
random from a given population will be classified in the
ith row and the j th column of Table 10.20.

Table 10.20 Data for Exercise 7

0.15 0.09 0.06

0.15 0.09 0.06

0.20 0.12 0.08

a. Show that the rows and columns of this table are
independent by verifying that the values pij satisfy

the null hypothesis H0 in Eq. (10.3.3).

b. Generate a random sample of 300 observations from
the given population using a uniform pseudo-ran-
dom number generator. Select 300 pseudo-random
numbers between 0 and 1 and proceed as follows:
Since p11 = 0.15, classify a pseudo-random number
x in the first cell if x < 0.15. Since p11 + p12 = 0.24,
classify a pseudo-random number x in the second cell
if 0.15 ≤ x < 0.24. Continue in this way for all nine
cells. For example, since the sum of all probabilities
except p33 is 0.92, a pseudo-random number x will
be classified in the lower-right cell of the table if
x ≥ 0.92.

c. Consider the 3 × 3 table of observed values Nij gen-
erated in part (b). Pretend that the probabilities pij

were unknown, and test the hypotheses (10.3.3).

8. If all the students in a class carry out Exercise 7 inde-
pendently of each other and use different pseudo-random
numbers, then the different values of the statistic Q ob-
tained by the different students should form a random
sample from the χ2 distribution with four degrees of free-
dom. If the values of Q for all the students in the class are
available to you, test the hypothesis that these values form
such a random sample.

9. Consider a three-way contingency table of size R × C ×
T . For i = 1, . . . , R, j = 1, . . . , C, and k = 1, . . . , T , let
pijk denote the probability that an individual selected at
random from a given population will fall into the (i, j , k)
cell of the table. Let

pi++ =
C∑

j=1

T∑
k=1

pijk, p+j+ =
R∑

i=1

T∑
k=1

pijk,

p++k =
R∑

i=1

C∑
j=1

pijk.

On the basis of a random sample of n observations from
the given population, construct a test of the following
hypotheses:

H0: pijk = pi++p+j+p++k for all values of i, j, and k,

H1: The hypothesis H0 is not true.

10. Consider again the conditions of Exercise 9. For i =
1, . . . , R, and j = 1, . . . , C, let

pij+ =
T∑

k=1

pijk.

On the basis of a random sample of n observations from
the given population, construct a test of the following
hypotheses:

H0: pijk = pij+p++k for all values of i, j, and k,

H1: The hypothesis H0 is not true.
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10.4 Tests of Homogeneity
Imagine that we select subjects from several different populations, and that we
observe a discrete random variable for each subject. We might be interested in
whether or not the distribution of that discrete random variable is the same in each
population. There is a χ2 test of this hypothesis that is very similar to the χ2 test of
independence.

Samples from Several Populations

Example
10.4.1

College Survey. Consider again the problem described in Example 10.3.1. There we
assumed that a random sample of 200 students was drawn from the entire enrollment
at a large university and classified in a contingency table according to the curriculum
in which he is enrolled and according to his preference for either of two political
candidates A and B. The resulting table appears in Table 10.12.

Suppose, now, that instead of sampling 200 students at random, we had actually
sampled separately from each of the four curricula. That is, suppose that we had
sampled 59 students at random from those enrolled in engineering and science
along with 48 students selected at random from those enrolled in humanities and
social sciences and 38 from those enrolled in fine arts and 55 from those enrolled in
industrial and public administration. After the students are sampled, those in each
curriculum are then classified according to whether they prefer candidate A or B, or
are undecided. Suppose that the responses within each curriculum are the same as
those reported in Table 10.12.

We might still be interested in investigating whether there is a relationship
between the curriculum in which a student is enrolled and the candidate he prefers.
This time, we might word the question of interest as follows: Are the distributions of
candidate preferences within the different curricula the same or do the students in
different curricula have different distributions of preferences among the candidates?

�

In Example 10.4.1, we are assuming that we have obtained a table of values
identical to Table 10.12; we are assuming now that this table was obtained by taking
four different random samples from the different populations of students defined by
the four rows of the table. This is in contrast to Example 10.3.1, in which we assumed
that all students were drawn from one population and then classified according to the
values of two variables: preference and curriculum. In the present context, we are
interested in testing the hypothesis that, in all four populations, the same proportion
of students prefers candidate A, the same proportion prefers candidate B, and the
same proportion is undecided.

In general, we shall consider a problem in which random samples are taken from
R different populations, and each observation in each sample can be classified as one
of C different types. Thus, the data obtained from the R samples can be represented
in an R × C table. For i = 1, . . . , R, and j = 1, . . . , C, we shall let pij denote the
probability that an observation chosen at random from the ith population will be of
type j . Thus,

C∑
j=1

pij = 1 for i = 1, . . . , R.
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The hypotheses to be tested are as follows:

H0: p1j = p2j = . . . = pRj for j = 1, . . . , C,

H1: The hypothesis H0 is not true.
(10.4.1)

The null hypothesis H0 in (10.4.1) states that all the distributions from which the R

different samples are drawn are actually alike, that is, that the R distributions are
identical. If the null hypothesis in (10.4.1) were true, then combining the R popula-
tions would produce one homogeneous population with regard to the distribution
of the random variables we are studying. For this reason, a test of the hypotheses
(10.4.1) is called a test of homogeneity of the R distributions.

For i = 1, . . . , R, we shall let Ni+ denote the number of observations in the
random sample from the ith population; for j = 1, . . . , C, we shall let Nij denote
the number of observations in this random sample that are of type j . Thus,

C∑
j=1

Nij = Ni+ for i = 1, . . . , R.

Furthermore, if we let n denote the total number of observations in all R samples
and N+j denote the total number of observations of type j in the R samples, then all
the relations in Eqs. (10.3.1) and (10.3.2) will again be satisfied.

The χ2 Test of Homogeneity

We shall now develop a test procedure for the hypotheses (10.4.1). Suppose for the
moment that the probabilities pij are known, and consider the following statistic
calculated from the observations in the ith random sample:

C∑
j=1

(Nij − Ni+pij)
2

Ni+pij

.

This statistic is just the standard χ2 statistic, introduced in Eq. (10.1.2), for the random
sample of Ni+ observations from the ith population. Therefore, when the sample size
Ni+ is large, the distribution of this statistic will be approximately the χ2 distribution
with C − 1 degrees of freedom.

If we now sum this statistic over the R different samples, we obtain the following
statistic:

R∑
i=1

C∑
j=1

(Nij − Ni+pij)
2

Ni+pij

. (10.4.2)

Since the observations in the R samples are drawn independently, the distribution
of the statistic (10.4.2) will be the distribution of the sum of R independent random
variables, each of which has approximately the χ2 distribution with C − 1 degrees of
freedom. Hence, the distribution of the statistic (10.4.2) will be approximately the χ2

distribution with R(C − 1) degrees of freedom.
Since the probabilities pij are not actually known, their values must be estimated

from the observed numbers in the R random samples. When the null hypothesis H0 is
true, the R random samples are actually drawn from the same distribution. Therefore,
the M.L.E. of the probability that an observation in each of these samples will be of
type j is simply the proportion of all the observations in the R samples that are of
type j . In other words, the M.L.E. of pij is the same for all values of i (i = 1, . . . , R),
and this estimator is p̂ij = N+j/n. When this M.L.E. is substituted into (10.4.2), we
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obtain the statistic

Q =
R∑

i=1

C∑
j=1

(Nij − Êij )
2

Êij

, (10.4.3)

where

Êij = Ni+N+j

n
. (10.4.4)

It can be seen that Eqs. (10.4.3) and (10.4.4) are precisely the same as Eqs. (10.3.4)
and (10.3.5). Thus, the statistic Q to be used for the test of homogeneity in this section
is precisely the same as the statistic Q to be used for the test of independence in
Sec. 10.3. We shall now show that the number of degrees of freedom is also precisely
the same for the test of homogeneity as for the test of independence.

Because the distributions of the R populations are alike when H0 is true, and
because

∑C
j=1 pij = 1 for this common distribution, we have estimated C − 1 pa-

rameters in this problem. Therefore, the statistic Q will have approximately the χ2

distribution with R(C − 1) − (C − 1) = (R − 1)(C − 1) degrees of freedom. This num-
ber is the same as that found in Sec. 10.3.

In summary, consider Table 10.12 again. The statistical analysis of this table will
be the same for either of the following two procedures: The 200 observations are
drawn as a single random sample from the entire enrollment of the university, and
a test of independence is carried out; or the 200 observations are drawn as separate
random samples from four different groups of students, and a test of homogeneity is
carried out. In either case, in a problem of this type with R rows and C columns, we
should calculate the statistic Q defined by Eqs. (10.4.3) and (10.4.4), and we should
assume that its distribution when H0 is true will be approximately the χ2 distribution
with (R − 1)(C − 1) degrees of freedom.

Note: Why the two χ2 tests look so similar. The reason that the same calculation
is appropriate for both the χ2 test of independence and the χ2 test of homogeneity
is the following: First, consider the situation of Sec. 10.3, in which one sample is
drawn and the random variables corresponding to rows and columns are measured.
Independence of the row and column variables is equivalent to the conditional
distribution of the column variable given a value of the row variable being the
same for every value of the row variable. Hence, the test of independence tests that
the conditional distributions of the column variable are the same for each value of
the row variable. Next, think of the row variable as defining subpopulations (for
example, different curricula in Table 10.12). The conditional distributions of the
column variable given each value of the row variable are the distributions of the
column variable within each subpopulation. The test of homogeneity tests that the
distributions within the subpopulations are the same if the samples had been drawn
separately from each subpopulation rather than drawn at random from the entire
population.

Comparing Two or More Proportions

Example
10.4.2

Television Survey. Suppose that independent samples are drawn from adults in sev-
eral cities. Each sampled person is asked whether or not they watched a particular
television program. Suppose that we want to test the null hypothesis H0 that the pro-
portion of adults who watched a certain television program was the same in each of
the cities. To be specific, suppose that there are R different cities (R ≥ 2). Suppose
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Table 10.21 Form of table for comparing
two or more proportions

Watched Did not Sample
City program watch size

1 N11 N12 N1+
2 N21 N22 N2+
...

R NR1 NR2 NR+

that for i = 1, . . . , R, a random sample of Ni+ adults is selected from city i, the num-
ber in the sample who watched the program is Ni1, and the number who did not watch
the program is Ni2 = Ni+ − Ni1. These data can be presented in an R × 2 table such as
Table 10.21. The hypotheses to be tested will have the same form as the hypotheses
(10.4.1). Hence, when the null hypothesis H0 is true, that is, when the proportion of
adults who watched the program is the same in all R cities, the statistic Q defined
by Eqs. (10.4.3) and (10.4.4) will have approximately the χ2 distribution with R − 1
degrees of freedom. �

The reasoning in Example 10.4.2 extends to other problems in which we wish to
compare a collection of proportions.

Example
10.4.3

A Clinical Trial. The data in Table 2.1 (see Example 2.1.4 on page 57) are the numbers
of subjects in four different treatment groups in a clinical trial together with the
numbers who did or did not relapse after treatment. We might wish to test the null
hypothesis that the probability of no relapse is the same in all four treatment groups.
We can easily compute the statistic Q in Eq. (10.4.3) to be 10.80. This is the 0.987
quantile of the χ2 distribution with three degrees of freedom. That is, the p-value is
0.013, and the null hypothesis of equal probabilities would be rejected at every level
α0 ≥ 0.013. �

Correlated 2 × 2 Tables

We shall now describe a type of problem in which the use of the χ2 test of homogene-
ity would not be appropriate. Suppose that 100 persons were selected at random in
a certain city, and that each person was asked whether she thought the service pro-
vided by the fire department in the city was satisfactory. Shortly after this survey was
carried out, a large fire occurred in the city. Suppose that after this fire, the same 100
persons were again asked whether they thought that the service provided by the fire
department was satisfactory. The results are presented in Table 10.22.

Table 10.22 has the same general appearance as other tables we have been
considering in this section. However, it would not be appropriate to carry out a χ2

test of homogeneity for this table, because the observations taken before the fire
and the observations taken after the fire are not independent. Although the total
number of observations in Table 10.22 is 200, only 100 independently chosen persons
were questioned in the surveys. It is reasonable to believe that a particular person’s
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Table 10.22 Correlated 2 × 2 table

Satisfactory Unsatisfactory

Before the fire 80 20

After the fire 72 28

Table 10.23 2 × 2 table for correlated responses

After the fire

Before the fire Satisfactory Unsatisfactory

Satisfactory 70 10

Unsatisfactory 2 18

opinion before the fire and her opinion after the fire are dependent. For this reason,
Table 10.22 is called a correlated 2 × 2 table.

The proper way to display the opinions of the 100 persons in the random sample
is shown in Table 10.23. It is not possible to construct Table 10.23 from the data
in Table 10.22 alone. The entries in Table 10.22 are simply the marginal totals of
Table 10.23. However, in order to construct Table 10.23, it is necessary to go back to
the original data and, for each person in the sample, to consider her opinion before
the fire and her opinion after the fire.

Furthermore, it usually is not appropriate to carry out either a χ2 test of indepen-
dence or a χ2 test of homogeneity for Table 10.23, because the hypotheses that are
tested by either of these procedures usually are not those in which a researcher would
be interested in this type of problem. In fact, in this problem a researcher would ba-
sically be interested in the answers to one or both of the following two questions:
First, what proportion of the persons in the city changed their opinions about the fire
department after the fire occurred? Second, among those persons in the city who did
change their opinions after the fire, were the changes predominantly in one direction
rather than the other?

Table 10.23 provides information pertaining to both these questions. According
to Table 10.23, the number of persons in the sample who changed their opinions after
the fire was 10 + 2 = 12. Furthermore, among the 12 persons who did change their
opinions, the opinions of 10 of them were changed from satisfactory to unsatisfactory
and the opinions of two of them were changed from unsatisfactory to satisfactory. On
the basis of these statistics, it is possible to make inferences about the corresponding
proportions for the entire population of the city.

In this example, the M.L.E. θ̂ of the proportion of the population who changed
their opinions after the fire is 0.12. Also, among those who did change their opinions,
the M.L.E. p̂12 of the proportion who changed from satisfactory to unsatisfactory is
5/6. Of course, if θ̂ is very small in a particular problem, then there is little interest in
the value of p̂12.
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Summary

When we sample discrete random variables from several populations, we might
be interested in the null hypothesis that the distribution of the random variables
is the same in all populations. We can perform a χ2 test of this null hypothesis
as follows: Create a new variable with values equal to the names of the different
populations. Next, pretend as if each observation consists of the original discrete
random variable together with the new “population name” variable. Finally, compute
the χ2 test statistic Q from Sec. 10.3 with the same degrees of freedom. For the type
of data considered in this section, the “population name” for each observation is
known before sampling begins, and hence it is not a random variable. Whether the
population name is known ahead of time or is observed as part of the sampled data
(as in Sec. 10.3), the mechanics of the χ2 test are the same.

Exercises

1. The survey of Chase and Dummer (1992) discussed in
Exercise 1 of Sec. 10.3 was actually collected by sampling
from three subpopulations according to the locations of
the schools: rural, suburban, and urban. Table 10.24 shows
the responses to the survey question classified by school
location. Test the null hypothesis that the distribution of
responses is the same in all three types of school location.

Table 10.24 Data for Exercise 1 from Chase
and Dummer (1992)

Good Athletic
grades ability Popularity

Rural 57 42 50

Suburban 87 22 42

Urban 103 26 49

2. An examination was given to 500 high school seniors in
each of two large cities, and their grades were recorded as
low, medium, or high. The results are given in Table 10.25.
Test the hypothesis that the distributions of scores among
seniors in the two cities are the same.

Table 10.25 Data for Exercise 2

Low Medium High

City A 103 145 252

City B 140 136 224

3. Every Tuesday afternoon during the school year, a cer-
tain university brought in a visiting speaker to present a
lecture on some topic of current interest. On the day af-
ter the fourth lecture of the year, random samples of 70
freshmen, 70 sophomores, 60 juniors, and 50 seniors were

selected from the student body at the university, and each
of these students was asked how many of the four lectures
she had attended. The results are given in Table 10.26. Test
the hypothesis that freshmen, sophomores, juniors, and
seniors at the university attended the lectures with equal
frequency.

Table 10.26 Data for Exercise 3

Number of lectures attended

0 1 2 3 4

Freshmen 10 16 27 6 11

Sophomores 14 19 20 4 13

Juniors 15 15 17 4 9

Seniors 19 8 6 5 12

4. Suppose that five persons shoot at a target. Suppose
also that for i = 1, . . . , 5, person i shoots ni times and hits
the target yi times, and that the values of ni and yi are
as given in Table 10.27. Test the hypothesis that the five
persons are equally good marksmen.

Table 10.27 Data for Exercise 4

i ni yi

1 17 8

2 16 4

3 10 7

4 24 13

5 16 10
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5. A manufacturing plant has preliminary contracts with
three different suppliers of machines. Each supplier de-
livered 15 machines, which were used in the plant for four
months in preliminary production. It turned out that one
of the machines from supplier 1 was defective, seven of
the machines from supplier 2 were defective, and seven
of the machines from supplier 3 were defective. The plant
statistician decided to test the null hypothesis H0 that the
three suppliers provided the same quality. Therefore, he
set up Table 10.28 and carried out a χ2 test. By summing
the values in the bottom row of Table 10.28, he found that
the value of the χ2 statistic was 24/5 with two degrees of
freedom. He then found from a table of the χ2 distribution
that H0 should be accepted when the level of significance
is 0.05. Criticize this procedure and provide a meaningful
analysis of the observed data.

Table 10.28 Data for Exercise 5

Supplier

1 2 3

Number of defectives Ni 1 7 7

Expected number of defectives
Ei under H0

5 5 5

(Ni − Ei)
2

Ei

16
5

4
5

4
5

6. Suppose that 100 students in a physical education class
shoot at a target with a bow and arrow, and 27 students
hit the target. These 100 students are then given a demon-
stration on the proper technique for shooting with the bow
and arrow. After the demonstration, they again shoot at
the target. This time 35 students hit the target. What addi-
tional information, if any, is needed in order to investigate
the hypothesis that the demonstration was helpful?

7. As people entered a certain meeting, n persons were se-
lected at random, and each was asked either to name one
of two political candidates she favored in a forthcoming
election or to say “undecided” if she had no real prefer-
ence. During the meeting, the people heard a speech on
behalf of one of the candidates. After the meeting, each of
the same n persons was again asked to express her opin-
ion. Describe a method for evaluating the effectiveness of
the speaker.

10.5 Simpson’s Paradox
When tabulating discrete data, we need to be careful about aggregating groups.
Suppose that a survey has two questions. If we construct a single table of responses
to the two questions that includes both men and women, we might get a very
different picture than if we construct separate tables for the responses of men and
women.

An Example of the Paradox

Example
10.5.1

Comparing Treatments in an Aggregated Table. Suppose that an experiment is carried
out in order to compare a new treatment for a particular disease with the standard
treatment for the disease. In the experiment, 80 subjects suffering from the disease
are treated, 40 subjects receiving the new treatment and 40 receiving the standard
treatment. After a certain period of time, it is observed how many of the subjects in
each group have improved and how many have not. Suppose that the overall results
for all 80 patients are as shown in Table 10.29.

According to this table, 20 of the 40 subjects who received the new treatment
improved, and 24 of the 40 subjects who received the standard treatment improved.
Thus, 50 percent of the subjects improved under the new treatment, whereas 60
percent improved under the standard treatment. On the basis of these results, the
new treatment appears inferior to the standard treatment. �
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Table 10.29 Results of experiment comparing two treatments

Percent
All patients Improved Not improved improved

New treatment 20 20 50

Standard treatment 24 16 60

Table 10.30 Table 10.29 disaggregated by sex

Percent
Men only Improved Not improved improved

New treatment 12 18 40

Standard treatment 3 7 30

Women only

New treatment 8 2 80

Standard treatment 21 9 70

Many contingency tables, such as Table 10.29, summarize the results of a study
in only one of several possible ways. The next example looks at the same data from
a different point of view and draws a different conclusion.

Example
10.5.2

Comparing Treatments in an Disaggregated Table. In order to investigate more carefully
the efficacy of the new treatment in Example 10.5.1, we might compare it with the
standard treatment just for the men in the sample and, separately, just for the women
in the sample. The results in Table 10.29 can thus be partitioned into two tables,
one pertaining just to men and the other just to women. This process of splitting
the overall data into disjoint components pertaining to different subgroups of the
population is called disaggregation.

Suppose that when the values in Table 10.29 are disaggregated by considering
the men and the women separately, the results are as shown in Table 10.30. It can be
verified that when the data in these separate tables are combined, or aggregated, we
again obtain Table 10.29. However, Table 10.30 contains a big surprise because the
new treatment appears to be superior to the standard treatment both for men and
for women. Specifically, 40 percent of the men (12 out of 30) who received the new
treatment improved, but only 30 percent of the men (3 out of 10) who received the
standard treatment improved. Furthermore, 80 percent of the women (8 out of 10)
who received the new treatment improved, but only 70 percent of the women (21 out
of 30) who received the standard treatment improved. �

Tables 10.29 and 10.30 together yield somewhat anomalous results. According
to Table 10.30, the new treatment is superior to the standard treatment both for men
and for women, but according to Table 10.29, the new treatment is inferior to the
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standard treatment when all the subjects are aggregated. This type of result is known
as Simpson’s paradox.

It should be emphasized that Simpson’s paradox is not a phenomenon that occurs
because we are working with small samples. The small numbers in Tables 10.29 and
10.30 were used merely for convenience in this explanation. Each of the entries in
these tables could be multiplied by 1000 or by 1,000,000 without changing the results.

The Paradox Explained

Of course, Simpson’s paradox is not actually a paradox; it is merely a result that is
surprising and puzzling to someone who has not seen or thought about it before. It
can be seen from Table 10.30 that in the example we are considering, women have
a higher rate of improvement from the disease than men have, regardless of which
treatment they receive. Furthermore, most of the women in the sample received the
standard treatment while most of the men received the new treatment. Specifically,
among the 40 men in the sample, 30 received the new treatment, and only 10 received
the standard treatment, whereas among the 40 women in the sample, these numbers
are reversed.

The new treatment looks bad in the aggregated table because most of the people
who weren’t going to respond well to either treatment got the new treatment while
most of the people who were going to respond well to either treatment got the
standard treatment. Even though the numbers of men and women in the experiment
were equal, a high proportion of the women and a low proportion of the men received
the standard treatment. Since women have a much higher rate of improvement than
men, it is found in the aggregated Table 10.29 that the standard treatment manifests
a higher overall rate of improvement than does the new treatment.

Simpson’s paradox demonstrates dramatically the dangers in making inferences
from an aggregated table like Table 10.29. To make sure that Simpson’s paradox
cannot occur in an experiment like the one just described, the proportions of men
and women among the subjects who receive the new treatment must be the same, or
approximately the same, as the proportions of men and women among the subjects
who receive the standard treatment. It is not necessary that there be equal numbers
of men and women in the sample.

We can express Simpson’s paradox in probability terms. Let A denote the event
that a subject chosen for the experiment will be a man, and let Ac denote the event
that the subject will be a woman. Also, let B denote the event that a subject will
receive the new treatment, and let Bc denote the event that the subject will receive
the standard treatment. Finally, let I denote the event that a subject will improve.
Simpson’s paradox then reflects the fact that it is possible for all three of the following
inequalities to hold simultaneously:

Pr(I |A ∩ B) > Pr(I |A ∩ Bc),

Pr(I |Ac ∩ B) > Pr(I |Ac ∩ Bc), (10.5.1)

Pr(I |B) < Pr(I |Bc).

The discussion that we have just given in regard to the prevention of Simpson’s
paradox can be expressed as follows: If Pr(A|B) = Pr(A|Bc), then it is not possible
for all three inequalities in (10.5.1) to hold (see Exercise 5). Similarly, if Pr(B|A) =
Pr(B|Ac), then it is not possible for all three inequalities in (10.5.1) to hold (see
Exercise 3).

The possibility of Simpson’s paradox lurks within every contingency table. Even
though we might take care to design a particular experiment so that Simpson’s
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paradox cannot occur when we disaggregate with respect to men and women, it is
always possible that there is some other variable, such as the age of the subject or the
intensity and the stage of the disease, with respect to which disaggregation would lead
us to a conclusion directly opposite to that indicated by the aggregated table. Once an
experiment is designed to prevent Simpson’s paradox with respect to disaggregations
that can be identified in advance, subjects are generally assiged randomly to the
possible treatments in the hopes of minimizing the chance that Simpson’s paradox
will arise with respect to an unforeseen disaggrageation.

Example
10.5.3

Comparing Treatments in an Aggregated Table. In the example of this section, it would
be sensible to assign 20 men and 20 women to each of the two treatments. Which
20 men and which 20 women get assigned to each treatment would be determined
by randomization in order to minimize the chance of an unforeseen occurrence of
Simpson’s paradox.

If there were other information, such as severity of disease, that were available at
the start of the experiment, the groups of men and women should each be partitioned
according to that additional information before being randomly assigned to the
treatments. For example, suppose that 12 men and 8 women have more severe cases
of the disease before the experiment begins. We should then assign 6 of the men and 4
of the women with more severe cases to each tretment. We should also assign 4 of the
men and 6 of the women with less severe cases to each treatment. This balances the
factors (sex, severity, and treatment) that are expected to affect the experimental
outcome. If there is another unforeseen factor that will affect the outcome, it is
still possible, but unlikely, that the random assignment described above will allow
Simpson’s paradox to arise with regard to that one factor. If there are dozens of
additional important factors, some degree of imbalance will be inevitable even with
a randomized assignment. �

Summary

Simpson’s paradox occurs when the relationship between the two categorical vari-
ables in every part of a disaggregated table is the opposite of the relationship between
those same two variables in the aggregated table.

Exercises

1. Consider two populations I and II. Suppose that 80 per-
cent of the men and 30 percent of the women in population
I have a certain characteristic, and that only 60 percent of
the men and 10 percent of the women in population II
have the characteristic. Explain how, under these condi-
tions, it might be true that the proportion of population II
having the characteristic is larger than the proportion of
population I having the characteristic.

2. Suppose that A and B are events such that 0 < Pr(A) <

1 and 0 < Pr(B) < 1. Show that Pr(A|B) = Pr(A|Bc) if and
only if Pr(B|A) = Pr(B|Ac).

3. Show that all three inequalities in (10.5.1) cannot hold
if Pr(B|A) = Pr(B|Ac).

4. Suppose that each adult subject in an experiment is
given either treatment I or treatment II. Prove that the
proportion of men among the subjects who receive treat-
ment I is equal to the proportion of men among the sub-
jects who receive treatment II if and only if the proportion
of all men in the experiment who receive treatment I is
equal to the proportion of all women who receive treat-
ment I.

5. Show that all three inequalities in (10.5.1) cannot hold
if Pr(A|B) = Pr(A|Bc).

6. It was believed that a certain university was discrim-
inating against women in its admissions policy because
30 percent of all the male applicants to the university were
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admitted, whereas only 20 percent of all the female appli-
cants were admitted. In order to determine which of the
five colleges in the university were most responsible for
this discrimination, the admissions rates for each college
were analyzed separately. Surprisingly, it was found that
in each college the proportion of female applicants who
were admitted to the college was actually larger than the
proportion of male applicants who were admitted. Discuss
and explain this result.

7. In an experiment involving 800 subjects, each subject
received either treatment I or treatment II, and each sub-
ject was classified into one of the following four categories:
older males, younger males, older females, and younger
females. At the end of the experiment, it was determined
for each subject whether the treatment that the subject
had received was helpful or not. The results for each of
the four categories of subjects are given in Table 10.31.

a. Show that treatment II is more helpful than treat-
ment I within each of the four categories of subjects.

b. Show that if these four categories are aggregated into
only the two categories, older subjects and younger
subjects, then treatment I is more helpful than treat-
ment II within each of these categories.

c. Show that if the two categories in part (b) are aggre-
gated into a single category containing all 800 sub-
jects, then treatment II again appears to be more
helpful than treatment I.

Table 10.31 Data for Exercise 7

Older males Helpful Not

Treatment I 120 120

Treatment II 20 10

Younger males

Treatment I 60 20

Treatment II 40 10

Older females

Treatment I 10 50

Treatment II 20 50

Younger females

Treatment I 10 10

Treatment II 160 90

� 10.6 Kolmogorov-Smirnov Tests
In Sec. 10.1, we used the χ2 test to test the null hypothesis that a random sample
came from a particular continuous distribution against the alternative hypothesis
that the sample did not come from that distribution. A more suitable test for these
hypotheses is introduced in this section. This test can also be extended to test the
null hypothesis that two independent samples came from the same distribution
against the alternative hypothesis that they came from two different distributions.

The Sample Distribution Function

Example
10.6.1

Failure Times of Ball Bearings. In Example 10.1.6, we used a χ2 goodness-of-fit test
to test the null hypothesis that the log-failure times of ball bearings came from the
normal distribution with mean 3.912 and variance 0.25. That test required us to
choose a somewhat arbitrary partition of the real line in order to convert the log-
failure times into count data. Is there a test procedure for such problems that does
not require an arbitrary aggregation into intervals that may have no physical meaning
in the application? �

The first step in trying to answer the question in Example 10.6.1 is to construct an
estimator of the distribution of the random sample that does not rely on the assump-
tion that the distribution was normal. Suppose that the random variables X1, . . . , Xn
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form a random sample from some continuous distribution, and let x1, . . . , xn denote
the observed values of X1, . . . , Xn. Since the observations come from a continuous
distribution, there is probability 0 that any two of the observed values x1, . . . , xn will
be equal. Therefore, we shall assume for simplicity that all n values are different. We
shall consider now a function Fn(x), which is constructed from the values x1, . . . , xn

and will serve as an estimate of the c.d.f. from which the sample was drawn.

Definition
10.6.1

Sample (Empirical) Distribution Function. Let x1, . . . , xn be the observed values of a
random sample X1, . . . , Xn. For each number x (−∞ < x < ∞), define the value
Fn(x) as the proportion of observed values in the sample that are less than or equal
to x. In other words, if exactly k of the observed values in the sample are less than
or equal to x, then Fn(x) = k/n. The function Fn(x) defined in this way is called the
sample distribution function, or simply the sample c.d.f.Sometimes Fn(x) is called the
empirical c.d.f.

The sample c.d.f. for the data discussed in Example 10.6.1 appears in Fig. 10.1
together with the hypothesized normal c.d.f. mentioned in that example.

In general, the sample c.d.f. Fn(x) can be regarded as the c.d.f. of a discrete
distribution that assigns probability 1/n to each of the n values x1, . . . , xn. Thus, Fn(x)

will be a step function with a jump of magnitude 1/n at each point xi (i = 1, . . . , n).
If we let y1 < y2 < . . . < yn denote the values of the order statistics of the sample, as
defined in Definition 7.8.2, then Fn(x) = 0 for x < y1; Fn(x) jumps to the value 1/n at
x = y1 and remains at 1/n for y1 ≤ x < y2; Fn(x) jumps to the value 2/n at x = y2 and
remains at 2/n for y2 ≤ x < y3; and so on.

Now let F(x) denote the c.d.f. of the distribution from which the random sample
X1, . . . , Xn was drawn. For each given number x (−∞ < x < ∞), the probability
that any particular observation Xi will be less than or equal to x is F(x). Therefore,
it follows from the law of large numbers that as n → ∞, the proportion Fn(x) of
observations in the sample that are less than or equal to x will converge in probability
to F(x). In symbols,

Fn(x)
p−→ F(x) for −∞ < x < ∞. (10.6.1)

The relation (10.6.1) expresses the fact that at each point x, the sample c.d.f. Fn(x)

will converge to the actual c.d.f. F(x) of the distribution from which the random
sample was taken. A collection of sample c.d.f.’s is sketched in Fig. 10.2 for a few
different sized samples from the the same distribution.

Figure 10.1 Sample c.d.f. of
log-failure times of ball bear-
ings together with the c.d.f. of
the normal distribution with
mean 3.912 and variance 0.25.
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Figure 10.2 The sample
c.d.f. Fn(x) for n = 4, 8, 16.
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Figure 10.3 The value of
Dn.
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An even stronger result, known as the Glivenko-Cantelli lemma, states that
Fn(x) will converge to F(x) uniformly over all values of x. The proof is beyond the
scope of this book.

Theorem
10.6.1

Glivenko-Cantelli Lemma. Let Fn be the sample c.d.f. from an i.i.d. sample X1, . . . , Xn

from the c.d.f. F . Define

Dn = sup
−∞<x<∞

|Fn(x) − F(x)|. (10.6.2)

Then Dn

p−→ 0.

A value of Dn is illustrated in Fig. 10.3 for a typical example. Before the values of
X1, . . . , Xn have been observed, the value of Dn is a random variable.

Theorem 10.6.1 implies that when the sample size n is large, the sample c.d.f.
Fn(x) is quite likely to be close to the c.d.f. F(x) over the entire real line. In this sense,



660 Chapter 10 Categorical Data and Nonparametric Methods

when the c.d.f. F(x) is unknown, the sample c.d.f. Fn(x) can be considered to be an
estimator of F(x). In another sense, however, Fn(x) is not a very reasonable estimator
of F(x). As we explained earlier, Fn(x) will be the c.d.f. of a discrete distribution that
is concentrated on n points, whereas we are assuming in this section that the unknown
c.d.f. F(x) is the c.d.f. of a continuous distribution. Some type of smoothed version of
Fn(x), from which the jumps have been removed, might yield a reasonable estimator
of F(x), but we shall not pursue this topic further here.

The Kolmogorov-Smirnov Test of a Simple Hypothesis

Suppose now that we wish to test the simple null hypothesis that the unknown c.d.f.
F(x) is actually a particular continuous c.d.f. F ∗(x) against the general alternative
that the actual c.d.f. is not F ∗(x). In other words, suppose that we wish to test the
following hypotheses:

H0: F(x) = F ∗(x) for −∞ < x < ∞,

H1: The hypothesis H0 is not true.
(10.6.3)

This problem is a nonparametric problem because the unknown distribution from
which the random sample is taken might be any continuous distribution.

In Sec. 10.1, we described how the χ2 test of goodness-of-fit can be used to
test hypotheses having the form (10.6.3). That test, however, requires grouping the
observations into a finite number of intervals in an arbitrary manner. We shall now
describe a test of the hypotheses (10.6.3) that does not require such grouping.

As before, we shall let Fn(x) denote the sample c.d.f. Also, we shall now let D∗
n

denote the following statistic:

D∗
n

= sup
−∞<x<∞

|Fn(x) − F ∗(x)|. (10.6.4)

In other words, D∗
n

is the maximum difference between the sample c.d.f. Fn(x) and
the hypothesized c.d.f. F ∗(x). When the null hypothesis H0 in (10.6.3) is true, the
probability distribution of D∗

n
will be a certain distribution that is the same for every

possible continuous c.d.f. F ∗(x) and does not depend on the particular c.d.f. F ∗(x)

being studied in a specific problem. (See Exercise 13.) Tables of this distribution, for
various values of the sample size n, have been developed and are presented in many
published collections of statistical tables.

It follows from the Glivenko-Cantelli lemma that the value of D∗
n

will tend to
be small if the null hypothesis H0 is true, and D∗

n
will tend to be larger if the actual

c.d.f. F(x) is different from F ∗(x). Therefore, a reasonable test procedure for the
hypotheses (10.6.3) is to reject H0 if n1/2D∗

n
> c, where c is an appropriate constant.

It is convenient to express the test procedure in terms of n1/2D∗
n

rather than
simply D∗

n
, because of the following result, which was established in the 1930s by

A. N. Kolmogorov and N. V. Smirnov.

Theorem
10.6.2

If the null hypothesis H0 is true, then for each given value t > 0,

lim
n→∞ Pr(n1/2D∗

n
≤ t) = 1 − 2

∞∑
i=1

(−1)i−1e−2i2t2
. (10.6.5)

Thus, if the null hypothesis H0 is true, then as n → ∞, the c.d.f. of n1/2D∗
n

will
converge to the c.d.f. given by the infinite series on the right side of Eq. (10.6.5). For
each value of t > 0, we shall let H(t) denote the value on the right side of Eq. (10.6.5).
The values of H(t) are given in Table 10.32.
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Table 10.32 The c.d.f. H in Eq. (10.6.5)

t H(t) t H(t)

0.30 0.0000 1.20 0.8878

0.35 0.0003 1.25 0.9121

0.40 0.0028 1.30 0.9319

0.45 0.0126 1.35 0.9478

0.50 0.0361 1.40 0.9603

0.55 0.0772 1.45 0.9702

0.60 0.1357 1.50 0.9778

0.65 0.2080 1.60 0.9880

0.70 0.2888 1.70 0.9938

0.75 0.3728 1.80 0.9969

0.80 0.4559 1.90 0.9985

0.85 0.5347 2.00 0.9993

0.90 0.6073 2.10 0.9997

0.95 0.6725 2.20 0.9999

1.00 0.7300 2.30 0.9999

1.05 0.7798 2.40 1.0000

1.10 0.8223 2.50 1.0000

1.15 0.8580

Definition
10.6.2

Kolmogorov-Smirnov test. A test procedure that rejects H0 when n1/2D∗
n

≥ c is called
a Kolmogorov-Smirnov test.

It follows from Eq. (10.6.5) that when the sample size n is large, the constant
c can be chosen from Table 10.32 to achieve, at least approximately, any specified
level of significance α0 (0 < α0 < 1). In fact, we should choose c to be the 1 − α0
quantile H−1(1 − α0) of the distribution H . For example, by examining Table 10.32,
we see that H(1.36) ≈ 0.95, so H−1(1 − 0.05) = 1.36. Therefore, if the null hypothesis
H0 is true, then Pr(n1/2D∗

n
≥ 1.36) = 0.05. It follows that the level of significance of a

Kolmogorov-Smirnov test with c = 1.36 will be 0.05.

Example
10.6.2

Testing Whether a Sample Comes from a Standard Normal Distribution. Suppose that it
is desired to test the null hypothesis that a certain random sample of 25 observations
was drawn from a standard normal distribution against the alternative that the
random sample was drawn from some other continuous distribution. The 25 observed
values in the sample, in order from the smallest to the largest, are designated as
y1, . . . , y25 and are listed in Table 10.33. The table also includes the value Fn(yi) of
the sample c.d.f. and the value �(yi) of the c.d.f. of the standard normal distribution.

By examining the values in Table 10.33, we find that D∗
n
, which is the largest dif-

ference between Fn(x) and �(x), occurs when we pass from i = 4 to i = 5, that is,
as x increases from the point x = −0.99 toward the point x = −0.42. The compar-
ison of Fn(x) and �(x) over this interval is illustrated in Fig. 10.4, from which we
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Table 10.33 Calculations for Kolmogorov-
Smirnov test

i yi Fn(yi) �(yi)

1 −2.46 0.04 0.0069

2 −2.11 0.08 0.0174

3 −1.23 0.12 0.1093

4 −0.99 0.16 0.1611

5 −0.42 0.20 0.3372

6 −0.39 0.24 0.3483

7 −0.21 0.28 0.4168

8 −0.15 0.32 0.4404

9 −0.10 0.36 0.4602

10 −0.07 0.40 0.4721

11 −0.02 0.44 0.4920

12 0.27 0.48 0.6064

13 0.40 0.52 0.6554

14 0.42 0.56 0.6628

15 0.44 0.60 0.6700

16 0.70 0.64 0.7580

17 0.81 0.68 0.7910

18 0.88 0.72 0.8106

19 1.07 0.76 0.8577

20 1.39 0.80 0.9177

21 1.40 0.84 0.9192

22 1.47 0.88 0.9292

23 1.62 0.92 0.9474

24 1.64 0.96 0.9495

25 1.76 1.00 0.9608

Figure 10.4 The value of
D∗

n
in Example 10.6.2.

x

Fn(x)

F(x)

D*
n

20.99 20.42

0.16

0.3372
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see that D∗
n

= 0.3372 − 0.16 = 0.1772. Since n = 25 in this example, it follows that
n1/2D∗

n
= 0.886. From Table 10.32, we find that H(0.886) = 0.6. Hence, the tail area

corresponding to the observed value of n1/2D∗
n

is 0.4, and we would not reject the
null hypothesis at levels α0 smaller than 0.4. �

It is important to emphasize again that when the sample size n is large, even a
small value of the tail area corresponding to the observed value of n1/2D∗

n
would not

necessarily indicate that the true c.d.f. F(x) was much different from the hypothesized
c.d.f. �(x). When n itself is large, even a small difference between the c.d.f. F(x) and
the c.d.f. �(x) would be sufficient to generate a large value of n1/2D∗

n
. Therefore,

before a statistician rejects the null hypothesis, he should make certain that there is
a plausible alternative c.d.f. with which the sample Fn(x) provides closer agreement.

The Kolmogorov-Smirnov Test for Two Samples

Example
10.6.3

Calcium Supplements and Blood Pressure. Exercise 10 in Sec. 9.6 contains data from
a study of the effect of a calcium supplement on blood pressure. A group of m = 10
men received a calcium supplement, and another group of n = 11 men received a
placebo. At the end of the study, the differences were calculated between each man’s
blood pressures at the start and at the end of a 12-week period. Suppose that we are
not willing to assume that the distributions of the measured differences are normal
distributions. Can we still construct a procedure for testing the null hypothesis that
the distributions of differences in the treatment and placebo groups are the same
versus the alternative hypothesis that the distributions are different? �

Consider a problem in which a random sample of m observations X1, . . . , Xm is
taken from a distribution for which the c.d.f. F(x) is unknown, and an independent
random sample of n observations Y1, . . . , Yn is taken from another distribution for
which the c.d.f. G(x) is also unknown. We shall assume that both F(x) and G(x) are
continuous functions and that it is desired to test the hypothesis that these functions
are identical, without specifying their common form. Thus, the following hypotheses
are to be tested:

H0: F(x) = G(x) for −∞ < x < ∞,

H1: The hypothesis H0 is not true.
(10.6.6)

We shall let Fm(x) denote the sample c.d.f. calculated from the observed values
of X1, . . . , Xm and let Gn(x) denote the sample c.d.f. calculated from the observed
values of Y1, . . . , Yn. Furthermore, we shall consider the statistic Dmn, which is
defined as follows:

Dmn = sup
−∞<x<∞

|Fm(x) − Gn(x)|. (10.6.7)

The value of Dmn is illustrated in Fig. 10.5 for a typical example in which m = 5 and
n = 3.

When the null hypothesis H0 is true and F(x) and G(x) are identical functions,
the sample c.d.f.’s Fm(x) and Gn(x) will tend to be close to each other. In fact, when
H0 is true, it follows from the Glivenko-Cantelli lemma that

Dmn

p−→ 0, as both m → ∞ and n → ∞. (10.6.8)

It seems reasonable, therefore, to use a test procedure that specifies rejecting H0
when Dmn is large. The following theorem, whose proof is beyond the scope of this
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Figure 10.5 A representa-
tion of Fm(x), Gn(x), and Dmn

for m = 5 and n = 3.

xx1 x2 y1 y2x4x3 y3 x5

Fm(x)

Dmn

Gn(x)

text, gives us the asymptotic distribution of Dmn, which we can use to construct an
approximate test.

Theorem
10.6.3

Two-Sample Kolmogorov-Smirnov Statistic. For each value of t > 0, let H(t) denote the
right side of Eq. (10.6.5). If the null hypothesis H0 in (10.6.6) is true, then

lim
m→∞, n→∞ Pr

[(
mn

m + n

)1/2

Dmn ≤ t

]
= H(t). (10.6.9)

Values of the function H(t) are given in Table 10.32. The large-sample approxi-
mate test of the hypotheses in (10.6.6) makes use of the statistic in (10.6.9).

Definition
10.6.3

Two-Sample Kolmogorov-Smirnov Test. A test procedure that rejects H0 when(
mn

m + n

)1/2

Dmn ≥ c, (10.6.10)

where c is an appropriate constant, is called a Kolmogorov-Smirnov two-sample test.

Hence, when the sample sizes m and n are large, the constant c in the relation (10.6.10)
can be chosen from Table 10.32 to achieve, at least approximately, any specified level
of significance. For example, if m and n are large, and the test is to be carried out at
the level of significance 0.05, then it follows from Table 10.32 that we should choose
c = H−1(0.95) = 1.36.

Example
10.6.4

Calcium Supplements and Blood Pressure. Return to situation described in Exam-
ple 10.6.3. We are interested in whether or not the changes in blood pressure for
men treated with a calcium suppletment have the same distribution as the changes in
blood pressure for men treated with a placebo. Figure 10.6 displays the sample c.d.f.’s
of the measured changes in the treatment and placebo groups. It is not difficult to
see that the maximum difference occurs for 5 ≤ x < 7. In fact, Dmn = 0.409, and the
test statistic is (110/21)1/2 × 0.409 = 0.936. From Table 10.32, we see that H(0.936) is
about 0.654. So we would reject the null hypothesis that the two samples were drawn
from the same population at every level α0 ≥ 0.346. �

Summary

We introduced Kolmogorov-Smirnov tests for testing the null hypotheses that a ran-
dom sample arose from a particular distribution and that two independent random
samples arose from the same distribution. For the one-sample test, we compute Dn,
the largest difference between the sample c.d.f. and the null hypothesis c.d.f., and
we reject the null hypothesis at level α0 if n1/2D∗

n
≥ H−1(1 − α0), where H is the

c.d.f. shown in Table 10.32. For the two-sample test, we compute Dmn, the largest
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Figure 10.6 The sample
c.d.f.’s for two samples in
Example 10.6.4.
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difference between the two sample c.d.f.’s from the two different samples. We then
reject the null hypothesis that the two samples arose from the same distribution at
level α0 if (mn/(m + n))1/2Dmn ≥ H−1(1 − α0).

Exercises

1. Suppose that the ordered values in a random sample
of five observations are y1 < y2 < y3 < y4 < y5. Let Fn(x)

denote the sample c.d.f. constructed from these values,
let F(x) be a continuous c.d.f., and let Dn be defined by
Eq. (10.6.2). Prove that the minimum possible value of Dn

is 0.1, and prove that Dn = 0.1 if and only if F(y1) = 0.1,
F(y2) = 0.3, F(y3) = 0.5, F(y4) = 0.7, and F(y5) = 0.9.

2. Consider again the conditions of Exercise 1. Prove that
Dn ≤ 0.2 if and only if F(y1) ≤ 0.2 ≤ F(y2) ≤ 0.4 ≤ F(y3) ≤
0.6 ≤ F(y4) ≤ 0.8 ≤ F(y5).

3. Use the data in Example 10.1.6. In that example, we
used a χ2 goodness-of-fit test to test the null hypothesis
that the logarithms of failure times for ball bearings had
the normal distribution with mean 3.912 and variance 0.25.
Now, use the Kolmogorov-Smirnov test to test that same
null hypothesis.

4. Use the Kolmogorov-Smirnov test to test the hypothe-
sis that the 25 values in Table 10.34 form a random sample
from the uniform distribution on the interval [0, 1].

Table 10.34 Data for Exercise 4

0.42 0.06 0.88 0.40 0.90

0.38 0.78 0.71 0.57 0.66

0.48 0.35 0.16 0.22 0.08

0.11 0.29 0.79 0.75 0.82

0.30 0.23 0.01 0.41 0.09

5. Use the Kolmogorov-Smirnov test to test the hypoth-
esis that the 25 values given in Exercise 4 form a random
sample from the continuous distribution for which the
p.d.f. f (x) is as follows:

f (x) =

⎧⎪⎨⎪⎩
3
2 for 0 < x ≤ 1

2 ,
1
2 for 1

2 < x < 1,

0 otherwise.

6. Consider again the conditions of Exercise 4 and 5. Sup-
pose that the prior probability is 1/2 that the 25 values
given in Table 10.34 were obtained from the uniform dis-
tribution on the interval [0, 1], and 1/2 that they were ob-
tained from the distribution for which the p.d.f. is as given
in Exercise 5. Find the posterior probability that they were
obtained from a uniform distribution.

7. Use the Kolmogorov-Smirnov test to test the hypothe-
sis that the 50 values in Table 10.35 form a random sample
from the normal distribution for which the mean is 26 and
the variance is 4.

Table 10.35 Data for Exercise 8

25.088 26.615 25.468 27.453 23.845

25.996 26.516 28.240 25.980 30.432

26.560 25.844 26.964 23.382 25.282

24.432 23.593 24.644 26.849 26.801

26.303 23.016 27.378 25.351 23.601

24.317 29.778 29.585 22.147 28.352

29.263 27.924 21.579 25.320 28.129

28.478 23.896 26.020 23.750 24.904

24.078 27.228 27.433 23.341 28.923

24.466 25.153 25.893 26.796 24.743
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8. Use the Kolmogorov-Smirnov test to test the hypothe-
sis that the 50 values given in Table 10.35 form a random
sample from the normal distribution for which the mean
is 24 and the variance is 4.

9. Suppose that 25 observations are selected at random
from a distribution for which the c.d.f. F(x) is unknown,
and that the values given in Table 10.36 are obtained. Sup-
pose also that 20 observations are selected at random from
another distribution for which the c.d.f. G(x) is unknown,
and the values given in Table 10.37 are obtained. Use the
Kolmogorov-Smirnov test to test the hypothesis that F(x)

and G(x) are identical functions.

Table 10.36 First sample for Exercise 9

0.61 0.29 0.06 0.59 −1.73

−0.74 0.51 −0.56 −0.39 1.64

0.05 −0.06 0.64 −0.82 0.31

1.77 1.09 −1.28 2.36 1.31

1.05 −0.32 −0.40 1.06 −2.47

Table 10.37 Second sample for Exercise 9

2.20 1.66 1.38 0.20

0.36 0.00 0.96 1.56

0.44 1.50 −0.30 0.66

2.31 3.29 −0.27 −0.37

0.38 0.70 0.52 −0.71

10. Consider again the conditions of Exercise 9. Let X

denote a random variable for which the c.d.f. is F(x), and
let Y denote a random variable for which the c.d.f. is G(x).
Use the Kolmogorov-Smirnov test to test the hypothesis

that the random variables X + 2 and Y have the same
distribution.

11. Consider again the conditions of Exercises 9 and 10.
Use the Kolmogorov-Smirnov test to test the hypothesis
that the random variables X and 3Y have the same distri-
bution.

12. In Example 9.6.3, we compared two samples of alu-
minum oxide measurements taken from Roman-era pot-
tery that was found in two different locations in Britain.
The m = 14 measurements taken from the Llanederyn re-
gion are

10.1, 10.9, 11.1, 11.5, 11.6, 12.4, 12.5, 12.7,

13.1, 13.4, 13.8, 13.8, 14.4, 14.6.

The n = 5 measurements from Ashley Rails are

14.8, 16.7, 17.7, 18.3, 19.1.

Use the Kolmogorov-Smirnov two-sample test to test the
null hypothesis that the two distributions from which these
samples are drawn are the same.

13. Suppose that X1, . . . , Xn form a random sample with
unknown c.d.f. F . Prove the claim made after Eq. (10.6.4)
that the distribution of the statistic D∗

n
, given that the null

hypothesis in (10.6.3) is true, is the same for all continu-
ous F ∗. Hint: Let Zi = F ∗(Xi) for i = 1, . . . , n, and con-
sider testing the null hypothesis that Z1, . . . , Zn have the
uniform distribution on the interval [0, 1]. Show that the
statistic D∗

n
for this modified problem is identical to the

original D∗
n
.

14. Perform the Kolmogorov-Smirnov test of the null hy-
pothesis in Example 10.6.1. Report the result of the test
by giving the p-value. The sample data appear in Exam-
ple 10.1.6.

� 10.7 Robust Estimation
In many statistical problems, we might not feel comfortable assuming that the
distribution of our data X is a member of a single parametric family. Suppose that
we consider using an estimator T = r(X) of some parameter θ . It might be that
T has good properties if X is a random sample from, say, a normal distribution.
On the other hand, we might be concerned about how T would behave if X were
actually a sample from a different distribution. In this section, we introduce a new
class of distributions and several new statistics. We then compare the behaviors
of these statistics (and some old ones) when the data arise from one of the new
distributions (and from some old ones). An estimator is called robust if it performs
well, compared to other estimators, regardless of the distribution that gives rise to
the data.
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Estimating the Median

Example
10.7.1

Rain from Seeded Clouds. In Fig. 8.3, we presented the histogram of log-rainfalls from
26 seeded clouds, which is slightly asymmetric. A scientist might be uncomfortable
treating the log-rainfalls as normal random variables. Nevertheless, one may still wish
to estimate the median or some other feature of the distribution of log-rainfalls. One
might wish to use a method of estimation that does not rely for its justification on the
assumption that the data form a random sample from a normal distribution. �

Suppose that the random variables X1, . . . , Xn form a random sample from a
continuous distribution for which the p.d.f. f (x) is unknown, but may be assumed
to be a symmetric function with respect to some unknown point θ (−∞ < θ < ∞).
Because of this symmetry, the point θ will be a median of the unknown distribution.
We shall estimate the value of θ from the observations X1, . . . , Xn.

If we know that the observations actually come from a normal distribution, then
the sample mean Xn will be the M.L.E. of θ . Without any strong prior information
indicating that the value of θ might be quite different from the observed value of Xn,
we may assume that Xn will be a reasonable estimator of θ . Suppose, however, that
the observations might come from a distribution for which the p.d.f. f (x) has much
thicker tails than the p.d.f. of a normal distribution; that is, suppose that as x → ∞ or
x → −∞, the p.d.f. f (x) might come down to 0 much more slowly than does the p.d.f.
of a normal distribution. In this case, the sample mean Xn may be a poor estimator of
θ because its M.S.E. may be much larger than that of some other possible estimator.

Example
10.7.2

Shifted Cauchy Sample. If the underlying distribution is the Cauchy distribution cen-
tered at an unknown point θ , as defined in Example 7.6.5, then the M.S.E. of Xn will
be infinite. In this case, the M.L.E. of θ will have a finite M.S.E. and will be a much
better estimator than Xn. In fact, for a large value of n, the M.S.E. of the M.L.E.
is approximately 2/n, no matter what the true value of θ is. However, as pointed
out in Example 7.6.5, this estimator is very complicated and must be determined by
a numerical calculation for each given set of observations. A relatively simple and
reasonable estimator for this problem is the sample median, which was defined in Ex-
ample 7.9.3. It can be shown that the M.S.E. of the sample median for a large value
of n is approximately 2.47/n when the data have the Cauchy distribution. �

It follows from Example 10.7.2 and the preceding discussion that if we could
assume that the underlying distribution is normal or nearly normal, then we might
use the sample mean as an estimator of θ . On the other hand, if we believe that the
underlying distribution is Cauchy or nearly Cauchy, then we might use the sample
median. However, we typically do not know whether the underlying distribution is
nearly normal, is nearly Cauchy, or does not correspond closely to either of these
types of distributions. For this reason, we should try to find an estimator of θ that will
have a small M.S.E. for several different possible types of distributions. An estimator
that performs well for several different types of distributions, even though it may not
be the best available estimator for any particular type of distribution, is called a robust
estimator. In this section, we shall define a class of distributions called contaminated
normals that we shall use for assessing the performance of various estimators. We
shall also introduce special types of robust estimators known as trimmed means and
M-estimators. The term robust was introduced by G. E. P. Box in 1953, and the term
trimmed mean was introduced by J. W. Tukey in 1962. However, the first mathematical
treatment of trimmed means was given by P. Daniell in 1920. M-estimators were
introduced by Huber (1964).
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Contaminated Normal Distributions

One reason that experimenters might be hesitant to behave as if their data were
sampled from a normal distribution is the possibility that random errors might occur
in the data. Once in a while, a data value is recorded incorrectly or is collected under
circumstances that are different from those under study. The one observation (or
possibly a few) will have a distribution that might be much different from that of the
majority of the observations. For example, suppose that the bulk of the data in which
we are interested comprise a sample from the normal distribution with unknown
mean μ and variance σ 2. But suppose that, for each observation, there is a small
probability ε that the observation actually comes from a different distribution with
p.d.f. g. That is, the p.d.f. of our observable data is actually

f (x) = (1 − ε)(2πσ 2)−1/2 exp
(

− 1
2σ 2

[x − μ]2
)

+ εg(x). (10.7.1)

Definition
10.7.1

Contaminated Normal Distributions. A distribution whose p.d.f. has the form of
Eq. (10.7.1) is called a contaminated normal, and the distribution with p.d.f. g is
called the contaminating distribution.

If the contaminating distribution in Eq. (10.7.1) has a high variance or has a
mean very different from μ, there is a good chance that the observations we obtain
from the contaminating distribution will be far away from the other observations.
In order for an estimator to perform well for a large class of contaminated normal
distributions, the estimator will have to be somewhat insensitive to one (or a few)
observation(s) not close to the bulk of the data. Obviously, if ε ≥ 1/2, it becomes
difficult to tell which distribution is contaminating which. So we shall assume that
ε < 1/2. A simple example of a contaminated normal distribution is one in which g

is the p.d.f. of a normal distribution with mean μ and variance 100σ 2. In this case,
Eq. (10.7.1) becomes

f (x) = (1 − ε)(2πσ 2)−1/2 exp
(

− 1
2σ 2

[x − μ]2
)

+ ε(200πσ 2)−1/2 exp
(

− 1
200σ 2

[x − μ]2
)

. (10.7.2)

Figure 10.7 shows a standard normal p.d.f. together with the p.d.f. of a contam-
inated normal of the form of Eq. (10.7.2) with μ = 0, σ 2 = 1, and ε = 0.05. The two

Figure 10.7 p.d.f.’s of
standard normal distribution
and ε = 0.05 contaminated
normal with mean 0 and
variance 100.
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Figure 10.8 Sample size
times variances of sample
median and sample mean
for a random sample from
a contaminated normal dis-
tribution with the p.d.f. in
Eq. (10.7.2) with σ = 1 as a
function of the amount of
contamination ε. The line for
the median uses the asymp-
totic result Eq. (10.7.3).
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p.d.f.’s are quite similar, but we shall see shortly how much effect the contamination
can have on the problem of estimation.

Two important properties of the distribution of an estimator of the median are its
mean and its variance. In the situation in which the data have the p.d.f. (10.7.2), both
the sample mean and the sample median have mean μ. Next, we shall compare the
variances of these two estimators when the data are a random sample with the p.d.f.
(10.7.2). The variance of the average of a sample of size n is (1 + 99ε)σ 2/n. (You can
prove this in Exercise 7.) The variance of the sample median is a bit more difficult
to compute. However, using the large-sample properties that will be introduced on
page 676, we can see that the variance is approximately

1
4nf 2(μ)

= σ 2

n

50π

(10 − 9ε)2
. (10.7.3)

Figure 10.8 shows a comparison of (50π)/(10 − 9ε)2 and (1 + 99ε) for 0 ≤ ε ≤ 0.5.
Notice that the variance of the sample median is only slightly larger than the variance
of the sample mean for ε < 0.0058, and it is substantially smaller for ε in the range
of 0.01 to 0.5. For example, if ε = 0.05 (as in Fig. 10.7), the variance of the sample
median is only about 29 percent of the variance of the sample mean.

Trimmed Means

Suppose that X1, . . . , Xn form a random sample from an unknown continuous dis-
tribution for which the p.d.f. f (x) is assumed to be symmetric with respect to an
unknown point θ . For this discussion, we shall let Y1 < Y2 < . . . < Yn denote the or-
der statistics of the sample. The sample mean Xn is simply the average of these n

order statistics. However, if we suspect that the p.d.f. f (x) might have thicker tails
than a normal distribution has, then we may wish to estimate θ by using a weighted
average of the order statistics, which assigns less weight to the extreme observations
such as Y1, Y2, Yn−1, and Yn, and assigns more weight to the middle observations. The
sample median is a special example of a weighted average. When n is odd, it assigns
zero weight to every observation except the middle one. When n is even, it assigns
the weight 1/2 to each of the two middle observations and zero weight to all other
observations.

The following class of estimators also consists of weighted averages of the order
statistics.
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Definition
10.7.2

Trimmed Means. For each positive integer k such that k < n/2, ignore the k smallest
observations Y1, . . . , Yk and the k largest observations Yn, Yn−1, . . . , Yn−k+1 in the
sample. The average of the remaining n − 2k intermediate observations is called the
kth level trimmed mean.

Clearly, the kth level trimmed mean can be represented as a weighted average of the
order statistics having the form

1
n − 2k

n−k∑
i=k+1

Yi. (10.7.4)

The sample median is an example of a trimmed mean. When n is odd, the sample
median is the [(n − 1)/2]th level trimmed mean. When n is even, it is the [(n − 2)/2]th
level trimmed mean. In either case, the sample median is the kth level trimmed mean,
where k = �(n − 1)/2
 is the largest integer less than or equal to (n − 1)/2.

Robust Estimation of Scale

In addition to the median of a distribution, there are other parameters that might
be worth estimating even when we are not willing to model our data as arising from
a particular parametric family. For example, scale parameters might be valuable for
giving an idea of how spread out a distribution is. The standard deviation, if it exists,
is one such measure. The general class of scale parameters is defined here.

Definition
10.7.3

Scale Parameters. An arbitrary parameter σ is a scale parameter for the distribution
of X if, for all a > 0 and all real b, the corresponding parameter for the distribution
of aX + b is aσ .

Although the standard deviation is a scale parameter, there are many distributions
(such as the Cauchy) for which the standard deviation does not exist. There are
alternative measures of spread to the standard deviation that exist and are finite
for all distributions.

One scale parameter that exists for every distribution is the interquartile range
(IQR) as defined in Definition 4.3.2 on page 233. For example, if F is the normal
distribution with mean μ and variance σ 2, then the IQR is 2�−1(0.75)σ = 1.349σ (see
Exercise 15). The IQR of the Cauchy distribution is 2 (see Example 4.3.9). It is not
difficult to show (see Exercise 11) that if the IQR of X is σ and if a > 0, then aX + b

has IQR equal to aσ . An estimator of the IQR is the sample IQR, the difference
between the 0.75 and 0.25 sample quantiles. (Sample quantiles are just quantiles of
the sample c.d.f.)

Another scale parameter that exists for every random variable X is the median
absolute deviation

Definition
10.7.4

Median Absolute Deviation. The median absolute deviation of a random variable X is
the median of the distribution of |X − m|, where m is the median of X.

If the distribution of X is symmetric around its median, then the median absolute
deviation is one-half of the IQR. For asymmetric distributions, the median absolute
deviation is the half-length of the symmetric interval around the median that contains
50 percent of the distribution, while the IQR is the length of the interval around
the median that contains half of the distribution below the median and half of the
distribution above the median. For example, if X has the χ2 distribution with five
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degrees of freedom, the IQR is 3.95, while the median absolute deviation is 1.895, a
little less than one-half of the IQR. An estimator of the median absolute deviation is
the sample median absolute deviation. The sample median absolute deviation is the
sample median of the values |Xi − Mn|, where Mn is the sample median of X1, . . . , Xn.

Two other scale parameters that are useful are the IQR divided by 1.349 and the
median absolute deviation divided by 0.6745. These parameters were chosen to have
the property that if the data come a normal distribution, then these parameters equal
the standard deviation (see Exercise 15). Typical estimators of these parameters are
the sample IQR divided by 1.349 and the sample median absolute deviation divided
by 0.6745.

M-Estimators of the Median

The sample mean is heavily influenced by one extreme observation. For example, if
one observation x in a sample of size n is replaced by x + �, the sample mean changes
by �/n. If � is large, this will be a big change. The sample median, on the other hand,
is influenced very little, or not at all, by a change in one observation. However, the
sample median is inefficient in that it makes use of very few of the observed values.
Trimmed means are one attempt to compromise between the sample median and the
sample mean by forming estimators that make use of more than just the one or two
observations in the middle of the sample while maintaining insensitivity to extreme
observations. There are other estimators that also attempt to effect this same type of
compromise. These other estimators are M.L.E.’s of θ under different assumptions
about the p.d.f. of the observations.

The sample mean is the M.L.E. of θ if we assume that X1, . . . , Xn form a random
sample from a normal distribution with mean (and median) θ and arbitrary variance.
The sample median is also an M.L.E. It is the M.L.E. of θ if we assume that X1, . . . , Xn

form a random sample from one of the following distributions.

Definition
10.7.5

Laplace Distributions. Let σ > 0 and θ be real numbers. The distribution whose p.d.f. is

f (x|θ, σ ) = 1
2σ

e−|x−θ |/σ (10.7.5)

is called the Laplace distribution with parameters θ and σ .

See Exercise 9 to prove that the M.L.E. of θ is indeed the sample median when the
sample comes from a Laplace distribution.

In order to see why the M.L.E.’s for the Laplace and normal distributions are
so different, we can examine the two equations that the M.L.E.’s solve for those two
cases. These equations say that the derivatives with respect to θ of the logarithms of
the respective likelihoods must equal 0. In both cases, the derivative of the logarithm
of the likelihood is the sum of n terms, one for each observation. For the normal case,
the term corresponding to an observation xi is (xi − θ)/σ 2. For the Laplace case, the
term corresponding to an observation xi equals 1/σ if θ < xi, and it equals −1/σ if
θ > xi. The derivative does not exist at θ = xi. We illustrate these two derivatives in
Fig. 10.9 for the cloud-seeding data introduced in Example 8.3.2. A change of size
� in a single observation will vertically shift the entire normal distribution line in
Fig. 10.9 by �/[nσ 2]. The same-sized change in the same observation will only affect
the Laplace graph in Fig. 10.9 in the vicinity of the changed observation. The actual
values of the most extreme observations do not affect where the graph crosses 0.

It would be nice to have a compromise between these two types of behavior
without arbitrarily discarding a fixed amount of data. We would like the derivative
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Figure 10.9 Derivatives of
the logarithms of the Laplace
and normal likelihoods (with
σ = 1) using the cloud-
seeding data.
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of the logarithm of the likelihood to be approximately proportional to
∑

(xi − θ)

for θ near the middle of the data, where the summation is only over the middle
observations. This will allow the estimator to make use of more data than just the very
middle observation. Also, we would like the derivative to flatten out like the Laplace
case for θ near the extremes so that the actual values of the extreme observations do
not affect the estimate. A p.d.f. with these properties is the following:

gk(x|θ, σ ) = cke
hk([x−θ ]/σ), (10.7.6)

where σ is a scale parameter,

hk(y) =
{ −0.5y2 if −k < y < k,

0.5k2 − k|y| otherwise,

and ck is a constant that makes the integral of g equal to 1. The number k must
be chosen somehow, usually to reflect some idea of how far from θ we think that
extreme observations are likely to be. The derivative of the logarithm of gk(x|θ, σ )

with respect to θ is linear in θ for |θ − x| < kσ , but it flattens out like the derivative of
the logarithm of the Laplace p.d.f. does when |θ − x| > kσ . Now, we see that k can be
chosen to reflect how many multiples of σ a data value can be away from θ before we
think that it starts to lose importance for estimating θ . Typical choices are 1 ≤ k ≤ 2.5.
If we suppose that X1, . . . , Xn form a random sample from a distribution with p.d.f.
gk(x|θ, σ ), the M.L.E. of θ will be a compromise between the sample median and the
sample mean.

Definition
10.7.6

M-Estimators. The M.L.E. of θ under the assumption that the data have p.d.f. gk in
Eq. (10.7.6) is called an M-estimator.

M-estimators were proposed as robust estimators by Huber (1977). The name derives
from the fact that they are found by maximizing a function that might not be the
likelihood.

The M-estimator found by maximizing
∏n

i=1 gk(xi|θ, σ ) cannot be obtained in
closed form, but there is a simple iterative algorithm for finding it if we can first
estimate σ . Typically, one replaces σ by σ̂ equal to one of the robust scale estimates
described earlier in this section. One popular choice is the sample median absolute
deviation divided by 0.6745. Treating

∏n
i=1 gk(xi|θ, σ̂ ) as a function of θ , we can take

the derivative of the logarithm and set it equal to 0 to try to find the maximum. The
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derivative of the logarithm is − ∑n
i=1 ψk([xi − θ ]/σ̂ )/σ̂ , where

ψk(y) =
⎧⎨⎩

−k if y < −k,
y if −k ≤ y ≤ k,
k if y > k.

Typically, one solves
∑n

i=1 ψk([xi − θ ]/σ̂ ) = 0 as follows: Rewrite the equation as∑n
i=1 wi(θ)(xi − θ) = 0, where wi(θ) is defined as

wi(θ) =
⎧⎨⎩

ψk([xi − θ ]/σ̂ )

xi − θ
if xi 	= θ ,

1 if xi = θ .

Then θ = ∑n
i=1 wi(θ)xi/

∑n
i=1 wi(θ) solves the equation. Clearly, we need to know θ

before we can compute wi(θ), but we can solve the equation iteratively using these
steps:

1. Pick a starting value θ0 such as the sample median and set j = 0.

2. Let

θj+1 =
∑n

i=1 wi(θj)xi∑n
i=1 wi(θj)

.

3. Increment j to j + 1, and return to step 2.

This procedure will typically converge in a small number of iterations to the M-
estimate θ̃ .

The iterative procedure actually makes it clear why θ̃ is robust and why it is
a compromise between the sample mean and the sample median. Note that θ̃ is a
weighted average of the values x1, . . . , xn. The weight on xi is proportional to wi(θ̃).
If |xi − θ̃ | ≤ kσ̂ , then wi(θ̃) = 1/σ̂ . If |xi − θ̃ | > kσ̂ , then wi(θ̃) = k/|xi − θ̃ |, which
decreases as xi becomes more extreme. If θ̃ is near the middle of the distribution (as
we would hope it would be), then the observations near the middle of the distribution
get more weight in the estimate, and those far away get less weight.

Note: M-Estimators and Symmetric Distributions. At the start of this section, we as-
sumed that the unknown p.d.f. f of the data was symmetric about an unknown value
θ , which must be the median of the distribution. The M-estimator described above
can be calculated even if we do not assume that the data come from a symmetric dis-
tribution. However, the M-estimator will not necessarily estimate the median of the
distribution if the distribution is not symmetric. Instead, the M-estimator estimates
the number γ such that

E

[
ψk

(
Xi − γ

σ

)]
= 0. (10.7.7)

If the distribution of Xi is symmetric around θ , then γ = θ will solve Eq. (10.7.7). If
the distribution of Xi is not symmetric, then some number other than the median
might solve Eq. (10.7.7).

Example
10.7.3

Rain from Seeded Clouds. Using the seeded cloud data again, we shall find the value
of the M-estimator with k = 1.5. We start with the sample median of the log-rainfalls,
θ0 = 5.396. We also use σ̂ equal to the median absolute deviation 0.7318 divided by
0.6745, that is, σ̂ = 1.085. The six smallest and three largest observations are not
within 1.5σ̂ of the sample median. These nine observations each get less weight
than the other 17 observations in the calculation of the next iteration. For example,
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the smallest observation is 1.411, which gets weight 1.5/|1.411 − 5.396| = 0.3764,
compared to weight 0.9217 for the 17 central observations. The weighted average
of the observations is then θ1 = 5.315. We repeat the weighting and averaging until
we get no change. After 10 more iterations, we get θ11 = 5.283, which agrees with θ10.

�

Note: Simultaneous M-Estimators Exist for the Median and Scale Parameters. It is
possible to estimate the median and a scale parameter simultaneously using a method
very similar to that described for M-estimators. That is, instead of just picking a value
for σ̂ in the M-estimator algorithm, we can construct a more complicated algorithm
that estimates both the median and a scale parameter. Readers interested in more
examples of robust procedures can read Huber (1981) and Hampel et al. (1986).

Comparison of the Estimators

We have mentioned the desirability of using a robust estimator in a situation in which
it is suspected that the observations X1, . . . , Xn may form a random sample from a
distribution for which the tails of the p.d.f. are thicker than the tails of the p.d.f. of
a normal distribution. The use of a robust estimator is also desirable when a few of
the observations in the sample appear to be unusually large or unusually small. In
this situation, a statistician might suspect that most of the observations in the sample
came from one normal distribution, whereas the few extreme observations may have
come from a different normal distribution with a much larger variance than the first
one. (This is the contaminated normal case.) The extreme observations, which are
called outliers, will substantially affect the value of Xn and make it an unreliable
estimator of θ . Since the values of these outliers would be given less weight in a
robust estimator, the robust estimator will usually be a more reliable estimator than
Xn.

It is acknowledged that a robust estimator will perform better than Xn in a
situation of the type just described. However, if X1, . . . , Xn actually do form a
random sample from a normal distribution, then Xn will perform better than a robust
estimator. Since we are typically not certain which situation obtains in a particular
problem, it is important to know how much larger the M.S.E. of a robust estimator
will be than the M.S.E. of Xn when the actual distribution is normal. In other words,
it is important to know how much is lost if we use a robust estimator when the actual
distribution is normal. We shall now consider this question.

When X1, . . . , Xn form a random sample from the normal distribution with mean
θ and variance σ 2, the probability distribution of Xn and the probability distribution
of each of the robust estimators described in this chapter will be symmetric with
respect to the value θ . Therefore, the mean of each of these estimators will be θ ,
the M.S.E. of each estimator will be equal to its variance, and this M.S.E. will have
a certain constant value for each estimator regardless of the true value of θ . The
values of several of these M.S.E.’s for a normal distribution when the sample size n

is 10 or 20 are presented in Table 10.38. The values in Table 10.38 are from Andrews
et al. (1972). They were computed using simulation methods that will be introduced
in Chapter 12. It should be noted that when n = 10, the trimmed mean for k = 4 and
the sample median are the same estimator.

It can be seen from Table 10.38 that when the underlying distribution is actually
a normal distribution, the M.S.E.’s of the M-estimator and the trimmed means are
not much larger than the M.S.E. of Xn. In fact, when n = 20, the M.S.E. of the second-
level trimmed mean (k = 2), in which four of the 20 observed values in the sample
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Table 10.38 Comparison of M.S.E.’s for sample mean and
several robust estimators. The data have a normal
distribution with variance σ 2. The M.S.E. is the
tabulated value times σ 2/n. The M-estimator uses
k = 1.5 and σ̂ equal to the sample median absolute
deviation divided by 0.6745.

Estimator n = 10 n = 20

Sample mean Xn 1.00 1.00

Trimmed mean for k = 1 1.05 1.02

Trimmed mean for k = 2 1.12 1.06

Trimmed mean for k = 3 1.21 1.10

Trimmed mean for k = 4 1.37 1.14

Sample median 1.37 1.50

M-estimator 1.05 1.05

Table 10.39 Comparison of M.S.E.’s for sample mean and
several robust estimators. The data have a Cauchy
distribution. The M.S.E. is the tabulated value
divided by n. The M-estimator uses k = 1.5 and
σ̂ equal to the sample median absolute deviation
divided by 0.6745.

Estimator n = 10 n = 20

Sample mean Xn ∞ ∞
Trimmed mean for k = 1 27.22 23.98

Trimmed mean for k = 2 8.57 7.32

Trimmed mean for k = 3 3.86 4.57

Trimmed mean for k = 4 3.66 3.58

Sample median 3.66 2.88

M-estimator 6.00 4.50

are omitted, is only 1.06 times as large as the M.S.E. of Xn. Even the M.S.E. of the
sample median is only 1.5 times that of Xn. These values illustrate the price of using
a robust estimator when one is not needed.

We shall now consider the improvement in the M.S.E. that can be achieved by
using a robust estimator when the underlying distribution is not normal. If X1, . . . , Xn

form a random sample of size n from a Cauchy distribution, then the M.S.E. of Xn is
infinite. The M.S.E.’s of robust estimators for a Cauchy distribution when the sample
size n is 10 or 20 are given in Table 10.39. The values in Table 10.39 are from Andrews
et al. (1972).

Finally, the M.S.E.’s for two contaminated normal distributions are illustrated
in Table 10.40. The two distributions have p.d.f.’s as in Eq. (10.7.2) with ε = 0.05 and
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Table 10.40 Comparison of M.S.E.’s for sample mean and several
robust estimators. The data consist of n = 20 observa-
tions from a contaminated normal distribution with
p.d.f. (10.7.2) using ε = 0.05 and ε = 0.10. The M.S.E.
is the tabulated value divided by n. The M-estimator
uses k = 1.5 and σ̂ equal to the sample median absolute
deviation divided by 0.6745.

Estimator ε = 0.05 ε = 0.1

Sample mean Xn 5.95 10.90

Trimmed mean for k = 1 1.87 3.92

Trimmed mean for k = 2 1.32 2.01

Trimmed mean for k = 3 1.27 1.57

Trimmed mean for k = 4 1.29 1.50

Sample median 1.62 1.81

M-estimator 1.27 1.58

ε = 0.1. The values in Table 10.40 were computed using simulation methods described
in Chapter 12.

It can be seen from Tables 10.39 and 10.40 that the M.S.E. of a robust estimator
can be substantially smaller than that of Xn. When a trimmed mean or an M-estimator
is to be used as an estimator of θ , it is evident that a specific value of k must be chosen.
No general rule for choosing k will be best under all conditions. If there is reason to
believe that the p.d.f. f (x) is approximately normal, then θ might be estimated by
using a trimmed mean, which is obtained by omitting about 10 or 15 percent of the
observed values at each end of the ordered sample. Alternatively, an M-estimator
with k = 2 or 2.5 could be used. If the p.d.f. f (x) might be far from normal or if
several of the observations might be outliers, then the sample median might be used
to estimate θ , or one could use an M-estimator with k = 1 or 1.5.

We could also compare various scale estimators in a similar fashion. Such a com-
parison is complicated by the fact that there are several choices of scale parameter to
estimate, such as standard deviation, IQR, and median absolute deviation. We shall
not present such a comparison here.

Large-Sample Properties of Sample Quantiles

Earlier in this section, we made use of the sample median as well as the sample
0.25 and 0.75 quantiles to estimate the median and scale features of a distribution.
The distributions of these, and other, sample quantiles are difficult to derive exactly.
Approximations are available to the distributions of sample quantiles if the sample
sizes are large. It can be shown that if X1, . . . , Xn form a large random sample from
a continuous distribution for which the p.d.f. is f (x) and for which there is a unique
p quantile θp, then the distribution of the sample p quantile will be approximately a
normal distribution. Specifically, it must be assumed that f (θp) > 0.
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Theorem
10.7.1

Asymptotic Distribution of Sample Quantile. Under the conditions above, let θ̃p,n

denote the sample p quantile. Then, as n → ∞, the c.d.f. of n1/2(θ̃p,n − θp) will
converge to the c.d.f. of the normal distribution with mean 0 and variance p(1 −
p)/f 2(θp).

In other words, when n is large, the distribution of the sample p quantile θ̃p,n will be
approximately the normal distribution with mean θp and variance p(1 − p)/[nf 2(θp)].

Also, suppose that θ̃q,n denotes the sample q quantile for some q > p, and
suppose that θq is the unique q quantile of the distribution of the data. Then the joint
distribution of (θ̃p,n, θ̃q,n) is approximately the bivariate normal distribution with
means θp and θq , variances p(1 − p)/[nf 2(θp)]and q(1 − q)/[nf 2(θq)], and covariance
p(1 − q)/[nf (θp)f (θq)]. See Schervish (1995, section 7.2) for a rigorous derivation of
these results.

Summary

We have introduced a number of estimators of the median and scale parameters that
are more robust than the sample average and sample standard deviation. To say that
the new estimators are more robust, we mean that they perform well compared to
the old estimators, in terms of M.S.E., regardless of which distribution (in some large
class) gives rise to the data. The robust estimators of the median include trimmed
means, the sample median, and M-estimators obtained by maximizing a function
that is similar to a likelihood function. Robust estimators of scale include the sample
interquartile range (IQR), the sample median absolute deviation, and multiples of
these that are designed to estimate the standard deviation when the data come from
a normal distribution.

Exercises

1. Suppose that a sample comprises the 15 observed val-
ues in Table 10.41. Calculate the values of (a) the sample
mean, (b) the trimmed means for k = 1, 2, 3, and 4, (c) the
sample median, and (d) the M-estimator with k = 1.5 and
σ̂ equal to the sample median absolute deviation divided
by 0.6745.

Table 10.41 Data for Exercise 1

23.0 21.5 63.0

22.5 2.1 22.1

22.4 2.2 21.7

21.7 22.2 22.9

21.3 21.8 22.1

2. Suppose that a sample comprises the 14 observed val-
ues in Table 10.42. Calculate the values of (a) the sample
mean, (b) the trimmed means for k = 1, 2, 3, and 4, (c) the

sample median, and (d) the M-estimator with k = 1.5 and
σ̂ equal to the sample median absolute deviation divided
by 0.6745.

Table 10.42 Data for Exercise 2

1.24 0.36 0.23

0.24 1.78 −2.00

−0.11 0.69 0.24

0.10 0.03 0.00

−2.40 0.12

3. Suppose that a random sample of n = 100 observa-
tions is taken from the normal distribution with unknown
mean θ and known variance 1, and let θ̃.5, n denote the
sample median. Determine (approximately) the value of
Pr(|θ̃.5, n − θ | ≤ 0.1).
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4. Suppose that a random sample of n = 100 observations
is taken from the Cauchy distribution centered at an un-
known point θ , and let θ̃.5, n denote the sample median.
Determine (approximately) the value of Pr(|θ̃.5, n − θ | ≤
0.1).

5. Let f (x) denote the p.d.f. of the contaminated normal
distribution given in Eq. (10.7.1) with ε = 1/2, σ 2 = 1, and
g being the p.d.f. of a normal distribution with mean μ and
variance 4. Suppose that 100 observations are selected at
random from a distribution for which the p.d.f. is f (x).
Determine the M.S.E. of the sample mean and (approxi-
mately) the M.S.E. of the sample median.

6. Use the data in Table 10.6 on page 640. We want an
estimate of the median of the logarithms of sulfur dioxide.
Find (a) the sample mean, (b) the trimmed means for
k = 1, 2, 3, and 4, (c) the sample median, and (d) the M-
estimator with k = 1.5 and σ̂ equal to the sample median
absolute deviation divided by 0.6745.

7. Suppose that X1, . . . , Xn are i.i.d. with a distribution
that has the p.d.f. in Eq. (10.7.2). Let Xn = 1

n

∑n
i=1 Xi.

a. Prove that E(Xn) = μ.

b. Prove that Var(Xn) = (1 + 99ε)σ 2/n.

8. If Fig. 10.8 were extended all the way to ε = 1, the vari-
ance of the sample median would rise above the variance
of the sample mean. Indeed, the ratio of the two variances
would be the same at ε = 1 as it is at ε = 0. Explain why
this should be true.

9. Assume that X1, . . . , Xn form a random sample from
the distribution with p.d.f. given in Eq. (10.7.5). Prove that
the M.L.E. of θ is the sample median. (Hint: Let X have
c.d.f. equal to the sample c.d.f. of X1, . . . , Xn. Then apply
Theorem 4.5.3.)

10. Let X1, . . . , Xn be i.i.d. with the p.d.f. in Eq. (10.7.5).
Assume that σ is known. Let θ be between two of the
observed values x1, . . . , xn. Prove that the derivative of
the logarithm of the likelihood at θ equals 1/σ times the

difference between the number of observations greater
than θ and the number of observations less than θ .

11. Let X be a random variable with a continuous distri-
bution such that the interquartile range (IQR) is σ . Prove
that the IQR of aX + b is aσ for all a > 0 and all b.

12. Let X be a random variable with a continuous distri-
bution such that the median absolute deviation is σ . Prove
that the median absolute deviation of aX + b is aσ for all
a > 0 and all b.

13. Find the median absolute deviation of the Cauchy
distribution.

14. Let X have the exponential distribution with param-
eter λ. Prove that the median absolute deviation of X is
smaller than one-half of the IQR. (You can do this with-
out actually calculating the median absolute deviation.)

15. Let X have a normal distribution with standard devi-
ation σ .

a. Prove that the IQR is 2�−1(0.75)σ .

b. Prove that the median absolute deviation is
�−1(0.75)σ .

16. Darwin (1876, p. 16) reported the results of an ex-
periment in which he grew 15 pairs of Zea mays (corn)
plants. Each pair consisted of a self-fertilized and a cross-
fertilized plant that were grown in the same pot. The num-
bers below are the differences between heights (in eighths
of an inch) of the two plants in each pair (cross-fertilized
minus self-fertilized).

49, −67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, −48

Find the (a) the sample mean, (b) the trimmed means for
k = 1, 2, 3, and 4, (c) the sample median, and (d) the M-
estimator with k = 1.5 and σ̂ equal to the sample median
absolute deviation divided by 0.6745.

17. Let X1, . . . , Xn be a large random sample from a dis-
tribution with p.d.f. f . Assume that f is symmetric about
the median of the distribution. Find the large-sample dis-
tribution of the sample IQR.

� 10.8 Sign and Rank Tests
In this section, we describe some popular nonparametric tests for hypotheses about
the median of a distribution or about the difference between two distributions.

One-Sample Procedures

Example
10.8.1

Calorie Counts in Hot Dogs. Consider the n = 20 calorie counts for beef hot dogs given
in Exercise 7 in Sec. 8.5. Suppose that we are interested in testing hypotheses about
the median calorie count, but we are not willing to assume that the calorie counts
follow a normal distribution or any other familiar distribution. Are there methods
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that are appropriate when we are not willing to make assumptions about the form of
the distribution? �

Suppose that X1, . . . , Xn form a random sample from an unknown distribution.
In Chapter 9, we considered the case in which the form of the unknown distribution
was known, but there were some specific parameters that were still unknown. For
example, the distribution might be a normal distribution with unknown mean and/or
variance. Now we shall assume only that the distribution is continuous. Since we shall
not assume that the distribution of the data has a mean, then we cannot test hypothe-
ses about the mean of the distribution. However, every continuous distribution has
a median μ that satisfies Pr(Xi ≤ μ) = 0.5. The median is a popular measure of loca-
tion for general distributions, and we shall now present a test procedure for testing
hypotheses of the form

H0: μ ≤ μ0,

H1: μ > μ0.
(10.8.1)

The test is based on the following simple fact: μ ≤ μ0 if and only if Pr(Xi ≤ μ0) ≥ 0.5.
For i = 1, . . . , n, let Yi = 1 if Xi ≤ μ0, and let Yi = 0 otherwise. Define p = Pr(Yi =
1). Then testing whether μ ≤ μ0 is equivalent to testing whether p ≥ 0.5. Since
X1, . . . , Xn are independent, then so too are Y1, . . . , Yn. This makes Y1, . . . , Yn

a random sample from the Bernoulli distribution with parameter p. We already
know how to test the null hypothesis that p ≥ 0.5. (See Example 9.1.9.) We compute
W = Y1 + . . . + Yn and reject the null hypothesis if W is too small. To make the test
have level of significance α0, choose c so that

c∑
w=0

(
n

w

) (
1
2

)n

≤ α0 <

c+1∑
w=0

(
n

w

) (
1
2

)n

.

Then the test would reject H0 if W ≤ c.
The test that we have just described is called the sign test because it is based

on the number of observations for which Xi − μ0 is negative. A similar test can be
constructed if we wish to test the hypotheses

H0: μ = μ0,

H1: μ 	= μ0.

Once again, let p = Pr(Xi ≤ μ0). The null hypothesis H0 is now equivalent to p = 0.5.
To perform the test at level of significance α0, we would choose a number c such that

c∑
w=0

(
n

w

) (
1
2

)n

≤ α0

2
<

c+1∑
w=0

(
n

w

) (
1
2

)n

.

We would then reject H0 if either W ≤ c or W ≥ n − c. We use the symmetric rejection
region because the binomial distribution with parameters n and 1/2 is symmetric
about n/2.

Example
10.8.2

Calorie Counts in Hot Dogs. Consider again the calorie counts for beef hot dogs in
Example 10.8.1. Let μ stand for the median of the distribution of calories in beef hot
dogs. Suppose that we are interested in testing the hypotheses H0 : μ = 150 versus
H1 : μ 	= 150. Since 9 of the 20 calorie counts are below 150, we have W = 9. The two-
sided p-value for this observation is 0.8238, so we would not reject the null hypothesis
at level α0 unless α0 ≥ 0.8238. �
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The power function of the sign test is easy to compute for each value of p =
Pr(Xi ≤ μ0). For example, for the one-sided test of the hypotheses (10.8.1), the
power is

Pr(W ≤ c) =
c∑

w=0

(
n

w

)
pw(1 − p)n−w.

Comparing Two Distributions

Example
10.8.3

Comparing Copper Ores. Consider again the comparison of copper ores in Exam-
ple 9.6.5. Suppose that we are not comfortable assuming that the distributions of
copper ores are normal distributions. Can we still test hypotheses about whether the
distributions are the same or whether they have the same medians? �

Next, we shall consider a problem in which a random sample of m observations
X1, . . . , Xm is taken from a continuous distribution for which the c.d.f. F(x) is
unknown, and an independent random sample of n observations Y1, . . . , Yn is taken
from another continuous distribution for which the c.d.f. G(x) is also unknown. We
desire to test the hypotheses

H0: F = G

H1: F 	= G.
(10.8.2)

One way to test the hypotheses (10.8.2) is to use the Kolmogorov-Smirnov test
for two samples described in Sec. 10.6. Furthermore, if we are willing to assume
that the two samples are actually drawn from normal distributions with the same
unknown variance, then testing the hypotheses (10.8.2) is the same as testing whether
two normal distributions have the same mean. Therefore, under this assumption, we
could use a two-sample t test as described in Sec. 9.6.

In this section we shall present another procedure for testing the hypotheses
(10.8.2). This procedure, which was introduced separately by F. Wilcoxon and by
H. B. Mann and D. R. Whitney in the 1940s, is known as the Wilcoxon-Mann-Whitney
ranks test.

The Wilcoxon-Mann-Whitney Ranks Test In this procedure, we begin by arrang-
ing the m + n observations in the two samples in a single sequence from the smallest
value that appears in the two samples to the largest value that appears. Since all the
observations come from continuous distributions, it may be assumed that no two of
the m + n observations have the same value. Thus, a total ordering of these m + n

values can be obtained. Each observation in this total ordering is then assigned a
rank from 1 to m + n corresponding to its position in the ordering.

The Wilcoxon-Mann-Whitney ranks test is based on the property that if the
null hypothesis H0 is true and the two samples are actually drawn from the same
distribution, then the observations X1, . . . , Xm will tend to be dispersed throughout
the ordering of all m + n observations, rather than be concentrated among the smaller
values or among the larger values. In fact, when H0 is true, the ranks that are assigned
to the m observations X1, . . . , Xm will be the same as if they were a random sample
of m ranks drawn at random without replacement from a box containing the m + n

ranks 1, 2, . . . , m + n.
Let S denote the sum of the ranks that are assigned to the m observations

X1, . . . , Xm. Since the average of the ranks 1, 2, . . . , m + n is (1/2)(m + n + 1), it
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Table 10.43 Sorted data for Example 10.8.4

Observed Observed

Rank Value Sample Rank Value Sample

1 2.120 y 10 2.431 x

2 2.153 y 11 2.556 x

3 2.183 x 12 2.558 y

4 2.213 y 13 2.587 y

5 2.240 y 14 2.629 x

6 2.245 y 15 2.641 x

7 2.266 y 16 2.715 x

8 2.281 y 17 2.805 x

9 2.336 y 18 2.840 x

follows from the discussion just given that when H0 is true,

E(S) = m(m + n + 1)
2

. (10.8.3)

Also, it can be shown that when H0 is true,

Var(S) = mn(m + n + 1)
12

. (10.8.4)

Furthermore, when the sample sizes m and n are large and H0 is true, the distribution
of S will be approximately the normal distribution for which the mean and the vari-
ance are given by Eqs. (10.8.3) and (10.8.4). The Wilcoxon-Mann-Whitney ranks test
rejects H0 if the value of S deviates very far from its mean value given by Eq. (10.8.3).
In other words, the test specifies rejecting H0 if |S − (1/2)m(m + n + 1)| ≥ c, where
the constant c is chosen appropriately. In particular, when the approximate normal
distribution of S is used, the constant c = [Var(S)]1/2�−1(1 − α0/2) makes the test
have level of significance α0.

Example
10.8.4

Comparing Copper Ores. Consider again the comparison of copper ores in Exam-
ple 10.8.3. Suppose that the m = 8 measurements in the first sample are

2.183, 2.431, 2.556, 2.629, 2.641, 2.715, 2.805, 2.840,

while the n = 10 measurements in the second sample are

2.120, 2.153, 2.213, 2.240, 2.245, 2.266, 2.281, 2.336, 2.558, 2.587.

The 18 values in the two samples are ordered from smallest to largest in Table 10.43.
Each observed value in the first sample is identified by the symbol x, and each
observed value in the second sample is identified by the symbol y. The sum S of
the ranks of the 10 observed values in the first sample is found to be 104.

Suppose that we use the normal distribution approximation. Then if H0 is true, S
has approximately the normal distribution with mean 76 and variance 126.67. The
standard deviation of S is therefore (126.67)1/2 = 11.25. Hence, if H0 is true, the
random variable Z = (S − 76)/(11.25) will have approximately the standard normal
distribution. Since S = 104 in this example, it follows that Z = 2.49. The p-value
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corresponding to this value of Z is 0.0128. Hence, the null hypothesis would be
rejected at every level of significance α0 ≥ 0.0128. �

For small values of m and n, the normal approximation to the distribution of S

will not be appropriate. Tables of the exact distributions of S for small sample sizes
are given in many published collections of statistical tables. Many statistical software
packages also calculate the c.d.f. and quantiles of the exact distribution of S.

Note: Tests for Paired Data. Versions of the sign test and ranks test for paired data
are developed in Exercises 1 and 15.

Ties

The theory of the Wilcoxon-Mann-Whitney signed ranks test is based on the as-
sumption that all of the observed values of the Xi and Yj will be distinct. Since the
measurements in an actual experiment may be made with only limited precision,
however, there may actually be observed values that appear more than once. For
example, suppose that a Wilcoxon-Mann-Whitney ranks test is to be performed, and
it is found that Xi = Yj for one or more pairs (i, j). In this case, the ranks test should
be carried out twice. In the first test, for each pair with Xi = Yj , it should be assumed
that each Xi < Yj . In the second test, assume that Xi > Yj . If the tail areas found from
the two tests are roughly equal, then the ties are a relatively unimportant part of the
data. If, on the other hand, the tail areas are quite different, then the ties can seriously
affect the inferences that are to be made. In this case the data may be inconclusive.

Example
10.8.5

Calcium Supplements and Blood Pressure. Consider the data from Exercise 10 in
Sec. 9.6, which we used to illustrate the Kolmogorov-Smirnov test in Example 10.6.4.
The observed values −5 and −3 appear in both samples. First, we shall assign the
smaller ranks to those values in the group that received the calcium supplement (the
Xi’s) and then assign the smaller rank to the placebo group (the Yj ’s). For example,
in the combined sample, the −3 values are the fifth, sixth, and seventh smallest. In
the first test, we shall assign rank 5 to the Xi that equals −3 and ranks 6 and 7 to
the two Yj ’s that equal −3. In the second test, we shall assign rank 7 to the Xi that
equals −3 and ranks 5 and 6 to the Yj ’s. For the first test, the sum of the X ranks is
123, and in the second test, the sum of the X ranks is 126. In this problem, m = 10 and
n = 11, so the mean and variance of S when the null hypothesis is true are 110 and
201.7, respectively. The two-sided tail areas corresponding to the two assignments
are 0.36 and 0.26. Neither of these would lead to rejecting the null hypothesis at level
α0 unless α0 ≥ 0.26. �

Other reasonable methods for handling ties have been proposed. When two or
more values are the same, one simple method is to consider the successive ranks that
are to be assigned to these values and then assign the average of these ranks to each
of the tied values. When this method is used, the value of Var(S) must be corrected
because of the ties.

Power of the Wilcoxon-Mann-Whitney Ranks Test

The Wilcoxon-Mann-Whitney ranks test rejects the null hypothesis that the two
distributions are the same when the sum S of the X ranks is either too large or too
small. This would be a sensible thing to do if one thought that the most important
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alternatives were those in which the Xi values tended to be larger than the Yj values
or those in which the Xi values tended to be smaller than the Yj values. However,
there are other situations in which F 	= G, but S tends to be close to the mean in
Eq. (10.8.3). For example, suppose that all X1, . . . , Xm have the uniform distribution
on the interval [0, 1] and Y1, . . . , Yn have the following p.d.f.:

g(y) =
{

0.5 if −1 < y < 0 or 1 < y < 2,
0 otherwise.

Then it is not difficult to show that E(S) is the same as Eq. (10.8.3) and Var(S) =
m2n/4. In such a case, the power of the test (the probability of rejecting H0) would
not be much larger than the level of significance α0. Indeed, if one were concerned
about alternatives of this sort, one would wish to reject H0 if the X ranks were too
closely clustered regardless of whether they were large or small.

The Wilcoxon-Mann-Whitney ranks test is designed to have high power when F

and G have a special relationship to each other, defined next.

Definition
10.8.1

Stochastically Larger. Let X be a random variable with c.d.f. F , and let Y be a random
variable with c.d.f. G. Let F−1 and G−1 denote the respective quantile functions. We
say that F is stochastically larger than G or, equivalently, that X is stochastically larger
than Y if F−1(p) ≥ G−1(p) for all 0 < p < 1; that is, every quantile of X is at least as
large as the corresponding quantile of Y .

It is easy to see that if Xi is stochastically larger than Yj , then the ranks of the Xi’s in
the combined sample will tend to be at least as large as the ranks of the Yj ’s. This will
make large values of S more likely than small values. Similarly, if Yj is stochastically
larger than Xi, S will tend to be small.

When neither Xi nor Yj is stochastically larger than the other, it is difficult to
make any general claim about the distribution of S. For large sample sizes, a normal
approximation still holds for the distribution of S, even when F 	= G. However, the
mean and variance of S depend on the two c.d.f.’s F and G. For example, using the
result in Exercise 11, one can show that

E(S) = nm Pr(X1 ≥ Y1) + m(m + 1)
2

. (10.8.5)

Using this same approach, one can also show that

Var(S) = nm
[

Pr(X1 ≥ Y1) + (1 + m + n) Pr(X1 ≥ Y1)
2 (10.8.6)

+ (m − 1) Pr(X1 ≥ Y1, X1 ≥ Y2) + (n − 1) Pr(X1 ≥ Y1, X2 ≥ Y2)
]
.

In principle, all of these probabilities could be computed for each specific choice
of F and G. For particular choices of F and G, one could use simulation methods
(see Chapter 12) to approximate the necessary probabilities. After computing or
approximating these probabilities, one can then approximate the power of the level
α0 Wilcoxon-Mann-Whitney ranks test as follows: First, recall that the test rejects the
null hypothesis that F = G if S ≤ c1 or S ≥ c2, where

c1 = m(m + n + 1)
2

− �−1
(

1 − α0

2

) [
mn(m + n + 1)

12

]1/2

,

c2 = m(m + n + 1)
2

+ �−1
(

1 − α0

2

) [
mn(m + n + 1)

12

]1/2

.
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Then the power of the test is

�

(
c1 − E(S)

Var(S)1/2

)
+ 1 − �

(
c2 − E(S)

Var(S)1/2

)
,

where E(S) and Var(S) are given by Eqs. (10.8.5) and (10.8.6), respectively.

Summary

The sign test was introduced as a nonparametric test for hypotheses about the median
of an unknown distribution. The Wilcoxon-Mann-Whitney ranks test was developed
as another nonparametric test for hypotheses about the equality of two c.d.f.’s. The
Wilcoxon-Mann-Whitney ranks test was designed to have large power function when
one of the two distributions is stochastically larger than the other.

Exercises

1. Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. pairs of
random variables with a continuous joint distribution. Let
p = Pr(Xi ≤ Yi), and suppose that we want to test the
hypotheses

H0: p ≤ 1/2,

H1: p > 1/2.
(10.8.7)

Describe a version of the sign test to use for testing these
hypotheses.

2. Consider again the data in Example 10.8.4. Test the
hypotheses (10.8.2) by applying the Kolmogorov-Smirnov
test for two samples.

3. Consider again the data in Example 10.8.4. Test the hy-
potheses (10.8.2) by assuming that the observations are
taken from two normal distributions with the same vari-
ance, and apply a t test of the type described in Sec. 9.6.

4. In an experiment to compare the effectiveness of two
drugs A and B in reducing blood glucose concentrations,
drug A was administered to 25 patients, and drug B was
administered to 15 patients. The reductions in blood glu-
cose concentrations for the 25 patients who received drug
A are given in Table 10.44. The reductions in concentra-
tions for the 15 patients who received drug B are given
in Table 10.45. Test the hypothesis that the two drugs are
equally effective in reducing blood glucose concentrations
by using the Wilcoxon-Mann-Whitney ranks test.

Table 10.44 Data for patients who receive
drug A in Exercise 4

0.35 1.12 1.54 0.13 0.77

0.16 1.20 0.40 1.38 0.39

0.58 0.04 0.44 0.75 0.71

1.64 0.49 0.90 0.83 0.28

1.50 1.73 1.15 0.72 0.91

Table 10.45 Data for patients who receive
drug B in Exercise 4

1.78 1.25 1.01

1.82 1.95 1.81

0.68 1.48 1.59

0.89 0.86 1.63

1.26 1.07 1.31

5. Consider again the data in Exercise 4. Test the hypoth-
esis that the two drugs are equally effective by applying
the Kolmogorov-Smirnov test for two samples.

6. Consider again the data in Exercise 4. Test the hypoth-
esis that the two drugs are equally effective by assuming
that the observations are taken from two normal distribu-
tions with the same variance and applying a t test of the
type described in Sec. 9.6.

7. Suppose that X1, . . . , Xm form a random sample of m

observations from a continuous distribution for which the
p.d.f. f (x) is unknown, and that Y1, . . . , Yn form an inde-
pendent random sample of n observations from another
continuous distribution for which the p.d.f. g(x) is also
unknown. Suppose also that f (x) = g(x − θ) for −∞ <

x < ∞, where the value of the parameter θ is unknown
(−∞ < θ < ∞). Let F−1 be the quantile function of the
Xi’s, and let G−1 be the quantile function of the Yj ’s. Show
that F−1(p) = θ + G−1(p) for all 0 < p < 1.

8. Consider again the conditions of Exercise 7. Describe
how to carry out a one-sided Wilcoxon-Mann-Whitney
ranks test of the following hypotheses:

H0: θ ≤ 0,

H1: θ > 0.
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9. Consider again the conditions of Exercise 7. Describe
how to carry out a two-sided Wilcoxon-Mann-Whitney
ranks test of the following hypotheses for a specified value
of θ0:

H0: θ = θ0,

H1: θ 	= θ0.

10. Consider again the conditions of Exercise 9. Describe
how to use the Wilcoxon-Mann-Whitney ranks test to de-
termine a confidence interval for θ with confidence coeffi-
cient 1 − α0. Hint: For which values of θ0 would you accept
the null hypothesis H0 : θ = θ0 at level of significance α0?

11. Let X1, . . . , Xm and Y1, . . . , Yn be the observations in
two samples, and suppose that no two of these observa-
tions are equal. Consider the mn pairs

(X1, Y1) . . . (X1, Yn),

(X2, Y1) . . . (X2, Yn),
...

(Xm, Y1) . . . (Xm, Yn).

Let U denote the number of these pairs for which the value
of the X component is greater than the value of the Y

component. Show that

U = S − 1
2
m(m + 1),

where S is the sum of the ranks assigned to X1, . . . , Xm,
as defined in this section.

12. Let X1, . . . , Xm be i.i.d. with c.d.f. F independently of
Y1, . . . , Yn, which are i.i.d. with c.d.f. G. Let S be as defined
in this section. Prove that Eq. (10.8.5) gives the mean of
S.

13. Under the conditions of Exercise 12, prove that Eq.
(10.8.6) gives the variance of S.

14. Under the conditions of Exercises 12 and 13, suppose
further that F = G. Prove that Eqs. (10.8.5) and (10.8.6)
agree with Eqs. (10.8.3) and (10.8.4), respectively.

15. Consider again the conditions of Exercise 1. This time,
let Di = Xi − Yi. Wilcoxon (1945) developed the following
test of the hypotheses (10.8.7). Order the absolute values
|D1|, . . . , |Dn| from smallest to largest, and assign ranks
from 1 to n to the values. Then SW is set equal to the
sum of all the ranks of those |Di| such that Di > 0. If
p = Pr(Xi ≤ Yi) = 1/2, then the mean and variance of SW

are

E(SW) = n(n + 1)
4

, (10.8.8)

Var(SW) = n(n + 1)(2n + 1)
24

. (10.8.9)

The test rejects H0 if SW ≥ c, where c is chosen to make
the test have level of significance α0. This test is called
the Wilcoxon signed ranks test. If n is large, a normal
distribution approximation allows us to use c = E(SW) +
�−1(1 − α0) Var(SW)1/2.

a. Let Wi = 1 if Xi ≤ Yi, and Wi = 0 if not. Show that
SW = ∑n

i=1 iWi.

b. Prove that E(SW) is as stated in Eq. (10.8.8) under
the assumption that p = 1/2. Hint: You may wish to
use Eq. (4.7.13).

c. Prove that Var(SW) is as stated in Eq. (10.8.9) under
the assumption that p = 1/2. Hint: You may wish to
use Eq. (4.7.14).

16. In an experiment to compare two different materials
A and B that might be used for manufacturing the heels of
men’s dress shoes, 15 men were selected and fitted with a
new pair of shoes on which one heel was made of material
A and one heel was made of material B. At the beginning
of the experiment, each heel was 10 millimeters thick. Af-
ter the shoes had been worn for one month, the remaining
thickness of each heel was measured. The results are given
in Table 10.46. Test the null hypothesis that material A is
not more durable than material B against the alternative
that material A is more durable than material B, by using
(a) the sign test of Exercise 1, (b) the Wilcoxon signed-
ranks test of Exercise 15, and (c) the paired t test.

Table 10.46 Data for Exercise 16

Pair Material A Material B
1 6.6 7.4
2 7.0 5.4
3 8.3 8.8
4 8.2 8.0
5 5.2 6.8
6 9.3 9.1
7 7.9 6.3
8 8.5 7.5
9 7.8 7.0
10 7.5 6.6
11 6.1 4.4
12 8.9 7.7
13 6.1 4.2
14 9.4 9.4
15 9.1 9.1
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10.9 Supplementary Exercises
1. Describe how to use the sign test to form a coefficient
1 − α0 confidence interval for the median θ of an unknown
distribution. Use the data in Exercise 7 in Sec. 8.5 to con-
struct the observed coefficient 0.95 confidence interval.
Hint: For which values of θ0 would you fail to reject the
null hypothesis H0 : θ = θ0 at level of significance α0?

2. Suppose that 400 persons are chosen at random from a
large population, and that each person in the sample spec-
ifies which one of five breakfast cereals she most prefers.
For i = 1, . . . , 5, let pi denote the proportion of the popu-
lation that prefers cereal i, and let Ni denote the num-
ber of persons in the sample who prefer cereal i. It is
desired to test the following hypotheses at the level of
significance 0.01:

H0: p1 = p2 = . . . = p5,

H1: The hypothesis H0 is not true.

For what values of
∑5

i=1 N2
i

would H0 be rejected?

3. Consider a large population of families that have ex-
actly three children, and suppose that it is desired to test
the null hypothesis H0 that the distribution of the number
of boys in each family is a binomial distribution with pa-
rameters n = 3 and p = 1/2 against the general alternative
H1 that H0 is not true. Suppose also that in a random sam-
ple of 128 families it is found that 26 families have no boys,
32 families have one boy, 40 families have two boys, and
30 families have three boys. At what levels of significance
should H0 be rejected?

4. Consider again the conditions of Exercise 3, including
the observations in the random sample of 128 families, but
suppose now that it is desired to test the composite null hy-
pothesis H0 that the distribution of the number of boys in
each family is a binomial distribution for which n = 3, and
the value of p is not specified against the general alterna-
tive H1 that H0 is not true. At what levels of significance
should H0 be rejected?

5. In order to study the genetic history of three different
large groups of Americans, a random sample of 50 persons
is drawn from group 1, a random sample of 100 persons is
drawn from group 2, and a random sample of 200 persons
is drawn from group 3. The blood type of each person in
the samples is classified as A, B, AB, or O, and the results
are as given in Table 10.47. Test the hypothesis that the
distribution of blood types is the same in all three groups
at the level of significance 0.1.

Table 10.47 Data for Exercises 5 and 6

A B AB O Total

Group 1 24 6 5 15 50

Group 2 43 24 7 26 100

Group 3 69 47 22 62 200

6. Consider again the conditions of Exercise 5. Explain
how to change the numbers in Table 10.47 in such a way
that each row total and each column total remains un-
changed, but the value of the χ2 test statistic is increased.

7. Consider a χ2 test of independence that is to be applied
to the elements of a 2 × 2 contingency table. Show that the
quantity (Nij − Êij )

2 has the same value for each of the
four cells of the table.

8. Consider again the conditions of Exercise 7. Show that
the χ2 statistic Q can be written in the form

Q = n(N11N22 − N12N21)
2

N1+N2+N+1N+2
.

9. Suppose that a χ2 test of independence at the level of
significance 0.01 is to be applied to the elements of a 2 × 2
contingency table containing 4n observations, and that the
data have the form given in Table 10.48. For what values
of a would the null hypothesis be rejected?

Table 10.48 Form of the data for Exercise 9

n + a n − a

n − a n + a

10. Suppose that a χ2 test of independence at the level
of significance 0.005 is to be applied to the elements of a
2 × 2 contingency table containing 2n observations, and
that for some α ∈ (0, 1) the data have the form given in
Table 10.49. For what values of α would the null hypothesis
be rejected?

Table 10.49 Form of the data for Exercise 10

αn (1 − α)n

(1 − α)n αn

11. In a study of the health effects of air pollution, it was
found that the proportion of the total population of city A

that suffered from respiratory diseases was larger than the
proportion for city B. Since city A was generally regarded
as being less polluted and more healthful than city B, this
result was considered surprising. Therefore, separate in-
vestigations were made for the younger population (under
age 40) and for the older population (age 40 or older). It
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was found that the proportion of the younger population
suffering from respiratory diseases was smaller for city A

than for city B, and also that the proportion of the older
population suffering from respiratory diseases was smaller
for city A than for city B. Discuss and explain these results.

12. Suppose that an achievement test in mathematics was
given to students from two different high schools A and B.
When the results of the test were tabulated, it was found
that the average score for the freshmen at school A was
higher than the average for the freshmen at school B, and
that the same relationship existed for the sophomores, the
juniors, and the seniors at the two schools. On the other
hand, it was found also that the average score of all the
students at school A was lower than that of all the students
at school B. Discuss and explain these results. Give an
example of how this could happen.

13. A random sample of 100 hospital patients suffering
from depression received a particular treatment over a
period of three months. Prior to the beginning of the treat-
ment, each patient was classified as being at one of five
levels of depression, where level 1 represented the most
severe level of depression and level 5 represented the
mildest level. At the end of the treatment, each patient
was again classified according to the same five levels of
depression. The results are given in Table 10.50. Discuss
the use of this table for determining whether the treatment
has been helpful in alleviating depression.

Table 10.50 Data for Exercise 13

Level of depression
after treatmentLevel of depression

before treatment 1 2 3 4 5

1 7 3 0 0 0

2 1 27 14 2 0

3 0 0 19 8 2

4 0 1 2 12 0

5 0 0 1 1 0

14. Suppose that a random sample of three observations
is drawn from a distribution with the following p.d.f.:

f (x) =
{

θxθ−1 for 0 < x < 1,
0 otherwise,

where θ > 0. Determine the p.d.f. of the sample median.

15. Suppose that a random sample of n observations is
drawn from a distribution for which the p.d.f. is as given
in Exercise 14. Determine the asymptotic distribution of
the sample median.

16. Suppose that a random sample of n observations is
drawn from a t distribution with α > 2 degrees of free-

dom. Show that the asymptotic distributions of both the
sample mean Xn and the sample median X̃n are normal,
and determine the positive integers α for which the vari-
ance of the asymptotic distribution is smaller for Xn than
for X̃n.

17. Suppose that X1, . . . , Xn form a large random sam-
ple from a distribution for which the p.d.f. is h(x|θ) =
αf (x|θ) + (1 − α)g(x|θ). Here f (x|θ) is the p.d.f. of the
normal distribution with unknown mean θ and variance
1, g(x|θ) is the p.d.f. of the normal distribution with the
same unknown mean θ and variance σ 2, and 0 ≤ α ≤ 1.
Let Xn and X̃n denote the sample mean and the sample
median, respectively.

a. For σ 2 = 100, determine the values of α for which the
M.S.E. of X̃n will be smaller than the M.S.E. of Xn.

b. For α = 1/2, determine the values of σ 2 for which the
M.S.E. of X̃n will be smaller than the M.S.E. of Xn.

18. Suppose that X1, . . . , Xn form a random sample from
a distribution with p.d.f. f (x), and let Y1 < Y2 < . . . < Yn

denote the order statistics of the sample. Prove that the
joint p.d.f. of Y1, . . . , Yn is as follows:

g(y1, . . . , yn) =
⎧⎨⎩ n!f (y1) . . . f (yn) for y1 < y2 <

. . . < yn

0 otherwise.

19. Let Y1 < Y2 < Y3 denote the order statistics of a ran-
dom sample of three observations from the uniform dis-
tribution on the interval [0, 1]. Determine the conditional
distribution of Y2 given that Y1 = y1 and Y3 = y3 (0 < y1 <

y3 < 1).

20. Suppose that a random sample of 20 observations is
drawn from an unknown continuous distribution, and let
Y1 < . . . < Y20 denote the order statistics of the sample.
Also, let θ denote the 0.3 quantile of the distribution, and
suppose that it is desired to present a confidence interval
for θ that has the form (Yr, Yr+3). Determine the value
of r(r = 1, 2, . . . , 17) for which this interval will have the
largest confidence coefficient γ , and determine the value
of γ .

21. Suppose that X1, . . . , Xm form a random sample from
a continuous distribution for which the p.d.f. f (x) is un-
known; Y1, . . . , Yn form an independent random sample
from another continuous distribution for which the p.d.f.
g(x) also is unknown; and f (x) = g(x − θ) for −∞ < x <

∞, where the value of the parameter θ is unknown (−∞ <

θ < ∞). Suppose that it is desired to carry out a Wilcoxon-
Mann-Whitney ranks test of the following hypotheses at
a specified level of significance α (0 < α < 1):

H0: θ = θ0,

H1: θ 	= θ0.

Assume that no two of the observations are equal, and



688 Chapter 10 Categorical Data and Nonparametric Methods

let Uθ0
denote the number of pairs (Xi, Yj) such that Xi −

Yj > θ0, where i = 1, . . . , m and j = 1, . . . , n. Show that
for large values of m and n, the hypothesis H0 should not
be rejected if and only if

mn

2
− �−1

(
1 − α

2

) [
mn(m + n + 1)

12

]1/2

< Uθ0
<

mn

2
+ �−1

(
1 − α

2

) [
mn(m + n + 1)

12

]1/2

,

where �−1 is the quantile function of the standard normal
distribution. Hint: See Exercise 11 of Sec. 10.8.

22. Consider again the conditions of Exercise 21. Show
that a confidence interval for θ with confidence coefficient
1 − α can be obtained by the following procedure: Let k

be the largest integer less than or equal to

mn

2
− �−1

(
1 − α

2

) [
mn(m + n + 1)

12

]1/2

.

Also, let A be the kth smallest of the mn differences Xi −
Yj , where i = 1, . . . , m and j = 1, . . . , n, and let B be
the kth largest of these mn differences. Then the interval
A < θ < B is a confidence interval of the required type.

23. The sign test can be extended to a test of hypotheses
about an arbitrary quantile of a distribution rather than
just the median. Let θp be the p quantile of a distribution,
and suppose that X1, . . . , Xn form an i.i.d. sample from
this distribution.

a. Let b be an arbitrary number. Explain how to con-
struct a version of the sign test for the hypotheses

H0: θp = b,

H1: θp 	= b,

at level of significance α0. (Construct an equal-tailed
test if you wish.)

b. Show how to use this version of the sign test to form
a coefficient 1 − α0 confidence interval for θp.
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11.1 The Method of Least Squares
When each observation from an experiment is a pair of numbers, it is often
important to try to predict one of the numbers from the other. Least squares is
a method for constructing a predictor of one of the variables from the other by
making use of a sample of observed pairs.

Fitting a Straight Line

Example
11.1.1

Blood Pressure. Suppose that each of 10 patients is treated with the same amount of
two different drugs that can affect blood pressure. To be specific, each patient is first
treated with a standard drug A, and their change in blood pressure is measured. After
the effect of the drug wears off, the patient is treated with an equal amount of a new
drug B, and their change in blood pressure is measured again. These changes in blood
pressure will be called the reaction of the patient to each drug. For i = 1, . . . , 10, we
shall let xi denote the reaction, measured in appropriate units, of the ith patient to
drug A, and we shall let yi denote her reaction to drug B. The observed values of
the reactions are as given in Table 11.1. The 10 points (xi, yi) for i = 1, . . . , 10 are
plotted in Fig. 11.1. One purpose of the study is to try to predict a patient’s reaction
to drug B if their reaction to the standard drug A is already known. �

In Example 11.1.1, suppose that we are interested in describing the relationship
between the reaction y of a patient to drug B and her reaction x to drug A. In order
to obtain a simple expression for this relationship, we might wish to fit a straight line
to the 10 points plotted in Fig. 11.1. Although these 10 points obviously do not lie
exactly on a straight line, we might believe that the deviations from such a line are
caused by the fact that the observed change in the blood pressure of each patient is
affected not only by the two drugs but also by various other factors. In other words,
we might believe that if it were possible to control all of these other factors, the
observed points would actually lie on a straight line. We might believe further that
if we measured the reactions to the two drugs for a very large number of patients,
instead of for just 10 patients, we would then find that the observed points tend to

689
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Table 11.1 Reactions to two drugs

i xi yi

1 1.9 0.7

2 0.8 −1.0

3 1.1 −0.2

4 0.1 −1.2

5 −0.1 −0.1

6 4.4 3.4

7 4.6 0.0

8 1.6 0.8

9 5.5 3.7

10 3.4 2.0

Figure 11.1 A plot of the
observed values in Table 11.1.
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cluster along a straight line. Perhaps we might also wish to be able to predict the
reaction y of a future patient to the new drug B on the basis of her reaction x to
the standard drug A. One procedure for making such a prediction would be to fit a
straight line to the points in Fig. 11.1, and to use this line for predicting the value of
y corresponding to each value of x.

It can be seen from Fig. 11.1 that if we did not have to consider the point (4.6, 0.0),
which is obtained from the patient for whom i = 7 in Table 11.1, then the other nine
points lie roughly along a straight line. One arbitrary line that fits reasonably well to
these nine points is sketched in Fig. 11.2. However, if we wish to fit a straight line
to all 10 points, it is not clear just how much the line in Fig. 11.2 should be adjusted
in order to accommodate the anomalous point. We shall now describe a method for
fitting such a line.
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Figure 11.2 A straight line
fitted to nine of the points in
Table 11.1.
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Figure 11.3 Vertical devi-
ations of the plotted points
from a straight line.
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The Least-Squares Line

Example
11.1.2

Blood Pressure. In Example 11.1.1, suppose that we are interested in fitting a straight
line to the points plotted in Fig. 11.1 in order to obtain a simple mathematical
relationship for expressing the reaction y of a patient to the new drug B as a function
of her reaction x to the standard drug A. In other words, our main objective is to
be able to predict closely a patient’s reaction y to drug B from her reaction x to
drug A. We are interested, therefore, in constructing a straight line such that, for
each observed reaction xi, the corresponding value of y on the straight line will be
as close as possible to the actual observed reaction yi. The vertical deviations of the
10 plotted points from the line drawn in Fig. 11.2 are sketched in Fig. 11.3. �

One method of constructing a straight line to fit the observed values is called the
method of least squares, which chooses the line to minimize the sum of the squares of
the vertical deviations of all the points from the line. We shall now study the method
of least squares in more detail.
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Theorem
11.1.1

Least Squares. Let (x1, y1), . . . , (xn, yn) be a set of n points. The straight line that
minimzes the sum of the squares of the vertical deviations of all the points from the
line has the following slope and intercept:

β̂1 =
∑n

i=1(yi − y)(xi − x)∑n
i=1(xi − x)2

,

β̂0 = y − β̂1x,

(11.1.1)

where x = 1
n

∑n
i=1 xi and y = 1

n

∑n
i=1 yi.

Proof Consider an arbitrary straight line y = β0 + β1x, in which the values of the
constants β0 and β1 are to be determined. When x = xi, the height of this line is
β0 + β1xi. Therefore, the vertical distance between the point (xi, yi) and the line is
|yi − (β0 + β1xi)|. Suppose that the line is to be fitted to n points. The sum of the
squares of the vertical distances at the n points is

Q =
n∑

i=1

[yi − (β0 + β1xi)]
2. (11.1.2)

We shall minimize Q with respect to β0 and β1 by taking the partial derivatives and
setting them to 0. We have

∂Q

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi) (11.1.3)

and

∂Q

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi)x i. (11.1.4)

By setting each of these two partial derivatives equal to 0, we obtain the following
pair of equations:

β0n + β1

n∑
i=1

xi =
n∑

i=1

yi,

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i
=

n∑
i=1

xiyi.

(11.1.5)

The equations (11.1.5) are called the normal equations for β0 and β1. By consid-
ering the second-order derivatives of Q, we can show that the values of β0 and β1
that satisfy the normal equations will be the values for which the sum of squares Q

in Eq. (11.1.2) is minimized. Solving (11.1.5) yields the values in (11.1.1).

Definition
11.1.1

Least-Squares Line. Let β̂0 and β̂1 be as defined in (11.1.1). The line defined by the
equation y = β̂0 + β̂1x is called the least-squares line.

For the values given in Table 11.1, n = 10, and it is found from Eq. (11.1.1)
that β̂0 = −0.786 and β̂1 = 0.685. Hence, the equation of the least-squares line is
y = −0.786 + 0.685x. This line is sketched in Fig. 11.4.

Virtually all statistical computer software will compute the least-squares regres-
sion line. Even some handheld calculators will do the calculation.
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Figure 11.4 The least-
squares straight line.
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Fitting a Polynomial by the Method of Least Squares

Suppose now that instead of simply fitting a straight line to n plotted points, we wish
to fit a polynomial of degree k (k ≥ 2). Such a polynomial will have the following
form:

y = β0 + β1x + β2x
2 + . . . + βkx

k. (11.1.6)

The method of least squares specifies that the constants β0, . . . , βk should be chosen
so that the sum Q of the squares of the vertical deviations of the points from the curve
is a minimum. In other words, these constants should be chosen so as to minimize
the following expression for Q:

Q =
n∑

i=1

[yi − (β0 + β1xi + . . . + βkx
k
i
)]2. (11.1.7)

If we calculate the k + 1 partial derivatives ∂Q/∂β0, . . . , ∂Q/∂βk, and we set
each of these derivatives equal to 0, we obtain the following k + 1 linear equations
involving the k + 1 unknown values β0, . . . , βk:

β0n + β1

n∑
i=1

xi + . . . + βk

n∑
i=1

xk
i

=
n∑

i=1

yi,

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i

+ . . . + βk

n∑
i=1

xk+1
i =

n∑
i=1

xiyi,

...

β0

n∑
i=1

xk
i

+ β1

n∑
i=1

xk+1
i + . . . + βk

n∑
i=1

x2k
i

=
n∑

i=1

xk
i
yi.

(11.1.8)

As before, these equations are called the normal equations. If the normal equa-
tions have a unique solution, that solution provides the minimum value for Q. A
necessary and sufficient condition for a unique solution is that the determinant of
the (k + 1) × (k + 1) matrix formed by the coefficients of β0, . . . , βk in Eq. (11.1.8)
is not zero. We shall now assume that this is the case. If we denote the solution as
(β̂0, . . . , β̂k), then the least-squares polynomial is y = β̂0 + β̂1x + . . . + β̂kx

k.
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Figure 11.5 The least-
squares parabola.
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Example
11.1.3

Fitting a Parabola. Suppose that we wish to fit a polynomial of the form y = β0 +
β1x + β2x

2 (which represents a parabola) to the 10 points given in Table 11.1. In this
example, it is found that the normal equations 11.1.8 are as follows:

10β0 + 23.3β1 + 90.37β2 = 8.1,

23.3β0 + 90.37β1 + 401.0β2 = 43.59, (11.1.9)

90.37β0 + 401.0β1 + 1892.7β2 = 204.55.

The unique values of β0, β1, and β2 that satisfy these three equations are β̂0 = −0.744,
β̂1 = 0.616, and β̂2 = 0.013. Hence, the least-squares parabola is

y = −0.744 + 0.616x + 0.013x2. (11.1.10)

This curve is sketched in Fig. 11.5 together with the least-squares straight line. Be-
cause the coefficient of x2 in Eq. (11.1.10) is so small, the least-squares parabola
and the least-squares straight line are very close together over the range of values
included in Fig. 11.5. �

Example
11.1.4

Gasoline Mileage. Heavenrich and Hellman (1999) report several variables measured
on 173 different cars. Among those variables are gasoline mileage (in miles per
gallon) and engine horsepower. A plot of miles per gallon versus horsepower is shown
in Fig. 11.6 together with a parabola fit by least squares. Even without the curve

Figure 11.6 Plot of miles
per gallon versus engine
horsepower for 173 cars in
Example 11.1.4. The least-
squares parabola is also
drawn in the plot.
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drawn in Fig. 11.6, it is clear that a straight line would not provide an adequate fit to
the relationship between these two variables. Some sort of curved relationship must
be fit. The least-squares parabola curves up for the largest values of horsepower,
which is somewhat counterintuitive. Indeed, this might be an example in which it
would pay to use some prior information to impose a constraint on the fitted curve.
Alternatively, we could replace gasoline mileage by a curved function of miles per
gallon and use this curved function as the y variable. �

Fitting a Linear Function of Several Variables

We shall now consider an extension of the example discussed at the beginning of this
section, in which we were interested in representing a patient’s reaction to a new drug
B as a linear function of her reaction to drug A. Suppose that we wish to represent
a patient’s reaction to drug B as a linear function involving not only her reaction to
drug A but also some other relevant variables. For example, we may wish to represent
the patient’s reaction y to drug B as a linear function involving her reaction x1 to drug
A, her heart rate x2, and blood pressure x3 before she receives any drugs, and other
relevant variables x4, . . . , xk.

Suppose that for each patient i (i = 1, . . . , n) we measure her reaction yi to drug
B, her reaction xi1 to drug A, and also her values xi2, . . . , xik for the other variables.
Suppose also that in order to fit these observed values for the n patients, we wish to
consider a linear function having the form

y = β0 + β1x1 + . . . + βkxk. (11.1.11)

In this case, also, the values of β0, . . . , βk can be determined by the method of least
squares. For each given set of observed values xi1, . . . , xik, we again consider the
difference between the observed reaction yi and the value β0 + β1xi1 + . . . + βkxik

of the linear function given in Eq. (11.1.11). As before, it is required to minimize the
sum Q of the squares of these differences. Here,

Q =
n∑

i=1

[yi − (β0 + β1xi1 + . . . + βkxik)]
2. (11.1.12)

We minimize this the same way that we minimized (11.1.7), namely, by setting the
partial derivatives of Q with respect to each βj equal to 0 for j = 0, . . . , k. In this
case, the k + 1 normal equations have the following form:

β0n + β1

n∑
i=1

xi1 + . . . + βk

n∑
i=1

xik =
n∑

i=1

yi,

β0

n∑
i=1

xi1 + β1

n∑
i=1

x2
i1 + . . . + βk

n∑
i=1

xi1xik =
n∑

i=1

xi1yi,

...

β0

n∑
i=1

xik + β1

n∑
i=1

xikxi1 + . . . + βk

n∑
i=1

x2
ik

=
n∑

i=1

xikyi.

(11.1.13)

If the normal equations have a unique solution, we shall denote that solution
(β̂0, . . . , β̂k), and the least-squares linear function will then be y = β̂0 + β̂1x1 + . . . +
β̂kxk. As before, a necessary and sufficient condition for a unique solution is that the
determinant of the (k + 1) × (k + 1) matrix formed by the coefficients of β0, . . . , βk

in Eq. (11.1.13) is not zero.
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Table 11.2 Reactions to two drugs and
heart rate

i xi1 xi2 yi

1 1.9 66 0.7

2 0.8 62 −1.0

3 1.1 64 −0.2

4 0.1 61 −1.2

5 −0.1 63 −0.1

6 4.4 70 3.4

7 4.6 68 0.0

8 1.6 62 0.8

9 5.5 68 3.7

10 3.4 66 2.0

Example
11.1.5

Fitting a Linear Function of Two Variables. Suppose that we expand Table 11.1 to
include the values given in the third column in Table 11.2. Here, for each patient
i (i = 1, . . . , 10), xi1 denotes her reaction to the standard drug A, xi2 denotes her
heart rate, and yi denotes her reaction to the new drug B. Suppose also that we wish
to fit a linear function to these values having the form y = β0 + β1x1 + β2x2.

In this example, it is found that the normal equations (11.1.13) are

10β0 + 23.3β1 + 650β2 = 8.1,

23.3β0 + 90.37β1 + 1563.6β2 = 43.59, (11.1.14)

650β0 + 1563.6β1 + 42, 334β2 = 563.1.

The unique values of β0, β1, and β2 that satisfy these three equations are β̂0 =
−11.4527, β̂1 = 0.4503, and β̂2 = 0.1725. Hence, the least-squares linear function is

y = −11.4527 + 0.4503x1 + 0.1725x2. (11.1.15)
�

It should be noted that the problem of fitting a polynomial of degree k involving
only one variable, as specified by Eq. (11.1.6), can be regarded as a special case of
the problem of fitting a linear function involving several variables, as specified by
Eq. (11.1.11). To make Eq. (11.1.11) applicable to the problem of fitting a polynomial
having the form given in Eq. (11.1.6), we define the k variables x1, . . . , xk simply as
x1 = x, x2 = x2, . . . , xk = xk.

A polynomial involving more than one variable can also be represented in the
form of Eq. (11.1.11). For example, suppose that the values of four variables r , s, t ,
and y are observed for several different patients, and we wish to fit to these observed
values a function having the following form:

y = β0 + β1r + β2r
2 + β3rs + β4s

2 + β5t
3 + β6rst. (11.1.16)

We can regard the function in Eq. (11.1.16) as a linear function having the form given
in Eq. (11.1.11) with k = 6 if we define the six variables x1, . . . , x6 as follows: x1 = r ,
x2 = r2, x3 = rs, x4 = s2, x5 = t3, and x6 = rst .
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Summary

The method of least squares allows the calculation of a predictor for one variable (y)
based on one or more other variables (x1, . . . , xk) of the form β0 + β1x1 + . . . + βkxk.
The coefficients β0, . . . , βk are chosen so that the sum of squared differences between
observed values of y and observed values of β0 + β1x1 + . . . + βkxk is as small as
possible. Algebraic formulas for the coefficients are given for the case k = 1, but
most statistical computer software will calculate the coefficients more easily.

Exercises

1. Prove that
∑n

i=1(c1xi + c2)
2 = c2

1
∑n

i=1(xi − x)2 +
n(c1x + c2)

2.

2. Show that the value of β̂1 in Eq. (11.1.1) can be rewrit-
ten in each of the following three forms:

a. β̂1 =
∑n

i=1 xiyi − nxy∑n
i=1 x2

i
− nx2

b. β̂1 =
∑n

i=1(x i − x)yi∑n
i=1(x i − x)2

c. β̂1 =
∑n

i=1 xi(yi − y)∑n
i=1(x i − x)2

3. Show that the least-squares line y = β̂0 + β̂1x passes
through the point (x, y).

4. For i = 1, . . . , n, let ŷi = β0 + β1xi. Show that β̂0 and
β̂1, as given by Eq. (11.1.1), are the unique values of β0
and β1 such that

n∑
i=1

(yi − ŷi) = 0 and
n∑

i=1

xi(yi − ŷi) = 0.

5. Fit a straight line to the observed values given in
Table 11.1 so that the sum of the squares of the horizontal
deviations of the points from the line is a minimum. Sketch
on the same graph both this line and the least-squares line
given in Fig. 11.4.

6. Suppose that both the least-squares line and the least-
squares parabola were fitted to the same set of points.
Explain why the sum of the squares of the deviations of
the points from the parabola cannot be larger than the
sum of the squares of the deviations of the points from
the straight line.

7. Suppose that eight specimens of a certain type of alloy
were produced at different temperatures, and the dura-
bility of each specimen was then observed. The observed
values are given in Table 11.3, where xi denotes the tem-
perature (in coded units) at which specimen i was pro-

duced and yi denotes the durability (in coded units) of
that specimen.

Table 11.3 Data for Exercise 7

i x i yi

1 0.5 40

2 1.0 41

3 1.5 43

4 2.0 42

5 2.5 44

6 3.0 42

7 3.5 43

8 4.0 42

a. Fit a straight line of the form y = β0 + β1x to these
values by the method of least squares.

b. Fit a parabola of the form y = β0 + β1x + β2x
2 to

these values by the method of least squares.

c. Sketch on the same graph the eight data points, the
line found in part (a), and the parabola found in
part (b).

8. Let (xi, yi) for i = 1, . . . , k + 1, denote k + 1 given
points in the xy-plane such that no two of these points have
the same x-coordinate. Show that there is a unique polyno-
mial having the form y = β0 + β1x + . . . + βkx

k that passes
through these k + 1 points.

9. The resilience y of a certain type of plastic is to be
represented as a linear function of both the temperature
x1 at which the plastic is baked and the number of min-
utes x2 for which it is baked. Suppose that 10 pieces of
plastic are prepared by using different values of x1 and
x2, and the observed values in appropriate units are as
given in Table 11.4. Fit a function having the form y =
β0 + β1x1 + β2x2 to these observed values by the method
of least squares.
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10. Consider again the observed values presented in Table
11.4. Fit a function having the form y = β1x1 + β2x2 + β3x

2
2

to these values by the method of least squares.

Table 11.4 Data for Exercise 9

i xi1 xi2 yi i xi1 xi2 yi

1 100 1 113 6 120 2 144

2 100 2 118 7 120 3 138

3 110 1 127 8 130 1 146

4 110 2 132 9 130 2 156

5 120 1 136 10 130 3 149

11. Consider again the observed values presented in Table
11.4, and consider also the two functions that were fitted
to these values in Exercises 9 and 10. Which of these two
functions fits the observed values better?

11.2 Regression
In Sec. 11.1, we introduced the method of least squares. This method computes
coefficients for a linear function to predict one variable y based on other variables
x1, . . . , xk. In this section, we assume that the y values are observed values of a
collection of random variables. In this case, there is a statistical model in which the
method of least squares turns out to produce the maximum likelihood estimates
of the parameters of the model.

Regression Functions

Example
11.2.1

Pressure and the Boiling Point of Water. Forbes (1857) reports the results from ex-
periments that were trying to obtain a method for estimating altitude. A formula
is available for altitude in terms of barometric pressure, but it was difficult to carry
a barometer to high altitudes in Forbes’ day. However, it might be easy for trav-
elers to carry a thermometer and measure the boiling point of water. Table 11.5
contains the measured barometric pressures and boiling points of water from 17 ex-
periments. We can use the method of least squares to fit a linear relationship between
boiling point and pressure. Let yi be the pressure for one of Forbes’ observations,
and let xi be the corresponding boiling point for i = 1, . . . , 17. Using the data in
Table 11.5, we can compute the least-squares line. The intercept and slope are, re-
spectively, β̂0 = −81.049 and β̂1 = 0.5228. Of course, we do not expect that the line
y = −81.049 + 0.5228x precisely gives the relationship between boiling point x and
pressure y. If we learn the boiling point x of water and want to compute the condi-
tional distribution of the unknown pressure Y , is there a statistical model that allows
us to say what the (conditional) distribution of pressure is given that the boiling point
is x? �

In this section, we shall describe a statistical model for problems such as the one
in Example 11.2.1. Fitting this statistical model will make use of the method of least
squares. We shall study problems in which we are interested in learning about the
conditional distribution of some random variable Y for given values of some other
variables X1, . . . , Xk. The variables X1, . . . , Xk may be random variables whose
values are to be observed in an experiment along with the values of Y , or they may be
control variables whose values are to be chosen by the experimenter. In general, some
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Table 11.5 Boiling point of water in degrees Fahrenheit
and atmospheric pressure in inches of mercury
from Forbes’ experiments. These data are
taken from Weisberg (1985, p. 3).

Boiling Point Pressure

194.5 20.79

194.3 20.79

197.9 22.40

198.4 22.67

199.4 23.15

199.9 23.35

200.9 23.89

201.1 23.99

201.4 24.02

201.3 24.01

203.6 25.14

204.6 26.57

209.5 28.49

208.6 27.76

210.7 29.04

211.9 29.88

212.2 30.06

of these variables might be random variables, and some might be control variables. In
any case, we can study the conditional distribution of Y given X1, . . . , Xk. We begin
with some terminology.

Definition
11.2.1

Response/Predictor/Regression. The variables X1, . . . , Xk are called predictors, and
the random variable Y is called the response. The conditional expectation of Y

for given values x1, . . . , xk of X1, . . . , Xk is called the regression function of Y on
X1, . . . , Xk, or simply the regression of Y on X1, . . . , Xk.

The regression of Y on X1, . . . , Xk is a function of the values x1, . . . , xk of X1, . . . , Xk.
In symbols, this function is E(Y |x1, . . . , xk).

In this chapter, we shall assume that the regression function E(Y |x1, . . . , xk) is
a linear function having the following form:

E(Y |x1, . . . , xk) = β0 + β1x1 + . . . + βkxk. (11.2.1)

The coefficients β0, . . . , βk in Eq. (11.2.1) are called regression coefficients. We shall
suppose that these regression coefficients are unknown. Therefore, they are to be
regarded as parameters whose values are to be estimated. We shall suppose also
that n vectors of observations are obtained. For i = 1, . . . , n, we shall assume that
the ith vector (xi1, . . . , xik, yi) consists of a set of controlled or observed values of
X1, . . . , Xk and the corresponding observed value of Y .
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One set of estimators of the regression coefficients β0, . . . , βk that can be cal-
culated from these observations is the set of values β̂0, . . . , β̂k that are obtained by
the method of least squares, as described in Sec. 11.1. These estimators are called the
least-squares estimators of β0, . . . , βk. We shall now specify some further assump-
tions about the conditional distribution of Y given X1, . . . , Xk in order to be able to
determine in greater detail the properties of these least-squares estimators.

Simple Linear Regression

We shall consider first a problem in which we wish to study the regression of Y on just
a single variable X. We shall assume that for each value X = x, the random variable Y

can be represented in the form Y = β0 + β1x + ε, where ε is a random variable that has
the normal distribution with mean 0 and variance σ 2. It follows from this assumption
that the conditional distribution of Y given X = x is the normal distribution with
mean β0 + β1x and variance σ 2.

A problem of this type is called a problem of simple linear regression. Here the
term simple refers to the fact that we are considering the regression of Y on just a
single variable X, rather than on more than one variable; the term linear refers to
the fact that the regression function E(Y |x) = β0 + β1x is a linear function of the
parameters β0 and β1. For example, a problem in which E(Y |x) is a polynomial, like
the right side of Eq. (11.1.6), would also be a linear regression problem, but not
simple.

Throughout this section (and the next two sections), we shall consider the prob-
lem in which we shall observe n pairs (x1, Y1), . . . , (xn, Yn). We shall make the fol-
lowing five assumptions. Each of these assumptions has a natural generalization to
the case in which there is more than one predictor, but we shall postpone discussion
of that case until Sec. 11.5.

Assumption
11.2.1

Predictor is known. Either the values x1, . . . , xn are known ahead of time or they are
the observed values of random variables X1, . . . , Xn on whose values we condition
before computing the joint distribution of (Y1, . . . , Yn).

Assumption
11.2.2

Normality. For i = 1, . . . , n, the conditional distribution of Yi given the values
x1, . . . , xn is a normal distribution.

Assumption
11.2.3

Linear Mean. There are parameters β0 and β1 such that the conditional mean of Yi

given the values x1, . . . , xn has the form β0 + β1xi for i = 1, . . . , n.

Assumption
11.2.4

Common Variance. There is a parameter σ 2 such that the conditional variance of Yi

given the values x1, . . . , xn is σ 2 for i = 1, . . . , n. This assumption is often called ho-
moscedasticity. Random variables with different variances are called heteroscedastic.

Assumption
11.2.5

Independence. The random variables Y1, . . . , Yn are independent given the observed
x1, . . . , xn.

A brief word is in order about Assumption 11.2.1. In Example 11.1.1, we saw that
the reaction xi of patient i to standard drug A is observed as part of the experiment
along with the reaction yi to drug B. Hence, the predictors are not known in advance.
In this case, all probability statements that we make in this example are conditional on
(x1, . . . , xn). In other examples, one might be trying to predict an economic variable
using the year in which it was measured. In such cases, such as Example 11.5.1, which
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we will see later, the values of at least some of the predictors are truely known in
advance.

Assumptions 11.2.1–11.2.5 specify the conditional joint distribution of Y1, . . . , Yn

given the vector x = (x1, . . . , xn) and the parameters β0, β1, and σ 2. In particular, the
conditional joint p.d.f. of Y1, . . . , Yn is

fn( y|x, β0, β1, σ 2) = 1
(2πσ 2)n/2

exp

[
− 1

2σ 2

n∑
i=1

(yi − β0 − β1xi)
2

]
. (11.2.2)

We can now find the M.L.E.’s of β0, β1, and σ 2.

Theorem
11.2.1

Simple Linear Regression M.L.E.’s. Assume Assumptions 11.2.1–11.2.5. The M.L.E.’s
of β0 and β1 are the least-squares estimates, and the M.L.E. of σ 2 is

σ̂ 2 = 1
n

n∑
i=1

(yi − β̂0 − β̂1xi)
2. (11.2.3)

Proof For each observed vector y = (y1, . . . , yn), the p.d.f. (11.2.2) will be the like-
lihood function of the parameters β0, β1, and σ 2. In Eq. (11.2.2), β0 and β1 appear
only in the sum of squares

Q =
n∑

i=1

(yi − β0 − β1xi)
2,

which in turn appears in the exponent multiplied by −1/[2σ 2]. Regardless of the
value of σ 2, the exponent is maximized over β0 and β1 by minimizing Q. It follows
that the M.L.E.’s can be found in sequence by first minimizing Q over β0 and β1, then
inserting the values β̂0 and β̂1 that provide the minimum of Q, and finally minimizing
the result over σ 2. The reader will note that Q is the same as the sum of squares in
Eq. (11.1.2), which is minimized by the method of least squares. Thus, the M.L.E.’s
of the regression coefficients β0 and β1 are precisely the same as the least-squares
estimates. The exact form of these estimates β̂0 and β̂1 was given in Eq. (11.1.1).

To find the M.L.E. of σ 2, perform the the second and third steps described in the
preceding paragraph, namely, first replace β0 and β1 in Eq. (11.2.2) by their M.L.E.’s
β̂0 and β̂1, and then maximize the resulting expression with respect to σ 2. The details
are left to Exercise 1 at the end of this section, and the result is (11.2.3).

The Distribution of the Least-Squares Estimators

We shall now present the joint distribution of the estimators β̂0 and β̂1 when they
are regarded as functions of the random variables Y1, . . . , Yn for given values of
x1, . . . , xn. Specifically, the estimators are

β̂1 =
∑n

i=1(Yi − y)(xi − x)∑n
i=1(xi − x)2

,

β̂0 = Y − β̂1x,

where Y = 1
n

∑n
i=1 Yi.

It is convenient, both for this section and the next, to introduce the symbol

sx =
(

n∑
i=1

(xi − x)2

)1/2

. (11.2.4)
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Theorem
11.2.2

Distributions of Least-Squares Estimators. Under Assumptions 11.2.1–11.2.5, the dis-
tribution of β̂1 is the normal distribution with mean β1 and variance σ 2/s2

x
. The

distribution of β̂0 is the normal distribution with mean β0 and variance

σ 2

(
1
n

+ x 2

s 2
x

)
. (11.2.5)

Finally, the covariance of β̂1 and β̂0 is

Cov(β̂0, β̂1) = −xσ 2

s2
x

. (11.2.6)

(All of the distributional statements in this theorem are conditional on Xi = xi for
i = 1, . . . , n if X1, . . . , Xn are random variables.)

Proof To determine the distribution of β̂1, it is convenient to write β̂1 as follows (see
Exercise 2 at the end of Sec. 11.1):

β̂1 =
∑n

i=1(xi − x)Yi

s2
x

. (11.2.7)

It can be seen from Eq. (11.2.7) that β̂1 is a linear function of Y1, . . . , Yn. Because the
random variables Y1, . . . , Yn are independent and each has a normal distribution, it
follows that β̂1 will also have a normal distribution. Furthermore, the mean of this
distribution will be

E(β̂1) =
∑n

i=1(xi − x)E(Yi)

s2
x

.

Because E(Yi) = β0 + β1xi for i = 1, . . . , n, it can now be found (see Exercise 2 at
the end of this section) that

E(β̂1) = β1. (11.2.8)

Furthermore, because the random variables Y1, . . . , Yn are independent and each
has variance σ 2, it follows from Eq. (11.2.7) that

Var(β̂1) =
∑n

i=1(xi − x)2 Var(Yi)

s4
x

= σ 2

s2
x

. (11.2.9)

Next, consider the distribution of β̂0 = Y − β̂1x. Because both Y and β̂1 are linear
functions of Y1, . . . , Yn, it follows that β̂0 is also a linear function of Y1, . . . , Yn. Hence,
β̂0 will have a normal distribution. The mean of β̂0 can be determined from the
relation E(β̂0) = E(Y ) − xE(β̂1). It can be shown (see Exercise 3) that E(β̂0) = β0.
Furthermore, it can be shown (see Exercise 4) that Var(β̂0) is given by (11.2.5). Finally,
it can be shown (see Exercise 5) that the value of the covariance between β̂0 and β̂1
is given by (11.2.6).

A simple corollary to Theorem 11.2.2 is that β̂0 and β̂1 are, respectively, unbiased
estimators of the corresponding parameters β0 and β1.

To complete the description of the joint distribution of β̂0 and β̂1, it will be shown
in Sec. 11.3 that this joint distribution is the bivariate normal distribution for which
the means, variances, and covariance are as stated in Theorem 11.2.2.
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Example
11.2.2

Pressure and the Boiling Point of Water. In Example 11.2.1, we found the least-squares
line for predicting pressure from boiling point of water. Suppose that we use the linear
regression model just described as a model for the data in this experiment. That is,
let Yi be the pressure for one of Forbes’ observations, and let xi be the corresponding
boiling point for i = 1, . . . , 17. We model the Yi as being independent with means
β0 + β1xi and variance σ 2. The average temperature is x = 202.95 and s2

x
= 530.78

with n = 17. From these values, we can now compute the variances and covariances of
the least-squares estimators using the formulas derived in this section. For example,

Var(β̂1) = σ 2

530.78
= 0.00188σ 2,

Var(β̂0) = σ 2

(
1

17
+ 202.952

530.78

)
= 77.66σ 2,

Cov(β̂0, β̂1) = −202.95σ 2

530.78
= 0.382σ 2.

It is easy to see that we expect to get a much more precise estimate of β1 than of β0.
�

The statement at the end of Example 11.2.2 about getting more precise estimates
of β1 than of β0 is a bit deceptive. We must multiply β1 by a number on the order of
200 before it is on the same scale as β0. Hence, it might make more sense to compare
the variance of 200β̂1 to the variance of β̂0. In general, we can find the variance of
any linear combination of the least-squares estimators.

Example
11.2.3

The Variance of a Linear Combination. Very often, we need to compute the variance
of a linear combination of the least-squares estimators. One example is prediction,
as discussed later in this section. Suppose that we wish to compute the variance of
T = c0β̂0 + c1β̂1 + c∗. The variance of T can be found by substituting the values of
Var(β̂0), Var(β̂1), and Cov(β̂0, β̂1) given in Eqs. (11.2.5), (11.2.9), and (11.2.6) in the
following relation:

Var(T ) = c2
0 Var(β̂0) + c2

1 Var(β̂1) + 2c0c1 Cov(β̂0, β̂1).

When these substitutions have been made, the result can be written in the following
form:

Var(T ) = σ 2

(
c2

0

n
+ (c0x − c1)

2

s2
x

)
. (11.2.10)

For the specific case of Example 11.2.2, we have c0 = 0 and c1 = 200, so the variance
of 200β̂1 is 2002σ 2/s2

x
= 75.36σ 2. This is pretty close to the variance of β̂0, namely,

77.66σ 2. �

Prediction

Example
11.2.4

Predicting Pressure from the Boiling Point of Water. In Example 11.2.1, Forbes was
trying to find a way to use the boiling point of water to estimate the barometric
pressure. Suppose that a traveler measures the boiling point of water to be 201.5
degrees. What estimate of barometric pressure should they give and how much
uncertainty is there about this estimate? �
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Suppose that n pairs of observations (x1, Y1), . . . , (xn, Yn) are to be obtained in a
problem of simple linear regression, and on the basis of these n pairs, it is necessary
to predict the value of an independent observation Y that will be obtained when a
certain specified value x is assigned to the control variable. Since the observation Y

will have the normal distribution with mean β0 + β1x and variance σ 2, it is natural to
use the value Ŷ = β̂0 + β̂1x as the predicted value of Y . We shall now determine the
M.S.E. E[(Ŷ − Y )2] of this prediction, where both Ŷ and Y are random variables.

Theorem
11.2.3

M.S.E. of Prediction. In the prediction problem just described,

E[(Ŷ − Y )2] = σ 2

[
1 + 1

n
+ (x − x)2

s2
x

]
. (11.2.11)

Proof In this problem, E(Ŷ ) = E(Y ) = β0 + β1x. Thus, if we let μ = β0 + β1x, then

E[(Ŷ − Y )2] = E{[(Ŷ − μ) − (Y − μ)]2}
= Var(Ŷ ) + Var(Y ) − 2 Cov(Ŷ , Y ).

(11.2.12)

However, the random variables Ŷ and Y are independent, because Ŷ is a function
of the first n pairs of observations and Y is an independent observation. Therefore,
Cov(Ŷ , Y ) = 0, and it follows that

E[(Ŷ − Y )2] = Var(Ŷ ) + Var(Y ). (11.2.13)

Finally, because Ŷ = β̂0 + β̂1x, the value of Var(Ŷ ) is given by Eq. (11.2.10)
with c0 = 1 and c1 = x. Also Var(Y ) = σ 2. Substituting these into Eq. (11.2.13) gives
(11.2.11).

Example
11.2.5

Predicting Pressure from the Boiling Point of Water. In Example 11.2.4, we wanted to
predict barometric pressure when the boiling point of water is 201.5 degrees. The
least-squares line is y = −81.049 + 0.5228x, and σ̂ 2 = 0.0478. Fig. 11.7 shows the data
plotted together with the least-squares regression line and the location of the point
on the line that has x = 201.5. The M.S.E. of the prediction of pressure Y is obtained
from Eq. (11.2.11):

E[(Ŷ − Y )2] = σ 2

[
1 + 1

17
+ (201.5 − 202.95)2

530.78

]
= 1.0628σ 2,

and the observed value of the prediction is Ŷ = −81.06 + 0.5229 × 201.5 = 24.30. The
calculation of Ŷ is illustrated in Fig. 11.7. The M.S.E. 1.0628σ 2 can be interpreted as
follows: If we knew the values of β0 and β1 and tried to predict Y , the M.S.E. would
be Var(Y ) = σ 2. Having to estimate β0 and β1 only costs us an additional 0.0628σ 2 in
M.S.E. �

Note: M.S.E. of Prediction Increases as x Moves Away from Observed Data. The
M.S.E. in Eq. (11.2.11) increases as x moves away from x, and it is smallest when
x = x. This indicates that it is harder to predict Y when x is not near the center of
the observed values x1, . . . , xn. Indeed, if x is larger than the largest observed xi or
smaller than the smallest one, it is quite difficult to predict Y with much precision.
Such predictions outside the range of the observed data are called extrapolations.
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Figure 11.7 Plot of pres-
sure versus boiling point
with regression line for Ex-
ample 11.2.5. Dotted line
illustrates prediction of pres-
sure when boiling point is
201.5.
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Design of the Experiment

Consider a problem of simple linear regression in which the variable X is a control
variable whose values x1, . . . , xn can be chosen by the experimenter. We shall discuss
methods for choosing these values so as to obtain good estimators of the regression
coefficients β0 and β1.

Suppose first that the values x1, . . . , xn are to be chosen so as to minimize the
M.S.E. of the least-squares estimator β̂0. Since β̂0 is an unbiased estimator of β0, the
M.S.E. of β̂0 is equal to Var(β̂0), as given in Eq. (11.2.5). It follows from Eq. (11.2.5)
that Var(β̂0) ≥ σ 2/n for all values x1, . . . , xn, and there will be equality in this relation
if and only if x = 0. Hence, Var(β̂0) will attain its minimum value σ 2/n whenever
x = 0. Of course, this will be impossible in any application in which X is constrained
to be positive.

Suppose next that the values x1, . . . , xn are to be chosen so as to minimize the
M.S.E. of the estimator β̂1. Again, the M.S.E. of β̂1 will be equal to Var(β̂1), as given
in Eq. (11.2.9). It can be seen from Eq. (11.2.9) that Var(β̂1) will be minimized by
choosing the values x1, . . . , xn so that the value of s2

x
is maximized. If the values

x1, . . . , xn must be chosen from some bounded interval (a, b) of the real line, and if
n is an even integer, then the value of s2

x
will be maximized by choosing xi = a for

exactly n/2 values and choosing xi = b for the other n/2 values. If n is an odd integer,
all the values should again be chosen at the endpoints a and b, but one endpoint must
now receive one more observation than the other endpoint.

It follows from this discussion that if the experiment is to be designed so as to
minimize both the M.S.E. of β̂0 and the M.S.E. of β̂1, then the values x1, . . . , xn should
be chosen so that exactly, or approximately, n/2 values are equal to some number c

that is as large as is feasible in the given experiment, and the remaining values are
equal to −c. In this way, the value of x will be exactly, or approximately, equal to 0,
and the value of s2

x
will be as large as possible.

Finally, suppose that the linear combination θ = c0β0 + c1β1 + c∗ is to be esti-
mated, where c0 	= 0, and that the experiment is to be designed so as to minimize
the M.S.E. of θ̂ , that is, to minimize Var(θ̂). For example, if Y is a future observation
with corresponding predictor x, then we could set c0 = 1, c2 = x, and c∗ = 0 in order
to make θ = E(Y |x). In Example 11.2.3, we computed Var(T ), where T = θ̂ , as the
sum of two nonnegative terms in Eq. (11.2.10). The second term is the only one that
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depends on the values of x1, . . . , xn, and it equals 0 (its smallest possible value) if
and only if x = c1/c0. In this case, Var(θ̂) will attain its minimum value c2

0σ
2/n.

In practice, an experienced statistician would not usually choose all the values
x1, . . . , xn at a single point or at just the two endpoints of the interval (a, b), as the
optimal designs that we have just derived would dictate. The reason is that when all
n observations are taken at just one or two values of X, the experiment provides
no possibility of checking the assumption that the regression of Y on X is a linear
function. In order to check this assumption without unduly increasing the M.S.E.
of the least-squares estimators, many of the values x1, . . . , xn should be chosen at
the endpoints a and b, but at least some of the values should be chosen at a few
interior points of the interval. Linearity can then be checked by visual inspection of
the plotted points and the fitting of a polynomial of degree two or higher.

Summary

We considered the following statistical model. The values x1, . . . , xn are assumed
known. The random variables Y1, . . . , Yn are independent with Yi having the normal
distribution with mean β0 + β1xi and variance σ 2. Here, β0, β1, and σ 2 are unknown
parameters. These are the assumptions of the simple linear regression model. Under
this model, the joint distribution of the least-squares estimators β̂0 and β̂1 is a bivari-
ate normal distribution with β̂i having mean βi for i = 1, 2. The variances are given
in Eqs. (11.2.5) and (11.2.9). The covariance is given in Eq. (11.2.6). If we consider
predicting a future Y value with corresponding predictor x, we might use the predic-
tion Ŷ = β̂0 + β̂1x. In this case, Y − Ŷ has the normal distribution with mean 0 and
variance given by Eq. (11.2.11).

Exercises

1. Show that the M.L.E. of σ 2 is given by Eq. (11.2.3).

2. Show that E(β̂1) = β1.

3. Show that E(β̂0) = β0.

4. Show that Var(β̂0) is as given in Eq. (11.2.5).

5. Show that Cov(β̂0, β̂1) is as given in Eq. (11.2.6). Hint:
Use the result in Exercise 8 in Sec. 4.6.

6. Show that in a problem of simple linear regression, the
estimators β̂0 and β̂1 will be independent if x = 0.

7. Consider a problem of simple linear regression in which
a patient’s reaction Y to a new drug B is to be related to
his reaction X to a standard drug A. Suppose that the 10
pairs of observed values given in Table 11.1 are obtained.

a. Determine the values of the M.L.E.’s β̂0, β̂1, and σ̂ 2.

b. Determine the values of Var(β̂0) and Var(β̂1).

c. Determine the value of the correlation of β̂0 and β̂1.

8. Consider again the conditions of Exercise 7, and sup-
pose that it is desired to estimate the value of θ = 3β0 −
2β1 + 5. Determine an unbiased estimator of θ and find its
M.S.E.

9. Consider again the conditions of Exercise 7, and let θ =
3β0 + c1β1, where c1 is a constant. Determine an unbiased
estimator θ̂ of θ . For what value of c1 will the M.S.E. of θ̂

be smallest?

10. Consider again the conditions of Exercise 7. If a par-
ticular patient’s reaction to drug A has the value x = 2,
what is the predicted value of his reaction to drug B, and
what is the M.S.E. of this prediction?

11. Consider again the conditions of Exercise 7. For what
value x of a patient’s reaction to drug A can his reaction
to drug B be predicted with the smallest M.S.E.?
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12. Consider a problem of simple linear regression in
which the durability Y of a certain type of alloy is to be
related to the temperature X at which it was produced.
Suppose that the eight pairs of observed values given
in Table 11.3 are obtained. Determine the values of the
M.L.E.’s β̂0, β̂1, and σ̂ 2, and also the values of Var(β̂0) and
Var(β̂1).

13. For the conditions of Exercise 12, determine the value
of the correlation of β̂0 and β̂1.

14. Consider again the conditions of Exercise 12, and sup-
pose that it is desired to estimate the value of θ = 5 −
4β0 + β1. Find an unbiased estimator θ̂ of θ . Determine
the value of θ̂ and the M.S.E. of θ̂ .

15. Consider again the conditions of Exercise 12, and let
θ = c1β1 − β0, where c1 is a constant. Determine an unbi-
ased estimator θ̂ of θ . For what value of c1 will the M.S.E.
of θ̂ be smallest?

16. Consider again the conditions of Exercise 12. If a spec-
imen of the alloy is to be produced at the temperature
x = 3.25, what is the predicted value of the durability of
the specimen, and what is the M.S.E. of this prediction?

17. Consider again the conditions of Exercise 12. For what
value of the temperature x can the durability of a specimen
of the alloy be predicted with the smallest M.S.E.?

18. Moore and McCabe (1999, p. 174) report prices paid
for several species of seafood in 1970 and 1980. These
values are in Table 11.6. If we were interested in trying
to predict 1980 seafood prices from 1970 prices, a linear
regression model might be used.

a. Find the least-squares regression coefficients for pre-
dicting 1980 prices from 1970 prices.

b. If an additional species sold for 21.4 in 1970, what
would you predict for the 1980 selling price?

c. What is the M.S.E. for predicting the 1980 price of a
species that sold for 21.4 in 1970?

Table 11.6 Fish prices in 1970 and 1980 for
Exercise 18

1970 1980 1970 1980

13.1 27.3 26.7 80.1

15.3 42.4 47.5 150.7

25.8 38.7 6.6 20.3

1.8 4.5 94.7 189.7

4.9 23 61.1 131.3

55.4 166.3 135.6 404.2

39.3 109.7 47.6 149

19. In the 1880s, Francis Galton studied the inheritance
of physical characteristics. Galton found that the sons of
tall men tended to be taller than average, but shorter than
their fathers. Similarly, sons of short men tended to be
shorter than average, but taller than their fathers. Thus,
the average heights of the sons were closer to the mean
height of the population, regardless of whether the fathers
were taller or shorter than average. From these observa-
tions, one might conclude that the variability of height de-
creases over successive generations, both tall persons and
short persons tend to be eliminated, and the population
“regresses” toward some average height. This conclusion
is an example of the regression fallacy. In this problem you
will prove that the regression fallacy arises in the bivari-
ate normal distribution even when both coordinates have
the same variance. In particular, assume that the vector
(X1, X2) has the bivariate normal distribution with com-
mon mean μ, common variance σ 2, and positive correla-
tion ρ < 1. Prove that E(X2|x1) is closer to μ than x1 is to
μ for every value x1. (This occurs despite the fact that X1
and X2 have the same mean and the same variance.)

11.3 Statistical Inference in Simple Linear Regression
Many of the inference procedures introduced in Chapters 8 and 9 that were used for
samples from a normal distribution can be extended to the simple linear regression
model. The theorems that allowed us to conclude that various statistics had t

distributions will continue to apply in the regression case.

Joint Distribution of the Estimators

Example
11.3.1

Pressure and the Boiling Point of Water. Consider the traveler in Example 11.2.4, who is
interested in the barometric pressure when the boiling point of water is 201.5 degrees.
Suppose that this traveler would like to know whether the pressure is 24.5. For
example, the traveler might wish to test the null hypothesis H0 : β0 + 201.5β1 = 24.5.
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Alternatively, the traveler might desire an interval estimate of β0 + 201.5β1. Such
inferences are possible once we find the joint distribution of the estimators of all of
the parameters (β0, β1, and σ 2) of the regression model. �

It was stated after the proof of Theorem 11.2.2 that, in a problem of simple linear
regression, the joint distribution of the M.L.E.’s β̂0 and β̂1 is the bivariate normal
distribution for which the means, the variances, and the covariance are specified
in Theorem 11.2.2. In this section, we shall prove this fact. We shall also consider
the M.L.E. σ̂ 2, which was presented in Eq. (11.2.3), and we shall derive the joint
distribution of β̂0, β̂1, and σ̂ 2. In particular, we shall show that the estimator σ̂ 2 is
independent of β̂0 and β̂1.

We continue to make Assumptions 11.2.1–11.2.5. The derivation of the joint
distribution of β̂0, β̂1, and σ̂ 2, which we shall present, is based on the properties of
orthogonal matrices, as described in Sec. 8.3.

We shall continue to use the definition of sx in Eq. (11.2.4). Also, let a1 =
(a11, . . . , a1n) and a2 = (a21, . . . , a2n) be n-dimensional vectors, which are defined
as follows:

a1j = 1
n1/2

for j = 1, . . . , n, (11.3.1)

and

a2j = 1
sx

(xj − x) for j = 1, . . . , n. (11.3.2)

It is easily verified that
∑n

j=1 a2
1j = 1,

∑n
j=1 a2

2j
= 1, and

∑
j=1 a1ja2j = 0.

Because the vectors a1 and a2 have these properties, it is possible to construct
an n × n orthogonal matrix A such that the coordinates of a1 form the first row of A,
and coordinates of a2 form the second row of A. (To see how this is done, consult a
linear algebra text, such as Cullen, 1972, p. 162, for the Gram-Schmidt method.) We
shall assume that such a matrix A has been constructed:

A =

⎡⎢⎢⎢⎣
a11 . . . a1n

a21 . . . a2n
...

. . .
...

an1 . . . ann

⎤⎥⎥⎥⎦.

We shall now define a new random vector Z by the relation Z = AY , where

Y =
⎡⎢⎣ Y1

...
Yn

⎤⎥⎦ and Z =
⎡⎢⎣ Z1

...
Zn

⎤⎥⎦.

The joint distribution of Z1, . . . , Zn can be found from the following theorem, which
is an extension of Theorem 8.3.4.

Theorem
11.3.1

Suppose that the random variables Y1, . . . , Yn are independent, and each has a
normal distribution with the same variance σ 2. If A is an orthogonal n × n matrix
and Z = AY , then the random variables Z1, . . . , Zn also are independent, and each
has a normal distribution with variance σ 2.

Proof Let E(Yi) = μi for i = 1, . . . , n (it is not assumed in the theorem that Y1, . . . ,

Yn have the same mean), and let
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μ =
⎡⎣ μ1

...
μn

⎤⎦.

Also, let X = (1/σ)(Y − μ). Since it is assumed that the coordinates of the random
vector Y are independent, then the coordinates of the random vector X will also
be independent. Furthermore, each coordinate of X will have the standard normal
distribution. Therefore, it follows from Theorem 8.3.4 that the coordinates of the
n-dimensional random vector AX will also be independent, and each will have the
standard normal distribution.

But

AX = 1
σ

A(Y − μ) = 1
σ

Z − 1
σ

Aμ.

Hence,

Z = σAX + Aμ. (11.3.3)

Since the coordinates of the random vector AX are independent, and each has the
standard normal distribution, then the coordinates of the random vector σAX will
also be independent, and each will have the normal distribution with mean 0 and
variance σ 2. When the vector Aμ is added to the random vector σAX , the mean of
each coordinate will be shifted, but the coordinates will remain independent, and the
variance of each coordinate will be unchanged. It now follows from Eq. (11.3.3) that
the coordinates of the random vector Z will be independent, and each will have a
normal distribution with variance σ 2.

In a problem of simple linear regression, the observations Y1, . . . , Yn satisfy the
conditions of Theorem 11.3.1. Therefore, the coordinates of the random vector Z =
AY will be independent, and each will have a normal distribution with variance σ 2.
We can use these facts to find the joint distribution of (β̂0, β̂1, σ̂ 2).

Theorem
11.3.2

In the simple linear regression problem described above, the joint distribution of
(β̂0, β̂1) is the bivariate normal distribution for which the means, variances, and
covariance are as stated in Theorem 11.2.2. Also, if n ≥ 3, σ̂ 2 is independent of (β̂0, β̂1)

and nσ̂ 2/σ 2 has the χ2 distribution with n − 2 degrees of freedom.

Proof The first two coordinates Z1 and Z2 of the random vector Z can easily be
derived. The first coordinate is

Z1 =
n∑

j=1

a1jYj = 1
n1/2

n∑
j=1

Yj = n1/2Y . (11.3.4)

Since β̂0 = Y − xβ̂1, we may also write

Z1 = n1/2(β̂0 + xβ̂1). (11.3.5)

The second coordinate is

Z2 =
n∑

j=1

a2jYj = 1
sx

n∑
j=1

(xj − x)Yj . (11.3.6)

By Eq. (11.2.7), we may also write

Z2 = sxβ̂1. (11.3.7)
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Together, Eqs. (11.3.5) and (11.3.7) imply that

β̂0 = n−1/2Z1 − x

sx
Z2,

β̂1 = 1
sx

Z2.

(11.3.8)

Since Z1 and Z2 are independent normal random variables, they have a bivariate
normal joint distribution. Eqs. (11.3.8) express β̂0 and β̂1 as linear combinations of
Z1 and Z2. These linear combinations satisfy the conditions of Exercise 10 of Sec. 5.10,
which says in turn that β̂0 and β̂1 have a bivariate normal distribution. We already
calculated the means, variances, and covariance in Theorem 11.2.2.

Now let the random variable S2 be defined as follows:

S2 =
n∑

i=1

(Yi − β̂0 − β̂1xi)
2. (11.3.9)

(It is easy to see that the M.L.E. of σ 2, as given in Eq. (11.2.3), is σ̂ 2 = S2/n.) We shall
show that S2 and the random vector (β̂0, β̂1) are independent. Since β̂0 = Y − xβ̂1,
we may rewrite S2 as follows:

S2 =
n∑

i=1

[Yi − Y − β̂1(xi − x)]2

=
n∑

i=1

(Yi − Y )2 − 2β̂1

n∑
i=1

(xi − x)(Yi − Y ) + β̂2
1s2

x
.

It now follows from Eq. (11.1.1) that

S2 =
n∑

i=1

Y 2
i

− nY
2 − s2

x
β̂2

1 . (11.3.10)

Since Z = AY , where A is an orthogonal matrix, we know from Theorem 8.3.4
that

∑n
i=1 Y 2

i
= ∑n

i=1 Z2
i
. By using this fact, we can now obtain the following relation

from Eq. (11.3.4), (11.3.7), and (11.3.10):

S2 =
n∑

i=1

Z2
i
− Z2

1 − Z2
2 =

n∑
i=3

Z2
i
.

The random variables Z1, . . . , Zn are independent, and we have now shown that
S2 is equal to the sum of the squares of only Z3, . . . , Zn. It follows, therefore, that
S2 and the random vector (Z1, Z2) are independent. But β̂0 and β̂1 are functions of
Z1 and Z2 only, as seen in Eq. (11.3.8). Hence, S2 and the random vector (β̂0, β̂1) are
independent.

We shall now derive the distribution of S2. For i = 3, . . . , n, we have Zi =∑n
j=1 aijYj . Hence,
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E(Zi) =
n∑

j=1

aijE(Yj) =
n∑

j=1

aij(β0 + β1xj)

=
n∑

j=1

aij [β0 + β1x + β1(xj − x)] (11.3.11)

= (β0 + β1x)

n∑
j=1

aij + β1

n∑
j=1

aij(xj − x).

Since the matrix A is orthogonal, the sum of the products of the corresponding terms
in any two different rows must be 0. In particular, for i = 3, . . . , n,

n∑
j=1

aija1j = 0 and
n∑

j=1

aija2j = 0.

It now follows from the expressions for a1j and a2j given in Eqs. (11.3.1) and (11.3.2)
that for i = 3, . . . , n,

n∑
j=1

aij = 0 and
n∑

j=1

aij(xj − x) = 0.

When these values are substituted into Eq. (11.3.11), it is found that E(Zi) = 0 for
i = 3, . . . , n.

We now know that the n − 2 random variables Z3, . . . , Zn are independent,
and that each has the normal distribution with mean 0 and variance σ 2. Since S2 =∑n

i=3 Z2
i
, it follows that the random variable S2/σ 2 has the χ2 distribution with n − 2

degrees of freedom.
Finally, we know that σ̂ 2 = S2/n, and hence σ̂ 2 is independent of the estimators

β̂0 and β̂1, and the distribution of nσ̂ 2/σ 2 is the χ2 distribution with n − 2 degrees of
freedom.

Tests of Hypotheses about the Regression Coefficients

It will be convenient, for the remainder of the discussion of simple linear regression,
to let

σ ′ =
(

S2

n − 2

)1/2

. (11.3.12)

This random variable will appear in all of the test statistics and confidence intervals
that we derive. It is analogous to the random variable with the same name that
appears in Eqs. (8.4.3) and (8.4.5) and played a similar role in tests and confidence
intervals for the mean of a single normal distribution.

We proved earlier that the joint distribution of (β̂0, β̂1) is bivariate normal. This
implies that every linear combination c0β̂0 + c1β̂1 has a normal distribution. We shall
use this fact to simplify the discussion of inference about regression coefficients. We
shall begin by deriving tests of hypotheses concerning a general linear combination
c0β0 + c1β1 of the regression parameters. Then, specific cases will be introduced by
choosing special values for c0 and c1. For example, c0 = 1 and c1 = 0 makes the linear
combination β0, while c0 = 0 and c1 = 1 leads to β1.
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Tests of Hypotheses about a Linear Combination of β0 and β1 Let c0, c1, and c∗
be specified numbers, where at least one of c0 and c1 is nonzero, and suppose that we
are interested in testing the following hypotheses:

H0 : c0β0 + c1β1 = c∗,
H1 : c0β0 + c1β1 	= c∗.

(11.3.13)

We shall derive a test of these hypotheses based on the random variables c0β̂0 + c1β̂1
and σ ′.

Theorem
11.3.3

For each 0 < α0 < 1, a level α0 test of the hypotheses (11.3.13) is to reject H0 if
|U01| ≥ T −1

n−2(1 − α0/2), where

U01 =
[

c2
0

n
+ (c0x − c1)

2

s2
x

]−1/2 (
c0β̂0 + c1β̂1 − c∗

σ ′

)
, (11.3.14)

and T −1
n−2 is the quantile function of the t distribution with n − 2 degrees of freedom.

Proof In general, the mean of c0β̂0 + c1β̂1 is c0β0 + c1β1, and its variance was found
in Eq. (11.2.10). Therefore, when H0 is true, the following random variable W01 has
the standard normal distribution:

W01 =
[

c2
0

n
+ (c0x − c1)

2

s2
x

]−1/2(
c0β̂0 + c1β̂1 − c∗

σ

)
.

Because the value of σ is unknown, a test of the hypotheses (11.3.13) cannot be based
simply on the random variable W01. However, the random variable S2/σ 2 has the χ2

distribution with n − 2 degrees of freedom for all possible values of the parameters
β0, β1, and σ 2. Moreover, because (β̂0, β̂1) is independent of S2, it follows that W01
and S2 are also independent. Hence, when the hypothesis H0 is true, the random
variable

W01[(
1

n − 2

) (
S2

σ 2

)]1/2
(11.3.15)

has the t distribution with n − 2 degrees of freedom. It is straightforward to show
that the expression in (11.3.15) also equals U01 in Eq. (11.3.14), which is a function of
the observable data alone. It follows that the test specified in the theorem is a level
α0 test of the hypotheses (11.3.13).

The test procedure in Theorem 11.3.3 is also the likelihood ratio test procedure
for the hypotheses (11.3.13), but the proof will not be given here.

Tests of One-Sided Hypotheses The same derivation just finished can also be used
to form tests of hypotheses such as

H0 : c0β0 + c1β1 ≤ c∗,
H1 : c0β0 + c1β1 > c∗,

(11.3.16)

or
H0 : c0β0 + c1β1 ≥ c∗,

H1 : c0β0 + c1β1 < c∗.
(11.3.17)
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The proof of the following result is similar to the proof of Theorem 11.3.3 and will
not be given here.

Theorem
11.3.4

A level α0 test of (11.3.16) is to reject H0 if U01 ≥ T −1
n−2(1 − α0). A level α0 test of

(11.3.17) is to reject H0 if U01 ≤ −T −1
n−2(1 − α0).

The only part of the proof of Theorem 11.3.4 that differs significantly from the
corresponding part of Theorem 11.3.3 is the proof that the tests actually have level
of significance α0. The proof of this is similar to the proof of Theorem 9.5.1 and is left
to the reader in Exercise 23.

We shall next present examples of how to test several common hypotheses
concerning β0 and β1 by making use of the fact that U01 in Eq. (11.3.14) has the t

distribution with n − 2 degrees of freedom. These examples will correspond to setting
c0, c1, and c∗ equal to specific values.

Tests of Hypotheses about β0β0β0 Let β∗
0 be a specified number (−∞ < β∗

0 < ∞),
and suppose that it is desired to test the following hypotheses about the regression
coefficient β0:

H0 : β0 = β∗
0 ,

H1 : β0 	= β∗
0 .

(11.3.18)

These hypotheses are the same as those in Eq. (11.3.13) if we make the substitutions
c0 = 1, c1 = 0, and c∗ = β∗

0 . If we substitute these values into the formula for U01 in
Eq. (11.3.14), we obtain the following random variable, U0,

U0 = β̂0 − β∗
0

σ ′
[

1
n

+ x 2

s 2
x

]1/2
, (11.3.19)

which then has the t distribution with n − 2 degrees of freedom if H0 is true.
Suppose that in a problem of simple linear regression, we are interested in testing

the null hypothesis that the regression line y = β0 + β1x passes through the origin
against the alternative hypothesis that the line does not pass through the origin. These
hypotheses can be stated in the following form:

H0 : β0 = 0,

H1 : β0 	= 0.
(11.3.20)

Here the hypothesized value β∗
0 is 0.

Let u0 denote the value of U0 calculated from a given set of observed values (xi,
yi) for i = 1, . . . , n. Then the tail area (p-value) corresponding to this value is the
two-sided tail area

Pr(U0 ≥ |u0|) + Pr(U0 ≤ −|u0|).
For example, suppose that n = 20 and the calculated value of U0 is 2.1. It is found
from a table of the t distribution with 18 degrees of freedom that the corresponding
tail area is 0.05. Hence, at each level of significance α0 < 0.05, the null hypothesis H0
would not be rejected. At every level of significance α0 ≥ 0.05, H0 would be rejected.

Tests of Hypotheses about β1β1β1 Let β∗
1 be a specified number (−∞ < β∗

1 < ∞),
and suppose that it is desired to test the following hypotheses about the regression



714 Chapter 11 Linear Statistical Models

coefficient β1:

H0 : β1 = β∗
1 ,

H1 : β1 	= β∗
1 .

(11.3.21)

These hypotheses are the same as those in Eq. (11.3.13) if we make the substitutions
c0 = 0, c1 = 1, and c∗ = β∗

1 . If we substitute these values into the formula for U01 in
Eq. (11.3.14), we obtain the following random variable, U1,

U1 = sx
β̂1 − β∗

1

σ ′ , (11.3.22)

which then has the t distribution with n − 2 degrees of freedom if H0 is true.
Suppose that in a problem of simple linear regression we are interested in testing

the hypothesis that the variable Y is actually unrelated to the variable X. Under
Assumptions 11.2.1–11.2.5, this hypothesis is equivalent to the hypothesis that the
regression function E(Y |x) is constant and not actually a function of x. Since it is
assumed that the regression function has the form E(Y |x) = β0 + β1x, this hypothesis
is in turn equivalent to the hypothesis that β1 = 0. Thus, the problem is one of testing
the following hypotheses:

H0 : β1 = 0,

H1 : β1 	= 0.

Here the hypothesized value β∗
1 is 0.

Let u1 denote the value of U1 calculated from a given set of observed values (xi,
yi) for i = 1, . . . , n. Then the p-value corresponding to these data is

Pr(U1 ≥ |u1|) + Pr(U1 ≤ −|u1|).

Example
11.3.2

Gasoline Mileage. Consider the two variables gasoline mileage and engine horse-
power in Example 11.1.4. This time, let Y be 1 over gasoline mileage, that is, gal-
lons per mile. Also, let X be engine horsepower. A plot of the observed (xi, yi)

pairs is given in Fig. 11.8 together with the fitted least-squares regression line. No-
tice how much straighter the relationship is between the two variables in Fig. 11.8
than between the two variables in Fig. 11.6. The least-squares estimates for a sim-
ple linear regression of gallons per mile on engine horsepower are β̂0 = 0.01537 and
β̂1 = 1.396 × 10−4. Also, σ ′ = 7.181 × 10−3, x = 183.97, and sx = 1036.9. Suppose that

Figure 11.8 Plot of gallons
per mile versus engine
horsepower for 173 cars in
Example 11.3.2. The least-
squares regression line is
drawn on the plot.
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we wanted to test the null hypothesis H0 : β1 ≥ 0 against the alternative H1 : β1 < 0.
The observed value of the statistic U1 in Eq. (11.3.22) is

u1 = 1036.9
1.396 × 10−4 − 0

7.139 × 10−3
= 20.15,

which is larger than the 1 − 10−16 quantile of the t distribution with 171 degrees of
freedom. So, we would reject H0 at every level α0 ≤ 10−16. �

Tests of Hypotheses about the Mean of a Future Observation Suppose that we
are interested in testing the hypothesis that the regression line y = β0 + β1x passes
through a particular point (x∗, y∗), where x∗ 	= 0. In other words, suppose that we
are interested in testing the following hypotheses:

H0 : β0 + β1x
∗ = y∗,

H1 : β0 + β1x
∗ 	= y∗.

These hypotheses have the same form as the hypotheses (11.3.13) with c0 = 1, c1 = x∗,
and c∗ = y∗. Hence, they can be tested by carrying out a t test with n − 2 degrees of
freedom that is based on the statistic U01.

Example
11.3.3

Pressure and the Boiling Point of Water. In Example 11.3.1, the traveler was interested
in testing the null hypothesis that H0 : β0 + 201.5β1 = 24.5 versus H1 : β0 + 201.5β1 	=
24.5. We shall make use of the statistic U01 in Eq. (11.3.14) with c0 = 1 and c1 =
201.5. Based on the data in Table 11.5, we have already computed the least-squares
estimates β̂0 = −81.049 and β̂1 = 0.5228. We can also compute n = 17, s2

x
= 530.78,

x = 202.95, and σ ′ = 0.2328. Then

U01 =
[

1
17

+ (202.95 − 201.5)2

530.78

]1/2 −81.049 + 201.5 × 0.5228 − 24.5
0.2328

= −0.2204.

If H0 is true, then U0,1 has the t distribution with n − 2 = 15 degrees of freedom. The
p-value corresponding to the observed value −0.2204 is 0.8285. The null hypothesis
would be rejected at level α0 only if α0 ≥ 0.8285. �

Confidence Intervals

A confidence interval for β0, β1, or any linear combination of the two can be obtained
from the corresponding test procedure.

Theorem
11.3.5

Let c0 and c1 be scalar constants that are not both 0. The open interval between the
two random variables

c0β̂0 + c1β̂1 ± σ ′
[

c2
0

n
+ (c0x − c1)

2

s2
x

]1/2

T −1
n−2

(
1 − α0

2

)
(11.3.23)

is a coeficient 1 − α0 confidence interval for c0β0 + c1β1.

Proof Consider the general hypotheses (11.3.13). Theorem 9.1.1 tells us that the set
of all values of c∗ for which the null hypothesis H0 would not be rejected at the level of
significance α0 forms a confidence interval for c0β0 + c1β1 with confidence coefficient
1 − α0. It is straightforward to check that c∗ is between the two random variables in
(11.3.23) if and only if |U01| < T −1

n−2(1 − α0/2), which specifies when the level α0 would
not reject H0 according to Theorem 11.3.3.
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Example
11.3.4

Gasoline Mileage. In Example 11.3.2, we rejected the null hypothesis that β1 ≤ 0, but
we might wish to form an interval estimate of β1. Apply Theorem 11.3.5 with c0 = 0
and c1 = 1. The endpoints of a coefficient 1 − α0 confidence interval are then

β̂1 ± σ ′

sx
T −1

n−2

(
1 − α0

2

)
.

For example, suppose that we desire a coefficient 0.8 confidence interval for β1. We
find T −1

171(0.9) = 1.287 using computer software (or we could have interpolated in the
table in the back of the text). The remaining values needed to compute the endpoints
are given in Example 11.3.2, and the observed interval is (1.307 × 10−4, 1.485 × 10−4).

�

Other special cases of Theorem 11.3.5 are when c0 = 1 and c1 = 0, which provides
a confidence interval for β0, and when c0 = 1 and c1 = x, which provides a confidence
interval for the mean of Y when X = x. The second of these can also be described as
the height θ = β0 + β1x of the regression line at a given point x. The corresponding
confidence interval has the endpoints

β̂0 + β̂1x ± T −1
n−2

(
1 − α0

2

)
σ ′

[
1
n

+ (x − x)2

s2
x

]1/2

. (11.3.24)

Prediction Intervals On page 703, we discussed predicting a new Y value (indepen-
dent of the observed data) when we knew the corresponding value of x. Suppose that
we want an interval that should contain Y with some specified probability 1 − α0. We
can construct such an interval by considering the joint distribution of Y , Ŷ = β̂0 + β̂1x,
and S2.

Theorem
11.3.6

In the simple linear regression problem, let Y be a new observation with predictor
x such that Y is independent of Y1, . . . , Yn. Let Ŷ = β̂0 + β̂1x. Then the probability
that Y is between the following two random variables is 1 − α0:

Ŷ ± T −1
n−2

(
1 − α0

2

)
σ ′
[

1 + 1
n

+ (x − x)2

s2
x

]1/2

. (11.3.25)

Proof Since Y is independent of the observed data, we have that Y , Ŷ , and S2 are all
independent. Hence, the following two random variables are independent:

Z = Y − Ŷ

σ

[
1 + 1

n
+ (x − x)2

s2
x

]1/2
, W = S2

σ 2
.

Since Y and Ŷ are independent and normally distributed, Z has a normal distribution.
Since E(Y ) = E(Ŷ ), the mean of Z is 0. It follows from Eq. (11.2.13) that the variance
of Z is 1. It follows from Theorem 11.3.2 that W has the χ2 distribution with n − 2
degrees of freedom. It follows that Z/(W/[n − 2])1/2 has the t distribution with n − 2
degrees of freedom. It is easy to see that Z/(W/[n − 2])1/2 is the same as

Ux = Y − Ŷ

σ ′
[

1 + 1
n

+ (x−x)2

s2
x

]1/2
. (11.3.26)
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It follows that Pr(|Ux| < T −1
n−2(1 − α0/2)) = 1 − α0. It is then straightforward to show

that Y is between the two random variables in (11.3.25) if and only if |Ux| < T −1
n−2(1 −

α0/2).

Definition
11.3.1

Prediction Interval. The random interval whose endpoints are given by (11.3.25) is
called a coefficient 1 − α0 prediction interval for Y .

Prior to observing the data, when σ ′, β̂0, β̂1, and Y are all still random variables,
the endpoints in (11.3.25) have the property that the probability is 1 − α0 that Y will
be between the endpoints, and hence in the interval. After the data are observed,
the interpretation of the interval whose endpoints are in (11.3.25) is similar to the
interpretation of a confidence interval, but with the added complication that Y is still
a random variable.

Example
11.3.5

Gasoline Mileage. Suppose that we wish to predict the gasoline mileage for a car with
a particular engine horsepower x in Example 11.3.2. In particular, let x = 100, and
we shall use α0 = 0.1 to form a prediction interval as above. Using the values com-
puted in Example 11.3.2 and Eq. (11.3.25), we obtain the interval (0.01737, 0.04127)

for predicting Y gallons per mile. Since Y is in this interval if and only if 1/Y is
between 1/0.01737 = 57.56 and 1/0.04127 = 24.23, we can claim that the following
interval is the observed value of a 90 percent prediction interval for miles per gallon:
(24.23, 57.56). �

The Analysis of Residuals

Whenever a statistical analysis is carried out, it is important to verify that the ob-
served data appear to satisfy the assumptions on which the analysis is based. For
example, in the statistical analysis of a problem of simple linear regression, we have
assumed that the regression of Y on X is a linear function and that the observations
Y1, . . . , Yn are independent. The M.L.E.’s of β0 and β1 and the tests of hypotheses
about β0 and β1 were developed on the basis of these assumptions, but the data were
not examined to find out whether or not these assumptions were reasonable.

One way to make a quick and informal check of these assumptions is to examine
the discrepancies between the observed values y1, . . . , yn and the fitted regression
line.

Definition
11.3.2

Residuals/Fitted Values. For i = 1, . . . , n, the observed values of ŷi = β̂0 + β̂1xi are
called the fitted values. For i = 1, . . . , n, the observed values of ei = yi − ŷi are called
the residuals.

Specifically, suppose that the n points (xi, ei), for i = 1, . . . , n are plotted in the
xe-plane. It must be true (see Exercise 4 at the end of Sec. 11.1) that

∑n
i=1 ei = 0

and
∑n

i=1 xiei = 0. However, subject to these restrictions, the positive and negative
residuals should be scattered randomly among the points (xi, ei). If the positive
residuals ei tend to be concentrated at either the extreme values of xi or the central
values of xi, then either the assumption that the regression of Y on X is a linear
function or the assumption that the observations Y1, . . . , Yn are independent may be
violated. In fact, if the plot of the points (xi, ei) exhibits any type of regular pattern,
the assumptions may be violated.

Example
11.3.6

Pressure and the Boiling Point of Water. The residuals from a least-squares fit to the
data in Example 11.2.2 can be computed using the coefficients reported in Exam-
ple 11.2.5: β̂0 = −81.06 and β̂1 = 0.5229. Table 11.7 contains the original data together
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Table 11.7 Data from Table 11.5 together with fitted values, residuals
from least-squares fit, and logarithm of pressure

xi yi ŷi = −81.06 + 0.5229xi ei = yi − ŷi log(yi)

194.5 20.79 20.64 0.1512 3.034

194.3 20.79 20.53 0.2557 3.034

197.9 22.40 22.42 −0.0167 3.109

198.4 22.67 22.68 −0.0081 3.121

199.4 23.15 23.20 −0.0510 3.142

199.9 23.35 23.46 −0.1125 3.151

200.9 23.89 23.99 −0.0954 3.173

201.1 23.99 24.09 −0.0999 3.178

201.4 24.02 24.25 −0.2268 3.179

201.3 24.01 24.19 −0.1845 3.178

203.6 25.14 25.40 −0.2572 3.224

204.6 26.57 25.92 0.6499 3.280

209.5 28.49 28.48 0.0078 3.350

208.6 27.76 28.01 −0.2516 3.324

210.7 29.04 29.11 −0.0697 3.369

211.9 29.88 29.74 0.1428 3.397

212.2 30.06 29.89 0.1660 3.403

with the fitted values ŷi = −81.06 + 0.5229xi and the residuals ei = yi − ŷi for all i.
A plot of the residuals versus boiling point is shown in Fig. 11.9. This plot has two
striking features. One is the exceptionally large positive residual corresponding to
xi = 204.6 at the top of the plot. Observations with such large residuals are sometimes
called outliers. Perhaps either the xi or yi value corresponding to this observation was
recorded incorrectly or this observation was taken under conditions different from
those of the other observations. Or perhaps that particular yi value just happened to
be very far from its mean. The other striking feature of the plot is that, aside from
the outlier, the other residuals seem to form a U-shaped pattern. This sort of pattern
suggests that the relationship between the two variables might be better described
by a curve rather than a straight line.

Techniques for dealing with the two features that we noticed in Fig. 11.9 can
be found in books devoted to regression methodology such as Belsley, Kuh, and
Welsch (1980), Cook and Weisberg (1982), Draper and Smith (1998), and Weisberg
(1985). One possible technique to deal with the curved look of the residual plot is to
transform one or both of the two variables Y and X before performing the regression.
Indeed, Forbes (1857) suspected that the logarithm of pressure would be linearly
related to boiling point. Table 11.7 also contains the logarithms of pressure. If we
perform a regression of the logarithm of pressure on the boiling point, we obtain
the least-squares estimates β̂0 = −0.9709 and β̂1 = 0.0206. The observed value of
σ ′ is 8.730 × 10−3. Residuals from this fit can be computed as log(yi) − (−0.9709 +
0.0206xi), and they are plotted in Fig. 11.10. The one large residual still appears in
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Figure 11.9 Plot of resid-
uals versus boiling point for
Example 11.3.6.
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Figure 11.10 Plot of resid-
uals from regression of log-
pressure versus boiling point
for Example 11.3.6.

R
es

id
ua

ls

195 200 205 210

0.03

0.02

0.01

0.0

0 Boiling point

Fig. 11.10, but the curved shape of the remaining residuals has vanished. To see what
effect that one observation has on the regression, we can fit the regression using only
the other 16 observations. In this case, the estimated coefficients are β̂0 = −0.9518
and β̂1 = 0.0205 with σ ′ = 2.616 × 10−3. The coefficients don’t change much, but the
estimated standard deviation drops to less than one-third of its previous value. �

Note: Both Models Cannot Be Correct in Example 11.3.6. It cannot be the case
that both the mean of pressure and the mean of the logarithm of pressure are linear
functions of boiling point. When the residual plot in Fig. 11.9 revealed a curved shape,
we began to suspect that the mean of pressure was not a linear function of boiling
point. In this case, the probabilistic calculations performed in Examples 11.2.2, 11.2.5,
and 11.3.3 become suspect as well.

Note: What to Do with Outliers. The data point with X = 204.6 in Example 11.3.6
makes it difficult to interpret the results of the regression analysis. Forbes (1857)
labels this point “Evidently a mistake.” Generally, when such data points appear
in our data sets, we should try to verify whether they were collected under the
same conditions as the remaining data. Sometimes the process by which the data
are collected changes during the experiment. If the removal of the outlier makes a
noticeable difference to the analysis, then that observation must be dealt with. If it
is not possible to show that the observation should be removed based on how it was
collected, it might be that the distribution of the Yi values is different from a normal
distribution. It might be that the distribution has higher probability of producing
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extremely large deviations from the mean. In this case, one might have to resort to
robust regression procedures similar to the robust procedures described in Sec. 10.7.
Interested readers should consult Hampel et al. (1986) or Rousseeuw and Leroy
(1987).

Normal Quantile Plots Another plot that is helpful in assessing the assumptions of
the regression model is the normal quantile plot, sometimes called a normal scores
plot or a normal Q-Q plot. Assume that the residuals are reasonable estimates of
εi = Yi − (β0 + β1xi). Each εi has the normal distribution with mean 0 and variance
σ 2 according to the linear regression model. The normal quantile plot compares
quantiles of a normal distribution with the ordered values of the residuals. We
expect about 25 percent of the residuals to be below the 0.25 quantile of the normal
distribution. We expect about 80 percent of the residuals to be below the 0.8 quantile
of the normal distribution, and so forth. We can see how closely these expectations
are met by plotting the ordered residuals against quantiles of the normal distribution.

Let r1 ≤ r2 ≤ . . . ≤ rn be the residuals ordered from smallest to largest. The points
that we plot are (�−1(i/[n + 1]), ri) for i = 1, . . . , n, where �−1 is the standard
normal quantile function. The numbers �−1(i/[n + 1]) for i = 1, . . . , n are n quantiles
of the standard normal distribution that divide the standard normal distribution
into intervals of equal probability, including the intervals below the first quantile
and above the last one. If the plotted points lie roughly along the line y = x, then
roughly 25 percent of the residuals lie below the 0.25 quantile of the standard normal
distribution, and roughly 80 percent of the residuals lie below the 0.8 quantile, and
so on. If the points lie on a different line y = ax + b, then we could multiply the first
coordinate of each point by a and add b to the first coordinate. This would make the
new points lie on the line y = x, and the first coordinate of each point is now a quantile
of the normal distribution with mean b and variance a2. So roughly 25 percent of
the residuals lie below the 0.25 quantile of the normal distribution with mean b and
variance a2, and so on. So, we examine the normal quantile plot to see how close the
points are to lying on a straight line. We don’t care which line it is, because we only
care whether the data look like they come from some normal distribution. We fit the
regression model to help decide which normal distribution.

Example
11.3.7

Pressure and the Boiling Point of Water. As an illustration of the normal quantile
plot, we deleted the troublesome observation (number 12) from the data set of
Example 11.3.6 and fit the model in which the logarithm of pressure is regressed
on the boiling point. The resulting normal quantile plot is shown in Fig. 11.11. The
points in Fig. 11.11 lie roughly on a line, although it is not difficult to detect some
curvature in the plot. It is usually the case that the extreme residuals (lowest and
highest) do not line up well with the others, so one normally pays closest attention
to the middle of the plot. Extreme observations that fall very far from the pattern
of the others suggest a more serious problem. Outliers will typically show up in this
way as well as in the other residual plots. �

If we know the order in which the observations were taken, there are some
additional plots that can help reveal whether there is some dependence between
the observations. We will introduce these plots when we discuss multiple regression
later in this chapter. Readers desiring a deeper understanding of graphics associated
with linear regression should read Cook and Weisberg (1994).
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Figure 11.11 Normal quan-
tile plot for regression of
log-pressure on boiling point
with observation number 12
removed.
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Inference about Both β0 and β1 Simultaneously

Tests of Hypotheses about Both β0β0β0 and β1β1β1 Suppose next that β∗
0 and β∗

1 are given
numbers and that we are interested in testing the following hypotheses about the
values of β0 and β1:

H0 : β0 = β∗
0 and β1 = β∗

1 ,

H1 : The hypothesis H0 is not true.
(11.3.27)

These hypotheses are not a special case of (11.3.13); hence, we shall not be able to test
these hypotheses using U01 from Eq. (11.3.14). Instead, we shall derive the likelihood
ratio test procedure for the hypotheses (11.3.27).

The likelihood function fn( y|x, β0, β1, σ 2) is given by Eq. (11.2.2). We know from
Sec. 11.2 that the likelihood function attains its maximum value when β0, β1, and σ 2

are equal to the M.L.E.’s β̂0, β̂1, and σ̂ 2, as given by Eq. (11.1.1) and Eq. (11.2.3).
When the null hypothesis H0 is true, the values of β0 and β1 must be β∗

0 and β∗
1 ,

respectively. For these values of β0 and β1, the maximum value of fn( y|x, β∗
0 , β∗

1 , σ 2)

over all the possible values of σ 2 will be attained when σ 2 has the following value σ̂ 2
0:

σ̂ 2
0 = 1

n

n∑
i=1

(yi − β∗
0 − β∗

1xi)
2.

Now consider the statistic

�( y|x) = supσ 2 fn( y|x, β∗
0 , β∗

1 , σ 2)

supβ0,β1,σ
2 fn( y|x, β0, β1, σ 2)

.

By using the results that have just been described, it can be shown that

�( y|x) =
(

σ̂ 2

σ̂ 2
0

)n/2

=
[∑n

i=1(yi − β̂0 − β̂1xi)
2∑n

i=1(yi − β∗
0 − β∗

1xi)
2

]n/2

. (11.3.28)
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The denominator of the final expression in Eq. (11.3.28) can be rewritten as follows:
n∑

i=1

(yi − β∗
0 − β∗

1xi)
2

=
n∑

i=1

[(yi − β̂0 − β̂1xi) + (β̂0 − β̂∗
0) + (β̂1 − β̂∗

1)xi]
2.

(11.3.29)

To simplify this expression further, let the statistic S2 be defined by Eq. (11.3.9), and
let the statistic Q2 be defined as follows:

Q2 = n(β̂0 − β∗
0)2 +

(
n∑

i=1

x2
i

)
(β̂1 − β∗

β1
)2

+ 2nx(β̂0 − β∗
0)(β̂1 − β∗

1).

(11.3.30)

We shall now expand the right side of Eq. (11.3.29) and use the following relations,
which were established in Exercise 4 of Sec. 11.1:

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 and
n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0.

We then obtain the relation
n∑

i=1

(yi − β∗
0 − β∗

1xi)
2 = S2 + Q2.

It now follows from Eq. (11.3.28) that

�( y|x) =
(

S2

S2 + Q2

)n/2

=
(

1 + Q2

S2

)−n/2

. (11.3.31)

The likelihood ratio test procedure specifies rejecting H0 when �( y|x) ≤ k. It can
be seen from Eq. (11.3.31) that this procedure is equivalent to rejecting H0 when
Q2/S2 ≥ k′, where k′ is a suitable constant. To put this procedure in a more standard
form, we shall let the statistic U2 be defined as follows:

U2 =
1
2Q2

σ ′2 . (11.3.32)

Then the likelihood ratio test procedure specifies rejecting H0 when U2 ≥ γ , where
γ is a suitable constant.

We shall now determine the distribution of the statistic U2 when the hypothesis
H0 is true. It can be shown (see Exercises 7 and 8) that when H0 is true, the random
variable Q2/σ 2 has the χ2 distribution with two degrees of freedom. Also, because
the random variable S2 and the random vector (β̂0, β̂1) are independent, and because
Q2 is a function of β̂0 and β̂1, it follows that the random variables Q2 and S2 are
independent. Finally, we know that S2/σ 2 has the χ2 distribution with n − 2 degrees of
freedom. Therefore, when H0 is true, the statistic U2 defined by Eq. (11.3.32) will have
the F distribution with 2 and n − 2 degrees of freedom. Since the null hypothesis H0 is
rejected if U2 ≥ γ , the value of γ corresponding to a specified level of significance α0
(0 < α0 < 1) will be the 1 − α0 quantile of this F distribution, namely, F−1

2, n−2(1 − α0).

Joint Confidence Set Next, consider the problem of constructing a confidence set
for the pair of unknown regression coefficients β0 and β1. Such a confidence set can
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be obtained from the statistic U2 defined by Eq. (11.3.32), which was used to test the
hypotheses (11.3.27). Specifically, let F−1

2, n−2(1 − α0) be the 1 − α0 quantile of the F

distribution with 2 and n − 2 degrees of freedom. Then the set of all pairs of values
of β∗

0 and β∗
1 such that U2 < F−1

2 ,n−2(1 − α0) will form a confidence set for the pair
(β0, β1) with confidence coefficient 1 − α0. It can be shown (see Exercise 16) that
this confidence set will contain all the points (β0, β1) inside a certain ellipse in the
β0β1-plane. In other words, this confidence set will actually be a confidence ellipse.

The confidence ellipse that has just been derived for β0 and β1 can be used to
construct a confidence set for the entire regression line y = β0 + β1x. Corresponding
to each point (β0, β1) inside the ellipse, we can draw a straight line y = β0 + β1x in
the xy-plane. The collection of all these straight lines corresponding to all points (β0,
β1) inside the ellipse will be a confidence set with confidence coefficient 1 − α0 for
the actual regression line. A rather lengthy and detailed analysis, which will not be
presented here [see Scheffé (1959, section 3.5)], shows that the upper and lower limits
of this confidence set are the curves defined by the following relations:

y = β̂0 + β̂1x ± [2F−1
2, n−2(1 − α0)]

1/2σ ′
[

1
n

+ (x − x)2

s2
x

]1/2

. (11.3.33)

In other words, with confidence coefficient 1 − α0, the actual regression line y =
β0 + β1x will lie between the curve obtained by using the plus sign in (11.3.33) and
the curve obtained by using the minus sign in (11.3.33). The region between these
curves is often called a confidence band or confidence belt for the regression line.

In similar fashion, the confidence ellipse can be used to construct simultaneous
confidence intervals for every linear combination of β0 and β1. The coefficient 1 − α0
interval for c0β0 + c1β1 has the endpoints

c0β̂0 + c1β̂1 ± σ ′
[

c2
0

n
+ (c0x − c1)

2

s2
x

]1/2 [
2F−1

2,n−2(1 − α0)
]1/2

. (11.3.34)

This differs from the individual confidence interval given in Eq. (11.3.23) solely in
the replacement of the 1 − α0/2 quantile of the tn−2 distribution by the square root of
2 times the 1 − α0 quantile of the F2,n−2 distribution. The simultaneous intervals are
wider than the individual intervals because they satisfy a more restrictive require-
ment. The probability (prior to observing the data) is 1 − α0 that all of the intervals
of the form (11.3.34) simultaneously contain their corresponding parameters. Each
interval of the form (11.3.23) contains its corresponding parameter with probability
1 − α0, but the probability that two or more of them simultaneously contain their
corresponding parameters is less than 1 − α0.

Alternative Tests and Confidence Sets The hypotheses (11.3.27) are a special case
of (9.1.26), and they can be tested by the same method outlined immediately after
(9.1.26). The resulting test leads to an alternative confidence set for the pair (β0, β1).
The alternative level α0 test of (11.3.27) merely combines the two level α0/2 tests of
(11.3.20) and (11.3.21). To be specific, the alternative level α0 test δ of (11.3.27) is to
reject H0 if either

|U0| ≥ T −1
n−2

(
1 − α0

4

)
or |U1| ≥ T −1

n−2

(
1 − α0

4

)
or both, (11.3.35)

where U0 and U1 are, respectively, the statistics in (11.3.19) and (11.3.22) that would
be used for testing (11.3.20) and (11.3.21).
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Figure 11.12 Elliptical and rectangular joint coefficient 0.95
confidence sets for (β0, β1) in Example 11.3.8.

The corresponding joint confidence set for (β0, β1) is the set of all (β∗
0 , β∗

1) pairs
such that both |U0| and |U1| are strictly less than T −1

n−2(1 − α0/4). This alternative
confidence set will be rectangular in shape rather than elliptical. This confidence
rectangle also provides simulaneous confidence intervals for all linear combinations
of the form c0β0 + c1β1. The formulas for the endpoints are not so pretty as (11.3.34).
Let C be the joint confidence rectangle. Then the confidence interval for c0β0 + c1β1
is the following: (

inf
(β∗

0 ,β∗
1 )∈C

c0β
∗
0 + c1β

∗
1 , sup

(β∗
0 ,β∗

1 )∈C

c0β
∗
0 + c1β

∗
1

)
. (11.3.36)

The sup and inf will each occur at one of the four corners of the rectangle, so one
need only compute four values of c0β

∗
0 + c1β

∗
1 to determine the interval. Some special

cases are worked out in Exercise 24.

Example
11.3.8

Pressure and the Boiling Point of Water. In Examples 11.2.1 and 11.2.2, we computed
the least-squares estimates and the variances and covariance of the estimates. Fig-
ure 11.12 shows both the elliptical and the rectangular coefficient 0.95 joint confi-
dence sets for the pair (β0, β1). If all that we wanted were confidence intervals for
the two parameters, we could extract those from both confidence sets. For the ellipti-
cal region, (11.3.34) gives the intervals (−1.0149, −0.8886) and (0.020207, 0.020830)

for β0 and β1, respectively. Notice that the endpoints of these intervals are, respec-
tively, the minimum and maximum values of β0 and β1 in the elliptical joint confidence
set in Fig. 11.12. Similarly, the joint confidence intervals from the rectangular joint
confidence set are, respectively, (−1.0097, −0.8938) and (0.020233, 0.020804), whose
endpoints are also the minimum and maximum values of β0 and β1 in the rectangular
joint confidence set in Fig. 11.12.

Finally, suppose that, in addition to confidence intervals for the two parameters
β0 and β1, we also want a confidence band for the regression function, namely, the
mean log-pressure at all temperatures x. This mean is of the form c0β0 + c1β1 with
c0 = 1 and c1 = x. The confidence bands are plotted in Fig. 11.13 based both on the
elliptical and rectangular joint confidence sets. For example, at x = 201.5, we get the
intervals (3.1809, 3.1846) and (3.0672, 3.2983) from the elliptical and rectangular sets,
respectively.
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Figure 11.13 Coefficient 0.95 confidence bands for the regres-
sion function in Example 11.3.8. Bands are computed based both
on the elliptical and on the rectangular joint confidence sets.

The joint confidence intervals for the two individual parameters are slightly
shorter when computed from the rectangular confidence set compared to the ellipti-
cal set. But the confidence band for the regression function (Fig. 11.13) is much wider
when computed from the rectangular set compared to the elliptical set. �

In Example 11.3.8, if one were interested solely in simultaneous confidence
intervals for the three parameters β0, β1, and β0 + 201.5β1, instead of the entire
regression function, one could obtain shorter intervals from a generalization of
the rectangular joint confidence set. The generalization is based on the Bonferroni
inequality from Theorem 1.5.8.

Theorem
11.3.7

Suppose that we are interested in forming simultaneous confidence intervals for
several parameters θ1, . . . , θn. For each i, let (Ai, Bi) be a coefficient 1 − αi confidence
interval for θi. Then the probability that all n confidence intervals simultaneously
cover their corresponding parameters is at least 1 − ∑n

i=1 αi.

Proof For each i = 1, . . . , n, define the event Ei = {Ai < θi < Bi}. Because (Ai, Bi)

is a coefficient 1 − αi confidence interval for θi, we have Pr(Ec
i ) ≤ αi for every i,

and the probability that all n intervals simultaneously cover their corresponding
parameters is Pr

(⋂n
i=1 Ei

)
. By the Bonferroni inequality, this last probability is at

least 1 − ∑n
i=1 αi.

Theorem 9.1.5 gives the corresponding result for a test of the joint hypotheses

H0 : θi = θ∗
i

for all i , H1 : not H0, (11.3.37)

If we want simultaneous coefficient 1 − α0 confidence intervals for three param-
eters, let αi = α0/3.

Example
11.3.9

Pressure and the Boiling Point of Water. Suppose that we are interested solely in si-
multaneous coefficient 0.95 confidence intervals for the three parameters β0, β1,
and β0 + 201.5β1 in Example 11.3.8. Then we can use coefficient 1 − 0.05/3 = 0.9833
confidence intervals for each parameter. The necessary quantile of the t distribu-
tion is T −1

14 (0.9917) = 2.7178. The three intervals for β0, β1, and β0 + 201.5β1 are
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(−1.0146, −0.8889), (0.020296, 0.020828), and (3.1809, 3.1845), respectively. Notice
that these are all shorter than the corresponding intervals based on the elliptical
joint confidence set. The first two of these intervals are longer than the correspond-
ing intervals from the rectangular joint confidence set in Example 11.3.8, but the
third interval is much shorter than the corresponding interval based on that same
rectangular set. �

Finally, there is a way to construct a narrower confidence band for the entire re-
gression function based on the Bonferroni inequality, but we leave the details to
Exercise 25.

So, which confidence intervals should one use? Also, which test of (11.3.27)
should one use? None of the tests that we have constructed are uniformly most pow-
erful. Some are more powerful at some alternatives, while others are more powerful
at other alternatives. The test corresponding to the rectangular joint confidence set is
more powerful than the elliptical test if either β0 or β1 is a little larger or smaller than
its hypothesized value while the other parameter is close to its hypothesized value.
The elliptical test is more powerful than the rectangular test if both β0 and β1 are
a little different from their hypothesized values, even if neither is far enough away
to cause the rectangular test to reject. Without any specification of which alterna-
tives are most important to detect, one might choose the elliptical test. On the other
hand, if one’s sole need is for a few confidence intervals and not a confidence band
for the entire regression function, the intevals based on the Bonferroni inequality
will generally be shorter. The different tests and confidence intervals differ solely by
which quantiles are used in their construction. The larger the quantile, the longer the
confidence interval. Table 11.8 gives the quantiles needed for the intervals based on
the elliptical joint confidence set (which do not depend on how many intervals one
constructs) and the quantiles needed for various numbers of intervals based on the
Bonferroni inequality. One can see that the Bonferroni intervals will generally be
shorter if one wants only three or fewer.

Summary

For constants c0 and c1 that are not both 0, we saw that[
c2

0

n
+ (c0x − c1)

2

s2
x

]−1/2
c0β̂0 + c1β̂1 − (c0β0 + c1β1)

σ ′ (11.3.38)

has the t distribution with n − 2 degrees of freedom under the assumptions of simple
linear regression. We can use the random variable in (11.3.38) to test hypotheses
about or to construct confidence intervals for β0, β1, and linear combinations of the
two. We also learned how to form a prediction interval for a future observation Y

when the corresponding value for X is known.
Tests about both β0 and β1 simultaneously are based on the statistic U2 in

Eq. (11.3.32), which has the F distribution with 2 and n − 2 degrees of freedom
when the null hypothesis H0 in Eq. (11.3.27) is true. A confidence band for the en-
tire regression line y = β0 + β1x (a collection of confidence intervals, one for each x,
such that all of the intervals simultaneously cover the true values of β0 + β1x with
probability 1 − α0) is given by Eq. (11.3.33). The intervals in the confidence band are
slightly wider than the individual confidence intervals with each separate x.
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Table 11.8 Comparison of the quantiles needed to compute k

simultaneous joint confidence intervals based on the
Bonferroni inequality and based on the elliptical joint
confidence set

T −1
n−2(1 − α0/[2k])

α0 n k = 1 k = 2 k = 3 k = 4 [2F−1
2,n−2(1 − α0)]

1/2

0.05 5 3.18 4.18 4.86 5.39 4.37

10 2.31 2.75 3.02 3.21 2.99

15 2.16 2.53 2.75 2.90 2.76

20 2.10 2.45 2.64 2.77 2.67

60 2.00 2.30 2.47 2.58 2.51

120 1.98 2.27 2.43 2.54 2.48

∞ 1.96 2.24 2.40 2.50 2.45

0.01 5 5.84 7.45 8.58 9.46 7.85

10 3.36 3.83 4.12 4.33 4.16

15 3.01 3.37 3.58 3.73 3.66

20 2.88 3.20 3.38 3.51 3.47

60 2.66 2.92 3.06 3.16 3.16

120 2.62 2.86 3.00 3.09 3.10

∞ 2.58 2.81 2.94 3.03 3.04

It is good practice to plot residuals from a regression against the predictor X.
Such plots can reveal evidence of departures from the assumptions that underly
the distribution theory developed in this section. In particular, one should look for
patterns and unusual points in the plot of residuals. Plots of residuals against X

help reveal departures from the assumed form of the mean of Y . Plots of sorted
residuals against normal quantiles help reveal departures from the assumption that
the distribution of each Yi is normal.

Exercises

1. Suppose that in a problem of simple linear regres-
sion, the 10 pairs of observed values of xi and yi given
in Table 11.9 are obtained. Test the following hypotheses
at the level of significance 0.05:

H0 : β0 = 0.7,

H1 : β0 	= 0.7.

2. For the data presented in Table 11.9, test at the level
of significance 0.05 the hypothesis that the regression line
passes through the origin in the xy-plane.

3. For the data presented in Table 11.9, test at the level
of significance 0.05 the hypothesis that the slope of the
regression line is 1.

Table 11.9 Data for Exercise 1

i xi yi i xi yi

1 0.3 0.4 6 1.0 0.8

2 1.4 0.9 7 2.0 0.7

3 1.0 0.4 8 −1.0 −0.4

4 −0.3 −0.3 9 −0.7 −0.2

5 −0.2 0.3 10 0.7 0.7
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4. For the data presented in Table 11.9, test at the level of
significance 0.05 the hypothesis that the regression line is
horizontal.

5. For the data presented in Table 11.9, test the following
hypotheses at the level of significance 0.10:

H0 : β1 = 5β0,

H1 : β1 	= 5β0.

6. For the data presented in Table 11.9, test the hypothesis
that when x = 1, the height of the regression line is y = 1
at the level of significance 0.01.

7. In a problem of simple linear regression, let D = β̂0 +
β̂1x. Show that the random variables β̂1 and D are un-
correlated, and explain why β̂1 and D must therefore be
independent.

8. Let the random variable D be defined as in Exer-
cise 7, and let the random variable Q2 be defined by
Eq. (11.3.30).

a. Show that

Q2

σ 2
= (β̂1 − β∗

1 )2

Var(β̂1)
+ (D − β∗

0 − β∗
1x)2

Var(D)
.

b. Explain why the random variable Q2/σ 2 will have
the χ2 distribution with two degrees of freedom
when the hypothesis H0 in (11.3.27) is true.

9. For the data presented in Table 11.9, test the following
hypotheses at the level of significance 0.05:

H0 : β0 = 0 and β1 = 1,

H1 : At least one of the values β0 = 0 and
β1 = 1 is incorrect.

10. For the data presented in Table 11.9, construct a con-
fidence interval for β0 with confidence coefficient 0.95.

11. For the data presented in Table 11.9, construct a con-
fidence interval for β1 with confidence coefficient 0.95.

12. For the data presented in Table 11.9, construct a confi-
dence interval for 5β0 − β1 + 4 with confidence coefficient
0.90.

13. For the data presented in Table 11.9, construct a con-
fidence interval with confidence coefficient 0.99 for the
height of the regression line at the point x = 1.

14. For the data presented in Table 11.9, construct a con-
fidence interval with confidence coefficient 0.99 for the
height of the regression line at the point x = 0.42.

15. Suppose that in a problem of simple linear regression,
a confidence interval with confidence coefficient 1 − α0
(0 < α0 < 1) is constructed for the height of the regression
line at a given value of x. Show that the length of this
confidence interval is shortest when x = x.

16. Let the statistic U2 be as defined by Eq. (11.3.32), and
let γ be fixed positive constant. Show that for all observed
values (xi, yi), for i = 1, . . . , n, the set of points (β∗

0 , β∗
1 )

such that U2 < γ is the interior of an ellipse in the β∗
0β∗

1 -
plane.

17. For the data presented in Table 11.9, construct a con-
fidence ellipse for β0 and β1 with confidence coefficient
0.95.

18.

a. For the data presented in Table 11.9, sketch a con-
fidence band in the xy-plane for the regression line
with confidence coefficient 0.95.

b. On the same graph, sketch the curves which specify
the limits at each point x of a confidence interval
with confidence coefficient 0.95 for the value of the
regression line at the point x.

19. Determine a value of c such that in a problem of sim-
ple linear regression, the statistic c

∑n
i=1(Yi − β̂0 − β̂2xi)

2

will be an unbiased estimator of σ 2.

20. Suppose that a simple linear regression of miles per
gallon (Y ) on car weight (X) has been performed with n =
32 observations. Suppose that the least-squares estimates
are β̂0 = 68.17 and β̂1 = −1.112, with σ ′ = 4.281. Other
useful statistics are x = 30.91, and

∑n
i=1(xi − x)2 = 2054.8.

a. Suppose that we want to predict miles per gallon
Y for a new observation with weight X = 24. What
would be our prediction?

b. For the prediction in part (a), find a 95 percent pre-
diction interval for the unobserved Y value.

21. Use the data in Table 11.6 on page 707. You should
perform the least-squares regression requested in Exer-
cise 18 in Sec. 11.2 before starting this exercise.

a. Plot the residuals from the least-squares regression
against the 1970 price. Do you see a pattern?

b. Transform both prices to their natural logarithms
and repeat the least-squares regression. Now plot
the residuals against logarithm of 1970 price. Does
this plot look any better than the one in part (a)?

22. Perform a least-squares regression of the logarithm of
the 1980 fish price on the 1970 fish price, using the raw data
in Table 11.6 on page 707.

a. Test the null hypothesis that the slope β1 is less than
2.0 at level α0 = 0.01.

b. Find a 90 percent confidence interval for the slope β1.

c. Find a 90 percent prediction interval for the 1980
price of a species that cost 21.4 in 1970. (Note that
21.4 is the 1970 price, not the logarithm of the 1970
price.)
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23. Prove that the first test in Theorem 11.3.4 does indeed
have level α0. Hint: Use an argument similar to that used
to prove part (ii) of Theorem 9.5.1.

24. Find explicit formulas (no sup or inf) for the endpoints
of the interval in Eq. (11.3.36) for the following special
cases:

a. c0 = 1 and c1 = x > 0.

b. c0 = 1 and c1 = x < 0.

Hint: In both cases the endpoints are of the form
β̂0 + β̂1x plus or minus linear functions of x that depend on
the lengths of the sides of the rectangular joint confidence
set.

25. In this problem, we will construct a narrower con-
fidence band for a regression function using Theorem
11.3.7. Let β̂0 and β̂1 be the least-squares estimators, and
let σ ′ be the estimator of σ used in this section. Let x0 < x1
be two possible values of the predictor X.

a. Find formulas for the simultaneous coefficient 1 − α0
confidence intervals for β0 + β1x0 and β0 + β1x1.

b. For each real number x, find the formula for the
unique α such that x = αx0 + (1 − α)x1. Call that
value α(x).

c. Call the intervals found in part (a) (A0, B0) and
(A1, B1), respectively. Define the event

C = {A0 < β0 + β1x0 < B0 and A1 < β0 + β1x1 < B1}.
For each real x, define L(x) and U(x) to be, respec-
tively, the smallest and largest of the following four
numbers:

α(x)A0 + [1 − α(x)]A1, α(x)B0 + [1 − α(x)]A1,

α(x)A0 + [1 − α(x)]B1, α(x)B0 + [1 − α(x)]B1.

If the event C occurs, prove that, for every real x,
L(x) < β0 + β1x < U(x).

� 11.4 Bayesian Inference in Simple Linear Regression
In Sec. 8.6, we introduced an improper prior distribution for the mean μ and
precision τ of a normal distribution. This prior simplified several calculations
associated with the posterior distribution of the parameters. The prior also made
some of the resulting inferences bear striking resemblance to inferences based on
the sampling distributions of statistics. Something very similar occurs in the simple
linear regression setting.

Improper Priors for Regression Parameters

Example
11.4.1

Gasoline Mileage. Once again, consider Example 11.3.2 on page 714. Suppose that
we are interested in saying something about how far we think β1 is from 0 and how
strongly we believe that. For example, suppose that we would like to be able to say
how likely it is that |β1| is at most c for arbitrary values of c. To do this requires us
to compute a distribution for β1. The posterior distribution of β1 given the observed
data would serve this purpose. �

We shall continue to assume that we will observe pairs of variables (Xi, Yi) for i =
1, . . . , n. We shall also assume that the conditional distribution of Y1, . . . , Yn, given
X1 = x1, . . . , Xn = xn and parameters β0, β1, and σ 2, is that the Yi are independent
with Yi having the normal distribution with mean β0 + β1xi and variance σ 2. Let
τ = 1/σ 2 be the precision, as we did in Sec. 8.6. If we let the parameters have an
improper prior with “p.d.f.” ξ(β0, β1, τ ) = 1/τ , then it is not difficult to find the
posterior distribution of the parameters.

Theorem
11.4.1

Suppose that Y1, . . . , Yn are independent given x1, . . . , xn and β0, β1, and τ , with
Yi having the normal distribution with mean β0 + β1xi and precision τ . Let the
prior distribution be improper with “p.d.f.” ξ(β0, β1, τ ) = 1/τ . Then the posterior
distribution of β0, β1, and τ is as follows. Conditional on τ , the joint distribution of
β0 and β1 is the bivariate normal distribution with correlation −nx/(n

∑n
i=1 x2

i
)1/2
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Table 11.10 Posterior means and variances for simple
linear regression with improper prior

Parameter Mean Variance

β0 β̂0 ( 1
n

+ x2/s2
x
)/τ

β1 β̂1 (s2
x
τ )−1

Table 11.11 Relation between Eq. (5.10.2) and
Theorem 11.4.1

(5.10.2) Theorem 11.4.1

ρ −nx/(n
∑n

i=1 x2
i
)1/2

σ 2
1 ( 1

n
+ x2/s2

x
)/τ

σ 2
2 (s2

x
τ )−1

x1 β0

μ1 β̂0

x2 β1

μ2 β̂1

and means and variances as given in Table 11.10. The posterior distribution of τ is
the gamma distribution with parameters (n − 2)/2 and S2/2, where S2 is defined in
Eq. (11.3.9). The marginal posterior distribution of[

c2
0

n
+ (c0x − c1)

2

s2
x

]−1/2
c0β0 + c1β1 − [c0β̂0 + c1β̂1]

σ ′ (11.4.1)

is the t distribution with n − 2 degrees of freedom if c0 and c1 are not both 0.

Proof The posterior p.d.f. is proportional to the product of the prior p.d.f. and
the likelihood function. The likelihood is the conditional p.d.f. of the data Y =
(Y1, . . . , Yn) given the parameters (and x = (x1, . . . , xn)), namely,

fn( y|β0, β1, τ, x) = (τ/[2π ])n/2 exp

(
−τ

2

n∑
i=1

(yi − β0 − β1xi)
2

)
. (11.4.2)

To show that the posterior distribution is as stated in the theorem, it suffices to prove
that 1/τ times (11.4.2) is proportional (as a function of β0, β1, and τ ) to the proposed
posterior p.d.f.

The proposed posterior p.d.f. of τ is proportional (as a function of τ ) to

τ (n−2)/2−1e−S2τ/2. (11.4.3)

The proposed conditional posterior p.d.f. of (β0, β1) given τ is the bivariate normal
p.d.f. in Eq. (5.10.2) on page 338 with the substitutions in Table 11.11.
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The key to simplifying the substitutions in Eq. (5.10.2) is to note that

1 − ρ2 = s2
x∑n

i=1 x2
i

, σ 2
1 =

∑n
i=1 x2

i

ns2
x
τ

, and
ρ

σ1σ2
= − nxs2

x

τ
∑n

i=1 x2
i

.

The substitutions in Table 11.11 show that the proposed conditional posterior for
(β0, β1) given τ is proportional to

τ exp

(
−τ

2

[
n(β0 − β̂0)

2 + 2nx(β0 − β̂0)(β1 − β̂1) +
(

n∑
i=1

x2
i

)
(β1 − β̂1)

2

])
.

(11.4.4)

The product of (11.4.3) and (11.4.4) is the proposed joint posterior p.d.f., and it is
proportional to

τn/2−1 exp

(
−τ

2

[
S2 + n(β0 − β̂0)

2 + 2nx(β0 − β̂0)(β1 − β̂1)

+
( n∑

i=1

x2
i

)
(β1 − β̂1)

2
])

.

(11.4.5)

We shall now show that 1/τ times the right side of Eq. (11.4.2) is proportional
to (11.4.5). The summation in the exponent of Eq. (11.4.2) is exactly the same as the
summation in Eq. (11.3.29) if we remove the asterisks from (11.3.29). In Sec. 11.3,
we rewrote (11.3.29) as

S2 + n(β0 − β̂0)
2 +

(
n∑

i=1

x2
i

)
(β1 − β̂1)

2 + 2nx(β0 − β̂0)(β1 − β̂1), (11.4.6)

where the asterisks have been removed from (11.4.6). Notice that (11.4.6) is the same
as the factor in the exponent of (11.4.5) that is multiplied by −τ 2/2. Also, notice that
1/τ times the factor multiplying the exponential in (11.4.2) equals τn/2−1. It follows
that 1/τ times (11.4.2) is proportional to (11.4.5).

Finally, we prove that the random variable in (11.4.1) has the t distribution
with n − 2 degrees of freedom. Since (β0, β1) has a bivariate normal distribution
conditional on τ , it follows that c0β0 + c1β1 has a normal distribution conditional
on τ . Its mean is c0β̂0 + c1β̂1. Its variance (given τ ) is obtained from Eq. (5.10.9) and
Table 11.10 (after some tedious algebra) as v/τ where

v = c2
0

n
+ c2

0
x2

s2
x

+ c2
1

1
s2
x

− 2c0c1
x

s2
x

= c2
0

n
+ (c0x − c1)

2

s2
x

.

Define the random variable

Z =
(

τ

v

)1/2

(c0β0 + c1β1 − [c0β̂0 + c1β̂1]),

and notice that Z has the standard normal distribution given τ and hence is indepen-
dent of τ . The distribution of W = S2τ is the gamma distribution with parameters
(n − 2)/2 and 1/2, which is also the χ2 distribution with n − 2 degrees of freedom. It
follows from the definition of the t distribution that Z/(W/[n − 2])1/2 has the t dis-
tribution with n − 2 degrees of freedom. Since σ ′2 = S2/(n − 2), it is straightforward
to verify that Z/(W/[n − 2])1/2 is the same as the random variable in (11.4.1).
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Example
11.4.2

Pressure and the Boiling Point of Water. At the end of Example 11.3.6, we estimated the
coefficients of the regression of log-pressure on the boiling point using only 16 of the
17 observations in Forbes’ original data. We obtained β̂0 = −0.9518 and β̂1 = 0.0205
with σ ′ = 2.616 × 10−3. With one observation removed, we have n = 16, x = 202.85,
and s2

x
= 527.9. We can now apply Theorem 11.4.1 to make an inference based on the

posterior distributions of the parameters. For example, suppose that we are interested
in an interval estimate of β1. Letting c0 = 0 and c1 = 1 in (11.4.1), we find that the
posterior distribution of

sx

σ ′ (β1 − β̂1) = 449.2(β1 − 0.0205) (11.4.7)

is the t distribution with 15 degrees of freedom. If we want our interval to contain
a portion of the posterior distribution with probability 1 − α0, then we can note
that the posterior probability is 1 − α0 that |449.2(β1 − 0.0205)| ≤ T −1

14 (1 − α0/2).
For example, if α0 = 0.1, then T −1

14 (1 − 0.1/2) = 1.761. The interval estimate is then
0.0205 ± 1.761/449.2 = (0.0166, 0.0244). �

The reader should note that the random variable in Eq. (11.4.7) is the same as U1
in Eq. (11.3.22) when β1 = β∗

1 . This implies that a coefficient 1 − α0 confidence interval
for β1 will be the same as an interval containing posterior probability 1 − α0 when we
use the improper prior in Theorem 11.4.1. Indeed, the random variable in (11.4.1)
is the same as U01 in Eq. (11.3.14) for all c0 and c1 so long as c0β0 + c1β1 = c∗. This
implies that coefficient 1 − α0 confidence intervals for all linear combinations of the
regression parameters will also contain probability 1 − α0 of the posterior distribution
when the improper prior in Theorem 11.4.1 is used. The reader can prove these claims
in Exercises 1 and 2 in this section.

Note: There is a Conjugate Family of Proper Prior Distributions. The posterior
distribution of the parameters given in Theorem 11.4.1 has the following form: τ

has a gamma distribution, and, conditional on τ , (β0, β1) has a bivariate normal
distribution with variances and covariances that are multiples of 1/τ . The collection
of distributions of the form just described is a conjugate family of prior distributions
for the parameters of simple linear regression. Readers interested in the details of
using such priors can consult a text like Broemeling (1985).

Prediction Intervals

On page 716, we showed how to form intervals for predicting future observations.
In the Bayesian framework, we can also form intervals for predicting future ob-
servations. Let Y be a future observation with corresponding predictor x. Then
Z1 = τ 1/2(Y − β0 − β1x) has the standard normal distribution conditional on the pa-
rameters and the data; hence, it is independent of the parameters and the data. Let
Ŷ = β̂0 + β̂1x as we did on page 716. It can be shown that the conditional distribution
of Z2 = τ 1/2(β0 + β1x − Ŷ ) given τ , and the data is the normal distribution with mean
0 and variance

1
n

+ (x − x)2

s2
x

,

and hence it is independent of τ and the data. (See Exercise 3.) Since Z1 is inde-
pendent of all of the parameters, it is independent of Z2, also. It follows that the
conditional distribution of Z1 + Z2 = τ 1/2(Y − Ŷ ), given τ and the data, is the normal
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distribution with mean 0 and variance

1 + 1
n

+ (x − x)2

s2
x

.

As in the proof of Theorem 11.4.1, S2τ has the χ2 distribution with n − 2 degrees
of freedom and is independent of Z1 + Z2. It follows from the definition of the t

distribution that the random variable

Ux = Y − Ŷ

σ ′
[

1 + 1
n

+ (x−x)2

s2
x

]1/2

has the t distribution with n − 2 degrees of freedom given the data. Hence, the
conditional probability, given the data, is 1 − α0 that Y is in the interval with endpoints

Ŷ ± T −1
n−2

(
1 − α0

2

)
σ ′
[

1 + 1
n

+ (x − x)2

s2
x

]1/2

. (11.4.8)

Notice that the Ux defined above is identical to the Ux defined in Eq. (11.3.26). Also,
the interval (11.4.8) is the same as the one given in Eq. (11.3.25). The interpretation
of the prediction interval based on the posterior distribution is somewhat simpler
than the interpretation given after (11.3.25) because the probability is conditional
on all of the known quantities (that is, the data). The probability only concerns the
distribution of the unknown quantity Y conditional on the data.

Example
11.4.3

Pressure and the Boiling Point of Water. Suppose that we are interested in predicting
pressure when the boiling point of water is 208 degrees. We shall find an interval
such that the posterior probability is 0.9 that the pressure will be in the interval. That
is, we shall use Eq. (11.4.8) with α0 = 0.1 and x = 208. We can find T14(0.95) = 1.761
from the table of the t distribution in this book. The rest of the necessary values
are given in Example 11.4.2. In particular, with Y standing for log-pressure, Ŷ =
−0.9518 + 0.0205 × 208 = 3.3122, and

σ ′
[

1 + 1
n

+ (x − x)2

s2
x

]1/2

= 2.616 × 10−3

[
1 + 1

16
+ (208 − 202.85)2

527.9

]1/2

= 2.759 × 10−3.

So our interval for log-pressure has endpoints 3.3122 ± 1.761 × 2.759 × 10−3, which
are 3.307 and 3.317. The interval for pressure itself is then

(e3.307, e3.317) = (27.31, 27.58).

The reason that we can convert the interval for log-pressure into the interval for
pressure so simply is that 3.307 < Y < 3.317 if and only if 27.31 < eY < 27.58. So,
the posterior probability of the first set of inequalities is the same as the posterior
probability of the second set of inequalities. �

Tests of Hypotheses

On page 607, we began a discussion of tests based on the posterior distribution. If
the cost of type I error is w0 and the cost of type II error is w1, we found that the
Bayes test was to reject the null hypothesis if the posterior probability of the null
hypothesis is less than w1/(w0 + w1). Suppose that we use the improper prior and
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that the null hypothesis is H0 : c0β0 + c1β1 = c∗. Since the posterior distribution of
c0β0 + c1β1 is a continuous distribution, it is clear that the posterior probability of
the null hypothesis is 0. For this reason, we shall begin by considering Bayes tests
only for one-sided hypotheses. Suppose that the hypotheses of interest are

H0 : c0β0 + c1β1 ≤ c∗,

H1 : c0β0 + c1β1 > c∗.
(11.4.9)

The other direction can be handled in a similar fashion. Let α0 = w1/(w0 + w1). The
posterior probability that the null hypothesis is true is the posterior probability that
c0β0 + c1β1 ≤ c∗. We have already derived the posterior distribution of c0β0 + c1β1 in
Theorem 11.4.1. So, we can compute

Pr(c0β0 + c1β1 ≤ c∗)

= Pr

⎛⎝[
c2

0

n
+ (c0x − c1)

2

s2
x

]−1/2
c0β0 + c1β1 − [c0β̂0 + c1β̂1]

σ ′

≤
[

c2
0

n
+ (c0x − c1)

2

s2
x

]−1/2
c∗ − [c0β̂0 + c1β̂1]

σ ′

⎞⎠
= Tn−2

⎛⎝[
c2

0

n
+ (c0x − c1)

2

s2
x

]−1/2
c∗ − [c0β̂0 + c1β̂1]

σ ′

⎞⎠
= Tn−2(−U01),

where Tn−2 denotes the c.d.f. of the t distribution with n − 2 degrees of freedom
and U01 is the random variable defined in Eq. (11.3.14). It is simple to see that
Tn−2(−U01) ≤ α0 if and only if U01 ≥ T −1

n−2(1 − α0). Hence, the Bayes test of the
hypotheses (11.4.9) is the same as the level α0 test of these same hypotheses that
was derived after Eq. (11.3.16). Hence, all of the one-sided tests that we learned how
to perform in Sec. 11.3 are also Bayes tests when the improper prior is used.

On page 610, we began a discussion of how to deal with two-sided alternatives
when the posterior distribution of the parameter was continuous. The same approach
can be used in linear regression problems. We shall illustrate with an example.

Example
11.4.4

Gasoline Mileage. In Example 11.4.1, we wanted to make use of the posterior distri-
bution of the slope parameter β1 from Example 11.3.2 in order to be able to say how
likely we believe it is that β1 is close to 0. We can draw a plot of the posterior c.d.f.
of |β1| by making use of Theorem 11.4.1. The posterior distribution of sx(β1 − β̂1)/σ

′
is the t distribution with n − 2 degrees of freedom. In Example 11.3.2, we computed
sx = 1036.9, σ ′ = 7.191 × 10−3, β̂1 = 1.396 × 10−4, and n = 173. It follows that, for all
positive c,

Pr(|β1| ≤ c) = Pr(−c ≤ β1 ≤ c) = T171

(
1036.9

7.181 × 10−3
(c − 1.396 × 10−4)

)
− T171

(
1036.9

7.181 × 10−3
(−c − 1.396 × 10−4)

)
,

where T171 is the c.d.f. of the t distribution with 171 degrees of freedom. Figure 11.14
contains a plot of the posterior c.d.f. of |β1|. We can see that the probability is
essentially 1 that |β1| < 1.6 × 10−4, but it is also essentially 1 that |β1| > 1.2 × 10−4.
These numbers may look small. However, remember that β1 must get multiplied by
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Figure 11.14 Plot of pos-
terior c.d.f. of |β1| in Exam-
ple 11.4.4.
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horsepower, which is typically a number in the 50–300 range. So, even if β1 is as small
as 1.2 × 10−4, the difference between gallons per mile at 100 and 200 horsepower
will be 0.012, which is a sizeable difference in gallons per mile. We can also translate
this result into miles per gallon. Suppose that β1 = 1.2 × 10−4, and suppose that β0
equals its conditional mean given that β1 = 1.2 × 10−4. This conditional mean can be
computed using the method of Exercise 7, and it equals 0.01897. Then the miles per
gallon for a 200 horsepower car is 23.27, and the miles per gallon for a 100 horsepower
car is 32.23. �

Summary

We have used improper prior distributions for the parameters of the simple linear
regression model, and we have found the posterior distributions of the parameters
after observing n data points. The posterior distributions of the intercept and slope
parameters are t distributions with n − 2 degrees of freedom that have been shifted
and rescaled. These posterior distributions show striking similarities to the sampling
distributions of the least-squares estimators. Indeed, posterior probability intervals
for the parameters are exactly the same as confidence intervals, prediction intervals
for future observations are the same as those based on the sampling distributions, and
level α0 tests of one-sided null and alternative hypotheses reject the null hypotheses
when the posterior probability of the null hypothesis is less than α0. The only signifi-
cant lack of connection between posterior calculations and those based on sampling
distributions is the testing of hypotheses in which the alternative is two-sided.

Exercises

1. Assume the usual conditions for simple linear regres-
sion. Assume that we use the improper prior discussed in
this section. Let (a, b) be the observed value of a coef-
ficient 1 − α0 confidence interval for β1 constructed as in
Sec. 11.3. Prove that the posterior probability is 1 − α0 that
a < β1 < b.

2. Assume the usual conditions for simple linear regres-
sion. Assume that we use the improper prior discussed
in this section. Let (a, b) be the observed value of a co-
efficient 1 − α0 confidence interval for c0β0 + c1β1 con-

structed as in Sec. 11.3. Prove that the posterior proba-
bility is 1 − α0 that a < c0β0 + c1β1 < b.

3. Assume a simple linear regression model with the im-
proper prior. Show that, conditional on τ , the posterior
distribution of τ 1/2(β0 + β1x − Ŷ ) is the normal distribu-
tion with mean 0 and variance

1
n

+ (x − x)2

s2
x

.
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4. We wish to fit a simple linear regression model to the
data in Table 11.9 on page 727. Use an improper prior
distribution.

a. Find the posterior distribution of the parameters.

b. Find a bounded interval that contains 90 percent of
the posterior distribution of β1.

c. Find the probability that β0 is between 0 and 2.

5. Use the data in Table 11.9, and suppose that we wish
to fit a simple linear regression model to the data. Use the
improper prior.

a. Find the posterior distribution of the slope parame-
ter β1.

b. Find the posterior distribution of β0 + β1, the mean
of a future observation Y corresponding to x = 1.

c. Draw a graph of the posterior c.d.f. of |β1 − 0.7|.
6. Use the data in Table 11.6 on page 707. Assume that we
wish to fit a simple linear regression model for predicting
logarithm of 1980 price from logarithm of 1970 price.

a. Find the posterior distribution of the slope parame-
ter β1.

b. Find the posterior probability that β1 ≤ 2.

c. Find a 95 percent prediction interval for the 1980
price of a species that cost 21.4 in 1970.

7. In a simple linear regression problem with the usual
improper prior, prove that the conditional mean of β0
given β1 is β̂0 − x(β1 − β̂1). Hint: Use the fact that (β0, β1)

has a bivariate normal distribution as described in Theo-
rem 11.4.1, and then use Eq. (5.10.6) to find the condi-
tional mean.

11.5 The General Linear Model and
Multiple Regression

The simple linear regression model can be extended to allow the mean of Y to be a
function of several predictor variables. Much of the resulting distribution theory,
is very similar to the simple regression case.

The General Linear Model

Example
11.5.1

Unemployment in the 1950s. The data in Table 11.12 provide the unemployment rates
during the 10 years from 1950 to 1959 together with an index of industrial production
from the Federal Reserve Board. It might make sense to think that unemployment
is related to industrial production. Other factors also play a role, and those other
factors most likely changed over the course of the decade. As a surrogate for these
other factors, some function of the year could be included as a predictor. Figure 11.15
shows plots of unemployment against each of the two predictor variables. It is not
clear from the plots precisely how unemployment varies with the two predictors, but
there appear to be some relationships. In this section, we shall show how to fit a
regression model with more than one predictor to these and other data. �

In this section, we shall study regression problems in which the observations
Y1, . . . , Yn satisfy assumptions like Assumptions 11.2.1–11.2.5 that were made in
Sections 11.2 and 11.3. In particular, we shall again assume that each observation
Yi has a normal distribution, that the observations Y1, . . . , Yn are independent, and
that the observations Y1, . . . , Yn have the same variance σ 2. Instead of a single
predictor being associated with each Yi, we assume that a p-dimensional vector
zi = (zi0, . . . , zip−1) is associated with each Yi. The assumptions that we make can
now be restated in this framework.

Assumption
11.5.1

Predictor is known. Either the vectors z1, . . . , zn are known ahead of time, or they
are the observed values of random vectors Z1, . . . , Zn on whose values we condition
before computing the joint distribution of (Y1, . . . , Yn).
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Table 11.12 Unemployment data for Example 11.5.1

Unemployment Index of production Year

3.1 113 1950

1.9 123 1951

1.7 127 1952

1.6 138 1953

3.2 130 1954

2.7 146 1955

2.6 151 1956

2.9 152 1957

4.7 141 1958

3.8 159 1959

Figure 11.15 Plots of
unemployment against the
two predictor variables for
Example 11.5.1.

Index of production

U
ne

m
pl

oy
m

en
t

120 130 140 150 160

1.5

0

2.0

2.5

3.0

3.5

4.0

4.5
•

Year
1950 1952 1954 1956 1958

U
ne

m
pl

oy
m

en
t

1.5

0

2.0

2.5

3.0

3.5

4.0

4.5

Assumption
11.5.2

Normality. For i = 1, . . . , n, the conditional distribution of Yi given the vectors
z1, . . . , zn is a normal distribution.

Assumption
11.5.3

Linear Mean. There is a vector of parameters β = (β0, . . . , βp−1) such that the con-
ditional mean of Yi given the values z1, . . . , zn has the form

zi0β0 + zi1β1 + . . . + zip−1βp−1, (11.5.1)

for i = 1, . . . , n.

Assumption
11.5.4

Common Variance. There is a parameter σ 2 such that the conditional variance of Yi

given the values z1, . . . , zn is σ 2 for i = 1, . . . , n.

Assumption
11.5.5

Independence. The random variables Y1, . . . , Yn are independent given the observed
z1, . . . , zn.
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The generalization that we introduce here is that the mean of each observation Yi

is a linear combination of p unknown parameters β0, . . . , βp−1 as in (11.5.1). Each
value zij either may be fixed by the experimenter before the experiment is started
or may be observed in the experiment along with the value of Yi. In the latter case,
Eq. (11.5.1) gives the conditional mean of Yi given the observed zij values.

Definition
11.5.1

General Linear Model. The statistical model in which the observations Y1, . . . , Yn

satisfy Assumptions 11.5.1–11.5.5 is called the general linear model.

In Definition 11.5.1, the term linear refers to the fact that the expectation of each
observation Yi is a linear function of the unknown parameters β0, . . . , βp−1.

Many different types of regression problems are examples of general linear
models. For example, in a problem of simple linear regression, E(Yi) = β0 + β1xi for
i = 1, . . . , n. This expectation can be represented in the form given in Eq. (11.5.1),
with p = 2, by letting zi0 = 1 and zi1 = xi for i = 1, . . . , n. Similarly, if the regression
of Y on X is a polynomial of degree k, then, for i = 1, . . . , n,

E(Yi) = β0 + β1xi + . . . + βkx
k
i
. (11.5.2)

In this case, p = k + 1 and E(Yi) can be represented in the form given in Eq. (11.5.1)
by letting zij = x

j

i for j = 0, . . . , k.
As a final example, consider a problem in which the regression of Y on k variables

X1, . . . , Xk is a function like that given in Eq. (11.2.1). A problem of this type is called
a problem of multiple linear regression because we are considering the regression of Y

on k variables X1, . . . , Xk, rather than on just a single variable X, and we are assuming
also that this regression is a linear function of the parameters β0, . . . , βk. In a problem
of multiple linear regression, we obtain n vectors of observations (xi1, . . . , xik, Yi), for
i = 1, . . . , n. Here xij is the observed value of the variable Xj for the ith observation.
Then E(Yi) is given by the relation

E(Yi) = β0 + β1xi1 + . . . + βkxik. (11.5.3)

This expectation can also be represented in the form given in Eq. (11.5.1), with
p = k + 1, by letting zi0 = 1 and zij = xij for j = 1, . . . , k.

Example
11.5.2

Unemployment in the 1950s. In Example 11.5.1, we can let Y stand for the unemploy-
ment rate, while X1 stands for the index of production and X2 stands for the year.

�

Our discussion has indicated that the general linear model is general enough to
include problems of simple and multiple linear regression, problems in which the
regression function is a polynomial, problems in which the regression function has
the form given in Eq. (11.1.16), and many other problems.

Some books devoted to regression and other linear models are Cook and Weis-
berg (1999), Draper and Smith (1998), Graybill and Iyer (1994), and Weisberg (1985).

Maximum Likelihood Estimators

We shall now describe a procedure for determining the M.L.E.’s of β0, . . . , βp−1 in
the general linear model. Since E(Yi) is given by Eq. (11.5.1) for i = 1, . . . , n, the
likelihood function after observing values y1, . . . , yn will have the following form:

1
(2πσ 2)n/2

exp

[
− 1

2σ 2

n∑
i=1

(yi − zi0β0 − . . . − zip−1βp−1)
2

]
. (11.5.4)
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Since the M.L.E.’s are the values that maximize the likelihood function (11.5.4), it
can be seen that the estimates β̂0, . . . , β̂p−1 will be the values of β0, . . . , βp−1 for
which the following sum of squares Q is minimized:

Q =
n∑

i=1

(yi − zi0β0 − . . . − zip−1βp−1)
2. (11.5.5)

Since Q is the sum of the squares of the deviations of the observed values from the
linear function given in Eq. (11.5.1), it follows that the M.L.E.’s β̂0, . . . , β̂p−1 will be
the same as the least-squares estimates.

To determine the values of β̂0, . . . , β̂p−1, we can calculate the p partial deriva-
tives ∂Q/∂βj for j = 0, . . . , p − 1 and can set each of these derivatives equal to 0.
The resulting p equations, which are called the normal equations, will form a set of p

linear equations in β0, . . . , βp−1. We shall assume that the p × p matrix formed by
the coefficients of β0, . . . , βp−1 in the normal equations is nonsingular. Then these
equations will have a unique solution β̂0, . . . , β̂p−1, and β̂0, . . . , β̂p−1 will be both
the M.L.E.’s and the least-squares estimates of β0, . . . , βp−1.

For a problem of polynomial regression in which E(Yi) is given by Eq. (11.5.2),
the normal equations were presented as the relations (11.1.8). For a problem of mul-
tiple linear regression in which E(Yi) is given by Eq. (11.5.3), the normal equations
were presented as the relations (11.1.13).

If we substitute β̂i for βi for i = 0, . . . , p − 1 in the formula for Q in Eq. (11.5.5),
we obtain

S2 =
n∑

i=1

(Yi − zi0β̂0 − . . . − zip−1β̂p−1)
2. (11.5.6)

Eq. (11.5.6) is the natural generalization of Eq. (11.3.9) to the multiple regression
case. It can be shown using the same method outlined in the proof of Theorem 11.2.1
that the M.L.E. of σ 2 in the general linear model is

σ̂ 2 = S2

n
. (11.5.7)

The details are left to Exercise 1 at the end of this section. In analogy to Eq. (11.3.12),
we define the useful quantity

σ ′ =
(

S2

n − p

)1/2

. (11.5.8)

This makes σ ′2 an unbiased estimator of σ 2. (See Exercise 2.)

Explicit Form of the Estimators

In order to derive the explicit form and the properties of the estimators β̂0, . . . , β̂p−1,
it is convenient to use the notation and techniques of vectors and matrices. We shall
let the n × p matrix Z be defined as follows:

Z =

⎡⎢⎢⎢⎣
z10 . . . z1p−1

z20 . . . z2p−1
...

. . .
...

zn0 . . . znp−1

⎤⎥⎥⎥⎦. (11.5.9)



740 Chapter 11 Linear Statistical Models

This matrix Z distinguishes one regression problem from another, because the en-
tries in Z determine the particular linear combinations of the unknown parameters
β0, . . . , βp−1 that are relevant in a given problem.

Definition
11.5.2

Design Matrix. The matrix Z in Eq. (11.5.9) for a general linear model is called the
design matrix of the model.

The name “design matrix” comes from the case in which the zij are chosen by the
experimenter to achieve a well-designed experiment. It should be kept in mind,
however, that some or all of the entries in Z may be simply the observed values
of certain variables, and may not actually be controlled by the experimenter.

We shall also let y be the n × 1 vector of observed values of Y1, . . . , Yn, β be the
p × 1 vector of parameters, and β̂ be the p × 1 vector of estimates. These vectors may
be represented as follows:

y =
⎡⎢⎣ y1

...
yn

⎤⎥⎦, β =
⎡⎢⎣ β0

...
βp−1

⎤⎥⎦, and β̂ =
⎡⎢⎣ β̂0

...
β̂p−1

⎤⎥⎦.

The transpose of a vector or matrix v will be denoted by v′.

Theorem
11.5.1

General Linear Model Estimators. The least squares estimator (and M.L.E.) of β is

β̂ = (Z ′Z)−1Z′Y. (11.5.10)

Proof The sum of squares Q given in Eq. (11.5.5) can be written in the following
form:

Q = ( y − Zβ)′( y − Zβ).

Since Q is a quadratic function of the coordinates of β, it is straightforward to take
the partial derivatives of Q with respect to these coordinates and set them equal to
0. For example, the partial derivative with respect to β0 is

∂Q

∂β0
= −2

n∑
i=1

zi0yi + 2
p−1∑
j=0

βj

n∑
i=1

zi0zij . (11.5.11)

Each of the other partial derivatives produces an equation similar to (11.5.11). Set
the right-hand sides of each of these p equations to 0, and arranged them into the
following matrix equation:

Z ′Zβ = Z ′y. (11.5.12)

Because it is assumed that the p × p matrix Z ′Z is nonsingular, the vector of esti-
mates β̂ will be the unique solution of Eq. (11.5.12). In order for Z ′Z to be nonsin-
gular, the number of observations n must be at least p, and there must be at least
p linearly independent rows in the matrix Z. When this assumption is satisfied, it
follows from Eq. (11.5.12) that β̂ = (Z ′Z)−1Z ′y. Thus, if we replace the vector y of
observed values by the vector Y of random variables, the form for the vector of
estimators β̂ will be (11.5.10).

Virtually every statistical computer package will calculate least-squares estimates for
a multiple linear regression. Even some handheld calculators will perform multiple
linear regression. The matrix (Z ′Z)−1 is useful for more than just computing β̂ in
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Eq. (11.5.10), as we shall see later in this section. Not every piece of regression
software makes it easy to access this matrix.

It follows from Eq. (11.5.10) that each of the estimators β̂0, . . . , β̂p−1 will be
a linear combination of the coordinates Y1, . . . , Yn of the vector Y . Since each of
these coordinates has a normal distribution and they are independent, it follows that
each estimator β̂j will also have a normal distribution. Indeed, the entire vector β̂

has a joint normal distribution (called a multivariate normal distribution), which is
a generalization of the bivariate normal distribution to more than two coordinates.
We shall not discuss the multivariate normal distribution in detail in this text, but
we shall merely point out one feature that it has in common with the bivariate
normal distribution: If a vector β̂ has a multivariate normal distribution, then every
linear combination of the coordinates of β̂ has a normal distribution. Indeed, every
collection of linear combinations of the coordinates of β̂ has a multivariate normal
distribution.

Example
11.5.3

Unemployment in the 1950s. The matrix Z in Example 11.5.1 has three columns. The
first column is the number 1 ten times. The second column is the second column of
Table 11.12. In order to avoid some numerical problems, we shall let the third column
of Z be the third column of Table 11.12 minus 1949. The vector y is the first column
of Table 11.12. We can then compute the matrix (Z ′Z)−1 and the vector Z ′y:

(Z ′Z)−1 =
⎛⎝ 38.35 −0.3323 1.383

−0.3323 2.915 × 10−3 −0.01272
1.383 −0.01272 0.06762

⎞⎠ Z ′y =
⎛⎝ 28.2

3931
144.1

⎞⎠ .

We can then use Eq. (11.5.10) to compute

β̂ =
⎛⎝ 13.45

−0.1033
0.6594

⎞⎠.

We shall examine the residuals later in this section. �

Mean Vector and Covariance Matrix

We shall now derive the means, variances, and covariances of β̂0, . . . , β̂p−1. Suppose
that Y is an n-dimensional random vector with coordinates Y1, . . . , Yn. Thus,

Y =
⎡⎢⎣ Y1

...
Yn

⎤⎥⎦. (11.5.13)

The expectation E(Y ) of this random vector is defined to be the n-dimensional vector
whose coordinates are the expectations of the individual coordinates of Y . Hence,

E(Y ) =
⎡⎢⎣ E(Y1)

...
E(Yn)

⎤⎥⎦.

Definition
11.5.3

Mean Vector/Covariance Matrix. If Y is a random vector, then the vector E(Y ) is called
the mean vector of Y . The covariance matrix of Y is defined to be the n × n matrix
such that, for i = 1, . . . , n and j = 1, . . . , n, the element in the ith row and j th column
is Cov(Yi, Yj). We shall let Cov(Y ) denote this covariance matrix.
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For example, if Cov(Yi, Yj) = σij for all i and j , then

Cov(Y ) =
⎡⎢⎣ σ11 . . . σ1n

...
. . .

...
σn1 . . . σnn

⎤⎥⎦ .

For i = 1, . . . , n, Var(Yi) = Cov(Yi, Yi) = σii. Therefore, the n diagonal ele-
ments of the matrix Cov(Y ) are the variances of Y1, . . . , Yn. Furthermore, since
Cov(Yi, Yj) = Cov(Yj, Yi), then σij = σji. Therefore, the matrix Cov(Y ) must be
symmetric.

The mean vector and the covariance matrix of the random vector Y in the general
linear model can easily be determined. It follows from Eq. (11.5.1) that

E(Y ) = Zβ. (11.5.14)

Also, the coordinates Y1, . . . , Yn of Y are independent, and the variance of each of
these coordinates is σ 2. Therefore,

Cov(Y ) = σ 2I, (11.5.15)

where I is the n × n identity matrix.
The following result helps us find the mean vector and covariance matrix of β̂.

Theorem
11.5.2

Suppose that Y is an n-dimensional random vector as specified by Eq. (11.5.13),
for which the mean vector E(Y ) and the covariance matrix Cov(Y ) exist. Suppose
also that A is a p × n matrix whose elements are constants, and that W is a p-
dimensional random vector defined by the relation W = AY . Then E(W ) = AE(Y )

and Cov(W ) = A Cov(Y )A′.

Proof Let the elements of matrix A be denoted as follows:

A =
⎡⎢⎣ a01 . . . a0n

...
. . .

...
ap−11 . . . ap−1n

⎤⎥⎦.

Then the ith coordinate of the vector E(W ) is

E(Wi) = E

⎛⎝ n∑
j=1

aijYj

⎞⎠ =
n∑

j=1

aijE(Yj). (11.5.16)

It can be seen that the final summation in Eq. (11.5.16) is the ith coordinate of the
vector AE(Y ). Hence, E(W ) = AE(Y ).

Next, for i = 0, . . . , p − 1 and j = 0, . . . , p − 1, the element in the ith row and
j th column of the p × p matrix Cov(W ) is

Cov(Wi, Wj) = Cov

(
n∑

r=1

airYr,

n∑
s=1

ajsYs

)
.

Therefore, by Exercise 8 of Sec. 4.6,

Cov(Wi, Wj) =
n∑

r=1

n∑
s=1

airajs Cov(Yr, Ys). (11.5.17)
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Using the formula for matrix multiplication, one finds that the right side of
Eq. (11.5.17) is the element in the ith row and j th column of the p × p ma-
trix A Cov(Y )A′. Hence, Cov(W ) = A Cov(Y )A′.

The means, the variances, and the covariances of the estimators β̂0, . . . , β̂p−1 can
be obtained by applying Theorem 11.5.2.

Theorem
11.5.3

In the general linear model, E(β̂) = β, and Cov(β̂) = σ 2(Z′Z)−1.

Proof Eq. (11.5.10) says that β̂ can be represented in the form β̂ = AY , where
A = (Z ′Z)−1Z ′. Therefore, it follows from Theorem 11.5.2 and Eq. (11.5.14) that

E(β̂) = (Z ′Z)−1Z ′E(Y ) = (Z ′Z)−1Z ′Zβ = β.

Also, it follows from Theorem 11.5.2 and Eq. (11.5.15) that

Cov(β̂) = (Z ′Z)−1Z ′ Cov(Y )Z(Z ′Z)−1

= (Z ′Z)−1Z ′(σ 2I)Z(Z ′Z)−1

= σ 2(Z′Z)−1.

Thus, E(β̂j) = βj for j = 0, . . . , p − 1, and for j = 1, . . . , n, Var(β̂j ) equals σ 2 times
the j th diagonal entry of the matrix (Z ′Z)−1. Also, for i 	= j , Cov(β̂i, β̂j ) will be equal
to σ 2 times the entry in the ith row and j th column of the matrix (Z ′Z)−1.

Example
11.5.4

Dishwasher Shipments. The United States Department of Commerce collects data on
factory shipments of durable goods as well as other economic indicators. Table 11.13
contains the numbers of factory shipments of dishwashers (in thousands) and private
residential investment in billions of 1972 dollars for the years 1960 through 1985.
Figure 11.16 shows plots of dishwasher shipments against year and private residential
investment. Let Y stand for dishwasher shipments. We could fit a model in which the
mean of Y is given by Eq. (11.5.3) with k = 2. The matrix Z would have three columns
and 26 rows. The first column would be all the number 1. The second column would
have time, expressed as the year minus 1960 for numerical stability. The third column
would have private residential investment. We can then compute

(Z ′Z)−1 =
⎛⎝ 1.152 0.01279 −0.02660

0.01279 0.001136 −0.0005636
−0.02660 −0.0005636 0.0007026

⎞⎠.

The correlation between β̂1 and β̂2 can be computed as

ρ = Cov(β̂1, β̂2)

(Var(β̂1) Var(β̂2))
1/2

= −0.0005636σ 2

(0.001136σ 2 × 0.0007026σ 2)1/2
= −0.6309.

Notice that the correlation does not depend on the unknown value of σ 2, but only on
the design matrix. Also notice that the correlation is negative and sizeable. If one of
the coefficients is overestimated, the other one will tend to be underestimated. �
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Table 11.13 Dishwasher shipments and residential investment from
1960–1985

Dishwasher shipments Private residential investment
Year (thousands) (billions of 1972 dollars)

1960 555 34.2
1961 620 34.3
1962 720 37.7
1963 880 42.5
1964 1050 43.1
1965 1290 42.7
1966 1528 38.2
1967 1586 37.1
1968 1960 43.1
1969 2118 43.6
1970 2116 41.0
1971 2477 53.7
1972 3199 63.8
1973 3702 62.3
1974 3320 48.2
1975 2702 42.2
1976 3140 51.2
1977 3356 60.7
1978 3558 62.4
1979 3488 59.1
1980 2738 47.1
1981 2484 44.7
1982 2170 37.8
1983 3092 52.7
1984 3491 60.3
1985 3536 61.4

Figure 11.16 Plots of dish-
washer shipments against
year (left) and private resi-
dential investment (right).
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The Joint Distribution of the Estimators

Let the random variable S2 be defined as in Eq. (11.5.6). The sum of squares S2 can
also be represented in the following form:

S2 = (Y − Zβ̂)′(Y − Zβ̂). (11.5.18)

The method in the proof of Theorem 11.3.2 can be extended by making use of
methods that are beyond the scope of this book in order to prove the following two
facts. First, S2/σ 2 has the χ2 distribution with n − p degrees of freedom. Second, S2

and the random vector β̂ are independent.
From Eq. (11.5.7), we see that σ̂ 2 = S2/n. Hence, the random variable nσ̂ 2/σ 2

has the χ2 distribution with n − p degrees of freedom, and the estimators σ̂ 2 and β̂

are independent.
The following result summarizes what we have proven and stated without proof

concerning the joint distribution of β̂ and σ̂ 2.

Corollary
11.5.1

Let the entries in the symmetric p × p matrix (Z ′Z)−1 be denoted as follows:

(Z ′Z)−1 =
⎡⎢⎣ ζ00 . . . ζ0p−1

...
. . .

...
ζp−10 . . . ζp−1p−1

⎤⎥⎦. (11.5.19)

For j = 0, . . . , p − 1, the estimator β̂j has the normal distribution with mean βj and
variance ζjjσ

2. Furthermore, for i 	= j , we have Cov(β̂i, β̂j ) = ζijσ
2. Also, the entire

vector β̂ has a multivariate normal distribution. Finally, σ̂ 2 is independent of β̂ and
nσ̂ 2/σ 2 has the χ2 distribution with n − p degrees of freedom.

Note that β̂ is also independent of σ ′2 from Eq. (11.5.8).

Testing Hypotheses

Suppose that it is desired to test the hypothesis that one of the regression coefficients
βj has a particular value β∗

j
. In other words, suppose that the following hypotheses

are to be tested:

H0 : βj = β∗
j
,

H1 : βj 	= β∗
j
.

(11.5.20)

Since Var(β̂j ) = ζjjσ
2, it follows that when H0 is true, the following random variable

Wj will have the standard normal distribution:

Wj = (β̂j − β∗
j
)

ζ
1/2
jj σ

.

Furthermore, since the random variable S2/σ 2 has the χ2 distribution with n − p

degrees of freedom, and since S2 and β̂j are independent, it follows that when H0 is
true, the following random variable Uj will have the t distribution with n − p degrees
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of freedom:

Uj = Wj[
1

n − p

(
S2

σ 2

)]1/2
= (β̂j − β∗

j
)

(ζjj )
1/2σ ′ . (11.5.21)

The level α0 test of the hypotheses (11.5.20) specifies that the null hypothesis H0
should be rejected if |Uj | ≥ T −1

n−p
(1 − α0/2), where T −1

n−p
is the quantile function of

the t distribution with n − p degrees of freedom. Furthermore, if u is the value of Uj

observed in a given problem, the corresponding p-value is

Pr(Uj ≥ |u|) + Pr(Uj ≤ −|u|). (11.5.22)

Tests for one-sided hypotheses can be derived in a similar fashion.

Example
11.5.5

Dishwasher Shipments. In Example 11.5.4, the least-squares estimates for the model
are β̂0 = −1314, β̂1 = 66.91, and β̂2 = 58.86. The observed value of σ ′ is 352.9. Now
suppose that we are interested in testing the hypotheses

H0 : β1 = 0,

H1 : β1 	= 0,

where β1 is the coefficient of time in the multiple linear regression model. Using the
matrix (Z ′Z)−1 found in Example 11.5.4, we can calculate

U1 = 66.91 − 0
(0.001136)1/2 × 352.9

= 5.625.

The degrees of freedom are 26 − 3 = 23, and 5.625 is larger than every quantile listed
in the table of the t distribution in this book. Using a computer program, we find that
the p-value is about 1 × 10−5. �

Example
11.5.6

Unemployment in the 1950s. In Example 11.5.3, we regressed unemployment on a
Federal Reserve Board index of production and time. The least-squares estimates
are β̂0 = 13.45, β̂1 = −0.1033, and β̂2 = 0.6594. The observed value of σ ′ is 0.4011.
Now suppose that we wish to test the hypotheses

H0 : β2 ≤ 0.4,

H1 : β2 > 0.4.

To test these hypotheses, we reject H0 if U2 is too large. We calculate U2 using the
matrix (Z ′Z)−1 computed in Example 11.5.3:

U2 = 0.6594 − 0.4
(0.06762)1/2 × 0.4011

= 2.487.

The degrees of freedom are 10 − 3 = 7, and 2.487 falls between the 0.975 and 0.99
quantiles of the t distribution with seven degrees of freedom. The p-value is actually
0.0209, so we would reject H0 at every level α0 ≥ 0.0209. �

Problems of testing hypotheses that specify the values of two coefficients βi and
βj are discussed in Exercises 17 to 21 at the end of this section. Problems of testing
hypotheses about linear combinations of β0, . . . , βp−1 are the subject of Exercise 26.

Some computer programs make it easy to test hypotheses about individual βj ’s.
Indeed, most software automatically supplies the value of the test statistic Uj for
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testing the following hypotheses for each j (j = 0, . . . , k):

H0 : βj = 0,

H1 : βj 	= 0.
(11.5.23)

Some programs also compute the corresponding p-values that are found from the
expression (11.5.22).

Power of the Test If the null hypothesis in (11.5.20) is false, then the statistic Uj

has the noncentral t distribution with n − p degrees of freedom and noncentrality
parameter ψ = (βj − β∗

j
)/(ζ

1/2
jj σ ). Plots such as those in Figures 9.12 and 9.14 or

computer programs can be used to calculate the power of the t test for specific
parameter values.

Prediction

Let z′ = (z0, . . . , zp−1) be a vector of predictors for a future observation Y . We wish
to predict Y using Ŷ = z′β̂, and we want to know the M.S.E. We shall assume that Y

is independent of the observed data. This makes Y and Ŷ independent. We can write

Ŷ = z′β̂ = z′(Z ′Z)−1Z ′Y ,

so that Ŷ is a linear combination of the original data Y . Since the coordinates of Y are
independent normal random variables, Theorem 11.3.1 tells us that Ŷ has a normal
distribution. The mean of Ŷ is easily seen to be

E(Ŷ ) = z′E(β̂) = z′β.

The variance of Ŷ is obtained from Theorem 11.5.2:

Var(Ŷ ) = z′(Z ′Z)−1Z ′ Cov(Y )Z(Z ′Z)−1z

= z′(Z ′Z)−1zσ 2.

Since Y has the normal distribution with mean z′β and variance σ 2 and is independent
of Ŷ , it follows that Y − Ŷ has the normal distribution with mean 0 and variance

Var(Y − Ŷ ) = Var(Ŷ ) + Var(Y ) = σ 2
[
1 + z′(Z ′Z)−1z

]
. (11.5.24)

Since Y − Ŷ has mean 0, Eq. (11.5.24) is also the M.S.E. for using Ŷ to predict Y .
We can also form a prediction interval for Y just as we did in (11.3.25). As we

did there, define

Z = Y − Ŷ

σ [1 + z′(Z ′Z)−1z]1/2
, W = S2

σ 2
.

Then Z has the standard normal distribution independent of W , which has the χ2

distribution with n − p degrees of freedom. Hence,

Z

(W/[n − p])1/2
= Y − Ŷ

σ ′[1 + z′(Z ′Z)−1z]1/2

has the t distribution with n − p degrees of freedom. It follows that the interval with
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the following endpoints has probability 1 − α0 of containing Y , prior to observing the
data:

Ŷ ± T −1
n−p

(
1 − α0

2

)
σ ′[1 + z′(Z ′Z)−1z

]1/2
. (11.5.25)

Example
11.5.7

Predicting Dishwasher Shipments. In Example 11.5.4, the least-squares estimates for
the model are β̂0 = −1314, β̂1 = 66.91, and β̂2 = 58.86. The observed value of σ ′
is 352.9. Now suppose that we are interested in predicting dishwasher shipments
for 1986. We happen to know that in 1986 private residential investment was 67.2
billion. In order to predict dishwasher shipments for 1986, we first form the vector
of predictors z′ = (1, 26, 67.2). Then we compute Ŷ = z′β̂ = 4381 and

σ ′[1 + z′(Z ′Z)−1z]1/2 = 352.9[1 + 0.2136]1/2 = 388.8.

We can now compute a prediction interval for 1986 dishwasher shipments. For ex-
ample, with α0 = 0.1, we get a 90 percent prediction interval using T −1

23 (0.95) = 1.714,

(4381 − 1.714 × 388.8, 4381 + 1.714 × 388.8) = (3715, 5047).

This is quite a wide range due to the large value of σ ′. The actual value for dishwasher
sales in 1986 was 3915, which is quite far from Ŷ , but still within the interval. �

Multiple R2

In a problem of multiple linear regression, we are typically interested in determining
how well the variables X1, . . . , Xk explain the observed variation in the random
variable Y . The variation among the n observed values y1, . . . , yn of Y can be
measured by the value of

∑n
i=1(yi − y)2, which is the sum of the squares of the

deviations of y1, . . . , yn from the average y. Similarly, after the regression of Y on
X1, . . . , Xk has been fitted from the data, the variation among the n observed values
of Y that is still present can be measured by the sum of the squares of the deviations of
y1, . . . , yn from the fitted regression. This sum of squares will be equal to the value
of S2 in Eq. (11.5.6) calculated from the observed values, i.e., S2 = ∑n

i=1(yi − ŷi)
2,

where ŷi = β̂0 + β̂1xi1 + . . . + β̂kxik.
It now follows that the proportion of the variation among the observed values

y1, . . . , yn that remains unexplained by the fitted regression is∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)2

.

In turn, the proportion of the variation among the observed values y1, . . . , yn that is
explained by the fitted regression is given by the following value R2:

R2 = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
. (11.5.26)

Example
11.5.8

Unemployment in the 1950s. For the data in Example 11.5.1, we can compute y10 =
2.82, and then

∑10
i=1(yi − y10)

2 = 8.376. The value of S2 is (10 − 3) × σ ′2 = 1.126, so
R2 = 1 − 1.126/8.376 = 0.8656. �

The value of R2 must lie in the interval 0 ≤ R2 ≤ 1. When R2 = 0, the least-
squares estimates have the values β̂0 = y and β̂1 = . . . = β̂k = 0. In this case, the fitted
regression function is just the constant function y = y. When R2 is close to 1, the
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variation of the observed values of Y around the fitted regression function is much
smaller than their variation around y.

Analysis of Residuals

In Sec. 11.3, we described some plots for assessing whether or not the assumptions of
the simple linear regression model seem to be met. These same plots, together with
some others, are also useful in the general linear model. Recall that, in general, the
residuals are the values

ei = yi − ŷi = yi − zi0β0 − . . . − zip−1βp−1.

Example
11.5.9

Unemployment in the 1950s. In this example, p = 3 with zi0 = 1 for all i. We have
plotted the residuals against the two predictor variables in the top row of Fig. 11.17
to begin looking for violations of the assumptions. The residual from the first year
(1950) is very high, and the remaining residuals appear to lie near a line with positive
slope in each plot. This suggests that the first observation does not follow the same
pattern as the others. We also performed the regression without the 1950 data point.
The residual plots using the new least-squares estimates fit from the 1951–1959 data
are in the bottom row of Fig. 11.17. The residuals for 1951–1959 no longer lie on
a sloped line. Also, Fig. 11.18 shows normal quantile plots both before and after
deleting the 1950 observation. The right plot is much straighter. Of course, such a
graphical analysis does not show that the 1950 observation should be deleted. We
should check to see if something might have occurred in 1950 that would make a
drastic change to the relationship between unemployment and time (such as the start
of the war in Korea.) �

Another plot that is useful in multiple regression cases is a plot of residuals
against fitted values, ŷi for i = 1, . . . , n. (See Exercise 27 to see why this plot is not
used in simple linear regression.) This plot helps to reveal dependence between the
mean and variance of Y . (Recall that ŷi is an estimate of the mean of Yi.) If the resid-
uals are more spread out at one end or the other of this plot, it suggests that the
variance of Y changes as the mean changes, which violates the assumption that all
observations have the same variance. The left plot in Fig. 11.19 is a plot of residuals

Figure 11.17 Plots of resid-
uals against the two predictor
variables for Example 11.5.9.
Top row: using all data for
1950–1959. Bottom row: us-
ing only 1951–1959 data.

Index of production

R
es

id
ua

ls
:

19
50

2
19

59

120 130 140 150 160

20.6

0.4

R
es

id
ua

ls
:

19
50

2
19

59

20.6

0.4

Year
1950 1952 1954 1956 1958

Index of production

R
es

id
ua

ls
:

19
51

2
19

59

130 140 150 160

20.2

0.2

R
es

id
ua

ls
:

19
51

2
19

59

20.2

0.2

Year
1952 1954 1956 1958



750 Chapter 11 Linear Statistical Models

Figure 11.18 Normal quan-
tile plots of residuals for
Example 11.5.9. The left plot
is from the regression using
all 10 observations. The right
plot uses only 1951–1959.

Normal quantiles Normal quantiles

Residuals: 195021959

21.0 0.5 1.0

20.6

20.4

20.2

0.2

20.2

0.20.4

0.6

21.0 20.5 0.5 1.0

Residuals: 195021959

Figure 11.19 Residual plots
for Example 11.5.9. Left: plot
of residuals against fitted
values. Right: plot of pairs of
consecutive residuals. Both
plots use 1951–1959 data only. Fitted values
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against fitted values for the unemployment data. It appears that the residuals corre-
sponding to low fitted values are more spread out than those corresponding to high
fitted values. Methods for responding to such features in a residual plot can be found
in texts on regression methodology such as Draper and Smith (1998) and Cook and
Weisberg (1999).

If the time of each measurement is available, as in Examples 11.5.1 and 11.5.4,
it makes sense to plot residuals against time to see if there is any time dependence
not captured by the model. Since time was one of the predictors in each of these
examples, we will plot residuals against time when we plot residuals against the
predictors. In addition to plotting the residuals against time, we can also plot the
nearby residuals against each other to see if small ones tend to occur together and/or
if large ones tend to occur together. Let v1, . . . , vn be the residuals ordered by time.
We can plot the n − 1 points (v1, v2), (v2, v3), . . . , (vn−1, vn). If these plotted points
follow a pattern, it suggests that there is dependence between observations that are
close together in time, called serial dependence. This would violate the assumption
that the observations are independent. The right plot in Fig. 11.19 is the plot of
consecutive pairs of residuals for the unemployment data. The points in this plot
cluster in opposite corners, suggesting serial dependence, although the small sample
size makes it difficult to be certain.

Example
11.5.10

Dishwasher Shipments. Consider, again, the data from Example 11.5.4. Plots of resid-
uals against the two predictors, in the top row of Fig. 11.20, reveal a serious problem.
There is a curve in the plot of residuals against the year. The residuals are highest in
the middle years and lower in the early and late years. This suggests that perhaps the
relationship between shipments and time is not linear. The plot of pairs of consecu-
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Figure 11.20 Residual plots
for Example 11.5.10. Top row:
residuals against predictors.
Lower left: residuals against
fitted values. Lower right:
pairs of successive residuals.
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Figure 11.21 Residual plots
for regression of dishwasher
shipments on a quadratic
function of time. Left: plot of
residuals against time. Right:
plot of pairs of consecutive
residuals.
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tive residuals also suggests some time dependence. This could be a result of the same
problem that caused the curve in the plot of residuals against time, or it could indi-
cate that successive observations are dependent. It is possible that deviations from
the overall trend in dishwasher sales might persist for more than one year. For exam-
ple, a boom or bust in sales one year might carry over to part of the next year. The
normal quantile plot (not shown) is fairly straight.

In order to try to determine whether there is serial dependence or a nonlinear
relationship (or both) in these data, we fit another model in which the mean of Y is
a linear function of private residential investment but a quadratic function of time.
That is, let X1 stand for the year (minus 1960), let X2 stand for private residential
investment, and let X3 = X2

1. Then

E(Y ) = β0 + β1X1 + β2X2 + β3X
2
1.

The least-squares estimates from this model are β̂0 = −1445, β̂1 = 206.1, β̂2 = 48.5,
and β̂3 = −5.23. The observed value of σ ′ is 235.7. The plots of residuals against time
and of consecutive pairs of residuals are in Fig. 11.21. The plot of residuals against
time is better than before, but the pairs of consecutive residuals still lie close to a line.
This suggests that we need to take serial dependence into account. One book that
describes methods for dealing with serial dependence (commonly called time series
analysis) is Box, Jenkins, and Reinsel (1994). �
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Summary

In the general linear model, we assume that the mean of each observation Yi can be
expressed as zi0β̂0 + . . . + zip−1β̂p−1, where β0, . . . , βp−1 are unknown parameters
and zi0, . . . , zip−1 are the observed values of predictors. These predictors can be
control variables, other variables that are measured along with Yi, or functions of
such variables. Least-squares estimators of the parameters are denoted β̂0, . . . , β̂p−1,
and they can be calculated according to Eq. (11.5.10) or by using a computer. The
variance of each Yi is assumed to be the same value σ 2. Every linear combination
of the least-squares estimators has a normal distribution and is independent of the
unbiased estimator σ ′2 of σ 2 given in Eq. (11.5.8).

For testing hypotheses about a single βj , the statistic Uj in Eq. (11.5.21) has the
t distribution with n − p degrees of freedom given that the null hypothesis is true.
For predicting a future Y value, we can form prediction intervals using the endpoints
given by (11.5.25). We should always plot the residuals yi − ŷi against the predictors,
fitted values ŷi, and time (if available) to check on the assumptions of the linear
regression model. Patterns in these plots can suggest violations of the assumption
about the form of the mean of Yi and/or the constant variance assumption. We should
also make a normal quantile plot. Deviations from a straight line in this plot suggest
that the Yi values might not have a normal distribution, although violations of the
assumptions about the mean and variance can also cause patterns in this plot. If
observation time is available, we should also plot pairs of consecutive residuals to
look for serial dependence.

Exercises

1. Show that the M.L.E. of σ 2 in the general linear model
is given by Eq. (11.5.7).

2. Prove that σ ′2, defined in Eq. (11.5.8), is an unbiased
estimator of σ 2. You may assume that S2 has a χ2 distri-
bution with n − p degrees of freedom.

3. Consider a regression problem in which, for each value
x of a certain variable X, the random variable Y has the
normal distribution with mean βx and variance σ 2, where
the values of β and σ 2 are unknown. Suppose that n inde-
pendent pairs of observations (xi, Yi) are obtained. Show
that the M.L.E. of β is

β̂ =
∑n

i=1 xiYi∑n
i=1 x2

i

.

4. For the conditions of Exercise 3, show that E(β̂) = β

and Var(β̂) = σ 2/(
∑n

i=1 x2
i
).

5. Suppose that when a small amount x of an insulin
preparation is injected into a rabbit, the percentage de-
crease Y in blood sugar has the normal distribution with
mean βx and variance σ 2, where the values of β and σ 2

are unknown. Suppose that when independent observa-
tions are made on 10 different rabbits, the observed values
of xi and Yi for i = 1, . . . , 10 are as given in Table 11.14.

Determine the values of the M.L.E.’s β̂ and σ̂ 2, and the
value of Var(β̂).

Table 11.14 Data for Exercise 5

i x i yi i x i yi

1 0.6 8 6 2.2 19

2 1.0 3 7 2.8 9

3 1.7 5 8 3.5 14

4 1.7 11 9 3.5 22

5 2.2 10 10 4.2 22

6. For the conditions of Exercise 5 and the data in Table
11.14, carry out a test of the following hypotheses:

H0 : β = 10,

H1 : β 	= 10.

7. Consider a regression problem in which a patient’s re-
action Y to a new drug B is to be related to his reaction
X to a standard drug A. Suppose that for each value x

of X, the regression function is a polynomial of the form
E(Y ) = β0 + β1x + β2x

2. Suppose also that 10 pairs of ob-
served values are as shown in Table 11.1 on page 690. Un-
der the standard assumptions of the general linear model,
determine the values of the M.L.E.’s β̂0, β̂1, β̂2, and σ̂ 2.
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8. For the conditions of Exercise 7 and the data in Table
11.1, determine the values of Var(β̂0), Var(β̂1), Var(β̂2),
Cov(β̂0, β̂1), Cov(β̂0, β̂2), and Cov(β̂1, β̂2).

9. For the conditions of Exercise 7 and the data in Table
11.1, carry out a test of the following hypotheses:

H0 : β2 = 0,

H1 : β2 	= 0.

10. For the conditions of Exercise 7 and the data in
Table 11.1, carry out a test of the following hypotheses:

H0 : β1 = 4,

H1 : β1 	= 4.

11. For the conditions of Exercise 7 and the data given
in Table 11.1, determine the value of R2, as defined by
Eq. (11.5.26).

12. Consider a problem of multiple linear regression in
which a patient’s reaction Y to a new drug B is to be related
to her reaction X1 to a standard drug A and her heart rate
X2. Suppose that, for all values X1 = x1 and X2 = x2, the
regression function has the form E(Y ) = β0 + β1x1 + β2x2,
and the values of 10 sets of observations (xi1, xi2, Yi)
are given in Table 11.2 on page 696. Under the standard
assumptions of multiple linear regression, determine the
values of the M.L.E.’s β̂0, β̂1, β̂2, and σ̂ 2.

13. For the conditions of Exercise 12 and the data in
Table 11.2, determine the values of Var(β̂0), Var(β̂1),
Var(β̂2), Cov(β̂0, β̂1), Cov(β̂0, β̂2), and Cov(β̂1, β̂2).

14. For the conditions of Exercise 12 and the data in
Table 11.2, carry out a test of the following hypotheses:

H0 : β1 = 0,

H1 : β1 	= 0.

15. For the conditions of Exercise 12 and the data in
Table 11.2, carry out a test of the following hypotheses:

H0 : β2 = −1,
H1 : β2 	= −1.

16. For the conditions of Exercise 12 and the data in
Table 11.2, determine the value of R2, as defined by
Eq. (11.5.26).

17. Consider the general linear model in which the ob-
servations Y1, . . . , Yn are independent and have normal
distributions with the same variance σ 2 and in which E(Yi)

is given by Eq. (11.5.1). Let the matrix (Z ′Z)−1 be defined
by Eq. (11.5.19). For all values of i and j such that i 	= j ,
let the random variable Aij be defined as follows:

Aij = β̂i − ζij

ζjj

β̂j .

Show that Cov(β̂j , Aij ) = 0, and explain why β̂j and Aij

are therefore independent.

18. For the conditions of Exercise 17, show that Var(Aij )

= [ζii − (ζ 2
ij
/ζjj )]σ

2. Also show that the following random

variable W 2 has the χ2 distribution with two degrees of
freedom:

W 2 = ζjj (β̂i − βi)
2 + ζii(β̂j − βj)

2 − 2ζij (β̂i − βi)(β̂j − βj)(
ζiiζjj − ζ 2

ij

)
σ 2

.

Hint: Show that

W 2 = (β̂j − βj)
2

ζjjσ
2

+
[
Aij − E(Aij)

]2

Var(Aij )
.

19. Consider again the conditions of Exercises 17 and
18, and let the random variable σ ′ be as defined by Eq.
(11.5.8).

a. Show that the random variable σ 2W 2/(2σ ′2) has the
F distribution with two and n − p degrees of free-
dom.

b. For every two given numbers β∗
i

and β∗
j
, describe how

to carry out a test of the following hypotheses:

H0 : βi = β∗
i

and βj = β∗
j
,

H1 : The hypothesis H0 is not true.

20. For the conditions of Exercise 7 and the data in
Table 11.1, carry out a test of the following hypotheses:

H0 : β1 = β2 = 0,

H1 : The hypothesis H0 is not true.

21. For the conditions of Exercise 12 and the data in
Table 11.2, carry out a test of the following hypotheses:

H0 : β1 = 1 and β2 = 0,

H1 : The hypothesis H0 is not true.

22. Consider a problem of simple linear regression as de-
scribed in Sec. 11.2, and let R2 be defined by Eq. (11.5.26)
of this section. Show that

R2 =
[∑n

i=1(x i − x)(yi − y)
]2[∑n

i=1(x i − x)2
] [∑n

i=1(yi − y)2
] .

23. Suppose that X and Y are n-dimensional random vec-
tors for which the mean vectors E(X) and E(Y ) exist.
Show that E(X + Y ) = E(X) + E(Y ).

24. Suppose that X and Y are independent n-dimensional
random vectors for which the covariance matrices Cov(X)

and Cov(Y ) exist. Show that Cov(X + Y ) = Cov(X) +
Cov(Y ).
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25. Suppose that Y is a three-dimensional random vec-
tor with coordinates Y1, Y2, and Y3, and suppose that the
covariance matrix of Y is as follows:

Cov(Y ) =
⎡⎣ 9 −3 0

−3 4 0
0 0 5

⎤⎦.

Determine the value of Var(3Y1 + Y2 − 2Y3 + 8).

26. In a general linear model setting with p predictors, we
wish to test the following hypotheses:

H0 :
p−1∑
j=0

cjβj = c∗,

H1 :
p−1∑
j=0

cjβj 	= c∗.

(11.5.27)

a. Show that
∑p−1

j=0 cj β̂j has a normal distribution and
find its mean and variance. (You may wish to use
Theorems 11.3.1 and 11.5.2.)

b. Let c ′ = (c0, . . . , cp−1). If H0 is true, show that

U =
∑p−1

j=0 cj β̂j − c∗
σ ′(c ′(Z ′Z)−1c)1/2

has the t distribution with n − p degrees of freedom.
c. Explain how to test the hypotheses in (11.5.27) at

level of significance α0.

27. In a simple linear regression problem, the plot of
residuals against fitted values would look the same as the
plot of residuals against the predictor X (or a mirror im-
age of it), except for the labeling of the horizontal axis.
Explain why this is true.

28. Consider a multiple linear regression problem with
design matrix Z and observations Y . Let Z1 be the matrix
remaining when at least one column is removed from Z.
Then Z1 is the design matrix for a linear regression prob-
lem with fewer predictors and the same data Y . Prove that
the value of R2 calculated in the problem using design ma-
trix Z is at least as large as the value of R2 calculated in
the problem using design matrix Z1.

29. Calculate the value of R2 for the dishwasher shipment
data (Example 11.5.4) using the model in which the mean
of Yi is a linear function of both year and private residen-
tial investment.

30. Consider again the conditions of Exercise 26. Suppose
that the null hypothesis in (11.5.27) is false. Find the dis-
tribution of the statistic U defined in that exercise.

11.6 Analysis of Variance
In Sec. 9.6, we studied methods for comparing the means of two normal distribu-
tions. In this section, we shall consider experiments in which we need to compare
the means of two or more normal distributions. The theory behind the methods de-
veloped here is based entirely on results from the general linear model in Sec. 11.5.

The One-Way Layout

Example
11.6.1

Calories in Hot Dogs. Moore and McCabe (1999) describe data gathered by Consumer
Reports (June 1986, pp. 364–67). The data comprise (among other things) calorie
contents from 63 brands of hot dogs. (See Table 11.15.) The hot dogs come in four
varieties: beef, “meat” (don’t ask), poultry, and “specialty.” (Specialty hot dogs
include stuffing such as cheese or chili.) It is interesting to know whether, and to
what extent, the different varieties differ in their calorie contents. Data structures of
the sort in this example, consisting of several groups of similar random variables, are
the subject of this section. �

In this section and in the remainder of this chapter, we shall study a topic
known as the analysis of variance, abbreviated ANOVA. Problems of ANOVA
are actually problems of multiple regression in which the design matrix Z has a
very special form. In other words, the study of ANOVA can be placed within the
framework of the general linear model (Definition 11.5.1), if we continue to make
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Table 11.15 Calorie counts in four types of hot dogs for Example 11.6.2

Type Calorie Count

Beef 186, 181, 176, 149, 184, 190, 158, 139, 175, 148, 152, 111,
141, 153, 190, 157, 131, 149, 135, 132

Meat 173, 191, 182, 190, 172, 147, 146, 139, 175, 136, 179, 153,
107, 195, 135, 140, 138

Poultry 129, 132, 102, 106, 94, 102, 87, 99, 107, 113, 135, 142, 86,
143, 152, 146, 144

Specialty 155, 170, 114, 191, 162, 146, 140, 187, 180

the basic assumptions for such a model: The observations that are obtained are
independent and normally distributed; all these observations have the same variance
σ 2; and the mean of each observation can be represented as a linear combination of
certain unknown parameters. The theory and methodology of ANOVA were mainly
developed by R. A. Fisher during the 1920s.

We shall begin our study of ANOVA by considering a problem known as the
one-way layout. In this problem, it is assumed that random samples from p different
normal distributions are available, each of these distributions has the same variance
σ 2, and the means of the p distributions are to be compared on the basis of the
observed values in the samples. This problem was considered for two populations
(p = 2) in Sec. 9.6, and the results to be presented here for an arbitrary value of
p will generalize those presented in Sec. 9.6. Specifically, we shall now make the
following assumption: For i = 1, . . . , p, the random variables Yi1, . . . , Yini

, form a
random sample of ni observations from the normal distribution with mean μi and
variance σ 2, and the values of μ1, . . . , μp and σ 2 are unknown.

In this problem, the sample sizes n1, . . . , np are not necessarily the same. We
shall let n = ∑p

i=1 ni denote the total number of observations in the p samples, and
we shall assume that all n observations are independent.

Example
11.6.2

Calories in Hot Dogs. In Example 11.6.1, the sample sizes are n1 = 20 (beef), n2 = 17
(meat), n3 = 17 (poultry), and n4 = 9 (specialty). In this case, we let μ1 stand for the
mean calorie count for brands of beef hot dogs, while μ2, μ3, and μ4 will stand for the
mean calorie count for brands of meat, poultry, and specialty hot dogs, respectively.
All calorie counts are assumed to be independent normal random variables with
variance σ 2. These data will be analyzed after we develop the ANOVA methodology.

�

It follows from the assumptions we have just made that for j = 1, . . . , ni and
i = 1, . . . , p, we have E(Yij) = μi and Var(Yij ) = σ 2. Since the expectation E(Yij) of
each observation is equal to one of the p parameters μ1, . . . , μp, it is obvious that
each of these expectations can be regarded as a linear combination of μ1, . . . , μp.
Furthermore, we can regard the n observations Yij as the elements of a single long
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n-dimensional vector Y , which can be written as follows:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 1
...

Y1 n1
...

Yp 1
...

Yp np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.6.1)

This one-way layout therefore satisfies the conditions of the general linear model.
In order to make the one-way layout look exactly like the general linear model, we
could define parameters βi = μi+1 for i = 0, . . . , p − 1. Then the n × p design matrix,
Z, has one column for each population. The column corresponding to population 1
has n1 1’s followed by n2 + . . . + np 0’s. The column corresponding to population 2
has n1 0’s followed by n2 1’s followed by n3 + . . . + np 0’s, and so on. For example,
using the hot dog data in Example 11.6.2, the Z matrix would be

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
...

1 0 0 0
0 1 0 0

...
0 1 0 0
0 0 1 0

...
0 0 1 0
0 0 0 1

...
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
20 rows

}
17 rows

}
17 rows

}
9 rows

(11.6.2)

We shall not use the general linear model notation any further in the development
of ANOVA, because the parameters μ1, . . . , μp are more natural.

For i = 1, . . . , p, we shall let Y i+ denote the sample mean of the ni observations
in the ith sample. Thus,

Y i+ = 1
ni

ni∑
j=1

Yij . (11.6.3)

Similar logic to that used in the proof of Theorem 11.2.1 can be used to show that
Y i+ is the M.L.E., or least-squares estimator, of μi for i = 1, . . . , p. Also, the M.L.E.
of σ 2 is

σ̂ 2 = 1
n

p∑
i=1

ni∑
j=1

(
Yij − Y i+

)2
. (11.6.4)

The details are left to Exercise 1.
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Partitioning a Sum of Squares

Example
11.6.3

Calories in Hot Dogs. In Examples 11.6.1 and 11.6.2, we notice that the calorie counts
within each type differ quite a bit from each other. We need to be able to quantify
both the variation within type and the variation between types if we are going to try
to address the question of whether or not different types of hot dogs have the same
calorie counts. �

In a one-way layout, we are often interested in testing the hypothesis that the p

distributions from which the samples were drawn are actually the same; that is, we
desire to test the following hypotheses:

H0 : μ1 = . . . = μp,

H1 : The hypothesis H0 is not true.
(11.6.5)

For instance, in Example 11.6.2, the null hypothesis H0 in (11.6.5) would be that the
mean calorie counts for all four types of hot dogs are the same, but it would not
specify what the common value is. The alternative hypothesis H1 would be that at
least two of the means differ, but it would not specify which means differ nor would
it specify by how much the means differ.

Before we develop an appropriate test procedure, we shall carry out some
preparatory algebraic manipulations. First, define

Y++ = 1
n

p∑
i=1

ni∑
j=1

Yij = 1
n

p∑
i=1

niY i+,

which is the overall average of all n observations. We shall partition the sum of squares

S2
Tot =

p∑
i=1

ni∑
j=1

(Yij − Y++)2 (11.6.6)

into two smaller sums of squares, each of which will be associated with a certain type
of variation among the n observations. Note that S2

Tot/n would be the M.L.E. of σ 2 if
we believed that all of the observations came from a single normal distribution rather
than from p different normal distributions. This means that we can interpret S2

Tot as
an overall measure of variation between the n observations. One of the smaller sums
of squares into which we shall partition S2

Tot will measure the variation between the p

different samples, and the other sum of squares will measure the variation between
the observations within each of the samples. The test of the hypotheses (11.6.5) that
we shall develop will be based on the ratio of these two measures of variation. For
this reason, the name analysis of variance has been used to describe this problem and
other related problems.

Theorem
11.6.1

Partitioning the Sum of Squares. Let S2
Tot be as defined in Eq. (11.6.6). Then

S2
Tot = S2

Resid + S2
Betw, (11.6.7)

where

S2
Resid =

p∑
i=1

ni∑
j=1

(Yij − Y i+)2, and S2
Betw =

p∑
i=1

ni(Y i+ − Y++)2.

Furthermore, S2
Resid/σ

2 has the χ2 distribution with n − p degrees of freedom and is
independent of S2

Betw.
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Table 11.16 General form of ANOVA table for one-way layout

Source of Degrees of
variation freedom Sum of squares Mean square

Between samples p − 1 S2
Betw S2

Betw/(p − 1)

Residuals n − p S2
Resid S2

Resid/(n − p)

Total n − 1 S2
Tot

Proof If we consider only the ni observations in sample i, then the sum of squares
for those values can be written as follows:

ni∑
j=1

(Yij − Y++)2 =
ni∑

j=1

(Yij − Y i+)2 + ni(Y i+ − Y++)2. (11.6.8)

It follows from Theorem 8.3.1 that the sum forming the first term on the right side
of Eq. (11.6.8) has the χ2 distribution with ni − 1 degrees of freedom and that it
is independent of Y i+. Since Y++ is a function of Y 1+, . . . , Y p+, all of which are
independent of the first term on the right side of Eq. (11.6.8), it follows that the two
terms on the right side of Eq. (11.6.8) are independent.

If we now sum each of the terms in Eq. (11.6.8) over the values of i, we obtain
Eq. (11.6.7). Since all the observations in the p samples are independent, the two
terms on the right side of Eq. (11.6.7) are independent. Also, S2

Resid/σ
2 is the sum

of p independent random variables, with the ith one having the χ2 distribution with
ni − 1 degrees of freedom. Hence, S2

Resid/σ
2 will itself have the χ2 distribution with∑p

i=1(ni − 1) = n − p degrees of freedom.

As we noted earlier, S2
Tot can be regarded as the total variation of the observations

around their overall mean. Similarly, S2
Resid can be regarded as the total variation of

the observations around their particular sample means, or the total residual variation
within the samples. Also, S2

Betw can be regarded as the total variation of the sample
means around the overall mean, or the variation between the sample means. Thus,
the total variation S2

Tot has been partitioned into two independent components, S2
Resid

and S2
Betw, which represent different types of variations. This partitioning is often

summarized in a table, which is called the ANOVA table for the one-way layout and
is presented here as Table 11.16.

The numbers in the “Mean square” column of Table 11.16 are just the sums of
squares divided by the degrees of freedom. They are used for testing the hypotheses
(11.6.5). The degrees of freedom in the “Between samples” and “Total” rows will
turn out to be degrees of freedom for random variables with χ2 distributions if the
null hypothesis in (11.6.5) is true. We shall see why this is true after we develop an
appropriate test of the hypotheses (11.6.5).

Note: The Residual Mean Square Is the Same as the Unbiased Estimator of σ 2 in
the Regression Setting. We began this section by expressing the one-way layout as a
multiple linear regression problem with data vector Y and design matrix Z. Compare
the M.L.E. of σ 2, σ̂ 2 in Eq. (11.6.4), to the residual mean square in Table 11.16 to see
that the two differ only in the constant in the denominator. The M.L.E. is S2

Resid/n,
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Table 11.17 ANOVA table for Example 11.6.4

Source of Degrees of
variation freedom Sum of squares Mean square

Between samples 3 19,454 6485

Residuals 59 32,995 559.2

Total 62 52,449

while the residual mean square is S2
Resid/(n − p). Recall that this last ratio was called

σ ′2 in Sec. 11.5, and is an unbiased estimator of σ 2. (Prove this last fact in Exercise 8.)

Example
11.6.4

Calories in Hot Dogs. The four sample averages in Example 11.6.2 are

Y 1+ = 156.85, Y 2+ = 158.71, Y 3+ = 118.76, Y 4+ = 160.56.

The overall average is Y++ = 147.60. We can now form the ANOVA table in
Table 11.17. We shall test the hypotheses (11.6.5) after we develop an appropriate
test statistic. �

Testing Hypotheses

In order to test the hypotheses (11.6.5), we need a test statistic that will tend to be
larger if H1 is true than it is if H0 is true. We also need to know the distribution of the
test statistic when H0 is true.

Theorem
11.6.2

Suppose that H0 in (11.6.5) is true. Then

U2 = S2
Betw/(p − 1)

S2
Resid/(n − p)

(11.6.9)

has the F distribution with p − 1 and n − p degrees of freedom.

Proof If all p samples of observations have the same mean, it can be shown (see
Exercise 2) that S2

Betw/σ 2 has the χ2 distribution with p − 1 degrees of freedom.
We have already seen that S2

Betw is independent of S2
Resid, and S2

Resid/σ
2 has the χ2

distribution with n − p degrees of freedom. It therefore follows that when H0 is true,
U2 has the distribution stated in the theorem.

When the null hypothesis H0 is not true, so that at least two of the μi values are
different, then the expectation of the numerator of U2 will be larger than it would
be if H0 were true. (See Exercise 11.) The distribution of the denominator of U2

remains the same regardless of whether or not H0 is true. A sensible level α0 test of
the hypotheses (11.6.5) would then be to reject H0 if U2 ≥ F−1

p−1, n−p
(1 − α0), where

F−1
p−1, n−p

is the quantile function for the F distribution with p − 1 and n − p degrees
of freedom. A partial table of F distribution quantiles is given in the back of this book.
It can be shown that this test is also the level α0 likelihood ratio test procedure. (See
Exercise 12.)
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Example
11.6.5

Calories in Hot Dogs. Suppose that we desire to test the null hypothesis that all four
types of hot dogs have the same mean calorie count against the alternative hypothesis
that at least two types have different means. The statistic U2 in Eq. (11.6.9) has
the F distribution with 3 and 59 degrees of freedom if the null hypothesis is true.
The observed value of U2 is the ratio of the between samples mean square to the
residual mean square from Table 11.17, namely, 6485/559.2 = 11.60. The p-value
corresponding to this value is 4.5 × 10−6, so the null hypothesis would be rejected at
most standard levels. �

Power of the Test If the null hypothesis in (11.6.5) is false, then the statistic U2 in
Eq. (11.6.9) has a distribution known as noncentral F . For more details on the power
function, consult a more advanced text such as Scheffé (1959, chapter 2). We shall
not discuss the power of ANOVA tests any further.

Analysis of Residuals

Since the one-way layout is a special case of the general linear model, we make the
assumptions of the general linear model when we perform the one-way ANOVA cal-
culations. We should also compute residuals and plot them to see if the assumptions
appear reasonable. The residuals are the values eij = Yij − Ȳi+, for j = 1, . . . , ni and
i = 1, . . . , p.

Example
11.6.6

Calories in Hot Dogs. Figure 11.22 contains a plot of residuals against the categorical
variable “hot dog type.” Figure 11.23 contains the plot of residuals against normal
quantiles. The points in the normal quantile plot are labeled by the hot dog type.
Several disturbing features appear in these plots. First, there are three residuals with
large negative values. Second, each of the first three samples appears to contain two
distinct subsets, one with low residuals and one with high residuals. There is a gap
between the two subsets in each sample. This suggests that there is another variable
that we haven’t discussed yet but which distinguishes these two subgroups. If we go
back to the reported data (in the original Consumer Reports article), we find that the
weight of each package and the number of hot dogs per package are also reported.
The ratio of these two numbers is the weight of an average hot dog. Figure 11.24
contains a plot of residuals against average hot dog weight. Notice that most of the
large residuals come from the larger (heavier) hot dogs and the smaller residuals tend
to come from the smaller (lighter) hot dogs. Perhaps a better analysis would have set
Y equal to calories per ounce rather than calories per hot dog. �

Figure 11.22 Plot of resid-
uals against hot dog type.

Type of hot dog

240

220

20

Beef Meat Poultry Specialty

Residuals
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Figure 11.23 Plot of residu-
als against normal quantiles.
The points are labeled by the
hot dog type.

Normal quantiles

22 21 1 2

240

220

20

Residuals
Beef
Meat
Poultry
Specialty

Figure 11.24 Plot of resid-
uals against average hot dog
weight. The points are labeled
by the hot dog type.

Weight of average hot dog

1.2 1.4 1.6 1.8 2.0

240

220

20

Beef
Meat
Poultry
Specialty

Residuals

Summary

The one-way layout can be considered as a general linear model, and we can use
the methods of Sec. 11.5 to fit the model. However, the hypotheses of most interest
in the one-way layout are (11.6.5). These hypotheses concern more than one linear
combination of the regression coefficients, and they are not a special case of the
hypotheses that we learned how to test in Sec. 11.5. To test these new hypotheses,
we developed the analysis of variance (ANOVA) and the ANOVA table. The test
statistic is U2 in Eq. (11.6.9), which has the F distribution with p − 1 and n − p

degrees of freedom if H0 is true. The level α0 test of H0 is to reject H0 if U2 is greater
than the 1 − α0 quantile of the appropriate F distribution.

Exercises

1. In a one-way layout, show that Y i+ is the least-squares
estimator of μi by showing that the ith coordinate of the
vector (Z ′Z)−1Z ′Y is Y i+ for i = 1, . . . , p.

2. Assume that H0 in (11.6.5) is true; that is, all observa-
tions have the same mean μ. Prove that S2

Betw/σ 2 has the
χ2 distribution with p − 1 degrees of freedom. Hint: Let

X =
⎛⎝ n

1/2
1 (Y 1+ − μ)/σ 2

...
n1/2

p
(Yp+ − μ)/σ 2

⎞⎠,

then use the same method that was used in Sec. 8.3 to find
the distribution of the sample variance. You may use the
following fact without proving it:

Let u = ((n1/n)1/2, . . . , (np/n)1/2). Then there ex-
ists an orthogonal matrix A whose first row is u.
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3. Show that
p∑

i=1

ni(Y i+ − Y++)2 =
p∑

i=1

niY
2
i+ − nY

2
++.

4. Specimens of milk from a number of dairies in three
different districts were analyzed, and the concentration
of the radioactive isotope strontium-90 was measured in
each specimen. Suppose that specimens were obtained
from four dairies in the first district, from six dairies in the
second district, and from three dairies in the third district,
and that the results measured in picocuries per liter were
as follows:

District 1: 6.4, 5.8, 6.5, 7.7,

District 2: 7.1, 9.9, 11.2, 10.5, 6.5, 8.8,

District 3: 9.5, 9.0, 12.1.

a. Assuming that the variance of the concentration of
strontium-90 is the same for the dairies in all three
districts, determine the M.L.E. of the mean concen-
tration in each of the districts and the M.L.E. of the
common variance.

b. Test the hypothesis that the three districts have iden-
tical concentrations of strontium-90.

5. A random sample of 10 students was selected from the
senior class at each of four large high schools, and the score
of each of these 40 students on a certain mathematics ex-
amination was observed. Suppose that for the 10 students
from each school, the sample mean and the sample vari-
ance of the scores were as shown in Table 11.18. Test the
hypothesis that the senior classes at all four high schools
would perform equally well on this examination. Discuss
carefully the assumptions that you are making in carrying
out this test.

Table 11.18 Data for Exercise 5

School Sample mean Sample variance

1 105.7 30.3

2 102.0 54.4

3 93.5 25.0

4 110.8 36.4

6. Suppose that a random sample of size n is taken from
the normal distribution with mean μ and variance σ 2.
Before the sample is observed, the random variables are
divided into p groups of sizes n1, . . . , np, where ni ≥ 2
for i = 1, . . . , p and

∑p

i=1 ni = n. For i = 1, . . . , p, let Qi

denote the sum of the squares of the deviations of the
ni observations in the ith group from the sample mean
of those ni observations. Find the distribution of the sum
Q1 + . . . + Qp and the distribution of the ratio Q1/Qp.

7. Verify that the t test presented in Sec. 9.6 for comparing
the means of two normal distributions is the same as the
test presented in this section for the one-way layout with
p = 2 by verifying that if U is defined by Eq. (9.6.3), then
U2 is equal to the expression given in Eq. (11.6.9).

8. Show that in a one-way layout the following statistic is
an unbiased estimator of σ 2:

1
n − p

p∑
i=1

ni∑
j=1

(Yij − Y i+)2.

9. In a one-way layout, show that for all values of i, i′,
and j , where j = 1, . . . , ni, i = 1, . . . , p, and i′ = 1, . . . , p,
the following three random variables W1, W2, and W3 are
uncorrelated with each other:

W1 = Yij − Y i+, W2 = Y i′+ − Y++, W3 = Y++.

10. In 1973, the President of Texaco, Inc., made a state-
ment to a U.S. Senate subcommittee concerned with air
and water pollution. The committee was concerned with,
among other things, the noise levels associated with au-
tomobile filters. He cited the data in Table 11.19 from a
study that included vehicles of three different sizes.

Table 11.19 Data for Exercise 10

Vehicle size Noise values

Small 810, 820, 820, 835, 835, 835

Medium 840, 840, 840, 845, 855, 850

Large 785, 790, 785, 760, 760, 770

a. Construct the ANOVA table for these data.

b. Compute the p-value for the null hypothesis that all
three sizes of vehicles produce the same level of noise
on average.

11. Assume that the null hypothesis H0 in (11.6.5) is false.
Prove that the expected value of S2

Betw is (p − 1)σ 2 +∑p

i=1 ni(μi − μ)2, where μ = 1
n

∑p

i=1 niμi.

12. Prove that the level α0 likelihood ratio test of hypothe-
ses (11.6.5) in the one-way layout is to reject H0 if U2 >

F−1
p−1, n−p

(1 − α0). Hint: First, partition
∑ni

j=1(yij − μi)
2 in

a manner similar to Eq. (11.6.8). Then, replace Y++ by a
constant, say, μ, in the formula for S2

Tot, and partition the
result in a manner similar to Eq. (11.6.7). There will be
one extra term.

13. Suppose that the null hypothesis in (11.6.5) is true.
Prove that S2

Tot/σ
2 has the χ2 distribution with n − 1 de-

grees of freedom.
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14. A popular alternative parameterization of the one-
way layout is the following. Let μ = 1

n

∑p

i=1 niμi, and de-
fine αi = μi − μ. This makes E(Yij ) = μ + αi.

a. Prove that
∑p

i=1 αi = 0.

b. Prove that the M.L.E. of αi is Y i+ − Y++.

c. Prove that the null hypothesis H0 in (11.6.5) is equiv-
alent to α1 = . . . = αp = 0.

d. Prove that the mean of S2
Betw is (p − 1)σ 2 +∑p

i=1 niα
2
i
.

� 11.7 The Two-Way Layout
In Sec. 11.6, we learned how to analyze several samples that differed in some
characteristic. For example, we analyzed data collected from hot dogs that differed
by the type of meat from which they were made. Suppose that, in addition to
differing by the type of meat, the hot dogs had also differed by being labeled either
“low fat” or not. This would have given us two different characteristics to form the
basis for comparisons. In this section, we shall study how to analyze data consisting
of observations that differ on two characteristics.

The Two-Way Layout with One Observation in Each Cell

Example
11.7.1

Radioactive Isotope in Milk. Suppose that in an experiment to measure the concentra-
tion of a certain radioactive isotope in milk, specimens of milk are obtained from four
different dairies, and the concentration of the isotope in each specimen is measured
by three different methods. If we let Yij denote the measurement that is made for the
specimen from the ith dairy by using the j th method, for i = 1, 2, 3, 4 and j = 1, 2, 3,
then in this example there will be a total of 12 measurements. There are two main
questions of interest in this example. The first is whether the concentration of the
isotope is the same in the milk of all four dairies. The second question is whether the
three different methods produce concentration measurements that appear to differ.

�

A problem of the type in Example 11.7.1, in which the value of the random
variable being observed is affected by two factors, is called a two-way layout. In
the general two-way layout, there are two factors, which we shall call A and B. We
shall assume that there are I possible different values, or different levels, of factor
A, and that there are J possible different values, or different levels, of factor B.
For i = 1, . . . , I and j = 1, . . . , J , an observation Yij of the variable being studied
is obtained when factor A has the value i and factor B has the value j . If the IJ
observations are arranged in a matrix as in Table 11.20, then Yij is the observation in
the (i, j) cell of the matrix.

We shall continue to make the assumptions of the general linear model for the
two-way layout. Thus, we shall assume that all the observations Yij are independent,
each observation has a normal distribution, and all the observations have the same
variance σ 2. In this section, we specialize the assumption about the mean E(Yij) as
follows: We shall assume not only that E(Yij) depends on the values i and j of the
two factors, but also that there exist numbers θ1, . . . , θI and ψ1, . . . , ψJ such that

E(Yij) = θi + ψj for i = 1, . . . , I and j = 1, . . . , J. (11.7.1)

Thus, Eq. (11.7.1) states that the value of E(Yij) is the sum of the following two
effects: an effect θi due to factor A having the value i, and an effect ψj due to factor B
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Table 11.20 Generic data for two-way layout

Factor B

Factor A 1 2 . . . J

1 Y11 Y12 . . . Y1J

2 Y21 Y22 Y2J
...

I YI1 YI2 YIJ

having the value j . For this reason, the assumption that E(Yij) has the form given in
Eq. (11.7.1) is called an assumption of additivity of the effects of the factors.

The meaning of the assumption of additivity can be clarified by the following
example. Consider the sale of I different magazines at J different newsstands. Sup-
pose that a particular newsstand sells on the average 30 more copies per week of
magazine 1 than of magazine 2. Then by the assumption of additivity, it must also be
true that each of the other J − 1 newsstands sells on the average 30 more copies per
week of magazine 1 than of magazine 2. Similarly, suppose that the sales of a partic-
ular magazine are on the average 50 more copies per week at newsstand 1 than at
newsstand 2. Then by the assumption of additivity, it must also be true that the sales
of each of the other I − 1 magazines are on the average 50 more copies per week at
newsstand 1 than at newsstand 2. The assumption of additivity is a very restrictive
assumption because it does not allow for the possibility that a particular magazine
may sell unusually well at some particular newsstand. In Sec. 11.8, we shall consider
models in which we do not make the assumption of additivity.

Even though we assume in the general two-way layout that the effects of the
factors A and B are additive, the numbers θi and ψj that satisfy Eq. (11.7.1) are
not uniquely defined. We can add an arbitrary constant c to each of the numbers
θ1, . . . , θI and subtract the same constant c from each of the numbers ψ1, . . . , ψJ

without changing the value of E(Yij) for any of the IJ observations. Hence, it does not
make sense to try to estimate the value of θi or ψj from the given observations, since
neither θi nor ψj is uniquely defined. In order to avoid this difficulty, we shall express
E(Yij) in terms of different parameters. The following assumption is equivalent to the
assumption of additivity.

We shall assume that there exist numbers μ, α1, . . . , αI , and β1, . . . , βJ such that

I∑
i=1

αi = 0 and
J∑

j=1

βj = 0, (11.7.2)

and

E(Yij) = μ + αi + βj for i = 1, . . . , I and j = 1, . . . , J. (11.7.3)

There is an advantage in expressing E(Yij) in this way. If the values of E(Yij) for
i = 1, . . . , I and j = 1, . . . , J are a set of numbers that satisfy Eq. (11.7.1) for some
set of values of θ1, . . . , θI and ψ1, . . . , ψJ , then there exists a unique set of values of
μ, α1, . . . , αI , and β1, . . . , βJ that satisfy Eqs. (11.7.2) and (11.7.3) (see Exercise 3).

The parameter μ is called the overall mean, or the grand mean, since it follows
from Eqs. (11.7.2) and (11.7.3) that
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μ = 1
IJ

I∑
i=1

J∑
j=1

E(Yij). (11.7.4)

The parameters α1, . . . , αI are called the effects of factor A, and the parameters
β1, . . . , βJ are called the effects of factor B.

It follows from Eq. (11.7.2) that αI = −∑I−1
i=1 αi and βJ = −∑J−1

j=1 βj . Hence, each
expectation E(Yij) in Eq. (11.7.3) can be expressed as a particular linear combination
of the I + J − 1parameters μ, α1, . . . , αI−1, and β1, . . . , βJ−1. Therefore, if we regard
the IJ observations as elements of a single long IJ-dimensional vector, then the two-
way layout satisfies the conditions of the general linear model. In a practical problem,
however, it is not convenient to actually replace αI and βJ with their expressions in
terms of the other αi’s and βj ’s, because this replacement would destroy the symmetry
that is present in the experiment among the different levels of each factor.

Estimating the Parameters

The following result is straightforward, but tedious, to prove.

Theorem
11.7.1

Define

Y i+ = 1
J

J∑
j=1

Yij for i = 1, . . . , I,

Y+j = 1
I

I∑
i=1

Yij for j = 1, . . . , J, (11.7.5)

Y++ = 1
IJ

I∑
i=1

J∑
j=1

Yij = 1
I

I∑
i=1

Y i+ = 1
J

J∑
j=1

Y+j .

Then the M.L.E.’s (and least-squares estimators) of μ, α1, . . . , αI , and β1, . . . , βJ

are as follows:

μ̂ = Y++,

α̂i = Y i+ − Y++ for i = 1, . . . , I, (11.7.6)

β̂j = Y+j − Y++ for j = 1, . . . , J.

The M.L.E. of σ 2 will be

σ̂ 2 = 1
IJ

I∑
i=1

J∑
j=1

(Yij − μ̂ − α̂i − β̂j )
2 = 1

IJ

I∑
i=1

J∑
j=1

(Yij − Ŷij )
2.

It is easily verified (see Exercise 6) that
∑I

i=1 α̂i = ∑J
j=1 β̂j = 0; E(μ̂) = μ; E(α̂i) = αi

for i = 1, . . . , I ; and E(β̂j) = βj for j = 1, . . . , J . Because E(Yij) = μ + αi + βj , the
M.L.E. of E(Yij) is

Ŷij = Y i+ + Y+j − Y++ = μ̂ + α̂i + β̂j ,

which is also called the fitted value for Yij .

Example
11.7.2

Radioactive Isotope in Milk. Consider again Example 11.7.1. Suppose that the concen-
trations of the radioactive isotope measured in picocuries per liter by three different
methods in specimens of milk from four dairies are as shown in Table 11.21. From
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Table 11.21 Data for Example 11.7.2

Method

Dairy 1 2 3

1 6.4 3.2 6.9

2 8.5 7.8 10.1

3 9.3 6.0 9.6

4 8.8 5.6 8.4

Table 11.22 Fitted values for observations in Example 11.7.2

Method

Dairy 1 2 3

1 6.2 3.6 6.7

2 9.5 6.9 10.0

3 9.0 6.4 9.5

4 8.3 5.7 8.8

Table 11.21, the row averages are Y 1+ = 5.5, Y 2+ = 8.8, Y 3+ = 8.3, and Y 4+ = 7.6; the
column averages are Y+1 = 8.25, Y+2 = 5.65, and Y+3 = 8.75; and the average of all
the observations is Y++ = 7.55. Hence, by Eq. (11.7.6), the values of the M.L.E.’s
are μ̂ = 7.55, α̂1 = −2.05, α̂2 = 1.25, α̂3 = 0.75, α̂4 = 0.05, β̂1 = 0.70, β̂2 = −1.90, and
β̂3 = 1.20.

The fitted values Ŷij for all of the observations are given in Table 11.22. By
comparing the observed values in Table 11.21 with the fitted values in Table 11.22,
we see that the differences between corresponding terms are generally small. These
small differences indicate that the model used in the two-way layout, which assumes
the additivity of the effects of the two factors, provides a good fit for the observed
values. Finally, it is found from Tables 11.21 and 11.22 that

I∑
i=1

J∑
j=1

(Yij − Ŷij )
2 = 2.74.

Hence, by Theorem 11.7.1, σ̂ 2 = 2.74/12 = 0.228. �

Partitioning the Sum of Squares

We shall partition the total sum of squares in much the same way that we did in
Sec. 11.6. Begin with

S2
Tot =

I∑
i=1

J∑
j=1

(Yij − Y++)2. (11.7.7)
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We shall now partition the sum of squares S2
Tot into three smaller sums of squares.

Each of these smaller sums of squares will be associated with a certain type of
variation among the observations Yij . Each of them (divided by σ 2) will have a χ2

distribution if certain null hypotheses are true, and they will be mutually independent
whether or not the null hypotheses are true. Therefore, just as in the one-way layout,
we can construct tests of certain null hypotheses based on an analysis of variance,
that is, on an analysis of these different types of variation.

Theorem
11.7.2

Partitioning the Sum of Squares. Let S2
Tot be as defined in Eq. (11.7.7). Then

S2
Tot = S2

Resid + S2
A

+ S2
B
, (11.7.8)

where

S2
Resid =

I∑
i=1

J∑
j=1

(Yij − Y i+ − Y+j + Y++)2,

S2
A

= J

I∑
i=1

(Y i+ − Y++)2,

S2
B

= I

J∑
j=1

(Y+j − Y++)2.

Furthermore, S2
Resid/σ

2 has the χ2 distribution with (I − 1)(J − 1) degrees of free-
dom, and the three component sums of squares are mutually independent.

Proof We shall begin by rewriting S2
Tot as follows:

S2
Tot =

I∑
i=1

J∑
j=1

[(Yij − Y i+ − Y+j + Y++) + (Y i+ − Y++) + (Y+j − Y++)]2. (11.7.9)

By expanding the right side of Eq. (11.7.9), we obtain (see Exercise 8) Eq. (11.7.8).
It can be shown that the random variables S2

Resid, S2
A, and S2

B are independent.
(See Exercise 9 for a related result.) Furthermore, it can be shown that S2

Resid has the
χ2 distribution with IJ − (I + J − 1) = (I − 1)(J − 1) degrees of freedom.

It is easy to see that S2
A

measures the variation of the sample means for the differ-
ent levels of factor A around the overall sample mean. Similarly, S2

B
measures the

variation of the sample means for the different levels of factor B around the overall
sample mean. By using relations (11.7.6), we can rewrite S2

Resid as

S2
Resid =

I∑
i=1

J∑
j=1

(Yij − μ̂ − α̂i − β̂j )
2 =

I∑
i=1

J∑
j=1

(Yij − Ŷij )
2.

This makes it clear that S2
Resid measures the residual variation, that is, the variation

between the observations not explained by the model. The partitioning is summa-
rized in Table 11.23, which is the ANOVA table for the two-way layout. As in the
case of the one-way layout, the degrees of freedom will turn out to be degrees of
freedom for various χ2 random variables when certain null hypotheses are true.
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Table 11.23 General ANOVA table for two-way layout

Source of Degrees of
variation freedom Sum of squares Mean square

Factor A I − 1 S2
A

S2
A
/(I − 1)

Factor B J − 1 S2
B

S2
B
/(J − 1)

Residuals (I − 1)(J − 1) S2
Resid S2

Resid/[(I − 1)(J − 1)]

Total IJ − 1 S2
Tot

Table 11.24 ANOVA table Example 11.7.3

Source of Degrees of
variation freedom Sum of squares Mean square

Dairy 3 18.99 6.33

Method 2 22.16 11.08

Residuals 6 2.74 0.4567

Total 11 43.89

Example
11.7.3

Radioactive Isotope in Milk. Using the estimates calculated in Example 11.7.2, we
can compute the ANOVA table in Table 11.24. After we develop appropriate test
statistics, we can use Table 11.24 to test hypotheses about the effects of the two factors.

�

Testing Hypotheses

Example
11.7.4

Radioactive Isotope in Milk. Consider again the situation described in Example 11.7.2
involving four dairies and three measurement methods. We might be interested in
testing that, for each of the three methods of measurement, the distributions of con-
centration of isotope do not differ from one dairy to the next. If we regard the dairy
as factor A and the measurement method as factor B, then the hypothesis that αi = 0
for i = 1, . . . , I means that for each method of measurement, the concentration of
the isotope has the same distribution for all four dairies. In other words, there are
no differences among the dairies. Alternatively, we might be interested in testing the
hypothesis that, for each dairy, the three methods of measurement all produce the
same distribution of concentration of isotope. For this case, the hypothesis that βj = 0
for j = 1, . . . , J means that for each dairy, the three methods of measurement yield
the same distribution for the concentration of the isotope. However, this hypothesis
does not state that regardless of which of the three different methods is applied to
a particular specimen of milk, the same value would be obtained. Because of the
inherent variability of the measurements, the hypothesis states only that the values
yielded by the three methods have the same normal distribution. �
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In a problem involving a two-way layout, we are often interested in testing the
hypothesis that one or both of the factors has no effect on the distribution of the
observations. In other words, we are often interested either in testing the hypothesis
that all of the effects α1, . . . , αI of factor A are equal to 0 or in testing the hypothesis
that all of the effects β1, . . . , βJ of factor B are equal to 0 or in testing that all of the
αi and βj are 0. For the remainder of the discussion of testing hypotheses, it will be
useful to define

σ ′ =
(

S2
Resid

(I − 1)(J − 1)

)1/2

. (11.7.10)

Theorem
11.7.3

Consider the following hypotheses:

H0 : αi = 0 for i = 1, . . . , I,

H1 : The hypothesis H0 is not true.
(11.7.11)

If H0 is true, then the following random variable has the F distribution with I − 1
and (I − 1)(J − 1) degrees of freedom:

U2
A

= S2
A

(I − 1)σ ′2 . (11.7.12)

Similarly, suppose next that the following hypotheses are to be tested:

H0 : βj = 0 for j = 1, . . . , J,

H1 : The hypothesis H0 is not true.
(11.7.13)

When the null hypothesis H0 is true, the following statistic has the F distribution with
J − 1 and (I − 1)(J − 1) degrees of freedom:

U2
B

= S2
B

(J − 1)σ ′2 . (11.7.14)

Finally, suppose that the following hypotheses are to be tested:

H0 : αi = 0 for i = 1, . . . , I, and βj = 0 for j = 1, . . . , J,

H1 : The hypothesis H0 is not true.
(11.7.15)

When the null hypothesis H0 is true, the following statistic has the F distribution with
I + J − 2 and (I − 1)(J − 1) degrees of freedom:

U2
A+B

= S2
A

+ S2
B

(I + J − 2)σ
′2 . (11.7.16)

For each case above, a level α0 test of the hypotheses is to reject H0 if the corre-
sponding statistic (U2

A
, U2

B
, or U2

A+B
) is at least as large as the 1 − α0 quantile of the

correpsonding F distribution.

Proof We shall prove the claim for hypotheses (11.7.11). The proof for hypotheses
(11.7.13) is virtually identical. The proof for hypotheses (11.7.15) is similar and is left
for Exercise 16. Since

∑J
j=1 βj = 0, we conclude that Y i+ has the normal distribution

with mean μ and variance σ 2/J for each i = 1, . . . , I . Since the Y i+ are independent
and Y++ is the average of Y 1+, . . . , Y I+, Theorem 8.3.1 says that the following
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random variable has the χ2 distribution with I − 1 degrees of freedom:

J

σ 2

I∑
i=1

(Y i+ − Y++)2 = S2
A

σ 2
.

Since S2
Resid/σ

2 has the χ2 distribution with (I − 1)(J − 1) degrees of freedom, we
now conclude that

S2
A
/(I − 1)

S2
Resid/[(I − 1)(J − 1)]

(11.7.17)

has the F distribution with I − 1 and (I − 1)(J − 1) degrees of freedom. It is easy to
see that the random variable in (11.7.17) is the same as U2

A
defined in Eq. (11.7.12).

Let F−1
I−1,(I−1)(J−1)(1 − α0) denote the 1 − α0 quantile of the F distribution with

I − 1 and (I − 1)(J − 1) degrees of freedom. Let δ be the test that rejects H0 if
U2

A
≥ F−1

I−1,(I−1)(J−1)(1 − α0), and let π(θ |δ) be its power function for each parameter

vector θ . Since U2
A

has the stated F distribution for all parameter vectors θ that are
consistent with H0, it follows that for each such θ , π(θ |δ) = α0, and δ is a level α0 test.

Notice that U2
A

in Theorem 11.7.3 is the ratio of the factor A mean square to the
residuals mean square in Table 11.23. When the null hypothesis H0 in (11.7.12) is
not true, the value of αi = E(Y i+ − Y++) is not 0 for at least one value of i. Hence,
the expectation of the numerator of U2

A
will be larger than it would be when H0 is

true. (See Exercise 1.) The distribution of the denominator of U2
A

remains the same
regardless of whether H0 is true. It can also be shown that the test in Theorem 11.7.3
is also the level α0 likelihood ratio test procedure for the hypotheses (11.7.11).

Example
11.7.5

Testing for Differences among the Dairies. Suppose now that it is desired to use the
observed values in Table 11.21 to test the hypothesis that there are no differences
among the dairies, that is, to test the hypotheses (11.7.11). In this example, the statistic
U2

A
defined by Eq. (11.7.12) has the F distribution with three and six degrees of

freedom. Using the ANOVA table in Table 11.24, we find that U2
A

= 6.33/0.4567 =
13.86. The corresponding p-value is smaller than 0.025, the smallest value in the tables
in this book. Using statistical software, we compute the p-value to be about 0.004.
So the hypothesis that there are no differences among the dairies would be rejected
at all levels of significance of 0.004 or more. �

Example
11.7.6

Testing for Differences among the Methods of Measurement. Suppose next that it is
desired to use the observed values in Table 11.21 to test the hypothesis that each of
the effects of the different methods of measurement is equal to 0, that is, to test the
hypotheses (11.7.13). In this example, the statistic U2

B
defined by Eq. (11.7.14) has

the F distribution with two and six degrees of freedom. Using the ANOVA table in
Table 11.24, we find that U2

B
= 11.08/0.4567 = 24.26. The p-value corresponding to

this observation is about 0.001, so the hypothesis that there are no differences among
the methods would be rejected at all levels of significance greater than 0.001. �

Summary

The two-way layout can be considered as a general linear model, but the hypotheses
of interest concern more than one linear combination of the regression coefficients.
An ANOVA table was developed for the two-way layout that can be used for forming
test statistics for various hypotheses. When we have only one observation at each
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combination of factor levels, we assume that the effects of the two factors are additive.
Then we can test the two null hypotheses that each of the two factors make no
difference to the means of the observations. These tests make use of the test statistics
U2

A
in Eq. (11.7.12) and U2

B
in Eq. (11.7.14). If the corresponding null hypotheses are

true, each of these statistics has an F distribution.

Exercises

1. Suppose that the null hypothesis H0 in (11.7.11) is false.
Show that E(S2

A
) = (I − 1)σ 2 + J

∑I
i=1 α2

i
.

2. Consider a two-way layout in which the values of E(Yij )

for i = 1, . . . , I and j = 1, . . . , J are as given in each of
the following four matrices. For each matrix, state whether
the effects of the factors are additive.

a.
Factor B

Factor A 1 2

1 5 7

2 10 14

b.
Factor B

Factor A 1 2

1 3 6

2 4 7

c.
Factor B

Factor A 1 2 3 4

1 3 −1 0 3

2 8 4 5 8

3 4 0 1 4

d.
Factor B

Factor A 1 2 3 4

1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

3. Show that if the effects of the factors in a two-way
layout are additive, then there exist unique numbers μ,
α1, . . . , αI , and β1, . . . , βJ that satisfy Eqs. (11.7.2) and
(11.7.3). Hint: Let μ be the average of all θi + ψj values,
let αi equal θi minus the average of the θi’s, and similarly
for βj .

4. Suppose that in a two-way layout, with I = 2 and J = 2,
the values of E(Yij ) are as given in part (b) of Exercise 2.
Determine the values of μ, α1, α2, β1, and β2 that satisfy
Eqs. (11.7.2) and (11.7.3).

5. Suppose that in a two-way layout, with I = 3 and J = 4,
the values of E(Yij ) are as given in part (c) of Exercise 2.
Determine the values of μ, α1, α2, α3, and β1, . . . , β4 that
satisfy Eqs. (11.7.2) and (11.7.3).

6. Verify that if μ̂, α̂i, and β̂j are defined by Eq. (11.7.6),
then

∑I
i=1, α̂i = ∑J

j=1 β̂j = 0; E(μ̂) = μ; E(α̂i) = αi for

i = 1, . . . , I ; and E(β̂j) = βj for j = 1, . . . , J .

7. Show that if μ̂, α̂i, and β̂j are defined by Eq. (11.7.6),
then

Var(μ̂) = 1
IJ

σ 2,

Var(α̂i) = I − 1
IJ

σ 2 for i = 1, . . . , I,

Var(β̂j ) = J − 1
IJ

σ 2 for j = 1, . . . , J.

8. Show that the right sides of Eqs. (11.7.9) and (11.7.8)
are equal.

9. Show that in a two-way layout, for all values of i, j ,
i′, and j ′ (i and i′ = 1, . . . , I ; j and j ′ = 1, . . . , J ), the
following four random variables W1, W2, W3, and W4 are
uncorrelated with one another:

W1 = Yij − Y i+ − Y+j + Y++,

W2 = Y i′+ − Y++, W3 = Y+j ′ − Y++,

W4 = Y++.

10. Show that

I∑
i=1

(Y i+ − Y++)2 =
I∑

i=1

Y
2
i+ − IY

2
++

and

J∑
j=1

(Y+j − Y++)2 =
J∑

j=1

Y
2
+j

− JY
2
++.
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11. Show that
I∑

i=1

J∑
j=1

(Yij − Y i+ − Y+j + Y++)2

=
I∑

i=1

J∑
j=1

Y 2
ij

− J

I∑
i=1

Y
2
i+ − I

J∑
j=1

Y
2
+j

+ IJY
2
++.

12. In a study to compare the reflective properties of var-
ious paints and various plastic surfaces, three different
types of paint were applied to specimens of five different
types of plastic surfaces. Suppose that the observed results
in appropriate coded units were as shown in Table 11.25.
Determine the values of μ̂, α̂1, α̂2, α̂3, and β̂1, . . . , β̂5.

Table 11.25 Data for Exercises 12–15

Type of surface

Type of paint 1 2 3 4 5

1 14.5 13.6 16.3 23.2 19.4

2 14.6 16.2 14.8 16.8 17.3

3 16.2 14.0 15.5 18.7 21.0

13. For the conditions of Exercise 12 and the data in
Table 11.25, determine the value of the least-squares
estimate of E(Yij ) for i = 1, 2, 3, and j = 1, . . . , 5, and
determine the value of σ̂ 2.

14. For the conditions of Exercise 12 and the data in
Table 11.25, test the hypothesis that the reflective proper-
ties of the three different types of paint are the same.

15. For the conditions of Exercise 12 and the data in
Table 11.25, test the hypothesis that the reflective prop-
erties of the five different types of plastic surfaces are the
same.

16. Prove the claim in Theorem 11.7.3 about the distribu-
tion of U2

A+B
.

� 11.8 The Two-Way Layout with Replications
Suppose that we obtain more than one observation in each cell of a two-way layout.
In addition to testing hypotheses about the separate effects of the two factors, we
can also test the hypothesis that the additivity assumption (11.7.3) holds. However,
the interpretations of the separate effects of the two factors are more complicated
if the additivity assumption fails. When the additivity assumption fails, we say that
there is interaction between the two factors.

The Two-Way Layout with K Observations in Each Cell

Example
11.8.1

Gasoline Consumption. Suppose that an experiment is carried out by an automobile
manufacturer to investigate whether a certain device, installed on an automobile,
affects the amount of gasoline consumed by the automobile. The manufacturer pro-
duces three different models of automobiles, namely, a compact model, an interme-
diate model, and a standard model. Five cars of each model, which were equipped
with this device, were driven over a fixed route through city traffic, and the gasoline
consumption of each car was measured. Also, five cars of each model, which were
not equipped with this device, were driven over the same route, and the gasoline
consumption of each of these cars was measured. The results, in liters of gasoline
consumed, are given in Table 11.26.

The same sorts of questions that arose in Sec. 11.7 arise here. For example, are
the mean gasoline consumptions different for cars with and without the device? Are
the mean gasoline consumptions different for the three car models? An additional
question can be addressed in an example like this in which there are multiple obser-
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Table 11.26 Data for Example 11.8.1

Compact Intermediate Standard
model model model

Equipped with device 8.3 9.2 11.6

8.9 10.2 10.2

7.8 9.5 10.7

8.5 11.3 11.9

9.4 10.4 11.0

Not equipped with device 8.7 8.2 12.4

10.0 10.6 11.7

9.7 10.1 10.0

7.9 11.3 11.1

8.4 10.8 11.8

vations under each combination of factors. We can ask whether the effect (if any) of
the device is different for the different car models. �

We shall continue to consider problems of ANOVA involving a two-way layout. Now,
however, instead of having just a single observation Yij for each combination of i

and j , we shall have K independent observations Yijk for k = 1, . . . , K . In other
words, instead of having just one observation in each cell of Table 11.20, we have
K i.i.d. observations. The K observations in each cell are obtained under similar
experimental conditions and are called replications. The total number of observations
in this two-way layout with replications is IJK. We continue to assume that all the
observations are independent, each observation has a normal distribution, and all
the observations have the same variance σ 2.

We shall let θij denote the mean of each of the K observations in the (i, j) cell.
Thus, for i = 1, . . . , I ; j = 1, . . . , J ; and k = 1, . . . , K , we have

E(Yijk) = θij . (11.8.1)

In a two-way layout with replications, we shall no longer assume, as we did in
Sec. 11.7, that the effects of the two factors are additive. Here we can assume that
the expectations θij are arbitrary numbers. As we shall see later in this section, we
can then test the hypothesis that the effects are additive.

It is easy to verify that the M.L.E., or least-squares estimator, of θij is simply the
sample mean of the K observations in the (i, j) cell. Thus,

θ̂ij = 1
K

K∑
k=1

Yijk = Y ij+. (11.8.2)

The M.L.E. of σ 2 is therefore

σ̂ 2 = 1
IJK

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Y ij+)2. (11.8.3)
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In order to identify and discuss the effects of the two factors, and to examine
the possibility that these effects are additive, it is helpful to replace the parameters
θij , for i = 1, . . . , I and j = 1, . . . , J , with a new set of parameters μ, αi, βj , and γij .
These new parameters are defined by the following relations:

θij = μ + αi + βj + γij for i = 1, . . . , I and j = 1, . . . , J, (11.8.4)

and
I∑

i=1

αi = 0,

J∑
j=1

βj = 0,

I∑
i=1

γij = 0 for j = 1, . . . , J, (11.8.5)

J∑
j=1

γij = 0 for i = 1, . . . , I.

It can be shown (see Exercise 1) that corresponding to each set of numbers θij for
i = 1, . . . , I and j = 1, . . . , J , there exist unique numbers μ, αi, βj , and γij that satisfy
Eqs. (11.8.4) and (11.8.5).

The parameter μ is called the overall mean or the grand mean. The parameters
α1, . . . , αI are called the main effects of factor A, and the parameters β1, . . . , βJ

are called the main effects of factor B. The parameters γij , for i = 1, . . . , I and
j = 1, . . . , J , are called the interactions. It can be seen from Eqs. (11.8.1) and (11.8.4)
that the effects of the factors A and B are additive if and only if all the interactions
vanish, that is, if and only if γij = 0 for every combination of values of i and j .

The notation that has been developed in Sections 11.6 and 11.7 will again be
used here. We shall replace a subscript of Yijk with a plus sign to indicate that we
have summed the values of Yijk over all possible values of that subscript. If we have
made two or three summations, we shall use two or three plus signs. We shall then
place a bar over Y to indicate that we have divided this sum by the number of terms
in the summation and have thereby obtained an average of the values of Yijk for the
subscript or subscripts involved in the summation. For example,

Y ij+ = 1
K

K∑
k=1

Yijk,

Y+j+ = 1
IK

I∑
i=1

K∑
k=1

Yijk,

and Y+++ denotes the average of all IJK observations.
Similar logic to that used in the proof of Theorem 11.2.1 can be used to prove

the following result. The details are left to Exercises 2 and 5).

Theorem
11.8.1

The M.L.E.’s (and least-squares estimators) of μ, αi, and βj are as follows:

μ̂ = Y+++,

α̂i = Y i++ − Y+++ for i = 1, . . . , I, (11.8.6)

β̂j = Y+j+ − Y+++ for j = 1, . . . , J.

Also, for i = 1, . . . , I and j = 1, . . . , J ,



11.8 The Two-Way Layout with Replications 775

Table 11.27 Cell averages in Example 11.8.2

Compact Intermediate Standard Average
model model model for row

Equipped with device Y 11+ = 8.58 Y 12+ = 10.12 Y 13+ = 11.08 Y 1++ = 9.9267

Not equipped with device Y 21+ = 8.94 Y 22+ = 10.20 Y 23+ = 11.40 Y 2++ = 10.1800

Average for column Y+1+ = 8.76 Y+2+ = 10.16 Y+3+ = 11.24 Y+++ = 10.0533

γ̂ij = Y ij+ − (μ̂ + α̂i + β̂j )

= Y ij+ − Y i++ − Y+j+ + Y+++.
(11.8.7)

Also, for all values of i and j , E(μ̂) = μ, E(α̂i) = αi, E(β̂j) = βj , and E(γ̂ij ) = γij .

Example
11.8.2

Gasoline Consumption. In Example 11.8.1, let the A factor be the device, and let the
B factor be the car model. Then we have I = 2, J = 3, and K = 5. The average value
Y ij+ for each of the six cells in Table 11.26 is presented in Table 11.27, which also
gives the average value Y i++ for each of the two rows, the average value Y+j+ for
each of the three columns, and the average value Y+++ of all 30 observations.

It follows from Table 11.27 and Eqs. (11.8.6) and (11.8.7) that the values of the
M.L.E.’s, or least-squares estimators, in this example are

μ̂ = 10.0533, α̂1 = −0.1267, α̂2 = 0.1267,

β̂1 = −1.2933, β̂2 = 0.1067, β̂3 = 1.1867,

γ̂11 = −0.0533, γ̂12 = 0.0867, γ̂13 = −0.0333,
γ̂21 = 0.0533, γ̂22 = −0.0867, γ̂23 = 0.0333.

In this example, the estimates of the interactions γ̂ij are small for all values of i and j .
�

Partitioning the Sum of Squares

Consider now the total sum of squares,

S2
Tot =

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Y+++)2. (11.8.8)

We shall now indicate how S2
Tot can be partitioned into four smaller independent sums

of squares, each of which is associated with a particular type of variation among the
observations. Under various null hypotheses, each sum of squares (divided by σ 2)
will have a χ2 distribution.

Theorem
11.8.2

Let S2
Tot be as defined in Eq. (11.8.8). Then

S2
Tot = S2

A
+ S2

B
+ S2

Int + S2
Resid, (11.8.9)
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where

S2
A

= JK

I∑
i=1

(Y i++ − Y+++)2, (11.8.10)

S2
B

= IK

J∑
j=1

(Y+j+ − Y+++)2,

S2
Int = K

I∑
i=1

J∑
j=1

(Y ij+ − Y i++ − Y+j+ + Y+++)2,

S2
Resid =

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk − Y ij+)2.

In addition, S2
Resid/σ

2 has the χ2 distribution with IJ (K − 1) degrees of freedom.
If all αi = 0, then S2

A
/σ 2 has the χ2 distribution with I − 1 degrees of freedom. If

all βj = 0, then S2
B
/σ 2 has the χ2 distribution with J − 1 degrees of freedom. If all

γij = 0, then S2
Int/σ

2 has the χ2 distribution with (I − 1)(J − 1) degrees of freedom.
The four sums of squares are mutually independent.

Proof The proof of (11.8.9) is left to the reader in Exercise 7.
The random variable S2

Resid/σ
2 is the sum of IJ independent random variables

of the form
∑K

k=1(Yijk − Y ij+)2/σ 2. According to Theorem 8.3.1, each of these IJ

random variables has the χ2 distribution with K − 1 degrees of freedom. Hence, the
sum of all IJ of them has the χ2 distribution with IJ(K − 1) degrees of freedom. If
all of the αi = 0, then Y 1++, . . . , Y I++ all have the normal distribution with mean μ

and variance σ 2/JK . Theorem 8.3.1 implies that S2
A
/σ 2 has the χ2 distribution with

I − 1 degrees of freedom. Similarly, if all βj = 0, then S2
B
/σ 2 has the χ2 distribution

with J − 1 degrees of freedom.
The number of degrees of freedom for S2

Int can be determined as follows: If all of
the γij = 0, then the additivity assumption holds, and S2

Int is the same as S2
Resid from

Sec. 11.7 except for the fact that each Y ij+ has the normal distribution with mean
μ + αi + βj and variance σ 2/K instead of variance σ 2. This means that if all γij = 0,
then S2

Int/σ
2 has the χ2 distribution with (I − 1)(J − 1) degrees of freedom.

Finally, it can be shown that all of the sums of squares in relations (11.8.10) are
independent (see Exercise 8 for a related result).

The claims in Theorem 11.8.2 are summarized in Table 11.28, which is the
ANOVA table for the two-way layout with K observations per cell.

Example
11.8.3

Gasoline Consumption. Using the sample means computed in Example 11.8.2, we can
form the ANOVA table in Table 11.29. We shall use the mean squares in Table 11.29
to test various hypotheses about the effects of the factors after we develop test
procedures. �

Testing Hypotheses

As mentioned before, the effects of the factors A and B are additive if and only if
all the interactions γij vanish. Hence, to test whether the effects of the factors are
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Table 11.28 General ANOVA table for two-way layout with replication

Source of Degrees of Sum of
variation freedom squares Mean square

Main effects of A I − 1 S2
A

S2
A
/(I − 1)

Main effects of B J − 1 S2
B

S2
B
/(J − 1)

Interactions (I − 1)(J − 1) S2
Int S2

Int/[(I − 1)(J − 1)]

Residuals IJ(K − 1) S2
Resid S2

Resid/[IJ(K − 1)]

Total IJK − 1 S2
Tot

Table 11.29 ANOVA table for data from Example 11.8.2.

Source of Degrees of Sum of
variation freedom squares Mean square

Main effects of device 1 0.4813 0.4813

Main effects of model 2 30.92 15.46

Interactions 2 0.1147 0.0573

Residuals 24 18.22 0.7590

Total 29 49.73

additive, we must test the following hypotheses:

H0 : γij = 0 for i = 1, . . . , I and j = 1, . . . , J,

H1 : The hypothesis H0 is not true.
(11.8.11)

It follows from Theorem 11.8.2 that when the null hypothesis H0 is true, the
random variable S2

Int/σ
2 has the χ2 distribution with (I − 1)(J − 1) degrees of free-

dom. Furthermore, regardless of whether or not H0 is true, the independent random
variable S2

Resid/σ
2 has the χ2 distribution with IJ(K − 1) degrees of freedom. Thus,

when H0 is true, the following random variable U2
AB

has the F distribution with
(I − 1)(J − 1) and IJ(K − 1) degrees of freedom:

U2
AB

= IJ(K − 1)S2
Int

(I − 1)(J − 1)S2
Resid

, (11.8.12)

which is also the ratio of the interaction mean square to the residual mean square.
The null hypothesis H0 would be rejected at level α0 if

U2
AB

≥ F−1
(I−1)(J−1),IJ (K−1)(1 − α0),

where F−1
(I−1)(J−1),IJ (K−1) is the quantile function of the F distribution with (I −

1)(J − 1) and IJ (K − 1) degrees of freedom.



778 Chapter 11 Linear Statistical Models

Example
11.8.4

Gasoline Consumption. Suppose that it is desired to use the data from Example 11.8.2
to test the null hypothesis that the effects of equipping a car with the device and
using a particular model are additive, against the alternative that these effects are not
additive. In other words, suppose that it is desired to test the hypotheses (11.8.11).
Using the mean squares in Table 11.29 and Eq. (11.8.12), we compute that U2

AB
=

0.0573/0.7590 = 0.076. The corresponding p-value can be found using statistical
software, and its value is 0.9275. Hence, the null hypothesis that the effects are
additive would be not be rejected at any common level of significance. �

If the null hypothesis H0 in (11.8.11) is rejected, then it suggests that at least
some of the interactions γij are not 0. Therefore, the means of the observations for
certain combinations of i and j will be larger than the means of the observations for
other combinations, and both factor A and factor B affect these means. In this case,
because both factor A and factor B affect the means of the observations, there is not
usually any further interest in testing whether either the main effects α1, . . . , αI or
the main effects β1, . . . , βJ are zero.

On the other hand, if the null hypothesis H0 in (11.8.11) is not rejected (as is
the case in Example 11.8.4), then we might decide to act as if all the interactions
are 0. If, in addition, all the main effects α1, . . . , αI were 0, then the mean value of
each observation would not depend in any way on the value of i. In this case, factor
A would have no effect on the observations. Therefore, if the null hypothesis H0 in
(11.8.11) is not rejected, we might be interested in testing the following hypotheses:

H0 : αi = 0 and γij = 0 for i = 1, . . . , I and j = 1, . . . , J,

H1 : The hypothesis H0 is not true.
(11.8.13)

Indeed, we might be interested in testing these hypotheses even if we had not first
tested the hypotheses (11.8.11).

According to Theorem 11.8.2, if H0 is true, then S2
A
/σ 2 and S2

Int/σ
2 are inde-

pendent having χ2 distributions with I − 1 and (I − 1)(J − 1) degrees of freedom,
respectively. It follows that, when H0 in (11.8.13) is true, the following random vari-
able U2

A
has the F distribution with I − 1 + (I − 1)(J − 1) = (I − 1)J and IJ (K − 1)

degrees of freedom:

U2
A

= IJ (K − 1)[S2
A

+ S2
Int]

(I − 1)JS2
Resid

. (11.8.14)

If we did not test the hypotheses (11.8.11) first, then we can reject H0 in (11.8.13) at
level α0 if U2

A
≥ F−1

(I−1)J,IJ (K−1)(1 − α0).
If we first tested (11.8.11) and failed to reject the null hypothesis, there are two

important considerations to emphasize before proceeding with a test of (11.8.13).
First, the size of the second test, the test of (11.8.13), should be calculated conditional
on having failed to reject the null hypothesis in (11.8.11). That is, if the second test is
to reject the null hypothesis in (11.8.13) if T ≥ c (for some statistic T ), then the size
of the second test should be the conditional probability

Pr
(
T ≥ c

∣∣ U2
AB

< F−1
(I−1)(J−1),IJ (K−1)(1 − α0)

)
. (11.8.15)

Calculation of this conditional probability is beyond the scope of this book, but it can
be approximated using simulation methods that will be introduced in Chapter 12.
(See Example 12.3.4 for an illustration.)

The second consideration involves the choice of test statistic T for testing
(11.8.13). For the case in which we did not first test (11.8.11), the statistic U2

A
in
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(11.8.14) is a sensible test statistic. However, if we have already failed to reject the
null hypothesis in (11.8.11), a better test statistic might be

V 2
A

= IJ (K − 1)S2
A

(I − 1)S2
Resid

. (11.8.16)

One reason for this is that, with T = V 2
A

, the probability in (11.8.15) will often be
closer to α0 than with T = U2

A
. For instance, if IJ (K − 1) is large and H0 is true,

then S2
Resid should be close to σ 2 with high probability. In this case, since S2

Int and
S2

A
are independent random variables, the random variables V 2

A
and U2

AB
should be

nearly independent as well. This will make the test based on V 2
A

nearly independent
of whether or not the test based on U2

AB
rejected its null hypothesis. On the other

hand, because

U2
A

= 1
J

[V 2
A

+ (J − 1)U2
AB

],

we see that the dependence between U2
A

and U2
AB

is likely to be quite high under all
circumstances.

So, if we first test (11.8.11) and fail to reject the null hypothesis, we should then
use V 2

A
to test (11.8.13). We would then reject the null hypothesis if V 2

A
> c, where

c is some constant. Unfortunately, we still cannot find a useable expression for c

other than to note that the size of this second test, conditional on the first test, is
(11.8.15) with T = V 2

A
. We can use simulation methods to compute this if necessary.

(See Example 12.3.4.) The overall size of this two-stage procedure is larger than
α0. (See Exercise 19.) In practice, it is common to let c = F−1

I−1,IJ (K−1)(1 − α0) and

pretend as if (11.8.15) with T = V 2
A

is essentially α0.

Example
11.8.5

Gasoline Consumption. Suppose now that it is desired to test the null hypothesis that
the device has no effect on gasoline consumption for all of the car models tested,
against the alternative that the device does affect gasoline consumption. In other
words, suppose that it is desired to test the hypotheses (11.8.13). If we had not first
tested (11.8.11), then we would use Eq. (11.8.14) and the numbers in Table 11.29 to
compute U2

A
= 24(0.4813 + 0.1147)/[3(18.22)] = 0.2616. The corresponding p-value

from the F distribution with 3 and 24 degrees of freedom is 0.8523. Hence, the null
hypothesis would not be rejected at the usual levels of significance.

On the other hand, since we did test (11.8.11) first, we should instead use V 2
A

=
0.4813/0.7590 = 0.6341. We cannot compute the exact conditional p-value associated
with this observed value. However, using the method to be described in Exam-
ple 12.3.4, we can approximate the p-value to be about 0.43, given that we failed
to reject the null hypothesis in (11.8.11). We can also use the method of Exam-
ple 12.3.4 to approximate the probabilities in (11.8.15) for T = U2

A
and for T = V 2

A
.

With α0 = 0.05, these approximations are, respectively, 0.019 and 0.048. Notice how
close the test based on V 2

A
comes to having the nominal size α0 = 0.05, while the

conditional size of the test based on U2
A

is much smaller. �

Similarly, we may want to find out whether all the main effects of factor B, as
well as the interactions, are 0. In this case, we would test the following hypotheses:

H0 : βj = 0 and γij = 0 for i = 1, . . . , I, and j = 1, . . . , J,

H1 : The hypothesis H0 is not true.
(11.8.17)
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By analogy with Eq. (11.8.14), it follows that when H0 is true, the following random
variable U2

B
has the F distribution with I (J − 1) and IJ (K − 1) degrees of freedom:

U2
B

= IJ (K − 1)[S2
B

+ S2
Int]

I (J − 1)S2
Resid

. (11.8.18)

Again, if we do not first test (11.8.11), then the hypothesis H0 should be rejected
at level α0 if U2

B
> F−1

I (J−1),IJ (K−1)(1 − α0). If we test (11.8.11) first and fail to reject

the null hypothesis, then we should reject H0 in (11.8.17) if V 2
B

is too large, where

V 2
B

= IJ (K−1)S2
B

(J−1)S2
Resid

. The conditional level of this test must be computed by simulation,

also.
In a given problem, if the null hypothesis in (11.8.11) is not rejected and the null

hypotheses in both (11.8.13) and (11.8.17) are rejected, then we may be willing to
proceed with further studies and experimentation by using a model in which it is
assumed that the effects of factor A and factor B are approximately additive and the
effects of both factors are important.

The results obtained in Example 11.8.5 do not provide any indication that the
device is effective. Nevertheless, it can be seen from Table 11.27 that for each of the
three models, the average consumption of gasoline for the cars that were equipped
with the device is smaller than the average consumption for the cars that were not so
equipped. If we assume that the effects of the device and the model of automobile
are additive, then regardless of the model of the automobile that is used, the M.L.E.
of the reduction in gasoline consumption over the given route that is achieved by
equipping an automobile with the device is α̂2 − α̂1 = 0.2534 liter.

The Two-Way Layout with Unequal Numbers of Observations
in the Cells

Consider again a two-way layout with I rows and J columns, but suppose now that
instead of there being K observations in each cell, some cells have more observa-
tions than others. For i = 1, . . . , I and j = 1, . . . , J , we shall let Kij denote the
number of observations in the (i, j) cell. Thus, the total number of observations
is

∑I
i=1

∑J
j=1 Kij . We shall assume that every cell contains at least one observation,

and we shall again let Yijk denote the kth observation in the (i, j) cell. For each value
of i and j , the values of the subscript k are 1, . . . , Kij . We shall also assume, as be-
fore, that all the observations Yijk are independent; each has a normal distribution;
Var(Yijk) = σ 2 for all values of i, j , and k; and E(Yijk) = μ + αi + βj + γij , where
these parameters satisfy the conditions given in Eq. (11.8.5).

As usual, we shall let Y ij+ denote the average of the observations in the (i, j)
cell. It can then be shown that for i = 1, . . . , I and j = 1, . . . , J , the M.L.E.’s, or
least-squares estimators, are as follows:

μ̂ = 1
IJ

I∑
i=1

J∑
j=1

Y ij+, α̂i = 1
J

J∑
j=1

Y ij+ − μ̂,

β̂j = 1
I

I∑
i=1

Y ij+ − μ̂, γ̂ij = Y ij+ − μ̂ − α̂i − β̂j .

(11.8.19)
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These estimators are intuitively reasonable and analogous to those given in Eqs.
(11.8.6) and (11.8.7).

Suppose now, however, that it is desired to test hypotheses such as (11.8.11),
(11.8.13), or (11.8.17). The construction of appropriate tests becomes somewhat
more difficult because, in general, the sums of squares analogous to those given in
Eq. (11.8.10) will not be independent when there are unequal numbers of observa-
tions in the different cells. Hence, the test procedures presented earlier in this section
cannot be directly copied here. It is necessary to develop other sums of squares that
will be independent and will reflect the different types of variations in the data in
which we are interested. We shall not consider the problem further in this book.
This and other problems of ANOVA are described in the advanced book by Scheffé
(1959).

Summary

We extended the analysis of the two-way layout to cases in which we have equal
numbers of observations at all combinations of levels of the two factors. One addi-
tional null hypothesis that we can test in this case is that the effects of the two factors
are additive. (We assumed that the effects were additive when we had only one ob-
servation per cell.) If we reject the null hypothesis of additivity, we typically do not
test any further hypotheses. If we don’t reject this null hypothesis, we might still be
interested in whether one of the two factors has any effect at all on the means of the
observations. Even if we do not first test the null hypothesis that the effects of the
two factors are additive, we might still be interested in whether one of the factors
has an effect. The precise form of a test of one of these last hypotheses depends on
whether we first test that the effects are additive.

Exercises

1. Show that for every set of numbers θij (i = 1, . . . , I

and j = 1, . . . , J ), there exists a unique set of numbers μ,
αi, βj , and γij (i = 1, . . . , I and j = 1, . . . , J ) that satisfy
Eqs. (11.8.4) and (11.8.5).

2. Verify that Eq. (11.8.6) gives the M.L.E.’s of the param-
eters of the two-way layout with replication.

3. Suppose that in a two-way layout, the values of θij are
as given in each of the four matrices presented in parts
(a), (b), (c), and (d) of Exercise 2 of Sec. 11.7. For each
matrix, determine the values of μ, αi, βj , and γij that
satisfy Eqs. (11.8.4) and (11.8.5).

4. Verify that if α̂i, β̂j , and γ̂ij are as given by Eqs. (11.8.6)
and (11.8.7), then

∑I
i=1 α̂i = 0,

∑J
j=1 β̂j = 0,

∑I
i=1 γ̂ij = 0

for j = 1, . . . , J , and
∑J

j=1 γ̂ij = 0 for i = 1, . . . , I .

5. Verify that if μ̂, α̂i, β̂j , and γ̂ij are as given by Eqs.
(11.8.6) and (11.8.7), then E(μ̂) = μ, E(α̂i) = αi, E(β̂j) =
βj , and E(γ̂ij ) = γij for all values of i and j . Hint: Each of

the random variables in this exercise is a linear function of
the Yijk’s, and hence the expectations are the same linear
combinations of the expectations of the Yijk’s.

6. Show that if μ̂, α̂i, β̂j , and γ̂ij are as given by Eqs.
(11.8.6) and (11.8.7), then the following results are true
for all values of i and j :

Var(μ̂) = I

IJK
σ 2, Var(α̂i) = (I − 1)

IJK
σ 2,

Var(β̂j ) = (J − 1)
IJK

σ 2, Var(γ̂ij ) = (I − 1)(J − 1)
IJK

σ 2.

7. Verify Eq. (11.8.9).

8. In a two-way layout with K observations in each cell,
show that for all values of i, i1, i2, j , j1, j2, and k, the
following five random variables are uncorrelated with one
another:

Yijk − Y ij+, α̂i1
, β̂j1

, γ̂i2j2
, and μ̂.
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9. Verify that U2
AB

also equals⎛⎜⎜⎜⎜⎜⎜⎝
IJK(K − 1)(

I∑
i=1

J∑
j=1

Y
2
ij+ − J

I∑
i=1

Y
2
i++

− I

J∑
j=1

Y
2
+j+ + IJY

2
+++)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

(I − 1)(J − 1)(
I∑

i=1

J∑
j=1

K∑
k=1

Y 2
ijk

− K

I∑
i=1

J∑
j=1

Y
2
ij+)

⎞⎟⎟⎟⎟⎟⎟⎠

.

10. Suppose that in an experimental study to determine
the combined effects of receiving both a stimulant and a
tranquilizer, three different types of stimulants and four
different types of tranquilizers are administered to a group
of rabbits. Each rabbit in the experiment receives one of
the stimulants and then, 20 minutes later, receives one of
the tranquilizers. After one hour, the response of the rab-
bit is measured in appropriate units. In order that each
possible pair of drugs may be administered to two dif-
ferent rabbits, 24 rabbits are used in the experiment. The
responses of these 24 rabbits are given in Table 11.30. De-
termine the values of μ̂, α̂i, β̂j , and γ̂ij for i = 1, 2, 3 and
j = 1, 2, 3, 4, and determine also the value of σ̂ 2.

Table 11.30 Data for Exercises 10–15

Tranquilizer

Stimulant 1 2 3 4

1 11.2 7.4 7.1 9.6

11.6 8.1 7.0 7.6

2 12.7 10.3 8.8 11.3

14.0 7.9 8.5 10.8

3 10.1 5.5 5.0 6.5

9.6 6.9 7.3 5.7

11. For the conditions of Exercise 10 and the data in
Table 11.30, test the hypothesis that every interaction be-
tween a stimulant and a tranquilizer is 0.

12. For the conditions of Exercise 10 and the data in
Table 11.30, test the hypothesis that all three stimulants
yield the same responses.

13. For the conditions of Exercise 10 and the data in
Table 11.30, test the hypothesis that all four tranquilizers
yield the same responses.

14. For the conditions of Exercise 10 and the data in
Table 11.30, test the following hypotheses:

H0 : μ = 8,

H1 : μ 	= 8.

15. For the conditions of Exercise 10 and the data in
Table 11.30, test the following hypotheses:

H0 : α2 ≤ 1,

H1 : α2 > 1.

16. In a two-way layout with unequal numbers of observa-
tions in the cells, show that if μ̂, α̂i, β̂j , and γ̂ij are as given
by Eq. (11.8.19), then E(μ̂) = μ, E(α̂i) = αi, E(β̂j) = βj ,
and E(γ̂ij ) = γij for all values of i and j .

17. Verify that if μ̂, α̂i, β̂j , and γ̂ij are as given by Eq.
(11.8.19), then

∑I
i=1 α̂i = 0,

∑J
j=1 β̂j = 0,

∑I
i=1 γ̂ij = 0 for

j = 1, . . . , J , and
∑J

j=1 γ̂ij = 0 for i = 1, . . . , I .

18. Show that if μ̂ and α̂i are as given by Eq. (11.8.19),
then for i = 1, . . . , I ,

Cov(μ̂, α̂i) = σ 2

IJ 2

⎡⎣ J∑
j=1

1
Kij

− 1
I

I∑
r=1

J∑
j=1

1
Krj

⎤⎦.

Also, show that this covariance is 0 if all Kij are the same.

19. Recall the two-stage testing procedure described in
this section: First test (11.8.11) at level α0. If you reject
the null hypothesis, stop. If you don’t reject the null hy-
pothesis, then test (11.8.13). Let β0 be the conditional size
of the second test given that the first test doesn’t reject
the null hypothesis. Assume that both null hypotheses are
true. Find the probability that this two-stage procedure
rejects at least one of the null hypotheses.

20. The study referred to in Exercise 10 in Sec. 11.6 actu-
ally included another factor in addition to size of vehicle.
There were two different filters, a standard filter and a
newly developed filter. Table 11.19 has data only from the
standard filter. The corresponding data for the new filter
are in Table 11.31.

Table 11.31 Data for Exercise 20. This table has data for
the vehicles with the new filter.

Vehicle size Noise values

Small 820, 820, 820, 825, 825, 825

Medium 820, 820, 825, 815, 825, 825

Large 775, 775, 775, 770, 760, 765
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a. Construct the ANOVA table for the two-way lay-
out that includes the data from both Tables 11.19
and 11.31.

b. Compute the p-value for testing the null hypothesis
that there is no interaction.

c. Compute the p-value for testing the null hypothesis
that the vehicles of all three sizes produce the same
level of noise on average.

d. Compute the p-value for testing the null hypothesis
that both filters result in the same level of noise on
average.

11.9 Supplementary Exercises
1. Consider the data in Example 11.2.2 on page 703. Sup-
pose that we fit a simple linear regression of the natural
logarithm of pressure on boiling point.

a. Find a 90 percent confidence interval (bounded in-
terval) for the slope β1.

b. Test the null hypothesis H0 : β1 = 0 versus H1 : β1 	= 0
at level α0 = 0.1.

c. Find a 90 percent prediction interval for pressure
(not logarithm of pressure) when the boiling point
is 204.6.

2. Suppose that (Xi, Yi), i = 1, . . . , n, form a random sam-
ple of size n from the bivariate normal distribution with
means μ1 and μ2, variances σ 2

1 and σ 2
2 , and correlation ρ,

and let μ̂i, σ̂
2
i

, and ρ̂ denote their M.L.E.’s Also, let β̂2 de-
note the M.L.E. of β2 in the regression of Y on X. Show
that

β̂2 = ρ̂σ̂2/σ̂1.

Hint: See Exercise 24 of Sec. 7.6.

3. Suppose that (Xi, Yi), i = 1, . . . , n, form a random sam-
ple of size n from the bivariate normal distribution with
means μ1 and μ2, variances σ 2

1 and σ 2
2 , and correlation

ρ. Determine the mean and the variance of the following
statistic T , given the observed values X1 = x1, . . . , Xn =
xn:

T =
∑n

i=1(xi − x)Yi∑n
i=1(xi − x)2

.

4. Let θ1, θ2, and θ3 denote the unknown angles of a trian-
gle, measured in degrees (θi > 0 for i = 1, 2, 3, and θ1 +
θ2 + θ3 = 180). Suppose that each angle is measured by
an instrument that is subject to error, and the measured
values of θ1, θ2, and θ3 are found to be y1 = 83, y2 = 47,
and y3 = 56, respectively. Determine the least-squares es-
timates of θ1, θ2, and θ3.

5. Suppose that a straight line is to be fitted to n points
(x1, y1), . . . , (xn, yn) such that x2 = x3 = . . . = xn but x1 	=
x2. Show that the least-squares line will pass through the
point (x1, y1).

6. Suppose that a least-squares line is fitted to the n points
(x1, y1), . . . , (xn, yn) in the usual way by minimizing the
sum of squares of the vertical deviations of the points
from the line, and another least-squares line is fitted by
minimizing the sum of squares of the horizontal deviations
of the points from the line. Under what conditions will
these two lines coincide?

7. Suppose that a straight line y = β1 + β2x is to be fit-
ted to the n points (x1, y1), . . . , (xn, yn) in such a way that
the sum of the squared perpendicular (or orthogonal) dis-
tances from the points to the line is a minimum. Determine
the optimal values of β1 and β2.

8. Suppose that twin sisters are each to take a certain
mathematics examination. They know that the scores they
will obtain on the examination have the same mean μ,
the same variance σ 2, and positive correlation ρ. Assum-
ing that their scores have a bivariate normal distribution,
show that after each twin learns her own score, the ex-
pected value of her sister’s score is between her own score
and μ.

9. Suppose that a sample of n observations is formed
from k subsamples containing n1, . . . , nk observations
(n1 + . . . + nk = n). Let xij (j = 1, . . . , ni) denote the ob-
servations in the ith subsample, and let xi+ and v2

i
denote

the sample mean and the sample variance of that subsam-
ple:

x̄i+ = 1
ni

ni∑
j=1

xij , v2
i

= 1
ni

ni∑
j=1

(xij − xi+)2.

Finally, let x++ and v2 denote the sample mean and the
sample variance of the entire sample of n observations:

x++ = 1
n

k∑
i=1

ni∑
j=1

xij , v2 = 1
n

n∑
i=1

ni∑
j=1

(xij − x++)2.

Determine an expression for v2 in terms of x++, xi+, and
v2
i

(i = 1, . . . , k).

10. Consider the linear regression model

Yi = β1wi + β2xi + εi for i = 1, . . . , n,
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where (w1, x1), . . . , (wn, xn) are given pairs of constants
and ε1, . . . , εn are i.i.d. random variables, each of which
has the normal distribution with mean 0 and variance σ 2.
Determine explicitly the M.L.E.’s of β1 and β2.

11. Determine an unbiased estimator of σ 2 in a two-way
layout with K observations in each cell (K ≥ 2).

12. In a two-way layout with one observation in each cell,
construct a test of the null hypothesis that all the effects
of both factor A and factor B are 0.

13. In a two-way layout with K observations in each cell
(K ≥ 2), construct a test of the null hypothesis that all the
main effects for factor A and factor B, and also all the
interactions, are 0.

14. Suppose that each of two different varieties of corn
is treated with two different types of fertilizer in order
to compare the yields, and that K independent replica-
tions are obtained for each of the four combinations. Let
Xijk denote the yield on the kth replication of the com-
bination of variety i with fertilizer j (i = 1, 2; j = 1, 2;
k = 1, . . . , K). Assume that all the observations are inde-
pendent and normally distributed, each distribution has
the same unknown variance, and E(Xijk) = μij for k =
1, . . . , K . Explain in words what the following hypotheses
mean, and describe how to carry out a test of them:

H0 : μ11 − μ12 = μ21 − μ22,

H1 : The hypothesis H0 is not true.

15. Suppose that W1, W2, and W3 are independent random
variables, each of which has a normal distribution with the
following means and variances:

E(W1) = θ1 + θ2, Var(W1) = σ 2,

E(W2) = θ1 + θ2 − 5, Var(W2) = σ 2,

E(W3) = 2θ1 − 2θ2, Var(W3) = 4σ 2.

Determine the M.L.E.’s of θ1, θ2, and σ 2, and determine
also the joint distribution of these estimators.

16. Suppose that it is desired to fit a curve of the form
y = αxβ to a given set of n points (xi, yi) with xi > 0 and
yi > 0 for i = 1, . . . , n. Explain how this curve can be fitted
either by direct application of the method of least squares
or by first transforming the problem into one of fitting a
straight line to the n points (log xi, log yi) and then ap-
plying the method of least squares. Discuss the conditions
under which each of these methods is appropriate.

17. Consider a problem of simple linear regression, and
let ei = Yi − β̂0 − β̂1xi denote the residual of the obser-
vation Yi (i = 1, . . . , n), as defined in Definition 11.3.2.
Evaluate Var(ei) for given values of x1, . . . , xn, and show
that it is a decreasing function of the distance between xi

and x.

18. Consider a general linear model with n × p design ma-
trix Z, and let W = Y − Zβ̂ denote the vector of residuals.
(In other words, the ith coordinate of W is Yi − Ŷi, where
Ŷi = zi0β̂0 + . . . + zip−1β̂p−1.

a. Show that W = DY , where

D = I − Z(Z′Z)−1Z′.

b. Show that the matrix D is idempotent; that is, DD =
D.

c. Show that Cov(W ) = σ 2D.

19. Consider a two-way layout in which the effects of
the factors are additive so that Eq. (11.7.1) is satisfied,
and let v1, . . . , vI and w1, . . . , wJ be arbitrary given
positive numbers. Show that there exist unique numbers
μ, α1, . . . , αI , and β1, . . . , βJ such that

I∑
i=1

viαi =
J∑

j=1

wjβj = 0

and

E(Yij ) = μ + αi + βj for i = 1, . . . , I and j = 1, . . . , J.

20. Consider a two-way layout in which the effects of
the factors are additive, as in Exercise 19; suppose also
that there are Kij observations per cell, where Kij > 0
for i = 1, . . . , I and j = 1, . . . , J . Let vi = Ki+ for i =
1, . . . , I , and let wj = K+j for j = 1, . . . , J . Assume that
E(Yijk) = μ + αi + βj for k = 1, . . . , Kij , i = 1, . . . , j , and
j = 1, . . . , J , where

∑I
i=1 viαi = ∑J

j=1 wjβj = 0, as in Ex-
ercise 19. Verify that the least-squares estimators of μ, αi,
and βj are as follows:

μ̂ = Y+++,

α̂i = 1
Ki+

Yi++ − Y+++ for i = 1, . . . , I,

β̂j = 1
K+j

Y+j+ − Y+++ for j = 1, . . . , J.

21. Consider again the conditions of Exercises 19 and
20, and let the estimators μ̂, α̂i, and β̂j be as given in
Exercise 20. Show that Cov(μ̂, α̂i) = Cov(μ̂, β̂j ) = 0.

22. Consider again the conditions of Exercise 19 and 20,
and suppose that the numbers Kij have the following pro-
portionality property:

Kij = Ki+K+j

n
for i = 1, . . . , I and j = 1, . . . , J.

Show that Cov(α̂i, β̂j ) = 0, where the estimators α̂i and β̂j

are as given in Exercise 20.
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23. In a three-way layout with one observation in each
cell, the observations Yijk (i = 1, . . . , I ; j = 1, . . . , J ;
k = 1, . . . , K) are assumed to be independent and nor-
mally distributed, with a common variance σ 2. Suppose
that E(Yijk) = θijk. Show that for every set of numbers
θijk, there exists a unique set of numbers μ, αA

i
, αB

j
,

αC
k

, βAB
ij

, βAC
ik

, βBC
jk

, and γijk (i = 1, . . . , I ; j = 1, . . . , J ;
k = 1, . . . , K) such that

αA
+ = αB

+ = αC
+ = 0,

βAB
i+ = βAB

+j
= βAC

i+ = βAC
+k

= βBC
j+ = βBC

+k
= 0,

γij+ = γi+k = γ+jk = 0,

and

θijk = μ + αA
i

+ αB
j

+ αC
k

+ βAB
ij

+ βAC
ik

+ βBC
jk

+ γijk,

for all values of i, j , and k.

24. The 2000 U.S. presidential election was very close, es-
pecially in the state of Florida. Indeed, newscasters were
unable to predict a winner the day after the election be-
cause they could not decide who was going to win Florida’s
25 electoral votes. Many voters in Palm Beach County
complained that they were confused by the design of the
ballot and might have voted for Patrick Buchanan instead
of Al Gore, as they had intended. Table 11.32 displays the
official ballot counts (after all official recounts) for each
county. There was no reason, prior to the election, to think
that Patrick Buchanan would gather a significantly higher
percent of the vote in Palm Beach County than in any
other Florida county.

a. Draw a plot of the vote count for Patrick Buchanan
against the total vote count with one point for each

county. Identify the point corresponding to Palm
Beach County.

b. Given the complaints about the Palm Beach ballot,
it might be sensible to treat the data point for Palm
Beach County as being different from the others. Fit
a simple linear regression model with Y being the
vote for Buchanan and X being the total vote in each
county, excluding Palm Beach County.

c. Plot the residuals from the regression in part (b)
against the X variable. Do you notice any pattern in
the plot?

d. The variance of the vote for each candidate in a
county ought to depend on the total vote in the
county. The larger the total vote, the more variance
you expect in the vote for each candidate. For this
reason, the assumptions of the simple linear regres-
sion model would not hold. As an alternative, fit a
simple linear regression with Y being the logarithm
of the vote for Buchanan and X being the logarithm
of the total vote in each county. Continue to exclude
Palm Beach County.

e. Plot the residuals from the regression in part (d)
against the X variable. Do you notice any pattern in
the plot?

f. Using the model fit in part (d), form a 99 percent pre-
diction interval for the Buchanan vote (not the loga-
rithm of the Buchanan vote) in Palm Beach County.

g. Let B be the upper endpoint of the interval you
found in part (f). Just suppose that the actual num-
ber of people in Palm Beach County who voted for
Buchanan had actually been B instead of 3411. Also
suppose that the remaining 3411 − B voters had ac-
tually voted for Gore. Would this have changed the
winner of the total popular vote for the State of
Florida?
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Table 11.32 County votes for Bush, Gore, and Buchanan in the 2000 presidential election for the state of Florida. The
total column includes all 11 candidates that were on the ballot. The absentee row includes overseas absentee
ballots that were not included in individual county totals. These data came from the official state of Florida
election Web site, which has since been moved or deleted.

County Bush Gore Buchanan Total County Bush Gore Buchanan Total

Alachua 34,124 47,365 263 85,729 Lee 106,141 73,560 305 184,377

Baker 5610 2392 73 8154 Leon 39,062 61,427 282 103,124

Bay 38,637 18,850 248 58,805 Levy 6858 5398 67 12,724

Bradford 5414 3075 65 8673 Liberty 1317 1017 39 2410

Brevard 115,185 97,318 570 218,395 Madison 3038 3014 29 6162

Broward 177,902 387,703 795 575,143 Manatee 57,952 49,177 271 110,221

Calhoun 2873 2155 90 5174 Marion 55,141 44,665 563 102,956

Charlotte 35,426 29,645 182 66,896 Martin 33,970 26,620 112 62,013

Citrus 29,767 25,525 270 57,204 Miami-Dade 289,533 328,808 560 625,449

Clay 41,736 14,632 186 57,353 Monroe 16,059 16,483 47 33,887

Collier 60,450 29,921 122 92,162 Nassau 16,404 6952 90 23,780

Columbia 10,964 7047 89 18,508 Okaloosa 52,093 16,948 267 70,680

Desoto 4256 3320 36 7811 Okeechobee 5057 4588 43 9853

Dixie 2697 1826 29 4666 Orange 134,517 140,220 446 280,125

Duval 152,098 107,864 652 264,636 Osceola 26,212 28,181 145 55,658

Escambia 73,017 40,943 502 116,648 Palm Beach 152,951 269,732 3411 433,186

Flagler 12,613 13,897 83 27,111 Pasco 68,582 69,564 570 142,731

Franklin 2454 2046 33 4644 Pinellas 184,825 200,630 1013 398,472

Gadsden 4767 9735 38 14,727 Polk 90,295 75,200 533 168,607

Gilchrist 3300 1910 29 5395 Putnam 13,447 12,102 148 26,222

Glades 1841 1442 9 3365 Santa Rosa 36,274 12,802 311 50,319

Gulf 3550 2397 71 6144 Sarasota 83,100 72,853 305 160,942

Hamilton 2146 1722 23 3964 Seminole 75,677 59,174 194 137,634

Hardee 3765 2339 30 6233 St. Johns 39,546 19,502 229 60,746

Hendry 4747 3240 22 8139 St. Lucie 34,705 41,559 124 77,989

Hernando 30,646 32,644 242 65,219 Sumter 12,127 9637 114 22,261

Highlands 20,206 14,167 127 35,149 Suwannee 8006 4075 108 12,457

Hillsborough 180,760 169,557 847 360,295 Taylor 4056 2649 27 6808

Holmes 5011 2177 76 7395 Union 2332 1407 37 3826

Indian River 28,635 19,768 105 49,622 Volusia 82,357 97,304 498 183,653

Jackson 9138 6868 102 16,300 Wakulla 4512 3838 46 8587

Jefferson 2478 3041 29 5643 Walton 12,182 5642 120 18,318

Lafayette 1670 789 10 2505 Washington 4994 2798 88 8025

Lake 50,010 36,571 289 88,611 Absentee 1575 836 5 2490
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12.1 What Is Simulation?
Simulation is a way to use high-speed computer power to substitute for analytical
calculation. The law of large numbers tells us that if we observe a large sample of
i.i.d. random variables with finite mean, then the average of these random variables
should be close to their mean. If we can get a computer to produce such a large
i.i.d. sample, then we can average the random variables instead of trying (and
possibly failing) to calculate their mean analytically. For a specific problem, one
needs to figure out what types of random variables one needs, how to make a
computer produce them, and how many one needs in order to have any confidence
in the numerical result. Each of these issues will be addressed to some extent in this
chapter.

Proof of Concept

We begin with some simple examples of simulation to answer questions that we can
already answer analytically just to show that simulation does what it advertises. Also,
these simple examples will raise some of the issues to which one must attend when
trying to answer more difficult questions using simulation.

Example
12.1.1

The Mean of a Distribution. The mean of the uniform distribution on the interval
[0, 1] is known to be 1/2. If we had available a large number of i.i.d. uniform random
variables on the interval [0, 1], say, X1, . . . , Xn, the law of large numbers says that
X = 1

n

∑n
i=1 Xi should be close to the mean 1/2. Table 12.1 gives the averages of

several different simulated samples of size n from the uniform distribution on [0, 1]
for several different values of n. It is not difficult to see that the averages are close
to 0.5 in most cases, but there is quite a bit of variation, especially for n = 100. There
seems to be less variation for n = 1000, and even less for the two largest values of n.

�

Example
12.1.2

A Normal Probability. The probability that a standard normal random variable is at
least 1.0 is known to be 0.1587. If we had available a large number of i.i.d. stan-
dard normal random variables, say, X1, . . . , Xn, we could create Bernoulli random
variables Y1, . . . , Yn defined by Yi = 1 if Xi ≥ 1.0 and Yi = 0 if not. Then the law of
large numbers says that Y = 1

n

∑n
i=1 Yi should be close to the mean of Yi, namely,

787
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Table 12.1 Results of several different simulations in Example 12.1.1

n Replications of the simulation

100 0.485 0.481 0.484 0.569 0.441

1000 0.497 0.506 0.480 0.498 0.499

10,000 0.502 0.501 0.499 0.498 0.498

100,000 0.502 0.499 0.500 0.498 0.499

Table 12.2 Results of several different simulations in Example 12.1.2

n Replications of the simulation

100 0.16 0.18 0.17 0.22 0.14

1000 0.135 0.171 0.174 0.159 0.171

10,000 0.160 0.163 0.158 0.152 0.156

100,000 0.158 0.158 0.158 0.159 0.161

Pr(Xi ≥ 1.0) = 0.1587. Notice that Y is merely the proportion of the simulated Xi

values that are at least 1.0. Table 12.2 gives the proportions of Xi ≥ 1.0 for several
different simulated samples of size n from the standard normal distribution for sev-
eral different values of n. It is not difficult to see that the proportions are somewhat
close to 0.1587, but there is still quite a bit of variability from one simulation to the
next. �

As we mentioned earlier, there is no need for simulation in the above examples.
These were just to illustrate that simulation can do what it claims. However, one
needs to be aware that, no matter how large a sample is simulated, the average of
an i.i.d. sample of random variables is not necessarily going to be equal to its mean.
One needs to be able to take the variability into account. The variability is apparent
in Tables 12.1 and 12.2. We shall address the issue of the variability of simulations
later in the chapter.

The reader might also be wondering how we obtained all of the uniform and
normal random variables used in the examples. Virtually every commercial statistical
software package has a simulator for i.i.d. uniform random variables on the interval
[0, 1]. Later in the chapter, we shall discuss ways to make use of these for simulating
other distributions. One such method was already discussed in Chapter 3 on page 170.

Examples in which Simulation Might Help

Next, we present some examples where the basic questions are relatively simple to
describe, but analytic solution would be tedious at best.

Example
12.1.3

Waiting for a Break. Two servers, A and B, in a fast-food restaurant start serving
customers at the same time. They agree to meet for a break after each of them has
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Figure 12.1 Histogram of
sample of 10,000 simulated
waiting times Z in Exam-
ple 12.1.3.
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served 10 customers. Presumably, one of them will finish before the other and have
to wait. How long, on average, will one of the servers have to wait for the other?

Suppose that we model all service times, regardless of the server, as i.i.d. ran-
dom variables having the exponential distribution with parameter 0.3 customers per
minute. Then the time it takes one server to server 10 customers has the gamma
distribution with parameters 10 and 0.3. Let X be the time it takes A to serve 10
customers, and let Y be the time it takes B to serve 10 customers. We are asked to
compute the mean of |X − Y |. The most straightforward way of finding this mean
analytically would require a two-dimensional integral over the union of two non-
rectangular regions.

On the other hand, suppose that a computer can provide us with as many
independent gamma random variables as we desire. We can then obtain a pair (X, Y )

and compute Z = |X − Y |. We then repeat this process independently as many times
as we want and average all the observed Z values. The average should be close to the
mean of Z.

Without going into details, we actually simulated 10,000 pairs of (X, Y ) values and
averaged the resulting Z values to get 11.71 minutes. A histogram of the simulated
Z values is in Fig. 12.1. As a confidence builder, we simulated another 10,000 pairs
and got an average of 11.77. �

Example
12.1.4

Long Run of Heads. You overheard someone say that they just got 12 consecutive
heads while flipping a seemingly fair coin. The probability of getting 12 heads in a
row in 12 independent flips of a fair coin is (0.5)12, a very small number. If the person
had obtained 12 tails in a row, you probably would have heard about that instead.
Even so, the probability of 12 of the same side is only (0.5)11. But then you learn that
the person actually flipped the coin 100 times, and the 12 heads in a row appeared
somewhere during those 100 flips. Presumably, you are less surprised to learn that
the person got a run of 12 of the same side somewhere in a sequence of 100 flips. But
how much larger is the probability of a run of 12 when one flips 100 times?

Suppose that we can make a computer flip a fair coin as many times as we wish.
We could ask it to flip 100 times and then check whether there was a run of length 12
or more. Let X = 1 if there is a run of 12 or more, and let X = 0 if not. We then repeat
this process independently as many times as we want and average all the observed
X values. The average should be close to the mean of X, which is the probability of
obtaining a run of 12 or more in 100 flips.

Without going into details, Fig. 12.2 shows a histogram of the longest runs in
10,000 repetitions of the experiment described above. For each of the 10,000 runs,
we calculated X as above and found the average to be 0.0214, still a small number,
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Figure 12.2 Histogram of
sample of 10,000 longest runs
(head or tail). Each run was
observed in 100 flips of a fair
coin.
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but not nearly so small as (0.5)11. We also repeated the calculation of the average
with another 10,000 sets of 100 flips and got 0.0229. �

A number of details were left out of exactly how the simulations were performed
in the above examples. However, it is clear what random variables we wanted to
observe, namely, Z in Example 12.1.3 and X in Example 12.1.4. Many simulations can
address more than one question. For instance, in Example 12.1.4, we recorded the
10,000 lengths of the longest runs even though our primary interest was in whether or
not the longest run was 12 or more. We could also have tried to calculate the expected
length of the longest run or other properties of the distribution of the longest run. In
Example 12.1.3, we could have tried to approximate the probability that one person
has to wait at least 15 minutes, etc.

Figures 12.1 and 12.2 illustrate that there is variation among the 10,000 repeti-
tions of a simulated experiment. Furthermore, each of the examples showed that a
complete rerunning of all 10,000 simulated experiments can be expected to produce a
different answer to each of our questions. How much different the answers should be
is a matter that we shall address in Sec. 12.2, where we use the Chebyshev inequality
and the central limit theorem to help us decide how many times to repeat the basic
experiment. Exactly how one simulates 100 flips of a coin or a pair of gamma random
variables will be taken up in Sec. 12.3.

Summary

Suppose that we want to know the mean of some function g of a random variable
or random vector W . For instance, in Example 12.1.3 we can let W = (X, Y ) and
g(W) = |X − Y |. If a computer can supply a large number of i.i.d. random variables
(or random vectors) with the distribution of W , one can use the average of the
simulated values of g(W) to approximate the mean of g(X). One must be careful
to take the variability in g(W) into account when deciding how much confidence to
place in the approximation.

Exercises

For each of the exercises in this section, you could also perform the simulations
described with various numbers of replications if you have appropriate computer
software available. Most of the distributions involved are commonly available in
computer software. If a distribution is not available, the simulations can wait until
methods for simulating specific distributions are introduced in Sec. 12.3.
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1. Assume that one can simulate as many i.i.d. exponen-
tial random variables with parameter 1 as one wishes. Ex-
plain how one could use simulation to approximate the
mean of the exponential distribution with parameter 1.

2. If X has the p.d.f. 1/x2 for x > 1, the mean of X is infi-
nite. What would you expect to happen if you simulated
a large number of random variables with this p.d.f. and
computed their average?

3. If X has the Cauchy distribution, the mean of X does
not exist. What would you expect to happen if you sim-
ulated a large number of Cauchy random variables and
computed their average?

4. Suppose that one can simulate as many i.i.d. Bernoulli
random variarbles with parameter p as one wishes. Ex-
plain how to use these to approximate the mean of the
geometric distribution with parameter p.

5. Two servers A and B in a fast-food restaurant each start
their first customers at the same time. After finishing her
second customer, A notices that B has not yet finished

his first customer. A then chides B for being slow, and
B responds that A just got a couple of easier customers.
Suppose that we model all service times, regardless of the
server, as i.i.d. random variables having the exponential
distribution with parameter 0.4. Let X be the sum of the
first two service times for server A, and let Y be the first
service time for server B. Assume that you can simulate as
many i.i.d. exponential random variables with parameter
0.4 as you wish.

a. Explain how to use such random variables to approx-
imate Pr(X < Y).

b. Explain why Pr(X < Y) is the same no matter what
the common parameter is of the exponential dis-
tribuions. That is, we don’t need to simulate exponen-
tials with parameter 0.4. We could use any parameter
that is convenient, and we should get the same an-
swer.

c. Find the joint p.d.f. of X and Y , and write the
two-dimensional integral whose value would be
Pr(X < Y).

12.2 Why Is Simulation Useful?
Statistical simulations are used to estimate features of distributions such as means
of functions, quantiles, and other features that we cannot compute in closed form.
When using a simulation estimator, it is good to compute a measure of how precise
the estimator is, in addition to the estimate itself.

Examples of Simulation

Simulation is a technique that can be used to help shed light on how a complicated
system works even if detailed analysis is unavailable. For example, engineers can
simulate traffic patterns in the vicinity of a construction project to see what effects
various proposed restrictions might have. A physicist can simulate the behavior of
gas molecules under conditions that are covered by no known theory. Statistical
simulations are used to estimate probabilistic features of our models that we cannot
compute analytically. Because simulation introduces an element of randomness into
an analysis, it is sometimes called Monte Carlo analysis, named after the famous
European gambling center.

Example
12.2.1

The M.S.E. of the Sample Median. Suppose that we are about to observe a random
sample of size n from a Cauchy distribution centered at an unknown value μ. The
p.d.f. of each observation is

f (x) = 1
π

(1 + [x − μ]2)−1,

and the parameter μ is the median of the distribution. Suppose that we are interested
in how well the sample median M performs as an estimator of μ. In particular, we
want to calculate the M.S.E. E([M − μ]2). If we could generate a sample of n random
variables from a Cauchy distribution centered at μ, we could compute the sample
median M and calculate Y = (M − μ)2. The M.S.E. is then θ = E(Y ). If we could
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generate a large number v of i.i.d. random variables with the same distribution as Y ,
say, Y (1), . . . , Y (v), then the law of large numbers would tell us that Z = 1

v

∑v
i=1 Y (i)

should be close to θ . To do this, we could generate nv i.i.d. Cauchy random variables
centered at μ. Then we could divide them into v sets of n each and use each set of n to
compute a sample median M(i) for i = 1, . . . , v and then compute Y (i) = (M(i) − μ)2.
This is actually how several of the numbers in the tables in Sec. 10.7 were computed.
These tables contain the M.S.E.’s of various estimators computed from random
samples with various distributions. For example, the numbers corresponding to the
sample median in Table 10.39 on page 675 are precisely what we have been discussing
in this example. �

Note: Notation to Distinguish Simulations. We shall use superscripts in parenthe-
ses to distinguish different simulated values of the same random variable from each
other. For instance, in Example 12.2.1, we used Y (i) to stand for the ith simulated
value of Y . In what follows, we may be simulating subscripted random variables. For
example, μ

(j)

i would stand for the j th simulated value of μi.
Example 12.2.1 illustrates the main features of many statistical simulations. Sup-

pose that the quantity in which we are interested can be expressed as the expected
value of some random variable that has the distribution F . Then we should try to
generate a large sample of random variables with the distribution F and average
them. It is often the case, as in Example 12.2.1, that the distribution F is itself very
complicated. In such cases, we need to construct random variables with the distri-
bution F from simpler random variables whose distributions are more familiar. In
Example 12.2.1, the M.S.E. is the mean of the random variable Y = (M − μ)2, where
M is itself the sample median of a sample of n Cauchy random variables centered at
μ. We cannot easily simulate a random variable with the distribution of Y in one step,
but we can simulate n Cauchy random variables and then find their sample median
M and finally compute Y = (M − μ)2, which will have the desired distribution. We
then repeat the simulation of Y many times.

Not all statistical simulations involve the mean of a random variable.

Example
12.2.2

The Median of a Complicated Distribution. Let X be an exponential random variable
with unknown parameter μ. Suppose that μ has a distribution with the p.d.f. g. We
are interested in the median of X. The marginal distribution of X has the p.d.f.

f (x) =
∫ ∞

0
μe−μxg(μ)dμ.

This integral might not be one that we can compute. However, suppose that we can
generate a large sample of random variables μ(1), . . . , μ(v) having the p.d.f. g. Then,
for each i = 1, . . . , v, we can simulate X(i) having the exponential distribution with
parameter μ(i). The random variables X(1), . . . , X(v) would then be a random sample
from the distribution with the p.d.f. f . The median of the sample X(1), . . . , X(v) should
be close to the median of the distribution with the p.d.f. f . �

Example
12.2.3

A Clinical Trial. Consider the four treatment groups described in Example 2.1.4 on
page 57. For i = 1, 2, 3, 4, let Pi be the probability that a patient in treatment group
i will not relapse after treatment. We might be interested in how likely it is that the
Pi’s differ by certain amounts. We might assume that the Pi’s are independent a priori
with beta distributions having parameters α0 and β0. The posterior distributions of the
Pi’s are also independent beta distributions with parameters α0 + xi and β0 + ni − xi,
where ni is the number of subjects in group i, and xi is the number of patients in group
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i who do not relapse. We could simulate a large number v of vectors (P1, P2, P3, P4)

with the above beta distributions. Then we could try to answer any question we
wanted about the posterior distribution of (P1, P2, P3, P4). For example, we could
estimate Pr(Pi > P4) for i = 1, 2, 3, where i = 4 stands for the placebo group. This
probability tells us how likely it is that each treatment is better than no treatment.
We could estimate Pr(Pi > P4) by finding the proportion of sampled (P1, P2, P3, P4)

vectors in which the ith coordinate is greater than the fourth coordinate. We could
also estimate the probability that Pi is the largest, or the probability that all four Pi

are within ε of each other. �

Example
12.2.4

Comparing Two Normal Means with Unequal Variances. On page 593 in Chapter 9, we
considered how to test hypotheses concerning the means of two different normal
distributions when the variances are unknown and different. This problem has a rel-
atively simple solution in the Bayesian framework using simulation. Our parameters
will be μx, τx, μy, and τy. Conditional on the parameters, let X1, . . . , Xm be i.i.d.
having the normal distribution with mean μx and precision τx. Also let Y1, . . . , Yn

be i.i.d. (and independent of the X’s) having the normal distribution with mean μy

and precision τy. Assume that we use natural conjugate priors for the parameters
with (μx, τx) independent of (μy, τy) in the prior distribution. (It is not necessary for
the X parameters to be independent of the Y parameters, but it makes the presen-
tation simpler.) Sec. 8.6 contains details on how to obtain the posterior distributions
of the parameters. Since the X data and X parameters are independent of the Y data
and Y parameters, we can calculate each posterior distribution separately. Let the
hyperparameters of the posterior distribution of (μx, τx) be αx1, βx1, μx1, and λx1.
Similarly, let the hyperparameters of the posterior distribution of (μy, τy) be αy1,
βy1, μy1, and λy1. In order to test hypotheses about μx − μy, we need the posterior
distribution of μx − μy. This distribution is not analytically tractable. If we can simu-
late a large collection of parameter vectors from their joint posterior distribution, we
can compute μx − μy for each sampled vector, and these values will form a sample
from the posterior distribution of μx − μy. To be more specific, let v be a large num-
ber, and for each i = 1, . . . , v, we want to simulate (μ(i)

x
, μ(i)

y
, τ (i)

x
, τ (i)

y
) from the joint

posterior distribution. To do this, we need to simulate independent gamma random
variables τ (i)

x
and τ (i)

y
with the appropriate posterior distributions. After simulating

these, we can simulate μ(i)
x

from the normal distribution with mean μx1 and variance
1/(λx1τ

(i)
x

). Similarly, we can simulate μ(i)
y

from the normal distribution with mean

μy1 and variance 1/(λy1τ
(i)
y

). Then μ(i)
x

− μ(i)
y

for i = 1, . . . , v is a sample from the pos-
terior distribution of μx − μy. We shall illustrate this methodology in Example 12.3.8
after we discuss some methods for simulating pseudo-random numbers with various
distributions. �

The simulation in Example 12.2.4 can be extended in a straightforward fashion
to a comparison of three or more normal distributions with unequal variances. With
more than two means to compare, questions arise about what exactly to calculate
to summarize the comparison. That is, there is not just one difference like μx − μy

that captures the differences between three or more means. We shall consider this
situation in more detail in Examples 12.3.7 and 12.5.6.

Example
12.2.5

Estimating a Standard Deviation. Let X be a random variable whose standard deviation
θ is important to estimate. Suppose that we cannot calculate θ in closed form, but we
can simulate many pseudo-random values X(1), . . . , X(v) with the same distribution
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as X. Then we could compute the sample standard deviation

Sv =
(

1
v

v∑
i=1

(X(i) − X)2

)1/2

,

as an estimator of θ , where X = 1
v

∑v
i=1 X(i). Since Sv is not an average, the law

of large numbers does not tell us that it converges in probability to θ . However,

if we let Y (i) = X(i)2, we can rewrite Sv as (Y − X
2
)1/2. In this form, we see that Sv =

g(X, Y ), where g(x, y) = (y − x2)1/2. Notice that g is continuous at every point (x, y)

such that y ≥ x2. The law of large numbers tells us that Y converges in probability
to E(X2) and that X converges in probability to E(X). Since E(X2) ≥ E(X), we
can apply Exercise 16 in Sec. 6.2 to conclude that Sv converges in probability to
g(E(X), E(X2)) = θ . �

All of the examples above involve the generation of a large number of random
variables with specific distributions. Some discussion of this topic appeared in Chap-
ter 3 beginning on page 170. Sections 12.3 and 12.5 will also discuss methods for
generating random variables with specific distributions. Sections 12.4 and 12.6 will
present particular classes of problems in which statistical simulation is used success-
fully.

Which Mean Do You Mean?

Simulation analyses add an additional layer of probability distributions and sam-
pling distributions of statistics to an already probability-laden statistical analysis. A
typical statistical analysis involves a probability model for a random sample of data
X1, . . . , Xn. This probability model specifies the distribution of each Xi, and this
distribution might have parameters such as its mean, median, variance, and other
measures that we are interested in estimating or testing. We then form statistics (func-
tions of the data), say, Y . These functions might include sample versions of the very
parameters that we wish to estimate, such as a sample mean, sample median, sample
variance, and the like. The distribution of Y has been called its sampling distribu-
tion. This sampling distribution also might have a mean, median, variance, and other
measures that we need to calculate or deal with in some way. So far, we have three ver-
sions of mean, median, variance, and others, and we have not even begun discussing
simulation.

A simulation analysis might be used to try to estimate a parameter θ of the
sampling distribution of the statistics Y . Typically, one would simulate i.i.d. pseudo-
random Y (1), . . . , Y (v) each with the same distribution as (the sampling distribution
of) Y . We then compute a summary statistic Z of Y (1), . . . , Y (v) and use Z to estimate
θ . This Z might itself be a sample mean, sample median, sample variance, or other
measure of the Y (1), . . . , Y (v) sample. The distribution of Z will be called its simula-
tion distribution or Monte Carlo distribution. Features of the simulation distribution,
such as its mean, median, and variance, will be called the simulation mean, simula-
tion median, and simulation variance to make clear to which level we have climbed
in this ever-expanding tree of terminology. Here is an example to illustrate all of the
various levels.

Example
12.2.6

Five or More Variances. Let X1, . . . , Xn be i.i.d. random variables with a continuous
distribution having c.d.f. F . Let ψ denote the variance of Xi. Suppose that we decide
to use the sample variance Y = ∑n

i=1(Xi − X)2/n to estimate ψ . As part of deciding
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Table 12.3 Levels of probability distributions, statistics, and parameters in a typical simulation analysis

Distribution (D) or sample (S) Parameter (P) or statistic (S)

(D) Population distribution F (P) Mean, variance, median, etc. ψ

(S) Sample X = (X1, . . . , Xn) from F (S) Estimator Y of ψ based on X , e.g., sample mean, sample
variance, sample median, etc.

(D) Sampling distribution G of Y (P) Mean, variance, median, etc., θ of the sampling distribution
of Y

(S) Simulated sample Y = (Y (1), . . . , Y (v))

from G

(S) Estimator Z of θ based on Y , e.g., sample mean, sample
variance, sample median, etc., of Y .

(D) Simulation distribution H of Z (P) Variance of simulation distribution (simulation variance)

(S) Simulated data (differs by example) (S) Estimator of simulation variance, (depends on specific
example)

how good Y is as an estimator of ψ , we are interested in its variance θ = Var(Y ).
That is, θ is the variance of the sampling distribution of Y . Suppose that we cannot
calculate θ in closed form, but suppose that it is easy to simulate from the distribution
F . We might then simulate nv values X

(j)

i for j = 1, . . . , v, i = 1, . . . , n. For each j ,

we compute the sample variance Y (j) of the sample X
(j)

1 , . . . , X(j)
n

. That is, Y (j) =∑n
i=1(X

(j)

i − X
(j)

)2/n. The Y (j) values all have the same distribution as Y itself, the
sampling distribution of Y . Since we are interested in Var(Y ), we might compute the
sample variance Z of the sample Y (1), . . . , Y (v). That is, Z = ∑v

i=1(Y
(i) − Y )2/v. We

would then use Z to estimate θ . If Z is large, it suggests that Y has large variance, and
so Y is not a very good estimator of ψ . Unless we are willing to collect more data or
search for a better estimator, we are stuck with a poor estimator of ψ .

Finally, Z might not be a good estimator of θ because our simulation size v might
not be large enough. If this is the case, we can simulate more Y (j) values. That is, we
can increase the simulation size v to get a better simulation estimator of θ . (This will
not make Y a better estimator of ψ , but it will give us a better idea of how good
or bad an estimator it is.) Hence, we shall also try to estimate the variance of Z (its
simulation variance). Precisely how to do this varies from one example to the next,
so we shall not give any details here. However, we shall explain how to estimate the
simulation variance of Z for the most popular types of simulation later in this section.

This estimation of variance has to end somewhere, and we shall end it with
Var(Z). That is, we shall not try to assess how good our estimator of Var(Z) is. All of
these levels of distributions and estimation are illustrated in Table 12.3. �

Example 12.2.6 is not intended to illustrate any simulation methodology. It is
intended to illustrate the various levels at which probability concepts (such as vari-
ance) and their sample versions enter into a simulation study of a statistical analysis.
It is important to be able to tell which variance or which sample variance is being
discussed if one is to avoid becoming hopelessly confused. In this chapter, we shall
focus on the features of the simulated samples, in particular the simulation distribu-
tion of statistics computed from the simulated samples. However, our examples will
necessarily involve parameters and statistics that arose at earlier levels. Furthermore,
the analysis of a simulation distribution will make use of the same methods (central
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limit theorem, law of large numbers, delta method, etc.) that we learned how to use
with nonsimulated data.

Assessing Uncertainty about Simulation Results

The last step in Example 12.2.6 (summarized in the last two rows of Table 12.3) is
an important part of every simulation analysis. That is, we should always attempt to
assess the uncertainty in a simulation. This uncertainty is most easily assessed via
the simulation variance of the simulated quantity. For instance, in Example 12.2.1,
let v = 1000 and θ = 0. We can create 1000 samples of n Cauchy random variables,
calculate M(i), the median of the ith sample, and compute the value Y (i) = (M(i) − 0)2.
We can then average the 1000 values of Y (i). We could repeat this exercise several
times, and we would not get the same result every time. This is due to the fact that,
even with a large v like 1000, an estimator such as Z = 1

v

∑v
i=1 Y (i) is still a random

variable with positive variance (its simulation variance). The smaller the simulation
variance is, the more certain we can be that our estimator Z is close to what we are
trying to estimate. But we need to estimate or bound the simulation variance before
we can assess the amount of uncertainty. How we estimate the simulation variance of
a result Z depends on whether Z is an average of simulated values, a smooth function
of one or more averages, or a sample quantile of simulated values. The square root
of our estimate of the simulation variance will be called the simulation standard
error, and it is an estimate of the simulation standard deviation of Z. The simulation
standard error is a popular way to summarize uncertainty about a simulation for two
reasons. First, it has the same units of measurement as the quantity that was estimated
(unlike the simulation variance). Second, the simulation standard error is useful for
saying how likely it is that the simulation estimator is close to the parameter being
estimated. We shall explain this second point in more detail after we show how to
calculate the simulation standard error in several common cases.

Example
12.2.7

The Simulation Standard Error of an Average. Suppose that the goal of the simulation
analysis is to estimate the mean θ of some random variable Y . The simulation
estimator Z will generally be the average of a large number of simulated values.
A straightforward way to estimate the simulation variance for an average is the
following: Suppose that we simulate some quantity Y a large number v of times
in order to estimate the mean θ . That is, suppose that we simulate independent
Y (1), . . . , Y (v) for large v. Suppose also that the estimator of θ is Z = 1

v

∑v
i=1 Y (i),

and each Y (i) has mean θ and finite variance σ 2. The sample standard deviation of
the sample Y (1), . . . , Y (v) is the square root of the sample variance, namely,

σ̂ =
(

1
v

v∑
i=1

(Y (i) − Y )2

)1/2

. (12.2.1)

If v is large, then σ̂ should be close to σ . The central limit theorem says that Z should
have approximately the normal distribution with mean θ and variance σ 2/v. Since we
usually do not know σ 2, we shall estimate it by σ̂ 2. This makes our estimator of the
simulation variance of Z equal to σ̂ 2/v, and the simulation standard error is σ̂ /v1/2.

�

Example
12.2.8

The Simulation Standard Error of a Smooth Function of Another Estimator. Sometimes,
after estimating a quantity ψ , we also wish to estimate a smooth function of it: g(ψ).
For example, we might need to estimate the square root or the logarithm of some
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mean. Or, we might have estimated a variance θ2, and now we want an estimator of θ ,
the corresponding standard deviation. In general, suppose that the parameter that we
wish to estimate by simulation is θ = g(ψ), where we already have an estimator W of
ψ . Suppose further that our estimator W has approximately the normal distribution
with mean ψ and variance σ 2/v, where v is large compared to σ 2. Finally, suppose that
we also have an estimator σ̂ of σ that we obtained while calculating W . For example,
W might itself be the average of v i.i.d. simulated random variables Y (i) with mean
ψ and variance σ 2. In this case, Eq. (12.2.1) will be our estimator of σ . Let Z = g(W)

be our estimator of θ . The delta method (see Sec. 6.3) says that Z has approximately
the normal distribution with mean θ = g(ψ) and variance [g′(ψ)]2σ 2/v. For example,
if g(ψ) = ψ1/2, then W 1/2 has approximately the normal distribution with mean ψ1/2

and variance σ 2/[4ψv]. We already have estimates of σ and ψ , so our simulation
standard error of Z is |g′(W)|σ̂ /v1/2. �

Example
12.2.9

The Simulation Standard Error of a Sample Quantile. Suppose that the goal of a simu-
lation analysis is to estimate the p quantile θp of some distribution G. Typically, we
simulate a large number v of pseudo-random values Y (1), . . . , Y (v) with distribution
G and use the sample p quantile as our estimator. On page 676, we pointed out that
the sample p quantile from a large random sample of size m has approximately the
normal distribution with mean θp and variance p(1 − p)/[mg2(θp)], where g is the
p.d.f. of the distribution G. All we care about right now is that this approximate vari-
ance has the form σ 2/m, where σ 2 = p(1 − p)/g2(θp) is some number that does not
depend on m. Suppose that we simulate k independent random samples each of size
m from the distribution G. Typically, this is done by choosing the size v of the original
simulated sample Y (1), . . . , Y (v) to be v = km, and then splitting the v simulated val-
ues into k subsamples of size m each. Compute the sample p quantile of each of the
k random samples and call these simulated sample p quantiles Z1, . . . , Zk. To make
use of the approximate normal distribution for the sample quantiles, m needs to be
large. Next, compute the sample standard deviation of Z1, . . . , Zk:

S =
(

1
k

k∑
i=1

(Zi − Z)2

)1/2

, (12.2.2)

where Z is the average of the k sample p quantiles. If we treat each Zi as a single
simulation, then S2 is an estimator of the variance of Zi. But we just pointed out that
the variance of Zi is approximately σ 2/m. Hence, S2 is an estimator of σ 2/m. In other
words, an estimator of σ is σ̂ = m1/2S. Finally, combine all k samples into a single
sample of size v = km, and compute the sample p quantile Z as our Monte Carlo
estimator of θp. As we noted earlier, Z has approximately the normal distribution
with mean θp and variance σ 2/v. We just constructed an estimator σ̂ of σ , so our
estimator of the simulation variance of Z is σ̂ 2/v = mS2/v = S2/k, and the simulation
standard error is S/k1/2. �

Example
12.2.10

The Simulation Standard Error of a Sample Variance. Suppose that the goal of a simu-
lation analysis is to estimate the variance θ of some estimator Y . (Example 12.2.6
was based on such a situation.) Suppose that we simulate Y (1), . . . , Y (v) and use
Z = 1

v

∑v
i=1(Y

(i) − Y )2 to estimate θ . We now need to estimate the simulation vari-
ance of Z. We shall rewrite Z as a smooth function of two averages and then apply
a two-dimensional generalization of the delta method (see Exercise 12) in order to

estimate the simulation variance. Let W(i) = Y (i)2 so that Z = W − Y
2
, where W is
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the average of W(1), . . . , W(v). Now Z is a smooth function of two averages. The two-
dimensional delta method developed in Exercise 12 can be applied. (The details for
this very case can be derived in Exercise 13.) The results of Exercise 13 provide the
following approximation to the asymptotic variance of Z. First, compute the sam-
ple variance of W(1), . . . , W(v) and call it V . Next, compute the sample covariance
between the Y ’s and W ’s:

C = 1
v

v∑
i=1

(Y (i) − Y )(W(i) − W).

The estimator of Var(Z) is then

̂Var(Z) = 1
v

(
4Y

2
Z − 4YC + V

)
. (12.2.3)

Also, the simulation distribution of Z is approximately the normal distribution with
mean θ and variance that is estimated by Eq. (12.2.3). The simulation standard error
is the square root of (12.2.3). �

Do We Have Enough Simulations? Let Z be our Monte Carlo estimator of some
parameter θ based on v simulations. Now that we are able to estimate the simulation
variance of Z, we can begin to answer questions about how close we think Z is to θ .
We can also try to see if we need to do more simulations in order to be confident that
Z is close enough to θ . Suppose, as in all of the cases considered so far, that Z has
approximately the normal distribution with mean θ and variance σ 2/v, where σ 2 is
a number that does not depend on the simulation size. For each ε > 0,

Pr(|Z − θ | ≤ ε) ≈ 2�
(
εv1/2/σ

)
− 1, (12.2.4)

where � is the standard normal c.d.f. We can use this type of approximation to help
us to say how likely it is that Z is close to θ . We can replace v1/2/σ by 1 over the
simulation standard error of Z in Eq. (12.2.4) to approximate the probability that
|Z − θ | ≤ ε. We can also use (12.2.4) to decide how many more simulations to do
if v was not large enough. For example, suppose that we want the probability in
Eq. (12.2.4) to be γ . Then we should let

v =
[
�−1

(
1 + γ

2

)
σ

ε

]2

. (12.2.5)

Since we will hardly ever know σ ahead of time, it is common to estimate it by
doing a preliminary simulation of size v0 and computing σ̂ based on that preliminary
simulation.

Example
12.2.11

The M.S.E. of the Sample Median. It is not difficult to see that we can take μ = 0 in
Example 12.2.1 without loss of generality. The reason is the following: Let M(i) be
the sample median of X

(i)

1 , . . . , X(i)
n

where each X
(i)
j is a Cauchy random variable

centered at μ. Then M(i) − μ is also the sample median of X
(i)

1 − μ, . . . , X(i)
n

− μ,

and each X
(i)
j − μ is a Cauchy random variable centered at 0. Because our calculation

is based on the values Y (i) = (M(i) − μ)2 for i = 1, . . . , v, we get the same result
whether μ = 0 or not. So, let μ = 0. This makes Y (i) = M(i)2, and σ 2 is now the
variance of M(i)2. (Even though a Cauchy random variable does not even have a
first moment defined, it can be shown that the sample median of at least nine i.i.d.
Cauchy random variables has a finite fourth moment.) Suppose that we want our
estimator Z = Y of θ to be within ε = 0.01 of θ with probability γ = 0.95. That
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is, we want Pr(|Z − θ | ≤ 0.01) = 0.95. Since Z is an average, we can compute an
estimate σ̂ of σ by using Eq. (12.2.1). Suppose that we simulate v0 = 1000 samples
of size n = 20 from a Cauchy distribution, compute the 1000 values of Y (i), and then
compute σ̂ = 0.3892. According to Eq. (12.2.5) with σ replaced by 0.3892, we need
v = [1.96 × 0.3892/0.01]2 = 5820. Hence, we need approximately 4820 additional
simulations. �

After performing any additional simulations suggested by Eq. (12.2.5), one
should recompute σ̂ . If it is much larger than the preliminary estimate, then additional
simulations should be performed.

Example
12.2.12

The Median of a Complicated Distribution. In Example 12.2.2, suppose that the p.d.f.
g is the p.d.f. of the gamma distribution with parameters 3 and 1. Suppose that we
want the probability to be 0.99 that our estimator of the median is within 0.001 of
the true median. We begin with an initial simulation of size v0 =10,000. We then
simulate μ(1), . . . , μ(10,000) from the gamma distribution with parameters 3 and 1. For
each i, we simulate X(i) having the exponential distribution with parameter μ(i). We
treat X(1), . . . , X(10,000) as k = 20 samples of size m = 500 each, and we compute the
sample median Z1, . . . , Z20 of each of the 20 samples. After performing these initial
simulations, suppose that we observe the value S = 0.01597 for Eq. (12.2.2). This
makes σ̂ = 0.3570. Plugging this value into (12.2.5) for σ with γ = 0.99 and ε = 0.001
yields v = 845,747.4. This means that we need a total of 845,748 simulations to reach
our desired level of confidence in the simulated result. Just to check, we simulated
a total of 900,000 values and computed the sample median 0.2593 as well as a new
value of S2 based on k = 100 subsamples of size m = 6200 each. The new value of σ̂

is 0.4529. Substituting 0.4529 for σ in Eq. (12.2.5) yields a new v =1,360,939, which
means that we still need another 460,939 simulations. �

Simulating Real Processes

In many scientific fields, real physical or social processes are modeled as having ran-
dom components. For example, stock prices are often modeled as having lognormal
distributions as in Example 5.6.10. Many processes involving waiting times and ser-
vice are modeled using Poisson processes. The simple probability models that have
been developed earlier in this text are merely the building blocks of which such mod-
els of real processes are constructed. Here, we shall give two examples of slightly
more complicated models that can be constructed using the distributions we already
know. The analyses of these models can be simplified by the use of simulation.

Example
12.2.13

Option Pricing. In Example 5.6.10, we introduced the formula of Black and Scholes
(1973) for pricing options. In that example, the option was to buy shares at price
q of a stock whose value at time u (in the future) is a random variable Su with
a known lognormal distribution. Many financial analysts believe that the standard
deviation σ of log(Su) in Example 5.6.10 should not be treated as a known constant.
For example, we could treat σ as a random variable with a p.d.f. f (σ). To be precise,
we shall continue to assume that Su = S0e

(r−σ 2/2)u+σu1/2Z, but now we shall assume
that both Z and σ are random variables. For convenience, we shall assume that
they are independent. We shall let Z have the standard normal distribution, and
we shall let τ = 1/σ 2 have the gamma distribution with known parameters α and
β. The parameters α and β might result from estimating the variance of stock prices
based on historical data combined with expert opinion of stock analysts. For example,
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they might be the posterior hyperparameters that result from applying a Bayesian
analysis to a sample of stock prices. It is easy to see that E(Su|σ) = S0e

ru for all
σ , and hence the law of total probability for expectations (Theorem 4.7.1) implies
that E(Su) = S0e

ru. This is what we need for risk neutrality. The price for the option
considered in Example 5.6.10 is the mean of the random variable e−ruh(Su), where

h(s) =
{

s − q if s > q,
0 otherwise.

The Black-Scholes formula (5.6.18) is just the conditional mean of e−ruh(Su) given
σ . To estimate the marginal mean of e−ruh(Su), we could simulate a large number of
values σ (i) (i = 1, . . . , v) from the distribution of σ , substitute each σ (i) into (5.6.18),
and average the results.

As an example, suppose that we take the same numerical situation from the
end of Example 5.6.10 with u = 1, r = 0.06, and q = S0. This time, suppose that 1/σ 2

has the gamma distribution with parameters 2 and 0.0127. (These numbers make
E(σ) = 0.1, but σ has substantial variability.) We can sample v =1,000,000 values of
σ from this distribution and compute (5.6.18) for each value. The average, in our
simulation, is 0.0756S0, and the simulation standard error is 1.814S0 × 10−5. The
option price is only slightly higher than it was when we assumed that we knew σ .
When the distribution of Su is even more complicated, one can simulate Su directly
and estimate the mean of h(Su). �

In the following example, each simulation requires a large number of steps,
but each step is relatively simple. The combination of several simple steps into one
complicated step is very common in simulations of real processes.

Example
12.2.14

A Service Queue with Impatient Customers. Consider a queue to which customers
arrive according to a Poisson process with rate λ per hour. Suppose that the queue
has a single server. Each customer who arrives at the queue counts the length r of the
queue (including the customer being served) and decides to leave with probability
pr , for r = 1, 2, . . . . A customer who leaves does not enter the queue. Each customer
who enters the queue waits in the order of arrival until the customer immediately in
front is done being served, and then moves to the head of the queue. The time (in
hours) to serve a customer, after reaching the head of the queue, is an exponential
random variable with parameter μ. Assume that all service times are independent
of each other and of all arrival times.

We can use simulation to learn about the behavior of such a queue. For example,
we could estimate the expected number of customers in the queue at a particular
time t after the queue opens for business. To do this, we could simulate many, say,
v, realizations of the queue operation. For each realization i, we count how many
customers N(i) are in the queue at time t . Then our estimator is 1

v

∑v
i=1 N(i). To sim-

ulate a single realization, we could proceed as follows: Simulate interarrival times
X1, X2, . . . of the Poisson process as i.i.d. exponential random variables with param-
eter λ. Let Tj = ∑j

i=1 Xi be the time at which customer j arrives. Stop simulating at
the first k such that Tk > t . Only the first k − 1 customers have even arrived at the
queue by time t . For each j = 1, . . . , k − 1, simulate a service time Yj having the ex-
ponential distribution with parameter μ. Let Zj stand for the time at which the j th
customer reaches the head of the queue, and let Wj stand for the time at which the
j th customer leaves the queue. For example, Z1 = X1 and W1 = X1 + Y1. For j > 1,
the j th customer first counts the length of the queue and decides whether or not to
leave. Let Ui,j = 1 if customer i is still in the queue when customer j arrives (i < j),
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and let Ui,j = 0 if customer i has already left the queue. Then

Ui,j =
{

1 if Wi ≥ Tj ,
0 otherwise.

The number of customers in the queue when the j th customer arrives is r =∑j−1
i=1 Ui,j . We then simulate a random variable Vj having the Bernoulli distribu-

tion with parameter pr . If Vj = 1, customer j leaves the queue so that Wj = Tj . If
customer j stays in the queue, then this customer reaches the head of the queue at
time

Zj = max{Tj, W1, . . . , Wj−1}.
That is, the j th customer either reaches the head of the queue immediately upon
arrival (if nobody is still being served) or as soon as all of the previous j − 1customers
have left, whichever comes later. Also, Wj = Zj + Yj if customer j stays. For each
j = 1, . . . , k − 1, the j th customer is in the queue at time t if and only if Wj ≥ t .

As a numerical example, suppose that λ = 2, μ = 1, t = 3, and pr = 1 − 1/r , for
r ≥ 1. Suppose that the first k = 6 simulated interarrival times are

0.215, 0.713, 1.44, 0.174, 0.342, 0.382.

The sum of the first five of these times is 2.884, but the sum of all six is 3.266. So, at
most five customers are in the queue at time t = 3. Suppose that the simulated service
times for the first five customers are

0.251, 2.215, 2.855, 0.666, 2.505.

We cannot simulate the Vj ’s in advance, because we do not yet know how many
customers will be in the queue when each customer j arrives. Figure 12.3 shows a
time line of the simulation of the process that we are about to describe. Begin with
customer 1, who has T1 = Z1 = 0.215 and W1 = 0.215 + 0.251 = 0.466. For customer
2, T2 = T1 + 0.713 = 0.928 > W1, so nobody is in the queue when customer 2 arrives
and Z2 = T2 = 0.928. Then W2 = Z2 + 2.215 = 3.143. For customer 3, T3 = T2 + 1.44 =
2.368 < W2, so r = 1. Because p1 = 0, customer 3 stays, and there is no need to
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Figure 12.3 One simulation of a service queue. The
bottom line is the time line for Example 12.2.14. Each
customer is represented by one horizontal line segment.
The vertical line at t = 3 crosses the horizontal lines for
those customers still in the queue at time t = 3.
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simulate V3. Then Z3 = W2 = 3.143, and W3 = Z3 + 2.855 = 5.998. For customer 4,
T4 = T3 + 0.174 = 2.542. Since W1 < T4 < W2, W3, we have r = 2 customers in the
queue. We then simulate V4 having the Bernoulli distribution with parameter p2 =
1/2. Suppose that we simulate V4 = 1, so customer 4 leaves, and we ignore the
fourth simulated service time. This makes W4 = T4 = 2.542. For customer 5, T5 =
T4 + 0.342 = 2.884, and customers 2 and 3 are still in the queue. We need to simulate
V5 having the Bernoulli distribution with parameter p2 = 1/2. Suppose that V5 = 0, so
customer 5 stays. Then Z5 = W3 = 5.988, and W5 = Z5 + 2.505 = 8.393. Finally, Wj ≥ 3
for j = 2, 3, 5. This means that there are N(1) = 3 customers in the queue at time t = 3,
as illustrated in Fig. 12.3. Needless to say, a computer should be programmed to do
this calculation for a large simulation. �

Summary

If we wish to compute the expected value θ of some random variable Y , but cannot
perform the necessary calculation in closed form, we can use simulation. In general,
we would simulate a large random sample Y (1), . . . , Y (v) from the same distribution
as Y , and then compute the sample mean Z as our estimator. We can also estimate a
quantile θp of a distribution in a similar fashion. If Y (1), . . . , Y (v) is a large sample from
the distribution, we can compute the sample p quantile Z. It is always a good idea to
compute some measure of how good a simulation estimator is. One common measure
is the simulation standard error of Z, an estimate of the standard deviation of the
simulation distribution of Z. Alternatively, one could perform enough simulations
to make sure that the probability is high that the Z is close to the parameter being
estimated.

Exercises

1. Eq. (12.2.4) is based on the assumption that Z has ap-
proximately a normal distribution. Occasionally, the nor-
mal approximation is not good enough. In such cases, one
can let

v = σ 2

ε2(1 − γ )
. (12.2.6)

To be precise, let Z be the average of v independent
random variables with mean μ and variance σ 2. Prove that
if v is at least as large as the number in Eq. (12.2.6), then
Pr(|Z − μ| ≤ c) ≥ γ . Hint: Use the Chebyshev inequal-
ity (6.2.3).

2. In Example 12.2.11, how large would v need to be
according to Eq. (12.2.6)?

3. Suppose that we have available as many i.i.d. standard
normal random variables as we desire. Let X stand for
a random variable having the normal distribution with
mean 2 and variance 49. Describe a method for estimating
E(log(|X| + 1)) using simulation.

4. Use a pseudo-random number generator to simulate a
sample of 15 independent observations in which 13 of the

15 are drawn from the uniform distribution on the interval
[−1, 1] and the other two are drawn from the uniform
distribution on the interval [−10, 10]. For the 15 values
that are obtained, calculate the values of (a) the sample
mean, (b) the trimmed means for k = 1, 2, 3, and 4 (see
Sec. 10.7), and (c) the sample median. Which of these
estimators is closest to 0?

5. Repeat Exercise 4 ten times, using a different pseudo-
random sample each time. In other words, construct 10
independent samples, each of which contains 15 observa-
tions and each of which satisfies the conditions of Exer-
cise 4.

a. For each sample, which of the estimators listed in
Exercise 4 is closest to 0?

b. For each of the estimators listed in Exercise 4, deter-
mine the square of the distance between the estima-
tor and 0 in each of the 10 samples, and determine the
average of these 10 squared distances. For which of
the estimators is this average squared distance from
0 smallest?
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6. Suppose that X and Y are independent, that X has the
beta distribution with parameters 3.5 and 2.7, and that Y

has the beta distribution with parameters 1.8 and 4.2. We
are interested in the mean of X/(X + Y ). You may assume
that you have the ability to simulate as many random
variables with whatever beta distributions you wish.

a. Describe a simulation plan that will produce a good
estimator of the mean of X/(X + Y ) if enough simu-
lations are performed.

b. Suppose that you want to be 98 percent confident
that your estimator is no more than 0.01 away from
the actual value of E[X/(X + Y )]. Describe how you
would determine an appropriate size for the simula-
tion.

7. Consider the numbers in Table 10.40 on page 676. Sup-
pose that you have available as many standard normal
random variables and as many uniform random variables
on the interval [0, 1] as you desire. You want to perform a
simulation to obtain the number in the “Sample median”
row and ε = 0.05 column.

a. Describe how to perform such a simulation. Hint:
Let X and U be independent such that X has the
standard normal distribution and U has the uniform
distribution on the interval [0, 1]. Let 0 < ε < 1, and
find the distribution of

Y =
{

X if U > ε,
10X if U < ε.

b. Perform the simulation on a computer.

8. Consider the same situation described in Exercise 7.
This time, consider the number in the “Trimmed mean for
k = 2” row and ε = 0.1 column.

a. Describe how to perform a simulation to produce
this number.

b. Perform the simulation on a computer.

9. In Example 12.2.12, we can actually compute the me-
dian θ of the distribution of the Xi in closed form. Calcu-
late the true median, and see how far the simulated value
was from the true value. Hint: Find the marginal p.d.f. of X

by using the law of total probability for random variables
(3.6.12) together with Eq. (5.7.10). The c.d.f. and quantile
function are then easy to derive.

10. Let X1, . . . , X21 be i.i.d. with the exponential distri-
bution that has parameter λ. Let M stand for the sample
median. We wish to compute the M.S.E. of M as an esti-
mator of the median of the distribution of the Xi’s.

a. Determine the median of the distribution of X1.

b. Let θ be the M.S.E. of the sample median when λ = 1.
Prove that the M.S.E. of the sample median equals
θ/λ2 in general.

c. Describe a simulation method for estimating θ .

11. In Example 12.2.4, there is a slightly simpler way to
simulate a sample from the posterior distribution of μx −
μy. Suppose that we can simulate as many independent
t pseudo-random variables as we wish with whatever de-
grees of freedom we want. Explain how we could use these
t random variables to simulate a sample from the posterior
distribution of μx − μy.

12. Let (Y1, W1), . . . , (Yn, Wn) be an i.i.d. sample of ran-
dom vectors with finite covariance matrix

� =
(

σyy σyw

σyw σww

)
.

Let Y and W be the sample averages. Let g(y, w) be a
function with continuous partial derivatives g1 and g2 with
respect to y and w, respectively. Let Z = g(Y , W). The
two-dimensional Taylor expansion of g around a point
(y0, w0) is

g(y, w) = g(y0, w0) + g1(y0, w0)(y − y0)

+ g2(y0, w0)(w − w0), (12.2.7)

plus an error term that we shall ignore here. Let (y, w) =
(Y , W) and (y0, w0) = (E(Y ), E(W)) in Eq. (12.2.7). To the
level of approximation of Eq. (12.2.7), prove that

Var(Z) = g1(E(Y ), E(W))2σyy

+ 2g1(E(Y ), E(W))g2(E(Y ), E(W))σyw

+ g2(E(Y ), E(W))2σww.

Hint: Use the formula for the variance of a linear combi-
nation of random variables derived in Sec. 4.6.

13. Use the two-dimensional delta method from Exer-
cise 12 to derive the estimator of the simulation variance
of a sample variance as given in Eq. (12.2.3). Hint: Replace
E(Y ) and E(W) by Y and W , respectively, and replace �
by the sample variances and sample covariance.

14. Let Y be a random variable with some distribution.
Suppose that you have available as many pseudo-random
variables as you want with the same distribution as Y .
Describe a simulation method for estimating the skewness
of the distribution of Y . (See Definition 4.4.1.)

15. Suppose that the price of a stock at time u in the
future is a random variable Su = S0e

αu+Wu, where S0 is
the current price, α is a constant, and Wu is a random
variable with known distribution. Suppose that you have
available as many i.i.d. random variables as you wish with
the distribution of Wu. Suppose that the m.g.f. ψ(t) of Wu

is known and finite on an interval that contains t = 1.

a. What number should α equal in order that E(Su) =
eruS0?

b. We wish to price an option to purchase one share of
this stock at time u for the price q. Describe how you
could use simulation to estimate the price of such an
option.
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16. Consider a queue to which customers arrive according
to a Poisson process with rate λ per hour. Suppose that the
queue has two servers. Each customer who arrives at the
queue counts the length r of the queue (including any cus-
tomers being served) and decides to leave with probability
pr , for r = 2, 3, . . . . A customer who leaves does not en-
ter the queue. Each customer who enters the queue waits
in the order of arrival until at least one of the two servers
is available, and then begins being served by the available

server. If both servers are available, the customer chooses
randomly between the two servers with probability 1/2
for each, independent of all other random variables. For
server i (i = 1, 2), the time (in hours) to serve a customer,
after beginning service, is an exponential random variable
with parameter μi. Assume that all service times are in-
dependent of each other and of all arrival times. Describe
how to simulate the number of customers in the queue
(including any being served) at a specific time t .

12.3 Simulating Specific Distributions
In order to perform statistical simulations, we must be able to obtain pseudo-
random values from a variety of distributions. In this section, we introduce some
methods for simulating from specific distributions.

Most computer packages with statistical capability are able to generate pseudo-
random numbers with the uniform distribution on the interval [0, 1]. We shall assume
throughout the remainder of this section that one has available an arbitrarily large
sample of what appear to be i.i.d. random variables (pseudo-random numbers) with
the uniform distribution on the interval [0, 1]. Usually, we need random variables
with other distributions, and the purpose of this section is to review some common
methods for transforming uniform random variables into random variables with
other distributions.

The Probability Integral Transformation

In Chapter 3, we introduced the probability integral transformation for transforming
a uniform random variable X on the interval [0, 1] into a random variable Y with a
continuous strictly increasing c.d.f. G. The method is to set Y = G−1(X). This method
works well if G−1 is easily computed.

Example
12.3.1

Generating Exponential Pseudo-Random Variables. Suppose that we want Y to have the
exponential distribution with parameter λ, where λ is a known constant. The c.d.f. of
Y is

G(y) =
{

1 − e−λy if y ≥ 0,
0 if y < 0.

We can easily invert this function to obtain

G−1(x) = − log(1 − x)/λ, if 0 < x < 1.

If X has the uniform distribution on the interval [0, 1], then − log(1 − X)/λ has the
exponential distribution with parameter λ. �

Special-Purpose Algorithms

There are cases in which the desired c.d.f. G is not easy to invert. For example, if G is
the standard normal c.d.f., then G−1 must be obtained by numerical approximation.
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However, there is a clever method for transforming two independent uniform ran-
dom variables on the interval [0, 1] into two standard normal random variables. The
method was described by Box and Müller (1958).

Example
12.3.2

Generating Two Independent Standard Normal Variables. Let X1, X2 be independent
with the uniform distribution on the interval [0, 1]. The joint p.d.f. of (X1, X2) is

f (x1, x2) = 1, for 0 < x1, x2 < 1.

Define

Y1 = [−2 log(X1)]
1/2 sin(2πX2),

Y2 = [−2 log(X1)]
1/2 cos(2πX2).

The inverse of this transformation is

X1 = exp[−(Y 2
1 + Y 2

2)/2],

X2 = 1
2π

arctan(Y1/Y2).

Using the methods of Sec. 3.9, we compute the Jacobian, which is the determinant
of the matrix of partial derivatives of the inverse function:( −y1 exp[−(y2

1 + y2
2)/2] −y2 exp[−(y2

1 + y2
2)/2]

1
2πy2

1
1+(y1/y2)

2 − y1
2πy2

2

1
1+(y1/y2)

2

)
.

The determinant of this matrix is J = exp[−(y2
1 + y2

2)/2]/(2π). The joint p.d.f. of
(Y1, Y2) is then

g(y1, y2) = f
(

exp[(y2
1 + y2

2)/2], arctan(y1/y2)/(2π)
)

|J |
= exp[−(y2

1 + y2
2)/2]/(2π).

This is the joint p.d.f. of two independent standard normal variables. �

Acceptance/Rejection

Many other special-purpose methods exist for other distributions, also. We would like
to present here one more general-purpose method that has wide applicability. The
method is called acceptance/rejection. Let f be a p.d.f. and assume that we would like
to sample a pseudo-random variable with this p.d.f. Assume that there exists another
p.d.f. g with the following two properties:

. We know how to simulate a pseudo-random variable with p.d.f. g.

. There exists a constant k such that kg(x) ≥ f (x) for all x.

To simulate a single Y with p.d.f. f , perform the following steps:

1. Simulate a pseudo-random X with p.d.f. g and an independent uniform pseudo-
random variable U on the interval [0, 1].

2. If
f (X)

g(X)
≥ kU, (12.3.1)

let Y = X, and stop the process.
3. If (12.3.1) fails, throw away X and U , and return to the first step.
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If we need more than one Y , we repeat the entire process as often as needed. We
now show that the p.d.f. of each Y is f .

Theorem
12.3.1

The p.d.f. of Y in the acceptance/rejection method is f .

Proof First, we note that the distribution of Y is the conditional distribution of
X given that (12.3.1) holds. That is, let A be the event that (12.3.1) holds, and let
h(x, u|A) be the conditional joint p.d.f. of (X, U) given A. Then the p.d.f. of Y is∫

h(x, u|A) du. This is because Y is constructed to be X conditional on (12.3.1)
holding. The conditional p.d.f. of (X, U) given A is

h(x, u|A) = 1
Pr(A)

{
g(x) if f (x)/g(x) ≥ ku and 0 < u < 1,
0 otherwise.

It is straightforward to calculate Pr(A), that is, the probability that U ≤ f (X)/[kg(X)].

Pr(A) =
∫ ∞

−∞

∫ f (x)/[kg(x)]

0
g(x) du dx =

∫ ∞

−∞
1
k
f (x) dx = 1

k
.

So,

h(x, u|A) = k

{
g(x) if f (x)/g(x) ≥ ku and 0 < u < 1,
0 otherwise.

The integral of this function over all u values for fixed x is the p.d.f. of Y evaluated
at x: ∫

h(x, u|A) du = k

∫ f (x)/[kg(x)]

0
g(x) du = f (x).

Here is an example of the use of acceptance/rejection.

Example
12.3.3

Simulating a Beta Distribution. Suppose that we wish to simulate a random variable Y

having the beta distribution with parameters 1/2 and 1/2. The p.d.f. of Y is

f (y) = 1
π

y−1/2(1 − y)−1/2, for 0 < y < 1.

Note that this p.d.f. is unbounded. However, it is easy to see that

f (y) ≤ 1
π

(y−1/2 + (1 − y)−1/2), (12.3.2)

for all 0 < y < 1. The right side of Eq. (12.3.2) can be written as kg(y) with k = 4/π

and

g(y) = 1
2

[
1

2y1/2
+ 1

2(1 − y)1/2

]
.

This g is a half-and-half mixture of two p.d.f.’s g1 and g2:

g1(x) = 1
2x1/2

, for 0 < x < 1,

g2(x) = 1
2(1 − x)1/2

, for 0 < x < 1. (12.3.3)

We can easily simulate random variables from these distributions using the probabil-
ity integral transformation. To simulate a random variable X with p.d.f. g, simulate
three random independent variables U1, U2, U3 with uniform distributions on the



12.3 Simulating Specific Distributions 807

interval [0, 1]. If U1 ≤ 1/2, simulate X from g1 using the probability integral transfor-
mation applied to U2. If U1 > 1/2, simulate X from g2 using the probability integral
transformation and U2. If f (X)/g(X) ≥ kU3, let Y = X. If not, repeat the process. �

When using the acceptance/rejection method, one must usually reject simulated
values and resimulate. The probability of accepting a value is Pr(A) in the proof
of Theorem 12.3.1, namely, 1/k. The larger k is, the harder it will be to accept.
In Exercise 5, you will prove that the expected number of iterations until the first
acceptance is k.

A common special case of acceptance/rejection is the simulation of a random
variable conditional on some event. For example, let X be a random variable with
the p.d.f. g, and suppose that we want the conditional distribution of X given that
X > 2. Then the conditional p.d.f. of X given X > 2 is

f (x) =
{

kg(x) if x > 2,
0 if x ≤ 2,

where k = 1/
∫ ∞

2 g(x) dx. Note that f (x) ≤ kg(x) for all x, so acceptance/rejection
is applicable. In fact, since f (X)/g(X) only takes the two values k and 0, we don’t
need to simulate the uniform U in the acceptance/rejection algorithm. We don’t even
need to compute the value k. We just reject each X ≤ 2. Here is a version of the same
algorithm to solve a question that was left open in Sec. 11.8.

Example
12.3.4

Computing the Size of a Two-Stage Test. In Sec. 11.8, we studied the analysis of data
from a two-way layout with replication. In that section, we introduced a two-stage
testing procedure. First, we tested the hypotheses (11.8.11), and then, if we accepted
the null hypothesis, we proceeded to test the hypotheses (11.8.13). Unfortunately,
we were unable to compute the conditional size of the second test given that the first
test accepted the null hypothesis. That is, we could not calculate (11.8.15) in closed
form. However, we can use simulation to estimate the conditional size.

The two tests are based on U2
AB, defined in Eq. (11.8.12), and V 2

A
, defined in

Eq. (11.8.16). The first test rejects the null hypothesis in (11.8.11) if U2
AB ≥ d , where

d is a quantile of the appropriate F distribution. The second test rejects its null
hypothesis if V 2

A
≥ c, where c is yet to be determined. The random variables U2

AB
and V 2

A
are both ratios of various mean squares. In particular, they share a common

denominator MSResid = S2
Resid/[IJ (K − 1)]. In order to determine an appropriate

critical value c for the second test, we need the conditional distribution of V 2
A

given
that U2

AB < d , and given that both null hypotheses are true. We can sample from
that conditional distribution as follows: Let the interaction mean square be MSAB =
S2

Int/[(I − 1)(J − 1)], and let the mean square for factor A be MSA = S2
A
/(I − 1). Then

U2
AB = MSAB/MSResid and V 2

A
= MSA/MSResid. All of these mean squares are inde-

pendent, and they all have different gamma distributions when the null hypotheses
are both true. Most statistical computer packages will allow simulation of gamma
random variables. So, we start by simulating many triples (MSAB, MSResid, MSA).
Then, for each simulated triple, we compute U2

AB and V 2
A

. If U2
AB ≥ d , we discard the

corresponding V 2
A

. The undiscarded V 2
A

values are a random sample from the condi-
tional distribution that we need. The efficiency of this algorithm could be improved
slightly by simulating MSA and then computing V 2

A
only when U2

AB < d is observed.
�
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Generating Functions of Other Random Variables

It often happens that there is more than one way to simulate from a particular
distribution. For example, suppose that a distribution is defined as the distribution
of a particular function of other random variables (in the way that the χ2, t , and F

distributions are). In such cases, there is a straightforward way to simulate the desired
distribution. First, simulate the random variables in terms of which the distribution
is defined, and then calculate the appropriate function.

Example
12.3.5

Alternate Method for Simulating a Beta Distribution. In Exercise 6 in Sec. 5.8, you
proved the following: If U and V are independent, with U having the gamma distribu-
tion with parameters α1 and β, and V having the gamma distribution with parameters
α2 and β, then U/(U + V ) has the beta distribution with parameters α1 and α2. So,
if we have a method for simulating gamma random variables, we can simulate beta
random variables. The case handled in Example 12.3.3 is α1 = α2 = 1/2. Let β = 1/2
so that U and V would both have gamma distributions with parameters 1/2 and 1/2,
also known as the χ2 distribution with one degree of freedom. If we simulate two in-
dependent standard normal random variables X1, X2 (for example, by the method of
Example 12.3.2), then X2

1 and X2
2 are independent and have the χ2 distribution with

one degree of freedom. It follows that Y = X2
1/(X

2
1 + X2

2) has the beta distribution
with parameters 1/2 and 1/2. �

As another example, to simulate a χ2 random variable with 10 degrees of free-
dom, one could simulate 10 i.i.d. standard normals, square them, and add up the
squares. Alternatively, one could simulate five random variables having the expo-
nential distribution with parameter 1/2 and add them up.

Example
12.3.6

Generating Pseudo-Random Bivariate Normal Vectors. Suppose that we wish to sim-
ulate a bivariate normal vector with the p.d.f. given in Eq. (5.10.2). This p.d.f. was
constructed as the joint p.d.f. of

X1 = σ1Z1 + μ1,

X2 = σ2

[
ρZ1 + (1 − ρ2)1/2Z2

]
+ μ2, (12.3.4)

where Z1 and Z2 are i.i.d. with the standard normal distribution. If we use the method
of Example 12.3.2 to generate independent Z1 and Z2 with the standard normal
distribution, we can use the formulas in (12.3.4) to transform these into X1 and X2,
which will then have the desired bivariate normal distribution. �

Most statistical computer packages have the capability of simulating pseudo-
random variables with each of the continuous distributions that have been named
in this text. The techniques of this section are really needed only for simulating less
common distributions or when a statistical package is not available.

Some Examples Involving Simulation of Common Distributions

Example
12.3.7

Bayesian Analysis of One-Way Layout. We can perform a Bayesian analysis of a one-
way layout using the same statistical model presented in Sec. 11.6 together with
an improper prior for the model parameters. (We could use a proper prior, but
the additional calculations would divert our attention from the simulation issues.)
Let τ = 1/σ 2, as we did in Sec. 8.6. The usual improper prior for the parameters
(μ1, . . . , μp, τ ) has “p.d.f.” 1/τ . The posterior joint p.d.f. is then proportional to 1/τ
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times the likelihood. The observed data are yij for j = 1, . . . , ni and i = 1, . . . , p.
The likelihood function is

(2π)−n/2τn/2 exp

⎛⎝−τ

2

p∑
i=1

ni∑
j=1

(yij − μi)
2

⎞⎠,

where n = n1 + . . . + np. To simplify the likelihood function, we can rewrite the sum
of squares that appears in the exponent as

p∑
i=1

ni∑
j=1

(yij − μi)
2 =

p∑
i=1

ni(yi+ − μi)
2 + S2

Resid,

where yi+ is the average of yi1, . . . , yini
and

S2
Resid =

p∑
i=1

ni∑
j=1

(yij − yi+)2

is the residual sum of squares. Then, the posterior p.d.f. is proportional to

τp/2 exp

(
−τ

2

p∑
i=1

ni(yi+ − μi)
2

)
τ (n−p)/2−1 exp

(
−τ

2
S2

Resid

)
.

This expression is easily recognized as the product of the gamma p.d.f. for τ with pa-
rameters (n − p)/2 and S2

Resid/2 and the product of p normal p.d.f.’s for μ1, . . . , μp

with means yi+ and precisions niτ for i = 1, . . . , p. Hence, the posterior joint distri-
bution of the parameters is the following: Conditional on τ , the μi’s are independent
with μi having the normal distribution with mean yi+ and precision niτ . The marginal
distribution of τ is the gamma distribution with parameters (n − p)/2 and S2

Resid/2.
If we simulate a large sample of parameters from the posterior distribution, we

could begin to answer questions about what we have learned from the data. To do
this, we would first simulate a large number of τ values τ (1), . . . , τ (v). Most statistical
programs allow the user to simulate gamma random variables with arbitrary first
parameter and second parameter 1. So, we could simulate T (1), . . . , T (v) having
the gamma distribution with parameters (n − p)/2 and 1. We could then let τ (�) =
2T (�)/S2

Resid for � = 1, . . . , v. Then, for each � simulate independent μ
(�)

1 , . . . , μ(�)
p

with μ
(�)
i having the normal distribution with mean yi+ and variance 1/[niτ

(�)].
As a specific example, consider the hot dog data in Example 11.6.2. We begin

by simulating v = 60,000 sets of parameters as described above. Now we can address
the question of how much difference there is between the means. There are several
ways to do this. We could compute the probability that all |μi − μj | > c for each
positive c. We could compute the probability that at least one |μi − μj | > c for each
positive c. We could compute the quantiles of maxi,j |μi − μj |, of mini,j |μi − μj |, or
of the average of all |μi − μj |. For example, in 99 percent of the 60,000 simulations,

at least one |μ(�)
i − μ

(�)
j | > 27.94. The simulation standard error of this estimator of

the 0.99 quantile of maxi,j |μi − μj | is 0.1117. (For the remainder of this example, we
shall present only the simulation estimates and not their simulation standard errors.)
In about 1/2 of the simulations, all |μ(�)

i − μ
(�)
j | > 2.379. And in 99 percent of the

simulations, the average of the differences was at least 14.59. Whether 27.94, 14.59,
or 2.379 count as large differences depends on what decisions we need to make about
the hot dogs. A useful way to summarize all of these calculations is through a plot of
the sample c.d.f.’s of the largest, smallest, and average of the six |μi − μj | differences.
(The sample c.d.f. of a set of numbers is defined at the very beginning of Sec. 10.6.)



810 Chapter 12 Simulation

Figure 12.4 Sample c.d.f.’s
of the maximum, average,
and minimum of the six
|μi − μj | differences for
Example 12.3.7.
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Table 12.4 Posterior probabilities that each μi is largest and
smallest in Example 12.3.7

Type Beef Meat Poultry Specialty

i 1 2 3 4

Pr(μi largest|y) 0.1966 0.3211 0 0.4823

Pr(μi smallest|y) 0 0 1 0

Figure 12.4 contains such a plot for this example. If we are simply concerned with
whether or not there are any differences at all between the four types of hot dogs,
then the “Maximum” curve in Fig. 12.4 is the one to examine. (Can you explain why
this is the case?)

We can also attempt to answer questions that we would have great difficulty
addressing in the ANOVA framework of Chapter 11. For example, we could ask
what is the probability that each μi is the largest or smallest of the four. For each i,
let Ni be the number of simulations j such that μ

(j)

i is the smallest of μ
(j)

1 , . . . , μ
(j)

4 .

Also let Mi be the number of simulations j such that μ
(j)

i is the largest of the four
means. Then Ni/60,000 is our simulation estimate of the probability that μi is the
smallest mean, and Mi/60,000 is our estimate of the probability that μi is the largest
mean. The results are summarized in Table 12.4. We see that μ3 is almost certainly
the smallest, while μ4 has almost a 50 percent chance of being the largest. �

Example
12.3.8

Comparing Copper Ores. We shall illustrate the method of Example 12.2.4 using the
data on copper ores from Example 9.6.5. Suppose that the prior distributions for
all parameters are improper. The observed data consist of one sample of size 8
and another sample of size 10 with X = 2.6,

∑8
i=1(Xi − X)2 = 0.32, Y = 2.3, and∑10

j=1(Yj − Y )2 = 0.22. The posterior distributions then have hyperparameters μx1 =
2.6, λx1 = 8, αx1 = 3.5, βx1 = 0.16, μy1 = 1.15, λy1 = 10, αy1 = 4.5, and βy1 = 0.11.
The posterior distributions of τx and τy are, respectively, the gamma distribution
with parameters 3.5 and 0.16 and the gamma distribution with parameters 4.5 and
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Figure 12.5 Histogram of
simulated μx − μy values to-
gether with posterior c.d.f. of
|μx − μy| for Example 12.3.8.
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0.11. We can easily simulate, say, 10,000 pseudo-random values from each of these
two distributions. For each simulated τx, we simulate a μx that has the normal
distribution with mean 2.6 and variance 1/(8τx). For each simulated τy, we simulate a
μy that has the normal distribution with mean 2.3 and variance 1/(10τy). Figure 12.5
contains a histogram of the 10,000 simulated μx − μy values together with the sample
c.d.f. of |μx − μy|. It appears that μx − μy is almost always positive; indeed, it was
positive for over 99 percent of the sampled values. The probability is quite high that
|μx − μy| < 0.5, so that if 0.5 is not a large difference in this problem, we can be
confident that μx and μy are pretty close. On the other hand, if 0.1 is a large difference,
we can be confident that μx and μy are pretty far apart. �

If all we care about in Example 12.3.8 is the distribution of μx − μy, then we could
simulate μx and μy directly without first simulating τx and τy. Since μx and μy are
independent in this example, we could simulate each of them from their respective
marginal distributions.

Example
12.3.9

Power of the t Test. In Theorem 9.5.3, we showed how the power function of the t

test can be computed from the noncentral t distribution function. Not all statistical
packages compute noncentral t probabilities. We can use simulation to estimate these
probabilities. Let Y have the noncentral t distribution with m degrees of freedom and
noncentrality parameter ψ . Then Y has the distribution of X1/(X2/m)1/2 where X1
and X2 are independent with X1 having the normal distribution with mean ψ and
variance 1 and X2 having the χ2 distribution with m degrees of freedom. A simple
way to estimate the c.d.f. of Y is to simulate a large number of (X1, X2) pairs and
compute the sample c.d.f. of the values of X1/(X2/m)1/2. �

The Simulation Standard Error of a Sample c.d.f In Examples 12.3.7 and 12.3.8,
we plotted the sample c.d.f.’s of functions of simulated data. We did not associate sim-
ulation standard errors with these functions. We could compute simulation standard
errors for every value of the sample c.d.f., but there is a simpler way to summa-
rize the uncertainty about a sample c.d.f. We can make use of the Glivenko-Cantelli
lemma (Theorem 10.6.1). To summarize that result in the context of simulation, let
Y (i), (i = 1, . . . , v) be a simulated i.i.d. sample with c.d.f. G. Let Gv be the sample
c.d.f. For each real x, Gv(x) is the proportion of the simulated sample that is less
than or equal to x. That is, Gv(x) is 1/v times the number of i’s such that Y (i) ≤ x.
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Theorem 10.6.1 says that if v is large, then

Pr
(

|Gv(x) − G(x)| ≤ t

v1/2
, for all x

)
≈ H(t),

where H is the function in Table 10.32 on page 661. In particular, with t = 2, H(t) =
0.9993. So we can declare (at least approximately) that |Gv(x) − G(x)| ≤ 2/v1/2 si-
multaneously for all x with probability 0.9993. In Example 12.3.7, we had v = 60, 000,
so each curve in Fig. 12.4 should be accurate to within 0.008 with probability 0.9993.
Indeed, all three curves simultaneously should be accurate to within 0.008 with prob-
ability 0.9979. (Prove this in Exercise 14.)

Simulating a Discrete Random Variable

All of the examples so far in this section have concerned simulations of random
variables with continuous distributions. Occasionally, one needs random variables
with discrete distributions. Algorithms for simulating discrete random variables exist,
and we shall describe some here.

Example
12.3.10

Simulating a Bernoulli Random Variable. It is simple to simulate a pseudo-random
Bernoulli random variable X with parameter p. Start with U having the uniform
distribution on the interval [0, 1], and let X = 1 if U ≤ p. Otherwise, let X = 0. Since
Pr(U ≤ p) = p, X has the correct distribution. This method can be used to simulate
from any distribution that is supported on only two values. If

f (x) =
⎧⎨⎩

p if x = t1,
1 − p if x = t2,
0 otherwise,

then let X = t1 is U ≤ p, and let X = t2 otherwise. �

Example
12.3.11

Simulating a Discrete Uniform Random Variable. Suppose that we wish to simulate
pseudo-random variables from a distribution that has the p.f.

f (x) =
{

1
n

if x ∈ {t1, . . . , tn},
0 otherwise.

(12.3.5)

The uniform distribution on the integers 1, . . . , n is an example of such a distribution.
A simple way to simulate a random variable with the p.f. (12.3.5) is the following: Let
U have the uniform distribution on the interval [0, 1], and let Z be the greatest integer
less than or equal to nU + 1. It is easy to see that Z takes the values 1, . . . , n with
equal probability, and so X = tZ has the p.f. (12.3.5). �

The method described in Example 12.3.11 does not apply to more general dis-
crete distributions. However, the method of Example 12.3.11 is useful in simulations
that are done in bootstrap analyses described in Sec. 12.6.

For general discrete distributions, there is an analog to the probability integral
transformation. Suppose that a discrete distribution is concentrated on the values
t1 < . . . < tn and that the c.d.f. is

F(x) =

⎧⎪⎨⎪⎩
0 if x < t1,
qi if ti ≤ x < ti+1, for i = 1, . . . , n − 1,
1 if x ≥ tn.

(12.3.6)
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The following is the quantile function from Definition 3.3.2:

F−1(p) =

⎧⎪⎨⎪⎩
t1 if 0 < p ≤ q1,
ti+1 if qi < p ≤ qi+1, for i = 1, . . . , n − 2,
tn if qn−1 < p < 1.

(12.3.7)

You can prove (see Exercise 13) that if U has the uniform distribution on the interval
[0, 1], then F−1(U) has the c.d.f. in Eq. (12.3.6). This gives a straightforward, but
inefficient, method for simulating arbitrary discrete distributions. Notice that the
restriction that n be finite is not actually necessary. Even if the distribution has
infinitely many possible values, F−1 can be defined by (12.3.7) by replacing n − 2
by ∞ and removing the last branch.

Example
12.3.12

Simulating a Geometric Random Variable. Suppose that we wish to simulate a pseudo-
random X having the geometric distribution with parameter p. In the notation of
Eq. (12.3.7), ti = i − 1 for i = 1, 2, . . . , and qi = 1 − (1 − p)i. Using the probability
integral transformation, we would first simulate U with the uniform distribution on
the interval [0, 1]. Then we would compare U to qi for i = 1, 2, . . . , until the first time
that qi < U and set X = i. In this example, we can avoid the sequence of comparisons
because we have a simple formula for qi. The first i such that qi < U is the greatest
integer strictly less than log(1 − U)/ log(1 − p). �

The probability integral transformation is very inefficient for discrete distribu-
tions that do not have a simple formula for qi if the number of possible values is large.
Walker (1974) and Kronmal and Peterson (1979) describe a more efficient method
called the alias method. The alias method works as follows: Let f be the p.f. from
which we wish to simulate a random variable X. Suppose that f (x) > 0 for only n

different values of x. First, we write f as an average of n p.f.’s that are concentrated
on one or two values each. That is,

f (x) = 1
n

[g1(x) + . . . + gn(x)], (12.3.8)

where each gi is the p.f. of a distribution concentrated on one or two values only. We
shall show how to do this in Example 12.3.13. To simulate X, first simulate an integer
I that has the uniform distribution over the integers 1, . . . , n. (Use the method of
Example 12.3.11.) Then simulate X from the distribution with the p.f. gI . The reader
can prove in Exercise 17 that X has the p.f. f .

Example
12.3.13

Simulating a Binomial Random Variable Using the Alias Method. Suppose that we need
to simulate many random variables with a binomial distribution having parameters
9 and 0.4. The p.f. f of this distribution is given in a table at the end of this book.
The distribution has n = 10 different values with positive probability. Since the n

probabilities must add to 1, there must be x1 and y1 such that f (x1) ≤ 1/n and
f (y1) ≥ 1/n. For example, x1 = 0 and y1 = 2 have f (x1) = 0.0101 and f (y1) = 0.1612.
Define the first two-point p.f., g1, as

g1(x) =
⎧⎨⎩

nf (x1) if x = x1,
1 − nf (x1) if x = y1,
0 otherwise.
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In our case, g1(0) = 0.101 and g1(2) = 0.899. We then write f as f (x) = g1(x)/n +
f ∗

1 (x), where

f ∗
1 (x) =

⎧⎨⎩
0 if x = x1,
f (y1) − g1(y1)/n if x = y1,
f (x) otherwise.

In our example, f ∗
1 (2) = 0.0713. Now, f ∗

1 is positive at only n − 1 different values,
and the sum of the positive values of f ∗

1 is (n − 1)/n. Hence, there must exist x2
and y2 such that f ∗

1 (x2) ≤ 1/n and f ∗
1 (y2) ≥ 1/n. For example, x2 = 2 and y2 = 3 have

f ∗
1 (x2) = 0.0713 and f ∗

1 (y2) = 0.2508. Define g2 by

g2(x) =
⎧⎨⎩

nf ∗
1 (x2) if x = x2,

1 − nf ∗
1 (x2) if x = y2,

0 otherwise.

Here, g2(2) = 0.713. Now write f ∗
1 (x) = g2(x)/n + f ∗

2(x), where

f ∗
2(x) =

⎧⎪⎨⎪⎩
0 if x = x2,
f ∗

1 (y2) − g2(y2)/n if x = y2,
f ∗

1 (x) otherwise.

In our example, f ∗
2(3) = 0.2221. Now, f ∗

2 takes only n − 2 positive values that add up
to (n − 2)/n. We can repeat this process n − 3 more times, obtaining g1, . . . , gn−1 and
f ∗

n−1. Here, f ∗
n−1(x) takes only one positive value, at x = xn, say, and f ∗

n−1(xn) = 1/n.
Let gn be a degenerate distribution at xn. Then f (x) = [g1(x) + . . . + gn(x)]/n for all
x.

After all of this initial setup, the alias method allows rapid simulation from f as
follows: Simulate independent U and I with U having the uniform distribution on the
interval [0, 1] and I having the uniform distribution on the integers 1, . . . , n (n = 10
in our example). If U ≤ gI(xI ), set X = xI . If U > gI(xI ), set X = yI . Here, the values
we need to perform the simulation are

i 1 2 3 4 5 6 7 8 9 10

xi 0 2 1 6 7 3 8 9 4 5

yi 2 3 3 3 3 4 4 4 5 —

gi(xi) 0.101 0.713 0.605 0.743 0.212 0.781 0.035 0.003 0.327 1

There is even a clever way to replace the two simulations of U and I with a single
simulation. Simulate Y with the uniform distribution on the interval [0, 1], and let I

be the greatest integer less than or equal to nY + 1. Then let U = nY + 1 − I . (See
Exercise 19.)

As an example, suppose that we simulate Y with the uniform distribution on the
interval [0, 1], and we obtain Y = 0.4694. Then I = 5 and U = 0.694. Since 0.694 >

g5(x5) = 0.212, we set X = y5 = 3. Figure 12.6 shows a histogram of 10,000 simulated
values using the alias method. �

All of the overhead required to set up the alias method is worth the effort only if
we are going to simulate many random variables with the same discrete distribution.
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Figure 12.6 Histogram of
10,000 simulated binomial
random variables in Exam-
ple 12.3.13. The X marks
appear at heights equal to
10,000f (x) to illustrate the
close agreement of the simu-
lated and actual distributions.
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Summary

We have seen several examples of how to transform pseudo-random uniform vari-
ables into pseudo-random variables with other distributions. The acceptance/rejec-
tion method is widely applicable, but it might require many rejected simulations for
each accepted one. Also, we have seen how we can simulate random variables that
are functions of other random variables (such as a noncentral t random variable).
Several examples illustrated how we can make use of simulated random variables
with some of the common distributions. Readers who desire a thorough treatment
of the generation of pseudo-random variables with distributions other than uniform
can consult Devroye (1986).

Exercises

1. Return to Exercise 10 in Sec. 12.2. Now that we know
how to simulate exponential random variables, perform
the simulation developed in that exercise as follows:

a. Perform v0 = 2000 simulations and compute both the
estimate of θ and its simulation standard error.

b. Suppose that we want our estimator of θ to be within
0.01 of θ with probability 0.99. How many simula-
tions should we perform?

2. Describe how to convert a random sample U1, . . . , Un

from the uniform distribution on the interval [0, 1] to a
random sample of size n from the uniform distribution on
the interval [a, b].

3. Show how to use the probability integral transforma-
tion to simulate random variables with the two p.d.f.’s in
Eq. (12.3.3).

4. Show how to simulate Cauchy random variables using
the probability integral transformation.

5. Prove that the expected number of iterations of the
acceptance/rejection method until the first acceptance is
k. (Hint: Think of each iteration as a Bernoulli trial. What

is the expected number of trials (not failures) until the first
success?)

6.a. Show how to simulate a random variable having the
Laplace distribution with parameters 0 and 1. The
p.d.f. of the Laplace distribution with parameters θ

and σ is given in Eq. (10.7.5).

b. Show how to simulate a standard normal random
variable by first simulating a Laplace random vari-
able and then using acceptance/rejection. Hint: Max-
imize e−x2/2/e−x for x ≥ 0, and notice that both dis-
tributions are symmetric around 0.

7. Suppose that you have available as many i.i.d. standard
normal pseudo-random numbers as you desire. Describe
how you could simulate a pseudo-random number with an
F distribution with four and seven degrees of freedom.

8. Let X and Y be independent random variables with X

having the t distribution with five degrees of freedom and
Y having the t distribution with seven degrees of freedom.
We are interested in E(|X − Y |).
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a. Simulate 1000 pairs of (Xi, Yi) each with the above
joint distribution and estimate E(|X − Y |).

b. Use your 1000 simulated pairs to estimate the vari-
ance of |X − Y | also.

c. Based on your estimated variance, how many sim-
ulations would you need to be 99 percent confident
that your estimator of E(|X − Y |) is within 0.01 of the
actual mean?

9. Show how to use acceptance/rejection to simulate ran-
dom variables with the following p.d.f.:

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
3x if 0 < x ≤ 0.5,
2
3 if 0.5 < x ≤ 1.5,
8
3 − 4

3x if 1.5 < x ≤ 2,
0 otherwise.

10. Implement the simulation in Example 12.2.3 for the
clinical trial of Example 2.1.4 on page 57. Simulate 5000
parameter vectors. Use a prior distribution with α0 = 1
and β0 = 1. Estimate the probability that the imipramine
group has the highest probability of no relapse. Calculate
how many simulations you would need to be 95 percent
confident that your estimator is within 0.01 of the true
probability.

11. In Example 12.3.7, we simulated the τ values by first
simulating gamma random variables with parameters (n −
p)/2 and 1. Suppose that our statistical software allows us
to simulate χ2 random variables instead. Which χ2 dis-
tribution should we use and how would we convert the
simulated χ2’s to have the appropriate gamma distribu-
tion?

12. Use the blood pressure data in Table 9.2 that was
described in Exercise 10 of Sec. 9.6. Suppose now that
we are not confident that the variances are the same for
the two treatment groups. Perform a simulation of the
sort done in Example 12.3.8 to obtain a sample from the
posterior distribution of the parameters when we allow
the variances to be unequal.

a. Draw a plot of the sample c.d.f. of the absolute value
of the difference between the two group means.

b. Draw a histogram of the logarithm of the ratio of the
two variances to see how close together they seem to
be.

13. Let F−1 be defined as in Eq. (12.3.7). Let U have
the uniform distribution on the interval [0, 1]. Prove that
F−1(U) has the c.d.f. in Eq. (12.3.6).

14. Refer to the three curves in Fig. 12.4. Call those
three sample c.d.f.’s Gv,1, Gv,2, and Gv,3, and call the
three c.d.f.’s that they estimate G1, G2, and G3. Use the
Glivenko-Cantelli lemma (Theorem 10.6.1) to show that

Pr
(|Gv,i(x) − Gi(x)| ≤ 0.0082, for all x and all i

)
is about 0.9979 or larger. Hint: Use the Bonferroni in-
equality (Theorem 1.5.8).

15. Prove that the acceptance/rejection method works for
discrete distributions. That is, let f and g be p.f.’s rather
than p.d.f.’s, but let the rest of the acceptance/rejection
method be exactly as stated. Hint: The proof can be trans-
lated by replacing integrals over x by sums. Integrals over
u should be left as integrals.

16. Describe how to use the discrete version of the proba-
bility integral transformation to simulate a Poisson
pseudo-random variable with mean θ .

17. Let f be a p.f., and assume that Eq. (12.3.8) holds,
where each gi is another p.f. Assume that X is simu-
lated using the method described immediately after Eq.
(12.3.8). Prove that X has the p.f. f .

18. Use the alias method to simulate a random variable
having the Poisson distribution with mean 5. Use the
table of Poisson probabilities in the back of the book, and
assume that 16 is the largest value that a Poisson random
variable can equal. Assume that all of the probability not
accounted for by the values 0, . . . , 15 is the value of the
p.f. at k = 16.

19. Let Y have the uniform distribution on the interval
[0, 1]. Define I to be the greatest integer less than or equal
to nY + 1, and define U = nY + 1 − I . Prove that I and U

are independent and that U has uniform distribution on
the interval [0, 1].

12.4 Importance Sampling
Many integrals can usefully be rewritten as means of functions of random vari-
ables. If we can simulate large numbers of random variables with the appropriate
distributions, we can use these to estimate integrals that might not be possible to
compute in closed form.

Simulation methods are particularly well suited to estimating means of random vari-
ables. If we can simulate many random variables with the appropriate distribution,
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we can average the simulated values to estimate the mean. Because means of ran-
dom variables with continuous distributions are integrals, we might wonder whether
other integrals can also be estimated by simulation methods. In principle, all finite
integrals can be estimated by simulation, although some care is needed to insure that
the simulation results have finite variance.

Suppose that we wish to calculate
∫ b

a
g(x) dx for some function g with a and b

both finite. We can rewrite this integral as∫ b

a

g(x) dx =
∫ b

a

(b − a)g(x)
1

b − a
dx = E[(b − a)g(X)], (12.4.1)

where X is a random variable with the uniform distribution on the interval [a, b].
A simple Monte Carlo method is to simulate a large number of pseudo-random
values X1, . . . , Xv with the uniform distribution on the interval [a, b]and estimate the
integral by b−a

v

∑v
i=1 g(Xi). The method just described has two commonly recognized

drawbacks. First, it cannot be applied to estimate integrals over unbounded regions.
Second, it can be very inefficient. If g is much larger over one portion of the interval
than over another, then the values g(Xi) will have large variance, and it will take a
very large value v to get a good estimator of the integral.

A method that attempts to overcome both of the shortcomings just mentioned
is called importance sampling. The idea of importance sampling is to do something
very much like what we did in Eq. (12.4.1). That is, we shall rewrite the integral as the
mean of some function of X, where X has a distribution that we can simulate easily.

Suppose that we are able to simulate a pseudo-random variable X with the p.d.f.
f where f (x) > 0 whenever g(x) > 0. Then we can write∫

g(x) dx =
∫

g(x)

f (x)
f (x) dx = E(Y ), (12.4.2)

where Y = g(X)/f (X). (If f (x) = 0 for some x such that g(x) > 0, then the two
integrals in Eq. (12.4.2) might not be equal.) If we simulate v independent val-
ues X1, . . . , Xv with the p.d.f. f , we can estimate the integral by 1

v

∑v
i=1 Yi where

Yi = g(Xi)/f (Xi). The p.d.f. f is called the importance function. It is acceptable, al-
though inefficient, to have f (x) > 0 for some x such that g(x) = 0. The key to efficient
importance sampling is choosing a good importance function. The smaller the vari-
ance of Y , the better the estimator should be. That is, we would like g(X)/f (X) to be
close to being a constant random variable.

Example
12.4.1

Choosing an Importance Function. Suppose that we want to estimate
∫ 1

0 e−x/ (1 +
x2)dx. Here are five possible choices of importance function:

f0(x) = 1, for 0 < x < 1,

f1(x) = e−x, for 0 < x < ∞,

f2(x) = (1 + x2)−1/π, for −∞ < x < ∞,

f3(x) = e−x/(1 − e−1), for 0 < x < 1,

f4(x) = 4(1 + x2)−1/π, for 0 < x < 1.

Each of these p.d.f.’s is positive wherever g is positive, and each one can be simulated
using the probability integral transformation. As an example, we have simulated
10,000 uniforms on the interval [0, 1], U(1), . . . , U(10,000). We then applied the five
probability integral transformations to this single set of uniforms so that our com-
parisons do not suffer from variation due to different underlying uniform samples.
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Table 12.5 Monte Carlo estimates and σ̂j for Example 12.4.1

j 0 1 2 3 4

Y j 0.5185 0.5110 0.5128 0.5224 0.5211

σ̂j 0.2440 0.4217 0.9312 0.0973 0.1409

Since the five p.d.f.’s are positive over different ranges, we should define

g(x) =
{

e−x/(1 + x2) if 0 < x < 1,
0 otherwise.

Let Fj stand for the c.d.f. corresponding to fj , and let X
(i)
j = F−1

j (U(i)) for i =
1, . . . , 10, 000 and j = 0, . . . , 4. Let Y

(i)
j = g(X

(i)
j )/fj(X

(i)
j ). Then we obtain five

different estimators of
∫

g(x) dx, namely,

Y j = 1
10,000

10,000∑
i=1

Y
(i)
j , for j = 0, . . . , 4.

For each j , we also compute the sample variance of the Y
(i)
j values,

σ̂ 2
j

= 1
10,000

10,000∑
i=1

(Y
(i)
j − Y j)

2.

The simulation standard error of Y j is σ̂j/100. We list the five estimates together
with the corresponding values of σ̂j in Table 12.5. The estimates are relatively close
together, but some values of σ̂j are almost 10 times others. This can be understood
in terms of how well each fj approximates the function g. First, note that the two
worst cases are those in which fj is positive on an unbounded interval. This causes

us to simulate a large number of X
(i)
j values for which g(X

(i)
j ) = 0 and hence Y

(i)
j = 0.

This is highly inefficient. For example, with j = 2, 75 percent of the X
(i)

2 values are

outside of the interval (0, 1). The remaining Y
(i)

2 values must be very large in order

for the average to come out near the correct answer. In other words, because the Y
(i)

2
values are so spread out (they range between 0 and π), we get a large value of σ̂2. On
the other hand, with j = 3, there are no 0 values for Y

(i)

3 . Indeed, the Y
(i)

3 values only
range from 0.3161 to 0.6321. This allows σ̂3 to be quite small. The goal in choosing an
importance function is to make the Y (i) values have small variance. This is achieved
by making the ratio g/f as close to constant as we can. �

Example
12.4.2

Calculating a Mean with No Closed-Form Expression. Let X have the gamma distribu-
tion with parameters α and 1. Suppose that we want the mean of 1/(1 + X + X2). We
might wish to think of this mean as∫ ∞

0

1
1 + x + x2

fα(x) dx, (12.4.3)

where fα is the p.d.f. of the gamma distribution with parameters α and 1. If α is
not small, fα(x) is close to 0 near x = 0 and is only sizeable for x near α. For large x,
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1/(1 + x + x2) is a lot like 1/x2. If α and x are both large, the integrand in (12.4.3) is ap-
proximately x−2fα(x). Since x−2fα(x) is a constant times fα−2(x), we could do impor-
tance sampling with importance function fα−2. For example, with α = 5, we simulate
10,000 pseudo-random variables X(1), . . . , X(10,000) having the gamma distribution
with parameters 3 and 1. The sample mean of [1/(1 + X(i) + X(i)2)]f5(X

(i))/f3(X
(i))

is 0.05184 with sample standard deviation 0.01465. For comparison, we also simulate
10,000 pseudo-random variables Y (1), . . . , Y (10,000) with the gamma distribution hav-
ing parameters 5 and 1. The average of the values of 1/(1 + Y (i) + Y (i)2) is 0.05226
with sample standard deviation 0.05103, about 3.5 times as large as we get using the f3
importance function. With α = 3, however, the two methods have nearly equal sam-
ple standard deviations. With α = 10, the importance sampling has sample standard
deviation about one-tenth as large as sampling directly from the distribution of X.
As we noted earlier, when α is large, 1/x2 is a better approximation to 1/(1 + x + x2)

than it is when α is small. �

Example
12.4.3

Bivariate Normal Probabilities. Let (X1, X2) have a bivariate normal distribution, and
suppose that we are interested in the probability of the event {X1 ≤ c1, X2 ≤ c2} for
specific values c1, c2. In general, we cannot explicitly calculate the double integral∫ c2

−∞

∫ c1

−∞
f (x1, x2) dx1 dx2, (12.4.4)

where f (x1, x2) is the joint p.d.f. of (X1, X2). We can write the joint p.d.f. as f (x1, x2) =
g1(x1|x2)f2(x2), where g1 is the conditional p.d.f. of X1 given X2 = x2 and f2 is the
marginal p.d.f. of X2. Both of these p.d.f.’s are normal p.d.f.’s, as we learned in
Sec. 5.10. In particular, the conditional distribution of X1 given X2 = x2 is the normal
distribution with mean and variance given by Eq. (5.10.8). We can explicitly perform
the inner integration in (12.4.4) as∫ c1

−∞
f (x1, x2) dx1 =

∫ c1

−∞
g(x1|x2)f2(x2) dx1

= f2(x2)�

(
c1 − μ1 − ρσ1(x2 − μ2)/σ2

σ1(1 − ρ)1/2

)
,

where � is the standard normal c.d.f. The integral in (12.4.4) is then the integral of
this last expression with respect to x2. An efficient importance function might be the
conditional p.d.f. of X2 given that X2 ≤ c2. That is, let h be the p.d.f.

h(x2) =
(2πσ 2

2)
−1/2 exp

(
− 1

2σ 2
2

(x2 − μ2)
2

)

�

(
c2 − μ2

σ2

) , for −∞ < x2 ≤ c2. (12.4.5)

It is not difficult to see that if U has the uniform distribution on the interval [0, 1],
then

W = μ2 + σ2�
−1

[
U�

(
c2 − μ2

σ2

)]
(12.4.6)

has the p.d.f. h. (See Exercise 5.) If we use h as an importance function and simulate
W(1), . . . , W(v) with this p.d.f., then our estimator of the integral (12.4.4) is

1
v

v∑
i=1

�

(
c1 − μ1 − ρσ1(W

(i) − μ2)/σ2

σ1(1 − ρ)1/2

)
�

(
c2 − μ2

σ2

)
. �
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It is not always possible to guarantee that an importance sampling estimator
will have finite variance. In the examples in this section, we have managed to find
importance functions with the following property. The ratio of the function being
integrated to the importance function is bounded. This property guarantees finite
variance for the importance sampling estimator. (See Exercise 8.)

Stratified Importance Sampling

Suppose that we are trying to estimate θ = ∫
g(x) dx, and that we contemplate using

the importance function f . The simulation variance of the importance sampling
estimator of θ arises from the variance of Y = g(X)/f (X), where X has the p.d.f.
f . Indeed, if we simulate an importance sample of size n, the simulation variance of
our estimator is σ 2/n, where σ 2 = Var(Y ). Stratified importance sampling attempts
to reduce the simulation variance by splitting θ into θ = ∑k

j=1 θj and then estimating
each θj with much smaller simulation variance.

The stratified importance sampling algorithm is easiest to describe when X is
simulated using the probability integral transformation. Let F be the c.d.f. corre-
sponding to the p.d.f. f . First, we split θ as follows. Define q0 = −∞, qj = F−1(j/k)

for j = 1, . . . , k − 1, and qk = ∞. Then define

θj =
∫ qj

qj−1

g(x) dx,

for j = 1, . . . , k. Clearly, θ = ∑k
j=1 θj . Next, we estimate each θj by importance sam-

pling using the same importance function f , but restricted to the range of integration
for θj . That is, we estimate θj using importance sampling with the importance function

fj(x) =
{

kf (x) if qj−1 ≤ x < qj ,
0 otherwise.

(See Exercise 9 to see that fj is indeed a p.d.f.) To simulate a random variable with
the p.d.f. fj , let V have the uniform distribution on the interval [(j − 1)/k, j/k] and
set Xj = F−1(V ). The reader can prove (see Exercise 9) that Xj has the p.d.f. fj . Let
σ 2

j
be the variance of g(Xj)/fj(Xj). Suppose that, for each j = 1, . . . , k, we simulate

an importance sample of size m with the same distribution as Xj . The variance of the
estimator of θj will be σ 2

j
/m. Since the k estimators of θ1, . . . , θk are independent,

the variance of the estimator of θ will be
∑k

j=1 σ 2
j
/m. To facilitate comparison to

nonstratified importance sampling, let n = mk. Stratification will be an improvement
if its variance is smaller than σ 2/n. Since n = mk, we would like to prove that at least

σ 2 ≥ k

k∑
j=1

σ 2
j
, (12.4.7)

and preferably with strict inequality.
To prove (12.4.7), we note a close connection between the random variables Xj

with the p.d.f. fj and X with the p.d.f. f . Let J be a random variable with the discrete
uniform distribution on the integers 1, . . . , k. Define X∗ = XJ , so that the conditional
p.d.f. of X∗ given J = j is fj . You can prove (Exercise 11) that X∗ and X have the
same p.d.f. Let Y = g(X)/f (X) and

Y ∗ = g(X∗)
fj(X

∗)
= g(X∗)

kf (X∗)
.

Then Var(Y ∗|J = j) = σ 2
j

and kY ∗ has the same distribution as Y . So,
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σ 2 = Var(Y ) = Var(kY ∗) = k2 Var(Y ∗). (12.4.8)

Theorem 4.7.4 says that

Var(Y ∗) = E Var(Y ∗|J ) + Var[E(Y ∗|J )]. (12.4.9)

By construction, E(Y ∗|J = j) = θj and Var(Y ∗|J = j) = σ 2
j
. Also, Var[E(Y ∗|J )] ≥ 0

with strict inequality if the θj are not all the same. Since Pr(J = j) = 1/k for j =
1, . . . , k, we have

E Var(Y ∗|J ) = 1
k

k∑
j=1

σ 2
j
. (12.4.10)

Combining Eqs. (12.4.8), (12.4.9), and (12.4.10), we obtain (12.4.7), with strict in-
equality if the θj are not all equal.

Example
12.4.4

Illustration of Stratified Importance Sampling. Consider the integral that we wanted
to estimate in Example 12.4.1. The best importance function appeared to be f3,
with a simulation standard error of σ̂3/100 = 9.73 × 10−4. In the present example,
we allocate 10,000 simulations among k = 10 subsets of size m = 1000 each and do
stratified importance sampling by dividing the range of integration [0, 1] into 10
equal-length subintervals. Doing this, we get a Monte Carlo estimate of the integral of
0.5248. To estimate the simulation standard error, we need to estimate each σj by σ̂ ∗

j

and compute
∑10

j=1 σ̂ ∗2
j

/1000. In the simulation that we are discussing, the simulation

standard error for stratified importance sampling is 1.05 × 10−4, about one-tenth as
small as the unstratified version. We can also do stratified importance sampling using
k = 100 subsets of size m = 100. In our simulation, the estimate of the integral is the
same with simulation standard error of 1.036 × 10−5. �

The reason that stratified importance sampling works so well in Example 12.4.4 is
that the function g(x)/f3(x) is monotone, and this makes θj change about as much as
it can as j changes. Hence, Var[E(Y ∗|J )] is large, making stratification very effective.

Summary

We introduced the method of importance sampling for calculating integrals by simu-
lation. The idea of importance sampling for estimating

∫
g(x) dx is to choose a p.d.f.

f from which we can simulate and such that g(x)/f (x) is nearly constant. Then we
rewrite the integral as

∫
[g(x)/f (x)]f (x) dx. We can estimate this last integral by aver-

aging g(X(i))/f (X(i)) where X(1), . . . , X(v) form a random sample with the p.d.f. f . A
stratified version of importance sampling can produce estimators with even smaller
variance.

Exercises

1. Prove that the formula in Eq. (12.4.1) is the same as
importance sampling in which the importance function is
the p.d.f. of the uniform distribution on the interval [a, b].

2. Let g be a function, and suppose that we wish to com-
pute the mean of g(X) where X has the p.d.f. f . Suppose

that we can simulate pseudo-random values with the p.d.f.
f . Prove that the following are the same:

Simulate X(i) values with the p.d.f. f , and average
the values of g(X(i)) to obtain the estimator.
Do importance sampling with importance function
f to estimate the integral

∫
g(x)f (x) dx.
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3. Let Y have the F distribution with m and n degrees
of freedom. We wish to estimate Pr(Y > c). Consider the
p.d.f.

f (x) =
{

(n/2)cn/2

xn/2+1 if x > c,
0 otherwise.

a. Explain how to simulate pseudo-random numbers
with the p.d.f. f .

b. Explain how to estimate Pr(Y > c) using importance
sampling with the importance function f .

c. Look at the form of the p.d.f. of Y , Eq. (9.7.2), and
explain why importance sampling might be more ef-
ficient than sampling i.i.d. F random variables with
m and n degrees of freedom if c is not small.

4. We would like to calculate the integral
∫ ∞

0 log(1 +
x) exp(−x) dx.

a. Simulate 10,000 exponential random variables with
parameter 1 and use these to estimate the integral.
Also, find the simulation standard error of your esti-
mator.

b. Simulate 10,000 gamma random variables with pa-
rameters 1.5 and 1 and use these to estimate the
integral (importance sampling). Find the simulation
standard error of the estimator. (In case you do not
have the gamma function available, �(1.5) = √

π/2.)

c. Which of the two methods appears to be more effi-
cient? Can you explain why?

5. Let U have the uniform distribution on the inter-
val [0, 1]. Show that the random variable W defined in
Eq. (12.4.6) has the p.d.f. h defined in Eq. (12.4.5).

6. Suppose that we wish to estimate the integral∫ ∞

1

x2
√

2π
e−0.5x2

dx.

In parts (a) and (b) below, use simulation sizes of 1000.

a. Estimate the integral by importance sampling using
random variables having a truncated normal distri-
bution. That is, the importance function is

1√
2π [1 − �(1)]

e−0.5x2
, for x > 1.

b. Estimate the integral by importance sampling using
random variables with the p.d.f. x exp(0.5[1 − x2]),
for x > 1. Hint: Prove that such random variables can
be obtained as follows: Start with a random variable
that has the exponential distribution with parameter
0.5, add 1, then take the square root.

c. Compute and compare simulation standard errors
for the two estimators in parts (a) and (b). Can you
explain why one is so much smaller than the other?

7. Let (X1, X2) have the bivariate normal distribution
with both means equal to 0, both variances equal to 1,
and the correlation equal to 0.5. We wish to estimate
θ = Pr(X1 ≤ 2, X2 ≤ 1) using simulation.

a. Simulate a sample of 10,000 bivariate normal vec-
tors with the above distribution. Use the proportion
of vectors satisfying the two inequalities X1 ≤ 2 and
X2 ≤ 1 as the estimator Z of θ . Also compute the sim-
ulation standard error of Z.

b. Use the method described in Example 12.4.3 with
10,000 simulations to produce an alternative estima-
tor Z′ of θ . Compute the simulation standard error
of Z′ and compare Z′ to the estimate in part (a).

8. Suppose that we wish to approximate the integral∫
g(x) dx. Suppose that we have a p.d.f. f that we shall

use as an importance function. Suppose that g(x)/f (x) is
bounded. Prove that the importance sampling estimator
has finite variance.

9. Let F be a continuous strictly increasing c.d.f. with
p.d.f. f . Let V have the uniform distribution on the in-
terval [a, b] with 0 ≤ a < b ≤ 1. Prove that the p.d.f. of
X = F−1(V ) is f (x)/(b − a) for F−1(a) ≤ x ≤ F−1(b). (If
a = 0, let F−1(a) = −∞. If b = 1, let F−1(b) = ∞.)

10. For the situation described in Exercise 6, use strat-
ified importance sampling as follows: Divide the interval
(1, ∞) into five intervals that each have probability 0.2 un-
der the importance distribution. Sample 200 observations
from each interval. Compute the simulation standard er-
ror. Compare this simulation to the simulation in Exer-
cise 6 for each of parts (a) and (b).

11. In the notation used to develop stratified importance
sampling, prove that X∗ = XJ and X have the same distri-
bution. Hint: The conditional p.d.f. of X∗ given J = j is fj .
Use the law of total probability.

12. Consider again the situation described in Exercise 15
of Sec. 12.2. Suppose that Wu has the Laplace distribution
with parameters θ = 0 and σ = 0.1u1/2. See Eq. (10.7.5) for
the p.d.f.

a. Prove that the m.g.f. of Wu is

ψ(t) =
(

1 − t2u

100

)−1

, for −10u−1/2 < t <10u−1/2.

b. Let r = 0.06 be the risk-free interest rate. Simulate
a large number v of values of Wu with u = 1 and use
these to estimate the price of an option to buy one
share of this stock at time u = 1 in the future for
the current price S0. Also compute the simulation
standard error.

c. Use importance sampling to improve on the simu-
lation in part (b). Instead of simulating Wu values
directly, simulate from the conditional distribution
of Wu given that Su > S0. How much smaller is the
simulation standard error?
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13. The method of control variates is a technique for re-
ducing the variance of a simulation estimator. Suppose
that we wish to estimate θ = E(W). A control variate is an-
other random variable V that is positively correlated with
W and whose mean μ we know. Then, for every constant
k > 0, E(W − kV + kμ) = θ . Also, if k is chosen carefully,
Var(W − kV + kμ) < Var(W). In this exercise, we shall see
how to use control variates for importance sampling, but
the method is very general. Suppose that we wish to com-
pute

∫
g(x) dx, and we wish to use the importance function

f . Suppose that there is a function h such that h is similar
to g but

∫
h(x) dx is known to equal the value c. Let k be

a constant. Simulate X(1), . . . , X(v) with the p.d.f. f , and
define

W(i) = g(X(i))

f (X(i))
,

V (i) = h(X(i))

f (X(i))
,

Y (i) = W(i) − kV (i),

for all i. Our estimator of
∫

g(x) dx is then
Z = 1

v

∑v
i=1 Y (i) + kc.

a. Prove that E(Z) = ∫
g(x) dx.

b. Let Var(W(i)) = σ 2
W

and Var(V (i)) = σ 2
V

. Let ρ be
the correlation between W(i) andV (i). Prove that
the value of k that makes Var(Z) the smallest is
k = σWρ/σV .

14. Suppose that we wish to integrate the same function
g(x) as in Example 12.4.1.

a. Use the method of control variates that was de-
scribed in Exercise 13 to estimate

∫
g(x) dx. Let

h(x) = 1/(1 + x2) for 0 < x < 1, and k = e−0.5. (This
makes h about the same size as g.) Let f (x) be the
function f3 in Example 12.4.1. How does the simu-
lation standard error using control variates compare
to not using control variates?

b. Estimate the variances and correlation of the W(i)’s
and V (i)’s (notation of Exercise 13) to see what a
good value for k might be.

15. The method of antithetic variates is a technique for re-
ducing the variance of simulation estimators. Antithetic
variates are negatively correlated random variables that
share a common mean and common variance. The vari-
ance of the average of two antithetic variates is smaller
than the variance of the average of two i.i.d. variables. In
this exercise, we shall see how to use antithetic variates for
importance sampling, but the method is very general. Sup-
pose that we wish to compute

∫
g(x) dx, and we wish to

use the importance function f . Suppose that we generate
pseudo-random variables with the p.d.f. f using the prob-
ability integral transformation. That is, for i = 1, . . . , v, let
X(i) = F−1(U(i)), where U(i) has the uniform distribution
on the interval [0, 1] and F is the c.d.f. corresponding to
the p.d.f. f . For each i = 1, . . . , v, define

T (i) = F−1(1 − U(i)),

W(i) = g(X(i))

f (X(i))
,

V (i) = g(T (i))

f (T (i))
,

Y (i) = 0.5
[
W(i) + V (i)

]
.

Our estimator of
∫

g(x) dx is then Z = 1
v

∑v
i=1 Y (i).

a. Prove that T (i) has the same distribution as X(i).

b. Prove that E(Z) = ∫
g(x) dx.

c. If g(x)/f (x) is a monotone function, explain why we
would expect W(i) and V (i) to be negatively corre-
lated.

d. If W(i) and V (i) are negatively correlated, show that
Var(Z) is less than the variance one would get with
2v simulations without antithetic variates.

16. Use the method of antithetic variates that was de-
scribed in Exercise 15. Let g(x) be the function that we
tried to integrate in Example 12.4.1. Let f (x) be the func-
tion f3 in Example 12.4.1. Estimate Var(Y (i)), and com-
pare it to σ̂ 2

3 from Example 12.4.1.

17. For each of the exercises in this section that requires
a simulation, see if you can think of a way to use control
variates or antithetic variates to reduce the variance of the
simulation estimator.

� 12.5 Markov Chain Monte Carlo
The techniques described in Sec. 12.3 for generating pseudo-random numbers with
particular distributions are most useful for univariate distributions. They can be
applied in many multivariate cases, but they often become unwieldy. A method
based on Markov chains (see Sec. 3.10) became popular after publications by
Metropolis et al. (1953) and Gelfand and Smith (1990). We shall present only the
simplest form of Markov chain Monte Carlo in this section.
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The Gibbs Sampling Algorithm

We shall begin with an attempt to simulate a bivariate distribution. Suppose that the
joint p.d.f. of (X1, X2) is f (x1, x2) = cg(x1, x2), where we know the function g but
not necessarily the value of the constant c. This type of situation arises often when
computing posterior distributions. If X1 and X2 are the parameters, the function g

might be the product of the prior p.d.f. times the likelihood function (in which the data
are treated as known values). The constant c = 1/

∫
g(x1, x2) dx1 dx2 makes cg(x1, x2)

the posterior p.d.f. Often it is difficult to compute c, although the methods of Sec. 12.4
might be helpful. Even if we can approximate the constant c, there are other features
of the posterior distribution that we might not be able to compute easily, so simulation
would be useful.

If the function g(x1, x2) has a special form, then there is a powerful algorithm for
simulating vectors with the p.d.f. f . The required form can be described as follows:
First, consider g(x1, x2) as a function of x1 for fixed x2. This function needs to look
like a p.d.f. (for X1) from which we know how to simulate pseudo-random values.
Similarly, if we consider g(x1, x2) as a function of x2 for fixed x1, the function needs
to look like a p.d.f. for X2 from which can simulate.

Example
12.5.1

Sample from a Normal Distribution. Suppose that we have observed a sample from the
normal distribution with unknown mean μ and unknown precision τ . Suppose that
we use a natural conjugate prior of the form described in Sec. 8.6. The product of
the prior and the likelihood is given by Eq. (8.6.7) without the appropriate constant
factor. We reproduce a version of that equation here for convenience:

ξ(μ, τ |x) ∝ τα1+1/2−1 exp
(

−τ

[
1
2
λ1(μ − μ1)

2 + β1

])
,

where α1, β1, μ1, and λ1 are known values once the data have been observed.
Considering this as a function of μ for fixed τ , it looks like the p.d.f. of the normal
distribution with mean μ1 and variance (τλ1)

−1. Considering it as a function of τ for
fixed μ, it looks like the p.d.f. of the gamma distribution with parameters α1 + 1/2
and λ1(μ − μ1)

2/2 + β1. Both of these distributions are easy to simulate. �

When we consider g(x1, x2) as a function of x1 for fixed x2, we are looking at the
conditional p.d.f. of X1 given X2 = x2, except for a multiplicative factor that does not
depend on x1. (See Exercise 1.) Similarly, when we consider g(x1, x2) as a function
of x2 for fixed x1, we are looking at the conditional p.d.f. of X2 given X1 = x1.

Once we have determined that the function g(x1, x2) has the desired form, our
algorithm proceeds as follows:

1. Pick a starting value x
(0)

2 for X2, and set i = 0.

2. Simulate a new value x
(i+1)
1 from the conditional distribution of X1 given X2 =

x
(i)

2 .

3. Simulate a new value x
(i+1)
2 from the conditional distribution of X2 given X1 =

x
(i+1)
1 .

4. Replace i by i + 1 and return to step 2.

The algorithm typically terminates when i reaches a sufficiently large value. Although
there currently are no truly satisfactory convergence criteria, we shall introduce one
convergence criterion later in this section. This algorithm is commonly called Gibbs
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sampling. The name derives from an early use of the technique by Geman and Geman
(1984) for sampling from a distribution that was known as the Gibbs distribution.

Some Theoretical Justification

So far, we have given no justification for the Gibbs sampling algorithm. The justifica-
tion stems from the fact that the successive pairs (x

(1)
1 , x

(1)
2 ), (x

(2)

1 , x
(2)

2 ) . . . form the
observed sequence of states from a Markov chain. This Markov chain is much more
complicated than any of the Markov chains encountered in Sec. 3.10 for two reasons.
First, the states are two-dimensional, and second, the number of possible states is
infinite rather than finite. Even so, one can easily recognize the basic structure of a
Markov chain in the description of the Gibbs sampling algorithm. Suppose that i is
the current value of the iteration index. The conditional distribution of the next state
pair (X

(i+1)
1 , X

(i+1)
2 ) given all of the available state pairs (X

(1)
1 , X

(1)
2 ), . . . , (X

(i)

1 , X
(i)

2 )

depends only on (X
(i)

1 , X
(i)

2 ), the current state pair. This is the same as the defining
property of finite Markov chains in Sec. 3.10.

Even if we agree that the sequence of pairs forms a Markov chain, why should
we believe that they come from the desired distribution? The answer lies in a gen-
eralization of the second part of Theorem 3.10.4 to more general Markov chains.
The generalization is mathematically too involved to present here, and it requires
conditions that involve concepts that we have not introduced in this book.

Nevertheless, the Gibbs sampler is constructed from a joint distribution that one
can show (see Exercise 2) is a stationary distribution for the resulting Markov chain.
For the cases that we illustrate in this book, the distribution of the Gibbs sampler
Markov chain does indeed converge to this stationary distribution as the number
of transitions increases. (For a more general discussion, see Tierney, 1994.) Because
of the close connection with Markov chains, Gibbs sampling (and several related
techniques) are often called Markov chain Monte Carlo.

When Does the Markov Chain Converge?

Although the distribution of a Markov chain may converge to its stationary distri-
bution, after any finite time the distribution will not necessarily be the stationary
distribution. In general, the distribution will get pretty close to the stationary dis-
tribution in finite time, but how do we tell, in a particular application, if we have
sampled the Markov chain long enough to be confident that we are sampling from
something close to the stationary distribution? Much work has been done to address
this question, but there is no foolproof method. Several methods for assessing con-
vergence of a Markov chain in a Monte Carlo analysis were reviewed by Cowles and
Carlin (1996). Here we present one simple technique.

Begin by sampling several versions of the Markov chain starting at k different
initial values x

(0)

2,1, . . . , x
(0)

2, k
. These k Markov chains will be useful not only for assess-

ing convergence but also for estimating the variances of our simulation estimators.
It is wise to choose the initial values x

(0)

2,1, . . . , x
(0)

2, k
to be quite spread out. This will

help us to determine whether we have a Markov chain that is very slow to converge.
Next, apply the Gibbs sampling algorithm starting at each of the k initial values. This
gives us k independent Markov chains, all with the same stationary distribution. If
the k Markov chains have been sampled for m iterations, we can think of the ob-
served values of X1 (or of X2) as k samples of size m each. For ease of notation, let
Ti,j stand for either the value of X1 or the value of X2 from the j th iteration of the
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ith Markov chain. (We shall repeat the following analysis once for X1 and once for
X2.) Now, treat Ti,j for j = 1, . . . , m as a sample of size m from the ith of k distribu-
tions for i = 1, . . . , k. If we have sampled long enough for the Markov chains to have
converged approximately, then all k of these distributions should be nearly the same.
This suggests that we use the F statistic from the discussion of analysis of variance
(Sec. 11.6) to measure how close the k distributions are. The F statistic can be written
as F = B/W where

B = m

k − 1

k∑
i=1

(T i+ − T ++)2,

W = 1
k(m − 1)

k∑
i=1

m∑
j=1

(Tij − T i+)2.

Here we have used the same notation as in Sec. 11.6 in which the + subscript
appears in a position wherever we have averaged over all values of the subscript
in that position. If the k distributions are different, then F should be large. If the
distributions are the same, then F should be close to 1. As we mentioned earlier,
we compute two F statistics, one using the X1 coordinates and one using the X2
coordinates. Then we could declare that we have sampled long enough when both
F statistics are simultaneously less than some number slightly larger than 1. Gelman
et al. (1995) describe essentially this same procedure and recommend comparing
the maximum of the two F statistics to 1 + 0.44m. It is probably a good idea to
start with at least m = 100 (if the iterations are fast enough) before beginning to
compute the F statistics. This will help to avoid accidentally declaring success due
to some “lucky” early simulations. The initial sequence of iterations of the Markov
chain, before we declare convergence, is commonly called burn-in. After the burn-in
iterations, one would typically treat the ensuing iterations as observations from the
stationary distribution. It is common to discard the burn-in iterations because we are
not confident that their distribution is close to the stationary distribution. Iterations
of a Markov Chain are dependent, however, so one should not treat them as an
i.i.d. sample. Even though we computed an F statistic from the various dependent
observations, we did not claim that the statistic had an F distribution. Nor did we
compare the statistic to a quantile of an F distribution to make our decision about
convergence. We merely used the statistic as an ad hoc measure of how different the
k Markov chains are.

Example
12.5.2

Nursing Homes in New Mexico. We shall use the data from Sec. 8.6 on the numbers of
medical in-patient days in 18 nonrural nursing homes in New Mexico in 1988. There,
we modeled the observations as a random sample from the normal distribution with
unknown mean μ and unknown precision τ . We used a natural conjugate prior and
found the posterior hyperparameters to be α1 = 11, β1 = 50925.37, μ1 = 183.95, and
λ1 = 20. We shall illustrate the above convergence diagnostic for the Gibbs sam-
pling algorithm described in Example 12.5.1. As we found in Example 12.5.1, the
conditional distribution of μ given τ is the normal distribution with mean 183.95
and variance (20τ)−1. The conditional distribution of τ given μ is the gamma dis-
tribution with parameters 11.5 and 50925.37 + 20(μ − 183.95)2. We shall start with
the following k = 5 initial values for μ: 182.17, 227, 272, 137, 82. These were chosen
by making a crude approximation to the posterior standard deviation of μ, namely,
(β1/[λ1α1])1/2 ≈ 15, and then using the posterior mean together with values 3 and 6
posterior standard deviations above and below the posterior mean. We have to run
the five Markov chains to the m = 2 iteration before we can compute the F statistics.
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In our simulation, at m = 2, the larger of the two F statistics was already as low as
0.8862, and it stayed very close to 1 all the way to m = 100, at which time it seemed
clear that we should stop the burn-in. �

Estimation Based on Gibbs Sampling

So far, we have argued (without proof) that if we run the Gibbs sampling algorithm
for many iterations (through burn-in), we should start to see pairs (X

(i)

1 , X
(i)

2 ) whose
joint p.d.f. is nearly the function f from which we wanted to sample. Unfortunately,
the successive pairs are not independent of each other even if they do have the
same distribution. The law of large numbers does not tell us that the average of
dependent random variables with the same distribution converges. However, the
type of dependence that we get from a Markov chain is sufficiently regular that there
are theorems that guarantee convergence of averages and even that the averages are
asymptotically normal. That is, suppose that we wish to estimate the mean μ of some
function h(X1, X2) based on m observations from the Markov chain. We can still
assume that 1

m

∑m
i=1 h(X

(i)

1 , X
(i)

2 ) converges to μ, and that it has approximately the
normal distribution with mean μ and variance σ 2/m. However, the convergence will
typically be slower than for i.i.d. samples, and σ 2 will be larger than the variance of
h(X1, X2). The reason for this is that the successive values of h(X

(i)

1 , X
(i)

2 ) are usually
positively correlated. The variance of an average of positively correlated identically
distributed random variables is higher than the variance of an average of the same
number of i.i.d. random variables. (See Exercise 4.)

We shall deal with the problems caused by correlated samples by making use of
the same k independent Markov chains that we used for determining how much burn-
in to do. Discard the burn-in and continue to sample each Markov chain for m0 more
iterations. From each Markov chain, we compute our desired estimator, either an
average, a sample quantile, a sample variance, or other measure, Zj for j = 1, . . . , k.
We then compute S as in Eq. (12.2.2); that is,

S =
⎛⎝1

k

k∑
j=1

(Zj − Z)2

⎞⎠1/2

. (12.5.1)

Then S2 is an estimator of the simulation variance of the Zj ’s. Write the simulation
variance as σ 2/m0 and estimate σ 2 by σ̂ 2 = m0S

2 as we did in Example 12.2.9. Also,
combine all samples from all k chains into a single sample, and use this single sample
to form the overall estimator Z. The simulation standard error of our estimator Z is
then (σ̂ 2/(m0k))1/2 = S/k1/2.

In addition, we may wish to determine how many simulations to perform in
order to obtain a precise estimator. We can substitute σ̂ for σ in Eq. (12.2.5) to get
a proposed number of simulations v. These v simulations would be divided between
the k Markov chains so that each chain would be run for at least v/k iterations if
v/k > m0.

Some Examples

Example
12.5.3

Nursing Homes in New Mexico. We actually do not need Gibbs sampling in order to
simulate a sample from the posterior distribution in Example 12.5.1. The reason is
that we have a closed-form expression for the joint distribution of μ and τ in that
example. Each of the marginal and conditional distributions are known and easy
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Figure 12.7 Quantile plots of μ and τ values simulated from the
posterior distribution in Example 12.5.3. The line on each plot shows
the quantiles of the actual posterior distribution as found in Sec. 8.6. The
horizontal axis on the left plot is labeled by quantiles of the t distribution
with 22 degrees of freedom. The actual posterior of μ is a rescaling and
shifting of this t distribution. The horizontal axis on the right plot is
labeled by quantiles of the gamma distribution with parameters 11 and
1. The actual posterior of τ is a rescaling of this gamma distribution.

to simulate. Gibbs sampling is most useful when only the conditionals are easy to
simulate. However, we can illustrate the use of Gibbs sampling in Example 12.5.1
and compare the simulated results to the known marginal distributions of μ and τ .

In Example 12.5.2, we started k = 5 Markov chains and burned them in for 100
iterations. Now we wish to produce a sample of (μ, τ) pairs from the joint posterior
distribution. After burn-in, we run another m0 = 1000 iterations for each chain. These
iterations produce five correlated sequence of (μ, τ) pairs. The correlations between
successive pairs of μ values are quite small. The same is true of successive τ values.
To compare the results with the known posterior distributions found in Sec. 8.6,
Fig. 12.7 has a t quantile plot of the μ values and a gamma quantile plot of the τ

values. (Normal quantile plots were introduced on page 720. Gamma and t quantile
plots are constructed in the same way using gamma and t quantile functions in place
of the standard normal quantile function.) The simulated values seem to lie close to
the lines drawn on the plots in Fig. 12.7. (A few points in the tails stray a bit from
the lines, but this occurs with virtually all quantile plots.) The lines in Fig. 12.7 show
the quantiles of the actual posterior distributions, which are a t distribution with 22
degrees of freedom multiplied by 15.21 and centered at 183.95 for μ and the gamma
distribution with parameters 11 and 50925.37 for τ .

We can use the sample of (μ, τ) pairs to estimate the posterior mean of an
arbitrary function of (μ, τ). For example, suppose that we are interested in the mean
θ of μ + 1.645/τ 1/2, which is the 0.95 quantile of the unknown distribution of the
original observations. The average of our 5000 simulated values of μ + 1.645/τ 1/2 is
Z = 299.67. The value of S from Eq. (12.5.1) is 0.4119, giving us a value of σ̂ = 13.03.
The simulation standard error of Z is then σ̂ /50001/2 = 0.1842. The true posterior
mean of μ + 1.645/τ 1/2 can be computed exactly in this example, and it is

μ1 + 1.645β1/2
1

�(α1 − .5)
�(α1)

= 299.88,

a bit more than 1 simulation standard error away from our simulated value of Z.
Suppose that we want our estimator of θ to be within 0.01 of the true value with
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probability 0.99. Substituting these values and σ̂ = 13.03 into Eq. (12.2.5), we find
that we need v = 12,358,425 total simulations. Each of our five Markov chains would
have to be run for 2,251,685 iterations. �

The true value of Gibbs sampling begins to emerge in problems with more
than two parameters. The general Gibbs sampling algorithm for p random variables
(X1, . . . , Xp) with p.d.f. f (x) = cg(x) is as follows. First, verify that g looks like an
easy-to-simulate p.d.f. as a function of each variable for fixed values of all the others.
Then perform these steps:

1. Pick starting values x
(0)

2 , . . . , x(0)
p

for X2, . . . , Xp, and set i = 0.

2. Simulate a new value x
(i+1)
1 from the conditional distribution of X1 given X2 =

x
(i)

2 , . . . , Xp = x(i)
p

.

3. Simulate a new value x
(i+1)
2 from the conditional distribution of X2 given X1 =

x
(i+1)
1 , X3 = x

(i)

3 , . . . , Xp = x(i)
p

.
...

p + 1. Simulate a new value x(i+1)
p

from the conditional distribution of Xp given

X1 = x
(i+1)
1 , . . . , Xp−1 = x

(i+1)
p−1 .

p + 2. Replace i by i + 1, and return to step 2.

The sequence of successive p-tuples of (X1, . . . , Xp) values produced by this algo-
rithm is a Markov chain in the same sense as before. The stationary distribution of
this Markov chain has the p.d.f. f , and the distribution of an iteration many steps
after the start should be approximately the stationary distribution.

Example
12.5.4

Multiple Regression with an Improper Prior. Consider a problem in which we observe
data consisting of triples (Yi, x1i, x2i) for i = 1, . . . , n. We assume that the xji values
are known, and we model the distribution of Yi as the normal distribution with mean
β0 + β1x1i + β2x2i and precision τ . This is the multiple regression model introduced
in Sec. 11.5 with the variance replaced by 1 over the precision. Suppose that we use
the improper prior ξ(β0, β1, β2, τ ) = 1/τ for the parameters. The posterior p.d.f. of
the parameters is then proportional to the likelihood times 1/τ , which is a constant
times

τn/2−1 exp

(
−τ

2

n∑
i=1

(yi − β0 − β1x1i − β2x2i)
2

)
. (12.5.2)

To simplify the ensuing formulas, we shall define some summaries of the data:

x1 = 1
n

n∑
i=1

x1i, x2 = 1
n

n∑
i=1

x2i, y = 1
n

n∑
i=1

yi,

s11 =
n∑

i=1

x2
1i, s22 =

n∑
i=1

x2
2i

, s12 =
n∑

i=1

x1ix2i,

s1y =
n∑

i=1

x1iyi, s2y =
n∑

i=1

x2iyi, syy =
n∑

i=1

y2
i
.

Looking at (12.5.2) as a function of τ for fixed values of β0, β1, and β2, it looks
like the p.d.f. of the gamma distribution with parameters n/2 and

∑n
i=1(yi − β0 −

β1x1i − β2x2i)
2/2. Looking at (12.5.2) as a function of βj for fixed values of the other

parameters, it is e to the power of a quadratic in βj with negative coefficient on the
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β2
j

term. As such, it looks like the p.d.f. of a normal random variable with a mean
that depends on the data and the other β’s and a variance that equals 1/τ times
some function of the data. We can be more specific if we complete the square in the
expression

∑n
i=1(yi − β0 − β1x1i − β2x2i)

2 three times, each time treating a different
βj as the variable of interest. For example, treating β0 as the variable of interest, we
get

n∑
i=1

(yi − β0 − β1x1i − β2x2i)
2 = n

(
β0 − [y − β1x1 − β2x2]

)2
,

plus a term that does not depend on β0. So, the conditional distribution of β0 given
the remaining parameters is the normal distribution with mean y − β1x1 − β2x2 and
variance 1/[nτ ]. Treating β1 as the variable of interest, we get

n∑
i=1

(yi − β0 − β1x1i − β2x2i)
2 = s11(β1 − w1)

2,

plus a term that does not depend on β1, where

w1 = 1
s11

(
s1y − β0nx1 − β2s12

)
.

This means that the conditional distribution of β1 given the other parameters is the
normal distribution with mean w1 and variance (τ s11)

−1. Similarly, the conditional
distribution of β2 given the other parameters is the normal distribution with mean
w2 and variance (τ s22)

−1, where

w2 = 1
s22

(
s2y − β0nx2 − β1s12

)
. �

Example
12.5.5

Unemployment in the 1950s. In Example 11.5.9, we saw that unemployment data
from the years 1951–1959 appeared to satisfy the assumptions of the multiple regres-
sion model better than the data that included the year 1950. Let us use just the last
nine years of data from this example (in Table 11.12). We shall use an improper prior
and Gibbs sampling to obtain samples from the posterior distribution of the param-
eters. The necessary conditional distributions were all given in Example 12.5.4. We
just need the values of the summary statistics and n = 9:

x1 = 140.7778, x2 = 6, y = 2.789,

s11 = 179585, s22 = 384, s12 = 7837,

s1y = 3580.9, s2y = 169.2, syy = 78.29.

Once again, we shall run k = 5 Markov chains. In this problem, there are four
coordinates to the parameter: βi for i = 0, 1, 2 and τ . So, we compute four F statistics
and burn-in until the largest F is less than 1 + 0.44m. Suppose that this occurs at
m = 4546. We then sample 10,000 more iterations from each Markov chain.

Suppose that we want an interval [a, b] that contains 90 percent of the pos-
terior distribution of β1. The numbers a and b will be the sample 0.05 and 0.95
quantiles. Based on our combined sample of 50,000 values of β1, the interval is
[−0.1178, −0.0553]. In order to assess the uncertainty in the endpoints, we compute
the 0.05 and 0.95 sample quantiles for each of the five Markov chains. Those values
are

0.05 quantiles: − 0.1452, −0.1067, −0.1181, −0.1079, −0.1142

0.95 quantiles: − 0.0684, −0.0610, −0.0486, −0.0594, −0.0430.
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The value of S based on the sample 0.05 quantiles is 0.01567, and the value of S

based on the sample 0.95 quantiles is 0.01142. To be safe, we shall use the larger of
these two to estimate the simulation standard errors of our interval endpoints. Since
each chain was run for m0 =10,000 iterations, we have σ̂ = Sm

1/2
0 = 1.567. Suppose

that we want each endpoint of the interval to be within 0.01 of the corresponding
true quantile of the distribution of β1 with probability 0.95. (The probability that
both endpoints are within 0.01 would be a bit smaller, but is harder to compute.)
We could use Eq. (12.2.5) to compute how many simulations we would need. That
equation yields v = 94,386, which means that each of our five chains would need
to be run 18,878 iterations, about twice what we already have. For comparison, a
90 percent confidence interval for β1 constructed using the methods of Sec. 11.3 is
[−0.1124, −0.0579]. This is quite close to the posterior probability interval. �

Although we did not do so in this text, we could have found the posterior
distribution for Example 12.5.5 in closed form. Indeed, the 90 percent confidence
interval calculated at the end of the example contains 90 percent of the posterior
distribution in much the same way that coefficient 1 − α0 confidence intervals contain
posterior probability 1 − α0 in Sec. 11.4 when we use improper priors. The next
example is one in which a closed-form solution is not available.

Example
12.5.6

Bayesian Analysis of One-Way Layout with Unequal Variances. Consider the one-way
layout that was introduced in Sec. 11.6. There, we assumed that data would be
observed from each of p normal distributions with possibly different means but
the same variance. In order to illustrate the added power of Gibbs sampling, we
shall drop the assumption that each normal distribution has the same variance. That
is, for i = 1, . . . , p, we shall assume that Yi1, . . . , Yini

have the normal distribution
with mean μi and precision τi, and all observations are independent conditional on
all parameters. Our prior distribution for the parameters will be the following: Let
μ1, . . . , μp be conditionally independent given all other parameters with μi having
the normal distribution with mean ψ and precision λ0τi. Here, ψ is another parameter
that also needs a distribution. We introduce this parameter ψ as a way of saying that
we think that the μi’s all come from a common distribution, but we are not willing
to say for sure where that distribution is located. We then say that ψ has the normal
distribution with mean ψ0 and precision u0. For an improper prior, we could set u0 = 0
in what follows, and then ψ0 would not be needed either. Next, we model τ1, . . . , τp

as i.i.d. having the gamma distribution with parameters α0 and β0. We model ψ and
the τi’s as independent. For an improper prior, we could set α0 = β0 = 0. The type
of model just described is called a hierarchical model because of the way that the
distributions fall into a hierarchy of levels. Figure 12.8 illustrates the levels of the
hierarchy in this example.

Figure 12.8 Diagram of
hierarchical model in Exam-
ple 12.5.6. The parameter ψ

influences the distributions
of the μi’s, while the (μi, τi)

parameters influence the dis-
tributions of the Yij ’s.

Y11Y12 ...Y1n1

m1 t1

Y21Y22 ...Y2n2

m2 t2

Y31Y32 ...Y3n3

m3 t3

Y41Y42 ...Y4n4Y11

m4 t4

C
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The joint p.d.f. of the observations and the parameters is the product of the
likelihood function (the p.d.f. of the observations given the μi’s and τi’s) times the
product of the conditional prior p.d.f.’s of the μi’s given the τi’s and ψ , times the
prior p.d.f.’s of the τi’s times the prior p.d.f. for ψ . Aside from constants that depend
neither on the data nor on the parameters, this product has the form

exp

(
−u0(ψ − ψ0)

2

2
−

p∑
i=1

τi

[
β0 + ni(μi − yi)

2 + wi + λ0(μi − ψ)2

2

])

×
p∏

i=1

τ
α0+[ni+1]/2−1
i , (12.5.3)

where wi = ∑ni

j=1(yij − yi)
2 for i = 1, . . . , p. We have arranged terms in (12.5.3)

so that the terms involving each parameter are close together. This will facilitate
describing the Gibbs sampling algorithm.

In order to set up Gibbs sampling, we need to examine (12.5.3) as a function of
each parameter separately. The parameters are μ1, . . . , μp; τ1, . . . , τp; and ψ . As a
function of τi, (12.5.3) looks like the p.d.f. of the gamma distribution with parameters
α0+ (ni + 1)/2 and β0 + [ni(μi − yi)

2 + wi + λ0(μi − ψ)2]/2. As a function of ψ , it
looks like the p.d.f. of the normal distribution with mean [u0ψ0 + λ0

∑p

i=1 τiμi]/[u0 +
λ0

∑p

i=1 τi] and precision u0 + λ0
∑p

i=1 τi. This is obtained by completing the square
for all terms involving ψ . Similarly, by completing the square for all terms involving
μi, we find that (12.5.3) looks like the normal p.d.f. with mean [niyi + λ0ψ]/[ni + λ0]
and precision τi(ni + λ0) as a function of μi. All of these distributions are easy to
simulate.

As an example, use the hot dog calorie data from Example 11.6.2. In this example,
p = 4. We shall use a prior distribution in which λ0 = α0 = 1, β0 = 0.1, u0 = 0.001, and
ψ0 = 170. We use k = 6 Markov chains and do m = 100 burn-in simulations, which
turn out to be more than enough to make the maximum of all nine F statistics less
than 1 + 0.44m. We then run each of the six Markov chains another 10,000 iterations.
The samples from the posterior distribution allow us to answer any questions that we
might have about the parameters, including some that we would not have been able
to answer using the analysis done in Chapter 11. For example, the posterior means
and standard deviations of some of the parameters are listed in Table 12.6. Notice
how much different the variances 1/τi seem to be in the four groups. For example, we
can compute the probability that 1/τ4 > 4/τ1 by counting up the number of iterations
� in which 1/τ (�)

4 > 4/τ
(�)

1 and dividing by 60,000. The result is 0.5087, indicating that
there is a large chance that at least some of the variances are quite different. If the
variances are different, the ANOVA calculations in Chapter 11 are not justified.

We can also address the question of how much difference there is between the
μi’s. For comparison, we shall do the same calculations that we did in Example 12.3.7.
In 99 percent of the 60,000 simulations, at least one |μ(�)

i − μ
(�)
j | > 24.66. In about one-

half of the simulations, all |μ(�)
i − μ

(�)
j | > 2.268. And in 99 percent of the simulations,

the average of the differences was at least 13.07. Figure 12.9 contains a plot of the
sample c.d.f.’s of the largest, smallest, and average of the six |μi − μj | differences.
Careful examination of the results in this example shows that the four μi’s appear to
be closer together than we would have thought after the analysis of Example 12.3.7.
This is typical of what occurs when we use a proper prior in a hierarchical model.
In Example 12.3.7, the μi’s were all independent, and they did not have a common
unknown mean in the prior. In Example 12.5.6, the μi’s all have a common prior
distribution with mean ψ , which is an additional unknown parameter. The estimation
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Table 12.6 Posterior means and standard deviations for some parameters in
Example 12.5.6

Type Beef Meat Poultry Specialty

i 1 2 3 4

E(μi|y) 156.7 158.4 120.7 159.7

(V ar(μi|y))1/2 3.498 5.241 6.160 10.55

E(1/τi|y) 252.3 487.3 670.8 1100

(V ar(1/τi|y))1/2 84.70 179.1 250.6 586.9

E(ψ |y) = 152.8 (V ar(ψ |y))1/2 = 10.42

Figure 12.9 Sample c.d.f.’s
of the maximum, average,
and minimum of the six
|μi − μj | differences for
Example 12.5.6.
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of this additional parameter allows the posterior distributions of the μi’s to be pulled
toward a location that is near the average of all of the samples. With these data, the
overall sample average is 147.60. �

Prediction

All of the calculations done in the examples of this section have concerned functions
of the parameters. The sample from the posterior distribution that we obtain from
Gibbs sampling can also be used to make predictions and form prediction intervals
for future observations. The most straightforward way to make predictions is to sim-
ulate the future data conditional on each value of the parameter from the posterior
sample. Although there are more efficient methods for predicting, this method is easy
to describe and evaluate.

Example
12.5.7

Calories in Hot Dogs. In Example 12.5.6, we might be concerned with how different
we should expect the calorie counts of two hot dogs to be. For example, let Y1 and Y3
be future calorie counts for hot dogs of the beef and poultry varieties, respectively.
We can form a prediction interval for D = Y1 − Y3 as follows: For each iteration �, let
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the simulated parameter vector be

θ(�) =
(
μ

(�)

1 , μ
(�)

2 , μ
(�)

3 , μ
(�)

4 , τ
(�)

1 , τ
(�)

2 , τ
(�)

3 , τ
(�)

4 , ψ(�), β(�)
)
.

For each �, simulate a beef hot dog calorie count Y
(�)

1 having the normal distribution

with mean μ
(�)

1 and variance 1/τ (�)

1 . Also simulate a poultry hot dog calorie count Y
(�)

3

having the normal distribution with mean μ
(�)

3 and variance 1/τ (�)

3 . Then compute

D(�) = Y
(�)

1 − Y
(�)

3 . Sample quantiles of the values D(1), . . . , D(60,000) can be used to
estimate quantiles of the distribution of D.

For example, suppose that we want a 90 percent prediction interval for D. We
simulate 60,000 D(�) values as above and find the 0.05 and 0.95 sample quantiles to be
−14.86 and 87.35, which are then the endpoints of our prediction interval. To assess
how close the simulation estimators are to the actual quantiles of the distribution of
D, we compute the simulation standard errors of the two endpoints. For the samples
from each of the k = 6 Markov chains, we can compute the sample 0.05 quantiles of
our D values. We can then use these values as Z1, . . . , Z6 in Eq. (12.5.1) to compute a
value S. Our simulation standard error is then S/61/2. We can then repeat this for the
sample 0.95 quantiles. For the two endpoints of our interval, the simulation standard
errors are 0.2447 and 0.3255, respectively. These simulation standard errors are fairly
small compared to the length of the prediction interval. �

Example
12.5.8

Censored Arsenic Measurements. Frey and Edwards (1997) describe the National
Arsenic Occurrence Survey (NAOS). Several hundred community water systems
submitted samples of their untreated water in an attempt to help characterize the
distribution of arsenic across the nation. Arsenic is one of several contaminants that
the Environmental Protection Agency (EPA) is required to regulate. One difficulty
in modeling the occurrence of a substance like arsenic is that concentrations are often
too low to be measured accurately. In such cases, the measurements are censored.
That is, we only know that the concentration of arsenic is less than some censoring
point, but not how much less. In the NAOS data set, the censoring point is 0.5
microgram per liter. Each concentration less than 0.5 microgram per liter is censored.

Gibbs sampling can help us to estimate the distribution of arsenic in spite of the
censored observations. Lockwood et al. (2001) do an extensive analysis of the NAOS
and other data and show how the distribution of arsenic differs from one state to the
next and from one type of water source to the next. For convenience, let us focus our
attention on the 24 observations from one state, Ohio. Of those 24 observations, 11
were taken from groundwater sources (wells). The other 13 came from surface water
sources (e.g., rivers and lakes). The following are seven uncensored groundwater
observations from Ohio:

9.62, 10.50, 2.30, 0.80, 17.04, 9.90, 1.32.

The other four groundwater observations were censored.
Suppose that we model groundwater arsenic concentrations in Ohio as hav-

ing the lognormal distribution with parameters μ and σ 2. One popular way to deal
with censored observations is to treat them like unknown parameters. That is, let
Y1, . . . , Y4 be the four unknown concentrations from the four wells where the mea-
surements were censored. Let X1, . . . , X7 stand for the seven uncensored values.
Suppose that μ and τ = 1/σ 2 have the normal-gamma prior distribution with hyper-
parameters μ0, λ0, α0, and β0. The joint p.d.f. of X1, . . . , X7, Y1, . . . , Y4, and μ and τ

is proportional to
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τβ0+(7+4+1)/2−1 exp

⎛⎝−τ

2

[
λ0(μ − μ0)

2 +
7∑

i=1

(log(xi) − μ)2 +
4∑

j=1

(log(yi) − μ)2 + 2β0

]⎞⎠.

The observed data consist of the values x1, . . . , x7 of X1, . . . , X7 together with the
fact that Yj ≤ 0.5 for j = 1, . . . , 4. The conditional distributions of μ and τ given the
data and the other parameters are just like what we obtained in Example 12.5.1. To
be precise, μ has the normal distribution with mean

λ0μ0 + ∑7
i=1 log(xi) + ∑4

j=1 log(yj)

λ0 + 11

and precision τ(λ0 + 11) conditional on τ , the Yj ’s, and the data. Also, τ has the
gamma distribution with parameters α0 + (11 + 1)/2 and

β0 + 1
2

⎛⎝ 7∑
i=1

(log(xi) − μ)2 +
4∑

j=1

(log(yi) − μ)2 + λ0(μ − μ0)
2

⎞⎠,

conditional on μ, the Yj ’s, and the data. The conditional distribution of the Yj ’s given
μ, τ , and the data is that of i.i.d. random variables with the lognormal distribution
having parameters μ and 1/τ but conditional on Yj < 0.5. That is, the conditional
c.d.f. of each Yj is

F(y) = �([log(y) − μ]τ 1/2)

�([log(0.5) − μ]τ 1/2)
, for y < 0.5.

We can simulate random variables with c.d.f. F so long as we can compute the
standard normal c.d.f. and quantile function. Let U have the uniform distribution
on the interval [0, 1]. Then

Y = exp
(
μ + τ−1/2�−1[U�([log(0.5) − μ]τ 1/2)]

)
has the desired c.d.f., F .

One example of the type of inference that is needed in an analysis of this sort
is to predict arsenic concentrations for different water systems. Knowing the likely
sizes of arsenic measurements can help water systems choose economical treatments
that will meet the standards set by the EPA. For simplicity, we shall simulate one
arsenic concentration at each iteration of the Markov chain. For example, suppose
that (μ(i), τ (i)) are the simulated values of μ and τ at the ith iteration of the Markov
chain. Then we can simulate Y (i) = exp(μ(i) + Z(τ (i))−1/2), where Z is a standard
normal random variable. Figure 12.10 shows a histogram of the simulated log(Y (i))

values from 10 Markov chains of length 10,000 each. The proportion of predicted
values that are below the censoring point of log(0.5) is 0.335, with a simulation
standard error of 0.001. The median predicted value on the logarithmic scale is 0.208
with a simulation standard error of 0.007. We can transform this back to the original
scale of measurement using the delta method as described in Example 12.2.8. The
median predicted arsenic concentration is exp(0.208) = 1.231 micrograms per liter
with a simulation standard error of 0.007 exp(0.208) = 0.009. �

Note: There Are More-General Markov Chain Monte Carlo Algorithms. Gibbs
sampling requires a special structure for the distribution we wish to simulate. We
need to be able to simulate the conditional distribution of each coordinate given the
other coordinates. In many problems, this is not possible for at least some, if not all,
of the coordinates. If only one coordinate is difficult to simulate, one might try using
an acceptance/rejection simulator for that one coordinate. If even this does not work,
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Figure 12.10 Histogram of
simulated log(arsenic) values
for 10,000 iterations from
each of 10 Markov chains in
Example 12.5.8. The vertical
line is at the censoring point,
log(0.5).
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there are more-general Markov chain Monte Carlo algorithms that can be used. The
simplest of these is the Metropolis algorithm introduced by Metropolis et al. (1953).
An introduction to the Metropolis algorithm can be found in chapter 11 of Gelman
et al. (1995) together with a further generalization due to Hastings (1970).

Summary

We introduced the Gibbs sampling algorithm that produces a Markov chain of
observations from a joint distribution of interest. The joint distribution must have a
special form. As a function of each variable, the joint p.d.f. must look like a p.d.f. from
which it is easy to simulate pseudo-random variables. The Gibbs sampling algorithm
cycles through the coordinates, simulating each one conditional on the values of the
others. The algorithm requires a burn-in period during which the distribution of states
in the Markov chain converges to the desired distribution. Assessing convergence
and computing simulation standard errors of simulated values are both facilitated by
running several independent Markov chains simultaneously.

Exercises

1. Let f (x1, x2) = cg(x1, x2) be a joint p.d.f. for (X1, X2).
For each x2, let h2(x1) = g(x1, x2). That is, h2 is what we
get by considering g(x1, x2) as a function of x1 for fixed x2.
Show that there is a multiplicative factor c2 that does not
depend on x1 such that h2(x1)c2 is the conditional p.d.f. of
X1 given X2 = x2.

2. Let f (x1, x2) be a joint p.d.f. Suppose that (X
(i)

1 , X
(i)

2 )

has the joint p.d.f. f . Let (X
(i+1)
1 , X

(i+1)
2 ) be the result of

applying steps 2 and 3 of the Gibbs sampling algorithm
on page 824. Prove that (X

(i+1)
1 , X

(i)

2 ) and (X
(i+1)
1 , X

(i+1)
2 )

also have the joint p.d.f. f .

3. Let Z1, Z2, . . . form a Markov chain, and assume that
the distribution of Z1 is the stationary distribution. Show
that the joint distribution of (Z1, Z2) is the same as the

joint distribution of (Zi, Zi+1) for all i > 1. For conve-
nience, you may assume that the Markov chain has finite
state space, but the result holds in general.

4. Let X1, . . . , Xn be uncorrelated, each with variance σ 2.
Let Y1, . . . , Yn be positively correlated, each with variance
σ 2. Prove that the variance of X is smaller than the vari-
ance of Y .

5. Use the data consisting of 30 lactic acid concentrations
in cheese, 10 from Example 8.5.4 and 20 from Exercise 16
in Sec. 8.6. Fit the same model used in Example 8.6.2 with
the same prior distributon, but this time use the Gibbs
sampling algorithm described in Example 12.5.1. Simulate
10,000 pairs of (μ, τ) parameters. Estimate the posterior
mean of (

√
τμ)−1, and compute the simulation standard

error of the estimator.
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6. Use the data on dishwasher shipments in Table 11.13 on
page 744. Suppose that we wish to fit a multiple linear re-
gression model for predicting dishwasher shipments from
time (year minus 1960) and private residential investment.
Suppose that the parameters have the improper prior pro-
portional to 1/τ . Use the Gibbs sampling algorithm to
obtain a sample of size 10,000 from the joint posterior dis-
tribution of the parameters.

a. Let β1 be the coefficient of time. Draw a plot of the
sample c.d.f. of |β1| using your posterior sample.

b. We are interested in predicting dishwasher ship-
ments for 1986.

i. Draw a histogram of the values of β0 + 26β1 +
67.2β2 from your posterior distribution.

ii. For each of your simulated parameters, simulate
a dishwasher sales figure for 1986 (time = 26 and
private residential investment = 67.2). Compute
a 90 percent prediction interval from the simu-
lated values and compare it to the interval found
in Example 11.5.7.

iii. Draw a histogram of the simulated 1986 sales
figures, and compare it to the histogram in part i.
Can you explain why one sample seems to have
larger variance than the other?

7. Use the data in Table 11.19 on page 762. This time fit the
model developed in Example 12.5.6. Use the prior hyper-
parameters λ0 = α0 = 1, β0 = 0.1, u0 = 0.001, and ψ0 = 800.
Obtain a sample of 10,000 from the posterior joint distri-
bution of the parameters. Estimate the posterior means of
the three parameters μ1, μ2, and μ3.

8. In this problem, we shall outline a form of robust linear
regression. Assume throughout the exercise that the data
consist of pairs (Yi, xi) for i = 1, . . . , n. Assume also that
the xi’s are all known and the Yi’s are independent random
variables. We shall only deal with simple regression here,
but the method easily extends to multiple regression.

a. Let β0, β1, and σ stand for unknown parameters, and
let a be a known positive constant. Prove that the
following two models are equivalent. That is, prove
that the joint distribution of (Y1, . . . , Yn) is the same
in both models.

Model 1: For each i, [Yi − (β0 + β1xi)]/σ has the
t distribution with a degrees of freedom.

Model 2: For each i, Yi has the normal distri-
bution with mean β0 + β1xi and variance 1/τi con-
ditional on τi. Also, τ1, . . . , τn are i.i.d. having the
gamma distribution with parameters a/2 and aσ 2/2.

Hint: Use the same argument that produced the
marginal distribution of μ in Sec. 8.6 when μ and τ

had a normal-gamma distribution.

b. Now consider Model 2 from part (a). Let η = σ 2,
and assume that η has a prior distribution that is the
gamma distribution with parameters b/2 and f/2,

where b and f are known constants. Assume that the
parameters β0 and β1 have an improper prior with
“p.d.f.” 1. Show that the product of likelihood and
prior “p.d.f.” is a constant times

η(na+b)/2−1
n∏

i=1

τ
(a+1)/2−1
i

exp
(

− 1
2

[f η

+
n∑

i=1

τi

{
aη + (yi − β0 − β1xi)

2
}])

. (12.5.4)

c. Consider (12.5.4) as a function of each parameter
for fixed values of the others. Show that Table 12.7
specifies the appropriate conditional distribution for
each parameter given all of the others.

Table 12.7 Parameters and conditional distributions
for Exercise 8

Parameter (12.5.4) looks like the p.d.f.
of this distribution

η gamma distribution with parameters
(na + b)/2 and

(
f + a

∑n
i=1 τi

)
/2

τi gamma distribution with parameters (a +
1)/2 and [aη + (yi − β0 − β1xi)

2]/2

β0 normal distribution with mean∑n
i=1 τi(yi − β1xi)/

∑n
i=1 τi and

precision
∑n

i=1 τi

β1 normal distribution with mean∑n
i=1 τixi(yi − β0)/

∑n
i=1 τix

2
i

and
precision

∑n
i=1 τix

2
i

9. Use the data in Table 11.5 on page 699. Suppose that Yi

is the logarithm of pressure and xi is the boiling point for
the ith observation, i = 1, . . . , 17. Use the robust regres-
sion scheme described in Exercise 8 with a = 5, b = 0.1,
and f = 0.1. Estimate the posterior means and standard
deviations of the parameters β0, β1, and η.

10. In this problem, we shall outline a Bayesian solution
to the problem described in Example 7.5.10 on page 423.
Let τ = 1/σ 2 and use a proper normal-gamma prior of
the form described in Sec. 8.6. In addition to the two
parameters μ and τ , introduce n additional parameters.

For i = 1, . . . , n, let Yi = 1 if Xi came from the normal
distribution with mean μ and precision τ , and let Yi = 0 if
Xi came from the standard normal distribution.

a. Find the conditional distribution of μ given τ ; Y1,

. . . , Yn; and X1, . . . , Xn.

b. Find the conditional distribution of τ given μ; Y1,

. . . , Yn; and X1, . . . , Xn.

c. Find the conditional distribution of Yi given μ; τ ;
X1, . . . , Xn; and the other Yj ’s.
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d. Describe how to find the posterior distribution of μ

and τ using Gibbs sampling.

e. Prove that the posterior mean of Yi is the posterior
probability that Xi came from the normal distribu-
tion with unknown mean and variance.

11. Consider, once again, the model described in Exam-
ple 7.5.10. Assume that n = 10 and the observed values of
X1, . . . , X10 are

− 0.92, −0.33, −0.09, 0.27, 0.50, −0.60, 1.66, −1.86,

3.29, 2.30.

a. Fit the model to the observed data using the Gibbs
sampling algorithm developed in Exercise 10. Use
the following prior hyperparameters: α0 = 1, β0 = 1,
μ0 = 0, and λ0 = 1.

b. For each i, estimate the posterior probability that
Xi came from the normal distribution with unknown
mean and variance.

12. Let X1, . . . , Xn be i.i.d. with the normal distribution
having mean μ and precision τ . Gibbs sampling allows
one to use a prior distribution for (μ, τ) in which μ and
τ are independent. Let the prior distribution of μ be the
normal distribution with mean μ0 and variance γ0. Let
the prior distribution of τ be the gamma distribution with
parameters α0 and β0.

a. Show that Table 12.8 specifies the appropriate con-
ditional distribution for each parameter given the
other.

b. Use the New Mexico nursing home data (Exam-
ples 12.5.2 and 12.5.3). Let the prior hyperparam-
eters be α0 = 2, β0 = 6300, μ0 = 200, and γ0 = 6.35 ×
10−4. Implement a Gibbs sampler to find the pos-
terior distribution of (μ, τ). In particular, calculate
an interval containing 95 percent of the posterior
distribution of μ.

Table 12.8 Parameters and conditional distributions
for Exercise 12

Parameter Prior times likelihood looks like
the p.d.f. of this distribution

τ gamma distribution with parameters
α0 + n/2 and β0 + 0.5

∑n
i=1(xi − x)2 +

0.5n(x − μ)2,

μ normal distribution with mean
(γ0μ0 + nτx)/(γ0 + nτ) and precision
γ0 + nτ .

13. Consider again the situation described in Exercise 12.
This time, we shall let the prior distribution of μ be more
like it was in the conjugate prior. Introduce another pa-
rameter γ , whose prior distribution is the gamma distri-

bution with parameters a0 and b0. Let the prior distribu-
tion of μ conditional on γ be the normal distribution with
mean μ0 and precision γ .

a. Prove that the marginal prior distribution of μ spec-
ifies that(

b0

a0

)1/2

(μ − μ0) has the t distribution
with 2a0 degrees of freedom.

Hint: Look at the derivation of the marginal distri-
bution of μ in Sec. 8.6.

b. Suppose that we want the marginal prior distribu-
tions of both μ and τ to be the same as they were
with the conjugate prior in Sec. 8.6. How must the
prior hyperparameters be related in order to make
this happen?

c. Show that Table 12.9 specifies the appropriate con-
ditional distribution for each parameter given the
others.

Table 12.9 Parameters and conditional distributions
for Exercise 13

Parameter Prior times likelihood looks like
the p.d.f. of this distribution

τ gamma distribution with parameters
α0 + n/2 and β0 + 0.5

∑n
i=1(xi −

x)2 + 0.5n(x − μ)2,

μ normal distribution with mean
(γμ0 + nτx)/(γ + nτ) and
precision γ + nτ ,

γ gamma distribution with parameters
a0 + 1/2 and b0 + 0.5(μ − μ0)

2.

d. Use the New Mexico nursing home data (Exam-
ples 12.5.2 and 12.5.3). Let the prior hyperparam-
eters be α0 = 2, β0 = 6300, μ0 = 200, a0 = 2, and
b0 = 3150. Implement a Gibbs sampler to find the
posterior distribution of (μ, τ, γ ). In particular, cal-
culate an interval containing 95 percent of the pos-
terior distribution of μ.

14. Consider the situation described in Example 12.5.8. In
addition to the 11 groundwater sources, there are 13 obser-
vations taken from surface water sources in Ohio. Of the
13 surface water measurements, only one was censored.
The 12 uncensored surface water arsenic concentrations
from Ohio are

1.93, 0.99, 2.21, 2.29, 1.15, 1.81, 2.26, 3.10, 1.18, 1.00,

2.67, 2.15.

a. Fit the same model as described in Example 12.5.8,
and predict a logarithm of surface water concentra-
tion for each iteration of the Markov chain.
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b. Compare a histogram of your predicted measure-
ments to the histogram of the underground well pre-
dictions in Fig. 12.10. Describe the main differences.

c. Estimate the median of the distribution of predicted
surface water arsenic concentration and compare
it to the median of the distribution of predicted
groundwater concentration.

15. Let X1, . . . , Xn+m be a random sample from the ex-
ponential distribution with parameter θ . Suppose that θ

has the gamma prior distribution with known parameters
α and β. Assume that we get to observe X1, . . . , Xn, but
Xn+1, . . . , Xn+m are censored.

a. First, suppose that the censoring works as follows:
For i = 1, . . . , m, if Xn+i ≤ c, then we learn only
that Xn+i ≤ c, but not the precise value of Xn+i. Set
up a Gibbs sampling algorithm that will allow us to
simulate the posterior distribution of θ in spite of the
censoring.

b. Next, suppose that the censoring works as follows:
For i = 1, . . . , m, if Xn+i ≥ c, then we learn only
that Xn+i ≥ c, but not the precise value of Xn+i. Set
up a Gibbs sampling algorithm that will allow us to
simulate the posterior distribution of θ in spite of the
censoring.

16. Suppose that the time to complete a task is the sum
of two parts X and Y . Let (Xi, Yi) for i = 1, . . . , n be a
random sample of the times to complete the two parts of
the task. However, for some observations, we get to ob-
serve only Zi = Xi + Yi. To be precise, suppose that we
observe (Xi, Yi) for i = 1, . . . , k and we observe Zi for
i = k + 1, . . . , n. Suppose that all Xi and Yj are indepen-
dent with every Xi having the exponential distribution
with parameter λ and every Yj having the exponential dis-
tribution with parameter μ.

a. Prove that the conditional distribution of Xi given
Zi = z has the c.d.f.

G(x|z) = 1 − exp(−x[λ − μ])
1 − exp(−z[λ − μ])

, for 0 < x < z.

b. Suppose that the prior distribution of (λ, μ) is as
follows: The two parameters are independent with
λ having the gamma distribution with parameters a

and b, and μ having the gamma distribution with
parameters c and d. The four numbers a, b, c, and
d are all known constants. Set up a Gibbs sampling
algorithm that allows us to simulate the posterior
distribution of (λ, μ).

12.6 The Bootstrap
The parametric and nonparametric bootstraps are methods for replacing an un-
known distribution F with a known distribution in a probability calculation. If
we have a sample of data from the distribution F , we first approximate F by F̂

and then perform the desired calculation. If F̂ is a good approximation to F , the
bootstrap can be successful. If the desired calculation is sufficiently difficult, we
typically resort to simulation.

Introduction

Assume that we have a sample X = (X1, . . . , Xn) of data from some unknown
distribution F . Suppose that we are interested in some quantity that involves both F

and X , for example, the bias of a statistic g(X) as an estimator of the median of F .
The main idea behind bootstrap analysis in the simplest cases is the following: First,
replace the unknown distribution F with a known distribution F̂ . Next, let X∗ be a
sample from the distribution F̂ . Finally, compute the quantity of interest based on F̂

and X∗, for example, the bias of g(X∗) as an estimator of the median of F̂ . Consider
the following overly simple example.

Example
12.6.1

The Variance of the Sample Mean. Let X = (X1, . . . , Xn) be a random sample from
a distribution with a continuous c.d.f. F . For the moment, we shall assume nothing
more about F than that it has finite mean μ and finite variance σ 2. Suppose that we are
interested in the variance of the sample mean X. We already know that this variance
equals σ 2/n, but we do not know σ 2. In order to estimate σ 2/n, the bootstrap replaces
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the unknown distribution F with a known distribution F̂ , which also has finite mean
μ̂ and finite variance σ̂ 2. If X∗ = (X∗

1, . . . , X∗
n
) is a random sample from F̂ , then

the variance of the sample mean X
∗ = 1

n

∑n
i=1 X∗

i
is σ̂ 2/n. Since the distribution F̂

is known, we should be able to compute σ̂ 2/n, and we can then use this value to
estimate σ 2/n.

One popular choice of known distribution F̂ is the sample c.d.f. Fn defined
in Sec. 10.6. This sample c.d.f. is the discrete c.d.f. that has jumps of size 1/n at
each of the observed values x1, . . . , xn of the random sample X1, . . . , Xn. So, if
X∗ = (X∗

1, . . . , X∗
n
) is a random sample from F̂ , then each X∗

i
is a discrete random

variable with the p.f.

f (x) =
{

1
n

if x ∈ {x1, . . . , xn},
0 otherwise.

It is relatively simple to compute the variance σ̂ 2 of a random variable X∗
i

whose p.f.
is f . The variance is

σ̂ 2 = 1
n

n∑
i=1

(xi − x)2,

where x is the average of the observed values x1, . . . , xn. Thus, our bootstrap estimate
of the variance of X is σ̂ 2/n. �

The key step in a bootstrap analysis is the choice of the known distribution F̂ .
The particular choice made in Example 12.6.1, namely, the sample c.d.f., leads to what
is commonly called the nonparametric bootstrap. The reason for this name is that we
do not assume that the distribution belongs to a parametric family when choosing
F̂ = Fn. If we are willing to assume that F belongs to a parametric family, then we
can choose F̂ to be a member of that family and perform a parametric bootstrap
analysis as illustrated next.

Example
12.6.2

The Variance of the Sample Mean. Let X = (X1, . . . , Xn) be a random sample from the
normal distribution with mean μ and variance σ 2. Suppose, as in Example 12.6.1, that
we are interested in estimating σ 2/n, the variance of the sample mean X. To apply
the parametric bootstrap, we replace F by F̂ , a member of the family of normal
distributions. For this example, we shall choose F̂ to be the normal distribution
with mean and variance equal to the M.L.E.’s x and σ̂ 2, respectively, although other
choices could be made. We then estimate σ 2/n by the variance of the sample mean X

∗

of a random sample from the distribution F̂ . The variance of X
∗

is easily computed
as σ̂ 2/n. In this case, the parametric bootstrap yields precisely the same answer as
the nonparametric bootstrap. �

In Examples 12.6.1 and 12.6.2, it was very simple to compute the variance of the
sample mean of a random sample from the distribution F̂ . In typical applications of
the bootstrap, it is not so simple to compute the quantity of interest. For example,
there is no simple formula for the variance of the sample median of a sample X∗ from
F̂ in Examples 12.6.1 and 12.6.2. In such cases, one resorts to simulation techniques in
order to approximate the desired calculation. Before presenting examples of the use
of simulation in the bootstrap, we shall first describe the general class of situations
in which bootstrap analysis is used.
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Table 12.10 Correspondence between statistical model and bootstrap analysis

Statistical model Bootstrap

Distribution Unknown F Known F̂

Data i.i.d. sample X from F i.i.d. sample X∗ from F̂

Function of interest η(X, F ) η(X∗, F̂ )

Parameter/estimate Mean, median, variance, etc. of η(X, F ) Mean, median, variance, etc. of η(X∗, F̂ )

The Bootstrap in General

Let η(X, F ) be a quantity of interest that possibly depends on both a distribution F

and a sample X drawn from F . For example, if the distribution F has the p.d.f. f , we
might be interested in

η(X, F ) =
[

1
n

n∑
i=1

Xi −
∫

xf (x) dx

]2

. (12.6.1)

In Examples 12.6.1 and 12.6.2, we wanted the variance of the sample average, which
equals the mean of the quantity in Eq. (12.6.1). In general, we might wish to estimate
the mean or a quantile or some other probabilistic feature of η(X, F ). The bootstrap
estimates the mean or a quantile or some other feature of η(X, F ) by the mean or
quantile or the other feature of η(X∗, F̂ ), where X∗ is a random sample drawn from
the distribution F̂ , and F̂ is some distribution that we hope is close to F . Table 12.10
shows the correspondence between the original statistical model for the data and the
quantities that are involved in a bootstrap analysis. The function η of interest must be
something that exists for all distributions under consideration and all samples from
those distributions. Other quantities that might be of interest include the quantiles
of the distribution of a statistic, the M.A.E. or M.S.E. of an estimator, the bias of an
estimator, probabilities that statistics lie in various intervals, and the like.

In the simple examples considered so far, the distribution of η(X∗, F̂ ) was both
known and easy to compute. It will often be the case that the distribution of η(X∗, F̂ )

is too complicated to allow analytic computation of its features. In such cases, one
approximates the bootstrap estimate using simulation. First, draw a large number
(say, v) of random samples X∗(1), . . . , X∗(v) from the distribution F̂ and then compute
T (i) = η(X∗(i), F̂ ) for i = 1, . . . , v. Finally, compute the desired feature of the sample
c.d.f. of the values T (1), . . . , T (v).

Example
12.6.3

The M.S.E. of the Sample Median. Suppose that we model our data X = (X1, . . . , Xn)

as coming from some continuous distribution with the c.d.f. F having median θ .
Suppose also that we are interested in using the sample median M as an estimator
of θ . We would like to estimate the M.S.E. of M as an estimator of θ . That is, let
η(X, F ) = (M − θ)2, and try to estimate the mean of η(X, F ). Let F̂ be a known
distribution that we hope is similar to F , and let X∗ be a random sample of size n from
F̂ . Regardless of what distribution F̂ we choose, it is very difficult to compute the
bootstrap estimate, the mean of η(X∗, F̂ ). Instead, we would simulate a large number
v of samples X∗(1), . . . , X∗(v) with the distribution F̂ and then compute the sample
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Figure 12.11 Sample me-
dians of 10,000 bootstrap
samples in Example 12.6.3.
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median of each sample M(1), . . . , M(v). Then we compute T (i) = (M(i) − θ̂ )2 for i =
1, . . . , v, where θ̂ is the median of the distribution F̂ . Our simulation approximation
to the bootstrap estimate is then the average of the values T (1), . . . , T (v).

As an example, suppose that our sample consists of the n = 25 values y1, . . . , y25
listed in Table 10.33 on page 662. For a nonparametric bootstrap analysis, we would
use F̂ = Fn, which is also listed in Table 10.33. Notice that the median of the distri-
bution F̂ is the sample median of the original sample, θ̂ = 0.40. Next, we simulate
v =10,000 random samples of size 25 from the distribution F̂ . This is done by select-
ing 25 numbers with replacement from the yi values and repeating for a total of 10,000
samples of size 25. (Solve Exercise 2 to show why this provides the desired samples
X∗(1), . . . , X∗(v).) For example, here is one of the 10,000 bootstrap samples:

1.64 0.88 0.70 −1.23 −0.15 1.40 −0.07 −2.46 −2.46 −0.10

−0.15 1.62 0.27 0.44 −0.42 −2.46 1.40 −0.10 0.88 0.44

−1.23 1.07 0.81 −0.02 1.62

If we sort the numbers in this sample, we find that the sample median is 0.27. In
fact, there were 1485 bootstrap samples out of 10,000 that had sample median equal
to 0.27. Figure 12.11 contains a histogram of all 10,000 sample medians from the
bootstrap samples. The four largest and four smallest observations in the original
sample never appeared as sample medians in the 10,000 bootstrap samples. For
each of the 10,000 bootstrap samples i, we compute the sample median M(i) and
its squared error T (i) = (M(i) − θ̂ )2, where θ̂ = 0.40 is the median of the distribution
F̂ . We then average all of these values over the 10,000 samples and obtain the value
0.0887. This is our simulation approximation to the nonparametric bootstrap estimate
of the M.S.E. of the sample median. The sample variance of the simulated T (i)

values is σ̂ 2 = 0.0135, and the simulation standard error of the bootstrap estimate
is σ̂ /

√
10, 000 = 1.163 × 10−3. �

Note: Simulation Approximation of Bootstrap Estimates. The bootstrap is an es-
timation technique. As such, it produces estimates of parameters of interest. When
a bootstrap estimate is too difficult to compute, we resort to simulation. Simulation
provides an estimator of the bootstrap estimate. In this text, we shall refer to the
simulation estimator of a bootstrap estimate as an approximation. We do this merely
to avoid having to refer to estimators of estimates.
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The bootstrap was introduced by Efron (1979), and there have been many ap-
plications since then. Readers interested in more detail about the bootstrap should
see Efron and Tibshirani (1993) or Davison and Hinkley (1997). Young (1994) gives
a review of much of the literature on the bootstrap and contains many useful ref-
erences. In the remainder of this section, we shall present several examples of both
the parametric and nonparametric bootstraps and illustrate how simulation is used
to approximate the desired bootstrap estimates.

The Nonparametric Bootstrap

Example
12.6.4

Confidence Interval for the Interquartile Range. The interquartile range (IQR) of a
distribution was introduced in Definition 4.3.2. It is defined to be the difference
between the upper and lower quartiles, the 0.75 and 0.25 quantiles. The central
50 percent of the distribution lies between the lower and upper quartiles, so the
IQR is the length of the interval that contains the middle half of the distribution.
For example, if F is the normal distribution with variance σ 2, then the IQR is 1.35σ .

Suppose that we desire a 90 percent confidence interval for the IQR θ of the
unknown distribution F from which we have a random sample X1, . . . , Xn. There are
many ways to form confidence intervals, so we shall restrict attention to those that are
based on the relationship between θ and the sample IQR θ̂ . Since the IQR is a scale
feature, it might be reasonable to base our confidence interval on the distribution of
θ̂/θ . That is, let the 0.05 and 0.95 quantiles of the distribution of θ̂/θ be a and b, so
that

Pr

(
a ≤ θ̂

θ
≤ b

)
= 0.9.

Because a ≤ θ̂/θ ≤ b is equivalent to θ̂/b ≤ θ ≤ θ̂/a, we conclude that (θ̂/b, θ̂/a) is
a 90 percent confidence interval for θ . The nonparametric bootstrap can be used
to estimate the quantiles a and b as follows: Let η(X, F ) = θ̂/θ be the ratio of the
sample IQR of the sample X to the IQR of the distribution F . Let F̂ = Fn, and notice
that the IQR of F̂ is θ̂ , the sample IQR. Next, let X∗ be a sample of size n from F̂ .
Let θ̂∗ be the sample IQR calculated from X∗, so that η(X∗, F̂ ) = θ̂∗/θ̂ . The 0.05
and 0.95 quantiles of the distribution of η(X, F ) are estimated by the 0.05 and 0.95
quantiles of the distribution of η(X∗, F̂ ). These last quantiles, in turn, are typically
approximated by simulation. We simulate a large number, say, v, of bootstrap samples
X∗(i) for i = 1, . . . , v. For each bootstrap sample i, we compute the sample IQR θ̂∗(i)

and divide it by θ̂ . Call the ratio T (i). The q quantile of θ̂∗/θ̂ is approximated by the
sample q quantile of the sample T (1), . . . , T (v). The confidence interval constructed
by this method is called a percentile bootstrap confidence interval.

We can illustrate this with the data in Table 10.33 on page 662. The IQR of the
distribution Fn is 1.46, the difference between the 19th and 6th observations. We
simulate 10,000 random samples of size 25 from the distribution Fn. For the ith sam-
ple, we compute the sample IQR θ̂∗(i) and divide it by 1.46 to obtain T (i). The 500th
and 9500th ordered values from T (1), . . . , T (10,000) are 0.5822 and 1.6301. We then
compute the percentile bootstrap confidence interval (1.46/1.6301, 1.46/0.5822) =
(0.8956, 2.5077). �

Example
12.6.5

Confidence Interval for a Location Parameter. Let X1, . . . , Xn be a random sample
from the distribution F . Suppose that we want a confidence interval for the median
θ of F . We can base a confidence interval on the sample median M . For example,
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our interval could be of the form [M − c1, M + c2]. Since M − c1 ≤ θ ≤ M + c2 is
equivalent to −c2 ≤ M − θ ≤ c1, we might want −c2 and c1 to be quantiles of the
distribution of M − θ . Without making assumptions about the distribution F , it
might be very difficult to approximate quantiles of the distribution of M − θ . To
compute a percentile bootstrap confidence interval, let η(X, F ) = M − θ and then
approximate quantiles (such as α0/2 and 1 − α0/2) of the distribution of η(X, F )

by the corresponding quantiles of η(X∗, F̂ ). Here, F̂ is the sample c.d.f., Fn, whose
median is M , and X∗ is a random sample from F̂ . We then choose a large number v

and simulate many samples X∗(i) for i = 1, . . . , v. For each sample, we compute the
sample median M∗(i) and then find the sample quantiles of the values M∗(i) − M for
i = 1, . . . , v. �

How well the percentile bootstrap interval performs in Example 12.6.5 depends
on how closely the distribution of M∗ − M approximates the distribution of M −
θ . (Here, M∗ is the median of a sample X∗ of size n from F̂ .) The situation of
Example 12.6.5 is one in which there is a possible improvement to the approximation.
One thing that can make the distribution of M∗ − M different from the distribution
of M − θ is that one of these distributions is more or less spread out than the other.
We can use a different bootstrap approximation that suffers less from differences in
spread. Instead of constructing an interval of the form [M − c1, M + c2], we could
let our interval be [M − d1Y, M + d2Y ], where Y is a statistic that measures the
spread of the data. One possibility for Y is the sample IQR. Another possible spread
measure is the sample median absolute deviation (the sample median of the values
|X1 − M|, . . . , |Xn − M|). Now, we see that M − d1Y ≤ θ ≤ M + d2Y is equivalent to

−d2 ≤ M − θ

Y
≤ d1.

So, we want −d2 and d1 to be quantiles of the distribution of (M − θ)/Y . This type of
interval resembles the t confidence interval developed in Sec. 8.5. Indeed, the interval
we are constructing is called a percentile-t bootstrap confidence interval. To construct
the percentile-t bootstrap confidence interval, we would use each bootstrap sample
X∗ as follows: Compute the sample median M∗ and the scale statistic Y ∗ from the
bootstrap sample X∗. Then calculate T = (M∗ − M)/Y ∗. Repeat this procedure many
times producing T (1), . . . , T (v) from a large number v of bootstrap samples. Then let
−d2 and d1 be sample quantiles (such as α0/2 and 1 − α0/2) of the T (i) values.

Example
12.6.6

Percentile-t Confidence Interval for a Median. Consider the n = 10 lactic acid con-
centrations in cheese from Example 8.5.4. We shall do v =10,000 bootstrap simu-
lations to find a coefficient 1 − α0 = 0.90 confidence interval for the median lactic
acid concentration θ . The median of the sample values is M = 1.41, and the me-
dian absolute deviation is Y = 0.245. The 0.05 and 0.95 sample quantiles of the
(M∗(i) − M)/Y ∗(i) values are −2.133 and 1.581. This makes the percentile-t boot-
strap confidence interval (1.41 − 1.581 × 0.245, 1.41 + 2.133 × 0.245) = (1.023, 1.933).
For comparison, the 0.05 and 0.95 sample quantiles of the values of M∗(i) − M are
−0.32 and 0.16, respectively. This makes the percentile bootstrap interval equal to
(1.41 − 0.16, 1.41 + 0.32) = (1.25, 1.73). �

The percentile-t interval in Example 11.5.6 is considerably wider than the per-
centile interval. This reflects the fact that the Y ∗ values from the bootstrap samples
are quite spread out. This in turn suggests that the spread that we should expect to
see in a sample has substantial variability. Hence, it is probably not a good idea to
assume that the spread of the distribution of M∗ − M is the same as the spread of
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the distribution of M − θ . The percentile-t bootstrap interval is generally preferred
to the percentile bootstrap interval when both are available. This is due to the fact
that the distribution of (M∗ − M)/Y ∗ depends less on F̂ than does the distribution
of M∗ − M . In particular, (M∗ − M)/Y ∗ does not depend on any scale parameter of
the distribution F̂ . For this reason, we expect more similarity between the distribu-
tions of (M∗ − M)/Y ∗ and (M − θ)/Y than we expect between the distributions of
M∗ − M and M − θ .

Example
12.6.7

Features of the Distribution of a Sample Correlation. Let (X, Y ) have a bivariate joint
distribution F with finite variances for both coordinates, so that it makes sense to talk
about correlation. Suppose that we observe a random sample (X1, Y1), . . . , (Xn, Yn)

from the distribution F . Suppose further that we are interested in the distribution of
the sample correlation:

R =
∑n

i=1(Xi − X)(Yi − Y )([∑n
i=1(Xi − X)2

] [∑n
i=1(Yi − Y )2

])1/2
. (12.6.2)

We might be interested in the variance of R, or the bias of R, or some other feature of
R as an estimator of the correlation ρ between X and Y . Whatever our goal is, we can
make use of the nonparametric bootstrap. For example, consider the bias of R as an
estimator of ρ. This bias equals the mean of η(X, F ) = R − ρ. We begin by replacing
the joint distribution F by the sample distribution Fn of the observed pairs. This Fn

is a discrete joint distribution on pairs of real numbers, and it assigns probability 1/n

to each of the n observed sample pairs. If (X∗, Y ∗) has the distribution Fn, it is easy to
check (see Exercise 8) that the correlation between X∗ and Y ∗ is R. We then choose
a large number v and simulate v samples of size n from Fn. For each i, we compute
the sample correlation R(i) by plugging the ith bootstrap sample into Eq. (12.6.2).
For each i, we compute T (i) = R(i) − R, and we estimate the mean of R − ρ by the
average 1

v

∑v
i=1 T (i).

As a numerical example, consider the flea beetle data from Example 5.10.2. The
sample correlation is R = 0.6401. We sample v = 10,000 bootstrap samples of size
n = 31. The average sample correlation in the 10,000 bootstrap samples is 0.6354
with a simulation standard error of 0.001. We then estimate the bias of the sample
correlation to be 0.6354 − 0.6401 = −0.0047. �

The Parametric Bootstrap

Example
12.6.8

Correcting the Bias in the Coefficient of Variation. The coefficient of variation of a
distribution is the ratio of the standard deviation to the mean. (Typically, people only
compute the coefficient of variation for distributions of positive random variables.)
If we believe that our data X1, . . . , Xn come from a lognormal distribution with
parameters μ and σ 2, then the coefficient of variation is θ = (eσ 2 − 1)1/2. The M.L.E.
of the coefficient of variation is θ̂ = (eσ̂ 2 − 1)1/2, where σ̂ is the M.L.E. of σ . We
expect the M.L.E. of the coefficient of variation to be a biased estimator because
it so nonlinear. Computing the bias is a difficult task. However, we can use the
parametric bootstrap to estimate the bias. The M.L.E. σ̂ of σ is the square root of the
sample variance of log(X1), . . . , log(Xn). The M.L.E. μ̂ of μ is the sample average of
log(X1), . . . , log(Xn). We can simulate a large number of random samples of size n

from the lognormal distribution with parameters μ̂ and σ̂ 2. For each i, we compute
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σ̂ ∗(i), the sample standard deviation of the ith bootstrap sample. We estimate the bias
of θ̂ by the sample average of the values T (i) = (e[σ̂ ∗(i)]2 − 1)1/2 − θ̂ .

As an example, consider the failure times of ball bearings introduced in Ex-
ample 5.6.9. If we model these data as lognormal, the M.L.E.’s of the parameters
are μ̂ = 4.150 and σ̂ = 0.5217. The M.L.E. of θ is θ̂ = 0.5593. We could draw 10,000
random samples of size 23 from a lognormal distribution and compute the sample
variances of the logarithms. However, there is an easier way to do this simulation.
The distribution of [σ̂ ∗(i)]2 is that of a χ2 random variable with 22 degrees of free-
dom times 0.52172/23. Hence, we shall just sample 10,000 χ2 random variables with
22 degrees of freedom, multiply each one by 0.52172/23, and call the ith one [σ̂ ∗(i)]2.
After doing this, the sample average of the 10,000 T (i) values is −0.01825, which is
our parametric bootstrap estimate of the bias of θ̂ . (The simulation standard error is
9.47 × 10−4.) Because our estimate of the bias is negative, this means that we expect
θ̂ to be smaller than θ . To “correct” the bias, we could add 0.01825 to our original
estimate θ̂ and produce the new estimate 0.5593 + 0.01825 = 0.5776. �

Example
12.6.9

Estimating the Standard Deviation of a Statistic. Suppose that X1, . . . , Xn is a random
sample from the normal distribution with mean μ and variance σ 2. We are interested
in the probability that a random variable having this same distribution is at most
c. That is, we are interested in estimating θ = �([c − μ]/σ). The M.L.E. of θ is
θ̂ = �([c − X]/σ̂ ). It is not easy to calculate the standard deviation of θ̂ in closed
form. However, we can draw many, say, v, bootstrap samples of size n from the
normal distribution with mean x and variance σ̂ 2. For the ith bootstrap sample,
we compute a sample average x∗(i), a sample standard deviation σ̂ ∗(i), and, finally,
θ̂∗(i) = �([c − x∗(i)]/σ̂ ∗(i)). We estimate the mean of θ̂ by

θ
∗ = 1

v

v∑
i=1

θ̂∗(i).

(This can also be used, as in Example 12.6.8, to estimate the bias of θ̂ .) The standard
deviation of θ̂ can then be estimated by the sample standard deviation of the θ̂∗(i)

values,

Z =
(

1
v

v∑
i=1

(θ̂∗(i) − θ
∗
)2

)1/2

.

For example, we can use the nursing home data from Sec. 8.6. There are n = 18
observations, and we might be interested in �([200 − μ]/σ). The M.L.E.’s of μ and σ

are μ̂ = 182.17 and σ̂ = 72.22. The observed value of θ̂ is �([200 − 182.17]/72.22) =
0.5975. We simulate 10,000 samples of size 18 from the normal distribution with
mean 182.17 and variance (72.22)2. For the ith sample, we find the value θ̂∗(i) for
i = 1, . . . , 10,000, and the average of these is θ

∗ = 0.6020 with sample standard
deviation Z = 0.09768.

We can compute the simulation standard error of the approximation to the
bootstrap estimate in two steps. First, apply the method of Example 12.2.10. This gives
the simulation standard error of Z2, the sample variance of the θ̂∗(i)’s. In our example,
this yields the value 1.365 × 10−4. Second, use the delta method, as in Example 12.2.8,
to find the simulation standard error of the square root of Z2. In our example, this
second step yields the value 6.986 × 10−4. �
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Example
12.6.10

Comparing Means When Variances Are Unequal. Suppose that we have two samples
X1, . . . , Xm and Y1, . . . , Yn from two possibly different normal distributions. That
is, X1, . . . , Xm are i.i.d. from the normal distribution with mean μ1 and variance σ 2

1 ,
while Y1, . . . , Yn are i.i.d. from the normal distribution with mean μ2 and variance
σ 2

2. In Sec. 9.6, we saw how to test the null hypothesis H0 : μ1 = μ2 versus the
alternative hypothesis H1 : μ1 	= μ2 if we are willing to assume that we know the ratio
k = σ 2

2/σ
2
1 . If we are not willing to assume that we know the ratio k, we have seen

only approximate tests.
Suppose that we choose to use the usual two-sample t test even though we do not

claim to know k. That is, suppose that we choose to reject H0 when |U | > c, where U

is the statistic defined in Eq. (9.6.3) and c is the 1 − α0/2 quantile of the t distribution
with m + n − 2 degrees of freedom. This test will not necessarily have level α0 if k 	= 1.
We can use the parametric bootstrap to try to compute the level of this test. In fact,
we can use the parametric bootstrap to help us choose a different critical value c∗ for
the test so that we at least estimate the type I error probability to be α0.

As an example, we shall use the data from Example 9.6.5 again. The M.L.E.’s of
the variances of the two distributions were σ̂ 2

1 = 0.04 (for the X data) and σ̂ 2
2 = 0.022

(for the Y data). The probability of type I error is the probability of rejecting the null
hypothesis given that the null hypothesis is true, that is, given that μ1 = μ2. Hence,
we must simulate bootstrap samples in which the X data and Y data have the same
mean. Since the sample averages of the X and Y data are subtracted from each other
in the calculation of U , it will not matter what common mean we choose for the two
samples.

So, the parametric bootstrap can proceed as follows: First, choose a large number

v, and for i = 1, . . . , v, simulate (X
∗(i)

, Y
∗(i)

, S
2∗(i)
X , S

2∗(i)
Y ) where all four random

variables are independent with the following distributions:

. X
∗(i)

has the normal distribution with mean 0 and variance σ̂ 2
1/m.

. Y
∗(i)

has the normal distribution with mean 0 and variance σ̂ 2
2/n.

. S
2∗(i)
X is σ̂ 2

1 times a random variable having the χ2 distribution with m − 1
degrees of freedom.

. S
2∗(i)
Y is σ̂ 2

2 times a random variable having the χ2 distribution with n − 1degrees
of freedom.

Then compute

U(i) = (m + n − 2)1/2(X
∗(i) − Y

∗(i)
)(

1
m

+ 1
n

)1/2 (
S

2∗(i)
X + S

2∗(i)
Y

)1/2

for each i. Our simulation approximation to the bootstrap estimate of the probability
of type I error for the usual two-sample t test would be the proportion of simulations
in which |U(i)| > c.

With v = 10,000, we shall perform the analysis described above for several
different c values. We set c equal to the 1 − α0/2 quantile of the t distribution
with 16 degrees of freedom with α0 = j/1000 for each j = 1, . . . , 999. Figure 12.12
shows a plot of the simulation approximation to the bootstrap estimate of the type I
error probability against the nominal level α0 of the test. There is remarkably close
agreement between the two, although the bootstrap estimate is generally slightly
larger. For example, when α0 = 0.05, the bootstrap estimate is 0.065.
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Figure 12.12 Plots of boot-
strap estimated type I error
probability of t test versus
nominal type I error prob-
ability in Example 12.6.10.
The dashed line is the diago-
nal along which the two error
probabilities would be equal.
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Next, we use the bootstrap analysis to correct the level of the two-sample t test
in this example. To do this, let Z be the sample 1 − α0 quantile of our simulated |U(i)|
values. If we want a level α0 test, we can replace the critical value c in the two-sample
t test with Z and reject the null hypothesis if |U | > Z. For example, with α0 = 0.05,
the 0.975 quantile of the t distribution is 2.12, while in our simulation Z = 2.277. The
simulation standard error of Z (based on splitting the 10,000 bootstrap samples into
10 subsamples of 1000 each) is 0.0089. �

Example
12.6.11

The Bias of the Sample Correlation. In Example 12.6.7, we made no assumptions about
the distribution F of (X, Y ) except that X and Y have finite variances. Now suppose
that we also assume that (X, Y ) has a bivariate normal distribution. We can compute
the M.L.E.’s of all of the parameters as in Exercise 24 in Sec. 7.6. We could then
simulate v samples of size n from the bivariate normal distribution with parameters
equal to the M.L.E.’s, as in Example 12.3.6. For sample i for i = 1, . . . , v, we could
compute the sample correlation R(i) by substituting the ith sample into Eq. (12.6.2).
Our estimate of the bias would be R − ρ̂. Note that ρ̂, the M.L.E. of ρ, is the same
as R.

As a numerical example, consider the flea beetle data from Example 5.10.2. The
sample correlation is R = 0.6401. We construct v = 10,000 samples of size n = 31from
a bivariate normal distribution with correlation 0.6401. The means and variances do
not affect the distribution of R. (See Exercise 12.) The average sample correlation
in the 10,000 bootstrap samples is 0.6352 with a simulation standard error of 0.001.
We then estimate the bias of the sample correlation to be 0.6352 − 0.6401 = −0.0049.
This is pretty much the same as we obtained using the nonparametric bootstrap in
Example 12.6.7. �

Summary

The bootstrap is a method for estimating probabilistic features of a function η of our
data X and their unknown distribution F . That is, suppose that we are interested in
the mean, a quantile, or some other feature of η(X, F ). The first step in the bootstrap
is to replace F by a known distribution F̂ that is like F in some way. Next, replace
X by data X∗ sampled from F̂ . Finally, compute the mean, quantile, or other feature
of η(X∗, F̂ ) as the bootstrap estimate. This last step generally requires simulation
except in the simplest examples. There are two varieties of bootstrap that differ by
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how F̂ is chosen. In the nonparametric bootstrap, the sample c.d.f. is used as F̂ . In
the parametric bootstrap, F is assumed to be a member of some parametric family
and F̂ is chosen by replacing the unknown parameter by its M.L.E. or some other
estimate.

Exercises

1. Suppose that X1, . . . , Xn form a random sample from
an exponential distribution with parameter θ . Explain
how to use the parametric bootstrap to estimate the vari-
ance of the sample average X. (No simulation is required.)

2. Let x1, . . . , xn be the observed values of a random
sample X = (X1, . . . , Xn). Let Fn be the sample c.d.f. Let
J1, . . . , Jn be a random sample with replacement from
the numbers {1, . . . , n}. Define X∗

i
= xJi

for i = 1, . . . , n.
Show that X∗ = (X∗

1, . . . , X∗
n
) is an i.i.d. sample from the

distribution Fn.

3. Let n be odd, and let X = (X1, . . . , Xn) be a sample
of size n from some distribution. Suppose that we wish to
use the nonparametric bootstrap to estimate some feature
of the sample median. Compute the probability that the
sample median of a nonparametric bootstrap sample will
be the smallest observation from the original data X .

4. Use the data in the first column of Table 11.5 on
page 699. These data give the boiling points of water at 17
different locations from Forbes’ experiment. Let F be the
distribution from which these boiling points were drawn.
We might not be willing to make many assumptions about
F . Suppose that we are interested in the bias of the sample
median as an estimator of the median of the distribution
F . Use the nonparametric bootstrap to estimate this bias.
First, do a pilot run to compute the simulation standard
error of the simulation approximation, and then see how
many bootstrap samples you need in order for your bias
estimate (for distribution F̂ ) to be within 0.02 of the true
bias (for distribution F̂ ) with probability at least 0.9.

5. Use the data in Table 10.6 on page 640. We are inter-
ested in the bias of the sample median as an estimator of
the median of the distribution.

a. Use the nonparametric bootstrap to estimate this
bias.

b. How many bootstrap samples does it appear that you
need in order to estimate the bias to within .05 with
probability 0.99?

6. Use the data in Exercise 16 of Sec. 10.7.

a. Use the nonparametric bootstrap to estimate the
variance of the sample median.

b. How many bootstrap samples does it appear that you
need in order to estimate the variance to within .005
with probability 0.95?

7. Use the blood pressure data in Table 9.2 that was de-
scribed in Exercise 10 of Sec. 9.6. Suppose now that we are
not confident that the variances are the same for the two
treatment groups. Perform a parametric bootstrap analy-
sis of the sort done in Example 12.6.10. Use v =10,000
bootstrap simulations.

a. Estimate the probability of type I error for a two-
sample t test whose nominal level is α0 = 0.1.

b. Correct the level of the two-sample t test by comput-
ing the appropriate quantile of the bootstrap distri-
bution of |U(i)|.

c. Compute the simulation standard error for the quan-
tile in part (b).

8. In Example 12.6.7, let (X∗, Y ∗) be a random draw from
the sample distribution Fn. Prove that the correlation be-
tween X∗ and Y ∗ is R in Eq. (12.6.2).

9. Use the data on fish prices in Table 11.6 on page 707.
Suppose that we assume only that the distribution of fish
prices in 1970 and 1980 is a continuous joint distribution
with finite variances. We are interested in the properties
of the sample correlation coefficient. Construct 1000 non-
parametric bootstrap samples for solving this exercise.

a. Approximate the bootstrap estimate of the variance
of the sample correlation.

b. Approximate the bootstrap estimate of the bias of
the sample correlation.

c. Compute simulation standard errors of each of the
above bootstrap estimates.

10. Use the beef hot dog data in Exercise 7 of Sec. 8.5.
Form 10,000 nonparametric bootstrap samples to solve
this exercise.

a. Approximate a 90 percent percentile bootstrap con-
fidence interval for the median calorie count in beef
hot dogs.

b. Approximate a 90 percent percentile-t bootstrap
confidence interval for the median calorie count in
beef hot dogs.

c. Compare these intervals to the 90 percent interval
formed using the assumption that the data came from
a normal distribution.
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11. The skewness of a random variable was defined in
Definition 4.4.1. Suppose that X1, . . . , Xn form a random
sample from a distribution F . The sample skewness is
defined as

M3 =
1
n

∑n
i=1(Xi − X)3[

1
n

∑n
i=1(Xi − X)2

]3/2
.

One might use M3 as an estimator of the skewness θ of
the distribution F . The bootstrap can be used to estimate
the bias and standard deviation of the sample skewness as
an estimator of θ .

a. Prove that M3 is the skewness of the sample distribu-
tion Fn.

b. Use the 1970 fish price data in Table 11.6 on page 707.
Compute the sample skewness, and then simulate
1000 bootstrap samples. Use the bootstrap samples
to estimate the bias and standard deviation of the
sample skewness.

12. Suppose that (X1, Y1), . . . , (Xn, Yn) form a random
sample from a bivariate normal distribution with means
μx and μy, variances σ 2

x
and σ 2

y
, and correlation ρ. Let R

be the sample correlation. Prove that the distribution of
R depends only on ρ, not on μx, μy, σ 2

x
, or σ 2

y
.

12.7 Supplementary Exercises
1. Test the standard normal pseudo-random number gen-
erator on your computer by generating a sample of size
10,000 and drawing a normal quantile plot. How straight
does the plot appear to be?

2. Test the gamma pseudo-random number generator on
your computer. Simulate 10,000 gamma pseudo-random
variables with parameters a and 1 for a = 0.5, 1, 1.5, 2, 5,
10. Then draw gamma quantile plots.

3. Test the t pseudo-random number generator on your
computer. Simulate 10,000 t pseudo-random variables
with m degrees of freedom for m = 1, 2, 5, 10, 20. Then
draw t quantile plots.

4. Let X and Y be independent random variables with X

having the t distribution with five degrees of freedom and
Y having the t distribution with three degrees of freedom.
We are interested in E(|X − Y |).

a. Simulate 1000 pairs of (Xi, Yi) each with the above
joint distribution and estimate E(|X − Y |).

b. Use your 1000 simulated pairs to estimate the vari-
ance of |X − Y | also.

c. Based on your estimated variance, how many sim-
ulations would you need to be 99 percent confident
that your estimator of E(|X − Y |) is within 0.01 of the
actual mean?

5. Consider the power calculation done in Example 9.5.5.

a. Simulate v0 = 1000 i.i.d. noncentral t pseudo-random
variables with 14 degrees of freedom and noncentral-
ity parameter 1.936.

b. Estimate the probability that a noncentral t random
variable with 14 degrees of freedom and noncentral-
ity parameter 1.936 is at least 1.761. Also, compute
the simulation standard error.

c. Suppose that we want our estimator of the noncen-
tral t probability in part (b) to be closer than 0.01 to

the true value with probability 0.99. How many non-
central t random variables do we need to simulate?

6. The χ2 goodness-of-fit test (see Chapter 10) is based
on an asymptotic approximation to the distribution of the
test statistic. For small to medium samples, the asymptotic
approximation might not be very good. Simulation can
be used to assess how good the approximation is. Simu-
lation can also be used to estimate the power function of
a goodness-of-fit test. For this exercise, assume that we are
performing the test that was done in Example 10.1.6. The
idea illustrated in this exercise applies in all such problems.

a. Simulate v =10,000 samples of size n = 23 from the
normal distribution with mean 3.912 and variance
0.25. For each sample, compute the χ2 goodness-
of-fit statistic Q using the same four intervals that
were used in Example 10.1.6. Use the simulations
to estimate the probability that Q is greater than or
equal to the 0.9, 0.95, and 0.99 quantiles of the χ2

distribution with three degrees of freedom.

b. Suppose that we are interested in the power function
of a χ2 goodness-of-fit test when the actual distribu-
tion of the data is the normal distribution with mean
4.2 and variance 0.8. Use simulation to estimate the
power function of the level 0.1, 0.05, and 0.01 tests at
the alternative specified.

7. In Sec. 10.2, we discussed χ2 goodness-of-fit tests for
composite hypotheses. These tests required computing
M.L.E.’s based on the numbers of observations that fell
into the different intervals used for the test. Suppose
instead that we use the M.L.E.’s based on the original
observations. In this case, we claimed that the asymp-
totic distribution of the χ2 test statistic was somewhere
between two different χ2 distributions. We can use sim-
ulation to better approximate the distribution of the test
statistic. In this exercise, assume that we are trying to test
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the same hypotheses as in Example 10.2.5, although the
methods will apply in all such cases.

a. Simulate v = 1000 samples of size n = 23 from each
of 10 different normal distributions. Let the normal
distributions have means of 3.8, 3.9, 4.0, 4.1, and 4.2.
Let the distributions have variances of 0.25 and 0.8.
Use all 10 combinations of mean and variance. For
each simulated sample, compute the χ2 statistic Q

using the usual M.L.E.’s of μ and σ 2. For each of the
10 normal distributions, estimate the 0.9, 0.95, and
0.99 quantiles of the distribution of Q.

b. Do the quantiles change much as the distribution of
the data changes?

c. Consider the test that rejects the null hypothesis if
Q ≥ 5.2. Use simulation to estimate the power func-
tion of this test at the following alternative: For each
i, (Xi − 3.912)/0.5 has the t distribution with five de-
grees of freedom.

8. In Example 12.5.6, we used a hierarchical model. In
that model, the parameters μ1, . . . , μp were independent
random variables with μi having the normal distribution
with mean ψ and precision λ0τi conditional on ψ and
τ1, . . . , τp. To make the model more general, we could
also replace λ0 by an unknown parameter λ. That is, let
the μi’s be independent with μi having the normal dis-
tribution with mean ψ and precision λτi conditional on
ψ , λ, and τ1, . . . , τp. Let λ have the gamma distribution
with parameters γ0 and δ0, and let λ be independent of ψ

and τ1, . . . , τp. The remaining parameters have the prior
distributions stated in Example 12.5.6.

a. Write the product of the likelihood and the prior as
a function of the parameters μ1, . . . , μp, τ1, . . . , τp,
ψ , and λ.

b. Find the conditional distributions of each parameter
given all of the others. Hint: For all the parameters
besides λ, the distributions should be almost identi-
cal to those given in Example 12.5.6. Wherever λ0
appears, of course, something will have to change.

c. Use a prior distribution in which α0 = 1, β0 = 0.1,
u0 = 0.001, γ0 = δ0 = 1, and ψ0 = 170. Fit the model
to the hot dog calorie data from Example 11.6.2.
Compute the posterior means of the four μi’s and
1/τi’s.

9. In Example 12.5.6, we modeled the parameters τ1, . . . ,

τp as i.i.d. having the gamma distribution with parameters
α0 and β0. We could have added a level to the hierarchical
model that would allow the τi’s to come from a distribution
with an unknown parameter. For example, suppose that
we model the τi’s as conditionally independent having the
gamma distribution with parameters α0 and β given β. Let
β be independent of ψ and μ1, . . . , μp with β having the
gamma distribution with parameters ε0 and φ0. The rest of
the prior distributions are as specified in Example 12.5.6.

a. Write the product of the likelihood and the prior as
a function of the parameters μ1, . . . , μp, τ1, . . . , τp,
ψ , and β.

b. Find the conditional distributions of each parameter
given all of the others. Hint: For all the parameters
besides β, the distributions should be almost iden-
tical to those given in Example 12.5.6. Wherever β0
appears, of course, something will have to change.

c. Use a prior distribution in which α0 = λ0 = 1, u0 =
0.001, ε0 = 0.3, φ0 = 3.0, and ψ0 = 170. Fit the model
to the hot dog calorie data from Example 11.6.2.
Compute the posterior means of the four μi’s and
1/τi’s.

10. Let X1, . . . , Xk be independent random variables
such that Xi has the binomial distribution with param-
eters ni and pi. We wish to test the null hypothesis H0 :
p1 = . . . = pk versus the alternative hypothesis H1 that H0
is false. Assume that the numbers n1, . . . , nk are known
constants.

a. Show that the likelihood ratio test procedure is to
reject H0 if the following statistic is greater than or
equal to some constant c:∏k

i=1

[
X

Xi

i
(ni − Xi)

ni−Xi

]
(∑k

j=1 Xj

)∑k

j=1 Xj
[∑k

j=1(nj − Xj)
]∑k

j=1(nj−Xj)
.

b. Describe how you could use simulation techniques
to estimate the constant c in order to make the like-
lihood ratio test have a desired level of significance
α0. (Assume that you can simulate as many binomial
pseudo-random variables as you wish.)

c. Consider the depression study in Example 2.1.4. Let
pi stand for the probability of success (no relapse)
for the subjects in group i of Table 2.1 on page 57,
where i = 1 means imipramine, i = 2 means lithium,
i = 3 means combination, and i = 4 means placebo.
Test the null hypothesis that p1 = p2 = p3 = p4 by
computing the p-value for the likelihood ratio test.

11. Consider the problem of testing the equality of two
normal means when the variances are unequal. This prob-
lem was introduced on page 593 in Sec. 9.6. The data are
two independent samples X1, . . . , Xm and Y1, . . . , Yn. The
Xi’s are i.i.d. having the normal distribution with mean μ1
and variance σ 2

1 , while the Yj ’s are i.i.d. having the normal
distribution with mean μ2 and variance σ 2

2.

a. Assume that μ1 = μ2. Prove that the random variable
V in Eq. (9.6.14) has a distribution that depends on
the parameters only through the ratio σ2/σ1.

b. Let ν be the approximate degrees of freedom for
Welch’s procedure from Eq. (9.6.17). Prove that the
distribution of ν depends on the parameters only
through the ratio σ2/σ1.
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c. Use simulation to assess the approximation in
Welch’s procedure. In particular, set the ratio σ2/σ1
equal to each of the numbers 1, 1.5, 2, 3, 5, and 10
in succession. For each value of the ratio, simulate
10,000 samples of sizes n = 11 and m = 10 (or the
appropriate summary statistics). For each simulated
sample, compute the test statistic V and the 0.9, 0.95,
and 0.99 quantiles of the approximate t distribution
that corresponds to the data in that simulation. Keep
track of the proportion of simulations in which V

is greater than each of the three quantiles. How do
these proportions compare to the nominal values 0.1,
0.05, and 0.01?

12. Consider again the situation described in Exercise 11.
This time, use simulation to assess the performance of the
usual two-sample t test. That is, use the same simulations
as in part (c) of Exercise 11 (or ones just like them if you
do not have the same simulations). This time, for each
simulated sample compute the statistic U in Eq. (9.6.3)
and keep track of the proportion of simulations in which U

is greater than each of the nominal t quantiles, T −1
19 (1 − α0)

for α0 = 0.1, 0.05, and 0.01. How do these proportions
compare to the nominal α0 values?

13. Suppose that our data comprise a set of pairs (Yi, xi),
for i = 1, . . . , n. Here, each Yi is a random variable and
each xi is a known constant. Suppose that we use a simple
linear regression model in which E(Yi) = β0 + β1xi. Let
β̂1 stand for the least squares estimator of β1. Suppose,
however, that the Yi’s are actually random variables with
translated and scaled t distributions. In particular, suppose
that (Yi − β0 − β1xi)/σ are i.i.d. having the t distribution
with k ≥ 5 degrees of freedom for i = 1, . . . , n. We can
use simulation to estimate the standard deviation of the
sampling distribution of β̂1.

a. Prove that the variance of the sampling distribution
of β̂1 does not depend on the values of the parameters
β0 and β1.

b. Prove that the variance of the sampling distribution
of β̂1 is equal to vσ 2, where v does not depend on any
of the parameters β0, β1, and σ .

c. Describe a simulation scheme to estimate the value
v from part (b).

14. Use the simulation scheme developed in Exercise 13
and the data in Table 11.5 on page 699. Suppose that we
think that the logarithms of pressure are linearly related
to boiling point, but that the logarithms of pressure have
translated and scaled t distributions with k = 5 degrees of
freedom. Estimate the value v from part (b) of Exercise 13
using simulation.

15. In Sec. 7.4, we introduced Bayes estimators. For sim-
ple loss functions, such as squared error and absolute er-
ror, we were able to derive general forms for Bayes es-
timators. In many real problems, loss functions are not
so simple. Simulation can often be used to approximate
Bayes estimators. Suppose that we are able to simulate
a sample θ(1), . . . , θ (v) (either directly or by Gibbs sam-
pling) from the posterior distribution of some parameter
θ given some observed data X = x. Here, θ can be real
valued or multidimensional. Suppose that we have a loss
function L(θ, a), and we want to choose a so as to mini-
mize the posterior mean E[L(θ, a)|x].

a. Describe a general method for approximating the
Bayes estimate in the situation described above.

b. Suppose that the simulation variance of the approx-
imation to the Bayes estimate is proportional to 1
over the size of the simulation. How could one com-
pute a simulation standard error for the approxima-
tion to the Bayes estimate?

16. In Example 12.5.2, suppose that the State of New
Mexico wishes to estimate the mean number μ of medical
in-patient days in nonrural nursing homes. The parame-
ter is θ = (μ, τ). The loss function will be asymmetric to
reflect different costs of underestimating and overestimat-
ing. Suppose that the loss function is

L(θ, a) =
{

30(a − μ) if a ≥ μ,
(μ − a)2 if μ > a.

Use the method developed in your solution to Exercise 15
to approximate the Bayes estimate and compute a simu-
lation standard error.
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Table of Binomial Probabilities

Pr(X = k) = (
n
k

)
pk(1 − p)n−k

n k p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

2 0 .8100 .6400 .4900 .3600 .2500
1 .1800 .3200 .4200 .4800 .5000
2 .0100 .0400 .0900 .1600 .2500

3 0 .7290 .5120 .3430 .2160 .1250
1 .2430 .3840 .4410 .4320 .3750
2 .0270 .0960 .1890 .2880 .3750
3 .0010 .0080 .0270 .0640 .1250

4 0 .6561 .4096 .2401 .1296 .0625
1 .2916 .4096 .4116 .3456 .2500
2 .0486 .1536 .2646 .3456 .3750
3 .0036 .0256 .0756 .1536 .2500
4 .0001 .0016 .0081 .0256 .0625

5 0 .5905 .3277 .1681 .0778 .0312
1 .3280 .4096 .3602 .2592 .1562
2 .0729 .2048 .3087 .3456 .3125
3 .0081 .0512 .1323 .2304 .3125
4 .0005 .0064 .0284 .0768 .1562
5 .0000 .0003 .0024 .0102 .0312

6 0 .5314 .2621 .1176 .0467 .0156
1 .3543 .3932 .3025 .1866 .0938
2 .0984 .2458 .3241 .3110 .2344
3 .0146 .0819 .1852 .2765 .3125
4 .0012 .0154 .0595 .1382 .2344
5 .0001 .0015 .0102 .0369 .0938
6 .0000 .0001 .0007 .0041 .0156

7 0 .4783 .2097 .0824 .0280 .0078
1 .3720 .3670 .2471 .1306 .0547
2 .1240 .2753 .3176 .2613 .1641
3 .0230 .1147 .2269 .2903 .2734
4 .0026 .0287 .0972 .1935 .2734
5 .0002 .0043 .0250 .0774 .1641
6 .0000 .0004 .0036 .0172 .0547
7 .0000 .0000 .0002 .0016 .0078

(continued)
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Table of Binomial Probabilities (continued)

n k p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

8 0 .4305 .1678 .0576 .0168 .0039
1 .3826 .3355 .1977 .0896 .0312
2 .1488 .2936 .2965 .2090 .1094
3 .0331 .1468 .2541 .2787 .2188
4 .0046 .0459 .1361 .2322 .2734
5 .0004 .0092 .0467 .1239 .2188
6 .0000 .0011 .0100 .0413 .1094
7 .0000 .0001 .0012 .0079 .0312
8 .0000 .0000 .0001 .0007 .0039

9 0 .3874 .1342 .0404 .0101 .0020
1 .3874 .3020 .1556 .0605 .0176
2 .1722 .3020 .2668 .1612 .0703
3 .0446 .1762 .2668 .2508 .1641
4 .0074 .0661 .1715 .2508 .2461
5 .0008 .0165 .0735 .1672 .2461
6 .0001 .0028 .0210 .0743 .1641
7 .0000 .0003 .0039 .0212 .0703
8 .0000 .0000 .0004 .0035 .0176
9 .0000 .0000 .0000 .0003 .0020

10 0 .3487 .1074 .0282 .0060 .0010
1 .3874 .2684 .1211 .0403 .0098
2 .1937 .3020 .2335 .1209 .0439
3 .0574 .2013 .2668 .2150 .1172
4 .0112 .0881 .2001 .2508 .2051
5 .0015 .0264 .1029 .2007 .2461
6 .0001 .0055 .0368 .1115 .2051
7 .0000 .0008 .0090 .0425 .1172
8 .0000 .0001 .0014 .0106 .0439
9 .0000 .0000 .0001 .0016 .0098

10 .0000 .0000 .0000 .0001 .0010
(continued)
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Table of Binomial Probabilities (continued)

n k p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

15 0 .2059 .0352 .0047 .0005 .0000
1 .3432 .1319 .0305 .0047 .0005
2 .2669 .2309 .0916 .0219 .0032
3 .1285 .2501 .1700 .0634 .0139
4 .0428 .1876 .2186 .1268 .0417
5 .0105 .1032 .2061 .1859 .0916
6 .0019 .0430 .1472 .2066 .1527
7 .0003 .0138 .0811 .1771 .1964
8 .0000 .0035 .0348 .1181 .1964
9 .0000 .0007 .0116 .0612 .1527

10 .0000 .0001 .0030 .0245 .0916
11 .0000 .0000 .0006 .0074 .0417
12 .0000 .0000 .0001 .0016 .0139
13 .0000 .0000 .0000 .0003 .0032
14 .0000 .0000 .0000 .0000 .0005
15 .0000 .0000 .0000 .0000 .0000

20 0 .1216 .0115 .0008 .0000 .0000
1 .2701 .0576 .0068 .0005 .0000
2 .2852 .1369 .0278 .0031 .0002
3 .1901 .2054 .0716 .0123 .0011
4 .0898 .2182 .1304 .0350 .0046
5 .0319 .1746 .1789 .0746 .0148
6 .0089 .1091 .1916 .1244 .0370
7 .0020 .0545 .1643 .1659 .0739
8 .0003 .0222 .1144 .1797 .1201
9 .0001 .0074 .0654 .1597 .1602

10 .0000 .0020 .0308 .1171 .1762
11 .0000 .0005 .0120 .0710 .1602
12 .0000 .0001 .0039 .0355 .1201
13 .0000 .0000 .0010 .0146 .0739
14 .0000 .0000 .0002 .0049 .0370
15 .0000 .0000 .0000 .0013 .0148
16 .0000 .0000 .0000 .0003 .0046
17 .0000 .0000 .0000 .0000 .0011
18 .0000 .0000 .0000 .0000 .0002
19 .0000 .0000 .0000 .0000 .0000
20 .0000 .0000 .0000 .0000 .0000
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Table of Poisson Probabilities

Pr(X = k) = e−λλk

k!

k λ = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679
2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839
3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613
4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031
6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

k λ = 1.5 2 3 4 5 6 7 8 9 10

0 .2231 .1353 .0498 .0183 .0067 .0025 .0009 .0003 .0001 .0000
1 .3347 .2707 .1494 .0733 .0337 .0149 .0064 .0027 .0011 .0005
2 .2510 .2707 .2240 .1465 .0842 .0446 .0223 .0107 .0050 .0023
3 .1255 .1804 .2240 .1954 .1404 .0892 .0521 .0286 .0150 .0076
4 .0471 .0902 .1680 .1954 .1755 .1339 .0912 .0573 .0337 .0189

5 .0141 .0361 .1008 .1563 .1755 .1606 .1277 .0916 .0607 .0378
6 .0035 .0120 .0504 .1042 .1462 .1606 .1490 .1221 .0911 .0631
7 .0008 .0034 .0216 .0595 .1044 .1377 .1490 .1396 .1171 .0901
8 .0001 .0009 .0081 .0298 .0653 .1033 .1304 .1396 .1318 .1126
9 .0000 .0002 .0027 .0132 .0363 .0688 .1014 .1241 .1318 .1251

10 .0000 .0000 .0008 .0053 .0181 .0413 .0710 .0993 .1186 .1251
11 .0000 .0000 .0002 .0019 .0082 .0225 .0452 .0722 .0970 .1137
12 .0000 .0000 .0001 .0006 .0034 .0113 .0264 .0481 .0728 .0948
13 .0000 .0000 .0000 .0002 .0013 .0052 .0142 .0296 .0504 .0729
14 .0000 .0000 .0000 .0001 .0005 .0022 .0071 .0169 .0324 .0521

15 .0000 .0000 .0000 .0000 .0002 .0009 .0033 .0090 .0194 .0347
16 .0000 .0000 .0000 .0000 .0000 .0003 .0014 .0045 .0109 .0217
17 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0021 .0058 .0128
18 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0029 .0071
19 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0014 .0037

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0006 .0019
21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0009
22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004
23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002
24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

25 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table of the χ2 Distribution

If X has a χ2 distribution with m degrees of freedom, this table gives the value of x

such that Pr(X ≤ x) = p, the p quantile of X.

p

m .005 .01 .025 .05 .10 .20 .25 .30 .40

1 .0000 .0002 .0010 .0039 .0158 .0642 .1015 .1484 .2750
2 .0100 .0201 .0506 .1026 .2107 .4463 .5754 .7133 1.022
3 .0717 .1148 .2158 .3518 .5844 1.005 1.213 1.424 1.869
4 .2070 .2971 .4844 .7107 1.064 1.649 1.923 2.195 2.753
5 .4117 .5543 .8312 1.145 1.610 2.343 2.675 3.000 3.655

6 .6757 .8721 1.237 1.635 2.204 3.070 3.455 3.828 4.570
7 .9893 1.239 1.690 2.167 2.833 3.822 4.255 4.671 5.493
8 1.344 1.647 2.180 2.732 3.490 4.594 5.071 5.527 6.423
9 1.735 2.088 2.700 3.325 4.168 5.380 5.899 6.393 7.357

10 2.156 2.558 3.247 3.940 4.865 6.179 6.737 7.267 8.295

11 2.603 3.053 3.816 4.575 5.578 6.989 7.584 8.148 9.237
12 3.074 3.571 4.404 5.226 6.304 7.807 8.438 9.034 10.18
13 3.565 4.107 5.009 5.892 7.042 8.634 9.299 9.926 11.13
14 4.075 4.660 5.629 6.571 7.790 9.467 10.17 10.82 12.08
15 4.601 5.229 6.262 7.261 8.547 10.31 11.04 11.72 13.03

16 5.142 5.812 6.908 7.962 9.312 11.15 11.91 12.62 13.98
17 5.697 6.408 7.564 8.672 10.09 12.00 12.79 13.53 14.94
18 6.265 7.015 8.231 9.390 10.86 12.86 13.68 14.43 15.89
19 6.844 7.633 8.907 10.12 11.65 13.72 14.56 15.35 16.85
20 7.434 8.260 9.591 10.85 12.44 14.58 15.45 16.27 17.81

21 8.034 8.897 10.28 11.59 13.24 15.44 16.34 17.18 18.77
22 8.643 9.542 10.98 12.34 14.04 16.31 17.24 18.10 19.73
23 9.260 10.20 11.69 13.09 14.85 17.19 18.14 19.02 20.69
24 9.886 10.86 12.40 13.85 15.66 18.06 19.04 19.94 21.65
25 10.52 11.52 13.12 14.61 16.47 18.94 19.94 20.87 22.62

30 13.79 14.95 16.79 18.49 20.60 23.36 24.48 25.51 27.44
40 20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 36.16
50 27.99 29.71 32.36 34.76 37.69 41.45 42.94 44.31 46.86
60 35.53 37.48 40.48 43.19 46.46 50.64 52.29 53.81 56.62
70 43.27 45.44 48.76 51.74 55.33 59.90 61.70 63.35 66.40
80 51.17 53.54 57.15 60.39 64.28 69.21 71.14 72.92 76.19
90 59.20 61.75 65.65 69.13 73.29 78.56 80.62 82.51 85.99

100 67.33 70.06 74.22 77.93 82.86 87.95 90.13 92.13 95.81

“Table of the X2 Distribution” adapted in part from “A new table of percentage points of the chi-square
distribution” by H. Leon Harter. From BIOMETRIKA, vol 51(1964), pp. 231–239.
“Table of the X2 Distribution” adapted in part from the BIOMETRIKA TABLES FOR STATISTI-
CIANS, Vol. 1, 3rd ed., Cambridge University Press, © 1966, edited by E.S. Pearson and H.O. Hartley.
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Table of the χ2 Distribution (continued)

p

.50 .60 .70 .75 .80 .90 .95 .975 .99 .995

.4549 .7083 1.074 1.323 1.642 2.706 3.841 5.024 6.635 7.879
1.386 1.833 2.408 2.773 3.219 4.605 5.991 7.378 9.210 10.60
2.366 2.946 3.665 4.108 4.642 6.251 7.815 9.348 11.34 12.84
3.357 4.045 4.878 5.385 5.989 7.779 9.488 11.14 13.28 14.86
4.351 5.132 6.064 6.626 7.289 9.236 11.07 12.83 15.09 16.75

5.348 6.211 7.231 7.841 8.558 10.64 12.59 14.45 16.81 18.55
6.346 7.283 8.383 9.037 9.803 12.02 14.07 16.01 18.48 20.28
7.344 8.351 9.524 10.22 11.03 13.36 15.51 17.53 20.09 21.95
8.343 9.414 10.66 11.39 12.24 14.68 16.92 19.02 21.67 23.59
9.342 10.47 11.78 12.55 13.44 15.99 18.31 20.48 23.21 25.19

10.34 11.53 12.90 13.70 14.63 17.27 19.68 21.92 24.72 26.76
11.34 12.58 14.01 14.85 15.81 18.55 21.03 23.34 26.22 28.30
12.34 13.64 15.12 15.98 16.98 19.81 22.36 24.74 27.69 29.82
13.34 14.69 16.22 17.12 18.15 21.06 23.68 26.12 29.14 31.32
14.34 15.73 17.32 18.25 19.31 22.31 25.00 27.49 30.58 32.80

15.34 16.78 18.42 19.37 20.47 23.54 26.30 28.85 32.00 34.27
16.34 17.82 19.51 20.49 21.61 24.77 27.59 30.19 33.41 35.72
17.34 18.87 20.60 21.60 22.76 25.99 28.87 31.53 34.81 37.16
18.34 19.91 21.69 22.72 23.90 27.20 30.14 32.85 36.19 38.58
19.34 20.95 22.77 23.83 25.04 28.41 31.41 34.17 37.57 40.00

20.34 21.99 23.86 24.93 26.17 29.62 32.67 35.48 38.93 41.40
21.34 23.03 24.94 26.04 27.30 30.81 33.92 36.78 40.29 42.80
22.34 24.07 26.02 27.14 28.43 32.01 35.17 38.08 41.64 44.18
23.34 25.11 27.10 28.24 29.55 33.20 36.42 39.36 42.98 45.56
24.34 26.14 28.17 29.34 30.68 34.38 37.65 40.65 44.31 46.93

29.34 31.32 33.53 34.80 36.25 40.26 43.77 46.98 50.89 53.67
39.34 41.62 44.16 45.62 47.27 51.81 55.76 59.34 63.69 66.77
49.33 51.89 54.72 56.33 58.16 63.17 67.51 71.42 76.15 79.49
59.33 62.13 65.23 66.98 68.97 74.40 79.08 83.30 88.38 91.95
69.33 72.36 75.69 77.58 79.71 85.53 90.53 95.02 100.4 104.2
79.33 82.57 86.12 88.13 90.41 96.58 101.9 106.6 112.3 116.3
89.33 92.76 96.52 98.65 101.1 107.6 113.1 118.1 124.1 128.3
99.33 102.9 106.9 109.1 111.7 118.5 124.3 129.6 135.8 140.2



860 Tables

Table of the t Distribution

If X has a t distribution with m degrees of freedom, the table gives the value of x

such that Pr(X ≤ x) = p.

m p = .55 .60 .65 .70 .75 .80 .85 .90 .95 .975 .99 .995

1 .158 .325 .510 .727 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657
2 .142 .289 .445 .617 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925
3 .137 .277 .424 .584 .765 .978 1.250 1.638 2.353 3.182 4.541 5.841
4 .134 .271 .414 .569 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604
5 .132 .267 .408 .559 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032
6 .131 .265 .404 .553 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707
7 .130 .263 .402 .549 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499
8 .130 .262 .399 .546 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355
9 .129 .261 .398 .543 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250

10 .129 .260 .397 .542 .700 .879 1.093 1.372 1.812 2.228 2.764 3.169

11 .129 .260 .396 .540 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106
12 .128 .259 .395 .539 .695 .873 1.083 1.356 1.782 2.179 2.681 3.055
13 .128 .259 .394 .538 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012
14 .128 .258 .393 .537 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977
15 .128 .258 .393 .536 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947
16 .128 .258 .392 .535 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921
17 .128 .257 .392 .534 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898
18 .127 .257 .392 .534 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878
19 .127 .257 .391 .533 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861
20 .127 .257 .391 .533 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845

21 .127 .257 .391 .532 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831
22 .127 .256 .390 .532 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819
23 .127 .256 .390 .532 .685 .858 1.060 1.319 1.714 2.069 2.500 2.807
24 .127 .256 .390 .531 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797
25 .127 .256 .390 .531 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787
26 .127 .256 .390 .531 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779
27 .127 .256 .389 .531 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771
28 .127 .256 .389 .530 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763
29 .127 .256 .389 .530 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756
30 .127 .256 .389 .530 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750

40 .126 .255 .388 .529 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704

60 .126 .254 .387 .527 .679 .848 1.046 1.296 1.671 2.000 2.390 2.660

120 .126 .254 .386 .526 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617

∞ .126 .253 .385 .524 .674 .842 1.036 1.282 1.645 1.960 2.326 2.576

Table III, “Table of the t Distribution” from STATISTICAL TABLES FOR BIOLOGICAL, AGRICUL-
TURAL, AND MEDICAL RESEARCH by R.A. Fisher and F. Yates. © 1963 by Pearson Education,
Ltd.
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Table of the Standard Normal Distribution Function

�(x) = ∫ x

−∞
1

(2π)1/2 exp
(
− 1

2u2
)

du

x �(x) x �(x) x �(x) x �(x) x �(x)

0.00 0.5000 0.60 0.7257 1.20 0.8849 1.80 0.9641 2.40 0.9918
0.01 0.5040 0.61 0.7291 1.21 0.8869 1.81 0.9649 2.41 0.9920
0.02 0.5080 0.62 0.7324 1.22 0.8888 1.82 0.9656 2.42 0.9922
0.03 0.5120 0.63 0.7357 1.23 0.8907 1.83 0.9664 2.43 0.9925
0.04 0.5160 0.64 0.7389 1.24 0.8925 1.84 0.9671 2.44 0.9927
0.05 0.5199 0.65 0.7422 1.25 0.8944 1.85 0.9678 2.45 0.9929
0.06 0.5239 0.66 0.7454 1.26 0.8962 1.86 0.9686 2.46 0.9931
0.07 0.5279 0.67 0.7486 1.27 0.8980 1.87 0.9693 2.47 0.9932
0.08 0.5319 0.68 0.7517 1.28 0.8997 1.88 0.9699 2.48 0.9934
0.09 0.5359 0.69 0.7549 1.29 0.9015 1.89 0.9706 2.49 0.9936
0.10 0.5398 0.70 0.7580 1.30 0.9032 1.90 0.9713 2.50 0.9938
0.11 0.5438 0.71 0.7611 1.31 0.9049 1.91 0.9719 2.52 0.9941
0.12 0.5478 0.72 0.7642 1.32 0.9066 1.92 0.9726 2.54 0.9945
0.13 0.5517 0.73 0.7673 1.33 0.9082 1.93 0.9732 2.56 0.9948
0.14 0.5557 0.74 0.7704 1.34 0.9099 1.94 0.9738 2.58 0.9951
0.15 0.5596 0.75 0.7734 1.35 0.9115 1.95 0.9744 2.60 0.9953
0.16 0.5636 0.76 0.7764 1.36 0.9131 1.96 0.9750 2.62 0.9956
0.17 0.5675 0.77 0.7794 1.37 0.9147 1.97 0.9756 2.64 0.9959
0.18 0.5714 0.78 0.7823 1.38 0.9162 1.98 0.9761 2.66 0.9961
0.19 0.5753 0.79 0.7852 1.39 0.9177 1.99 0.9767 2.68 0.9963
0.20 0.5793 0.80 0.7881 1.40 0.9192 2.00 0.9773 2.70 0.9965
0.21 0.5832 0.81 0.7910 1.41 0.9207 2.01 0.9778 2.72 0.9967
0.22 0.5871 0.82 0.7939 1.42 0.9222 2.02 0.9783 2.74 0.9969
0.23 0.5910 0.83 0.7967 1.43 0.9236 2.03 0.9788 2.76 0.9971
0.24 0.5948 0.84 0.7995 1.44 0.9251 2.04 0.9793 2.78 0.9973
0.25 0.5987 0.85 0.8023 1.45 0.9265 2.05 0.9798 2.80 0.9974
0.26 0.6026 0.86 0.8051 1.46 0.9279 2.06 0.9803 2.82 0.9976
0.27 0.6064 0.87 0.8079 1.47 0.9292 2.07 0.9808 2.84 0.9977
0.28 0.6103 0.88 0.8106 1.48 0.9306 2.08 0.9812 2.86 0.9979
0.29 0.6141 0.89 0.8133 1.49 0.9319 2.09 0.9817 2.88 0.9980
0.30 0.6179 0.90 0.8159 1.50 0.9332 2.10 0.9821 2.90 0.9981
0.31 0.6217 0.91 0.8186 1.51 0.9345 2.11 0.9826 2.92 0.9983
0.32 0.6255 0.92 0.8212 1.52 0.9357 2.12 0.9830 2.94 0.9984
0.33 0.6293 0.93 0.8238 1.53 0.9370 2.13 0.9834 2.96 0.9985
0.34 0.6331 0.94 0.8264 1.54 0.9382 2.14 0.9838 2.98 0.9986
0.35 0.6368 0.95 0.8289 1.55 0.9394 2.15 0.9842 3.00 0.9987
0.36 0.6406 0.96 0.8315 1.56 0.9406 2.16 0.9846 3.05 0.9989
0.37 0.6443 0.97 0.8340 1.57 0.9418 2.17 0.9850 3.10 0.9990
0.38 0.6480 0.98 0.8365 1.58 0.9429 2.18 0.9854 3.15 0.9992
0.39 0.6517 0.99 0.8389 1.59 0.9441 2.19 0.9857 3.20 0.9993
0.40 0.6554 1.00 0.8413 1.60 0.9452 2.20 0.9861 3.25 0.9994
0.41 0.6591 1.01 0.8437 1.61 0.9463 2.21 0.9864 3.30 0.9995
0.42 0.6628 1.02 0.8461 1.62 0.9474 2.22 0.9868 3.35 0.9996
0.43 0.6664 1.03 0.8485 1.63 0.9485 2.23 0.9871 3.40 0.9997
0.44 0.6700 1.04 0.8508 1.64 0.9495 2.24 0.9875 3.45 0.9997
0.45 0.6736 1.05 0.8531 1.65 0.9505 2.25 0.9878 3.50 0.9998
0.46 0.6772 1.06 0.8554 1.66 0.9515 2.26 0.9881 3.55 0.9998
0.47 0.6808 1.07 0.8577 1.67 0.9525 2.27 0.9884 3.60 0.9998
0.48 0.6844 1.08 0.8599 1.68 0.9535 2.28 0.9887 3.65 0.9999
0.49 0.6879 1.09 0.8621 1.69 0.9545 2.29 0.9890 3.70 0.9999
0.50 0.6915 1.10 0.8643 1.70 0.9554 2.30 0.9893 3.75 0.9999
0.51 0.6950 1.11 0.8665 1.71 0.9564 2.31 0.9896 3.80 0.9999
0.52 0.6985 1.12 0.8686 1.72 0.9573 2.32 0.9898 3.85 0.9999
0.53 0.7019 1.13 0.8708 1.73 0.9582 2.33 0.9901 3.90 1.0000
0.54 0.7054 1.14 0.8729 1.74 0.9591 2.34 0.9904 3.95 1.0000
0.55 0.7088 1.15 0.8749 1.75 0.9599 2.35 0.9906 4.00 1.0000
0.56 0.7123 1.16 0.8770 1.76 0.9608 2.36 0.9909
0.57 0.7157 1.17 0.8790 1.77 0.9616 2.37 0.9911
0.58 0.7190 1.18 0.8810 1.78 0.9625 2.38 0.9913
0.59 0.7224 1.19 0.8830 1.79 0.9633 2.39 0.9916

“Table of the Standard Normal Distribution Function” from HANDBOOK OF STATISTICAL TABLES
by Donald B. Owen. © 1962 by Addison-Wesley.
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Table of the 0.95 Quantile of the F Distribution

If X has an F distribution with m and n degrees of freedom, the table gives the value of x such that Pr(X ≤ x) = 0.95.

m

n 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 ∞

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 245.9 248.0 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.50 4.46 4.43 4.40 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.66 2.62 2.58 2.54

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.20 2.16 2.11 2.07

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.99 1.95 1.90 1.84

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.75 1.66 1.55 1.50 1.43 1.35 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.46 1.39 1.32 1.22 1.00

“Table of the 0.95 Quantile of the F Distribution” adapted from the BIOMETRIKA TABLES FOR
STATISTICIANS, Vol. 1, 3rd ed., Cambridge University Press, © 1966, edited by E.S. Pearson and H.O.
Hartley.



Tables
863

Table of the 0.975 Quantile of the F Distribution

If X has an F distribution with m and n degrees of freedom, the table gives the value of x such that Pr(X ≤ x) = 0.975.

m

n 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 ∞

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 984.9 993.1 1001 1006 1010 1014 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.46 39.47 39.48 39.49 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 14.08 14.04 13.99 13.95 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.56 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.33 6.23 6.18 6.12 6.07 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.17 5.07 5.01 4.96 4.90 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.47 4.36 4.31 4.25 4.20 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 4.00 3.89 3.84 3.78 3.73 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.67 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.42 3.31 3.26 3.20 3.14 3.08

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.76 2.64 2.59 2.52 2.46 2.40

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.46 2.35 2.29 2.22 2.16 2.09

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.20 2.07 2.01 1.94 1.87 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.18 2.07 1.94 1.88 1.80 1.72 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.06 1.94 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 1.94 1.82 1.69 1.61 1.53 1.43 1.31
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.83 1.71 1.57 1.48 1.39 1.27 1.00

“Table of the 0.975 Quantile of the F Distribution” adapted from the BIOMETRIKA TABLES FOR
STATISTICIANS, Vol. 1, 3rd ed., Cambridge University Press, © 1966, edited by E.S. Pearson and H.O.
Hartley.
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Answers to Odd-Numbered Exercises

Note: Answers are not provided for exercises that request a proof, a derivation, or a graph.

Chapter 1

Section 1.4

7. (a) {x: x < 1 or x > 5}; (b) {x: 1 ≤ x ≤ 7}; (c) B; (d) {x: 0 < x < 1 or x > 7}; (e) ∅. 11. (a) S = {(x, y) : 0 ≤ x ≤
5 and 0 ≤ y ≤ 5}. (b) A = {(x, y) ∈ S : x + y ≥ 6}, B = {(x, y) ∈ S : x = y}, C = {(x, y) ∈ S : x > y}, D = {(x, y) ∈ S : 5 <

x + y < 6}. (c) Ac ∩ Dc ∩ B. (d) Ac ∩ Bc ∩ Cc.

Section 1.5

1. 2
5 . 3. (a) 1

2 ; (b) 1
6 ; (c) 3

8 . 5. 0.4. 7. 0.4 if A⊂B and 0.1 if Pr(A∪B) = 1. 11. (a) 1 − π
4 ; (b) 3

4 ; (c) 2
3 ; (d) 0.

Section 1.6

1. 1
2 . 3. 2

3 . 5. 4
7 . 7. Pr(Aa) = Pr(aa) = 1

2 .

Section 1.7

1. 14. 3. 5!. 5. 5
18 . 7. 20!

8!2012 . 9. (3!)2

6! .

Section 1.8

1.
(20

10
)
. 3. They are equal. 5. This number is

(4251
97

)
, and therefore it must be an integer. 7. n+1−k

(n
k)

. 9. n+1
(2n

n )
.

11. (98
10)

(100
12 )

. 13. (20
6 )+(20

10)

(24
10)

. 17.
4(13

4 )

(52
4 )

. 21.
(365+k

k

)
.

Section 1.9

1.
( 21

7,7,7
)
. 3.

( 300
5,8,287

)
. 5. 1

6n

( n
n1,n2, ...,n6

)
. 7.

( 12
6,2,4)(

13
4,6,3)

( 25
10,8,7)

. 9. 4!
( 52

13,13,13,13)
.

Section 1.10

1. 3(4
2)(

48
3 )

(52
5 )

− 3
(4

2).(
48

3,3,42)

( 52
5,5,42)

. 3. 45 percent. 5. 3
8 . 7. 1 − 1

(100
15 )

{[(90
15
) + (80

15
) + (70

15
) + (60

15
)] −[(70

15
) + (60

15
) + (50

15
) + (50

15
) + (40

15
) + (30

15
)] +

[(40
15
) + (30

15
) + (20

15
)]}

. 9. n = 10. 11.
(5
r)(

5
5−r)

(10
5 )

, where r = x
2 and

x = 0, 2, . . . , 10.

Section 1.12

1. No. 3. (250
18 ).(100

12 )

(350
30 )

. 5. 0.3120 7. 1
(r+w

r )
. 9.

(7
j)(

3
5−j)

(10
5 )

, where k = 2j − 2 and j = 2, 3, 4, 5. 13. (d) (n−k+1
k )

(n
k)

.

Chapter 2

Section 2.1

1. Pr(A)/Pr(B). 3. Pr(A). 5. r(r+k)(r+2k)b
(r+b)(r+b+k)(r+b+2k)(r+b+3k)

. 7. 1
3 . 9. (a) 3

4 ; (b) 3
5 . 13. 0.44. 15. 0.47.

Section 2.2

1. Pr(Ac). 5. 1 − 1
106 . 7. (a) 0.92; (b) 0.8696 9. 1

7 . 11. (a) 0.2617. 13. 10(0.01)(0.99)9. 15. n >
log(0.2)

log(0.99)
.

17. 1
12 . 19. [(0.8)10 + (0.7)10] − [(0.2)10 + (0.3)10]. 23. (a) 0.2215; (b) 0.0234.

Section 2.3

3. 0.301. 5. 18
59 . 7. (a) 0, 1

10 , 2
10 , 3

10 , 4
10 ; (b) 3

4 ; (c) 1
4 . 11. 1/4. 13. (a) 1/9; (b) 1. 15. 0.274.

865
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Section 2.4

3. Condition (a). 5. i ≥ 198. 9. 2
3 .

Section 2.5

3. 11
12 . 5. 1

(10
3 )

. 7. Always. 9. 1
6 . 11. 1 −

(
49
50

)50
. 13. (a) 0.93; (b) 0.38. 15. 4

81. 17. 0.067.

19. p1 + p2 + p3 − p1p2 − p2p3 − p1p3 + p1p2p3, where

p1 =
(6

1
)(8

3
) , p2 =

(6
2
)(8

4
) , p3 =

(6
3
)(8

5
) .

21. Pr(A wins) = 4
7 ; Pr(B wins) = 2

7 ; Pr(C wins) = 1
7 . 23. 0.372. 25. (a) 0.659; (b) 0.051. 27.

1−
(

1
2

)n−1

1−
(

1
2

)n .

29. (a) 1−p0−p1
1−p0

, where p0 = (48
13)

(52
13)

and p1 = 4(48
12)

(52
13)

. (b) 1 − p1. Also, (3
1)(

48
11)+(3

2)(
48
10)+(48

9 )

(51
12)

= 0.5612 33. 7
9 . 35. (a) The

second condition; (b) The first condition; (c) Equal probability under both conditions.

Chapter 3

Section 3.1

1. 6
11. 3. f (0) = 1

6 , f (1) = 5
18 , f (2) = 2

9 , f (3) = 1
6 , f (4) = 1

9 , f (5) = 1
18 . 5. f (x) =

⎧⎨⎩ (7
x)(

3
5−x)

(10
5 )

for x = 2, 3, 4, 5,

0 otherwise
7. 0.806. 9. 1/2.

Section 3.2

1. 4/9. 3. (a) 1
2 ; (b) 13

27 ; (c) 2
27 . 5. (a) t = 2; (b) t = √

8. 7. f (x) =
{ 1

10 for −2 ≤ x ≤ 8,
0 otherwise,

and probability is

7
10 . 13. 0.0045.

Section 3.3

5. f (x) = (2/9)x for 0 ≤ x ≤ 3; f (x) = 0 otherwise. 7. F(x) =
⎧⎨⎩

0 for x < −2,
1

10 (x + 2) for −2 ≤ x ≤ 8,
1 for x > 9.

11. F−1(p) = 3p1/2.

13. 10.2. 15. F(x) = x2 for 0 < x < 1.

Section 3.4

1. (a) 0.5; (b) 0.75. 3. (a) 1
40 ; (b) 1

20 ; (c) 7
40 ; (d) 7

10 . 5.(a) 5
4 ; (b) 79

256 ; (c) 13
16 ; (d) 0. 7. (a) 0.55; (b) 0.8.

9. 0.63505. 11. (a) 0.273; (b) 0.513.

Section 3.5

1. Uniform on the interval [a, b] and uniform on the interval [c, d]. 3. (a) f1(x) =
{

1
2 for 0 ≤ x ≤ 2,
0 otherwise

f2(y) ={
3y2 for 0 ≤ y ≤ 1,
0 otherwise

(b) Yes; (c) Yes. 5. (a) f (x, y) =
{

pxpy for x = 0, 1, 2, 3 and y = 0, 1, 2, 3,
0 otherwise

(b) 0.3; (c) 0.35.

7. Yes. 9. (a) f (x, y) =
{

1
6 for (x, y) ∈ S,
0 otherwise

f1(x) =
{

1
2 for 0 ≤ x ≤ 2,
0 otherwise

f2(y) =
{

1
3 for 1 ≤ y ≤ 4,
0 otherwise

(b) Yes. 11. 11
36 . 15. (b) f1(x) = 1/3 for 1 < x < 3,

f1(x) = 1/6 for 6 < x < 8, and f1(x) = 0 otherwise; f2(y) = 1 for 0 < y < 1 and f2(y) = 0 otherwise.

Section 3.6

1. For −1< y < 1, g1(x|y) =
{

1.5x2(1 − y2)−3/2 for −(1 − y2)1/2 <x <(1 − y2)1/2,
0 otherwise.
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3. (a) For −2 < x < 4, g2(y|x) =
{

1
2[9−(x−1)2]1/2 for (y + 2)2 < 9 − (x − 1)2,

0 otherwise.

(b) 2−√
2

4 . 5. (a) For 0 < y < 1, g1(x|y) =
{ −1

(1−x) log(1−y)
for 0 < x < y,

0 otherwise
(b) 1

2 . 7. (a) For 0 < x < 2, g2(y|x) ={ 4−2x−y

2(2−x)2 for 0 < y < 4 − 2x,
0 otherwise

(b) 1
9 . 9. (a) f1(x) =

{
1
2x(2 + 3x) for 0 < x < 1,
0 otherwise

(b) 8
11. 13. g1(1|1) = 0.5506,

g1(1|2) = 0.6561, g1(1|3) = 0.4229, g1(1|4) = 0.2952. g1(0|y) = 1 − g1(1|y) for y = 1, 2, 3, 4.

Section 3.7

1. (a) 1/3; (b) (x1 + 3x3 + 1)/3 for 0 ≤ xi ≤ 1 (i = 1, 3); (c) 5/13. 3. (a) 6;

(b) f13(x1, x3) =
{

3e−(x1+3x3) for xi > 0(i = 1, 3),
0 otherwise

(c) 1 − 1
e
.

5. (a)
∏n

i=1 pi; (b) 1− ∏n
i=1(1−pi). 7.

∑n
i=k

(n
i

)
pi(1−p)n−i, where p= ∫ b

a f (x) dx.

Section 3.8

1. g(y) =
{

3(1 − y)1/2/2 for 0 < y < 1,
0 otherwise.

3. G(y) = 1 − (1 − y)1/2 for 0 < y < 1; g(y) =
{

1
2(1−y)1/2 for 0 < y < 1,

0 otherwise

7. (a) g(y) =
{

1
2y−1/2 for 0 < y < 1,
0 otherwise

(b) g(y) =
{

1
3 |y|−2/3 for −1 < y < 0,
0 otherwise

(c) g(y) =
{

2y for 0 < y < 1,
0 otherwise

9. Y = 2X1/3. 13. f (t) =
{

2e−2/t/t2 for t > 0,
0 otherwise.

17. (a) r(x) = 0 for x ≤ 100, r(x) = x − 100 for 100 < x ≤ 5100,

r(x) = 5000 for x > 5100; (b) G(y) = 0 for y < 0, G(y) = 1 − 1/(y + 101) for 0 ≤ y < 5000, G(y) = 1 for y ≥ 5000.

Section 3.9

1. g(y) =
⎧⎨⎩

y for 0 < y ≤ 1,
2 − y for 1 < y < 2,
0 otherwise

3. g(y1, y2, y3) =
{

8y3(y1y2)
−1 for 0 < y3 < y2 < y1 < 1,

0 otherwise.

5. g(z) =

⎧⎪⎨⎪⎩
1
3(z + 1) for 0 < z ≤ 1,
1

3z3 (z + 1) for z > 1,
0 for z ≤ 0.

7. g(y) = 1
2e−|y| for −∞ < y < ∞. 9. (0.8)n − (0.7)n. 11.

(
1
3

)n +
(

2
3

)n
.

13. f (z) =
{

n(n−1)
8

(
z
8

)n−2 (
1 − z

8

)
for −3 < z < 5,

0 otherwise
19. ye−y for y > 0.

Section 3.10

1. (a) (1/2,1/2); (b)
(5/9 4/9

4/9 5/9

)
3. (a) 0.667; (b) 0.666. 5. (a) 0.38; (b) 0.338; (c) 0.3338. 7. (a) 0.632; (b) 0.605.

9. (a) 1
8 ; (b) 1

8 . 11. (a) 40
81 ; (b) 41

81.
13.

HHH HHT HTH THH TTH THT HTT TTT

HHH 0 1 0 0 0 0 0 0

HHT 0 0 1
2 0 0 0 1

2 0

HTH 0 0 0 1
2 0 1

2 0 0

THH 1
2

1
2 0 0 0 0 0 0

TTH 0 0 0 1
2 0 1

2 0 0

THT 0 0 1
2 0 0 0 1

2 0

HTT 0 0 0 0 1
2 0 0 1

2

TTT 0 0 0 0 1 0 0 0
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17. (a) {Aa, Aa} has probability 1; (b) {Aa, Aa}, {Aa, aa}, and {aa, aa} have, respectively, probabilities 0.04, 0.32, and
0.64. 19. (2/3, 1/3).

Section 3.11

3. f (x) =
⎧⎨⎩

2
5 for 0 < x < 1,
3
5 for 1 < x < 2,
0 otherwise

5. π
4 . 7. 1 − 1

2p−1 + 1
22p−1 . 9. 1

10 . 11. Y = 5(1 − e−2X) or Y =

5e−2X. 13. The sets (c) and (d). 15. 0.3715. 17. f2(y) = −9y2 log y for 0 < y < 1. g1(x|y) = − 1
x log y

for 0 < y < x < 1. 19. f1(x) = 3(1 − x)2 for 0 < x < 1, f2(y) = 6y(1 − y) for 0 < y < 1, f3(z) = 3z2 for 0 < z < 1.

21. (a) g(u, v) =
{

ve−v for 0 < u < 1, v > 0,
0 otherwise

(b) Yes. 23. h(y1|yn) = (n−1)(e−y1−e−yn)n−2e−y1

(1−e−yn)n−1 for 0 < y1 < yn.

25. (a) 2εf2(y); (b) 2ε
∫ x
−∞ f (s, y)ds.

27. Players in game n + 1

(A, B) (A, C) (B, C)

Players in (A, B) 0 0.3 0.7

game n (A, C) 0.6 0 0.4

(B, C) 0.8 0.2 0

29. (0.4220, 0.2018, 0.3761).

Chapter 4

Section 4.1

1. (a + b)/2. 3. 18.92. 5. 4.867. 9. 3
4 . 11. 1

n+1 and n
n+1. 13. $11.61. 15. $25.

Section 4.2

1. $5. 3. 1
2 . 5. n

∫ b
a f (x) dx. 7. c

(
5
4

)n
. 9. n(2p − 1). 11. 2k.

Section 4.3

1. 1/12. 3. 1
12 (b − a)2. 7. (a) 6; (b) 39. 9. (n2 − 1)/12. 11. 0.5. 13. 1.

Section 4.4

1. 0. 3. 1. 7. μ = 1
2 , σ 2 = 3

4 . 9. E(Y ) = cμ; Var(Y ) = c(σ 2 + μ2). 11. f (1) = 1
5 ; f (4) = 2

5 ; f (8) = 2
5 . 17. 2.

Section 4.5

3. m = log 2. 5. (a) 1
2 (μf + μg); (b) Any number m such that 1 ≤ m ≤ 2. 7. (a) 7

12 ; (b) 1
2 (

√
5 − 1).

9. (a) 0.1; (b) 1. 11. Y .

Section 4.6

1. 0. 11. The value of ρ(X, Y ) would be less than −1. 13. (a) 11; (b) 51. 15. n + n(n−1)
4 .

Section 4.7

1. 0.00576, 7% of the marginal M.S.E. 5. 1 − 1
2n . 7. E(Y |X) = 3X+2

3(2X+1) ; Var(Y |X) = 1
36

[
3 − 1

(2X+1)2

]
.

9. 1
12 − log 3

144 . 13. (a) 3
5 ; (b)

√
29−3
4 . 15. (a) 18

31 ; (b)
√

5−1
2 .

Section 4.8

1. α > 1.111. 3. Z. 5. 2
3 7. p. 9. a = 1 if p > 1

2 ; a = 0 if p < 1
2 ; a can be chosen arbitrarily if p = 1

2 .

11. b = 0 if p ≤ 1
2 ; b = (2p − 1)A if p > 1

2 . 13. b = A if p > 1
2 ; b = 0 if p < 1

2 ; b can be chosen arbitrarily if p = 1
2 .

15. x0 > 4
(α+1)1/α . 17. Continue to promote.
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Section 4.9

5. a = ± 1
σ

, b = −aμ. 7. 3
2 . 11. Order an amount s such that

∫ s
0 f (x) dx = g

g+c
. 13. (a) and (b) E(Z) = 29;

Var(Z) = 109. (c) E(Z) = 29; Var(Z) = 94. 17. 1. 21. − 1
2 . 25. (a) 0.1333. (b) 0.1414. 29. a = pm.

Chapter 5

Section 5.2

1. Bernoulli with parameter 1
3 . 3. 0.377. 5. 0.5000. 7. 113

64 . 9. k
n

.

11. n(n − 1)p2. 13. 0.4957 15. 1110, 4.64 × 10−171.

Section 5.3

1. 8.39 × 10−8. 3. E(X) = 1
3 ; Var(X) = 8

441. 5. T −1
2 or T +1

2 if T is odd, and T
2 if T is even.

7. (a) (0.7T
10 )+0.3T (0.7T

9 )

(T
10)

; (b) (0.7)10 + 10(0.3)(0.7)9. 9. 3/128.

Section 5.4

1. 0.5940. 3. 0.0166. 5.
n∑

x=m

(
n

x

) ⎛⎝ ∞∑
i=k+1

e−λλi

i!

⎞⎠x (
k∑

i=0

e−λλi

i!

)n−x

. 7.
∞∑

x=21

e−3030x

x!
. 9. Poisson

distribution with mean pλ. 11. If λ is not an integer, mode is the greatest integer less than λ. If λ is an integer, modes
are λ and λ − 1. 13. 0.3476. 15. 9λe−3λ, for λ > 0.

Section 5.5

1. (a) 0.0001; (b) 0.01. 3. (a) 150; (b) 4350. 9. Geometric distribution with parameter p = 1 − ∏n
i=1 qi.

Section 5.6

1. 0.0, −0.6745, 0.6745, −1.282, 1.282. 3. Normal with μ = 20 and σ = 20
9 . 5. 0.996. 7. (0.1360)3. 9. 0.6827.

11. n = 1083. 13. 0.3812. 15. (a)
exp

{
− 1

2 (x−25)2
}

exp
{
− 1

2 (x−25)2
}
+9 exp

{
− 1

2 (x−20)2
} ; (b) x > 22.5 + 1

5 log 9. 17. f (x) =
1

(2π)1/2σx
exp

{
− 1

2σ 2 (log x − μ)2
}

for x > 0, and f (x) = 0 for x ≤ 0. 19. f (μ) = 1.0013
(2π)1/2 exp

{
− 1

2 (μ − 8)2
}

for

5 < μ < 15.

21. The lognormal distribution with parameters 4.6 and 10.5. 23. The lognormal distribution with parameters 3.149
and 2.

Section 5.7

7. 1 − [1 − exp(−βt)]3. 9. 1
e
. 11.

(
1
n

+ 1
n−1 + 1

n−2

)
1
β

. 13. 1 − e−5/2.

15. e−5/4 17. 1 . 3 . 5 . . . (2n − 1)σ 2n.

Section 5.8

1. F−1(p) = p1/α. 5. α(α+1)...(α+r−1)β(β+1)...(β+s−1)
(α+β)(α+β+1)...(α+β+r+s−1) . 9. α = 1/17, β = 19/17.

Section 5.9

3. 2424
65 . 5. 0.0501.

Section 5.10

1. 70.57. 3. 0.1562. 5. 90 and 36. 7. μ1 = 4, μ2 = −2, σ1 = 1, σ2 = 2, ρ = −0.3. 13. ρ = −0.5c/(ab)1/2,
σ 2

1 = 2b/d , σ 2
2 = 2a/d, μ1 = (cg − 2be)/d , μ2 = (ce − 2ag)/d , where d = 4ab − c2.
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Section 5.11

1. f (x) = 1/(n + 1) for x = 0, . . . , n. 3. 0.0404. 7. 3μσ 2 + μ3. 9. 0.8152. 11. 15
7 . 13. 0.2202.

15. (a) Exponential, parameter β = 5; (b) Gamma, parameters α = k and β = 5; (c) e−5(k−1)/3. 23. (a) ρ(Xi, Xj) =
−
(

pi

1−pi

. pj

1−pj

)1/2
, where pi is the proportion of students in class i; (b) i = 1, j = 2; (c) i = 3, j = 4. 25. Normal

with μ = −3 and σ 2 = 16; ρ(X, Y ) = 1
2 .

Chapter 6

Section 6.1

1. 4x if 0 < x ≤ 1/2, 4 − 4x if 1/2 < x < 1, and 0 otherwise; 0.36; 0.2; look at where each p.d.f. is higher than the other.
3. 0.9964. The probability looks like it might be increasing to 1.

Section 6.2

5. 25. 13. (a) Yes; (b) No. 17. (b) np(1 − p) and knp(1 − p/k). 21. (a) [u exp(1 − u)]n; (b) Useless bound.

Section 6.3

1. 0.001 3. 0.9938 5. n ≥ 542. 7. 0.7385. 9. (a) 0.36; (b) 0.7887. 11. 0.9938. 13. Normal with

mean θ3 and variance 9θ4σ 2

n
. 15. (c) n(Y 2

n − θ2)/[2θ ] has approximately c.d.f. F ∗.

Section 6.4

1. 0.8169. 3. 0.0012. 5. 0.9938. 7. 0.7539.

Section 6.5

1. 8.00. 3. Without continuity correction, 0.473; with continuity correction, 0.571; exact probability, 0.571.

5. arcsin(

√
Xn). 9. 0.1587. 11. (b) Normal with mean n/3 and variance n/9.

Chapter 7

Section 7.1

1. X1, X2, . . ., P ; the Xi are i.i.d. Bernoulli with parameter p given P = p. 3. Z1, Z2, . . . times of hits, parameter β,
Yk = Zk − Zk−1 for k ≥ 2. 5. (Xn − 0.98, Xn + 0.98) has probability 0.95 of containing μ. 7. Y Poisson with mean
λt , parameters λ and p, X1, . . . , Xy i.i.d. Bernoulli with parameter p given Y = y, X = X1 + . . . + Xy (observable).

Section 7.2

1. 0.4516. 3. ξ(1.0|X = 3) = 0.2456; ξ(1.5|X = 3) = 0.7544. 5. The p.d.f. of the beta distribution with parameters
α = 3 and β = 6. 7. Beta distribution with parameters α = 4 and β = 7. 9. Beta distribution with parameters
α = 4 and β = 6. 11. Uniform distribution on the interval [11.2, 11.4].

Section 7.3

1. 120. 3. Beta distribution with parameters α = 5 and β = 297. 5. Gamma distribution with parameters α = 16
and β = 6. 7. Normal distribution with mean 69.07 and variance 0.286. 9. Normal distribution with mean 0 and

variance 1
5 . 13. n ≥ 100. 17. ξ(θ |x) =

{
6(86)

θ7 for θ > 8,
0 for θ ≤ 8.

19. α+n

β−∑n

i=1 log xi

and α+n(
β−∑n

i=1 log xi

)2 . 21. Gamma

distribution with parameters n and nxn.

Section 7.4

1. 2/3 and 2−1/2. 3. (a) 12 or 13; (b) 0. 5. 8
3 . 9. n ≥ 396. 13. α+n

α+n−1 max(x0, X1, . . . , Xn).
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Section 7.5

3. 2
3 . 5. (a) θ̂ = xn. 7. β̂ = 1

Xn

. 9. θ̂ = − n∑n

i=1 log Xi

. 11. θ̂1 = min(X1, . . . , Xn); θ̂2 = max(X1, . . . , Xn).

13. μ̂1 = Xn; μ̂2 = Yn.

Section 7.6

1. (
∏n

i=1 Xi)
1/n. 3. m̂ = Xn log 2. 5. μ̂ = 1

2 [min{X1, . . . , Xn} + max{X1, . . . , Xn}]. 7. v̂ = �
(

μ̂−2
σ̂

)
.

9. Xn. 15. μ̂ = 6.75. 17. p̂ = 2
5 . 23. (a) α̂ = [xn(xn − x2

n)]/[x2
n − x2

n], β̂ = [(1 − xn)(xn − x2
n)]/[x2

n − x2
n].

25. μ̂1 = Xn, σ̂ 2
1 = 1

n

∑n
i=1(Xi − Xn)

2, μ̂2 = α̂ + β̂μ̂1, σ̂ 2
2 = σ̂ 2

2.1 + β̂2σ̂ 2
1 , ρ̂ = β̂σ̂1/σ̂2, where β̂ = ∑n−k

i=1 (Yi − Yn−k)(Xi −
Xn−k)/

∑n−k
i=1 (Xi − Xn−k)

2, α̂ = Yn−k − β̂μ̂1, and σ̂ 2
2.1 = 1

n−k

∑n−k
i=1 (Yi − α̂ − β̂Xi)

2.

Section 7.8

9. Yes. 11. No. 13. Yes. 15. Yes. 17. Yes.

Section 7.9

3. R(θ, δ1) = θ2

3n . 5. c∗ = n+2
n+1 . 7. (a) R(β, δ) = (β − 3)2. 11. θ̂ = δ0. 13.

(
n−1
n

)T
. 15. exp(Xn + 0.125),

c = 0.125(1 − 3/n).

Section 7.10

1. (a) Beta distribution with parameters 11 and 16; (b) 11/27. 3. 6
17 . 5.

σ 2
2b1x1+σ 2

1b2x2

σ 2
2b

2
1+σ 2

1b
2
2

.

7. (a) 1
3

(
X1 + 1

2X2 + 1
3X3

)
; (b) Gamma distribution, parameters α + 3 and β + x1 + 1

2x2 + 1
3x3. 9. (a) x + 1.

(b) x + log 2. 11. p̂ = 2(θ̂ − 1
4 ), where

θ̂ =

⎧⎪⎪⎨⎪⎪⎩
X
n

if 1
4 ≤ X

n
≤ 3

4 ,
1
4 if X

n
< 1

4 ,
3
4 if X

n
> 3

4 .

13. 21/5. 15. min(X1, . . . , Xn). 17. x̂0 = min(X1, . . . , Xn), and α̂ =
(

1
n

∑n
i=1 log xi − log x̂0

)−1
. 19. The

smallest integer greater than x
p

− 1. If x
p

− 1 is itself an integer, both x
p

− 1 and x
p

are M.L.E.’s. 21. 16.

Chapter 8

Section 8.1

1. n ≥ 29. 3. n ≥ 255. 5. n = 10. 7. n ≥ 16. 9. 1 − G(n/t), where G(.) is the c.d.f. of the gamma distribution
with parameters n and θ .

Section 8.2

1. 0.1278. 5. 0.20. 9. χ2 distribution with one degree of freedom. 11. 21/2�[(m+1)/2]
�(m/2)

.

Section 8.3

7. (a) n = 21; (b) n = 13. 9. The same for both samples.

Section 8.4

3. c = √
3/2. 5. 0.70.

Section 8.5

3. (a) 6.16σ 2; (b) 2.05σ 2; (c) 0.56σ 2; (d) 1.80σ 2; (e) 2.80σ 2; (f) 6.12σ 2.
7. (148.1, 165.6). 9. (a) (4.7, 5.3); (b) (4.8, 5.2); (d) 0.6; (e) 0.5.

11. Endpoints are sin2
(

arcsin
√

xn ± n−1/2�−1([1 + γ ]/2)
)

, unless one of the numbers arcsin
√

xn ± n−1/2�−1([1 +
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γ ]/2) lies outside of the interval [0, π/2].

Section 8.6

5. μ0 = −5; λ0 = 4; α0 = 2; β0 = 4. 7. The conditions imply that α0 = 1
4 , and E(μ) exists only for α0 > 1

2 .
9. (a) (157.83, 210.07); (b) (152.55, 211.79). 11. (0.446, 1.530). 13. (0.724, 3.336). 15. (a) α1 = 7.5, β1 = 22.73,
λ1 = 13, μ1 = 6.631; (b) (5.602, 7.660). 17. α1 = 4.5, β1 = 0.4831, λ1 = 10, μ1 = 1.379. 19. (a) Normal-gamma
with hyperparameters α1 = 11, β1 = 4885.7, λ1 = 20.5, μ1 = 156.7; (b) (148.7, 164.7).

Section 8.7

1. (a) g(θ) = θ ; (b) Xn. 3. 1
n

∑n
i=1 X2

i
− 1

n−1
∑n

i=1(Xi − Xn)
2. 5. δ(X) = 2X. 11. (a) All values; (b) α = m

m+4n
.

15. (c) c0 = 1
3(1 + θ0).

Section 8.8

3. I (θ) = 1
θ

. 5. I (σ 2) = 1
2σ 4 . 9.

√
π/2|X|, (π/2 − 1)σ 2.

Section 8.9

7. (a) For α(m − 1) + 2β(n − 1) = 1. (b) α = 1
m+n−2 , β = 1

2(m+n−2)
. 9. Y

2

[
S2
n

n−1

]1/2 . 11. Xn − c

[
S2

n

n(n−1)

]1/2
, where

c is the 0.99 quantile of the t distribution with n − 1 degrees of freedom. 13. (a) (μ1 − 1.96v1, μ1 + 1.96v1), where

μ1 and v1 are given by Eqs. (7.3.1) and (7.3.2). 15. Normal with mean θ and variance θ2/n. 21. (c) Normal with
mean 1/θ and variance 1/[nθ3].

Chapter 9

Section 9.1

1. (a) π(β|δ) = e−β ; (b) e−1.
3. (a) π(0) = 1, π(0.1) = 0.3941, π(0.2) = 0.1558, π(0.3) = 0.3996, π(0.4) = 0.7505, π(0.5) = 0.9423, π(0.6) = 0.9935,
π(0.7) = 0.9998, π(0.8) = 1.0000, π(0.9) = 1.0000, π(1) = 1.0000; (b) 0.1558. 5. (a) Simple; (b) Composite; (c) Com-
posite; (d) Composite. 9. T = μ0 − Xn. 11. (a) c1 < 0, c2 = 6; (b) 0.0994. 13. 3 15. 1 − x, if 0 ≤ x ≤ 1;
0, if x > 1. 19. (−∞, xn + σ ′n−1/2T −1

n−1(1 − α0)).

Section 9.2

1. Reject H0 if X = 1; don’t reject H0 if X = 0. 3. (b) 1. 5. (a) Reject H0 when Xn > 5 − 1.645n−1/2; (b) α(δ) = 0.0877.

7. (b) c = 31.02. 9. β(δ) =
(

1
2

)n
. 11. (a) 0.6170; (b) 0.3173; (c) 0.0455; (d) 0.0027. 13. (a) Reject H0 if

exp(−T/2)/4 < 4/(2 + T )3; (b) Do not reject H0; (d) Reject H0 if T > 13.28; (e) Do not reject H0.

Section 9.3

7. The power function is 0.05 for every value of θ . 9. c = 36.62. 13. (a) Reject H0 if Xn ≤ 9.359; (b) 0.7636;
(c) 0.9995.

Section 9.4

1. c1 = μ0 − 1.645n−1/2 and c2 = μ0 + 1.645n−1/2. 3. n = 11. 5. c1 = −0.424 and c2 = 0.531. 11. c1 =
μ0 − 1.645n−1/2 and c2 = μ0 + 1.645n−1/2.

Section 9.5

1. (a) Don’t reject H0; (b) 0.0591. 3. U = −1.809; do not reject the claim. 5. Don’t reject H0. 9. Since
S2

n

4 < 16.92, don’t reject H0. 13. U = 26
3 ; the corresponding tail area is very small. 15. U = 13

3 ; the corresponding
tail area is very small.
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Section 9.6

1. Don’t reject H0. 3. c1 = −1.782 and c2 = 1.782; H0 will not be rejected. 5. Since U = −1.672, reject H0.
7. −0.320 < μ1 − μ2 < 0.008. 11. (a) Do not reject H0; (b) Do not reject H0.

Section 9.7

1. Reject the null hypothesis. 3. c = 1.228. 5. 1. 7. (a) σ̂ 2
1 = 7.625 and σ̂ 2

2 = 3.96; (b) Don’t reject H0.
9. c1 = 0.321 and c2 = 3.77. 11. 0.265V < r < 3.12V . 15. 0.8971. 19. (a) 0.0503; (b) 0.0498.

Section 9.8

1. X > 50.653. 3. Decide that failure was caused by a major defect if
∑n

i=1 Xi >
4n+log(0.64)

log(7/3) . 11. (a) For the first

choice, w0 = w′, w1 = w′′, d0 = d ′, d1 = d ′′, �0 = �′, and �1 = �′′. Switch them all for the other case.

Section 9.9

1. (a) c = 1.96. 3. 0.0013. 5. (a) 1.681, 0.3021, 0.25; (b) 0.0464, 0.00126,
3 × 10−138.

Section 9.10

1. Reject H0 if X ≥ 2, α(δ) = 0.5, β(δ) = 0.1563. 3. Reject H0 for X ≤ 6. 5. Reject H0 for X > 1 − α1/2;
β(δ) = (1 − α1/2)2. 7. Reject H0 for X ≤ 1

2 [(1.4)1/2 − 1]. 9. Reject H0 for X ≤ 0.01 or X ≥ 1; power is 0.6627.

11. 0.0093. 17. (a) 1; (b) 1
α

. 23. (a) Reject H0 if the measurement is at least 5 + 0.1 × variance × log(w0ξ0/[w1ξ1]).

Chapter 10

Section 10.1

7. Q = 11.5; reject the hypothesis. 9. (a) Q = 5.4 and corresponding tail area is 0.25; (b) Q = 8.8 and corresponding
tail area is between 0.4 and 0.5.

Section 10.2

1. The results will depend on how one divides the real line into intervals, but the p-values for part (b) should be noticeably

larger than the p-values for part (a). 3. (a) θ̂1 = 2N1+N4+N5
2n

and θ̂2 = 2N2+N4+N6
2n

. (b) Q = 4.37 and corresponding tail

area is 0.226. 5. θ̂ = 1.5 and Q = 7.56; corresponding tail area lies between 0.1 and 0.2.

Section 10.3

1. Q = 21.5; corresponding tail area is 2.2 × 10−5. 5. Q = 8.6; corresponding tail area lies between 0.025 and 0.05.

Section 10.4

1. Q = 18.8; corresponding tail area is 8.5 × 10−4. 3. Q = 18.9; corresponding
tail area is between 0.1 and 0.05. 5. Correct value of Q is 7.2, for which the
corresponding tail area is less than 0.05.

Section 10.5

7. (b)
Proportion helped

Older Younger
subjects subjects

Treatment I 0.433 0.700

Treatment II 0.400 0.667
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(c)
Proportion helped

All subjects

Treatment I 0.500

Treatment II 0.600

Section 10.6

3. D∗
n = 0.25; corresponding tail area is 0.11. 5. D∗

n = 0.15; corresponding tail area is 0.63. 7. D∗
n = 0.065;

corresponding tail area is approximately 0.98. 9. Dmn = 0.27; corresponding tail area is 0.39. 11. Dmn = 0.50;
corresponding tail area is 0.008.

Section 10.7

1. (a) 22.17; (b) 20.57, 22.02, 22.00, 22.00; (c) 22.10; (d) 22.00. 3. 0.575. 5. M.S.E. (Xn) = 0.025 and M.S.E.
(X̃n) = 0.028. 13. 1. 17. Normal, with mean equal to the IQR of the distribution (θ3/4 − θ1/4) and variance

[4nf (θ1/4)
2]−1.

Section 10.8

3. U = 3.447; corresponding (two-sided) tail area is 0.003. 5. Dmn = 0.5333; corresponding tail area is 0.010.

Section 10.9

1. (141, 175). 3. Any level greater than 0.005, the smallest probability given in the table in this book. 5. Do

not reject the hypothesis. 9. |a| > 1
2 (6.635n)1/2. 15. Normal, with mean

(
1
2

)1/θ
and variance 1

nθ241/θ .

17. (a) 0.031 < α < 0.994. (b) σ < 0.447 or σ > 2.237. 19. Uniform on the interval [y1, y3].

Chapter 11

Section 11.1

5. y = −1.670 + 1.064x. 7. (a) y = 40.893 + 0.548x; (b) y = 38.483 + 3.440x − 0.643x2. 9. y = 3.7148 + 1.1013x1 +
1.8517x2. 11. The sum of the squares of the deviations of the observed values from the fitted curve is smaller in
Exercise 10.

Section 11.2

7. (a) −0.7861, 0.6850, 0.9377; (b) 0.2505σ 2, 0.0277σ 2; (c) −0.775 9. c1 = 3xn = 6.99. 11. x = xn = 2.33.
13. −0.891. 15. c1 = −xn = −2.25. 17. x = xn = 2.25.

Section 11.3

1. Since U0 = −6.695, reject H0. 3. Since U1 = −6.894, reject H0. 5. Since |U01| = 0.664, don’t reject H0. 9. Since
U2 = 24.48, reject H0. 11. 0.246 < β2 < 0.624. 13. 0.284 < y < 0.880. 17. 10(β1 − 0.147)2 + 10.16(β2 − 0.435)2 +
8.4(β1 − 0.147)(β2 − 0.435) < 0.503. 19. C = 1/(n − 2). 25. (a) β0 + β1xi ± T −1

n−2(1 − α0/4)σ ′
[

1
n

+ (xi−xn)
2

s2
x

]1/2
;

(b) α(x) = x−x1
x0−x1

.

Section 11.4

5. (a) 12.21(β1 − 0.4352) has the t distribution with eight degrees of freedom;
(b) 11.25(β0 + β1 − 0.5824) has the t distribution with eight degrees of freedom.
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Section 11.5

5. β̂ = 5.126, σ̂ 2 = 16.994, and Var(β̂) = 0.0150σ 2. 7. β̂0 = −0.744, β̂1 = 0.616, β̂2 = 0.013, σ̂ 2 = 0.937. 9. U3 = 0.095;
corresponding tail area is greater than 0.90. 11. R2 = 0.644. 13. Var(β̂0) = 222.7σ 2, Var(β̂1) = 0.1355σ 2,
Var(β̂2) = 0.0582σ 2, Cov(β̂0, β̂1) = 4.832σ 2, Cov(β̂0, β̂2) = −3.598σ 2, Cov(β̂1, β̂2) = −0.0792σ 2. 15. U2 = 4.319;
corresponding tail area is less than 0.01. 21. The value of the F statistic with two and seven degrees of freedom is
1.615; corresponding tail area is greater than 0.05. 25. 87. 29. 0.893.

Section 11.6

5. U2 = 13.09; corresponding tail area is less than 0.025.

Section 11.7

5. μ = 3.25, α1 = −2, α2 = 3, α3 = −1, β1 = 1.75, β2 = −2.25, β3 = −1.25, β4 = 1.75. 13. σ̂ 2 = 1.9647. 15. U2
B

= 4.664;
corresponding tail area is between 0.05 and 0.025.

Section 11.8

3. (a) μ = 9, α1 = −3, α2 = 3, β1 = −1.5, β2 = 1.5, γ11 = γ22 = 1
2 , γ12 = γ21 = − 1

2 ; (b) μ = 5, α1 = − 1
2 , α2 = 1

2 , β1 = − 3
2 ,

β2 = 3
2 , γ11 = γ12 = γ21 = γ22 = 0; (c) μ = 3 1

4 , α1 = −2, α2 = 3, α3 = −1, β1 = 13
4 , β2 = −2 1

4 , β3 = −11
4 , β4 = 13

4 , γij = 0 for

all values of i and j ; (d) μ = 5, α1 = −2 1
2 , α2 = 0, α3 = 2 1

2 , β1 = −3, β2 = −1, β3 = 1, β4 = 3, γ11 = 11
2 , γ12 = 1

2 , γ13 = − 1
2 ,

γ14 = −11
2 , γ21 = γ22 = γ23 = γ24 = 0, γ31 = −11

2 , γ32 = − 1
2 , γ33 = 1

2 , γ34 = 11
2 . 11. U2

AB
= 0.7047; corresponding tail

area is much larger than 0.05. 13. U2
B

= 9.0657; corresponding tail area is less than 0.025. 15. The value of
the appropriate statistic having the t distribution with 12 degrees of freedom is 2.8673; the corresponding tail area is
between 0.01 and 0.005. 19. α0 + (1 − α0)β0.

Section 11.9

1. (a) (0.01996, 0.02129); (b) Reject the null hypothesis; (c) (25.35, 26.16). 3. E(T ) = ρσ2
σ1

; Var(T ) = (1−ρ2)σ 2
2∑n

i=1(xi−xn)
2 .

7. β2 =
∑n

i=1(y
′2
i
−x

′2
i
)±

{[∑n

i=1

(
y

′2
i
−x

′2
i

)]2
+4

(∑n

i=1 x′
i
y′
i

)2
}1/2

2
∑n

i=1 x′
i
y′
i

, β1 = yn − β2xn, where x′
i
= xi − xn and y′

i
= yi − yn. Either

the plus sign or the minus sign in β2 should be used, depending on whether the optimal line has a positive or a negative

slope. 9. 1
n

∑k
i=1 ni

[
v2
i

+ (xi+ − x++)2
]
.

11. 1
IJ (K−1)

∑
i,j,k(Yijk − Y ij+)2. 13. Let U = IJ (K−1)(S2

A
+S2

B
+S2

AB
)

(IJ−1)S2
Resid

. Reject H0 if U ≥ c. Under H0, U has an F

distribution with IJ − 1 and IJ (K − 1) degrees of freedom. 15. θ̂1 = 1
4 (Y1 + Y2) + 1

2Y3, θ̂2 = 1
4 (Y1 + Y2) − 1

2Y3,

σ̂ 2 = 1
3[(Y1 − θ̂1 − θ̂2)

2 + (Y2 − θ̂1 − θ̂2)
2 + (Y3 − θ̂1 + θ̂2)

2], where Y1 = W1, Y2 = W2 − 5, Y3 = 1
2W3; (θ̂1, θ̂2) and σ̂ 2 are

independent; (θ̂1, θ̂2) has a bivariate normal distribution with mean vector (θ1, θ2) and covariance matrix
[ 3

8 − 1
8

1
8

3
8

]
σ 2;

3σ̂ 2

σ 2 has the χ2 distribution with one degree of freedom. 17. Var(εi) =
[

1 − 1
n

− (xi−xn)
2∑n

j=1(xj−xn)
2

]
σ 2. 19. μ = θ + ψ ;

αi = θi − θ ; and βj = ψj − ψ , where θ =
∑I

i=1 viθi

v+ and ψ =
∑J

j=1 wjψj

w+ .
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23.
μ = θ+++,

αA
i = θi++ − θ+++,

αB
j = θ+j+ − θ+++,

αC
k = θ++k − θ+++,

βAB
ij = θij+ − θi++ − θ+j+ + θ+++,

βAC
ik = θi+k − θi++ − θ++k + θ+++,

βBC
jk = θ+jk − θ+j+ − θ++k + θ+++,

γijk = θijk − θij+ − θi+k − θ+jk + θi++ + θ+j+ + θ++k − θ+++.

Chapter 12

Note: Answers to exercises that involve simulation are themselves only simulation approximations. Your answers will be
different.

Section 12.1

5. (c) f (x, y) = 0.43x exp(−0.4[x + y]) for x, y > 0,
∫ ∞

0
∫ ∞
x 0.43x exp(−0.4[x + y])dydx.

Section 12.2

5. (b) The k = 2 trimmed mean probably has the smallest M.S.E. 9. 0.2599. 11. (λx1αx1/βx1)
1/2(μx − μx1) has

the t distribution with 2αx1 degrees of freedom, and similarly for μy. 15. (a) r − [log ψ(1)]/u.

Section 12.3

1. (a) Approximation = 0.0475, sim. std. err. = 0.0018; (b) v = 484. 11. χ2 distribution with n − p degrees of freedom
divided by S2

Resid.

Section 12.4

7. (a) Z = 0.8343, sim. std. err. = 0.00372; (b) Z′ = 0.8386, sim. std. err. = 0.00003. 17. Look at Exercises 3, 4, 6, and
10.

Section 12.5

5. Approximation = 0.2542, sim. std. err. = 4.71 × 10−4. 7. 826.8, 843.3, 783.3. 9. Means: −0.965,
0.02059, 1.199 × 10−5; std. devs.: 2.448 × 10−2, 1.207 × 10−4, 8.381 × 10−6. 11. 0.33, 0.29, 0.30, 0.31, 0.34, 0.30,
0.62, 0.51, 0.98, 0.83. 13. (b) Both α0 and β0 must be the same in both priors. In addition, b0 = β0/λ0 and
a0 = α0; (d) Approximation = (154.67, 215.79), sim. std. err. of endpoints = 10.8v−1/2 (based on 10 Markov chains
of length v each). 15. (a) Conditional on everything else Xn+i has the d.f. F(x) = [1 − e−θx]/[1 − e−θc], for
0 < x ≤ c; (b) Conditional on everything else Xn+i has the d.f. F(x) = 1 − e−θ(x−c), for x ≥ c.

Section 12.6

3.
n∑

i=(n+1)/2

(
n

i

)
(�/n)n(1 − �/n)n−i, where � is the number of observations in the original sample that equal the

smallest value. 5. (a) −1.684; (b) About 50,000. 7. (a) 0.107; (b) 1.763; (c) 0.0183. 9. (a) 4.868 ×
10−4; (b) −0.0023; (c) 2.423 × 10−5 and 6.920 × 10−4. 11. (b) −0.2694 and 0.5458.
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Section 12.7

5. (b) Approximation = 0.581, sim. std. err. = 0.0156; (c) 16,200. 7. (a) 0.9 quantiles around 4.0, 0.95 quantiles
around 5.2, 0.99 quantiles around 8; (b) The differences are on the same order of magnitude as Monte Carlo

variability; (c) 0.123. 9. (a) exp
(

−βφ0 − u0(ψ−ψ0)
2

2 − ∑p

i=1 τi

[
β + ni(μi−yi)

2+wi+λ0(μi−ψ)2

2

])
×βpα0+ε0−1 ∏p

i=1 τ
α0+[ni+1]/2−1
i

; (b) β has a gamma distribution with parameters pα0 + ε0 and φ0 + ∑p

i=1 τi; (c) Very
close to the values in Table 12.6. 11. (c) The proportions are rather close to the nominal values.
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exact, 486, 489
interpretation of, 487, 491
observed value, 486
one-sided, 488
uniformly most accurate, 623

Confidence limit, 488, 489
exact, 489
lower, 488
upper, 489

Confidence set
coefficient, 541
exact, 541

Confidence sets and tests, 540
Conjugate family, 395

for Bernoulli and binomial
distributions, 394

for exponential distribution, 402
for normal distribution, 398, 496
for Poisson distribution, 397
simple linear regression, 732
for uniform distribution on

interval, 407
Consistent estimator, 413
Consumer Reports, 494, 754
Contained in, 7
Contains, 7
Contaminated normal distribution,

668
Contaminating distribution, 668
Contingency table, 642
Continuous distribution, 101
Continuous joint distribution, 120
Continuous random variable, 101
Control variates, 823
Convergence in probability, 352
Convergence in quadratic mean, 359
Convergence with probability 1, 355
Converges in distribution, 363
Convex function, 220
Convolution, 179
Cook, R. D., 718, 720, 738, 750
Correction for continuity, 373
Correlated 2 × 2 tables, 650–651
Correlation, 250
Corvino, J., xi
Countable, 8
Covariance, 248

of sums, 255
Covariance matrix, 741
Cowles, M. K., 825

Cramér, H., 384, 518
Cramér-Rao inequality, 518
Cramér-Rao lower bound, 520
Critical region, 532, 546
Cullen, C. G., 478, 708
Cummings, C., xii
Cumulative distribution function,

108
joint, 125

Daniell, P., 667
Darwin, C., 678
David, F. N., 2
Davison, A. C., 843
DeChavez, K., xii
Decreasing failure rate, 326
DeGroot, M., xi
DeGroot, M. H., 384, 493
Delta method, 364, 797

two-dimensional, 797, 803
De Morgan’s laws, 13
Derman, C., 2
Design matrix, 740
Devore, J. L., 2
Devroye, L., 815
Digamma function, 428, 461
Disaggregation, 654
Discrete distribution, 95
Discrete joint distribution, 118
Discrete random variable, 95
Disjoint, 11
Disraeli, B., 51
Distribution, 94

Bernoulli, 97, 276
beta, 328
binomial, 98, 277
bivariate, 118
bivariate normal, 339, 442
Cauchy, 210
χ (chi), 473
χ2 (chi-square), 469
conditional, 142, 144
contaminated normal, 668
continuous, 101
discrete, 95
exponential, 321
exponential family, 407, 455
F , 598
gamma, 319
geometric, 298
hypergeometric, 282
inverse gamma, 406
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joint, 118, 153, 154
Laplace, 671
lognormal, 312
marginal, 130
mode of, 280
multinomial, 334
multivariate normal, 741
name of, 99
negative binomial, 298
noncentral t , 579
normal, 303
normal-gamma, 497
Pareto, 326
Poisson, 288
posterior, 387
prior, 385
sampling, 465
simulation, 794
standard normal, 307
support of, 96
t , 480
uniform on integers, 97
uniform on interval, 103
Weibull, 326

Distribution function, 108
empirical, 658
joint, 125
marginal, 131
sample, 658

Distributive properties, 13
Doksum, K. A., 384
Dominates, 458
Draper, N. R., 718, 738, 750
Dummer, G. M., 645, 652

Eden, J. C., 473
Edwards, M., 834
Effects of factors, 765

main, 774
Efficient estimator, 521

asymptotic distribution, 522
Efron, B., 843
Element, 6
EM algorithm, 434
Empirical c.d.f., 658
Empty set, 8
Environmental Protection Agency,

834
Equally likely outcomes, 3, 23
Equivalence of tests and confidence

sets, 540–543
Essentially infinite populations, 286

Estimate, 408, 414
Bayes, 409

Estimation, 381. See also Estimator
Estimator, 408, 414

admissible, 458
Bayes, 409
consistent, 413
efficient, 521
inadmissible, 458
maximum likelihood, 418
method of moments, 430, 431
robust, 460, 666
unbiased, 507

Evans, M., xi
Event, 5, 7–10
Exact confidence interval, 486
Exact confidence set, 541
Expectation, 208, 209

conditional, 256
does not exist, 208, 210
exists, 208, 210
of a function, 213, 215
of linear function, 217

Expected value, 208. See also
Expectation

Experiment, 5
augmented, 61–63

Experimental design, 381, 705
Exponential distribution, 321

conjugate prior for, 402
m.g.f., 322
mean, 321
memoryless property, 322
p.d.f., 321
variance, 321

Exponential family, 407, 566
k-parameter, 455

Extrapolation, 704

Factorization criterion, 445, 449
Factors, 763

effects, 765
sum of squares, 767, 776

Factor sum of squares, 767, 776
Failure rate, 326

decreasing, 326
increasing, 326

F distribution, 598
one-way layout, 722
p.d.f., 598
relation to t distibution, 598
two-way layout, 769

with replications, 777
Federal Reserve Board, 736
Feller, W., 2, 31
Ferguson, T. S., 384
Fermat, P., 1
Finite population correction, 284
Finkelstein, M. O., 70
Fisher, N., 500
Fisher, R. A., 417, 443, 444, 481, 635,

755
Fisher information, 515

for function of parameter, 527
information inequality, 519
in a random variable, 515
in a sample, 517
for vector parameter, 525

Fisher information matrix, 525
Fitted values, 717
Folks, L., 2
Forbes, J. D., 698, 718, 719
Frank, D., xi
Fraser, D. A. S., 2
Frequency interpretation of

probability, 2–3
Frequentist, 384
Frey, M., 834
Friedland, L. R., 396
Frisby, J. P., 597
F test, 599

level, 600
as likelihood ratio test, 602
one-way layout, 722
power function, 600
two-way layout, 769

with replications, 777
Function

of continuous random variable
distribution, 168, 172

of continuous random variables
distribution, 182

of discrete random variable
distribution, 168

of discrete random variables
distribution, 175

Gadidov, A., xi, xii
Galileo Galilei, 1
Galton, F., 707
Gambler’s ruin problem, 86–89, 200
Gamma distribution, 319

as conjugate prior, 397, 402
m.g.f., 320
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Gamma distribution (continued)
moments, 320
p.d.f., 319
relation to Poisson distribution,

346
Gamma function, 317
Gay, A., xii
Geiger, H., 640
Geisler, L., xi
Geisser, S., 334
Gelfand, A. E., 823
Gelman, A., 826, 836
Geman, D., 825
Geman, S., 825
Gene, 23
General linear model, 738

assumptions, 736
covariance matrix of estimators,

743
hypothesis testing, 745–747
joint distribution of estimators,

745
M.L.E., 740
mean of estimators, 743

Genotype, 23
Gentle, J. E., 172
Geometric distribution298

m.g.f., 299
mean, 299
memoryless property, 300
p.f., 298
variance, 299

Gibbs sampling, 825
Gleser, L. J., 2
Glivenko-Cantelli lemma, 659
Goel, P., xi
Goldberg, L., xii
Goodness-of-fit test

χ2, 626
for composite null hypothesis, 635

Gore, A., 785
Gosset, W. S., 480
Gram-Schmidt method, 478, 708
Grand mean, 764, 774
Graybill, F. A., 2, 738
Greenhouse, J., xii
Group testing, 278
Grunbaum, B. W., 334

Halmos, P. R., 444
Hampel, F. R., 674, 720
Hartpence, K., xii

Hastings, W. K., 836
Hazard function, 326
Heavenrich, R. M., 694
Hellman, K. H., 694
Herring, S., xi
Heska, S., 400
Heymsfield, S. B., 400
Hinkley, D. V., 843
Histogram, 165
Hitczenko, P., xi
Hoel, P. G., 2
Hogg, R. V., 2
Hsu, L., xi
Huang, W.-M., xi
Huber, P. J., 667, 672, 674
Hypergeometric distribution, 282

binomial approximation, 284
mean, 283
Poisson approximation, 292
variance, 283

Hyperparameters, 395
Hypothesis

alternative, 531
composite, 532
null, 531
one-sided, 532
simple, 532, 550–557
two-sided, 532

Hypothesis testing, 381, 530
general linear model, 745–747
one-way layout, 759–760
two-way layout, 768–770

with replications, 776–780
Hypothetically observable random

variables, 377, 378

i.i.d., 158
Image of function, 172
Importance function, 817
Importance sampling, 817

stratified, 820–821
Improper prior, 387, 403, 502

simple linear regression, 729
Inadmissible estimator, 458
Increasing failure rate, 326
Independence

of events
complements, 68
conditional, 73
and conditional probability, 71
definition, 66, 68
meaning of, 71

mutual, 68
pairwise, 69

of random variables
conditional, 163, 164
definition, 135, 158
and marignal distributions, 135,

158
meaning of, 136

Independent events, 66, 68
conditionally, 73

Independent random variables, 135,
158, 164

conditional, 163
Induction, 42
Information inequality, 518
Initial distribution, 196
Initial probability vector, 196
Initial state, 188
In parallel, 167
In series, 167
Interactions, 774
Interaction sum of squares, 776
Interquartile range, 233
Intersection, 10, 11
Interval null hypothesis, 571
Invariance property of M.L.E., 426
Inverse gamma distribution, 406
IQR, 233
Iyer, H. K., 738

Jacobian, 183
Jenkins, G. M., 751
Jensen’s inequality, 220
Joint c.d.f., 125, 153
Joint cumulative distribution

function, 125
Joint distribution, 118, 153, 154

continuous, 120
discrete, 118

Joint distribution function, 125
Jointly sufficient statistics, 449

minimal, 452
Joint p.d.f., 154
Joint p.f., 119, 153
Joint p.f./p.d.f., 124, 155
Joint probability function, 119

Kempthorne, O., 2
Kirmani, S., xi
Kolmogorov, A. N, 660
Kolmogorov-Smirnov test, 661

two-sample, 664
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Koopman-Darmois family, 407
k-parameter, 455

Kronmal, R. A., 813
Kuh, E., 718

Laplace distribution, 671
Larsen, R. J., 2
Larson, H. J., 2
Lavine, M., xi
Lawless, J. F., 312
Law of large numbers, 352

strong, 355
weak, 355

Law of total probability, 60
conditional version, 61
for expectations, 258
multivariate, 162
for random variables, 148
for variances, 261

Least squares, 692
Least-squares estimators, 700

distribution, 702
general linear model, 740
simple linear regression, 701
two-way layout, 765

with replications, 774
Least-squares line, 692
Lehmann, E. L., 384, 619, 637
Lehoczky, J., xii
Lepre, C., xii
Leroy, A. M., 720
Level of significance, 536, 546

observed, 539
relation to sample size, 617

Level of test, 536
Levels of factors, 763
Levin, B., 70
Levine, R., xi
Lieblein, J., 312
Likelihood function, 390, 418
Likelihood ratio, 552
Likelihood ratio statistic, 544
Likelihood ratio test, 544, 583, 594

F test, 602
large-sample, 545
for proportions, 630
two-sample t test, 592

Lindgren, B. W., 2
Linear function

of bivariate normal random
vector, 342

covariance matrix, 742

distribution, 169, 178
of independent normal random

variables, 310
mean of, 217
moment generating function of,

237
of normal random variable, 306
standard deviation, 229
variance, 229, 253, 703

Linear regression
general linear model, 736
multiple, 738
simple, 700

Linear transformation
p.d.f. of, 186

Liukkonen, J., xi
Loch, S., xi
Lockwood, J. R., 834
Lognormal distribution, 312
Lorenzen, T. J., 302
Loss function, 409, 412, 415

absolute error, 411
hypothesis testing, 606, 607
squared error, 410

Lower quartile, 115
Lubischew, A. A., 339
Lyle, R. M., 596

M.A.E., 245
m.g.f., 236. See also Moment

generating function
M.L.E. See Maximum likelihood

estimator
M.S.E. See Mean squared error
Main effects of factors, 774
Manly, B. F. J., 531
Mann, H. B., 680
Marginal c.d.f., 131
Marginal distribution, 130

of Markov chain, 197
Marginal p.d.f., 131
Marginal p.f., 131
Markov chain, 188, 825

convergence, 199, 825
initial distribution, 196
stationary distribution, 198, 199
transition distribution, 190

stationary, 190
transition matrix, 191

Markov chain Monte Carlo, 825
Markov inequality, 349
Markowitz, H., 231

Marx, M. L., 2
Matching problem, 49
Matzkin, R., xi
Maximum likelihood estimate, 418
Maximum likelihood estimator, 418

asymptotic distribution, 523
consistency, 428
of a function, 427
general linear model, 740
invariance property, 426
limitations of, 422
relation to Bayes estimator, 432
relation to sampling plan, 439
relation to sufficient statistic,

453
simple linear regression, 701
two-way layout, 765

with replications, 774
Maximum of random sample, 180
McCabe, G. P., 471, 487, 707, 754
McConnell, T., xi
Mean, 208, 209

conditional, 256, 257
does not exist, 208, 210
exists, 208, 210
of a function, 213, 215
infinite, 208–209
of linear function, 217
sample, 310, 474

Mean absolute error, 245
Mean square, 758, 767
Mean squared error, 244

and bias, 507
prediction, 704

Mean vector, 741
Median, 115–116, 241

sample, 458, 667
Median absolute deviation, 670
Memoryless property

of exponential distribution, 322
of geometric distribution, 300

Mendenhall, W., 2
M-estimator, 672
Method of moments estimator, 430,

431
Metropolis, N., 823, 836
Metropolis algorithm, 836
Meyer, P. L., 2
Miller, L., 2
Miller, M., 2
Minimal jointly sufficient statistic,

452
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Minimal sufficient statistic, 452, 453,
454

Minimum of random sample, 180
Minimum variance unbiased

estimator, 522
MLR

i. See Monotone likelihood ratio
Mode, 280
Moment, 234

central, 235
sample, 430

Moment generating function, 236
uniqueness, 238

Monotone likelihood ratio, 560
and uniformly most powerful test,

562
Monte Carlo analysis, 791
Mood, A. M., 2
Moore, D. S., 471, 487, 707, 754
Morrison, D. F., 343
Mueller, H.-G., xi
Müller, M. E., 805
Multinomial coefficient, 43
Multinomial distribution, 334

covariance, 336
mean, 336
p.d.f., 334
relation to binomial distribution,

335
relation to Poisson distribution,

337
variance, 336

Multinomial theorem, 43, 46
Multiple linear regression, 738
Multiple R2. See R2

Multiple step transition matrix,
194

Multiplication rule
for conditional probabilities,

58–59
for counting, 26–27
for distributions, 147

Multivariate Bayes’ theorem, 162
Multivariate law of total probability,

162
Multivariate normal distribution,

741
Mutually exclusive events, 11, 72
Mutually independent events, 68, 72
Myers, R., xi

Name of distribution, 99

Negative binomial distribution, 298
extended definition, 301
m.g.f., 299
mean, 299
p.f., 297
relation to binomial distribution,

345
variance, 299

Negative binomial distribution
Poisson approximation, 302

Negatively correlated, 251
Newton’s method, 429
Neyman, J., 444, 553
Neyman-Pearson lemma, 553
Nickless, G., 590
Nocedal, J., 430
Noncentrality parameter, 579, 580
Noncentral t distribution, 579
Nonparametric bootstrap, 840,

843–845
Nonparametric methods, 625
Nonparametric problems, 625
Normal distribution, 303

as conjugate prior, 398
conjugate prior for, 398
m.g.f., 304
mean, 305
p.d.f., 303
standard, 307
variance, 305

Normal equations, 692, 693
Normal-gamma distribution, 497
Normalizing constant, 105, 391
Null hypothesis, 531

interval, 571

Observable random variables, 377,
378

Observed level of significance, 539
Olkin, I., 2
Olsen, A., 473
One-sided althernative, 562
One-sided hypothesis, 532
One-way layout, 755

Bayesian analysis, 831
Ordered sampling with replacement,

35
Order statistics, 451
Ore, O., 2
Orthogonal matrix, 476–478
Outcome, 6–7
Outlier, 674, 718, 719

Overall mean, 764, 774

p.d.f., 101
conditional, 144, 146, 160
joint, 154
marginal, 131
nonuniqueness of, 102

p.f., 96
conditional, 142, 146, 160
joint, 119, 153
marginal, 131

p.f./p.d.f., 124
conditional, 160
joint, 155

Parallel, 167
Parameter, 377, 378

as limit of random variables, 383
Parameter space, 378
Parametric bootstrap, 840, 845–848
Pareto distribution, 326

as conjugate prior, 407
Parker, A. J., 590
Partition, 60
Pascal, B., 1
Pearson, E. S., 553
Pearson, K., 626
Percentile, 112
Percentile bootstrap confidence

interval, 843
Percentile t bootstrap confidence

interval, 844
Permutations, 28
Peruggia, M., xi
Peterson, A. V., 813
Piland, N. F., 500
Pivotal, 489
Placebo, 57
Poisson approximation

to binomial distribution, 291
to hypergeometric distribution,

292
to negative binomial distribution,

302
Poisson distribution, 288

conjugate prior for, 397
m.g.f., 290
mean, 289
relation to gamma distribution,

346
variance, 290

Poisson process, 293
assumptions, 294
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inter-arrival times, 324
Port, S., 2
Positively correlated, 251
Posterior distribution, 387

approximate normality, 524
Posterior hyperparameters, 395
Posterior probability, 80
Power function, 534

ANOVA, 760
χ2 goodness-of-fit test, 850
F test, 600
general linear model, 747
sign test, 680
t test, 579, 582, 811
two-sample t test, 590
Wilcoxon-Mann-Whitney test, 682

Precision, 495
Prediction, 380

general linear model, 747–748
Prediction interval, 717

Bayesian inference, 732
Predictor, 699
Presidential election (2000), 785
Prien, R. F., 57
Prior distribution, 385

conjugate family, 395, 496
improper, 403, 502

Prior hyperparameters, 395
Prior probability, 80
Probability, 17

conditional, 56
Probability density function, 101
Probability function, 96

joint, 119
Probability integral transformation,

170, 804
Probability measure, 17
Probability vector, 196
Pseudo-random numbers, 170
p-value, 539

Bernoulli parameter, 540
F test, 600
and posterior probability, 616
and test statistic, 539
t test, 578

two-sided, 583
two-sample, 589, 591

Q-Q plot, 720
Quantile, 112

sample, 670
Quantile function, 112

Quantile plot, 720
Quartile, 115

lower, 115
upper, 115

Quetelet, A., 412

R2, 748, 753
Ralescu, S., xi
Randall-Maciver, R., 531
Randomized response, 462
Randomized test, 556
Random number generator, 170
Random process, 188
Random sample, 158
Random variables, 93

continuous, 101
conditional distribution, 144
expectation, 209
function of, 168, 172
joint distribution, 120

discrete, 95
conditional distribution, 142
expectation, 208
function of, 168
joint distribution, 118

distribution, 94
marginal, 130

expectation of function, 213, 215
expectation of product, 251
independent, 135
negatively correlated, 251
positively correlated, 251
standard deviation, 226
uncorrelated, 251
variance, 226

of sum, 253
Random vector, 153
Range of random sample, 181
Rank test

paired observations, 684–685
power function, 682
Wilcoxon-Mann-Whitney, 681

Rao, C. R., 384, 457, 518
Ravishankar, K., xi
Regression. See Linear regression
Regression coefficients, 699

confidence interval, 715–716
hypothesis testing, 712–715
joint confidence set, 722
simultaneous inference, 721–726

Reinsel, G. C., 751
Reject hypothesis, 531, 545

Rejection region, 533, 546
Reliability, 167
Replications, 773
Residual mean square, 758
Residuals, 717, 749, 760
Residual sum of squares, 757, 767,

776
Response, 699
Rice, J. A., 2
Risk-neutral price, 215
Robust estimator, 460, 666, 667
Robust linear regression, 837
Rohatgi, V. K., 384
Rohlf, F. J., 640
Rousseauw, P. J., 720
Rubenstein, R. Y., 172
Rutherford, E., 640

Sample c.d.f., 658
Sample distribution function, 658
Sample mean, 310, 474
Sample median, 458, 667
Sample moment, 430
Sample quantile, 670

asymptotic distribution, 677
Sample size, 158
Sample space, 6, 7

simple, 23
Sample variance, 421, 474
Sampling distribution, 465
Sampling without replacement, 27
Sampling with replacement, 29

ordered, 35
unordered, 35

Saphire, D., xi
Savage, L. J., 444
Scale parameter, 670
Schaeffer, R. L., 2
Scheffé, H., 723, 760, 781
Schervish, M. J., 383, 384, 428, 432,

504, 523, 524, 610, 635, 677
Scholes, M., 313, 799
Schwarz inequality, 250
Sensitivity analysis, 387, 460
Sepanski, S., xi
Sepulveda, D., 400
Serial dependence, 750
Series, 167
Sestrich, H., xii
Set, 6
Set theory, 7–13
Sharpe, R. H., 611
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Sign test, 679
power function, 680

Simple hypothesis, 532, 550–557
Simple linear regression, 700

assumptions, 700
Bayes test, 733
distribution of estimators, 709
improper prior, 729
M.L.E., 701
posterior distribution, 729–731
prediction interval, 716
robust, 837

Simple sample space, 23
Simpson, J., 473
Simpson’s paradox, 653–656
Simulation, 170, 787, 788

discrete random variables,
812–814

notation, 792
probability integral transforma-

tion, 170, 804
Simulation distribution, 794
Simulation size, 798
Simulation standard error, 796

of an average, 796
of a sample quantile, 797
of a smooth function, 796

Simulation variance, 795, 796
Size of test, 536, 546
Skewness, 235
Smirnov, N. V., 660
Smith, A. F. M., 823
Smith, H. L., 500, 718, 738, 750
Sokal, R. R., 640
Squared error loss, 410
Standard deviation, 226

infinite, 226
Standard normal distribution, 307
State of process, 188

initial, 188
Stationary distribution, 198, 199
Stationary transition distribution,

190
Statistic, 382

χ2, 626
sufficient, 444, 449

Statistical decision problem, 269, 381
Statistical inference, 378
Statistical model, 377
Statistical significance

relation to practical significance,
619

Stein, C., 511
Stigler, S. M., 2, 412
Stirling’s formula, 31, 318
Stochastically larger, 683
Stochastic matrix, 191
Stochastic process, 188
Stone, C. L., 2
Stratified importance sampling,

820–821
Strong convergence, 355
Strong law of large numbers, 355
Student, 480
Subjective interpretation of

probability, 3–4
Subset, 6, 7
Sufficient statistic, 444, 449

limitations of, 459
minimal, 452, 453, 454

Sum of squares
between, 757
factor, 767, 776
interaction, 776
residual, 757, 767, 776
total, 757, 766, 775

Support, 96, 101, 121

Tail area, 539. See also p-value
Tan, H., xii
Tanis, E. A., 2
Taylor’s theorem, 225

two-dimensional, 803
t distribution, 480

moments, 480–481
p.d.f., 480
relation to F distibution, 598
relation to normal distribution,

481
variance, 481

Test, 531
Bayes, 606
and confidence sets, 540
randomized, 556
UMP, 560
unbiased, 573

Testing hypotheses. See Hypothesis
testing

Test procedure. See Test
Test statistic, 533
Thiru, K., xii
Thomson, A., 531
Tibshirani, R., 843
Tierney, L., 825

Todhunter, I., 2
Total sum of squares, 757, 766, 775
Transition distribution, 190

stationary, 190
Transition matrix, 191

multiple step, 194
Trigamma function, 430
Trimmed mean, 670
Troske, K., xii
t test, 577

level, 577
as a likelihood ratio test, 583, 592
power function, 579, 582, 590, 811
p-value, 578, 583, 589
two-sample, 588
unbiased, 577

Tubb, A., 590
Tukey, J. W., 667
Twain, M., 51
Two-sample t test, 588

p-value, 589
Two-sided alternative, 565, 568–574
Two-sided hypothesis, 532
Two-stage test, 778, 807
Two-way layout, 763

with replications, 773
unequal numbers, 780

Type I error, 535
Type II error, 535

UMP test. See Uniformly most
powerful test

Unbiased estimator, 507, 511
with minimum variance, 522

Unbiased test, 573
Uncorrelated, 251
Uncountable, 8, 13
Uniform distribution on integers, 97
Uniform distribution on interval,

103
conjugate prior for, 407

Uniformly most powerful test, 560
and monotone likelihood ratio,

562
Union, 9

probability of, 19, 46–48
Unordered sampling with

replacement, 35
Upper quartile, 115
Utility function, 265, 415

Value at risk, 113
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Van Middelem, C. H., 611
Van Ness, J., xii
Vardi, Y., xii
Variance, 226

conditional, 260
does not exist, 226
infinite, 226
sample, 421, 474
of sample mean, 350
simulation, 795, 796
of sum of independent random

variables, 230
of sum of random variables, 253

Variance stabilizing transformation,
365

Vaynberg, Y., xii

Vector notation, 153
Venn diagram, 9
Ventura, V., xii
Verducci, J., xii
Vezveai, M., xii
Vidakovic, B., xii
Vorwerk, K., xii

Wackerly, D. D., 2
Walker, A. J., 813
Warren, B., xii
Weak convergence, 355
Weak law of large numbers, 355
Weibull distribution, 326
Weisberg, S., 699, 718, 720, 738, 750

Welch, B. L., 593
Welsch, R. E., 718
Whitney, D. R., 680
Wilcoxon, F., 685
Wilcoxon-Mann-Whitney ranks test,

680
power function, 682
ties, 682

Williams, C. L., xii
Winsor, C. P., 404
Wolff, L., xii
Wright, S., 430

Young, G. A., 843

Zelen, M., 312



Discrete Distributions

Bernoulli with parameter p Binomial with parameters n and p

p.f. f (x) = px(1 − p)1−x, f (x) = (
n
x

)
px(1 − p)n−x,

for x = 0, 1 for x = 0, . . . , n

Mean p np

Variance p(1 − p) np(1 − p)

m.g.f. ψ(t) = pet + 1 − p ψ(t) = (pet + 1 − p)n

Uniform on the integers a, . . . , b Hypergeometric with parameters A, B, and n

p.f. f (x) = 1
b−a+1, f (x) = (A

x)(
B

n−x)

(A+B
n )

,

for x = a, . . . , b for x = max{0, n − b}, . . . , min{n, A}
Mean b+a

2
nA

A+B

Variance (b−a)(b−a+2)
12

nAB

(A+B)2
A+B−n
A+B−1

m.g.f. ψ(t) = e(b+1)t−eat

(et−1)(b−a+1) Nothing simpler than ψ(t) = ∑
x f (x)etx

Geometric with parameter p Negative binomial with parameters r and p

p.f. f (x) = p(1 − p)x, f (x) = (
r+x−1

x

)
pr(1 − p)x,

for x = 0, 1, . . . for x = 0, 1, . . .

Mean 1−p
p

r(1−p)
p

Variance 1−p

p2
r(1−p)

p2

m.g.f. ψ(t) = p

1−(1−p)et , ψ(t) =
(

p

1−(1−p)et

)r

,

for t < log(1/[1 − p]) for t < log(1/[1 − p])

Poisson with mean λ Multinomial with parameters n and (p1, . . . , pk)

p.f. f (x) = e−λ λx

x! , f (x1, . . . , xk) = (
n

x1,...,xk

)
p

x1
1

. . . p
xk

k
,

for x = 0, 1, . . . for x1 + . . . + xk = n and all xi ≥ 0

Mean λ E(Xi) = npi,

for i = 1, . . . , k

Variance λ Var(Xi) = npi(1 − pi), Cov(Xi, Xj) = −npipj ,

for i, j = 1, . . . , k

m.g.f. ψ(t) = eλ(et−1) Multivariate m.g.f. can be defined,
but is not defined in this text.



Continuous Distributions

Beta with parameters α and β Uniform on the interval [a, b]

p.d.f. f (x) = �(α+β)
�(α)�(β)

xα−1(1 − x)β−1, f (x) = 1
b−a

,

for 0 < x < 1 for a < x < b

Mean α
α+β

a+b
2

Variance αβ

(α+β)2(α+β+1)
(b−a)2

12

m.g.f. Not available in simple form ψ(t) = e−at−e−bt

t (b−a)

Exponential with parameter β Gamma with parameters α and β

p.d.f. f (x) = βe−βx, f (x) = βα

�(α)
xα−1e−βx,

for x > 0 for x > 0

Mean 1
β

α
β

Variance 1
β2

α

β2

m.g.f. ψ(t) = β
β−t

, ψ(t) =
(

β
β−t

)α

,

for t < β for t < β

Bivariate normal with means μ1 and μ2,
Normal with mean μ and variance σ 2 variances σ 2

1 and σ 2
2 , and correlation ρ

p.d.f. f (x) = 1
(2π)1/2σ

exp
(
− (x−μ)2

2σ 2

)
Formula is too large to print here.

See Eq. (5.10.2) on page 338.

Mean μ E(Xi) = μi,

for i = 1, 2

Variance σ 2 Covariance matrix:
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
m.g.f. ψ(t) = exp

(
μt + t2σ 2

2

)
Bivariate m.g.f. can be defined,

but is not defined in this text.



Continuous Distributions

Lognormal with parameters μ and σ 2 F with m and n degrees of freedom

p.d.f. f (x) = 1
(2π)1/2σx

exp
(

− (log(x)−μ)2

2σ 2

)
, f (x) = �

[
1
2 (m+n)

]
mm/2nn/2

�
(

1
2 m

)
�
(

1
2 n
) . x(m/2)−1

(mx+n)(m+n)/2 ,

for x > 0 for x > 0

Mean eμ+σ 2/2 n
n−2 , if n > 2

Variance e2μ+σ 2
[eσ 2 − 1] 2n2(m+n−2)

m(n−2)2(n−4)
, if n > 4

m.g.f. Not finite for t > 0 Not finite for t > 0

t with m degrees of freedom χ2 with m degrees of freedom

p.d.f. f (x) = �
(

m+1
2

)
(mπ)1/2�

(
m
2

) (
1 + x2

m

)−(m+1)/2
f (x) = 1

2m/2�(m/2)
x(m/2)−1e−x/2, for x > 0

Mean 0, if m > 1 m

Variance m
m−2 , if m > 2 2m

m.g.f. Not finite for t 	= 0 ψ(t) = (1 − 2t)−m/2,

for t < 1/2

Cauchy centered at μ Pareto with parameters x0 and α0

p.d.f. f (x) = 1
π(1+[x−μ]2)

f (x) = αxα
0

xα+1 , for x > x0

Mean Does not exist αx0
α−1, if α > 1

Variance Does not exist
αx2

0
(α−1)2(α−2)

, if α > 2

m.g.f. Not finite for t 	= 0 Not finite for t > 0
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